DESIGN OF MACHINERY - 5th Ed
SOLUTION MANUAL 2-1-1
PROBLEM 2-1 Statement:
Find three (or other number as assigned) of the following common devices. Sketch careful kinematic diagrams and find their total degrees of freedom. a. An automobile hood hinge mechanism b. An automobile hatchback lift mechanism c. An electric can opener d. A folding ironing board e. A folding card table f. A folding beach chair g. A baby swing h. A folding baby walker i. A fancy corkscrew as shown in Figure P2-9 j. A windshield wiper mechanism k. A dump-truck dump mechanism l. A trash truck dumpster mechanism m. A pickup tailgate mechanism n. An automobile jack o. A collapsible auto radio antenna
Solution:
See Mathcad file P0201.
Equation 2.1c is used to calculate the mobility (DOF) of each of the models below. a.
An automobile hood hinge mechanism. The hood (3) is linked to the body (1) through two rocker links (2 and 4). Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 M1 b.
HOOD 3 2
4
1 BODY
An automobile hatchback lift mechanism. The hatch (2) is pivoted on the body (1) and is linked to the body by the lift arm, which can be modeled as two links (3 and 4) connected through a translating slider joint. HATCH Number of links L 4 Number of full joints
J1 4
Number of half joints
J2 0
2 3 1
M 3 ( L 1 ) 2 J1 J2
4
M1
1 BODY
c.
An electric can opener has 2 DOF.
d.
A folding ironing board. The board (1) itself has one pivot (full) joint and one pin-in-slot sliding (half) joint. The two legs (2 and 3) hav a common pivot. One leg connects to the pivot joint on the board and the other to the slider joint.
DESIGN OF MACHINERY - 5th Ed
SOLUTION MANUAL 2-1-2
Number of links
L 3
Number of full joints
J1 2
Number of half joints
J2 1
1 3
2
M 3 ( L 1 ) 2 J1 J2 M1 e.
A folding card table has 7 DOF: One for each leg, 2 for location in xy space, and one for angular orientation.
f.
A folding beach chair. The seat (3) and the arms (6) are ternary links. The seat is linked to the front leg(2), the back (5) and a coupling link (4). The arms are linked to the front leg (2), the rear leg (1), and the back (5). Links 1, 2, 4, and 5 are binar links. The analysis below is appropriate when the chair is not fully opened. When fully opened, one or more links are prevented from moving by a stop. Subtract 1 DOF when forced against the stop. Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
5 6 4
1
M 3 ( L 1 ) 2 J1 J2
2 3
M1 g.
A baby swing has 4 DOF: One for the angular orientation of the swing with respect to the frame, and 3 for the location and orientation of the frame with respect to a 2-D frame.
h.
A folding baby walker has 4 DOF: One for the degree to which it is unfolded, and 3 for the location and orientation of the walker with respect to a 2-D frame.
i.
A fancy corkscrew has 2 DOF: The screw can be rotated and the arms rotate to translate the screw.
j.
A windshield wiper mechanism has 1 DOF: The position of the wiper blades is defined by a single input.
k.
A dump-truck dump mechanism has 1 DOF: The angle of the dump body is determined by the length of the hydraulic cylinder that links it to the body of the truck.
l.
A trash truck dumpster mechanism has 2 DOF: These are generally a rotation and a translation.
m. A pickup tailgate mechanism has 1 DOF: n.
An automobile jack has 4 DOF: One is the height of the jack and the other 3 are the position and orientation o the jack with respect to a 2-D frame.
o.
A collapsible auto radio antenna has as many DOF as there are sections, less one.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-2-1
PROBLEM 2-2 Statement:
How many DOF do you have in your wrist and hand combined?
Solution:
See Mathcad file P0202.
1.
Holding the palm of the hand level and facing toward the floor, the hand can be rotated about an axis through the wrist that is parallel to the floor (and perpendicular to the forearm axis) and one perpendicular to the floor (2 DOF). The wrist can rotate about the forearm axis (1 DOF).
2.
Each finger (and thumb) can rotate up and down and side-to-side about the first joint. Additionally, each finger can rotate about each of the two remaining joints for a total of 4 DOF for each finger (and thumb).
3.
Adding all DOF, the total is Wrist Hand Thumb Fingers 4x4
1 2 4 16
TOTAL
23
DESIGN OF MACHINERY - 5th Ed.
PROBLEM 2-3 Statement:
How many DOF do the following joints have? a. Your knee b. Your ankle c. Your shoulder d. Your hip e. Your knuckle
Solution:
See Mathcad file P0203.
a.
Your knee. 1 DOF: A rotation about an axis parallel to the ground.
b.
Your ankle. 3 DOF: Three rotations about mutually perpendicular axes.
c.
Your shoulder. 3 DOF: Three rotations about mutually perpendicular axes.
d.
Your hip. 3 DOF: Three rotations about mutually perpendicular axes.
e
Your knuckle. 2 DOF: Two rotations about mutually perpendicular axes.
SOLUTION MANUAL 2-3-1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-4-1
PROBLEM 2-4 Statement:
How many DOF do the following have in their normal environment? a. A submerged submarine b. An earth-orbit satellite c. A surface ship d. A motorcycle (road bike) e. A two-button mouse f. A computer joy stick.
Solution:
See Mathcad file P0204.
a.
A submerged submarine. Using a coordinate frame attached to earth, or an inertial coordinate frame, a submarine has 6 DOF: 3 linear coordinates and 3 angles.
b.
An earth-orbit satellite. If the satellite was just a particle it would have 3 DOF. But, since it probably needs to be oriented with respect to the earth, sun, etc., it has 6 DOF.
c.
A surface ship. There is no difference between a submerged submarine and a surface ship, both have 6 DOF. One might argue that, for an earth-centered frame, the depth of the ship with respect to mean sea level is constant, however that is not strictly true. A ship's position is generally given by two coordinates (longitude and latitude). For a given position, a ship can also have pitch, yaw, and roll angles. Thus, for all practical purposes, a surface ship has 5 DOF.
d.
A motorcycle. At an intersection, the motorcycle's position is given by two coordinates. In addition, it will have some heading angle (turning a corner) and roll angle (if turning). Thus, there are 4 DOF.
e.
A two-button mouse. A two-button mouse has 4 DOF. It can move in the x and y directions and each button has 1 DOF.
f.
A computer joy stick. The joy stick has 2 DOF (x and y) and orientation, for a total of 3 DOF.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-5-1
PROBLEM 2-5 Statement:
Are the joints in Problem 2-3 force closed or form closed?
Solution:
See Mathcad file P0205.
They are force closed by ligaments that hold them together. None are geometrically closed.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-6-1
PROBLEM 2-6 Statement:
Describe the motion of the following items as pure rotation, pure translation, or complex planar motion. a. A windmill b. A bicycle (in the vertical plane, not turning) c. A conventional "double-hung" window d. The keys on a computer keyboard e. The hand of a clock f. A hockey puck on the ice g. A "casement" window
Solution:
See Mathcad file P0206.
a.
A windmill. Pure rotation.
b.
A bicycle (in the vertical plane, not turning). Pure translation for the frame, complex planar motion for the wheels.
c.
A conventional "double-hung" window. Pure translation.
d.
The keys on a computer keyboard. Pure translation.
e.
The hand of a clock. Pure rotation.
f.
A hockey puck on the ice. Complex planar motion.
g.
A "casement" window. Pure rotation.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-7-1
PROBLEM 2-7 Statement:
Calculate the mobility of the linkages assigned from Figure P2-1 part 1 and part 2.
Solution:
See Figure P2-1 and Mathcad file P0207.
1.
Use equation 2.1c (Kutzbach's modification) to calculate the mobility.
a.
Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 1
6 3 5 2
M 3 ( L 1 ) 2 J1 J2
4 1
M0
(a)
1 3
b.
Number of links
L 3
Number of full joints
J1 2
Number of half joints
J2 1
1
M 3 ( L 1 ) 2 J1 J2 M1
2 1
(b) 4
c.
Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
1
3
M 3 ( L 1 ) 2 J1 J2 2
M1 (c)
1
7
d.
Number of links
L 7
Number of full joints
J1 7
Number of half joints
J2 1
1
6 5
M 3 ( L 1 ) 2 J1 J2 M3
1
2 3
4
(d)
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-7-2
8
5
8 1
5 1
9 10
6
1
1 7
4
4
1
2
2 3
3
1
5 6
2 1
(e)
1
e.
g.
Number of links
L 10
Number of full joints Number of half joints
(f)
Number of links
L 6
J1 13
Number of full joints
J1 6
J2 0
Number of half joints
J2 2
f.
M 3 ( L 1 ) 2 J1 J2
M 3 ( L 1 ) 2 J1 J2
M1
M1
Number of links
L 8
Number of full joints
J1 9
Number of half joints
J2 2
M 3 ( L 1 ) 2 J1 J2
4 1
4
7
6
3
7 1
5
8 1
2
2 1
1
1
M1 (g)
2 h.
Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 M1
1 3 1 4 (h)
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-8-1
PROBLEM 2-8 Statement:
Identify the items in Figure P2-1 as mechanisms, structures, or preloaded structures.
Solution:
See Figure P2-1 and Mathcad file P0208.
1.
Use equation 2.1c (Kutzbach's modification) to calculate the mobility and the definitions in Section 2.5 of the text to classify the linkages.
a.
Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 1
6 3 5 2
M 3 ( L 1 ) 2 J1 J2 M0
4 1
Structure
(a)
1 3
b.
Number of links
L 3
Number of full joints
J1 2
Number of half joints
J2 1
1
M 3 ( L 1 ) 2 J1 J2 M1
Mechanism
2 1
(b) 4
c.
Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
1
3
M 3 ( L 1 ) 2 J1 J2 M1
2
Mechanism (c)
1
7
d.
Number of links
L 7
Number of full joints
J1 7
Number of half joints
J2 1
1
6 5
M 3 ( L 1 ) 2 J1 J2 M3
Mechanism
1
2 3
4
(d)
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-9-1
PROBLEM 2-9 Statement:
Use linkage transformation on the linkage of Figure P2-1a to make it a 1-DOF mechanism.
Solution:
See Figure P2-1a and Mathcad file P0209.
1.
The mechanism in Figure P2-1a has mobility: Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 1
6 3 5 2
M 3 ( L 1 ) 2 J1 J2 M0
4 1 1
2.
Use rule 2, which states: "Any full joint can be replaced by a half joint, but this will increase the DOF by one." One way to do this is to replace one of the pin joints with a pin-in-slot joint such as that shown in Figure 2-3c. Choosing the joint between links 2 and 4, we now have mobility: Number of links
L 6
Number of full joints
J1 6
Number of half joints
J2 2
6 3 5
M 3 ( L 1 ) 2 J1 J2
2 4
M1
1 1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-10-1
PROBLEM 2-10 Statement:
Use linkage transformation on the linkage of Figure P2-1d to make it a 2-DOF mechanism.
Solution:
See Figure P2-1d and Mathcad file P0210.
1.
7
The mechanism in Figure P2-1d has mobility: Number of links
L 7
Number of full joints
J1 7
Number of half joints
J2 1
M 3 ( L 1 ) 2 J1 J2
1
6 5 1
2 3
4
M3 2.
Use rule 3, which states: "Removal of a link will reduce the DOF by one." One way to do this is to remove link 7 such that link 6 pivots on the fixed pin attached to the ground link (1). We now have mobility: Number of links
L 6
Number of full joints
J1 6
Number of half joints
J2 1
M 3 ( L 1 ) 2 J1 J2
1 6 5 1
2 3
M2
4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-11-1
PROBLEM 2-11 Statement:
Use number synthesis to find all the possible link combinations for 2-DOF, up to 9 links, to hexagonal order, using only revolute joints.
Solution:
See Mathcad file P0211.
1.
Use equations 2.4a and 2.6 with DOF = 2 and iterate the solution for valid combinations. Note that the number of links must be odd to have an even DOF (see Eq. 2.4). The smallest possible 2-DOF mechanism is then 5 links since three will give a structure (the delta triplet, see Figure 2-7). L B T Q P H
L 3 M T 2 Q 3 P 4 H L 5 T 2 Q 3 P 4 H
2.
3.
For L 5 0 T 2 Q 3 P 4 H
0=T =Q=P=H
2 T 2 Q 3 P 4 H
H 0
For L 7
Case 1:
Case 2:
4.
B 5
Q 0
Q 1
P 0
T 2 2 Q 3 P 4 H
T2
B L T Q P H
B5
T 2 2 Q 3 P 4 H
T0
B L T Q P H
B6
T 0
P 0
For L 9 4 T 2 Q 3 P 4 H Case 1:
H 1
Q 0
B L T Q P H Case 2a:
H 0
B8
4 T 2 Q 3 P 9 B T Q P
Case 2b:
P 1
1 T 2 Q
Q 0
B L T Q P H Case 2c:
P 0
T 1 B7
4 T 2 Q 9 B T Q
Case 2c1:
Case 2c2:
Case 2c3:
Q 2 Q 1 Q 0
T 4 2 Q
T0
B 9 T Q
B7
T 4 2 Q
T2
B 9 T Q
B6
T 4 2 Q
T4
B 9 T Q
B5
M 2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-12-1
PROBLEM 2-12 Statement:
Find all of the valid isomers of the eightbar 1-DOF link combinations in Table 2-2 (p. 38) having a. Four binary and four ternary links. b. Five binaries, two ternaries, and one quaternary link. c. Six binaries and two quaternary links. d. Six binaries, one ternary, and one pentagonal link.
Solution:
See Mathcad file P0212.
1.
2.
a.
Table 2-3 lists 16 possible isomers for an eightbar chain. However, Table 2-2 shows that there are five possible link sets, four of which are listed above. Therefore, we expect that the 16 valid isomers are distributed among the five link sets and that there will be fewer than 16 isomers among the four link sets listed above. One method that is helpful in finding isomers is to represent the linkage in terms of molecules as defined in Franke's Condensed Notations for Structural Synthesis. A summary of the rules for obtaining Franke's molecules follows: (1) The links of order greater than 2 are represented by circles. (2) A number is placed within each circle (the "valence" number) to describe the type (ternary, quaternary, etc.) of link. (3) The circles are connected using straight lines. The number of straight lines emanating from a circle must be equal to its valence number. (4) Numbers (0, 1, 2, etc.) are placed on the straight lines to correspond to the number of binary links used in connecting the higher order links. (5) There is one-to-one correspondence between the molecule and the kinematic chain that it represents. Four binary and four ternary links. Draw 4 circles with valence numbers of 3 in each. Then find all unique combinations of straight lines that can be drawn that connect the circles such that there are exactly three lines emanating from each circle and the total of the numbers written on the lines is exactly equal to 4. In this case, there are three valid isomers as depicted by Franke's molecules and kinematic chains below.
8
1 3
3
5
1 0
0
1 3
6
3
3
1
4
2 1
7
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-12-2
8 0 3
3 2
0
5
0
1 3
7
6
3 1
3
4
1 2
8 5
0 3
3
4
2 0
6
0
2 3
3
3 0
7
1 2
The mechanism shown in Figure P2-5b is the same eightbar isomer as that depicted schematically above. b.
Five binaries, two ternaries, and one quaternary link. Draw 2 circles with valence numbers of 3 in each and one with a valence number of 4. Then find all unique combinations of straight lines that can be drawn that connect the circles such that there are exactly three lines emanating from each circle with valence of three and four lines from the circle with valence of four; and the total of the numbers written on the lines is exactly equal to 5. In this case, there are five valid isomers as depicted by Franke's molecules and kinematic chains below.
0
3 2
4
7
0
1
5
3
3
2
6 4
8
1
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-12-3
5 1
3 0
3 0
2
6 4
7
3
2 4
8
1
2
5 0
3 1
3
3
7
1
2
4
6
1
2
8
4
1
5 1
3 1
6
3
4
0
1
3 2
7
8 4
1
2
5 1
3 1
6
3
3
1
1
1
8
4
7
2
4
1
c.
Six binaries and two quaternary links. Draw 2 circles with valence numbers of 4 in each. Then find all unique combinations of straight lines that can be drawn that connect the circles such that there are exactly four lines emanating from each circle and the total of the numbers written on the lines is exactly equal to 6. In this case, there are two valid isomers as depicted by Franke's molecules and kinematic chains below.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-12-4
0 2
7 4
4
4
5
3
6
2
8
2
1
2
1
4
1
7 4
4
d.
3
6
2 2
5
8
2 1
Six binaries, one ternary, and one pentagonal link. There are no valid implementations of 6 binary links with 1 pentagonal link.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-13-1
PROBLEM 2-13 Statement:
Use linkage transformation to create a 1-DOF mechanism with two sliding full joints from a Stephenson's sixbar linkage as shown in Figure 2-14a (p. 47).
Solution:
See Figure 2-14a and Mathcad file P0213.
1.
The mechanism in Figure 2-14a has mobility: Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
A 4
3
5
B
2
6
M 3 ( L 1 ) 2 J1 J2 M1
2.
1
Use rule 1, which states: "Revolute joints in any loop can be replaced by prismatic joints with no change in DOF of the mechanism, provided that at least two revolute joints remain in the loop." One way to do this is to replace pin joints at A and B with translating full slider joints such as that shown in Figure 2-3b. Note that the sliders are attached to links 3 and 5 in such a way that they can not rotate relative to the links. The number of links and 1-DOF joints remains the same. There are no 2-DOF joints in either mechanism.
A 4
3
5 2
1
6 B
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-14-1
PROBLEM 2-14 Statement:
Use linkage transformation to create a 1-DOF mechanism with one sliding full joint a a half joint from a Stephenson's sixbar linkage as shown in Figure 2-14b (p. 48).
Solution:
See Figure 2-14a and Mathcad file P0213.
1.
The mechanism in Figure 2-14b has mobility: Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
3 5 4 2
6
M 3 ( L 1 ) 2 J1 J2 1
M1
2.
To get the sliding full joint, use rule 1, which states: "Revolute joints in any loop can be replaced by prismati joints with no change in DOF of the mechanism, provided that at least two revolute joints remain in the loop." One way to do this is to replace pin joint links 3 and 5 with a translating full slider joint such as that shown in Figure 2-3b. Note that the slider is attached to link 3 in such a way that it can not rotate relative to the link. The number of links and 1-DOF joints remains the same.
3
5 4
2
6
1
3.
To get the half joint, use rule 4 on page 42, which states: "The combination of rules 2 and 3 above will keep the original DOF unchanged." One way to do this is to remove link 6 (and its two nodes) and insert a half joint between links 5 and 1. Number of links
L 5
Number of full joints
J1 5
Number of half joints
3 5 4
J2 1 2
M 3 ( L 1 ) 2 J1 J2
1
M1 1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-15-1
PROBLEM 2-15 Statement:
Calculate the Grashof condition of the fourbar mechanisms defined below. Build cardboard models of the linkages and describe the motions of each inversion. Link lengths are in inches (or double given numbers for centimeters). Part 1. a. b. c.
2 2 2
4.5 3.5 4.0
7 7 6
9 9 8
Part 2. d. e. f.
2 2 2
4.5 4.0 3.5
7 7 7
9 9 9
Solution: 1.
See Mathcad file P0215
Use inequality 2.8 to determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
a.
Condition( 2 4.5 7 9 ) "Grashof"
b.
Condition( 2 3.5 7 9 ) "non-Grashof"
c.
Condition( 2 4.0 6 8 ) "Special Grashof" This is a special case Grashof since the sum of the shortest and longest is equal to the sum of the other two link lengths.
d.
Condition( 2 4.5 7 9 ) "Grashof"
e.
Condition( 2 4.9 7 9 ) "Grashof"
f.
Condition( 2 3.5 7 9 ) "non-Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-16-1
PROBLEM 2-16 Statement:
Which type(s) of electric motor would you specify a. b. c.
Solution:
To drive a load with large inertia. To minimize variation of speed with load variation. To maintain accurate constant speed regardless of load variations.
See Mathcad file P0216.
a.
Motors with high starting torque are suited to drive large inertia loads. Those with this characteristic include series-wound, compound-wound, and shunt-wound DC motors, and capacitor-start AC motors.
b.
Motors with flat torque-speed curves (in the operating range) will minimize variation of speed with load variation. Those with this characteristic include shunt-wound DC motors, and synchronous and capacitor-start AC motors.
b.
Speed-controlled DC motors will maintain accurate constant speed regardless of load variations.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-17-1
PROBLEM 2-17 Statement:
Describe the difference between a cam-follower (half) joint and a pin joint.
Solution:
See Mathcad file P0217.
1.
A pin joint has one rotational DOF. A cam-follower joint has 2 DOF, rotation and translation. The pin joint also captures its lubricant in the annulus between pin and bushing while the cam-follower joint squeezes its lubricant out of the joint.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-18-1
PROBLEM 2-18 Statement:
Examine an automobile hood hinge mechanism of the type described in Section 2.14. Sketch it carefully. Calculate its DOF and Grashof condition. Make a cardboard model. Analyze it with a free-body diagram. Describe how it keeps the hood up.
Solution:
Solution of this problem will depend upon the specific mechanism modeled by the student.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-19-1
PROBLEM 2-19 Statement:
Find an adjustable arm desk lamp of the type shown in Figure P2-2. Sketch it carefully. Measure it and sketch it to scale. Calculate its DOF and Grashof condition. Make a cardboard model. Analyze it with a free-body diagram. Describe how it keeps itself stable. Are there any positions in which it loses stability? Why?
Solution:
Solution of this problem will depend upon the specific mechanism modeled by the student.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-20-1
PROBLEM 2-20 Statement:
The torque-speed curve for a 1/8 hp permanent magnet (PM) DC motor is shown in Figure P2-3. The rated speed for this fractional horsepower motor is 2500 rpm at a rated voltage of 130V. Determine: a) The rated torque in oz-in (ounce-inches, the industry standard for fractional hp motors) b) The no-load speed c) Plot the power-torque curve and determine the maximum power that the motor can deliver.
Given:
Rated speed, N
NR 2500 rpm
R
HR
Rated power, H
R
1 8
hp
4000 3500
Speed, rpm
3000 2500 2000 1500 1000 500 0
0
50
100
150
200
250
300
Torque, oz-in
Figure P2-3 Torque-speed Characteristic of a 1/8 HP, 2500 rpm PM DC Motor
Solution: a.
See Figure P2-3 and Mathcad file P0220.
The rated torque is found by dividing the rated power by the rated speed: TR
Rated torque, TR
HR NR
TR 50 ozf in
b.
The no-load speed occurs at T = 0. From the graph this is 3000 rpm.
c.
The power is the product of the speed and the torque. From the graph the equation for the torque-speed curve is: 3000 rpm N ( T ) T 3000 rpm 300 ozf in and the power, therefore, is: H ( T ) 10
rpm ozf in
2
T 3000 rpm T
Plotting the power as a function of torque over the range T 0 ozf in 10 ozf in 300 ozf in
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-20-2
0.25 0.225 0.2
Power, hp
0.175 0.15 0.125 0.1 0.075 0.05 0.025 0
0
50
100
150
200
250
300
Torque, oz-in
Maximum power occurs when dH/dT = 0. The value of T at maximum power is: ozf in
Value of T at Hmax
THmax 3000 rpm
Maximum power
Hmax H THmax
Hmax 0.223 hp
Speed at max power
NHmax N THmax
NHmax 1500 rpm
2 10 rpm
THmax 150 ozf in
Note that the curve goes through the rated power point of 0.125 hp at the rated torque of 50 oz-in.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-21-1
PROBLEM 2-21 Statement:
Find the mobility of the mechanisms in Figure P2-4.
Solution:
See Figure P2-4 and Mathcad file P0221.
1.
Use equation 2.1c (Kutzbach's modification) to calculate the mobility.
a.
This is a basic fourbar linkage. The input is link 2 and the output is link 4. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1).
Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
A 2 3 O2
M1
b.
4
C
O4
This is a fourbar linkage. The input is link 2, which in this case is the wheel 2 with a pin at A, and the output is link 4. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1).
Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
A
2
O2
3
M 3 ( L 1 ) 2 J1 J2
4 B
M1
c.
O4
This is a 3-cylinder, rotary, internal combustion engine. The pistons (sliders) 6, 7, and 8 drive the output crank (2) through piston rods (couplers 3, 4, and 5). There are 3 full joints at the crank where rods 3, 4and 5 are pinned to crank 2. The cross-hatched crank-shaft at O2 is supported by the ground link (1) through bearings. Number of links
L 8
Number of full joints
J1 10
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
6
3
2
4
M1 7
5
8
DESIGN OF MACHINERY - 5th Ed.
d.
SOLUTION MANUAL 2-21-2
This is a fourbar linkage. The input is link 2, which in this case is a wheel with a pin at A, and the output is the vertical member on the coupler, link 3. Since the lengths of links 2 and 4 (O2A and O4B) are the same, the coupler link (3) has curvilinear motion and AB remains parallel to O2O4 throughout the cycle. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1).
Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
B O4
O2
M1
e.
3
A 2
4
This is a fourbar linkage with an output dyad. The input (rocker) is link 2 and the output (rocker) is link 8. Links 5 and 6 are redundant, i.e. the mechanism will have the same motion if they are removed. The input fourbar consists of links 1, 2, 3, and 4. The output dyad consists of links 7 and 8. The cross-hatched pivot pins at O2, O4 and O8 are attached to the ground link (1). In the calculation below, the redundant links and their joints are not counted (subtract 2 links and 4 joints from the totals). A
Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
O2
4 O4 G
E
3
2 D
5
C
6
7
M 3 ( L 1 ) 2 J1 J2 O8
M1 F
H 8
f.
This is a fourbar offset slider-crank linkage. The input is link 2 (crank) and the output is link 4 (slider block). The cross-hatched pivot pin at O2 is attached to the ground link (1).
Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
4
B
3
M 3 ( L 1 ) 2 J1 J2 A
M1 2 O2
DESIGN OF MACHINERY - 5th Ed.
g.
SOLUTION MANUAL 2-21-3
This is a fourbar linkage with an alternate output dyad. The input (rocker) is link 2 and the outputs (rockers) are links 4 and 6. The input fourbar consists of links 1, 2, 3, and 4. The alternate output dyad consists of links 5 and 6. The cross-hatched pivot pins at O2, O4 and O6 are attached to the ground link (1). Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
O6 3
B
A
2
M 3 ( L 1 ) 2 J1 J2
4
C
6
O2
M1
5 D O4
h.
This is a ninebar mechanism with three redundant links, which reduces it to a sixbar. Since this mechanism is symmetrical about a vertical centerline, we can split it into two mirrored mechanisms to analyze it. Either links 2, 3 and 5 or links 7, 8 and 9 are redundant. To analyze it, consider 7, 8 and 9 as the redundant links. Analyzing the ninebar, there are two full joints at the pins A, B and C for a total of 12 joints. Number of links
L 9
Number of full joints
J1 12
Number of half joints
J2 0
6
O2 2
8
7
5
C
B
M 3 ( L 1 ) 2 J1 J2
O8
A
9
3
M0 4
D
E
The result is that this mechanism seems to be a structure. By splitting it into mirror halves about the vertical centerline the mobility is found to be 1. Subtract the 3 redundant links and their 5 (6 minus the joint at A) associated joints to determine the mobility of the mechanism. Number of links
L 9 3
Number of full joints
J1 12 5
Number of half joints
J2 0
6 O2 2
5 B
M 3 ( L 1 ) 2 J1 J2
3
M1 D
4
A
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-22-1
PROBLEM 2-22 Statement: Solution: 1.
Find the Grashof condition and Barker classifications of the mechanisms in Figure P2-4a, b, and d. See Figure P2-4 and Mathcad file P0222.
Use inequality 2.8 to determine the Grashof condition and Table 2-4 to determine the Barker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
a.
This is a basic fourbar linkage. The input is link 2 and the output is link 4. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1). L1 174
L2 116
L3 108
L4 110
A 2 3
Condition L1 L2 L3 L4 "non-Grashof"
O2
4
C
This is a Barker Type 5 RRR1 (non-Grashof, longest link grounded). b.
O4
This is a fourbar linkage. The input is link 2, which in this case is the wheel with a pin at A, and the output is link 4. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1). L1 162
L2 40
L3 96
L4 122
B
A
2
3
O2 4
Condition L1 L2 L3 L4 "Grashof" This is a Barker Type 2 GCRR (Grashof, shortest link is input). d.
This is a fourbar linkage. The input is link 2, which in this case is a wheel with a pin at A, and the output is the vertical member on the coupler, link 3. Since the lengths of links 2 and 4 (O2A and O4B) are the same, the coupler link (3) has curvilinear motion and AB remains parallel to O2O4 throughout the cycle. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1). L1 150 L2 30 L3 150
L4 30
Condition L1 L2 L3 L4 "Special Grashof" This is a Barker Type 13 S2X (special case Grashof, two equal pairs, parallelogram).
O4
A
3
2 O2
B O4
4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-23-1
PROBLEM 2-23 Statement:
Find the rotability of each loop of the mechanisms in Figure P2-4e, f, and g.
Solution:
See Figure P2-4 and Mathcad file P0223.
1.
Use inequality 2.15 to determine the rotability of each loop in the given mechanisms.
e.
This is a fourbar linkage with an output dyad. The input (rocker) is link 2 and the output (rocker) is link 8. Links 5 and 6 are redundant, i.e. the mechanism will have the same motion if they are removed. The input fourbar consists of links 1, 2, 3, and 4. The output dyad consists of links 7 and 8. The cross-hatched pivot pins at O2, O4 and O8 are attached to the ground link (1). In the calculation below, the redundant links and their joints are not counted (subtract 2 links and 4 joints from the totals).
B
A O2
4 O4 G
E
3
2 D
5
C
6
7
O8
There are two loops in this mechanism. The first loop consists of links 1, 2, 3 (or 5), and 4. The second consists of links 1, 4, 7 (or 6), and 8. By inspection, we see that the sum of the shortest and longest in each loop is equal to the sum of the other two. Thus, both loops are Class III. f.
8
This is a fourbar offset slider-crank linkage. The input is link 2 (crank) and the output is link 4 (slider block). The cross-hatched pivot pin at O2 is attached to the ground link (1).
4
A 2 O2
O6
This is a fourbar linkage with an alternate output dyad. The input (rocker) is link 2 and the outputs (rockers) are links 4 and 6. The input fourbar consists of links 1, 2, 3, and 4. The alternate output dyad consists of links 5 and 6. The cross-hatched pivot pins at O2, O4 and O6 are attached to the ground link (1). r1 87
r2 49
r3 100
r4 153
B
3
We can analyze this linkage if we replace the slider ( 4) with an infinitely long binary link that is pinned at B to link 3 and pinned to ground (1). Then links 1 and 4 for are both infinitely long. Since these two links are equal in length and, if we say they are finite in length but very long, the rotability of the mechanism will be determined by the relative lengths of 2 and 3. Thus, this is a Class I linkage since link 2 is shorter than link 3.
g.
H
F
3
B
2 4
C
A 6
O2 5 D
Using the notation of inequality 2.15, N 4 LN r4 L1 r2 L2 r1 LN L1 202
O4
L3 r3 L2 L3 187
Since LN L1 L2 L3, this is a a class II mechanism.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-24-1
PROBLEM 2-24 Statement:
Find the mobility of the mechanisms in Figure P2-5.
Solution:
See Figure P2-5 and Mathcad file P0224.
1.
Use equation 2.1c (Kutzbach's modification) to calculate the mobility. In the kinematic representations of the linkages below, binary links are depicted as single lines with nodes at their end points whereas higher order links are depicted as 2-D bars.
a.
This is a sixbar linkage with 4 binary (1, 2, 5, and 6) and 2 ternary (3 and 4) links. The inverted U-shaped link at the top of Figure P2-5a is represented here as the binary link 6. Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
3
5
4
2
M 3 ( L 1 ) 2 J1 J2 O2
M1
b.
6
O4
This is an eightbar linkage with 4 binary (1, 4, 7, and 8) and 4 ternary (2, 3, 5, and 6) links. The inverted U-shaped link at the top of Figure P2-5b is represented here as the binary link 8. Number of links
L 8
Number of full joints
J1 10
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 M1
5
6
2
3
7
8 2 O2
4 O4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-25-1
PROBLEM 2-25 Statement:
Find the mobility of the ice tongs in Figure P2-6. a. When operating them to grab the ice block. b. When clamped to the ice block but before it is picked up (ice grounded). c. When the person is carrying the ice block with the tongs.
Solution:
See Figure P2-6 and Mathcad file P0225.
1.
Use equation 2.1c (Kutzbach's modification) to calculate the mobility.
a.
In this case there are two links and one full joint and 1 DOF. Number of links
L 2
Number of full joints
J1 1
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 b.
When the block is clamped in the tongs another link and two more full joints are added reducing the DOF to zero (the tongs and ice block form a structure). Number of links
L 2 1
Number of full joints
J1 1 2
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
c.
M1
M0
When the block is being carried the system has at least 4 DOF: x, y, and z position and orientation about a vertical axis.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-26-1
PROBLEM 2-26 Statement:
Find the mobility of the automotive throttle mechanism shown in Figure P2-7.
Solution:
See Figure P2-7 and Mathcad file P0226.
1.
This is an eightbar linkage with 8 binary links. It is assumed that the joint between the gas pedal (2) and the roller (3) that pivots on link 4 is a full joint, i.e. the roller rolls without slipping. The pivot pins at O2, O4, O6, and O8 are attached to the ground link (1). Use equation 2.1c (Kutzbach's modification) to calculate the mobility. Number of links
L 8
Number of full joints
J1 10
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
7 6 O6
8
FULL JOINT 5 4 O4 3 2
O2
O8
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-27-1
PROBLEM 2-27 Statement:
Sketch a kinematic diagram of the scissors jack shown in Figure P2-8 and determine its mobility. Describe how it works.
Solution:
See Figure P2-8 and Mathcad file P0227.
1.
The scissors jack depicted is a seven link mechanism with eight full and two half joints (see kinematic diagram below). Link 7 is a variable length link. Its length is changed by rotating the screw with the jack handle (not shown). The two blocks at either end of link 7 are an integral part of the link. The block on the left is threaded and acts like a nut. The block on the right is not threaded and acts as a bearing. Both blocks have pins that engage the holes in links 2, 3, 5, and 6. Joints A and B have 2 full joints apiece. For any given length of link 7 the jack is a structure (DOF = 0). When the screw is turned to give the jack a different height the jack has 1 DOF.
4
3
5
7
A
B 2
6 1
Number of links
L 7
Number of full joints
J1 8
Number of half joints
J2 2
M 3 ( L 1 ) 2 J1 J2
M0
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-28-1
PROBLEM 2-28 Statement:
Find the mobility of the corkscrew in Figure P2-9.
Solution:
See Figure P2-9 and Mathcad file P0228.
1.
The corkscrew is made from 4 pieces: the body (1), the screw (2), and two arms with teeth (3), one of which is redundant. The second arm is present to balance the forces on the assembly but is not necessary from a kinematic standpoint. So, kinematically, there are 3 links (body, screw, and arm), 2 full joints (sliding joint between the screw and the body, and pin joint where the arm rotates on the body), and 1 half joint where the arm teeth engage the screw "teeth". Using equation 2.1c, the DOF (mobility) is Number of links
L 3
Number of full joints
J1 2
Number of half joints
J2 1
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-29-1
PROBLEM 2-29 Statement:
Figure P2-10 shows Watt's sun and planet drive that he used in his steam engine. The beam 2 is driven in oscillation by the piston of the engine. The planet gear is fixed rigidly to link 3 and its center is guided in the fixed track 1. The output rotation is taken from the sun gear 4. Sketch a kinematic diagram of this mechanism and determine its DOF. Can it be classified by the Barker scheme? If so, what Barker class and subclass is it?
Solution:
See Figure P2-10 and Mathcad file P0229.
1.
Sketch a kinematic diagram of the mechanism. The mechanism is shown on the left and a kinematic model of it is sketched on the right. It is a fourbar linkage with 1 DOF (see below).
A
2
2
1
3
3 1
4
B
4
1
2.
C
Use equation 2.1c to determine the DOF (mobility). There are 4 links, 3 full pin joints, 1 half pin-in-slot joint (at B), and 1 half joint (at the interface C between the two gears, shown above by their pitch circles). Links 1 and 3 are ternary. Kutzbach's mobility equation (2.1c) Number of links
L 4
Number of full joints
J1 3
Number of half joints
J2 2
M 3 ( L 1 ) 2 J1 J2 3.
M1
The Barker classification scheme requires that we have 4 link lengths. The motion of link 3 can be modeled by a basic fourbar if the half joint at B is replaced with a full pin joint and a link is added to connect B and the fixed pivot that is coincident with the center of curvature of the slot that guides pin B. L1 2.15
L2 1.25
L3 1.80
L4 0.54
This is a Grashof linkage and the Barker classification is I-4 (type 4) because the shortest link is the output.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-30-1
PROBLEM 2-30 Statement:
Figure P2-11 shows a bicycle hand brake lever assembly. Sketch a kinematic diagram of this device and draw its equivalent linkage. Determine its mobility. Hint: Consider the flexible cable to be a link.
Solution:
See Figure P2-11 and Mathcad file P0230.
1.
The motion of the flexible cable is along a straight line as it leaves the guide provided by the handle bar so it can be modeled as a translating full slider that is supported by the handlebar (link 1). The brake lever is a binary link that pivots on the ground link. Its other node is attached through a full pin joint to a third link, which drives the slider (link 4). Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 M1
CABLE BRAKE LEVER 3 2
4 1 1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-31-1
PROBLEM 2-31 Statement:
Figure P2-12 shows a bicycle brake caliper assembly. Sketch a kinematic diagram of this device and draw its equivalent linkage. Determine its mobility under two conditions. a. b.
Brake pads not contacting the wheel rim. Brake pads contacting the wheel rim.
Hint: Consider the flexible cable to be replaced by forces in this case. Solution: 1.
See Figure P2-12 and Mathcad file P0231.
The rigging of the cable requires that there be two brake arms. However, kinematically they operate independently and can be analyzed that way. Therefore, we only need to look at one brake arm. When the brake pads are not contacting the wheel rim there is a single lever (link 2) that is pivoted on a full pin joint that is attached to the ground link (1). Thus, there are two links (frame and brake arm) and one full pin joint. Number of links
L 2
Number of full joints
J1 1
Number of half joints
J2 0
BRAKE ARM
FRAME
2
M 3 ( L 1 ) 2 J1 J2 M1
2.
1
When the brake pad contacts the wheel rim we could consider the joint between the pad, which is rigidly attached to the brake arm and is, therefore, a part of link 2, to be a half joint. The brake arm (with pad), wheel (which is constrained from moving laterally by the frame), and the frame constitute a structure. Number of links
L 2
Number of full joints
J1 1
Number of half joints
J2 1
BRAKE ARM
FRAME
2
M 3 ( L 1 ) 2 J1 J2 M0
1 1 HALF JOINT
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-32-1
PROBLEM 2-32 Statement:
Find the mobility, the Grashof condition, and the Barker classifications of the mechanism in Figure P2-13.
Solution:
See Figure P2-13 and Mathcad file P0232.
1.
Use equation 2.1c (Kutzbach's modification) to calculate the mobility. When there is no cable in the jaw or before the cable is crimped this is a basic fourbar mechanism with with 4 full pin joints: Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
When there is a cable in the jaw this is a threebar mechanism with with 3 full pin joints. While the cable is clamped the jaws are stationary with respect to each other so that link 4 is grounded along with link 1, leaving only three operational links.
2.
Number of links
L 3
Number of full joints
J1 3
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M0
Use inequality 2.8 to determine the Grashof condition and Table 2-4 to determine the Barker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
L1 0.92
L2 0.27
L3 0.50
L4 0.60
Condition L1 L2 L3 L4 "non-Grashof" The Barker classification is II-1 (Type 5) RRR1 (non-Grashof, longest link grounded).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-33-1
PROBLEM 2-33 Statement:
The approximate torque-speed curve and its equation for a 1/4 hp shunt-wound DC motor are shown in Figure P2-14. The rated speed for this fractional horsepower motor is 10000 rpm at a rated voltage of 130V. Determine: a) The rated torque in oz-in (ounce-inches, the industry standard for fractional hp motors) b) The no-load speed c) The operating speed range d) Plot the power-torque curve in the operating range and determine the maximum power that the motor can deliver in the that range.
Given:
Rated speed, N N ( T )
NR 10000 rpm
R
0.1 1.7
NR TR NR TR
HR
Rated power, H
R
1 4
hp
T 1.1 NR if T 62.5 ozf in T 5.1 NR otherwise
T 0 ozf in 2.5 ozf in 75 ozf in
12000
10000
Speed, rpm
8000
6000
4000
2000
0
0
25
50
75
100
Torque, oz-in
Figure P2-14 Torque-speed Characteristic of a 1/4 HP, 10000 rpm DC Motor Solution: a.
See Figure P2-3 and Mathcad file P0220.
The rated torque is found by dividing the rated power by the rated speed: Rated torque, TR
TR
HR NR
TR 25 ozf in
b.
The no-load speed occurs at T = 0. From the graph this is 11000 rpm.
c.
The operating speed range for a shunt-wound DC motor is the speed at which the motor begins to stall up to the no-load speed. For the approximate torque-speed curve given in this problem the minimum speed is defined as the speed at the knee of the curve. Nopmin N ( 62.5 ozf in)
Nopmin 8500 rpm
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-33-2
Nopmax N ( 0 ozf in)
The power is the product of the speed and the torque. From the graph the equation for the torque-speed curve over the operating range is: N ( T )
40 rpm ozf in
T 11000 rpm
and the power, therefore, is: H ( T ) N ( T ) T Plotting the power as a function of torque over the range T 0 ozf in 2.5 ozf in 62.5 ozf in 0.750 0.700 0.650 0.600 0.550 0.500 Power, hp
d.
Nopmax 11000 rpm
0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0.0
12.5
25.0
37.5
50.0
62.5
75.0
Torque, oz-in
Maximum power occurs at the maximum torque in the operating range. The value of T at maximum power is: Value of T at Hmax
THmax 62.5 ozf in
THmax 62.5 ozf in
Maximum power
Hmax H THmax
Hmax 0.527 hp
Speed at max power
NHmax N THmax
NHmax 8500 rpm
Note that the curve goes through the rated power point of 0.25 hp at the rated torque of 25 oz-in.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-34-1
PROBLEM 2-34 Statement:
Figure P2-15 shows a power hacksaw, used to cut metal. Link 5 pivots at O5 and its weight forces the sawblade against the workpiece while the linkage moves the blade (link 4) back and forth within link 5 to cut the part. Sketch its kinematic diagram, determine its mobility and its type (i.e., is it a fourbar, a Watt's sixbar, a Stephenson's sixbar, an eightbar, or what?) Use reverse linkage transformation to determine its pure revolute-jointed equivalent linkage.
Solution:
See Figure P2-15 and Mathcad file P0234.
1.
Sketch a kinematic diagram of the mechanism. The mechanism is shown on the left and a kinematic model of it is sketched on the right. It is a fivebar linkage with 1 DOF (see below). 5
3
5 3
4
4
2
2
2.
1
1
1
Use equation 2.1c to determine the DOF (mobility). There are 5 links, 4 full pin joints, 1 full sliding joint, and 1 half joint (at the interface between the hacksaw blade and the pipe being cut). Kutzbach's mobility equation (2.1c) Number of links
L 5
Number of full joints
J1 5
Number of half joints
J2 1
M 3 ( L 1 ) 2 J1 J2 3.
M1
Use rule 1 to transform the full sliding joint to a full pin joint for no change in DOF. Then use rules 2 and 3 by changing the half joint to a full pin joint and adding a link for no change in DOF. The resulting kinematically equivalent linkage has 6 links, 7 full pin joints, no half joints, and is shown below. Kutzbach's mobility equation (2.1c) Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
5 4
3 2
M 3 ( L 1 ) 2 J1 J2
1 6
M1
1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-35-1
PROBLEM 2-35 Statement:
Figure P2-16 shows a manual press used to compact powdered materials. Sketch its kinematic diagram, determine its mobility and its type (i.e., is it a fourbar, a Watt's sixbar, a Stephenson's sixbar, an eightbar, or what?) Use reverse linkage transformation to determine its pure revolute-jointed equivalent linkage.
Solution:
See Figure P2-16 and Mathcad file P0235.
1.
Sketch a kinematic diagram of the mechanism. The mechanism is shown on the left and a kinematic model of it is sketched on the right. It is a fourbar linkage with 1 DOF (see below).
4 3
4
3 2
2
O2
O2
2.
Use equation 2.1c to determine the DOF (mobility). There are 4 links, 3 full pin joints, 1 full sliding joint, and 0 half joints. This is a fourbar slider-crank. Kutzbach's mobility equation (2.1c) Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 3.
M1
Use rule 1 to transform the full sliding joint to a full pin joint for no change in DOF. The resulting kinematically equivalent linkage has 4 links, 4 full pin joints, no half joints, and is shown below. 4 O4 3
2 O2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-36-1
PROBLEM 2-36 Statement:
Sketch the equivalent linkage for the cam and follower mechanism in Figure P2-17 in the position shown. Show that it has the same DOF as the original mechanism.
Solution:
See Figure P2-17 and Mathcad file P0236.
1.
The cam follower mechanism is shown on the left and a kinematically equivalent model of it is sketched on the right.
4 1
1 4
3
3
2
2
INSTANTANEOUS CENTER OF CURVATURE OF CAM SURFACE
1
1
2.
Use equation 2.1c to determine the DOF (mobility) of the original mechanism. There are 4 links, 2 full pin joints, 1 full sliding joint, 1 pure rolling joint and 0 half joints. Kutzbach's mobility equation (2.1c) Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 3.
M1
Use equation 2.1c to determine the DOF (mobility) of the equivalent mechanism. There are 4 links, 3 full pin joints, 1 full sliding joint, and 0 half joints. This is a fourbar slider-crank. Kutzbach's mobility equation (2.1c) Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTIONS MANUAL 2-37-1
PROBLEM 2-37 Statement:
Describe the motion of the following rides, commonly found at an amusement park, as pure rotation, pure translation, or complex planar motion. a. A Ferris wheel b. A "bumper" car c. A drag racer ride d. A roller coaster whose foundation is laid out in a straight line e. A boat ride through a maze f. A pendulum ride g. A train ride
Solution:
See Mathcad file P0211.
a.
A Ferris wheel Pure rotation.
b.
A "bumper car" Complex planar motion.
c.
A drag racer ride Pure translation.
d.
A roller coaster whose foundation is laid out in a straight line Complex planar motion.
e.
A boat ride through a maze Complex planar motion.
f.
A pendulum ride Pure rotation.
g.
A train ride Complex planar motion.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-38-1
PROBLEM 2-38 Statement:
Figure P2-1a is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.
Solution:
See Figure P2-1a and Mathcad file P0238.
1.
Label the link numbers and joint letters for Figure P2-1a.
G B
3 C
5
2 A
4
1
1
6
F
E
D 1
a.
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6
Link Order Ternary Ternary Binary Ternary Binary Binary
b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G
Joint Order 1 1 1 1 1 2 1
Half/Full Full Full Full Half Full Full Full
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-39-1
PROBLEM 2-39 Statement:
Figure P2-1b is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.
Solution:
See Figure P2-1b and Mathcad file P0239.
1.
Label the link numbers and joint letters for Figure P2-1b.
3 C 1 B
2 A 1
a.
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3
Link Order Binary Binary Binary
b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C
Joint Order 1 1 1
Half/Full Full Half Full
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-40-1
PROBLEM 2-40 Statement:
Figure P2-1c is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.
Solution:
See Figure P2-1c and Mathcad file P0240.
1.
Label the link numbers and joint letters for Figure P2-1c. 4 1 C
D
3
2 B
A 1
a.
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4
Link Order Binary Binary Binary Binary
b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D
Joint Order 1 1 1 1
Half/Full Full Full Full Full
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-41-1
PROBLEM 2-41 Statement:
Figure P2-1d is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.
Solution:
See Figure P2-1d and Mathcad file P0241.
1.
Label the link numbers and joint letters for Figure P2-1d. H 1
7 G
6
E 5
F
A 1
D
2 3 B
a.
4 C
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6 7
Link Order Binary Binary Ternary Binary Binary Ternary Binary
b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H
Joint Order 1 1 1 1 1 1 1 1
Half/Full Full Full Half Full Full Full Full Full
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-42-1
PROBLEM 2-42 Statement:
Find the mobility, Grashof condition and Barker classification of the oil field pump shown in Figure P2-18.
Solution:
See Figure P2-18 and Mathcad file P0242.
1.
Use inequality 2.8 to determine the Grashof condition and Table 2-4 to determine the Barker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
4 O4 3
O2
2
This is a basic fourbar linkage. The input is the 14-in-long crank (link 2) and the output is the top beam (link 4). The mobility (DOF) is found using equation 2.1c (Kutzbach's modification): Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
The link lengths and Grashof condition are L1
2
( 76 12) 47.5
2
L1 79.701
Condition L1 L2 L3 L4 "Grashof" This is a Barker Type 2 GCRR (Grashof, shortest link is input).
L2 14
L3 80
L4 51.26
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-43-1
PROBLEM 2-43 Statement:
Find the mobility, Grashof condition and Barker classification of the aircraft overhead bin shown in Figure P2-19.
Solution:
See Figure P2-19 and Mathcad file P0243.
1.
Use inequality 2.8 to determine the Grashof condition and Table 2-4 to determine the Barker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
2.79 O2
6.95
B
2
9.17
9.17 4 3 O4
9.57
A
9.17
This is a basic fourbar linkage. The input is the link 2 and the output is link 4. The mobility (DOF) is found using equation 2.1c (Kutzbach's modification): Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
The link lengths and Grashof condition are 2
2
L1 7.489
L2 9.17
2
2
L3 12.968
L4 9.57
L1
2.79 6.95
L3
9.17 9.17
Condition L1 L2 L3 L4 "non-Grashof" This is a Barker Type 7 RRR3 (non-Grashof, longest link is coupler).
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-44-1
PROBLEM 2-44 Statement:
Figure P2-20 shows a "Rube Goldberg" mechanism that turns a light switch on when a room door is opened and off when the door is closed. The pivot at O2 goes through the wall. There are two spring-loaded piston-in cylinder devices in the assembly. An arrangement of ropes and pulleys inside the room transfers the door swing into a rotation of link 2. Door opening rotates link 2 CW, pushing the switch up as shown in the figure, and door closing rotates link 2 CCW, pulling the switch down. Find the mobility of the linkage.
Solution:
See Figure P2-20 and Mathcad file P0244.
1.
2.
Examination of the figure shows 20 links (including the the switch) and 28 full joints. The second piston-in cylinder that actuates the switch is counted as a single binary link of variable length with joints at its ends. The other cylinder consists of two binary links, each link having one pin joint and one slider joint. There are no half joints. Use equation 2.1c to determine the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links
L 20
Number of full joints
J1 28
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 3.
M1
An alternative is to ignore the the first piston-in cylinder that acts on the third bellcrank from O2 since it does not affect the the motion of the linkage (it acts only as a damper.) In that case, subtract two links and three full joints, giving L = 18, J1 = 25 and M = 1.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-45-1
PROBLEM 2-45 Statement:
All of the eightbar linkages in Figure 2-11 part 2 have eight possible inversions. Some of these will give motions similar to others. Those that have distinct motions are called distinct inversions. How many distinct inversions does the linkage in row 4, column 1 have?
Solution:
See Figure 2-11, part 2 and Mathcad file P0245.
1.
This isomer has one quaternary, two ternary, and five binary links arranged in a symetrical fashion. Due to this symmetry, grounding link 2 or 7 gives the same inversion, as do grounding 3 or 6 and 4 or 5. This makes 3 of the possible 8 inversions the same leaving 5 distinct inversions. Distinct inversions are obtained by grounding link 1, 2, 3, 4, or 8 (or 1, 5, 6, 7, or 8) for a total of 5 distinct inversions.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-46-1
PROBLEM 2-46 Statement:
All of the eightbar linkages in Figure 2-11 part 2 have eight possible inversions. Some of these will give motions similar to others. Those that have distinct motions are called distinct inversions. How many distinct inversions does the linkage in row 4, column 2 have?
Solution:
See Figure 2-11, part 2 and Mathcad file P0246.
1.
This isomer has four ternary, and four binary links arranged in a symetrical fashion. Due to this symmetry, grounding link 1 or 5 gives the same inversion, as do grounding 2 or 8, 4 or 6, and 3 or 7. This makes 4 of the possible 8 inversions the same leaving 4 distinct inversions. Distinct inversions are obtained by grounding link 1, 2, 3, or 4 (or 5, 6, 7, or 8) for a total of 4 distinct inversions.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-47-1
PROBLEM 2-47 Statement:
All of the eightbar linkages in Figure 2-11 part 2 have eight possible inversions. Some of these will give motions similar to others. Those that have distinct motions are called distinct inversions. How many distinct inversions does the linkage in row 4, column 3 have?
Solution:
See Figure 2-11, part 2 and Mathcad file P0247.
1.
This isomer has four ternary, and four binary links arranged in a symetrical fashion. Due to this symmetry, grounding link 2 or 4 gives the same inversion, as does grounding 5 or 7. This makes 2 of the possible 8 inversions the same leaving 6 distinct inversions. Distinct inversions are obtained by grounding link 1, 2, 3, 5, 6 or 8 (or 1, 3, 4, 6, 7, or 8) for a total of 6 distinct inversions.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-48-1
PROBLEM 2-48 Statement:
Find the mobility of the mechanism shown in Figure 3-33.
Solution:
See Figure 3-33 and Mathcad file P0248.
1.
Use equation 2.1c to determine the DOF (mobility). There are 6 links, 7 full pin joints (two at B), and no half-joints.
Kutzbach's mobility equation (2.1c) Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-49-1
PROBLEM 2-49 Statement:
Find the mobility of the mechanism shown in Figure 3-34.
Solution:
See Figure 3-34 and Mathcad file P0249.
1.
Use equation 2.1c to determine the DOF (mobility). There are 6 links, 7 full pin joints, and no half-joints. Kutzbach's mobility equation (2.1c) Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-50-1
PROBLEM 2-50 Statement:
Find the mobility of the mechanism shown in Figure 3-35.
Solution:
See Figure 3-35 and Mathcad file P0250.
1.
Use equation 2.1c to determine the DOF (mobility). There are 6 links, 7 full pin joints, and no half-joints. Kutzbach's mobility equation (2.1c) Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-51-1
PROBLEM 2-51 Statement:
Find the mobility of the mechanism shown in Figure 3-36.
Solution:
See Figure 3-36 and Mathcad file P0251.
1.
Use equation 2.1c to determine the DOF (mobility). There are 8 links, 10 full pin joints (two at O4), and no half-joints. Kutzbach's mobility equation (2.1c) Number of links
L 8
Number of full joints
J1 10
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-52-1
PROBLEM 2-52 Statement:
Find the mobility of the mechanism shown in Figure 3-37.
Solution:
See Figure 3-37 and Mathcad file P0252.
1.
Use equation 2.1c to determine the DOF (mobility). There are 6 links, 7 full pin joints (two at O4), and no half-joints. Kutzbach's mobility equation (2.1c) Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-53-1
PROBLEM 2-53 Statement:
Figure P2-1e is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.
Solution:
See Figure P2-1e and Mathcad file P0253.
1.
Label the link numbers and joint letters for Figure P2-1e. J
K
8
I
8 1
9
1
L 10
M
7
a.
4 D C
A 1
2
2 3
E
H
B 5
F
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6
Link Order 5 nodes Quaternary Binary Binary Binary Binary
Link No. 7 8 9 10
6
G 1
b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H I J K L M
Joint Order 1 1 1 1 1 1 1 1 1 1 1 1 1
Half/Full Full Full Full Full Full Full Full Full Full Full Full Full Full
Joint Classification Grounded rotating joint Moving rotating joint Pure rolling joint Grounded rotating joint Moving rotating joint Moving translating joint Grounded rotating joint Moving rotating joint Moving rotating joint Grounded rotating joint Moving translating joint Moving rotating joint Grounded translating joint
Link Order Binary Ternary Binary Binary
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-54-1
PROBLEM 2-54 Statement:
Figure P2-1f is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.
Solution:
See Figure P2-1f and Mathcad file P0254.
1.
Label the link numbers and joint letters for Figure P2-1f.
F 5
E
5 1 6
1
G
H
4
a.
C 3
1
B A 1
2
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6
Link Order Quaternary Binary Ternary Binary Ternary Binary
b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H
Joint Order 1 1 1 1 1 1 1 1
Half/Full Full Full Full Full Full Full Full Full
Joint Classification Grounded rotating joint Moving half joint Grounded translating joint Moving rotating joint Moving rotating joint Grounded rotating joint Moving half joint Grounded translating joint
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-55-1
PROBLEM 2-55 Statement:
Figure P2-1g is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.
Solution:
See Figure P2-1g and Mathcad file P0255.
1.
Label the link numbers and joint letters for Figure P2-1g.
I
D 4 E
5
1
4 C 2
1
a.
B
G
A
A
1
F
7
6
3
H
7 1 J
2 1
8 1
K
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4
Link Order 5 nodes Binary Binary Ternary
Link No. 5 6 7 8
Link Order Binary Binary Ternary Binary
b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H I J K
Joint Order 1 1 1 1 1 1 1 1 1 1 1
Half/Full Full Full Full Full Half Full Full Full Full Half Full
Joint Classification Grounded rotating joint Moving rolling joint Moving rotating joint Grounded rotating joint Moving sliding joint Grounded translating joint Moving rolling joint Moving rotating joint Grounded rotating joint Moving sliding joint Grounded translating joint
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-56-1
PROBLEM 2-56 Statement:
For the example linkage shown in Figure 2-4 find the number of links and their respective link orders, the number of joints and their respective orders, and the mobility of the linkage.
Solution:
See Figure 2-4 and Mathcad file P0256.
1.
Label the link numbers and joint letters for Figure 2-4 example.
K
1
9 8
I G
J
6
7 H
D 1
4
E
3 B A 1
C 2
1
5 F 1
2.
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5
3.
Link No. 6 7 8 9
Link Order Ternary Binary Binary Binary
Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H I J K
4.
Link Order 5 nodes Binary Ternary Binary Binary
Joint Order 1 1 1 2 1 1 1 1 1 1 1
Half/Full Full Half Full Full Full Full Full Full Full Full Full
Joint Classification Grounded rotating joint Moving sliding joint Grounded rotating joint Moving rotating joint Moving translating joint Grounded rotating joint Moving rotating joint Grounded rotating joint Moving rotating joint Moving rotating joint Grounded translating joint
Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links
L 9
M 3 ( L 1 ) 2 J1 J2
Number of full joints M1
J1 11
Number of half joints
J2 1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-57-1
PROBLEM 2-57 Statement:
For the linkage shown in Figure 2-5b find the number of joints and their respective orders, and mobility for: a) The condition of a finite load W in the direction shown and a zero F b) The condition of a finite load W and a finite load F both in the directions shown after link 6 is off the stop.
Solution:
See Figure 2-5b and Mathcad file P0257.
1.
Label the link numbers and joint letters for Figure 2-5b. 1
6
O6
W
D 3
A
B
1
F 5
4 O4
2 O2
1
C
1
a)
The condition of a finite load W in the direction shown and a zero F: Using the joint letters, determine each joint's order and whether each is a half or full joint. Link 6 is grounded so joint D is a grounded rotating joint and O6 is not a joint. For this condition there is a total of 6 full joints and no half joints. Joint Letter O2 B C D O4 A
Joint Order 1 1 1 1 1 1
Half/Full Full Full Full Full Full Full
Joint Classification Grounded rotating joint Moving rotating joint Moving rotating joint Grounded rotating joint Grounded rotating joint Moving rotating joint
Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links L 5
Number of full joints
M 3 ( L 1 ) 2 J1 J2
J1 6
Number of half joints
J2 0
M0
b) The condition of a finite load W and a finite load F both in the directions shown after link 6 is off the stop. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D O2 O4 O6
Joint Order 1 1 1 1 1 1 1
Half/Full Full Full Full Full Full Full Full
Joint Classification Moving rotating joint Moving rotating joint Moving rotating joint Moving rotating joint Grounded rotating joint Grounded rotating joint Grounded rotating joint
Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links L 6 M 3 ( L 1 ) 2 J1 J2
Number of full joints M1
J1 7
Number of half joints
J2 0
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-58-1
PROBLEM 2-58 Statement:
Figure P2-21a shows a "Nuremberg scissors" mechanism. Find its mobility.
Solution:
See Figure P2-21a and Mathcad file P0258.
1.
Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links
L 10
Number of full joints
J1 13
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-59-1
PROBLEM 2-59 Statement:
Figure P2-21b shows a mechanism. Find its mobility and classify its isomer type.
Solution:
See Figure P2-21b and Mathcad file P0259.
1.
Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
2.
M1
Using Figure 2-9, we see that the mechanism is a Stephenson's sixbar isomer ( the two ternary links are connected with two binary links and one dyad).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-60-1
PROBLEM 2-60 Statement:
Figure P2-21c shows a circular saw mounted on the coupler of a fourbar linkage. The centerline of the saw blade is at a coupler point that moves in an approximate straight line. Draw its kinematic diagram and determine its mobility.
Solution:
See Figure P2-21c and Mathcad file P0260.
1.
Draw a kinematic diagram of the mechanism. The saw's rotation axis is at point P and the saw is attached to link 3.
A
B 3 4
2 O2
O4
P
1
1 2.
Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-61-1
PROBLEM 2-61 Statement:
Figure P2-21d shows a log transporter. Draw a kinematic diagram of the mechanism, specify the number of links and joints, and then determine its mobility: a) For the transporter wheels locked and no log in the "claw" of the mechanism b) For the transporter wheels locked with it lifting a log c) For the transporter moving a log to a destination in a straight line.
Solution:
See Figure P2-21d and Mathcad file P0261.
1.
Draw a kinematic diagram of the mechanism. Link 1 is the frame of the transporter. Joint B is of order 3. Actuators E and F provide two inputs (to get x-y motion) and actuator H provides an additional input for clamping logs. G
D
9 12 H
9
C
I 9
11
8
J 10
4 A
3
2 O2
B
5
7
E O4
1
F
1
6 O6 1
a)
Wheels locked, no log in "claw." Kutzbach's mobility equation (2.1c) Number of links
L 12
Number of full joints
J1 15
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M3
b) Wheels locked, log held tighly in the "claw." With a log held tightly between links 9 and 10 a structure will be formed by links 9 through 12 and the log so that there will only be 9 links and 11 joints active. Number of links
L 9
Number of full joints
J1 11
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2 c)
M2
Transporter moving in a straight line with the log holding mechanism inactive. There are two tires, the transporter frame, and the ground, making 4 links and two points of contact with the ground and two axels, making 4 joints.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-61-2
Number of links
L 4
Number of full joints
J1 4
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-62-1
PROBLEM 2-62 Statement:
Figure P2-21d shows a plow mechanism attached to a tractor. Draw its kinematic diagram and find its mobility including the earth as a "link." a) When the tractor is stopped and the turnbuckle is fixed. (Hint: Consider the tractor and the wheel to be one with the earth.) b) When the tractor is stopped and the turnbuckle is being adjusted. (Same hint.) c) When the tractor is moving and the turnbuckle is fixed. (Hint: Add the moving tractor's DOF to those found in part a.)
Solution:
See Figure P2-21e and Mathcad file P0262.
1.
Draw a kinematic diagram of the mechanism with the ground, tractor wheels, and tractor frame as link 1. Joint O4 is of order 2 and joint F is a half joint. The plow and its truss structure attach at joints D and E. Since the turnbuckle is fixed it can be modeled as a single binary link (6).
C
6
5 O4 1
D
B
4
7 7
3 A 2
7
2 O2
E 1
F
7 1
a)
Tractor stopped and turnbuckle fixed. Kutzbach's mobility equation (2.1c) Number of links
L 7
Number of full joints
J1 8
Number of half joints
J2 1
M 3 ( L 1 ) 2 J1 J2
M1
b) When the tractor is stopped and the turnbuckle is being adjusted. Between joints C and D we now have 2 net links (2 links threaded LH and RH on one end and the turnbuckle body) and 1 additional helical full joint. Number of links L 8 Number of full joints
J1 9
Number of half joints
J2 1
M 3 ( L 1 ) 2 J1 J2 c)
M2
When the tractor is moving and the turnbuckle is fixed. If the tractor moved only in a straight line we would add 1 DOF to the 1 DOF that we got in part a for a total of M = 2. More realistically, the tractor can turn and move up and down hills so that we would add 3 DOF to the 1 DOF of part a to get a total of 4 DOF.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-63-1
PROBLEM 2-63 Statement:
Figure P2-22 shows a Hart's inversor sixbar linkage. a) Is it a Watt or Stephenson linkage? b) Determine its inversion, i.e. is it a type I, II, or III?
Solution:
See Figure P2-22, Figure 2-14, and Mathcad file P0263.
1.
From Figure 2-14 we see that the Watt's sixbar has the two ternary links connected with a common joint while the Stephenson's sixbar has the two ternary links connected by binary links. Thus, Hart's inversor is a Watt's sixbar (links 1 and 2, the ternary links, are connected at a common joint). Further, the Hart's linkage is a Watt's sixbar inversion I since neither of the ternary links is grounded.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-64-1
PROBLEM 2-64 Statement:
Figure P2-23 shows the top view of the partially open doors on one side of an entertainment center cabinet. The wooden doors are hinged to each other and one door is hinged to the cabinet. There is also a ternary, metal link attached to the cabinet and door through pin joints. A spring-loaded piston-in cylinder device attaches to the ternary link and the cabinet through pin joints. Draw a kinematic diagram of the door system and find the mobility of this mechanism.
Solution:
See Figure P2-23 and Mathcad file P0264.
1.
Draw the kinematic diagram of this sixbar mechanism. The spring-loaded piston is just an in-line sliding joint (links 5 and 6, and joint F). The doors are binary links (3 and 4), and the metal ternary link (2) has nodes at A, B, and C. Link 1 is the cabinet.
A Cabinet
1
2
4
E Cabinet
B
D
Door
1
5 Cylinder F 6
Door
2
3
Link
G Cabinet 1 C
2.
Use equation 2.1c (Kutzbach's modification) to calculate the mobility. Number of links
L 6
Number of full joints
J1 7
Number of half joints
J2 0 M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-65-1
PROBLEM 2-65 Statement:
Figure P2-24a shows the seat and seat-back of a reclining chair with the linkage that connects them to the chair frame. Draw its kinematic diagram and determine its mobility with respect to the frame of the chair.
Solution:
See Figure P2-24a and Mathcad file P0265.
1.
Draw a kinematic diagram of the mechanism. The chair-back attaches to link 2 and the seat with the attached slider slot is link 3. The node at at C is a half-joint as it allows two degrees of freedom.
A 1 2
3
B
C 2.
Determine the mobility of the mechanism. Kutzbach's mobility equation (2.1c) Number of links
L 3
Number of full joints
J1 2
Number of half joints
J2 1
M 3 ( L 1 ) 2 J1 J2
M1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-66-1
PROBLEM 2-66 Statement:
Figure P2-24b shows the mechanism used to extend the foot support on a reclining chair. Draw its kinematic diagram and determine its mobility with respect to the frame of the chair.
Solution:
See Figure P2-24b and Mathcad file P0266.
1.
Draw a kinematic diagram of the mechanism. Link 1 is the frame.
D E 1
J
4 6
3
C 4
5
G
5 6
A 3 1
7
F
H
2
B 2.
Determine the mobility of the mechanism. Kutzbach's mobility equation (2.1c) Number of links
L 8
Number of full joints
J1 10
Number of half joints
J2 0
M 3 ( L 1 ) 2 J1 J2
8
M1
K
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-67-1
PROBLEM 2-67 Statement:
Figure P2-24b shows the mechanism used to extend the foot support on a reclining chair. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.
Solution:
See Figure P2-24b and Mathcad file P0267.
1.
Label the link numbers and joint letters for Figure P2-24b.
D E 1
J
4 6
3
C 4
5
G
5 6
A 3 1
F
2
8
7
H
B a.
Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6 7 8
Link Order Binary Binary Ternary Ternary Ternary Ternary Binary Binary
b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H J K
Joint Order 1 1 1 1 1 1 1 1 1 1
Half/Full Full Full Full Half Full Full Full Full Full Full
K
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 2-68-1
PROBLEM 2-68 Statement:
Figure P2-24 shows a sixbar linkage. a) Is it a Watt or Stephenson linkage? b) Determine its inversion, i.e. is it a type I, II, or III?
Solution:
See Figure P2-24, Figure 2-14, and Mathcad file P0268.
1.
From Figure 2-14 we see that the Watt's sixbar has the two ternary links connected with a common joint while the Stephenson's sixbar has the two ternary links connected by binary links. Thus, the sixbar linkage shown is a Watt's sixbar (links 3 and 4, the ternary links, are connected at a common joint). Further, the linkage shown is a Watt's sixbar inversion I since neither of the ternary links is grounded.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-1-1
PROBLEM 3-1 Statement:
Define the following examples as path, motion, or function generation cases. a. b. c. d. e.
Solution:
A telescope aiming (star tracking) mechanism A backhoe bucket control mechanism A thermostat adjusting mechanism A computer printing head moving mechanism An XY plotter pen control mechanism
See Mathcad file P0301.
a.
Path generation. A star follows a 2D path in the sky.
b.
Motion generation. To dig a trench, say, the position and orientation of the bucket must be controlled.
c.
Function generation. The output is some desired function of the input over some range of the input.
d.
Path generation. The head must be at some point on a path.
e.
Path generation. The pen follows a straight line from point to point.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-2-1
PROBLEM 3-2 Statement:
Design a fourbar Grashof crank-rocker for 90 deg of output rocker motion with no quick return. (See Example 3-1.) Build a cardboard model and determine the toggle positions and the minimum transmission angle.
Given:
Output angle
Solution:
See Example 3-1 and Mathcad file P0302.
Design choices: 1.
θ 90 deg
Link lengths:
L3 6.000
Link 3
L4 2.500
Link 4
2.
Draw the output link O4B in both extreme positions, B1 and B2, in any convenient location such that the desired angle of motion 4 is subtended. In this solution, link 4 is drawn such that the two extreme positions each make an angle of 45 deg to the vertical. Draw the chord B1B2 and extend it in any convenient direction. In this solution it was extended to the left.
3.
Layout the distance A1B1 along extended line B1B2 equal to the length of link 3. Mark the point A1.
4.
Bisect the line segment B1B2 and layout the length of that radius from point A1 along extended line B1B2. Mark the resulting point O2 and draw a circle of radius O2A1 with center at O2.
5.
Label the other intersection of the circle and extended line B1B2, A2.
6.
Measure the length of the crank (link 2) as O2A1 or O2A2. From the graphical solution, L2 1.76775
7.
Measure the length of the ground link (link 1) as O2O4. From the graphical solution, L1 6.2550 1.7677
6.0000
3.5355
2
A2
A1
3
B2
B1
O2 90.00° 1 4 6.2550
8.
O4
Find the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1 L2 L3 L4 "Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-3-1
PROBLEM 3-3 Statement:
Design a fourbar mechanism to give the two positions shown in Figure P3-1 of output rocker motion with no quick-return. (See Example 3-2.) Build a cardboard model and determine the toggle positions and the minimum transmission angle.
Given:
Coordinates of A1, B1, A2, and B2 (with respect to A1):
Solution:
xA1 0.00
xB1 1.721
xA2 2.656
xB2 5.065
yA1 0.00
yB1 1.750
yA2 0.751
yB2 0.281
See Figure P3-1 and Mathcad file P0303.
Design choices:
Link length:
Link 3
L3 5.000
Link 4
L4 2.000
1.
Following the notation used in Example 3-2 and Figure 3-5, change the labels on points A and B in Figure P3-1 to C and D, respectively. Draw the link CD in its two desired positions, C1D1 and C2D2, using the given coordinates.
2.
Draw construction lines from C1 to C2 and D1 to D2.
3.
Bisect line C1C2 and line D1D2 and extend their perpendicular bisectors to intersect at O4.
4.
Using the length of link 4 (design choice) as a radius, draw an arc about O4 to intersect both lines O4C1 and O4C2. Label the intersections B1 and B2.
5.
Draw the chord B1B2 and extend it in any convenient direction. In this solution it was extended to the left.
6.
Layout the distance A1B1 along extended line B1B2 equal to the length of link 3. Mark the point A1.
7.
Bisect the line segment B1B2 and layout the length of that radius from point A1 along extended line B1B2. Mark the resulting point O2 and draw a circle of radius O2A1 with center at O2.
8.
Label the other intersection of the circle and extended line B1B2, A2.
9.
Measure the length of the crank (link 2) as O2A1 or O2A2. From the graphical solution, L2 0.9469
10. Measure the length of the ground link (link 1) as O2O4. From the graphical solution, L1 5.3013
5.3013 5.0000 0.9469 A1 2
O2
O4
1
A2
3
B1
C1
4
R2.000
B2 C2 D1
D2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-3-2
11. Find the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1 L2 L3 L4 "Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-4-1
PROBLEM 3-4 Statement:
Design a fourbar mechanism to give the two positions shown in Figure P3-1 of coupler motion. (See Example 3-3.) Build a cardboard model and determine the toggle positions and the minimum transmission angle. Add a driver dyad. (See Example 3-4.)
Given:
Position 1 offsets:
Solution:
See figure below for one possible solution. Input file P0304.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-04.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-04.6br into program SIXBAR to see the complete sixbar with the driver dyad included.
xA1B1 1.721 in
yA1B1 1.750 in
1.
Connect the end points of the two given positions of the line AB with construction lines, i.e., lines from A1 to A2 and B1 to B2.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of A1A2 was extended downward and the bisector of B1B2 was extended upward.
3.
Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4A and O6B were each selected to be 4.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 6.457 in.
4.
The fourbar stage is now defined as O4ABO6 with link lengths Link 5 (coupler) L5
2
xA1B1 yA1B1
Link 4 (input)
L4 4.000 in
Ground link 1b
L1b 6.457 in
2
L5 2.454 in Link 6 (output)
L6 4.000 in
5.
Select a point on link 4 (O4A) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it D. (Note that link 4 is now a ternary link with nodes at O4, D, and A.) In the solution below the distance O4D was selected to be 2.000 in.
6.
Draw a construction line through D1D2 and extend it to the left.
7.
Select a point on this line and call it O2. In the solution below the distance CD was selected to be 4.000 in.
8.
Draw a circle about O2 with a radius of one-half the length D1D2 and label the intersections of the circle with the extended line as C1 and C2. In the solution below the radius was measured as 0.6895 in.
9.
The driver fourbar is now defined as O2CDO4 with link lengths Link 2 (crank)
L2 0.6895 in
Link 4a (rocker) L4a 2.000 in
Link 3 (coupler) L3 4.000 in Link 1a (ground) L1a 4.418 in
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Shortest link
S L2
S 0.6895 in
Longest link
L L1a
L 4.4180 in
Other links
P L3
P 4.0000 in
Q L4a
Q 2.0000 in
DESIGN OF MACHINERY - 5th Ed.
Condition( a b c d )
SOLUTION MANUAL 3-4-2
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( S L P Q) "Grashof" O6
6
Ground Link 1b
A1
6 50.231°
5 C1
A2
5
B2
47.893°
2 O2 3
4
C2
B1 D1
4
3 D2
Ground Link 1a
O4
11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4ABO6 is non-Grashoff with toggle positions at 2 = -71.9 deg and +71.9 deg. The minimum transmission angle is 35.5 deg. The fourbar operates between 2 = +21.106 deg and -19.297 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-5-1
PROBLEM 3-5 Statement:
Design a fourbar mechanism to give the three positions of coupler motion with no quick return shown in Figure P3-2. (See also Example 3-5.) Ignore the points O2 and O4 shown. Build a cardboard model and determine the toggle positions and the minimum transmission angle. Add a driver dyad.
Solution:
See Figure P3-2 and Mathcad file P0305.
Design choices: L5 4.250
Length of link 5:
L4b 1.375
Length of link 4b:
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw construction lines from point C1 to C2 and from point C2 to C3.
3.
Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.
4.
Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.
5.
Connect O2 with C1 and call it link 2. Connect O4 with D1 and call it link 4.
6.
Line C1D1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2CDO4 and has link lengths of Ground link 1a
L1a 0.718
Link 2
L2 2.197
Link 3
L3 2.496
Link 4
L4 3.704 1.230
O6 0.718 1b
2.197 O4 O2
2
C1
6 A
5
1a
4.328 B
2.496
D3
C3
3 4 C2 D1
D2 3.704
7.
Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-5-2
Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4 "Grashof" 8.
9.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution above the distance O4B was selected to be L4b 1.375 . Draw a construction line through B1B3 and extend it up to the right.
10. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 11. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L6 1.230. 12. The driver fourbar is now defined as O4BAO6 with link lengths Link 6 (crank)
L6 1.230
Link 5 (coupler) L5 4.250 Link 1b (ground) L1b 4.328 Link 4b (rocker) L4b 1.375 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L4b L5 "Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-6-1
PROBLEM 3-6 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-2 using the fixed pivots O2 and O4 shown. Build a cardboard model and determine the toggle positions and the minimum transmission angle. Add a driver dyad.
Solution:
See Figure P3-2 and Mathcad file P0306.
Design choices: Length of link 5:
L5 5.000
L2b 2.000
Length of link 2b:
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.
3.
Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.
4.
Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.
5.
Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.
6.
Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.
7.
The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H.
O2''
C1
D3
O2'
C3 C2
O4'' D1
O4'
8.
O2
Draw construction lines from point E1 to E2 and from point E2 to E3.
D2
O4
DESIGN OF MACHINERY - 5th Ed.
9.
SOLUTION MANUAL 3-6-2
Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.
10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H. 11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a
L1a 4.303
Link 2
L2 8.597
Link 3
L3 1.711
Link 4
L4 7.921
E3
G
3
H
E2 F3
4
2
F2 E1
1a O2
F1 O4
13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4 "Grashof" The fourbar that will provide the desired motion is now defined as a Grashof double crank in the crossed configuration. It now remains to add the original points C1 and D1 to the coupler GH and to define the driving dyad.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-6-3
14. Select a point on link 2 (O2G) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O2, B, and G.) In the solution below, the distance O2B was selected to be L2b 2.000 . 15. Draw a construction line through B1B3 and extend it up to the right. 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 17. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L6 0.412. 18. The driver fourbar is now defined as O2BAO6 with link lengths Link 6 (crank)
L6 0.412
Link 5 (coupler) L5 5.000 Link 1b (ground) L1b 5.369 Link 2b (rocker) L2b 2.000 19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L2b L5 "Grashof"
G2
G3
H1
G1 3
H2 H3
2
C1
A3 O6
6
D3
C3
A1 5
C2
D1 B3
O2
D2 B1
4
1a
O4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-7-1
PROBLEM 3-7 Statement:
Given: Solution: 1.
Repeat Problem 3-2 with a quick-return time ratio of 1:1.4. (See Example 3.9). Design a fourbar Grashof crank-rocker for 90 degrees of output rocker motion with a quick-return time ratio of 1:1.4. 1 Time ratio Tr 1.4 See figure below for one possible solution. Also see Mathcad file P0307.
Determine the crank rotation angles and , and the construction angle from equations 3.1 and 3.2. Tr = Solving for , and
β
α
α β = 360 deg
β 360 deg
β 210 deg
1 Tr
α 360 deg β
α 150 deg
δ β 180 deg
δ 30 deg
2.
Start the layout by arbitrarily establishing the point O4 and from it layoff two lines of equal length, 90 deg apart. Label one B1 and the other B2. In the solution below, each line makes an angle of 45 deg with the horizontal and has a length of 2.000 in.
3.
Layoff a line through B1 at an arbitrary angle (but not zero deg). In the solution below, the line is 30 deg to the horizontal.
4.
Layoff a line through B2 that makes an angle with the line in step 3 (60 deg to the horizontal in this case). The intersection of these two lines establishes the point O2.
5.
From O2 draw an arc that goes through B1. Extend O2B2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O2 as the length of the input crank.
3.8637 = b
90.0000°
B2 B1
B2
2.0000 = c
1.0353 = a
LAYOUT
B1
4 3 O4
O4 A1 2 O2
O2
3.0119 = d
A2 LINKAGE DEFINITION
DESIGN OF MACHINERY - 5th Ed.
6.
SOLUTION MANUAL 3-7-2
For this solution, the link lengths are: Ground link (1)
d 3.0119 in
Crank (2)
a 1.0353 in
Coupler (3)
b 3.8637 in
Rocker (4)
c 2.000 in
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-8-1
PROBLEM 3-8 Statement:
Design a sixbar drag link quick-return linkage for a time ratio of 1:2, and output rocker motion of 60 degrees. (See Example 3-10.)
Given:
Time ratio
Solution: 1.
Tr
1 2
See figure below for one possible solution. Also see Mathcad file P0308.
Determine the crank rotation angles and from equation 3.1. Tr = Solving for and
β
α
α β = 360 deg
β 360 deg 1 Tr
α 360 deg β
β 240 deg α 120 deg
2.
Draw a line of centers XX at any convenient location.
3.
Choose a crank pivot location O2 on line XX and draw an axis YY perpendicular to XX through O2.
4.
Draw a circle of convenient radius O2A about center O2. In the solution below, the length of O2A is a 1.000 in.
5.
Lay out angle with vertex at O2, symmetrical about quadrant one.
6.
Label points A1 and A2 at the intersections of the lines subtending angle and the circle of radius O2A.
7.
8.
Set the compass to a convenient radius AC long enough to cut XX in two places on either side of O2 when swung from both A1 and A2. Label the intersections C1 and C2. In the solution below, the length of AC is b 1.800 in. The line O2A is the driver crank, link 2, and the line AC is the coupler, link 3.
9.
The distance C1C2 is twice the driven (dragged) crank length. Bisect it to locate the fixed pivot O4.
10. The line O2O4 now defines the ground link. Line O4C is the driven crank, link 4. In the solution below, O4C measures c 2.262 in and O2O4 measures d 0.484 in. 11. Calculate the Grashoff condition. If non-Grashoff, repeat steps 7 through 11 with a shorter radius in step 7. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof" 12. Invert the method of Example 3-1 to create the output dyad using XX as the chord and O4C1 as the driving crank. The points B1 and B2 will lie on line XX and be spaced apart a distance that is twice the length of O4C (link 4). The pivot point O6 will lie on the perpendicular bisector of B1B2 at a distance from XX which subtends the specified output rocker angle, which is 60 degrees in this problem. In the solution below, the length BC was chosen to be e 5.250 in.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-8-2
LAYOUT OF SIXBAR DRAG LINK QUICK RETURN WITH TIME RATIO OF 1:2 a = 1.000 b = 1.800 c = 2.262 d = 0.484 e = 5.250 f = 4.524
13. For the design choices made (lengths of links 2, 3 and 5), the length of the output rocker (link 6) was measured as f 4.524 in.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-9-1
PROBLEM 3-9 Statement:
Design a crank-shaper quick-return mechanism for a time ratio of 1:3 (Figure 3-14, p. 112).
Given:
Time ratio
Solution:
See Figure 3-14 and Mathcad file P0309.
TR
1 3
Design choices:
1.
Length of link 2 (crank)
L2 1.000
Length of link 5 (coupler)
L5 5.000
S 4.000
Length of stroke
Calculate from equations 3.1. TR
α β
α β 360 deg
α
360 deg 1
α 90.000 deg
1 TR
2.
Draw a vertical line and mark the center of rotation of the crank, O2, on it.
3.
Layout two construction lines from O2, each making an angle /2 to the vertical line through O2.
4.
Using the chosen crank length (see Design Choices), draw a circle with center at O2 and radius equal to the crank length. Label the intersections of the circle and the two lines drawn in step 3 as A1 and A2.
5.
Draw lines through points A1 and A2 that are also tangent to the crank circle (step 2). These two lines will simultaneously intersect the vertical line drawn in step 2. Label the point of intersection as the fixed pivot center O4.
6.
Draw a vertical construction line, parallel and to the right of O2O4, a distance S/2 (one-half of the output stroke length) from the line O2O4.
7.
Extend line O4A1 until it intersects the construction line drawn in step 6. Label the intersection B1.
8.
Draw a horizontal construction line from point B1, either to the left or right. Using point B1 as center, draw an arc of radius equal to the length of link 5 (see Design Choices) to intersect the horizontal construction line. Label the intersection as C1.
9.
Draw the slider blocks at points A1 and C1 and finish by drawing the mechanism in its other extreme position.
STROKE 4.000 C2
2.000
6
C1
B2
B1
5 O2 4
2 A2
3 O4
A1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-10-1
PROBLEM 3-10 Statement:
Find the two cognates of the linkage in Figure 3-17 (p. 116). Draw the Cayley and Roberts diagrams. Check your results with program FOURBAR.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 2
Crank
L2 1
A1P 1.800
δ 34.000 deg
Coupler
L3 3
Rocker
L4 3.5
B1P 1.813
γ 33.727 deg
See Figure 3-17 and Mathcad file P0310.
Draw the original fourbar linkage, which will be cognate #1, and align links 2 and 4 with the coupler. A1
B1
3
2
A1
3
OA
P
B1
4
2 OA P 4 1
OB
OB
2.
Construct lines parallel to all sides of the aligned fourbar linkage to create the Cayley diagram (see Figure 3-24) OA
2
A1
B1
3
OB
4
10
5 A2
B3
P
9 B2
6 8 7
A3
OC A1
3.
4.
Return links 2 and 4 to their fixed pivots OA and OB and establish OC as a fixed pivot by making triangle OAOBOC similar to A1B1P. Separate the three cognates. Point P has the same path motion in each cognate.
2 4
OA
10
P
Calculate the cognate link lengths based on the geometry of the Cayley diagram (Figure 3-24c, p. 114). L5 B1P L6
L4 L3
B1P
9
8
6
A2 OC OB
L5 1.813 L6 2.115
B2
A3 7
5.
B1
3
5 B3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-10-2
P
P
OA
B2
10 A3
9 OC
7
8 A2 OC
6 OB 5
Cognate #2
B3
Cognate #3
L10 A1P
L10 1.800
L7 L9
B1P
L8 L6
A1P
L9
L2 L3
A1P
L9 0.600
L7 0.604
A1P
L8 2.100
B1P
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC L1AC
L1 L3 L1 L3
B1P
L1BC 1.209
A1P
L1AC 1.200
Calculate the coupler point data for cognates #2 and #3 A3P L8
A3P 2.100
δ 180 deg δ γ
δ 247.727 deg
A2P L2
A2P 1.000
δ δ
δ 34.000 deg
SUMMARY OF COGNATE SPECIFICATIONS:
6.
Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 2.000
L1AC 1.200
L1BC 1.209
Crank length
L2 1.000
L10 1.800
L7 0.604
Coupler length
L3 3.000
L9 0.600
L6 2.115
Rocker length
L4 3.500
L8 2.100
L5 1.813
Coupler point
A1P 1.800
A2P 1.000
A3P 2.100
Coupler angle
δ 34.000 deg
δ 34.000 deg
δ 247.727 deg
Verify that the three cognates yield the same coupler curve by entering the original link lengths in program FOURBAR and letting it calculate the cognates.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-10-3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-10-4
Note that cognate #2 is a Grashof double rocker and, therefore, cannot trace out the entire coupler curve.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-11-1
PROBLEM 3-11 Statement:
Find the three equivalent geared fivebar linkages for the three fourbar cognates in Figure 3-25a (p. 125). Check your results by comparing the coupler curves with programs FOURBAR and FIVEBAR.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 39.5
Crank
L2 15.5
Coupler
L3 14.0
Rocker
L4 20.0
A1P 26.0
See Figure 3-25a and Mathcad file P0311.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 23.270
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
δ 63.000 deg
γ 84.5843 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 23.270
L6
L10 A1P
L10 26.000
L9
L7 25.763
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 33.243
A1P
L9 28.786
A1P
L8 37.143
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 20.000
A2P L2
A2P 15.500
δ γ
δ 84.584 deg
δ δ
δ 63.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 65.6548
L1AC
L1 L3
A1P
L1AC 73.3571
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 39.500
L1AC 73.357
L1BC 65.655
Crank length
L2 15.500
L10 26.000
L7 25.763
Coupler length
L3 14.000
L9 28.786
L6 33.243
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-11-2
Rocker length
L4 20.000
L8 37.143
L5 23.270
Coupler point
A1P 26.000
A2P 15.500
A3P 20.000
Coupler angle
δ 63.000 deg
δ 63.000 deg
δ 84.584 deg
OC 8 B2
7
B3 9
P
6 A2 A3 10 3
A1
5
B1 4
2 1
OA
OB
4.
The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAA2PA3OB, OAA1PB3OC, and OBB1PB2OC. They are shown individually below with their associated gears. P
A2 A3 10 5
OA OB
OC
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-11-3
OC
7
B3
OD P
A1 2 OA
OC 8 B2
P
OE
B1 4
OB
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-11-4
SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 39.500
L1AC 73.357
L1BC 65.655
Crank length
L10 26.000
L2 15.500
L4 20.000
Coupler length
A2P 15.500
A1P 26.000
L5 23.270
Rocker length
A3P 20.000
L8 37.143
L7 25.763
Crank length
L5 23.270
L7 25.763
L8 37.143
Coupler point
A2P 15.500
A1P 26.000
B1P 23.270
Coupler angle
δ 0.00 deg
δ 0.00 deg
δ 0.00 deg
5.
Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path.
6.
Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-11-5
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-12-1
PROBLEM 3-12 Statement:
Design a sixbar, single-dwell linkage for a dwell of 90 deg of crank motion, with an output rocker motion of 45 deg.
Given:
Crank dwell period: 90 deg. Output rocker motion: 45 deg.
Solution:
See Figures 3-20, 3-21, and Mathcad file P0312.
Design choices: Ground link ratio, L1/L2 = 2.0: GLR 2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.5: CLR 2.5 Coupler angle, γ 72 deg Crank length, L2 2.000 1.
For the given design choices, determine the remaining link lengths and coupler point specification. Coupler link (3) length
L3 CLR L2
L3 5.000
Rocker link (4) length
L4 CLR L2
L4 5.000
Ground link (1) length
L1 GLR L2
L1 4.000
Angle PAB
δ
Length AP on coupler 2.
180 deg γ 2
AP 2 L3 cos δ
δ 54.000 deg AP 5.878
Enter the above data into program FOURBAR, plot the coupler curve, and determine the coordinates of the coupler curve in the selected range of crank motion, which in this case will be from 135 to 225 deg..
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-12-2
FOURBAR for Windows Angle Step Deg 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 3.
File P03-12.DAT
Coupler Pt X
Coupler Pt Y
Coupler Pt Mag
-1.961 -2.178 -2.393 -2.603 -2.809 -3.008 -3.201 -3.386 -3.563 -3.731 -3.890 -4.038 -4.176 -4.302 -4.417 -4.520 -4.610 -4.688 -4.753
7.267 7.128 6.977 6.813 6.638 6.453 6.257 6.052 5.839 5.617 5.389 5.155 4.915 4.671 4.424 4.175 3.924 3.673 3.424
7.527 7.453 7.375 7.293 7.208 7.119 7.028 6.935 6.840 6.744 6.646 6.548 6.450 6.351 6.252 6.153 6.054 5.956 5.858
Coupler Pt Ang
105.099 106.992 108.930 110.911 112.933 114.994 117.093 119.228 121.396 123.595 125.822 128.075 130.351 132.646 134.955 137.274 139.598 141.921 144.235
Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Use the points at crank angles of 135, 180, and 225 deg to define the pseudo-arc. Find the center of the pseudo-arc erecting perpendicular bisectors to the chords defined by the selected coupler curve points. The center will lie at the intersection of the perpendicular bisectors, label this point D. The radius of this circle is the length of link 5.
y 135 P
PSEUDO-ARC
180 B
225 3 D A
4
2 x O2
O4
DESIGN OF MACHINERY - 5th Ed.
4.
SOLUTION MANUAL 3-12-3
The position of the end of link 5 at point D will remain nearly stationary while the crank moves from 135 to 225 deg. As the crank motion causes the coupler point to move around the coupler curve there will be another extreme position of the end of link 5 that was originally at D. Since a symmetrical linkage was chosen, the other extreme position will be located along a line through the axis of symmetry (see Figure 3-20) a distance equal to the length of link 5 measured from the point where the axis of symmetry intersects the coupler curve near the 0 deg coupler point. Establish this point and label it E. FOURBAR for Windows Angle Step Deg 300 310 320 330 340 350 0 10 20 30 40 50 60
File P03-12.DAT
Coupler Pt X
Coupler Pt Y
Coupler Pt Mag
-4.271 -4.054 -3.811 -3.526 -3.159 -2.651 -1.968 -1.181 -0.441 0.126 0.478 0.631 0.617
0.869 0.926 1.165 1.628 2.343 3.286 4.336 5.310 6.085 6.654 7.068 7.373 7.598
4.359 4.158 3.985 3.883 3.933 4.222 4.762 5.440 6.101 6.656 7.085 7.400 7.623
Coupler Pt Ang
168.495 167.133 162.998 155.215 143.437 128.892 114.414 102.534 94.142 88.914 86.129 85.111 85.354
y 135 P
PSEUDO-ARC
180 B
5
4
225 3
AXIS OF SYMMETRY
D A
E
2
x O2 5.
O4
The line segment DE represents the maximum displacement that a link of the length equal to link 5, attached at P, will reach along the axis of symmetry. Construct a perpendicular bisector of the line segment DE and extend it to the right (or left, which ever is convenient). Locate fixed pivot O6 on the bisector of DE such that the lines O6D and O6E subtend the desired output angle, in this case 45 deg. Draw link 6 from D through O6 and extend it to any convenient length. This is the output link that will dwell during the specified motion of the crank. See next page for the completed layout and further linkage specifications.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-12-4
y 135 P
PSEUDO-ARC
180
45.000° B
5
4
225
O6 BISECTOR
3 D A
E
2
x O4
O2
SUMMARY OF LINKAGE SPECIFICATIONS Original fourbar: Ground link
L1 4.000
Crank
L2 2.000
Coupler
L3 5.000
Rocker
L4 5.000
Coupler point
AP 5.878
δ 54.000 deg
Added dyad: Coupler
L5 6.363
Output
L6 2.855
Pivot O6
x 3.833
y 3.375
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-13-1
PROBLEM 3-13 Statement:
Design a sixbar double-dwell linkage for a dwell of 90 deg of crank motion, with an output of rocker motion of 60 deg, followed by a second dwell of about 60 deg of crank motion.
Given:
Initial crank dwell period: 90 deg Final crank dwell period: 60 deg (approx.) Output rocker motion between dwells: 60 deg
Solution:
See Mathcad file P0313.
Design choices:
1.
Ground link length
L1 5.000
Crank length
L2 2.000
Coupler link length
L3 5.000
Rocker length
L2 5.500
Coupler point data:
AP 8.750
δ 50 deg
In the absence of a linkage atlas it is difficult to find a coupler curve that meets the specifications. One approach is to start with a symmetrical linkage, using the data in Figure 3-21. Then, using program FOURBAR and by trial-and-error, adjust the link lengths and coupler point data until a satisfactory coupler curve is found. The link lengths and coupler point data given above were found this way. The resulting coupler curve is shown below and a printout of the coupler curve coordinates taken from FOURBAR is also printed below.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-13-2
FOURBAR for Windows Angle Step Deg 0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000 110.000 120.000 130.000 140.000 150.000 160.000 170.000 180.000 190.000 200.000 210.000 220.000 230.000 240.000 250.000 260.000 270.000 280.000 290.000 300.000 310.000 320.000 330.000 340.000 350.000 360.000
File P03-13.DAT
Cpler Pt Cpler Pt Cpler Pt Cpler Pt X Y Mag Ang
9.353 9.846 10.167 10.286 10.226 10.031 9.746 9.406 9.039 8.665 8.301 7.958 7.647 7.376 7.151 6.977 6.853 6.778 6.748 6.755 6.792 6.847 6.912 6.976 7.031 7.073 7.099 7.112 7.120 7.137 7.184 7.288 7.481 7.792 8.233 8.779 9.353
4.742 4.159 3.491 2.840 2.274 1.815 1.457 1.180 0.963 0.787 0.637 0.507 0.391 0.291 0.209 0.151 0.126 0.140 0.201 0.316 0.488 0.719 1.008 1.351 1.741 2.170 2.626 3.098 3.570 4.030 4.458 4.834 5.131 5.312 5.332 5.147 4.742
10.487 10.688 10.750 10.671 10.476 10.194 9.854 9.480 9.090 8.701 8.325 7.974 7.657 7.382 7.154 6.978 6.854 6.779 6.751 6.763 6.809 6.885 6.985 7.105 7.243 7.398 7.569 7.757 7.965 8.196 8.455 8.746 9.072 9.430 9.809 10.177 10.487
26.886 22.900 18.951 15.437 12.537 10.257 8.503 7.152 6.081 5.187 4.391 3.644 2.928 2.256 1.671 1.242 1.051 1.182 1.708 2.678 4.110 5.996 8.300 10.963 13.911 17.057 20.302 23.536 26.632 29.448 31.819 33.555 34.446 34.286 32.931 30.384 26.886
2.
Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Fit tangent lines to the nearly straight portions of the curve. Label their intersection O6. The coordinates of O6 are (6.729, 0.046).
3.
Design link 6 to lie along these straight tangents, pivoted at O6. Provide a slot in link 6 to accommodate slider block 5, which pivots on the coupler point P. (See next page).
4.
The beginning and ending crank angles for the dwell portions of the motion are indicated on the layout and in the table above by boldface entries.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-13-3
y 6 B 60.000°
260 5 4
P
3
90 O2 2
A
170 x O4
150 O6
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-14-1
PROBLEM 3-14 Statement:
Figure P3-3 shows a treadle-operated grinding wheel driven by a fourbar linkage. Make a cardboard model of the linkage to any convenient scale. Determine its minimum transmission angles. Comment on its operation. Will it work? If so, explain how it does.
Given:
Link lengths:
Link 2
L2 0.60 m
Link 3
L3 0.75 m
Link 4
L4 0.13 m
Link 1
L1 0.90 m
Grashof condition function: Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Solution: 1.
See Mathcad file P0314.
Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Grashof condition: Barker classification:
Condition L1 L2 L3 L4 "Grashof" Class I-4, Grashof rocker-rocker-crank, GRRC, since the shortest link is the output link.
2.
As a Grashof rocker-crank, the minimum transmission angle will be 0 deg, twice per revolution of the output (link 4) crank.
3.
Despite having transmission angles of 0 deg twice per revolution, the mechanism will work. That is, one will be able to drive the grinding wheel from the treadle (link 2). The reason is that the grinding wheel will act as a flywheel and will carry the linkage through the periods when the transmission angle is low. Typically, the operator will start the motion by rotating the wheel by hand.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-15-1
PROBLEM 3-15 Statement:
Figure P3-4 shows a non-Grashof fourbar linkage that is driven from link O2A. All dimensions are in centimeters (cm). (a) (b) (c) (d)
Given:
Solution: 1.
Find the transmission angle at the position shown. Find the toggle positions in terms of angle AO2O4. Find the maximum and minimum transmission angles over its range of motion. Draw the coupler curve of point P over its range of motion.
Link lengths: Link 1 (ground)
L1 95 mm
Link 2 (driver)
L2 50 mm
Link 3 (coupler)
L3 44 mm
Link 4 (driven)
L4 50 mm
See Figure P3-4 and Mathcad file P0315.
To find the transmission angle at the position shown, draw the linkage to scale in the position shown and measure the transmission angle ABO4. P
y 77.097°
B
3 A 2
4
O4
50.000° 1
x
O2
The measured transmission angle at the position shown is 77.097 deg. 2.
The toggle positions will be symmetric with respect to the O2O4 axis and will occur when links 3 and 4 are colinear. Use the law of cosines to calculate the angle of link 2 when links 3 and 4 are in toggle.
L3 L42 L12 L22 2 L1 L2 cosθ where 2 is the angle AO2O4. Solving for 2,
L12 L22 L3 L4 2 θ acos 2 L1 L2 The other toggle position occurs at θ 73.558 deg
θ 73.558 deg
DESIGN OF MACHINERY - 5th Ed.
3.
SOLUTION MANUAL 3-15-2
Use the program FOURBAR to find the maximum and minimum transmission angles.
FOURBAR for Windows
File P03-15
Design #
1
Angle Step Deg
Theta2 Mag degrees
Theta3 Mag degrees
Theta4 Mag degrees
Trans Ang Mag degrees
-73.557 -58.846 -44.134 -29.423 -14.711 0.000 14.711 29.423 44.134 58.846 73.557
-73.557 -58.846 -44.134 -29.423 -14.711 0.000 14.711 29.423 44.134 58.846 73.557
30.861 64.075 77.168 83.147 80.604 68.350 50.145 32.106 16.173 0.566 -30.486
-149.490 -176.312 170.696 157.514 142.103 125.123 111.644 106.473 109.701 120.179 149.159
0.352 60.387 86.472 74.367 61.499 56.773 61.499 74.367 86.472 60.387 0.355
A partial output from FOURBAR is shown above. From it, we see that the maximum transmission angle is approximately 86.5 deg and the minimum is zero deg. 4.
Use program FOURBAR to draw the coupler curve with respect to a coordinate frame through O2O4.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-16-1
PROBLEM 3-16 Statement:
Draw the Roberts diagram for the linkage in Figure P3-4 and find its two cognates. Are they Grashof or non-Grashof?
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 9.5
Crank
L2 5
Coupler
L3 4.4
Rocker
L4 5
A1P 8.90
See Figure P3-4 and Mathcad file P0316.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 7.401
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
δ 56.000 deg
γ 94.4701 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 7.401
L6
L10 A1P
L10 8.900
L9
L7 8.410
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 8.410
A1P
L9 10.114
A1P
L8 10.114
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 5.000
A2P L2
A2P 5.000
δ γ
δ 94.470 deg
δ δ
δ 56.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 15.9793
L1AC
L1 L3
A1P
L1AC 19.2159
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 9.500
L1AC 19.216
L1BC 15.979
Crank length
L2 5.000
L10 8.900
L7 8.410
Coupler length
L3 4.400
L9 10.114
L6 8.410
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-16-2
Rocker length
L4 5.000
L8 10.114
L5 7.401
Coupler point
A1P 8.900
A2P 5.000
A3P 5.000
Coupler angle
δ 56.000 deg
δ 56.000 deg
δ 94.470 deg
B2
OC
8
7
B3
P 9 6 A3
A2
5
3
B1
10
4
A1 2
OB 1
OA
6.
Determine the Grashof condition of each of the two additional cognates. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Cognate #2:
Condition L10 L1AC L8 L9 "non-Grashof"
Cognate #3:
Condition L5 L1BC L6 L7 "non-Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-17-1
PROBLEM 3-17 Statement:
Design a Watt-I sixbar to give parallel motion that follows the coupler path of point P of the linkage in Figure P3-4.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 9.5
Crank
L2 5
Coupler
L3 4.4
Rocker
L4 5
A1P 8.90
See Figure P3-4 and Mathcad file P0317.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 7.401
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
δ 56.000 deg
γ 94.4701 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 7.401
L6
L10 A1P
L10 8.900
L9
L7 8.410
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 8.410
A1P
L9 10.114
A1P
L8 10.114
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 5.000
A2P L2
A2P 5.000
δ γ
δ 94.470 deg
δ δ
δ 56.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 15.9793
L1AC
L1 L3
A1P
L1AC 19.2159
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 9.500
L1AC 19.216
L1BC 15.979
Crank length
L2 5.000
L10 8.900
L7 8.410
Coupler length
L3 4.400
L9 10.114
L6 8.410
DESIGN OF MACHINERY - 5th Ed.
B2
SOLUTION MANUAL 3-17-2
Rocker length
L4 5.000
L8 10.114
L5 7.401
Coupler point
A1P 8.900
A2P 5.000
A3P 5.000
Coupler angle
δ 56.000 deg
δ 56.000 deg
δ 94.470 deg
OC
8
7
B3
P 9 6 A3
A2
P
5
3 10
B1 4
A1 2
OB 1 3
OA
4
A1
4.
5.
All three of these cognates are non-Grashof and will, therefore, have limited motion. However, following Example 3-11, discard cognate #2 and retain cognates #1 and #3. Draw line qq parallel to line OAOC and through point OB. Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along lines OAOC and qq until the free end of link 7 is at OA. The free end of link 5 will then be at point O'B and point P on link 6 will be at P'. Add a new link of length OAOC between P and P'. This is the new output link 8 and all points on it describe the original coupler curve. Join links 2 and 7, making one ternary link. Remove link 5 and reduce link 6 to a binary link. The result is a Watt-I sixbar with links numbered 1, 2, 3, 4, 6, and 8 (see next page). Link 8 is in curvilinear translation and follows the coupler path of the original point P.
B1 q
2
OB 1
OA 7
B3 P'
6 A3 5
q
O'B
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-17-3
P
B1 3
4
A1 8 2
OB
1
OA
B3 P'
6
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-18-1
PROBLEM 3-18 Statement:
Design a Watt-I sixbar to give parallel motion that follows the coupler path of point P of the linkage in Figure P3-4 and add a driver dyad to drive it over its possible range of motion with no quick return. (The result will be an 8-bar linkage).
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 9.5
Crank
L2 5
Coupler
L3 4.4
Rocker
L4 5
A1P 8.90
See Figure P3-4 and Mathcad file P0318.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 7.401
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
δ 56.000 deg
γ 94.4701 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 7.401
L6
L10 A1P
L10 8.900
L9
L7 8.410
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 8.410
A1P
L9 10.114
A1P
L8 10.114
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 5.000
A2P L2
A2P 5.000
δ γ
δ 94.470 deg
δ δ
δ 56.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 3.
L1 L3
B1P
L1BC 15.9793
L1AC
L1 L3
A1P
L1AC 19.2159
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 9.500
L1AC 19.216
L1BC 15.979
Crank length
L2 5.000
L10 8.900
L7 8.410
Coupler length
L3 4.400
L9 10.114
L6 8.410
DESIGN OF MACHINERY - 5th Ed.
B2
SOLUTION MANUAL 3-18-2
Rocker length
L4 5.000
L8 10.114
L5 7.401
Coupler point
A1P 8.900
A2P 5.000
A3P 5.000
Coupler angle
δ 56.000 deg
δ 56.000 deg
δ 94.470 deg
OC
8
7
B3
P 9 6 A3
A2
5
3 10
P
B1 4
A1 2
OB 1
OA
3
4
A1
4.
5.
6.
All three of these cognates are non-Grashof and will, therefore, have limited motion. However, following Example 3-11, discard cognate #2 and retain cognates #1 and #3. Draw line qq parallel to line OAOC and through point OB. Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along lines OAOC and qq until the free end of link 7 is at OA. The free end of link 5 will then be at point O'B and point P on link 6 will be at P'. Add a new link of length OAOC between P P' and P'. This is the new output link 8 and all points on it describe the original coupler curve. Join links 2 and 7, making one ternary link. Remove link 5 and reduce link 6 to a binary link. The result is a Watt-I sixbar with links numbered 1, 2, 3, 4, 6, and 8 (see next page). Link 8 is in curvilinear translation and follows the coupler path of the original point P.
B1 q
2
OB 1
OA 7
B3
6 A3 5
Add a driver dyad following Example 3-4.
q
O'B
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-18-3
P
B1 3
4
A1 8 2
OB
1
OA
B3 P'
6
P
B1 3
4
A1 8 2
OB
1
OA
P'
6
B3
OC
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-19-1
PROBLEM 3-19 Statement:
Design a pin-jointed linkage that will guide the forks of the fork lift truck in Figure P3-5 up and down in an approximate straight line over the range of motion shown. Arrange the fixed pivots so they are close to some part of the existing frame or body of the truck.
Given:
Length of straight line motion of the forks: Δx 1800 mm
Solution:
See Figure P3-5 and Mathcad file P0319.
Design choices: Use a Hoeken-type straight line mechanism optimized for straightness. Maximum allowable error in straightness of line: ΔCy 0.096 % 1.
Using Table 3-1 and the required length of straight-line motion, determine the link lengths. Link ratios from Table 3-1 for ΔCy 0.096 %: L1overL2 2.200 L3overL2 2.800
ΔxoverL2 4.181
Link lengths:
2.
L2
Coupler
L3 L3overL2 L2
L3 1205.5 mm
Ground link
L1 L1overL2 L2
L1 947.1 mm
Rocker
L4 L3
L4 1205.5 mm
Coupler point
BP L3
BP 1205.5 mm
L2 430.5 mm
ΔxoverL2
Calculate the distance from point P to pivot O4 (Cy). Cy
3.
Δx
Crank
2 L32 L1 L22
Cy 1978.5 mm
Draw the fork lift truck to scale with the mechanism defined in step 1 superimposed on it..
1978.5mm
O4
P
620.0mm
4 947.1mm B
900.0mm
487.1mm 3
O2 2 A
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-20-1
PROBLEM 3-20 Statement:
Figure P3-6 shows a "V-link" off-loading mechanism for a paper roll conveyor. Design a pinjointed linkage to replace the air cylinder driver that will rotate the rocker arm and V-link through the 90 deg motion shown. Keep the fixed pivots as close to the existing frame as possible. Your fourbar linkage should be Grashof and be in toggle at each extreme position of the rocker arm.
Given:
Dimensions scaled from Figure P3-6: Rocker arm (link 4) distance between pin centers:
Solution:
L4 320 mm
See Figure P3-6 and Mathcad file P0320.
Design choices: 1. Use the same rocker arm that was used with the air cylinder driver. 2. Place the pivot O2 80 mm to the right of the right leg and on a horizontal line with the center of the pin on the rocker arm. 3. Design for two-position, 90 deg of output rocker motion with no quick return, similar to Example 3-2. 1.
Draw the rocker arm (link 4) O4B in both extreme positions, B1 and B2, in any convenient location such that the desired angle of motion 4 is subtended. In this solution, link 4 is drawn such that the two extreme positions each make an angle of 45 deg to the vertical.
2.
Draw the chord B1B2 and extend it in any convenient direction. In this solution it was extended horizontally to the left.
3.
Mark the center O2 on the extended line such that it is 80 mm to the right of the right leg. This will allow sufficient space for a supporting pillow block bearing.
4.
Bisect the line segment B1B2 and draw a circle of that radius about O2.
5.
Label the two intersections of the circle and extended line B1B2, A1 and A2.
6.
Measure the length of the coupler (link 3) as A1B1 or A2B2. From the graphical solution, L3 1045 mm
7.
Measure the length of the crank (link 2) as O2A1 or O2A2. From the graphical solution, L2 226.274 mm
8.
Measure the length of the ground link (link 1) as O2O4. From the graphical solution, L1 1069.217 mm 1045.000 80.000 1069.217 320.000
1 4 3
1045.000
9.
Find the Grashof condition.
2
226.274
DESIGN OF MACHINERY - 5th Ed.
Condition( a b c d )
SOLUTION MANUAL 3-20-2
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1 L2 L3 L4 "Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-21-1
PROBLEM 3-21 Statement:
Figure P3-7 shows a walking-beam transport mechanism that uses a fourbar coupler curve, replicated with a parallelogram linkage for parallel motion. Note the duplicate crank and coupler shown ghosted in the right half of the mechanism - they are redundant and have been removed from the duplicate fourbar linkage. Using the same fourbar driving stage (links 1, 2, 3, 4 with coupler point P), design a Watt-I sixbar linkage that will drive link 8 in the same parallel motion using two fewer links.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 2.22
Crank
L2 1
Coupler
L3 2.06
Rocker
L4 2.33
A1P 3.06
See Figure P3-7 and Mathcad file P0321.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 1.674
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
δ 31.000 deg
γ 109.6560 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 1.674
L6
L10 A1P
L10 3.060
L9
L7 0.812
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 1.893
A1P
L9 1.485
A1P
L8 3.461
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L8
A3P 3.461
δ 180 deg δ γ
A2P L2
A2P 1.000
δ δ
δ 31.000 deg
δ 39.344 deg From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 1.8035
L1AC
L1 L3
A1P
L1AC 3.2977
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1 Ground link length
L1 2.220
Cognate #2
Cognate #3
L1AC 3.298
L1BC 1.804
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-21-2
Crank length
L2 1.000
L10 3.060
L7 0.812
Coupler length
L3 2.060
L9 1.485
L6 1.893
Rocker length
L4 2.330
L8 3.461
L5 1.674
Coupler point
A1P 3.060
A2P 1.000
A3P 3.461
Coupler angle
δ 31.000 deg
δ 31.000 deg
δ 39.344 deg
OC 7 6
B3
A3
8
5
OB
9
4
1
B2
A2
10
P
OA 2 A1 3 B1
4.
Determine the Grashof condition of each of the two additional cognates. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
5.
Cognate #2:
Condition L8 L9 L10 L1AC "Grashof"
Cognate #3:
Condition L5 L6 L7 L1BC "Grashof"
Both of these cognates are Grashof but cognate #3 is a crank rocker. Following Example 3-11, discard cognate #2 and retain cognates #1 and #3. Draw line qq parallel to line OAOC and through point OB. Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along lines OAOC and qq until the free end of link 7 is at OA. The free end of link 5 will then be at point O'B and point P on link 6 will be at P'. Add a new link of length OAOC between P and P'. This is the new output link 8 and all points on it describe the original coupler curve.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-21-3
q OB 1 4 P
OA
2
7
B3
6 A3 A1
3 B1 8
5 O'B q P'
6.
Join links 2 and 7, making one ternary link. Remove link 5 and reduce link 6 to a binary link. The result is a Watt-I sixbar with links numbered 1, 2, 3, 4, 6, and 8 (see next page). Link 8 is in curvilinear translation and follows the coupler path of the original point P. The walking-beam (link 8 in Figure P3-7) is rigidly attached to link 8 below.
OB 1 4 P
OA
2
A3 A1 3 B1
6
8
P'
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-22-1
PROBLEM 3-22 Statement:
Find the maximum and minimum transmission angles of the fourbar driving stage (links L1, L2, L3, L4) in Figure P3-7 (to graphical accuracy).
Given:
Link lengths:
Link 2
L2 1.00
Link 3
L3 2.06
Link 4
L4 2.33
Link 1
L1 2.22
Grashof condition function: Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Solution: 1.
See Figure P3-7 and Mathcad file P0322.
Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Grashof condition: Barker classification:
2.
Condition L1 L2 L3 L4 "Grashof" Class I-2, Grashof crank-rocker-rocker, GCRR, since the shortest link is the input link.
It can be shown (see Section 4.10) that the minimum transmission angle for a fourbar GCRR linkage occurs when links 2 and 1 (ground link) are colinear. Draw the linkage in these two positions and measure the transmission angles. O4
O4
A O2
31.510°
O2 A 85.843°
B
3.
B
As measured from the layout, the minimum transmission angle is 31.5 deg. The maximum is 90 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-23-1
PROBLEM 3-23 Statement:
Figure P3-8 shows a fourbar linkage used in a power loom to drive a comb-like reed against the thread, "beating it up" into the cloth. Determine its Grashof condition and its minimum and maximum transmission angles to graphical accuracy.
Given:
Link lengths:
Link 2
L2 2.00 in
Link 3
L3 8.375 in
Link 4
L4 7.187 in
Link 1
L1 9.625 in
Grashof condition function: Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Solution: 1.
See Figure P3-8 and Mathcad file P0323.
Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Grashof condition: Barker classification:
2.
Condition L1 L2 L3 L4 "Grashof" Class I-2, Grashof crank-rocker-rocker, GCRR, since the shortest link is the input link.
It can be shown (see Section 4.10) that the minimum transmission angle for a fourbar GCRR linkage occurs when links 2 and 1 (ground link) are colinear. Draw the linkage in these two positions and measure the transmission angles.
83.634°
58.078°
3.
As measured from the layout, the minimum transmission angle is 58.1 deg. The maximum is 90.0 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-24-1
PROBLEM 3-24 Statement:
Draw the Roberts diagram and find the cognates for the linkage in Figure P3-9.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 2.22
Crank
L2 1.0
Coupler
L3 2.06
Rocker
L4 2.33
A1P 3.06
See Figure P3-9 and Mathcad file P0324.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 1.674
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
δ 31.00 deg
γ 109.6560 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 1.674
L6
L10 A1P
L10 3.060
L9
L7 0.812
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 1.893
A1P
L9 1.485
A1P
L8 3.461
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L8
A3P 3.461
δ 180 deg δ γ
δ 39.344 deg
A2P L2
A2P 1.000
δ δ
δ 31.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 3.
L1 L3
B1P
L1BC 1.8035
L1AC
L1 L3
A1P
L1AC 3.2977
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 2.220
L1AC 3.298
L1BC 1.804
Crank length
L2 1.000
L10 3.060
L7 0.812
Coupler length
L3 2.060
L9 1.485
L6 1.893
Rocker length
L4 2.330
L8 3.461
L5 1.674
Coupler point
A1P 3.060
A2P 1.000
A3P 3.461
Coupler angle
δ 31.000 deg
δ 31.000 deg
δ 39.344 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-24-2
B1 P B2 3
2
9
4
A1
A2
10
8 OB
5
1
OA
1BC 1AC
B3 6
A3
7
OC
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-25-1
PROBLEM 3-25 Statement:
Find the equivalent geared fivebar mechanism cognate of the linkage in Figure P3-9.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 2.22
Crank
L2 1.0
Coupler
L3 2.06
Rocker
L4 2.33
A1P 3.06
See Figure P3-9 and Mathcad file P0325.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 1.674
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
δ 31.00 deg
γ 109.6560 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 1.674
L6
L10 A1P
L10 3.060
L9
L7 0.812
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 1.893
A1P
L9 1.485
A1P
L8 3.461
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L8
A3P 3.461
δ 180 deg δ γ
δ 39.344 deg
A2P L2
A2P 1.000
δ δ
δ 31.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 1.8035
L1AC
L1 L3
A1P
L1AC 3.2977
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 2.220
L1AC 3.298
L1BC 1.804
Crank length
L2 1.000
L10 3.060
L7 0.812
Coupler length
L3 2.060
L9 1.485
L6 1.893
Rocker length
L4 2.330
L8 3.461
L5 1.674
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-25-2
Coupler point
A1P 3.060
A2P 1.000
A3P 3.461
Coupler angle
δ 31.000 deg
δ 31.000 deg
δ 39.344 deg
B1 P B2 3
2
9
4
A1
A2
10
8 OB
5
1
OA
1BC 1AC
B3 6
A3
4.
7
OC
The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAA2PB3OB, OAA1PA3OC, and OBB1PB2OC. The three geared fivebar cognates are summarized in the table below. SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 2.220
L1AC 3.298
L1BC 1.804
Crank length
L10 3.060
L2 1.000
L4 2.330
Coupler length
A2P 1.000
A1P 3.060
L5 1.674
Rocker length
L4 2.330
L8 3.461
L7 0.812
Crank length
L5 1.674
L7 0.812
L8 3.461
Coupler point
A2P 1.000
A1P 3.060
B1P 1.674
Coupler angle
δ 0.00 deg
δ 0.00 deg
δ 0.00 deg
5.
Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path (see next page)
6.
Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-25-3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-26-1
PROBLEM 3-26 Statement:
Use the linkage in Figure P3-9 to design an eightbar double-dwell mechanism that has a rocker output through 45 deg.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 2.22
Crank
L2 1.0
Coupler
L3 2.06
Rocker
L4 2.33
A1P 3.06
δ 31.00 deg
See Figure P3-9 and Mathcad file P0326.
Enter the given data into program FOURBAR and print out the resulting coupler point coordinates (see table below). FOURBAR for Windows
File P03-26.DAT
Angle Step Deg
Cpler Pt Cpler Pt Cpler Pt Cpler Pt X Y Mag Ang
0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000 110.000 120.000 130.000 140.000 150.000 160.000 170.000 180.000 190.000 200.000 210.000 220.000 230.000 240.000 250.000 260.000 270.000 280.000 290.000 300.000 310.000 320.000 330.000 340.000 350.000 360.000
2.731 3.077 3.350 3.515 3.576 3.554 3.473 3.350 3.203 3.040 2.872 2.706 2.548 2.403 2.274 2.164 2.075 2.005 1.953 1.917 1.892 1.875 1.862 1.848 1.832 1.810 1.784 1.754 1.723 1.698 1.687 1.702 1.761 1.883 2.088 2.380 2.731
2.523 2.407 2.228 2.032 1.855 1.708 1.592 1.499 1.420 1.348 1.278 1.207 1.135 1.062 0.990 0.925 0.869 0.826 0.802 0.798 0.817 0.860 0.925 1.011 1.115 1.235 1.367 1.508 1.654 1.804 1.955 2.105 2.251 2.386 2.494 2.550 2.523
3.718 3.906 4.023 4.060 4.028 3.943 3.820 3.671 3.503 3.326 3.144 2.963 2.789 2.627 2.480 2.354 2.249 2.168 2.111 2.076 2.061 2.063 2.079 2.107 2.145 2.192 2.248 2.313 2.388 2.477 2.582 2.707 2.858 3.040 3.253 3.488 3.718
42.731 38.029 33.626 30.035 27.412 25.672 24.635 24.107 23.915 23.915 23.988 24.039 24.001 23.834 23.533 23.134 22.719 22.404 22.326 22.614 23.365 24.632 26.417 28.678 31.340 34.306 37.463 40.683 43.826 46.730 49.207 51.038 51.965 51.715 50.064 46.967 42.731
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-26-2
2.
Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Fit tangent lines to the nearly straight portions of the curve. Label their intersection O6.
3.
Design link 6 to lie along these straight tangents, pivoted at O6. Provide a guide on link 6 to accommodate slider block 5, which pivots on the coupler point P. O8
8 45.000° F
E D
7
B 70.140°
C 6
3 P 5 A O6 2
4
O4
O2
4.
Extend link 6 a convenient distance to point C. Draw an arc through point C with center at O6. Label the intersection of the arc with the other tangent line as point D. Attach link 7 to the pivot at C. The length of link 7 is CE, a design choice. Extend line CDE from point E a distance equal to CD. Label the end point F. Layout two intersecting lines through E and F such that they subtend an angle of 45 deg. Label their intersection O8. The link joining O8 and point E is link 8. The link lengths and locations of O6 and O8 are: Link 6
L6 2.330
Fixed pivot O6:
Link 7
x 1.892 y 0.762
L7 3.000 Fixed pivot O8:
Link 8 x 1.379 y 6.690
L8 3.498
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-27-1
PROBLEM 3-27 Statement:
Use the linkage in Figure P3-9 to design an eightbar double-dwell mechanism that has a slider output stroke of 5 crank units.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 2.22
Crank
L2 1.0
Coupler
L3 2.06
Rocker
L4 2.33
A1P 3.06
δ 31.00 deg
See Figure P3-9 and Mathcad file P0327.
Enter the given data into program FOURBAR and print out the resulting coupler point coordinates (see table below). FOURBAR for Windows
File P03-26.DAT
Angle Step Deg
Cpler Pt Cpler Pt Cpler Pt Cpler Pt X Y Mag Ang
0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000 110.000 120.000 130.000 140.000 150.000 160.000 170.000 180.000 190.000 200.000 210.000 220.000 230.000 240.000 250.000 260.000 270.000 280.000 290.000 300.000 310.000 320.000 330.000 340.000 350.000 360.000
2.731 3.077 3.350 3.515 3.576 3.554 3.473 3.350 3.203 3.040 2.872 2.706 2.548 2.403 2.274 2.164 2.075 2.005 1.953 1.917 1.892 1.875 1.862 1.848 1.832 1.810 1.784 1.754 1.723 1.698 1.687 1.702 1.761 1.883 2.088 2.380 2.731
2.523 2.407 2.228 2.032 1.855 1.708 1.592 1.499 1.420 1.348 1.278 1.207 1.135 1.062 0.990 0.925 0.869 0.826 0.802 0.798 0.817 0.860 0.925 1.011 1.115 1.235 1.367 1.508 1.654 1.804 1.955 2.105 2.251 2.386 2.494 2.550 2.523
3.718 3.906 4.023 4.060 4.028 3.943 3.820 3.671 3.503 3.326 3.144 2.963 2.789 2.627 2.480 2.354 2.249 2.168 2.111 2.076 2.061 2.063 2.079 2.107 2.145 2.192 2.248 2.313 2.388 2.477 2.582 2.707 2.858 3.040 3.253 3.488 3.718
42.731 38.029 33.626 30.035 27.412 25.672 24.635 24.107 23.915 23.915 23.988 24.039 24.001 23.834 23.533 23.134 22.719 22.404 22.326 22.614 23.365 24.632 26.417 28.678 31.340 34.306 37.463 40.683 43.826 46.730 49.207 51.038 51.965 51.715 50.064 46.967 42.731
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-27-2
2.
Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Fit tangent lines to the nearly straight portions of the curve. Label their intersection O6.
3.
Design link 6 to lie along these straight tangents, pivoted at O6. Provide a guide on link 6 to accommodate slider block 5, which pivots on the coupler point P. F
E
8
D 7
C
B 6 70.140° 3 P 5 A O6 2
4
O4
O2
4.
Extend link 6 and the other tangent line until points C and E are 5 units apart. Attach link 7 to the pivot at C. The length of link 7 is CD, a design choice. Extend line CDE from point D a distance equal to CE. Label the end point F. As link 6 travels from C to E, slider block 8 will travel from D to F, a distance of 5 units. The link lengths and location of O6: Link 6
L6 4.351
Fixed pivot O6:
Link 7
x 1.892 y 0.762
L7 2.000
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-28-1
PROBLEM 3-28 Statement:
Use two of the cognates in Figure 3-26 (p. 126) to design a Watt-I sixbar parallel motion mechanism that carries a link through the same coupler curve at all points. Comment on its similarities to the original Roberts diagram.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 45
Crank
L2 56
Coupler
L3 22.5
Rocker
L4 56
A1P 11.25 δ 0.000 deg
See Figure 3-26 and Mathcad file P0328.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 11.250
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
γ 0.0000 deg
Use the Cayley diagram (see Figure 3-26) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 11.250
L6
L10 A1P
L10 11.250
L9
L7 28.000
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 28.000
A1P
L9 28.000
A1P
L8 28.000
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 56.000
A2P L2
A2P 56.000
δ δ
δ 0.000 deg
δ δ
δ 0.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 22.5000
L1AC
L1 L3
A1P
L1AC 22.5000
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 45.000
L1AC 22.500
L1BC 22.500
Crank length
L2 56.000
L10 11.250
L7 28.000
Coupler length
L3 22.500
L9 28.000
L6 28.000
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-28-2
Rocker length
L4 56.000
L8 28.000
L5 11.250
Coupler point
A1P 11.250
A2P 56.000
A3P 56.000
Coupler angle
δ 0.000 deg
δ 0.000 deg
δ 0.000 deg
P
3
B1
A1
B2
B3
6 9
8
2
A2
7
5
10 OA
4.
4
A3
OB
OC
Both of these cognates are identical. Following Example 3-11, discard cognate #2 and retain cognates #1 and #3. Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along line OAOC until the free end of link 7 is at OA. The free end of link 5 will then be at point O'B and point P on link 6 will be at P'. Add a new link of length OAOC between P and P'. This is the new output link 8 and all points on it describe the original coupler curve. P'
B1
8
3
P
A1
B3
6
7 2
4
5 OA
O'B
A3 OB
DESIGN OF MACHINERY - 5th Ed.
5.
SOLUTION MANUAL 3-28-3
Join links 2 and 7, making one ternary link. Remove link 5 and reduce link 6 to a binary link. The result is a Watt-I sixbar with links numbered 1, 2, 3, 4, 6, and 8. Link 8 is in curvilinear translation and follows the coupler path of the original point P. Link 8 is a binary link with nodes at P and P'. It does not attach to link 4 at B1.
P'
8
B1
3
P
A1
6
B3
2
OA
4
OB
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-29-1
PROBLEM 3-29 Statement:
Find the cognates of the Watt straight-line mechanism in Figure 3-29a (p. 131).
Given:
Link lengths:
Solution:
Coupler point data:
Ground link
L1 4
Crank
L2 2
A1P 0.500
δ 0.00 deg
Coupler
L3 1
Rocker
L4 2
B1P 0.500
γ 0.00 deg
See Figure 3-29a and Mathcad file P0329.
1.
Input the link dimensions and coupler point data into program FOURBAR.
2.
Use the Cognate pull-down menu to get the link lengths for cognates #2 and #3 (see next page). Note that, for this mechanism, cognates #2 and #3 are identical. All three mechanisms are non-Grashof with limited crank angles.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-29-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-30-1
PROBLEM 3-30 Statement:
Find the cognates of the Roberts straight-line mechanism in Figure 3-29b.
Given:
Link lengths:
Solution:
Coupler point data:
Ground link
L1 2
Crank
L2 1
A1P 1.000
δ 60.0 deg
Coupler
L3 1
Rocker
L4 1
B1P 1.000
γ 60.0 deg
See Figure 3-29b and Mathcad file P0330.
1.
Input the link dimensions and coupler point data into program FOURBAR.
2.
Note that, for this mechanism, cognates #2 and #3 are identical with cognate #1 because of the symmetry of the linkage (draw the Cayley diagram to see this). All three mechanisms are non-Grashof with limited crank angles.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-31-1
PROBLEM 3-31 Statement:
Design a Hoeken straight-line linkage to give minimum error in velocity over 22% of the cycle for a 15-cm-long straight line motion. Specify all linkage parameters.
Given:
Length of straight line motion: Δx 150 mm Percentage of cycle over which straight line motion takes place: 22%
Solution:
See Figure 3-30 and Mathcad file P0331.
1.
Using Table 3-1 and the required length of straight-line motion, determine the link lengths. Link ratios from Table 3-1 for 22% cycle: L1overL2 1.975
L3overL2 2.463
ΔxoverL2 1.845
Link lengths:
2.
L2
Coupler
L3 L3overL2 L2
L3 200.24 mm
Ground link
L1 L1overL2 L2
L1 160.57 mm
Rocker
L4 L3
L4 200.24 mm
Coupler point
AP 2 L3
AP 400.49 mm
L2 81.30 mm
ΔxoverL2
Calculate the distance from point P to pivot O4 (Cy) when crank angle is 180 deg. Cy
3.
Δx
Crank
2 L32 L1 L22
Cy 319.20 mm
Enter the link lengths into program FOURBAR to verify the design (see next page for coupler point curve). Using the PRINT facility, determine the x,y coordinates of the coupler curve and the x,y components of the coupler point velocity in the straight line region. A table of these values is printed below. Notice the small deviations over the range of crank angles from the y-coordinate and the x-velocity at a crank angle of 180 deg.
FOURBAR for Windows
File P03-31.DOC
Angle Step Deg
Cpler Pt X mm
Cpler Pt Y mm
Veloc CP X mm/sec
Veloc CP Y mm/sec
140 150 160 170 180 190 200 210 220
235.60 216.84 198.06 179.31 160.58 141.85 123.09 104.31 85.55
319.95 319.72 319.46 319.27 319.20 319.27 319.47 319.72 319.95
-1,072.61 -1,076.20 -1,075.51 -1,073.75 -1,072.93 -1,073.75 -1,075.52 -1,076.22 -1,072.63
-14.74 -13.54 -7.99 0.02 8.03 13.58 14.78 10.76
-10.73
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-31-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-32-1
PROBLEM 3-32 Statement:
Design a Hoeken straight-line linkage to give minimum error in straightness over 39% of the cycle for a 20-cm-long straight line motion. Specify all linkage parameters.
Given:
Length of straight line motion: Δx 200 mm Percentage of cycle over which straight line motion takes place: 39%
Solution:
See Figure 3-30 and Mathcad file P0332.
1.
Using Table 3-1 and the required length of straight-line motion, determine the link lengths. Link ratios from Table 3-1 for 39% cycle: L1overL2 2.500
L3overL2 3.250
ΔxoverL2 3.623
Δx ΔxoverL2
L2 55.20 mm
Link lengths:
2.
Crank
L2
Coupler
L3 L3overL2 L2
L3 179.41 mm
Ground link
L1 L1overL2 L2
L1 138.01 mm
Rocker
L4 L3
L4 179.41 mm
Coupler point
AP 2 L3
AP 358.82 mm
Calculate the distance from point P to pivot O4 (Cy) when crank angle is 180 deg. Cy
3.
2 L32 L1 L22
Cy 302.36 mm
Enter the link lengths into program FOURBAR to verify the design (see next page for coupler point curve). Using the PRINT facility, determine the x,y coordinates of the coupler curve and the x,y components of the coupler point velocity in the straight line region. A table of these values is printed below. Notice the small deviations over the range of crank angles from the y-coordinate and the x-velocity from a crank angle of 180 deg. FOURBAR for Windows
File P03-32.DAT
Angle Step Deg
Coupler Pt X mm
Coupler Pt Y mm
Veloc CP X mm/sec
110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
237.992 225.289 211.710 197.521 182.927 168.076 153.076 138.010 122.944 107.944 93.093 78.499 64.311 50.731 38.028
302.408 302.361 302.378 302.398 302.399 302.385 302.368 302.360 302.368 302.385 302.399 302.398 302.378 302.361 302.408
-696.591 -755.847 -797.695 -826.217 -844.774 -856.043 -861.994 -863.841 -861.994 -856.043 -844.774 -826.217 -797.695 -755.847 -696.591
Veloc CP Y mm/sec -6.416 -0.019 1.426 0.664 -0.483 -1.052 -0.800 0.000 0.800 1.052 0.483 -0.664 -1.426 0.019 6.416
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-32-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-33-1
PROBLEM 3-33 Statement:
Design a linkage that will give a symmetrical "kidney bean" shaped coupler curve as shown in Figure 3-16 (p. 114 and 115). Use the data in Figure 3-21 (p. 120) to determine the required link ratios and generate the coupler curve with program FOURBAR.
Solution:
See Figures 3-16, 3-21, and Mathcad file P0333.
Design choices: Ground link ratio, L1/L2 = 2.0: GLR 2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.5: CLR 2.5 Coupler angle, γ 72 deg Crank length, L2 2.000 1.
For the given design choices, determine the remaining link lengths and coupler point specification. Coupler link (3) length
L3 CLR L2
L3 5.000
Rocker link (4) length
L4 CLR L2
L4 5.000
Ground link (1) length
L1 GLR L2
L1 4.000
Angle PAB
δ
Length AP on coupler 2.
180 deg γ 2
AP 2 L3 cos δ
δ 54.000 deg AP 5.878
Enter the above data into program FOURBAR and plot the coupler curve.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-34-1
PROBLEM 3-34 Statement:
Design a linkage that will give a symmetrical "double straight" shaped coupler curve as shown in Figure 3-16. Use the data in Figure 3-21 to determine the required link ratios and generate the coupler curve with program FOURBAR.
Solution:
See Figures 3-16, 3-21, and Mathcad file P0334.
Design choices: Ground link ratio, L1/L2 = 2.5: GLR 2.5 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.5: CLR 2.5 Coupler angle, γ 252 deg Crank length, L2 2.000 1.
For the given design choices, determine the remaining link lengths and coupler point specification. Coupler link (3) length
L3 CLR L2
L3 5.000
Rocker link (4) length
L4 CLR L2
L4 5.000
Ground link (1) length
L1 GLR L2
L1 5.000
Angle PAB
δ
Length AP on coupler 2.
180 deg γ 2
AP 2 L3 cos δ
δ 36.000 deg AP 8.090
Enter the above data into program FOURBAR and plot the coupler curve.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-35-1
PROBLEM 3-35 Statement:
Design a linkage that will give a symmetrical "scimitar" shaped coupler curve as shown in Figure 3-16. Use the data in Figure 3-21 to determine the required link ratios and generate the coupler curve with program FOURBAR. Show that there are (or are not) true cusps on the curve.
Solution:
See Figures 3-16, 3-21, and Mathcad file P0334.
Design choices: Ground link ratio, L1/L2 = 2.0: GLR 2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.5: CLR 2.5 Coupler angle, γ 144 deg Crank length, L2 2.000 1.
For the given design choices, determine the remaining link lengths and coupler point specification. Coupler link (3) length
L3 CLR L2
L3 5.000
Rocker link (4) length
L4 CLR L2
L4 5.000
Ground link (1) length
L1 GLR L2
L1 4.000
Angle PAB
δ
Length AP on coupler 2.
180 deg γ 2
AP 2 L3 cos δ
δ 18.000 deg AP 9.511
Enter the above data into program FOURBAR and plot the coupler curve.
DESIGN OF MACHINERY - 5th Ed.
3.
SOLUTION MANUAL 3-35-2
The points at the ends of the "scimitar" will be true cusps if the velocity of the coupler point is zero at these points. Using FOURBAR's plotting utility, plot the magnitude and angle of the coupler point velocity vector. As seen below for the range of crank angle from 50 to 70 degrees, the magnitude of the velocity does not quite reach zero. Therefore, these are not true cusps.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-36-1
PROBLEM 3-36 Statement:
Find the Grashof condition, inversion, any limit positions, and the extreme values of the transmission angle (to graphical accuracy) of the linkage in Figure P3-10.
Given:
Link lengths:
Link 2
L2 0.785
Link 3
L3 0.356
Link 4
L4 0.950
Link 1
L1 0.544
Grashof condition function: Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ
Solution: 1.
return "non-Grashof" otherwise See Figure P3-10 and Mathcad file P0336.
Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Condition L1 L2 L3 L4 "Grashof"
Grashof condition: Barker classification:
2.
Class I-3, Grashof rocker-crank-rocker, GRCR, since the shortest link is the coupler link.
A GRCR linkage will have two toggle positions. Draw the linkage in these two positions and measure the input link angles. A
B
158.286° O4
O2
O4
O2 B A
158.286°
3.
As measured from the layout, the input link angles at the toggle positions are: +158.3 and -158.3 deg.
4.
Since the coupler link in a GRCR linkage can make a full rotation with respect to the input and output rockers, the minimum transmission angle is 0 deg and the maximum is 90 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-37-1
PROBLEM 3-37 Statement:
Draw the Roberts diagram and find the cognates for the linkage in Figure P3-10.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 0.544 Crank
L2 0.785
Coupler
L3 0.356 Rocker
L4 0.950
δ 0.00 deg
See Figure P3-10 and Mathcad file P0337.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 0.734
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
A1P 1.09
γ 180.0000 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 0.734
L6
L10 A1P
L10 1.090
L9
L7 1.619
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 1.959
A1P
L9 2.404
A1P
L8 2.909
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 0.950
A2P L2
A2P 0.785
δ 180 deg δ
δ 180.000 deg
δ δ
δ 0.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 1.1216
L1AC
L1 L3
A1P
L1AC 1.6656
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 0.544
L1AC 1.666
L1BC 1.122
Crank length
L2 0.785
L10 1.090
L7 1.619
Coupler length
L3 0.356
L9 2.404
L6 1.959
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-37-2
Rocker length
L4 0.950
L8 2.909
L5 0.734
Coupler point
A1P 1.090
A2P 0.785
A3P 0.950
Coupler angle
δ 0.000 deg
δ 0.000 deg
δ 180.000 deg
B2
9
8
P B1 A1
3 4
A2
2
5
10 OA
1
A3 OC
OB 6
7
B3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-38-1
PROBLEM 3-38 Statement:
Find the three geared fivebar cognates of the linkage in Figure P3-10.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 0.544 Crank
L2 0.785
Coupler
L3 0.356 Rocker
L4 0.950
δ 0.00 deg
See Figure P3-10 and Mathcad file P0338.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 0.734
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
A1P 1.09
γ 180.0000 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 0.734
L6
L10 A1P
L10 1.090
L9
L7 1.619
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 1.959
A1P
L9 2.404
A1P
L8 2.909
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 0.950
A2P L2
A2P 0.785
δ 180 deg δ
δ 180.000 deg
δ δ
δ 0.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 3.
L1 L3
B1P
L1BC 1.1216
L1AC
L1 L3
A1P
L1AC 1.6656
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 0.544
L1AC 1.666
L1BC 1.122
Crank length
L2 0.785
L10 1.090
L7 1.619
Coupler length
L3 0.356
L9 2.404
L6 1.959
Rocker length
L4 0.950
L8 2.909
L5 0.734
Coupler point
A1P 1.090
A2P 0.785
A3P 0.950
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-38-2
δ 0.000 deg
Coupler angle
δ 0.000 deg
δ 180.000 deg
B2
9
8
P B1 A1
3 4
A2
2
5
10 OA
1
A3 OC
OB 6
7
B3 4.
The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAA2PA3OB, OAA1PB3OC, and OBB1PB2OC. They are specified in the summary table below. SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 0.544
L1AC 1.666
L1BC 1.122
Crank length
L10 1.090
L2 0.785
L4 0.950
Coupler length
A2P 0.785
A1P 1.090
L5 0.734
Rocker length
A3P 0.950
L8 2.909
L7 1.619
Crank length
L5 0.734
L7 1.619
L8 2.909
Coupler point
A2P 0.785
A1P 1.090
B1P 0.734
Coupler angle
δ 0.00 deg
δ 0.00 deg
δ 0.00 deg
5.
Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path (see next page).
6.
Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-38-3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-39-1
PROBLEM 3-39 Statement:
Find the Grashof condition, any limit positions, and the extreme values of the transmission angle (to graphical accuracy) of the linkage in Figure P3-11.
Given:
Link lengths:
Link 2
L2 0.86
Link 3
L3 1.85
Link 4
L4 0.86
Link 1
L1 2.22
Grashof condition function: Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Solution: 1.
See Figure P3-11 and Mathcad file P0339.
Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Condition L1 L2 L3 L4 "non-Grashof"
Grashof condition: Barker classification:
2.
Class II-1, non-Grashof triple rocker, RRR1, since the longest link is the ground link.
An RRR1 linkage will have two toggle positions. Draw the linkage in these two positions and measure the input link angles. 116.037° A B
O4
O2
O4
O2 B A 116.037°
88.2° B
A 67.3° O2
O4
3.
As measured from the layout, the input link angles at the toggle positions are: +116 and -116 deg.
4.
Since the coupler link in an RRR1 linkage cannot make a full rotation with respect to the input and output rockers, the minimum transmission angle is 0 deg and the maximum is 88 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-40-1
PROBLEM 3-40 Statement:
Draw the Roberts diagram and find the cognates for the linkage in Figure P3-11.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 2.22
Crank
L2 0.86
Coupler
L3 1.85
Rocker
L4 0.86
δ 0.00 deg
See Figure P3-11 and Mathcad file P0340.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 0.520
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
A1P 1.33
γ 0.0000 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 0.520
L6
L10 A1P
L10 1.330
L9
L7 0.242
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 0.242
A1P
L9 0.618
A1P
L8 0.618
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L8
A3P 0.618
A2P L7
A2P 0.242
δ 180 deg
δ 180.000 deg
δ 180 deg
δ 180.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 3.
L1 L3
B1P
L1BC 0.6240
L1AC
L1 L3
A1P
L1AC 1.5960
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 2.220
L1AC 1.596
L1BC 0.624
Crank length
L2 0.860
L10 1.330
L7 0.242
Coupler length
L3 1.850
L9 0.618
L6 0.242
Rocker length
L4 0.860
L8 0.618
L5 0.520
Coupler point
A1P 1.330
A2P 0.242
A3P 0.618
Coupler angle
δ 0.000 deg
δ 180.000 deg
δ 180.000 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-40-2
B2
B1
9 A2
3
10
P
4
8
OC
OA
A3
7 6
2 A1
OB 5
B3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-41-1
PROBLEM 3-41 Statement:
Find the three geared fivebar cognates of the linkage in Figure P3-11.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 2.22
Crank
L2 0.86
Coupler
L3 1.85
Rocker
L4 0.86
δ 0.00 deg
See Figure P3-11 and Mathcad file P0341.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 0.520
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
A1P 1.33
γ 0.0000 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 0.520
L6
L10 A1P
L10 1.330
L9
L7 0.242
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 0.242
A1P
L9 0.618
A1P
L8 0.618
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L8
A3P 0.618
A2P L7
A2P 0.242
δ 180 deg
δ 180.000 deg
δ 180 deg
δ 180.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 0.6240
L1AC
L1 L3
A1P
L1AC 1.5960
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 2.220
L1AC 1.596
L1BC 0.624
Crank length
L2 0.860
L10 1.330
L7 0.242
Coupler length
L3 1.850
L9 0.618
L6 0.242
Rocker length
L4 0.860
L8 0.618
L5 0.520
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-41-2
Coupler point
A1P 1.330
A2P 0.242
A3P 0.618
Coupler angle
δ 0.000 deg
δ 180.000 deg
δ 180.000 deg
B2
B1
9 A2
3
10
P
4
8
OC
OA
A3
7 6
2
5 B3
A1 4.
OB
The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAB2PB3OB, OAA1PA3OC, and OBB1PA2OC. The three geared fivebar cognates are summarized in the table below. SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 2.220
L1AC 1.596
L1BC 0.624
Crank length
L10 1.330
L2 0.860
L4 0.860
Coupler length
L2 0.860
A1P 1.330
L5 0.520
Rocker length
L4 0.860
L8 0.618
L7 0.242
Crank length
L5 0.520
L7 0.242
L8 0.618
Coupler point
L2 0.860
A1P 1.330
B1P 0.520
Coupler angle
δ 0.00 deg
δ 0.00 deg
δ 0.00 deg
5.
Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path (see next page)
6.
Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-41-3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-42-1
PROBLEM 3-42 Statement:
Find the Grashof condition, any limit positions, and the extreme values of the transmission angle (to graphical accuracy) of the linkage in Figure P3-12.
Given:
Link lengths:
Link 2
L2 0.72
Link 3
L3 0.68
Link 4
L4 0.85
Link 1
L1 1.82
Grashof condition function: Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Solution: 1.
See Figure P3-12 and Mathcad file P0342.
Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Condition L1 L2 L3 L4 "non-Grashof"
Grashof condition: Barker classification:
2.
Class II-1, non-Grashof triple rocker, RRR1, since the longest link is the ground link.
An RRR1 linkage will have two toggle positions. Draw the linkage in these two positions and measure the input link angles.
A
55.4° B
O4
O2
O4
O2
B A
55.4°
B 88.8° O4 O2
A
3.
As measured from the layout, the input link angles at the toggle positions are: +55.4 and -55.4 deg.
4.
Since the coupler link in an RRR1 linkage it cannot make a full rotation with respect to the input and output rockers, the minimum transmission angle is 0 deg and the maximum is 88.8 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-43-1
PROBLEM 3-43 Statement:
Draw the Roberts diagram and find the cognates for the linkage in Figure P3-12.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 1.82
Crank
L2 0.72
Coupler
L3 0.68
Rocker
L4 0.85
δ 54.0 deg
See Figure P3-12 and Mathcad file P0343.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 0.792
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
A1P 0.97
γ 82.0315 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 0.792
L6
L10 A1P
L10 0.970
L9
L7 0.839
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 0.990
A1P
L9 1.027
A1P
L8 1.212
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 0.850
A2P L2
A2P 0.720
δ γ
δ 82.032 deg
δ δ
δ 54.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 3.
L1 L3
B1P
L1BC 2.1208
L1AC
L1 L3
A1P
L1AC 2.5962
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 1.820
L1AC 2.596
L1BC 2.121
Crank length
L2 0.720
L10 0.970
L7 0.839
Coupler length
L3 0.680
L9 1.027
L6 0.990
Rocker length
L4 0.850
L8 1.212
L5 0.792
Coupler point
A1P 0.970
A2P 0.720
A3P 0.850
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-43-2
δ 54.000 deg
Coupler angle
δ 54.000 deg
OC
8 B2
7
9
B3
P 6 A2 1AC 10 3
OA
B1
5 4
A1 2
1BC
A3
1 OB
δ 82.032 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-44-1
PROBLEM 3-44 Statement:
Find the three geared fivebar cognates of the linkage in Figure P3-12.
Given:
Link lengths:
Solution: 1.
Coupler point data:
Ground link
L1 1.82
Crank
L2 0.72
Coupler
L3 0.68
Rocker
L4 0.85
δ 54.0 deg
See Figure P3-12 and Mathcad file P0344.
Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P L3 A1P 2 L3 A1P cos δ 2
2
0.5
B1P 0.792
L32 B1P 2 A1P 2 γ acos 2 L3 B1P 2.
A1P 0.97
γ 82.0315 deg
Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4
L5 B1P
L5 0.792
L6
L10 A1P
L10 0.970
L9
L7 0.839
L8 L6
L7 L9
B1P A1P
L3 L2 L3
B1P
L6 0.990
A1P
L9 1.027
A1P
L8 1.212
B1P
Calculate the coupler point data for cognates #2 and #3 A3P L4
A3P 0.850
A2P L2
A2P 0.720
δ γ
δ 82.032 deg
δ δ
δ 54.000 deg
From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC
3.
L1 L3
B1P
L1BC 2.1208
L1AC
L1 L3
A1P
L1AC 2.5962
Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 1.820
L1AC 2.596
L1BC 2.121
Crank length
L2 0.720
L10 0.970
L7 0.839
Coupler length
L3 0.680
L9 1.027
L6 0.990
Rocker length
L4 0.850
L8 1.212
L5 0.792
Coupler point
A1P 0.970
A2P 0.720
A3P 0.850
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-44-2
δ 54.000 deg
Coupler angle
δ 54.000 deg
δ 82.032 deg
OC
8 B2
7
9
B3
P 6 A2 1AC 10 3
B1
5 4
A1 2
1BC
A3
1 OB
OA
4.
The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAA2PA3OB, OAA1PB3OC, and OBB1PB2OC. SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1
Cognate #2
Cognate #3
Ground link length
L1 1.820
L1AC 2.596
L1BC 2.121
Crank length
L10 0.970
L2 0.720
L4 0.850
Coupler length
A2P 0.720
A1P 0.970
L5 0.792
Rocker length
A3P 0.850
L8 1.212
L7 0.839
Crank length
L5 0.792
L7 0.839
L8 1.212
Coupler point
A2P 0.720
A1P 0.970
B1P 0.792
Coupler angle
δ 0.00 deg
δ 0.00 deg
δ 0.00 deg
5.
Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path (see next page).
6.
Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-44-3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-45-1
PROBLEM 3-45 Statement:
Prove that the relationships between the angular velocities of various links in the Roberts diagram as shown in Figure 3-25 (p. 125) are true.
Given:
OAA1PA2, OCB2PB3, and OBB1PA3 are parallelograms for any position of link 2..
Proof: 1.
OAA1 and A2P are opposite sides of a parallelogram and are, therefore, always parallel.
2.
Any change in the angle of OAA1 (link 2) will result in an identical change in the angle of A2P.
3.
Angular velocity is the change in angle per unit time.
4.
Since OAA1 and A2P have identical changes in angle, their angular velocities are identical.
5.
A2P is a line on link 9 and all lines on a rigid body have the same angular velocity. Therefore, link 9 has the same angular velocity as link 2.
6.
OCB3 (link 7) and B2P are opposite sides of a parallelogram and are, therefore, always parallel.
7.
B2P is a line on link 9 and all lines on a rigid body have the same angular velocity. Therefore, link 7 has the same angular velocity as links 9 and 2.
8.
The same argument holds for links 3, 5, and 10; and links 4, 6, and 8.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-46-1
PROBLEM 3-46 Statement:
Design a fourbar linkage to move the object in Figure P3-13 from position 1 to 2 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 52.000
Solution:
See Figure P3-13 and Mathcad file P0346.
Design choices: Length of link 2
L2 130
Length of link 2b
L2b 40
L4 110
Length of link 4
1.
Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A1 to A2 and B1 to B2.
2.
Bisect these lines and extend their perpendicular bisectors into the base.
3.
Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2 130.000 and O4B to be L4 110.000 . This resulted in a ground-link-length O2O4 for the fourbar of 27.080.
4.
The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a
L1a 27.080
Link 3 (coupler)
L3 52.000
Link 2 (input)
L2 130.000
Link 4 (output)
L4 110.000
5.
Select a point on link 2 (O2A) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 2 is now a ternary link with nodes at O2, C, and A.) In the solution below the distance O2C was selected to be L2b 40.000 .
6.
Draw a construction line through C1C2 and extend it to the left.
7.
Select a point on this line and call it O6. In the solution below O6 was placed 20 units from the left edge of the base.
8.
Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D1 and D2. In the solution below the radius was measured as 23.003 units.
A1
B1
3
A2
6
D1
O6
2 D2
C1 5
9.
The driver fourbar is now defined as O2CDO6 with link lengths Link 6 (crank)
L6 23.003
Link 5 (coupler) L5 106.866 Link 1b (ground) L1b 111.764 Link 2b (rocker) L2b 40.000
23.003 106.866 111.764
B2
4 C2
40.000 O2
O4 27.080
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-46-2
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1b L2b L5 L6 "Grashof" min L1b L2b L5 L6 23.003
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-47-1
PROBLEM 3-47 Statement:
Design a fourbar linkage to move the object in Figure P3-13 from position 2 to 3 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 52.000
Solution:
See Figure P3-13 and Mathcad file P0347.
Design choices: Length of link 2
L2 130
Length of link 4b
L4b 40
L4 225
Length of link 4
1.
Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A2 to A3 and B2 to B3.
2.
Bisect these lines and extend their perpendicular bisectors into the base.
3.
Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2 130.000 and O4B to be L4 225.000 . This resulted in a ground-link-length O2O4 for the fourbar of 111.758.
4.
The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a
L1a 111.758
Link 2 (input)
L2 130.000
Link 3 (coupler)
L3 52.000
Link 4 (output)
L4 225.000
5.
Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution below the distance O4C was selected to be L4b 40.000 .
6.
Draw a construction line through C2C3 and extend it downward.
7.
Select a point on this line and call it O6. In the solution below O6 was placed 20 units from the bottom of the base.
8.
9.
Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D2 and D3. In the solution below the radius was measured as 10.480 units.
A
2
B 111.758
C3
O4 83.977
Link 5 (coupler) L5 83.977
1b
6 O6
92.425
A
5 D2
10.480
Link 4b (rocker) L4b 40.000
O2
1a
L6 10.480
Link 1b (ground) L1b 92.425
4
C2
The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)
3
D3
B
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-47-2
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1b L4b L5 L6 "Grashof" min L1b L4b L5 L6 10.480
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-48-1
PROBLEM 3-48 Statement:
Design a fourbar linkage to move the object in Figure P3-13 through the three positions shown using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 52.000
Solution:
See Figure P3-13 and Mathcad file P0348.
Design choices: Length of link 4b
L4b 50
1.
Draw link AB in its three design positions A1B1, A2B2, A3B3 in the plane as shown.
2.
Draw construction lines from point A1 to A2 and from point A2 to A3.
3.
Bisect line A1A2 and line A2A3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.
4.
Repeat steps 2 and 3 for lines B1B2 and B2B3. Label the intersection O4.
5.
Connect O2 with A1 and call it link 2. Connect O4 with B1 and call it link 4.
6.
Line A1B1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2ABO4 and has link lengths of Ground link 1a
L1a 20.736
Link 2
L2 127.287
Link 3
L3 52.000
Link 4
L4 120.254
B1
A1 3
A2 4
D3
B2
2
O6
D1
6
5 A3 C3 O2 C1
C2 O4
7.
B3
Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-48-2
Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4 "Grashof" 8.
Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution above the distance O4C was selected to be L4b 50.000 .
9.
Draw a construction line through C1C3 and extend it to the left.
10. Select a point on this line and call it O6. In the solution above O6 was placed 20 units from the left edge of the base. 11. Draw a circle about O6 with a radius of one-half the length C1C3 and label the intersections of the circle with the extended line as D1 and D3. In the solution below the radius was measured as L6 45.719. 12. The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)
L6 45.719
Link 5 (coupler) L5 126.875 Link 1b (ground) L1b 128.545 Link 4b (rocker) L4b 50.000 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L4b L5 "Grashof" min L6 L1b L4b L5 45.719
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-49-1
PROBLEM 3-49 Statement:
Design a fourbar linkage to move the object in Figure P3-14 from position 1 to 2 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 86.000
Solution:
See Figure P3-14 and Mathcad file P0349.
Design choices: Length of link 2
L2 125
Length of link 2b
L4b 50
Length of link 4
L4 140
1.
Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A1 to A2 and B1 to B2.
2.
Bisect these lines and extend their perpendicular bisectors into the base.
3.
Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2 125.000 and O4B to be L4 140.000 . This resulted in a ground-link-length O2O4 for the fourbar of 97.195.
4.
The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a
L1a 97.195
Link 3 (coupler)
L3 86.000
Link 2 (input)
L2 125.000
Link 4 (output)
L4 140.000
5.
Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution below the distance O4C was selected to be L4b 50.000 .
6.
Draw a construction line through C1C2 and extend it to the left.
7.
Select a point on this line and call it O6. In the solution below O6 was placed 20 units from the left edge of the base.
8.
9.
Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D1 and D2. In the solution below the radius was measured as 25.808 units.
A1
3 2 B1 B2
6 D1
O6
L6 25.808
Link 5 (coupler) L5 130.479 Link 1b (ground) L1b 137.327 Link 4b (rocker) L4b 50.000
4
D2
O2 1a
97.195
5
The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)
A2
1b
C1
C2
25.808 130.479
137.327
O4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-49-2
10. Use the link lengths in step 9 to find the Grashof condition of the driving fourbar (it must be Grashof and the shortest link must be link 6). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1b L4b L5 L6 "Grashof" min L1b L4b L5 L6 25.808
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-50-1
PROBLEM 3-50 Statement:
Design a fourbar linkage to move the object in Figure P3-14 from position 2 to 3 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 86.000
Solution:
See Figure P3-14 and Mathcad file P0350.
Design choices: Length of link 2
L2 130
Length of link 2b
L2b 50
L4 130
Length of link 4
1.
Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A2 to A3 and B2 to B3.
2.
Bisect these lines and extend their perpendicular bisectors into the base.
3.
Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2 130.000 and O4B to be L4 130.000 . This resulted in a ground-link-length O2O4 for the fourbar of 67.395.
4.
The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a Link 3 (coupler)
5.
6. 7.
8.
9.
L1a 67.395 L3 86.000
Link 2 (input)
L2 130.000
Link 4 (output)
L4 130.000
Select a point on link 2 (O2A) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O2, C, and A.) In the solution below the distance O2C was selected to be L2b 50.000 and the link was extended away from A to give a better position for the driving dyad. Draw a construction line through C2C3 and extend it downward. Select a point on this line and call it O6. In the solution below O6 was placed 35 units from the bottom of the base. A2
Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D2 and D3. In the solution below the radius was measured as 24.647 units. The driver fourbar is now defined as O2CDO6 with link lengths Link 6 (crank)
3 C3
155°
107.974
O2
C2
1a
4
67.395
1b 5
Link 5 (coupler) L5 98.822
Link 2b (rocker) L2b 50.000
B2 A3
L6 24.647
Link 1b (ground) L1b 107.974
2
D3
O4 6
98.822
B3
O6
24.647 D2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-50-2
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1b L2b L5 L6 "Grashof" min L1b L2b L5 L6 24.647
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-51-1
PROBLEM 3-51 Statement:
Design a fourbar linkage to move the object in Figure P3-14 through the three positions shown using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 86.000
Solution:
See Figure P3-14 and Mathcad file P0351.
Design choices: Length of link 4b
L4b 50
1.
Draw link AB in its three design positions A1B1, A2B2, A3B3 in the plane as shown.
2.
Draw construction lines from point A1 to A2 and from point A2 to A3.
3.
Bisect line A1A2 and line A2A3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.
4.
Repeat steps 2 and 3 for lines B1B2 and B2B3. Label the intersection O4.
5.
Connect O2 with A1 and call it link 2. Connect O4 with B1 and call it link 4.
6.
Line A1B1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2ABO4 and has link lengths of Ground link 1a
L1a 61.667
Link 2
L2 142.357
Link 3
L3 86.000
Link 4
L4 124.668
A1 A2
3
2 B1
D3
B2 O6
O2 6
D1
4
1b
A3
1a
5 C3
O4
7.
B3 C2
C1
Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-51-2
Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4 "Grashof" 8.
Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution above the distance O4C was selected to be L4b 50.000 .
9.
Draw a construction line through C1C3 and extend it to the left.
10. Select a point on this line and call it O6. In the solution above O6 was placed 20 units from the left edge of the base. 11. Draw a circle about O6 with a radius of one-half the length C1C3 and label the intersections of the circle with the extended line as D1 and D3. In the solution below the radius was measured as L6 45.178. 12. The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)
L6 45.178
Link 5 (coupler) L5 140.583 Link 1b (ground) L1b 142.205 Link 4b (rocker) L4b 50.000 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L4b L5 "Grashof" 14. Unfortunately, although the solution presented appears to meet the design specification, a simple cardboard model will quickly demonstrate that it has a branch defect. That is, in the first position shown, the linkage is in the "open" configuration, but in the 2nd and 3rd positions it is in the "crossed" configuration. The linkage cannot get from one circuit to the other without removing a pin and reassembling after moving the linkage. The remedy is to attach the points A and B to the coupler, but not at the joints between links 2 and 3 and links 3 and 4.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-52-1
PROBLEM 3-52 Statement:
Design a fourbar linkage to move the object in Figure P3-15 from position 1 to 2 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 52.000
Solution:
See Figure P3-15 and Mathcad file P0352.
Design choices: Length of link 2
L2 100
Length of link 4b
L4b 40
L4 160
Length of link 4
1.
Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A1 to A2 and B1 to B2.
2.
Bisect these lines and extend their perpendicular bisectors into the base.
3.
Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2 100.000 and O4B to be L4 160.000 . This resulted in a ground-link-length O2O4 for the fourbar of 81.463.
4.
The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a
L1a 81.463
Link 3 (coupler)
L3 52.000
Link 2 (input)
L2 100.000
Link 4 (output)
L4 160.000
5.
Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution below the distance O4C was selected to be L4b 40.000 .
6.
Draw a construction line through C1C2 and extend it to the left.
7.
Select a point on this line and call it O6. In the solution below O6 was placed 20 units from the left edge of the base.
8.
Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D1 and D2. In the solution below the radius was measured as 14.351 units.
A2
B1
A1 3
B2
2 14.351
9.
The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)
L6 14.351
Link 5 (coupler) L5 132.962
1a
O2 C2
5
O6
1b
C1
6 132.962 O4
Link 1b (ground) L1b 138.105 Link 4b (rocker) L4b 40.000
138.105
81.463
4
D2
D1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-52-2
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1b L4b L5 L6 "Grashof" min L1b L4b L5 L6 14.351
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-53-1
PROBLEM 3-53 Statement:
Design a fourbar linkage to move the object in Figure P3-15 from position 2 to 3 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 52.000
Solution:
See Figure P3-15 and Mathcad file P0353.
Design choices: Length of link 2
L2 150
Length of link 4b
L4b 50
L4 200
Length of link 4
1.
Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A2 to A3 and B2 to B3.
2.
Bisect these lines and extend their perpendicular bisectors into the base.
3.
Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2 150.000 and O4B to be L4 200.000 . This resulted in a ground-link-length O2O4 for the fourbar of L1a 80.864.
4.
The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a Link 3 (coupler)
L1a 80.864 L3 52.000
Link 2 (input)
L2 150.000
Link 4 (output)
L4 200.000
5.
Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution below the distance O4C was selected to be L4b 50.000 .
6.
Draw a construction line through C2C3 and extend it downward.
7.
Select a point on this line and call it O6. In the solution below O6 was placed 25 units from the bottom of the base.
8.
9.
Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D2 and D3. In the solution below the radius was measured as L6 12.763. The driver fourbar is now defined as O4CDO6 with link lengths
A2 3
C2
B2
A3
4 2
O4 C3 1a
Link 6 (crank)
L6 12.763
B3
Link 5 (coupler) L5 112.498 Link 1b (ground) L1b 122.445 Link 4b (rocker) L4b 50.000
5
1b
O2 112.498
80.864
D2
122.445 O6
D3
12.763
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-53-2
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1b L4b L5 L6 "Grashof" min L1b L4b L5 L6 12.763
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-54-1
PROBLEM 3-54 Statement:
Design a fourbar linkage to move the object in Figure P3-15 through the three positions shown using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.
Given:
Length of coupler link: L3 52.000
Solution:
See Figure P3-15 and Mathcad file P0354.
Design choices: L2b 40
Length of link 2b 1.
Draw link AB in its three design positions A1B1, A2B2, A3B3 in the plane as shown.
2.
Draw construction lines from point A1 to A2 and from point A2 to A3.
3.
Bisect line A1A2 and line A2A3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.
4.
Repeat steps 2 and 3 for lines B1B2 and B2B3. Label the intersection O4.
5.
Connect O2 with A1 and call it link 2. Connect O4 with B1 and call it link 4.
6.
Line A1B1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2ABO4 and has link lengths of Ground link 1a
L1a 53.439
Link 2
L2 134.341
Link 3
L3 52.000
Link 4
L4 90.203
A1
A2
B1 3
B2
6 D1
4
O6 2
D3 5
C1
C2
A3
O4
1b C3 O2
7.
1a B3
Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-54-2
Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4 "non-Grashof" Although this fourbar is non-Grashof, there are no toggle points within the required range of motion. 8.
9.
Select a point on link 2 (O2A) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 2 is now a ternary link with nodes at O2, C, and A.) In the solution above the distance O2C was selected to be L2b 40.000 . Draw a construction line through C1C3 and extend it to the left.
10. Select a point on this line and call it O6. In the solution above O6 was placed 20 units from the left edge of the base. 11. Draw a circle about O6 with a radius of one-half the length C1C3 and label the intersections of the circle with the extended line as D1 and D3. In the solution below the radius was measured as L6 29.760. 12. The driver fourbar is now defined as O2CDO6 with link lengths Link 6 (crank)
L6 29.760
Link 5 (coupler) L5 119.665 Link 1b (ground) L1b 122.613 Link 2b (rocker) L2b 40.000 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L2b L5 "Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-55-1
PROBLEM 3-55 Statement:
Design a fourbar mechanism to move the link shown in Figure P3-16 from position 1 to position 2. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Given:
Position 1 offsets:
Solution:
See figure below for one possible solution. Input file P0355.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-55.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-55.6br into program SIXBAR to see the complete sixbar with the driver dyad included.
xC1D1 3.744 in
yC1D1 2.497 in
1.
Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C1 to C2 and D1 to D2.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C1C2 was extended downward and the bisector of D1D2 was extended upward.
3.
Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4D and O6C were each selected to be 7.500 in. This resulted in a ground-link-length O4O6 for the fourbar of 15.366 in.
4.
The fourbar stage is now defined as O4CDO6 with link lengths Link 5 (coupler) L5
2
xC1D1 yC1D1
Link 4 (input)
L4 7.500 in
Ground link 1b
L1b 15.366 in
2
L5 4.500 in Link 6 (output)
L6 7.500 in
5.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 4.000 in.
6.
Draw a construction line through B1B2 and extend it to the right.
7.
Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.
8.
Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 1.370 in.
9.
The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)
L2 1.370 in
Link 4a (rocker) L4a 4.000 in
Link 3 (coupler) L3 6.000 in Link 1a (ground) L1a 7.080 in
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-55-2
Condition L1a L2 L3 L4a "Grashof" min L1a L2 L3 L4a 1.370 in
O4 4.000 7.500
B2
B1
A1 2 O2
4
4 D1 5 5
A2
3
C2
D2 15.366
C1 6 6 7.500 O6
11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -49.9 deg and +49.9 deg. The fourbar operates between 4 = +28.104 deg and -11.968 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-56-1
PROBLEM 3-56 Statement:
Design a fourbar mechanism to move the link shown in Figure P3-16 from position 2 to position 3. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Given:
Position 2 offsets:
Solution:
See figure below for one possible solution. Input file P0356.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-56.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-56.6br into program SIXBAR to see the complete sixbar with the driver dyad included.
xC2D2 4.355 in
yC2D2 1.134 in
1.
Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C2 to C3 and D2 to D3.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C2C3 was extended downward and the bisector of D2D3 was extended upward.
3.
Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4D and O6C were each selected to be 6.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 14.200 in.
4.
The fourbar stage is now defined as O4DCO6 with link lengths Link 5 (coupler) L5
2
xC2D2 yC2D2
Link 4 (input)
L4 6.000 in
Ground link 1b
L1b 14.200 in
2
L5 4.500 in Link 6 (output)
L6 6.000 in
5.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 4.000 in.
6.
Draw a construction line through B1B2 and extend it to the right.
7.
Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.
8.
Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 1.271 in.
9.
The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)
L2 1.271 in
Link 4a (rocker) L4a 4.000 in
Link 3 (coupler) L3 6.000 in Link 1a (ground) L1a 7.099 in
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-56-2
Condition L1a L2 L3 L4a "Grashof" min L1a L2 L3 L4a 1.271 in
6.000 O4
4.000
7.099
4 4
B1 D2 C2
B2 3
5
A1
5 C3 6.000
6
D3
2
O2
A2
6
O6
14.200
11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -41.6 deg and +41.6 deg. The fourbar operates between 4 = +26.171 deg and -11.052 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-57-1
PROBLEM 3-57 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-16. Ignore the points O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Solution:
See Figure P3-16 and Mathcad file P0357.
Design choices: L3 10.000
Length of link 3:
Length of link 4b:
L4b 4.500
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw construction lines from point C1 to C2 and from point C2 to C3.
3.
Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O6.
4.
Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.
5.
Connect O6 with C1 and call it link 6. Connect O4 with D1 and call it link 4.
6.
Line C1D1 is link 5. Line O6O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O6CDO4 and has link lengths of Ground link 1a
L1a 2.616
Link 6
L6 6.080
Link 5
L5 4.500
Link 4
L4 6.901
D2
D1 5 5 C1
C3
C2
D3
B2
B1 6
2.765
5
4
3
4 4
6
B3
6 O4
6.080
A1 O2
2
6.901
O6 10.611
2.616
7.
Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
A3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-57-2
Condition L1a L4 L5 L6 "Grashof" 8.
9.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, D, and B.) In the solution above the distance O4B was selected to be L4b 4.500 . Draw a construction line through B1B3 and extend it up to the right.
10. Layout the length of link 3 (design choice) along the extended line. Label the other end A. 11. Draw a circle about O2 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L2 2.765. 12. The driver fourbar is now defined as O4BAO2 with link lengths Link 2 (crank)
L2 2.765
Link 3 (coupler) L3 10.000 Link 1b (ground) L1b 10.611 Link 4b (rocker) L4b 4.500 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition L2 L3 L1b L4b "Grashof" min L2 L3 L1b L4b 2.765
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-58-1
PROBLEM 3-58 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-16 using the fixed pivots O2 and O4 shown. (See Example 3-7.) Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Solution:
See Figure P3-16 and Mathcad file P0358.
Design choices:
L5 5.000
Length of link 5:
L2b 2.500
Length of link 2b:
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.
3.
Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.
4.
Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.
5.
Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.
6.
Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.
7.
The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H. D2 D1
C2 C3
C1
O2
O4''
O2''
O2'
O4
O4'
D3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-58-2
8.
Draw construction lines from point E1 to E2 and from point E2 to E3.
9.
Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.
10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H. 11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a
L1a 3.000
Link 2
L2 8.597
Link 3
L3 1.711
Link 4
L4 7.921
G 3
H
2
4
F1
E 1 O2 1a
F3
E3
O4
F2
E2
13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4 "Grashof" The fourbar that will provide the desired motion is now defined as a Grashof double crank in the crossed configuration. It now remains to add the original points C1 and D1 to the coupler GH and to define the driving dyad.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-58-3
14. Select a point on link 2 (O2G) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O2, B, and G.) In the solution below, the distance O2B was selected to be L2b 2.500 . 15. Draw a construction line through B1B3 and extend it up to the left. 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 17. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L6 1.541. 18. The driver fourbar is now defined as O2BAO6 with link lengths Link 6 (crank)
L6 1.541
Link 5 (coupler) L5 5.000 Link 1b (ground) L1b 5.374 Link 2b (rocker) L2b 2.500 19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L5 L1b L2b "Grashof"
D2
D1
C2
3
D3
C3 G3
G2 C1
3
H1
3
H2
2
G1 2
B3
2
4
H3
4 4
5 O6
B1
A3 O2
A1
6
1a
O4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-59-1
PROBLEM 3-59 Statement:
Design a fourbar mechanism to move the link shown in Figure P3-17 from position 1 to position 2. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Given:
Position 1 offsets:
Solution:
See figure below for one possible solution. Input file P0359.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-59.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-59.6br into program SIXBAR to see the complete sixbar with the driver dyad included.
xC1D1 1.896 in
yC1D1 1.212 in
1.
Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C1 to C2 and D1 to D2.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C1C2 was extended downward and the bisector of D1D2 was extended upward.
3.
Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O6C and O4D were each selected to be 6.500 in. This resulted in a ground-link-length O4O6 for the fourbar of 14.722 in.
4.
The fourbar stage is now defined as O4DCO6 with link lengths Link 5 (coupler) L5
2
xC1D1 yC1D1
Link 4 (input)
L4 6.500 in
Ground link 1b
L1b 14.722 in
2
L5 2.250 in Link 6 (output)
L6 6.500 in
5.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 4.500 in.
6.
Draw a construction line through B1B2 and extend it to the right.
7.
Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.
8.
Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 1.037 in.
9.
The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)
L2 0.645 in
Link 4a (rocker) L4a 4.500 in
Link 3 (coupler) L3 6.000 in Link 1a (ground) L1a 7.472 in
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d ) S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-59-2
Condition L1a L2 L3 L4a "Grashof" min L1a L2 L3 L4a 0.645 in
6.500 4.500 B2
4 4
D2
B1
5
6.500
C2 5 C1
O6
7.472
3
6 6
O4
D1 14.722
A2 O2
2 A1
0.645
11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4CDO6 is non-Grashoff with toggle positions at 4 = -17.1 deg and +17.1 deg. The fourbar operates between 4 = +5.216 deg and -11.273 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-60-1
PROBLEM 3-60 Statement:
Design a fourbar mechanism to move the link shown in Figure P3-17 from position 2 to position 3. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Given:
Position 2 offsets:
Solution:
See figure below for one possible solution. Input file P0360.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-60.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-60.6br into program SIXBAR to see the complete sixbar with the driver dyad included.
xC2D2 0.834 in
yC2D2 2.090 in
1.
Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C2 to C3 and D2 to D3.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C2C3 was extended downward and the bisector of D2D3 was extended upward.
3.
Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4D and O6C were each selected to be 6.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 12.933 in.
4.
The fourbar stage is now defined as O4DCO6 with link lengths Link 5 (coupler) L5
2
xC2D2 yC2D2
Link 4 (input)
L4 5.000 in
Ground link 1b
L1b 12.933 in
2
L5 2.250 in Link 6 (output)
L6 5.000 in
5.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 4.000 in.
6.
Draw a construction line through B1B2 and extend it to the right.
7.
Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.
8.
Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 0.741 in.
9.
The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)
L2 0.741 in
Link 4a (rocker) L4a 4.000 in
Link 3 (coupler) L3 6.000 in Link 1a (ground) L1a 7.173 in
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-60-2
Condition L1a L2 L3 L4 "Grashof"
O4 5.500
4.000 4 B3
7.173 4 B2
D3 D2
5 C3
5
3
A3
O2 2
A2
C2 6 6
12.933
O6
11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -14.9 deg and +14.9 deg. The fourbar operates between 4 = +12.403 deg and -8.950 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-61-1
PROBLEM 3-61 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-17. Ignore the points O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Solution:
See Figure P3-17 and Mathcad file P0361.
Design choices: L3 6.000
Length of link 3:
L4b 2.500
Length of link 4b:
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw construction lines from point C1 to C2 and from point C2 to C3.
3.
Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O6.
4.
Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.
5.
Connect O2 with C1 and call it link 2. Connect O4 with D1 and call it link 4.
6.
Line C1D1 is link 5. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O6CDO4 and has link lengths of Ground link 1a
L1a 1.835
Link 6
L6 2.967
Link 5
L5 2.250
Link 4
L4 3.323
D3 B3 3.323
D2
B2
4 5
4
5
C3 1.835
4 C2
O4 6 O6
6
D1
B1 3 5 C1
6
1.403 A3 O2 2
2.967
A1
6.347
7.
Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-61-2
Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L4 L5 L6 "Grashof" 8.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, D, and B.) In the solution above the distance O4B was selected to be L4b 2.500 .
9.
Draw a construction line through B1B3 and extend it up to the right.
10. Layout the length of link 3 (design choice) along the extended line. Label the other end A. 11. Draw a circle about O2 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L2 1.403. 12. The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)
L2 1.403
Link 3 (coupler) L3 6.000 Link 1b (ground) L1b 6.347 Link 4b (rocker) L4b 2.500 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition L1b L2 L3 L4b "Grashof" min L1b L2 L3 L4b 1.403
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-62-1
PROBLEM 3-62 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-17 using the fixed pivots O2 and O4 shown. (See Example 3-7.) Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Solution:
See Figure P3-17 and Mathcad file P0362.
Design choices:
L5 4.000
Length of link 5:
Length of link 2b:
L2b 0.791
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.
3.
Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.
4.
Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.
5.
Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.
6.
Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.
7.
The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H.
D3 D2
C3
D1 C2
C1 O2
O4 O2'' O2'
O4' O4''
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-62-2
8.
Draw construction lines from point E1 to E2 and from point E2 to E3.
9.
Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.
10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H. 11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a
L1a 3.000
Link 2
L2 0.791
Link 3
L3 1.222
Link 4
L4 1.950
E1 O2
F1 O4
1a 2
G
4
3 E3 E2
H
F2 F3
13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4 "non-Grashof" The fourbar that will provide the desired motion is now defined as a non-Grashof double rocker in the crossed configuration. It now remains to add the original points C1 and D1 to the coupler GH and to define the driving dyad, which in this case will drive link 4 rather than link 2. 14. Select a point on link 2 (O2G) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O2, B, and G.) In the solution below, the distance O2B was selected to be L2b 0.791 . Thus, in this case B and G coincide. 15. Draw a construction line through B1B3 and extend it up to the left. 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 17. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-62-3
with the extended line as A1 and A3. In the solution below the radius was measured as L6 0.727.
18. The driver fourbar is now defined as O2BAO6 with link lengths Link 6 (crank)
L6 0.727
Link 5 (coupler) L5 4.000 Link 1b (ground) L1b 4.012 Link 2b (rocker) L2b 0.791 19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L5 L1b L2b "Grashof"
D3 D2 A3 O6
D1
6 C3
A1
C2 3
5
3
1b
3
C1
4 O2
O4
4
2 G
H
4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-63-1
PROBLEM 3-63 Statement:
Design a fourbar mechanism to move the link shown in Figure P3-18 from position 1 to position 2. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Given:
Position 1 offsets:
Solution:
See figure below for one possible solution. Input file P0363.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-63.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-63.6br into program SIXBAR to see the complete sixbar with the driver dyad included.
xC1D1 1.591 in
yC1D1 1.591 in
1.
Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C1 to C2 and D1 to D2.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C1C2 was extended downward and the bisector of D1D2 was extended upward.
3.
Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4C and O6D were each selected to be 5.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 10.457 in.
4.
The fourbar stage is now defined as O4CDO6 with link lengths Link 5 (coupler) L5
2
xC1D1 yC1D1
Link 4 (input)
L4 5.000 in
Ground link 1b
L1b 10.457 in
2
L5 2.250 in Link 6 (output)
L6 5.000 in
5.
Select a point on link 4 (O4C) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and C.) In the solution below the distance O4B was selected to be 3.750 in.
6.
Draw a construction line through B1B2 and extend it to the right.
7.
Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.
8.
Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 0.882 in.
9.
The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)
L2 0.882 in
Link 4a (rocker) L4a 3.750 in
Link 3 (coupler) L3 6.000 in Link 1a (ground) L1a 7.020 in
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4a "Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-63-2
O6
6 6
10.457
C2
5
5
A2 O2 2
C1
B2
B1
A1
3
4
4 5.000
D1
D2
3.750
7.020 O4
11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4CDO6 is non-Grashoff with toggle positions at 4 = -38.5 deg and +38.5 deg. The fourbar operates between 4 = +15.206 deg and -12.009 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-64-1
PROBLEM 3-64 Statement:
Design a fourbar mechanism to move the link shown in Figure P3-18 from position 2 to position 3. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Given:
Position 2 offsets:
Solution:
See figure below for one possible solution. Input file P0360.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-60.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-60.6br into program SIXBAR to see the complete sixbar with the driver dyad included.
xC2D2 2.053 in
yC2D2 0.920 in
1.
Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C2 to C3 and D2 to D3.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C2C3 was extended downward and the bisector of D2D3 was extended upward.
3.
Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4D and O6C were each selected to be 5.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 8.773 in.
4.
The fourbar stage is now defined as O4DCO6 with link lengths Link 5 (coupler) L5
2
xC2D2 yC2D2
Link 4 (input)
L4 5.000 in
Ground link 1b
L1b 8.773 in
2
L5 2.250 in Link 6 (output)
L6 5.000 in
5.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 3.750 in.
6.
Draw a construction line through B1B2 and extend it to the right.
7.
Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.
8.
Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 0.892 in.
9.
The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)
L2 0.892 in
Link 4a (rocker) L4a 3.750 in
Link 3 (coupler) L3 6.000 in Link 1a (ground) L1a 7.019 in
10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-64-2
Condition L1a L2 L3 L4a "Grashof"
7.019
O4
5.000
4
3.750 4 B3
B2 D2
D3 5 8.773
C3
A3 O2 2
A2
3
5 C2
6 6
O6
11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -55.7 deg and +55.7 deg. The fourbar operates between 4 = -7.688 deg and -35.202 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-65-1
PROBLEM 3-65 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-18. Ignore the points O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Solution:
See Figure P3-18 and Mathcad file P0365.
Design choices: L3 6.000
Length of link 3:
Length of link 4b:
L4b 5.000
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw construction lines from point C1 to C2 and from point C2 to C3.
3.
Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O6.
4.
Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.
5.
Connect O6 with C1 and call it link 6. Connect O4 with D1 and call it link 4.
6.
Line C1D1 is link 5. Line O6O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O6CDO4 and has link lengths of Ground link 1a
L1a 8.869
Link 6
L6 1.831
Link 5
L5 2.250
Link 4
L4 6.953
7.646
O4 4
O2 A1
6.953 8.869
B3
4 B1
2 1.593
D3 D2
D 1 C2 5 C1
3
A3
5 C3
6 O6
6 1.831
7.
Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-65-2
Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L6 L1a L4 L5 "non-Grashof" 8.
9.
Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, D, and B.) In the solution above the distance O4B was selected to be L4b 5.000 . Draw a construction line through B1B3 and extend it up to the right.
10. Layout the length of link 3 (design choice) along the extended line. Label the other end A. 11. Draw a circle about O2 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L2 1.593. 12. The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)
L2 1.593
Link 3 (coupler) L3 6.000 Link 1b (ground) L1b 7.646 Link 4b (rocker) L4b 5.000 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition L1b L2 L3 L4b "Grashof" min L1b L2 L3 L4b 1.593
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-66-1
PROBLEM 3-66 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-18 using the fixed pivots O2 and O4 shown. (See Example 3-7.) Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.
Solution:
See Figure P3-18 and Mathcad file P0366.
Design choices:
Length of link 5:
L5 4.000
Length of link 2b:
L2b 2.000
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.
3.
Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.
4.
Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.
5.
Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.
6.
Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.
7.
The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H.
D1 D2
D3
C1 C2
O2''
O4'
C3 O2
O4 O2'
O4''
8.
Draw construction lines from point E1 to E2 and from point E2 to E3.
9.
Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.
10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-66-2
11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a
L1a 4.000
Link 2
L2 2.000
Link 3
L3 6.002
Link 4
L4 7.002
H
3
E3
4
F2
G 2 O2
O4 E 2 F1
E1
F3
13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1a L2 L3 L4 "Grashof" The fourbar that will provide the desired motion is now defined as a non-Grashof crank rocker in the open configuration. It now remains to add the original points C1 and D1 to the coupler GH and to define the driving dyad, which in this case will drive link 4 rather than link 2.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-66-3
14. Select a point on link 2 (O2G) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O2, B, and G.) In the solution below, the distance O2B was selected to be L2b 2.000 . Thus, in this case B and G coincide. 15. Draw a construction line through B1B3 and extend it up to the left. 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 17. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L6 1.399. 18. The driver fourbar is now defined as O2BAO6 with link lengths L6 1.399
Link 6 (crank)
Link 5 (coupler) L5 4.000 Link 1b (ground) L1b 4.257 Link 2b (rocker) L2b 2.000 19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L2b L5 "Grashof" H1
H2
3 D1
3 D2
H3
D3 C1 C2 4 4 G2
2
3
C3 2
G1
O2
1a 2
1b
G3 5
A1 6 O6
A3
4 O4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-67-1
PROBLEM 3-67 Statement:
Design a fourbar Grashof crank-rocker for 120 degrees of output rocker motion with a quick-return time ratio of 1:1.2. (See Example 3-9.)
Given:
Time ratio
Solution: 1.
Tr
1 1.2
See figure below for one possible solution. Also see Mathcad file P0367.
Determine the crank rotation angles and , and the construction angle from equations 3.1 and 3.2. Tr = Solving for , and
β
α
α β = 360 deg
β 360 deg
β 196 deg
1 Tr
α 360 deg β
α 164 deg
δ β 180 deg
δ 16 deg
2.
Start the layout by arbitrarily establishing the point O4 and from it layoff two lines of equal length, 90 deg apart. Label one B1 and the other B2. In the solution below, each line makes an angle of 45 deg with the horizontal and has a length of 1.000 in.
3.
Layoff a line through B1 at an arbitrary angle (but not zero deg). In the solution below the line is 60 deg to the horizontal.
0. 95 3
=
c
90.00°
B2 B2
B1
B1 4 O4
d
O4 3
4.4 91 =
b
3.8 33 =
0° .0 16
LAYOUT
A2
A1 2
O2
a
LINKAGE DEFINITION 0.2 55 =
O2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-67-2
4.
Layoff a line through B2 that makes an angle with the line in step 3 (76 deg to the horizontal in this case). The intersection of these two lines establishes the point O2.
5.
From O2 draw an arc that goes through B1. Extend O2B2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O2 as the length of the input crank.
6.
For this solution, the link lengths are: Ground link (1)
d 3.833 in
Coupler (3)
b 4.491 in
Crank (2)
a 0.255 in
Rocker (4)
c 0.953 in
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-68-1
PROBLEM 3-68 Statement:
Design a fourbar Grashof crank-rocker for 100 degrees of output rocker motion with a quick-return time ratio of 1:1.5. (See Example 3-9.)
Given:
Time ratio
Solution: 1.
Tr
1 1.5
See figure below for one possible solution. Also see Mathcad file P0368.
Determine the crank rotation angles and , and the construction angle from equations 3.1 and 3.2. Tr = Solving for , and
β
α
α β = 360 deg
β 360 deg
β 216 deg
1 Tr
α 360 deg β
α 144 deg
δ β 180 deg
δ 36 deg
2.
Start the layout by arbitrarily establishing the point O4 and from it layoff two lines of equal length, 100 deg apart. Label one B1 and the other B2. In the solution below, each line makes an angle of 40 deg with the horizontal and has a length of 2.000 in.
3.
Layoff a line through B1 at an arbitrary angle (but not zero deg). In the solution below the line is 20 deg to the horizontal.
4.
Layoff a line through B2 that makes an angle with the line in step 3 (56 deg to the horizontal in this case). The intersection of these two lines establishes the point O2.
5.
From O2 draw an arc that goes through B1. Extend O2B2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O2 as the length of the input crank.
B1
B2
B2
B1
3.0524 = b O4
3
O2
4 1.2694 = a
2
A1
LAYOUT O4
O2
2.0000 = c
A2 LINKAGE DEFINITION 2.5364 = d
DESIGN OF MACHINERY - 5th Ed.
6.
SOLUTION MANUAL 3-68-2
For this solution, the link lengths are: Ground link (1)
d 2.5364 in
Coupler (3)
b 3.0524 in
Crank (2)
a 1.2694 in
Rocker (4)
c 2.000 in
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-69-1
PROBLEM 3-69 Statement:
Design a fourbar Grashof crank-rocker for 80 degrees of output rocker motion with a quick-return time ratio of 1:1.33. (See Example 3-9.)
Given:
Time ratio
Solution: 1.
Tr
1 1.33
See figure below for one possible solution. Also see Mathcad file P0369.
Determine the crank rotation angles and , and the construction angle from equations 3.1 and 3.2. Tr = Solving for , and
β
α
α β = 360 deg
β 360 deg
β 205 deg
1 Tr
α 360 deg β
α 155 deg
δ β 180 deg
δ 25 deg
2.
Start the layout by arbitrarily establishing the point O4 and from it layoff two lines of equal length, 100 deg apart. Label one B1 and the other B2. In the solution below, each line makes an angle of 40 deg with the horizontal and has a length of 2.000 in.
3.
Layoff a line through B1 at an arbitrary angle (but not zero deg). In the solution below the line is 150 deg to the horizontal. 2. 00 0= c
90.00°
B2
B2
B1
B1 4
O4 25.0 0°
O4 3
6.2 32 =
b
4.7 63 =
d
LAYOUT
A2
A1 2
LINKAGE DEFINITION
a
O2
0.4 35 =
O2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-69-2
4.
Layoff a line through B2 that makes an angle with the line in step 3 (73 deg to the horizontal in this case). The intersection of these two lines establishes the point O2.
5.
From O2 draw an arc that goes through B1. Extend O2B2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O2 as the length of the input crank.
6.
For this solution, the link lengths are: Ground link (1)
d 4.763 in
Coupler (3)
b 6.232 in
Crank (2)
a 0.435 in
Rocker (4)
c 2.000 in
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-70-1
PROBLEM 3-70 Statement:
Design a sixbar drag link quick-return linkage for a time ratio of 1:4 and output rocker motion of 50 degrees. (See Example 3-10.)
Given:
Time ratio
Solution: 1.
Tr
1 4
See figure below for one possible solution. Also see Mathcad file P0370.
Determine the crank rotation angles and from equation 3.1. Tr = Solving for and
β
α
α β = 360 deg
β 360 deg 1 Tr
α 360 deg β
β 288 deg α 72 deg
2.
Draw a line of centers XX at any convenient location.
3.
Choose a crank pivot location O2 on line XX and draw an axis YY perpendicular to XX through O2.
4.
Draw a circle of convenient radius O2A about center O2. In the solution below, the length of O2A is a 1.000 in.
5.
Lay out angle with vertex at O2, symmetrical about quadrant one.
6.
Label points A1 and A2 at the intersections of the lines subtending angle and the circle of radius O2A.
7.
8.
Set the compass to a convenient radius AC long enough to cut XX in two places on either side of O2 when swung from both A1 and A2. Label the intersections C1 and C2. In the solution below, the length of AC is b 2.000 in. The line O2A is the driver crank, link 2, and the line AC is the coupler, link 3.
9.
The distance C1C2 is twice the driven (dragged) crank length. Bisect it to locate the fixed pivot O4.
10. The line O2O4 now defines the ground link. Line O4C is the driven crank, link 4. In the solution below, O4C measures c 2.282 in and O2O4 measures d 0.699 in. 11. Calculate the Grashoff condition. If non-Grashoff, repeat steps 7 through 11 with a shorter radius in step 7. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof" 12. Invert the method of Example 3-1 to create the output dyad using XX as the chord and O4C1 as the driving crank. The points B1 and B2 will lie on line XX and be spaced apart a distance that is twice the length of O4C (link 4). The pivot point O6 will lie on the perpendicular bisector of B1B2 at a distance from XX which subtends the specified output rocker angle, which is 50 degrees in this problem. In the solution below, the length BC was chosen to be e 5.250 in.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-70-2
9.000°
72.000°
LAYOUT OF SIXBAR DRAG LINK QUICK RETURN WITH TIME RATIO OF 1:4 a = 1.000 b = 2.000 c = 2.282 d = 0.699 e = 5.250 f = 5.400
13. For the design choices made (lengths of links 2, 3 and 5), the length of the output rocker (link 6) was measured as f 5.400 in.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-71-1
PROBLEM 3-71 Statement:
Design a crank-shaper quick-return mechanism for a time ratio of 1:2.5 (Figure 3-14, p. 112).
Given:
Time ratio
Solution:
See Figure 3-14 and Mathcad file P0371.
TR
1 2.5
Design choices:
1.
Length of link 2 (crank)
L2 1.000
Length of link 5 (coupler)
L5 5.000
S 4.000
Length of stroke
Calculate from equations 3.1. TR
α β
α β 360 deg
α
360 deg 1
α 102.86 deg
1 TR
2.
Draw a vertical line and mark the center of rotation of the crank, O2, on it.
3.
Layout two construction lines from O2, each making an angle /2 to the vertical line through O2.
4.
Using the chosen crank length (see Design Choices), draw a circle with center at O2 and radius equal to the crank length. Label the intersections of the circle and the two lines drawn in step 3 as A1 and A2.
5.
Draw lines through points A1 and A2 that are also tangent to the crank circle (step 2). These two lines will simultaneously intersect the vertical line drawn in step 2. Label the point of intersection as the fixed pivot center O4.
6.
Draw a vertical construction line, parallel and to the right of O2O4, a distance S/2 (one-half of the output stroke length) from the line O2O4.
7.
Extend line O4A1 until it intersects the construction line drawn in step 6. Label the intersection B1.
8.
Draw a horizontal construction line from point B1, either to the left or right. Using point B1 as center, draw an arc of radius equal to the length of link 5 (see Design Choices) to intersect the horizontal construction line. Label the intersection as C1.
9.
Draw the slider blocks at points A1 and C1 and finish by drawing the mechanism in its other extreme position.
STROKE 4.000 2.000 C2
6
C1
B2
B1
5
O2 4
2 A2
3 O4
A1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-72-1
PROBLEM 3-72 Statement:
Design a sixbar, single-dwell linkage for a dwell of 70 deg of crank motion, with an output rocker motion of 30 deg using a symmetrical fourbar linkage with the following parameter values: ground link ratio = 2.0, common link ratio = 2.0, and coupler angle = 40 deg. (See Example 3-13.)
Given:
Crank dwell period: 70 deg. Output rocker motion: 30 deg. Ground link ratio, L1/L2 = 2.0: GLR 2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.0: CLR 2.0 Coupler angle, γ 40 deg
Design choice: Crank length, L2 2.000 Solution: 1.
See Figures 3-20 and 3-21 and Mathcad file P0372.
For the given design choice, determine the remaining link lengths and coupler point specification. Coupler link (3) length
L3 CLR L2
L3 4.000
Rocker link (4) length
L4 CLR L2
L4 4.000
Ground link (1) length
L1 GLR L2
L1 4.000
Angle PAB
δ
Length AP on coupler 2.
180 deg γ 2
AP 2 L3 cos δ
δ 70.000 deg AP 2.736
Enter the above data into program FOURBAR, plot the coupler curve, and determine the coordinates of the coupler curve in the selected range of crank motion, which in this case will be from 145 to 215 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-72-2
FOURBAR for Windows
3.
File
P03-72
Angle Coupler Pt Step X Deg in
Coupler Pt Y in
Coupler Pt Mag in
Coupler Pt Ang in
145 150 155 160 165 170 175 180 185 190 195 200 205 210 215
3.818 3.661 3.494 3.319 3.135 2.945 2.749 2.547 2.342 2.133 1.923 1.711 1.499 1.289 1.080
4.422 4.360 4.295 4.226 4.156 4.083 4.009 3.935 3.859 3.783 3.707 3.631 3.555 3.479 3.403
120.297 122.895 125.549 128.259 131.025 133.846 136.723 139.655 142.639 145.674 148.757 151.886 155.055 158.261 161.498
-2.231 -2.368 -2.497 -2.617 -2.728 -2.829 -2.919 -2.999 -3.067 -3.124 -3.169 -3.202 -3.223 -3.232 -3.227
Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Use the points at crank angles of 145, 180, and 215 deg to define the pseudo-arc. Find the center of the pseudo-arc erecting perpendicular bisectors to the chords defined by the selected coupler curve points. The center will lie at the intersection of the perpendicular bisectors, label this point D. The radius of this circle is the length of link 5.
y
145 P
B
180
3 4 D
215 A 2
x
PSEUDO-ARC O2
4.
O4
The position of the end of link 5 at point D will remain nearly stationary while the crank moves from 145 to 215 deg. As the crank motion causes the coupler point to move around the coupler curve there will be another extreme position of the end of link 5 that was originally at D. Since a symmetrical linkage was chosen, the other extreme position will be located along a line through the axis of symmetry (see Figure 3-20) a distance equal to the length of link 5 measured from the point where the axis of symmetry intersects the coupler curve near the 0 deg coupler point. Establish this point and label it E.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-72-3
FOURBAR for Windows
File
P03-72
Angle Step Deg
Coupler Pt X in
Coupler Pt Y in
Coupler Pt Mag n
Coupler Pt Ang in
340.000 345.000 350.000 355.000 0.000 5.000 10.000 15.000
-0.718 -0.615 -0.506 -0.386 -0.255 -0.117 0.022 0.155
0.175 0.481 0.818 1.178 1.549 1.917 2.269 2.598
0.739 0.781 0.962 1.240 1.570 1.920 2.269 2.603
166.325 142.001 121.717 108.135 99.365 93.499 89.434 86.581
y 145 P
B 5
180
3 5
AXIS OF SYMMETRY
4 D
215
355 A
E
2
x
PSEUDO-ARC
O4
O2
5.
The line segment DE represents the maximum displacement that a link of the length equal to link 5, attached at P, will reach along the axis of symmetry. Construct a perpendicular bisector of the line segment DE and extend it to the right (or left, which ever is convenient). Locate fixed pivot O6 on the bisector of DE such that the lines O6D and O6E subtend the desired output angle, in this case 30 deg. Draw link 6 from D through O6 and extend it to any convenient length. This is the output link that will dwell during the specified motion of the crank. SUMMARY OF LINKAGE SPECIFICATIONS Original fourbar: O6
y 6
145 P
B 5
180
30.000° 3 5
L2 2.000
Coupler
L3 4.000
Rocker
L4 4.000
Coupler point
AP 2.736 δ 70.000 deg
E 2
x O2
Crank
Added dyad:
355 A
L1 4.000
4 D
215
Ground link
O4
Coupler
L5 3.840
Output
L6 5.595
Pivot O6
x 3.841 y 5.809
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-73-1
PROBLEM 3-73 Statement:
Design a sixbar, single-dwell linkage for a dwell of 100 deg of crank motion, with an output rocker motion of 50 deg using a symmetrical fourbar linkage with the following parameter values: ground link ratio = 2.0, common link ratio = 2.5, and coupler angle = 60 deg. (See Example 3-13.)
Given:
Crank dwell period: 100 deg. Output rocker motion: 50 deg. Ground link ratio, L1/L2 = 2.0: GLR 2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.0: CLR 2.5 Coupler angle, γ 60 deg
Design choice: Crank length, L2 2.000 Solution: 1.
See Figures 3-20 and 3-21 and Mathcad file P0373.
For the given design choice, determine the remaining link lengths and coupler point specification. Coupler link (3) length
L3 CLR L2
L3 5.000
Rocker link (4) length
L4 CLR L2
L4 5.000
Ground link (1) length
L1 GLR L2
L1 4.000
Angle PAB
δ
Length AP on coupler 2.
180 deg γ 2
AP 2 L3 cos δ
δ 60.000 deg AP 5.000
Enter the above data into program FOURBAR, plot the coupler curve, and determine the coordinates of the coupler curve in the selected range of crank motion, which in this case will be from 130 to 230 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-73-2
FOURBAR for Windows
3.
File
P03-73
Angle Coupler Pt Step X Deg in
Coupler Pt Y in
Coupler Pt Mag in
Coupler Pt Ang in
130 140 150 160 170 180 190 200 210 220 230
6.449 6.171 5.840 5.464 5.047 4.598 4.123 3.631 3.130 2.629 2.138
6.812 6.695 6.559 6.408 6.244 6.071 5.892 5.709 5.523 5.336 5.146
108.774 112.833 117.078 121.493 126.060 130.765 135.588 140.504 145.482 150.482 155.454
-2.192 -2.598 -2.986 -3.347 -3.675 -3.964 -4.209 -4.405 -4.551 -4.643 -4.681
Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Use the points at crank angles of 130, 180, and 230 deg to define the pseudo-arc. Find the center of the pseudo-arc erecting perpendicular bisectors to the chords defined by the selected coupler curve points. The center will lie at the intersection of the perpendicular bisectors, label this point D. The radius of this circle is the length of link 5.
y 130 P
B
180
D
230
4
3
PSEUDO-ARC
A 2
x O2
4.
O4
The position of the end of link 5 at point D will remain nearly stationary while the crank moves from 130 to 230 deg. As the crank motion causes the coupler point to move around the coupler curve there will be another extreme position of the end of link 5 that was originally at D. Since a symmetrical linkage was chosen, the other extreme position will be located along a line through the axis of symmetry (see Figure 3-20) a distance equal to the length of link 5 measured from the point where the axis of symmetry intersects the coupler curve near the 0 deg coupler point. Establish this point and label it E.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-73-3
FOURBAR for Windows
File
P03-73
Angle Coupler Pt Step X Deg in
Coupler Pt Y in
Coupler Pt Mag in
Coupler Pt Ang in
340 350 0 10 20
1.429 2.316 3.316 4.265 5.047
3.013 3.237 3.746 4.414 5.078
151.688 134.332 117.727 104.920 96.371
-2.652 -2.262 -1.743 -1.137 -0.564
y 130 P 20 180
B
10 5
AXIS OF SYMMETRY
0
D
350
230
4
3 340 A
PSEUDO-ARC
E
2
x O4
O2
5.
The line segment DE represents the maximum displacement that a link of the length equal to link 5, attached at P, will reach along the axis of symmetry. Construct a perpendicular bisector of the line segment DE and extend it to the right (or left, which ever is convenient). Locate fixed pivot O6 on the bisector of DE such that the lines O6D and O6E subtend the desired output angle, in this case 30 deg. Draw link 6 from D through O6 and extend it to any convenient length. This is the output link that will dwell during the specified motion of the crank. SUMMARY OF LINKAGE y SPECIFICATIONS 130
Original fourbar: P
Ground link
L1 4.000
Crank
L2 2.000
Coupler
L3 5.000
Rocker
L4 5.000
Coupler point
AP 5.000
20 180
50.000°
B
10 5 0
O6 6
230
δ 60.000 deg
D
350
Added dyad:
4
3 340 PSEUDO-ARC
A
E
2
x O2
O4
Coupler
L5 5.395
Output
L6 2.998
Pivot O6
x 3.166 y 3.656
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-74-1
PROBLEM 3-74 Statement:
Design a sixbar, single-dwell linkage for a dwell of 80 deg of crank motion, with an output rocker motion of 45 deg using a symmetrical fourbar linkage with the following parameter values: ground link ratio = 2.0, common link ratio = 1.75, and coupler angle = 70 deg. (See Example 3-13.)
Given:
Crank dwell period: 80 deg. Output rocker motion: 45 deg. Ground link ratio, L1/L2 = 2.0: GLR 2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.0: CLR 1.75 Coupler angle, γ 70 deg
Design choice: Crank length, L2 2.000 Solution: 1.
See Figures 3-20 and 3-21 and Mathcad file P0374.
For the given design choice, determine the remaining link lengths and coupler point specification. Coupler link (3) length
L3 CLR L2
L3 3.500
Rocker link (4) length
L4 CLR L2
L4 3.500
Ground link (1) length
L1 GLR L2
L1 4.000
Angle PAB
δ
Length AP on coupler 2.
180 deg γ 2
AP 2 L3 cos δ
δ 55.000 deg AP 4.015
Enter the above data into program FOURBAR, plot the coupler curve, and determine the coordinates of the coupler curve in the selected range of crank motion, which in this case will be from 140 to 220 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-74-2
FOURBAR for Windows
3.
File
P03-74
Angle Coupler Pt Step X Deg in
Coupler Pt Y in
Coupler Pt Mag in
Coupler Pt Ang in
140 150 160 170 180 190 200 210 220
5.208 4.940 4.645 4.332 4.005 3.668 3.322 2.969 2.613
5.252 5.032 4.804 4.578 4.359 4.152 3.958 3.779 3.612
97.395 100.971 104.781 108.860 113.242 117.942 122.946 128.210 133.663
-0.676 -0.958 -1.226 -1.480 -1.720 -1.945 -2.153 -2.337 -2.493
Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Use the points at crank angles of 140, 180, and 220 deg to define the pseudo-arc. Find the center of the pseudo-arc erecting perpendicular bisectors to the chords defined by the selected coupler curve points. The center will lie at the intersection of the perpendicular bisectors, label this point D. The radius of this circle is the length of link 5.
y
140 P 180
220
B
PSEUDO-ARC
4
3 A
O4
2 O2
4.
x D
The position of the end of link 5 at point D will remain nearly stationary while the crank moves from 140 to 220 deg. As the crank motion causes the coupler point to move around the coupler curve there will be another extreme position of the end of link 5 that was originally at D. Since a symmetrical linkage was chosen, the other extreme position will be located along a line through the axis of symmetry (see Figure 3-20) a distance equal to the length of link 5 measured from the point where the axis of symmetry intersects the coupler curve near the 0 deg coupler point. Establish this point and label it E.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-74-3
FOURBAR for Windows
File
P03-74
Angle Coupler Pt Step X Deg in
Coupler Pt Y in
Coupler Pt Mag in
Coupler Pt Ang in
340 350 0 10 20
1.658 2.360 3.147 3.886 4.490
2.158 2.562 3.185 3.887 4.530
129.810 112.856 98.919 88.916 82.372
-1.382 -0.995 -0.494 0.074 0.601
y
140 P 20 180
10
0
220
AXIS OF SYMMETRY
B
350 PSEUDO-ARC
A
4
340 3
O4
2 O2
x
D E
5.
The line segment DE represents the maximum displacement that a link of the length equal to link 5, attached at P, will reach along the axis of symmetry. Construct a perpendicular bisector of the line segment DE and extend it to the right (or left, which ever is convenient). Locate fixed pivot O6 on the bisector of DE such that the lines O6D and O6E subtend the desired output angle, in this case 30 deg. Draw link 6 from D through O6 and extend it to any convenient length. This is the output link that will dwell during the specified motion of the crank.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-74-4
y
SUMMARY OF LINKAGE SPECIFICATIONS Original fourbar:
140 P 20 180
10
0
220
Ground link
L1 4.000
Crank
L2 2.000
Coupler
L3 3.500
Rocker
L4 3.500
Coupler point
AP 4.015
B
δ 55.000 deg
350 PSEUDO-ARC
A
45.000°
340 3
4
O4
2 O2
O6
x
Added dyad:
D E
Coupler
L5 7.676
Output
L6 1.979
Pivot O6
x 6.217 y 0.653
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-75-1
PROBLEM 3-75 Statement:
Using the method of Example 3-11, show that the sixbar Chebychev straight-line linkage of Figure P2-5 is a combination of the fourbar Chebychev straight-line linkage of Figure 3-29d and its Hoeken's cognate of Figure 3-29e. See also Figure 3-26 for additional information useful to this solution. Graphically construct the Chebychev sixbar parallel motion linkage of Figure P2-5a from its two fourbar linkage constituents and build a physical or computer model of the result.
Solution:
See Figures P2-5, 3-29d, 3-29e, and 3-26 and Mathcad file P0375.
1.
Following Example 3-11and Figure 3-26 for the Chebyschev linkage of Figure 3-29d, the fixed pivot OC is found by laying out the triangle OAOBOC, which is similar to A1B1P. In this case, A1B1P is a striaght line with P halfway between A1 and B1 and therefore OAOBOC is also a straightline with OC halfway between OA and OB. As shown below and in Figure 3-26, cognate #1 is made up of links numbered 1, 2, 3, and 4. Cognate #2 is links numbered 1, 5, 6, and 7. Cognate #3 is links numbered 1, 8, 9, and 10.
3
P
3 3
B1
2
4
9
OC
B2
4
6
5 1
1
6
Links Removed
10 OA
2.
2
6
7
8
A3
4
B2
P2
A1
P1
6
9 B3
B1
A1
OB
A2
5 1
A2 OA
OC
OB
Discard cognate #3 and shift link 5 from the fixed pivot OB to OC and shift link 7 from OC to OB. Note that due to the symmetry of the figure above, L5 = 0.5 L3, L6 = L2, L7 = 0.5 L2 and OCOB = 0.5 OAOB. Thus, cognate #2 is, in fact, the Hoeken straight-line linkage. The original Chebyschev linkage with the Hoeken linkage superimposed is shown above right with the link 5 rotated to 180 deg. Links 2 and 6 will now have the same velocity as will 7 and 4. Thus, link 5 can be removed and link 6 can be reduced to a binary link supported and constrained by link 4. The resulting sixbar is the linkage shown in Figure P2-5.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-76-1
PROBLEM 3-76 Statement:
Design a driver dyad to drive link 2 of the Evans straigh-line linkage in Figure 3-29f from 150 deg to 210 deg. Make a model of the resulting sixbar linkage and trace the couple curve.
Given:
Output angle
Solution:
See Figjre 3-29f, Example 3-1, and Mathcad file P0376.
Design choices:
θ 60 deg
Link lengths:
L2 2.000
Link 2
Link 5
L5 3.000
1.
Draw the input link O2A in both extreme positions, A1 and A2, at the specified angles such that the desired angle of motion 2 is subtended.
2.
Draw the chord A1A2 and extend it in any convenient direction. In this solution it was extended downward.
3.
Layout the distance A1C1 along extended line A1A2 equal to the length of link 5. Mark the point C1.
4.
Bisect the line segment A1A2 and layout the length of that radius from point C1 along extended line A1A2. Mark the resulting point O6 and draw a circle of radius O6C1 with center at O6.
5.
Label the other intersection of the circle and extended line A1A2, C2.
6.
7.
A1
Measure the length of the crank (link 6) as O6C1 or O6C2. From the graphical solution, L6 1.000 Measure the length of the ground link (link 1) as O2O6. From the graphical solution, L1 3.073
P2 3 B1 , B 2
2 O2
4 A2
P1
1
5 C1
O4
6 O6
3.073" C2
8.
Find the Grashof condition. Condition( a b c d )
2.932"
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1 L2 L5 L6 "Grashof"
0.922" L1 = 2.4 L2 = 2 L3 = 3.2 L4 = 2.078 L5 = 3.00 L6 = 1.00 AP = 5.38
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-77-1
PROBLEM 3-77 Statement:
Design a driver dyad to drive link 2 of the Evans straigh-line linkage in Figure 3-29g from -40 deg to 40 deg. Make a model of the resulting sixbar linkage and trace the couple curve.
Given:
Output angle
Solution:
See Figjre 3-29G, Example 3-1, and Mathcad file P0377.
Design choices:
θ 80 deg
Link lengths:
L2 2.000
Link 2
Link 5
L5 3.000
1.
Draw the input link O2A in both extreme positions, A1 and A2, at the specified angles such that the desired angle of motion 2 is subtended.
2.
Draw the line A1C1 and extend it in any convenient direction. In this solution it was extended at a 30-deg angle from A1O2 (see note below) .
3.
Layout the distance A1C1 along extended line A1C1 equal to the length of link 5. Mark the point C1.
4.
Bisect the line segment A1A2 and layout the length of that radius from point C1 along extended line A1C1. Mark the resulting point O6 and draw a circle of radius O6C1 with center at O6.
5.
6.
7.
C2
O6 P2
Extend a line from A2 through O6. Label the other intersection of the circle and extended line A2O6, C2. Measure the length of the crank (link 6) as O6C1 or O6C2. From the graphical solution, L6 1.735
6
3.165"
C1
Measure the length of the ground link (link 1) as O2O6. From the graphical solution, L1 3.165
Find the Grashof condition. Condition( a b c d )
O2 B2
B1
3 2
4 A1
1
O4
P1
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1 L2 L5 L6 "Grashof"
A2 5
Note: If the angle between link 2 and link 5 is zero the resulting driving fourbar will be a special Grashof. For angles greater than zero but less than 33.68 degrees it is a Grashof crank-rocker. For angles greater than 33.68 it is a non-Grashof double rocker. 8.
L1 = 4.61 L2 = 2 L3 = 2.4 L4 = 2.334 L5 = 3.00 L6 = 1.735 AP = 3.00
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-78-1
PROBLEM 3-78 Statement:
Figure 6 on page ix of the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD) shows a 50-point coupler that was used to generate the curves in the atlas. Using the definition of the vector R given in Figure 3-17b of the text, determine the 10 possible pairs of values of and R for the first row of points above the horizontal axis if the gridpoint spacing is one half the length of the unit crank.
Given:
Grid module g 0.5
Solution:
See Figure 6 H&N Atlas, Figure 3-17b, and Mathcad file P0378.
1.
The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n 2 1 7 and the number of vertical grid spaces from the coupler to the coupler point be m 2 1 2
2.
For the first row of points above the horizontal axis shown in Figure 6, n 2 1 7 and m 1.
3.
The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is
π π ϕ( m n ) if n 0 atan2( n m) if m = 0 0 if m 0
4.
2
2
The distance, R, from the pivot to the coupler point along the same line is 2
R( m n ) g m n
2
ϕ( m n ) n
5.
deg
R( m n )
-2.000
153.435
1.118
-1.000
135.000
0.707
0.000
90.000
0.500
1.000
45.000
0.707
2.000
26.565
1.118
3.000
18.435
1.581
4.000
14.036
2.062
5.000
11.310
2.550
6.000
9.462
3.041
7.000
8.130
3.536
The coupler point distance, R, like the link lengths A, B, and C is a ratio of the given length to the the length of the driving crank.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-79-1
PROBLEM 3-79 Statement:
The set of coupler curves in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 16 of the PDF file) has A = B = C = 1.5. Model this linkage with program FOURBAR using the coupler point fartherest to the left in the row shown on page 1 and plot the resulting coupler curve.
Given:
A 1.5
Solution:
See Figure on page 1 H&N Atlas, Figure 3-17b, and Mathcad file P0379.
B 1.5
C 1.5
1.
The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n 2 1 7 and the number of vertical grid spaces from the coupler to the coupler point be m 2 1 2
2.
For the second column of points to the left of the coupler pivot and the second row of points above the horizontal axis n 2 and m 2. The grid spacing is g 0.5
3.
The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is
π π ϕ( m n ) if n 0 atan2( n m) if m = 0 0 if m 0
4.
2
6.
2
2
R( m n ) 1.414
Determine the values needed for input to FOURBAR. Link 2 (Crank)
a 1
Link 3 (Coupler)
b A a
b 1.500
Link 4 (Rocker)
c B a
c 1.500
Link 1 (Ground)
d C a
d 1.500
Distance to coupler point
R( m n ) 1.414
Angle from link 3 to coupler point
ϕ( m n ) 135.000 deg
Calculate the coordinates of O4. Let the angle between links 2 and 3 be , then
A 2 ( 1 C) 2 B2 2 A ( 1 C)
7.
2
The distance from the pivot to the coupler point, R, along the same line is R( m n ) g m n
5.
α acos
α 33.557 deg
xO4 C cos α
xO4 1.250
yO4 C sin α
yO4 0.829
Enter this data into FOURBAR and then plot the coupler curve. (See next page)
ϕ( m n ) 135.000 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-79-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-80-1
PROBLEM 3-80 Statement:
The set of coupler curves on page 17 in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 32 of the PDF file) has A = 1.5, B = C = 3.0. Model this linkage with program FOURBAR using the coupler point fartherest to the right in the row shown and plot the resulting coupler curve.
Given:
A 1.5
Solution:
See Figure on page 17 H&N Atlas, Figure 3-17b, and Mathcad file P0380.
B 3.0
C 3.0
1.
The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n 2 1 7 and the number of vertical grid spaces from the coupler to the coupler point be m 2 1 2
2.
For the fifth column of points to the right of the coupler pivot and the first row of points above the horizontal axis n 5 and m 1. The grid spacing is g 0.5
3.
The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is
π π ϕ( m n ) if n 0 atan2( n m) if m = 0 0 if m 0
4.
2
6.
2
2
R( m n ) 2.550
Determine the values needed for input to FOURBAR. Link 2 (Crank)
a 1
Link 3 (Coupler)
b A a
b 1.500
Link 4 (Rocker)
c B a
c 3.000
Link 1 (Ground)
d C a
d 3.000
Distance to coupler point
R( m n ) 2.550
Angle from link 3 to coupler point
ϕ( m n ) 11.310 deg
Calculate the coordinates of O4. Let the angle between links 2 and 3 be , then
A 2 ( 1 C) 2 B2 2 A ( 1 C)
7.
2
The distance from the pivot to the coupler point, R, along the same line is R( m n ) g m n
5.
α acos
α 39.571 deg
xO4 C cos α
xO4 2.313
yO4 C sin α
yO4 1.911
Enter this data into FOURBAR and then plot the coupler curve. (See next page)
ϕ( m n ) 11.310 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-80-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-81-1
PROBLEM 3-81 Statement:
The set of coupler curves on page 21 in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 36 of the PDF file) has A = 1.5, B = C = 3.5. Model this linkage with program FOURBAR using the coupler point fartherest to the right in the row shown and plot the resulting coupler curve.
Given:
A 1.5
Solution:
See Figure on page 21 H&N Atlas, Figure 3-17b, and Mathcad file P0381.
B 3.5
C 3.5
1.
The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n 2 1 7 and the number of vertical grid spaces from the coupler to the coupler point be m 2 1 2
2.
For the fourth column of points to the right of the coupler pivot and the second row of points above the horizontal axis n 4 and m 2. The grid spacing is g 0.5
3.
The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is
π π ϕ( m n ) if n 0 atan2( n m) if m = 0 0 if m 0
4.
2
6.
2
2
R( m n ) 2.236
Determine the values needed for input to FOURBAR. Link 2 (Crank)
a 1
Link 3 (Coupler)
b A a
b 1.500
Link 4 (Rocker)
c B a
c 3.500
Link 1 (Ground)
d C a
d 3.500
Distance to coupler point
R( m n ) 2.236
Angle from link 3 to coupler point
ϕ( m n ) 26.565 deg
Calculate the coordinates of O4. Let the angle between links 2 and 3 be , then
A 2 ( 1 C) 2 B2 2 A ( 1 C)
7.
2
The distance from the pivot to the coupler point, R, along the same line is R( m n ) g m n
5.
α acos
α 40.601 deg
xO4 C cos α
xO4 2.657
yO4 C sin α
yO4 2.278
Enter this data into FOURBAR and then plot the coupler curve. (See next page)
ϕ( m n ) 26.565 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-81-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-82-1
PROBLEM 3-82 Statement:
The set of coupler curves on page 34 in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 49 of the PDF file) has A = 2.0, B = 1.5, C = 2.0. Model this linkage with program FOURBAR using the coupler point fartherest to the right in the row shown and plot the resulting coupler curve.
Given:
A 2.0
Solution:
See Figure on page 34 H&N Atlas, Figure 3-17b, and Mathcad file P0382.
B 1.5
C 2.0
1.
The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n 2 1 7 and the number of vertical grid spaces from the coupler to the coupler point be m 2 1 2
2.
For the sixth column of points to the right of the coupler pivot and the first row of points below the horizontal axis n 6 and m 1. The grid spacing is g 0.5
3.
The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is
π π ϕ( m n ) if n 0 atan2( n m) if m = 0 0 if m 0
4.
2
6.
2
2
R( m n ) 3.041
Determine the values needed for input to FOURBAR. Link 2 (Crank)
a 1
Link 3 (Coupler)
b A a
b 2.000
Link 4 (Rocker)
c B a
c 1.500
Link 1 (Ground)
d C a
d 2.000
Distance to coupler point
R( m n ) 3.041
Angle from link 3 to coupler point
ϕ( m n ) 9.462 deg
Calculate the coordinates of O4. Let the angle between links 2 and 3 be , then
A 2 ( 1 C) 2 B2 2 A ( 1 C)
7.
2
The distance from the pivot to the coupler point, R, along the same line is R( m n ) g m n
5.
α acos
α 26.384 deg
xO4 C cos α
xO4 1.792
yO4 C sin α
yO4 0.889
Enter this data into FOURBAR and then plot the coupler curve. (See next page)
ϕ( m n ) 9.462 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-82-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-83-1
PROBLEM 3-83 Statement:
The set of coupler curves on page 115 in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 130 of the PDF file) has A = 2.5, B = 1.5, C = 2.5. Model this linkage with program FOURBAR using the coupler point fartherest to the right in the row shown and plot the resulting coupler curve.
Given:
A 2.5
Solution:
See Figure on page 115 H&N Atlas, Figure 3-17b, and Mathcad file P0383.
B 1.5
C 2.5
1.
The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n 2 1 7 and the number of vertical grid spaces from the coupler to the coupler point be m 2 1 2
2.
For the second column of points to the right of the coupler pivot and the second row of points below the horizontal axis n 2 and m 2. The grid spacing is g 0.5
3.
The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is
π π ϕ( m n ) if n 0 atan2( n m) if m = 0 0 if m 0
4.
2
6.
2
2
R( m n ) 1.414
Determine the values needed for input to FOURBAR. Link 2 (Crank)
a 1
Link 3 (Coupler)
b A a
b 2.500
Link 4 (Rocker)
c B a
c 1.500
Link 1 (Ground)
d C a
d 2.500
Distance to coupler point
R( m n ) 1.414
Angle from link 3 to coupler point
ϕ( m n ) 45.000 deg
Calculate the coordinates of O4. Let the angle between links 2 and 3 be , then
A 2 ( 1 C) 2 B2 2 A ( 1 C)
7.
2
The distance from the pivot to the coupler point, R, along the same line is R( m n ) g m n
5.
α acos
α 21.787 deg
xO4 C cos α
xO4 2.321
yO4 C sin α
yO4 0.928
Enter this data into FOURBAR and then plot the coupler curve. (See next page)
ϕ( m n ) 45.000 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-83-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-84-1
PROBLEM 3-84 Statement:
Design a fourbar mechanism to move the link shown in Figure P3-19 from position 1 to position 2. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model that demonstrates the required movement.
Given:
Position 1 offsets:
Solution:
See figure below and Mathcad file P0384 for one possible solution.
xC1D1 17.186 in
yC1D1 0.604 in
1.
Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C1 to C2 and D1 to D2.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C1C2 was extended upward and the bisector of D1D2 was also extended upward.
3.
Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2C and O4D were selected to be 15.000 in. and 8.625 in, respectively. This resulted in a ground-link-length O2O4 for the fourbar of 9.351 in.
4.
The fourbar is now defined as O2CDO4 with link lengths Link 3 (coupler) L3
2
xC1D1 yC1D1
Link 2 (input)
L2 14.000 in
Ground link 1
L1 9.351 in
2
L3 17.197 in Link 4 (output)
L4 7.000 in
9.35 1
15 .00 0
O2
O4
17.197
8.6 25
D2
C1
D1
C2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-85-1
PROBLEM 3-85 Statement:
Design a fourbar mechanism to move the link shown in Figure P3-19 from position 2 to position 3. Ignore the first position and the fixed pivots O2 and O4 shown. Build a cardboard model that demonstrates the required movement.
Given:
Position 2 offsets:
Solution:
See figure below and Mathcad file P0385 for one possible solution.
xC2D2 15.524 in
yC2D2 7.397 in
1.
Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C2 to C3 and D2 to D3.
2.
Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C2C3 was extended upward and the bisector of D2D3 was also extended upward.
3.
Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2C and O4D were selected to be 15.000 in and 8.625 in, respectively. This resulted in a ground-link-length O2O4 for the fourbar of 9.470 in.
4.
The fourbar stage is now defined as O2CDO4 with link lengths Link 3 (coupler) L3
2
xC2D2 yC2D2
Link 2 (input)
L2 15.000 in
Ground link 1b
L1b 9.470 in
2
L3 17.196 in Link 4 (output)
L6 8.625 in
8.625
D3
9.47 0
O2 O4
15.000
D2 96 17.1
C3
C2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-85-2
11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -14.9 deg and +14.9 deg. The fourbar operates between 4 = +12.403 deg and -8.950 deg.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-86-1
PROBLEM 3-86 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-19. Ignore the points O2 and O4 shown. Build a cardboard model that has stops to limit its motion to the range of positions designed.
Solution:
See Figure P3-19 and Mathcad file P0386.
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw construction lines from point C1 to C2 and from point C2 to C3.
3.
Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.
4.
Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.
5.
Connect O2 with C1 and call it link 2. Connect O4 with D1 and call it link 4.
6.
Line C1D1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2CDO4 an has link lengths of Ground link 1
L1 9.187
Link 2
L2 14.973
Link 3
L3 17.197
Link 4
L4 8.815 D3
8.815
9.18 7 O2
14 .97 3
O4
2 4
D2
17.197 C1
D1
3
C3 C2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-87-1
PROBLEM 3-87 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-17 using the fixed pivots O2 and O4 shown. (See Example 3-7.) Build a cardboard model that has stops to limit its motion to the range of positions designed.
Solution:
See Figure P3-19 and Mathcad file P0387.
1.
Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.
2.
Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.
3.
Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.
4.
Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.
5.
Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.
6.
Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.
7.
The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H. D3
O'2 O2
O"2
O4
O'4
D2
C1
O" 4
D1 C3
C2
First layout for steps 1 through 7
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-87-2
E2 O'2 E1 O2 E3 O" 2
F1 O4
O'4 F2 2 4 F3 O"4 3
G
H
Second layout for steps 8 through 12 8.
Draw construction lines from point E1 to E2 and from point E2 to E3.
9.
Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.
10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H. 11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a
L1a 9.216
Link 2
L2 16.385
Link 3
L3 18.017
Link 4
L4 8.786
13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 3-87-3
Condition L1a L2 L3 L4 "non-Grashof" The fourbar that will provide the desired motion is now defined as a non-Grashof double rocker in the open configuration. It now remains to add the original points C1 and D1 to the coupler GH.
9.21 6
O2
16 .38 5
O4
4
C1
3
D1 H
G
18.017
8.786
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-7a-1
PROBLEM 4-7a Statement:
Given:
The link lengths and value of 2 for some fourbar linkages are defined in Table P4-1. The linkage configuration and terminology are shown in Figure P4-1. For row a, find all possible solutions (both open and crossed) for angles 3 and 4 using the vector loop method. Determine the Grashof condition. Link 2 Link 1 d 6 in a 2 in b 7 in
Link 3 Solution: 1.
c 9 in
Link 4
See Mathcad file P0407a.
Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1
d
K2
a
K1 3.0000
2
d
K3
c
K2 0.6667
2 a c
B 1.0000
C K1 K2 1 cos θ K3
C 3.5566
Use equation 4.10b to find values of 4 for the open and crossed circuits. Open:
2
θ 2 atan2 2 A B
B 4 A C
θ 242.714 deg
θ θ 360 deg
θ 602.714 deg
2
Crossed: θ 2 atan2 2 A B
B 4 A C
θ 216.340 deg
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2 a b
2
K4 0.8571 K5 0.2857
D cos θ K1 K4 cos θ K5
D 1.6774
E 2 sin θ
E 1.0000
F K1 K4 1 cos θ K5 4.
2
A 0.7113
B 2 sin θ
3.
2
a b c d
K3 2.0000
A cos θ K1 K2 cos θ K3
2.
θ 30 deg
F 2.5906
Use equation 4.13 to find values of 3 for the open and crossed circuits. Open:
θ 2 atan2 2 D E
2
E 4 D F
θ θ 360 deg
Crossed: θ 2 atan2 2 D E
θ 271.163 deg θ 631.163 deg
2
E 4 D F
θ 244.789 deg
2
DESIGN OF MACHINERY - 5th Ed.
5.
Check the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof"
SOLUTION MANUAL 4-7a-2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-1-1
PROBLEM 4-1 Statement:
A position vector is defined as having length equal to your height in inches (or centimeters). The tangent of its angle is defined as your weight in lbs (or kg) divided by your age in years. Calculate the data for this vector and: a. Draw the position vector to scale on Cartesian axes. b. Write an expression for the position vector using unit vector notation. c. Write an expression for the position vector using complex number notation, in both polar and Cartesian forms.
Assumptions: Height 70, weight 160, age 20 Solution:
The magnitude of the vector is R Height. The angle that the vector makes with the x-axis is θ atan
weight
age
a.
θ 82.875 deg
θ 1.446 rad
Draw the position vector to scale on Cartesian axes. y 100 80
R
60 70.000
1.
See Mathcad file P0401.
40
82.875°
20 0
b.
x 20
40
60
80
100
Write an expression for the position vector using unit vector notation.
cos θ sin θ
R R
R
8.682 69.459
R = 8.682 i + 69.459 j
c. Write an expression for the position vector using complex number notation, in both polar and Cartesian forms. j 1.446
Polar form:
R 68 e
Cartesian form:
R 8.682 j 69.459
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-2-1
PROBLEM 4-2 Statement:
A particle is traveling along an arc of 6.5 inch radius. The arc center is at the origin of a coordinate system. When the particle is at position A, its position vector makes a 45-deg angle with the X axis. At position B, its vector makes a 75-deg angle with the X axis. Draw this system to some convenient scale and: a. b. c.
d.
Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. Write a vector equation for the position difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. Check the result of part c with a graphical method.
Given:
Circle radius and vector magnitude, R 6.5 in; vector angles: θA 45 deg
Solution:
See Mathcad file P0402.
θB 75 deg
1.
Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.
2.
Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.
Y 8 B 6 A 4
RB RA
2
0 a.
b.
X 2
4
6
8
Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. j θA
Polar form:
RA R e
Cartesian form:
RA R cos θA j sin θA
j
RA 6.5 e
π 4
RA ( 4.596 4.596j) in
Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms.
DESIGN OF MACHINERY - 5th Ed.
c.
SOLUTION MANUAL 4-2-2
j
j θB
Polar form:
RB R e
RB 6.5 e
Cartesian form:
RB R cos θB j sin θB
180
RB ( 1.682 6.279j) in
Write a vector equation for the position difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. RBA RB RA
d.
75 π
RBA ( 2.914 1.682j) in
Check the result of part c with a graphical method.
Y 8
3.365 B
6
RBA
1.682
A 4
RB
2.914
2 RA 0
X 2
4
6
8
On the layout above the X and Y components of RBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-3-1
PROBLEM 4-3 Statement:
Two particles are traveling along an arc of 6.5 inch radius. The arc center is at the origin of a coordinate system. When one particle is at position A, its position vector makes a 45-deg angle with the X axis. Simultaneously, the other particle is at position B, where its vector makes a 75deg angle with the X axis. Draw this system to some convenient scale and: a. b. c.
d.
Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. Write an exp ession for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. Write a vector equation for the relative position of the particle at B with respect to the particle at A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. Check the result of part c with a graphical method.
Given:
Circle radius and vector magnitude, R 6.5 in; vector angles: θA 45 deg
Solution:
See Mathcad file P0403.
θB 75 deg
1.
Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.
2.
Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.
Y 8 B 6 A 4
RB RA
2
0 a.
b.
X 2
4
6
8
Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. j θA
Polar form:
RA R e
Cartesian form:
RA R cos θA j sin θA
j
RA 6.5 e
π 4
RA ( 4.596 4.596j) in
Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms.
DESIGN OF MACHINERY - 5th Ed.
c.
SOLUTION MANUAL 4-3-2
j
j θB
Polar form:
RB R e
RB 6.5 e
Cartesian form:
RB R cos θB j sin θB
180
RB ( 1.682 6.279j) in
Write a vector equation for the relative position of the particle at B with respect to the particle at A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. RBA RB RA
d.
75 π
RBA ( 2.914 1.682j) in
Check the result of part c with a graphical method.
Y 8
3.365 B
6
RBA
1.682
A 4
RB
2.914
2 RA 0
X 2
4
6
8
On the layout above the X and Y components of RBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-4-1
PROBLEM 4-4 Statement:
A particle is traveling along the line y = -2x + 10. When the particle is at position A, its position vector makes a 45-deg angle with the X axis. At position B, its vector makes a 75-deg angle with the X axis. Draw this system to some convenient scale and: a. b. c.
d.
Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. Write a vector equation for the position difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. Check the result of part c with a graphical method.
Given:
Vector angles: θA 45 deg
Solution:
See Mathcad file P0402.
θB 75 deg
1.
Establish an X-Y coordinate frame and draw the line y = -2x + 10.
2.
Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the line in step 1 as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.
Y 10 y = -2x + 10 8 B 6
4
RB
2
0
3.
A
RA X 2
4
6
8
Calculate the coordinates of points A and B. xA tan θA = 2 xA 10
xA
10
2 tan θA
yA xA tan θA xB tan θB = 2 xB 10
xB
10
2 tan θB
xA 3.333 yA 3.333 xB 1.745
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-4-2
yB xB tan θB 4.
a.
b.
yB 6.511
Calculate the distances of points A and B from the origin. 2
2
RA 4.714
2
2
RB 6.741
RA
xA yA
RB
xB yB
Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. j θA
j
Polar form:
RA RA e
Cartesian form:
RA RA cos θA j sin θA
RA 4.714 e
π 4
RA 3.333 3.333j
Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. j
j θB
Polar form:
RB RB e
RB 6.741 e
Cartesian form:
RB RB cos θB j sin θB
75 π 180
RB 1.745 6.511j
Y c.
10
Write a vector equation for the position difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically.
y = -2x + 10 8 B
RBA RB RA RBA 1.589 3.178j d.
Check the result of part c with a graphical method. On the layout above the X and Y components of RBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.
6 3.178 4
3.553
RBA RB A
2
0
RA X 2
4
6 1.589
8
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-5-1
PROBLEM 4-5 Statement:
Two particles are traveling along the line y = -2x2 - 2x +10. When one particle is at position A, its position vector makes a 45-deg angle with the X axis. Simultaneously, the other particle is at position B, where its vector makes a 75-deg angle with the X axis. Draw this system to some convenient scale and: a. b. c.
d.
Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. Write a vector equation for the relative position of the particle at B with respect to the particle at A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. Check the result of part c with a graphical method.
Given:
Vector angles: θA 45 deg
Solution:
See Mathcad file P0405.
θB 75 deg
1.
Establish an X-Y coordinate frame and draw the line y = -2x2 - 2x +10.
2.
Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the line drawn in step 1 as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.
Y 10 y = -2x^2 - 2x + 10 8
6 B 4 RB 2
A RA
0
3.
X 2
4
6
8
Calculate the coordinates of points A and B. xA tan θA = 2 xA 2 xA 10 2
2 tan θA tan θA xA 1 1 2 2 2
1
20
xA 1.608
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-5-2
yA xA tan θA
yA 1.608
xB tan θB = 2 xB 2 xB 10 2
2 tan θB tan θB xB 1 1 2 2 2
1
yB xB tan θB 4.
a.
b.
c.
xB 1.223
yB 4.564
Calculate the distances of points A and B from the origin. 2
2
RA 2.275
2
2
RB 4.725
RA
xA yA
RB
xB yB
Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. j θA
Polar form:
RA R e
Cartesian form:
RA RA cos θA j sin θA
j
RA 2.275 e
π 4
RA 1.608 1.608j
Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. j θB
Polar form:
RB R e
Cartesian form:
RB RB cos θB j sin θB
j
RB 4.725 e
75 π 180
RB 1.223 4.564j
Write a vector equation for the relative position of the particle at B with respect to the particle at A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. RBA RB RA
d.
20
RBA 0.386 2.955j
Check the result of part c with a graphical method.
On the layout on the next page the X and Y components of RBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-5-3
Y 10 y = -2x^2 - 2x + 10 8
6 B 4 RB
2.955
RBA
2.980
2 A RA 0
X 4
2 0.386
6
8
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-6a-1
PROBLEM 4-6a Statement:
The link lengths and value of 2 for some fourbar linkages are defined in Table P4-1. The linkage configuration and terminology are shown in Figure P4-1. For row a, draw the linkage to scale and graphically find all possible solutions (both open and crossed) for angles 3 and 4. Determine the Grashoff condition.
Given:
Link 1
d 6 in
Link 2
a 2 in
Link 3
b 7 in
Link 4
c 9 in
Solution:
θ2 30 deg
See figure below for one possible solution. Also see Mathcad file P0406a.
1.
Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.
2.
Draw link 2 to some convenient scale at its given angle.
3.
Draw a circle with center at the free end of link 2 and a radius equal to the given length of link 3.
4.
Locate pivot O4 on the x-axis at a distance from the origin equal to the given length of link 1.
5.
Draw a circle with center at O4 and a radius equal to the given length of link 4.
6.
The two intersections of the circles (if any) are the two solutions to the position analysis problem, crossed and open. If the circles don't intersect, there is no solution.
7.
Draw links 3 and 4 in their two possible positions (shown as solid for open and dashed for crossed in the figure) and measure their angles 3 and 4 with respect to the x-axis. From the solution below, OPEN
θ θ
CROSSED
θ θ
8.
31 41 32 42
88.84 deg 117.29 deg 360 deg 115.21 deg
θ
360 deg 143.66 deg
θ
42
244.790 deg 216.340 deg
y
Check the Grashof condition. Condition( a b c d )
32
B
S min ( a b c d )
OPEN
L max( a b c d ) SL S L
3
PQ a b c d SL
4
return "Grashof" if SL PQ 88.837°
return "Special Grashof" if SL = PQ
117.286°
A
return "non-Grashof" otherwise
2 O2
Condition( a b c d ) "Grashof"
115.211°
O4 143.660°
CROSSED B'
x
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-7a-1
PROBLEM 4-7a Statement:
Given:
The link lengths and value of 2 for some fourbar linkages are defined in Table P4-1. The linkage configuration and terminology are shown in Figure P4-1. For row a, find all possible solutions (both open and crossed) for angles 3 and 4 using the vector loop method. Determine the Grashof condition. Link 2 Link 1 d 6 in a 2 in b 7 in
Link 3
c 9 in
Link 4
θ 30 deg
Two argument inverse tangent atan2( x y )
return 0.5 π if x = 0 y 0 return 1.5 π if x = 0 y 0 return atan
y
if x 0 x
atan
y
π otherwise x
Solution: 1.
See Mathcad file P0407a.
Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1
d
K2
a
K1 3.0000
2
d
K3
c
K2 0.6667
2 a c
A 0.7113
B 2 sin θ
B 1.0000
C K1 K2 1 cos θ K3
C 3.5566
Use equation 4.10b to find values of 4 for the open and crossed circuits.
Open:
2
θ 2 atan2 2 A B
B 4 A C
θ 477.286 deg
θ θ 360 deg
θ 117.286 deg
2
Crossed: θ 2 atan2 2 A B 3.
2
K3 2.0000
A cos θ K1 K2 cos θ K3
2.
2
a b c d
B 4 A C
θ 216.340 deg
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2 a b
D cos θ K1 K4 cos θ K5
E 2 sin θ
2
K4 0.8571 K5 0.2857 D 1.6774 E 1.0000
F K1 K4 1 cos θ K5
F 2.5906
2
DESIGN OF MACHINERY - 5th Ed.
4.
SOLUTION MANUAL 4-7a-2
Use equation 4.13 to find values of 3 for the open and crossed circuits. Open:
θ 2 atan2 2 D E
2
E 4 D F
θ θ 360 deg
Crossed: θ 2 atan2 2 D E 5.
θ 88.837 deg 2
E 4 D F
Check the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof"
θ 448.837 deg
θ 244.789 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-8-1
PROBLEM 4-8 Statement:
Expand equation 4.7b and prove that it reduces to equation 4.7c (p. 157).
Solution:
See Mathcad file P0408.
1.
Write equation 4.7b and expand the two terms that are squared. 2
2 a cosθ c cosθ d2
b a sin θ c sin θ
2.
(4.7b)
a sinθ c sinθ2 a2 sinθ2 2 a c sinθ sinθ c2 sinθ2
(a)
a cosθ c cosθ d2 a2 cosθ2 2 a c cosθ cosθ 2 a d cosθ 2 2 2 2 c d cos θ c cos θ d
(b)
Add the two expanded terms, equations a and b, noting the identity sin 2x + cos2x = 1. 2
2
2
2
b a c d 2 a d cos θ 2 c d cos θ 2 a c sin θ sin θ cos θ cos θ This is equation 4.7c.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-9a-1
PROBLEM 4-9a Statement:
The link lengths, value of 2, and offset for some fourbar slider-crank linkages are defined in Table P4-2. The linkage configuration and terminology are shown in Figure P4-2. For row a, draw the linkage to scale and graphically find all possible solutions (both open and crossed) for angles 3 and slider position d.
Given:
Link 2
a 1.4 in
Link 3
Offset
c 1 in
θ 45 deg
Solution:
b 4 in
See figure below for one possible solution. Also see Mathcad file P0409a.
1.
Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.
2.
Draw link 2 to some convenient scale at its given angle.
3.
Draw a circle with center at the free end of link 2 and a radius equal to the given length of link 3.
4.
Draw a horizontal line through y = c (the offset).
5.
The two intersections of the circle with the horizontal line (if any) are the two solutions to the position analysis problem, crossed and open. If the circle and line don't intersect, there is no solution.
6.
Draw link 3 and the slider block in their two possible positions (shown as solid for open and dashed for crossed in the figure) and measure the angle 3 and length d for each circuit. From the solution below, θ31 360 deg 179.856 deg
θ31 180.144 deg
θ32 0.144 deg
d 3.010 in
d 4.990 in 1
2
Y d2 = 3.010
d1 = 4.990
3(CROSSED)
B'
A 2
0.144° O2
45.000°
3 (OPEN)
B 179.856° 1.000 X
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-10a-1
PROBLEM 4-10a Statement:
Given:
Solution:
The link lengths, value of 2, and offset for some fourbar slider-crank linkages are defined in Table P4-2. The linkage configuration and terminology are shown in Figure P4-2. For row a, using the vector loop method, find all possible solutions (both open and crossed) for angles 3 and slider position d. Link 2 Offset
a 1.4 in c 1 in
Link 3 b 4 in θ 45 deg
See Figure P4-2 and Mathcad file P0410a. Y d2 = 3.010
d1 = 4.990
3(CROSSED)
B'
A 2
0.144°
45.000°
3 (OPEN)
B 179.856° 1.000 X
O2
1.
Determine 3 and d using equations 4.16 and 4.17. Crossed:
a sin θ c b
θ 0.144 deg
d 2 3.010 in
θ asin
d 2 a cos θ b cos θ Open:
a sin θ c π b
θ 180.144 deg
d 1 4.990 in
θ asin
d 1 a cos θ b cos θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-11a-1
PROBLEM 4-11a Statement:
The link lengths and the value of 2 and for some inverted fourbar slider-crank linkages are defined in Table P4-3. The linkage configuration and terminology are shown in Figure P4-3. For row a, draw the linkage to scale and graphically find both open and closed solutions for 3 and 4 and vector RB.
Given:
Link 1
d 6 in
Link 2
Link 4
c 4 in
γ 90 deg
Solution:
a 2 in θ 30 deg
See figure below for one possible solution. Also see Mathcad file P04011a.
1.
Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.
2.
Draw link 2 to some convenient scale at its given angle.
3a. If = 90 deg, locate O4 on the x-axis at a distance equal the length of link 1 (d) from the origin. Draw a circle with center at O4 and radius equal to the length of link 4 (c). From point A, draw two lines that are tangent to the circle. The points of tangency define the location of the points B for the open and crossed circuits. 3b. When is not 90 deg there are two approaches to a graphical solution for link 3 and the location of point B: 1) establish the position of link 4 and the angle by trial and error, or 2) calculate the distance from point A to point B (the instantaneous length of link 3). Using the second approach, from triangle O2AO4
y
B
b
c
A a 2 d
x 04
02
2
2
2
AO4 = a d 2 a d cos θ
and, from triangle AO4B (for the open circuit)
AO4 = b c 2 b c cos π γ 2
2
2
where a, b, c, and d are the lengths of links 2, 3, 4, and 1, respectively. Eliminating AO4 and solving for the unknown distance b for the open branch, b 1
1 2
2 c cos π γ
2 c cos π γ 2 4 c2 a2 d2 2 a d cos θ
b 1 1.7932 in 2
2
2
For the closed branch: AO4 = b c 2 b c cos( γ) b 2
1 2
2 c cos γ
and
2 c cosγ 2 4 c2 a2 d2 2 a d cos θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-11a-2
b 2 1.7932 in Draw a circle with center at point A and radius b 1. Draw a circle with center at O4 and radius equal to the length of link 4 (c). The intersections of these two circles is the solution for the open and crossed locations of the point B. 4.
Draw the complete linkage for the open and crossed circuits, including the slider. The results from the graphical solution below are: θ 127.333 deg
OPEN
CROSSED
θ 100.959 deg
θ 142.666 deg
θ 169.040 deg
RB1 3.719 at 40.708 deg
RB2 2.208 at -20.146 deg
B y 90.0°
b
127.333° c
A
142.666°
a 30.000°
d
x 04
02 B'
169.040° 79.041°
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-12a-1
PROBLEM 4-12a Statement:
Given:
The link lengths and the value of 2 and for some inverted fourbar slider-crank linkages are defined in Table P4-3. The linkage configuration and terminology are shown in Figure P4-3. For row a, using the vector loop method, find both open and closed solutions for 3 and 4 and vector RB. Link 1 Link 2 d 6 in a 2 in Link 4
Solution: 1.
c 4 in
γ 90 deg
θ 30 deg
See Mathcad file P0412a.
Determine the values of the constants needed for finding 4 from equations 4.25 and 4.26.
P a sin θ sin γ a cos θ d cos γ
2.
3.
4.
5.
P 1.000 in
Q a sin θ cos γ a cos θ d sin γ
Q 4.268 in
R c sin γ
R 4.000 in
T 2 P
T 2.000 in
S R Q
S 0.268 in
U Q R
U 8.268 in
Use equation 4.26c to find values of 4 for the open and crossed circuits.
T 4 S U
T 4 S U
OPEN
θ 2 atan2 2 S T
CROSSED
θ 2 atan2 2 S T
2
θ 142.667 deg
2
θ 169.041 deg
Use equation 4.22 to find values of 3 for the open and crossed circuits. OPEN
θ θ γ
θ 232.667 deg
CROSSED
θ θ γ
θ 79.041 deg
Determine the magnitude of the instantaneous "length" of link 3 from equation 4.24a. OPEN
b 1
CROSSED
b 2
sin θ γ
a sin θ c sin θ
b 1 1.793 in
sin θ γ
a sin θ c sin θ
b 2 1.793 in
Find the position vector RB from the definition given in the text. OPEN
b1 cosθ j sinθ
RB1 a cos θ j sin θ RB1 RB1
RB1 3.719 in
θ arg RB1
θ 40.707 deg
DESIGN OF MACHINERY - 5th Ed.
CROSSED
SOLUTION MANUAL 4-12a-2
b2 cosθ j sinθ
RB2 a cos θ j sin θ RB2 RB2
RB2 3.091 in
θ arg RB2
θ 63.254 deg
DESIGN OF MACHINERY
SOLUTION MANUAL 4-12c-1
PROBLEM 4-12c Statement:
Given:
The link lengths and the value of 2 and for some inverted fourbar slider-crank linkages are defined in Table P4-3. The linkage configuration and terminology are shown in Figure P4-3. For row c, using the vector loop method, find both open and closed solutions for 3 and 4 and vector RB . Link 1
d 3 in
Link 2
Link 4
c 6 in
45 deg
a 10 in 45 deg
Two argument inverse tangent atan2 (x y) return 0.5 if x = 0 y 0 return 1.5 if x = 0 y 0
y if x 0 return atan x y atan x otherwise Solution: 1.
See Mathcad file P0412c.
Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a.
P a sin sin a cos d cos
2.
P 7.879 in
Q a sin cos a cos d sin
Q 2.121 in
R c sin
R 4.243 in
T 2 P
T 15.757 in
S R Q
S 2.121 in
U Q R
U 6.364 in
Use equation 4.22c to find values of 4 for the open and crossed circuits. OPEN
2
46.400 deg
2
163.739 deg
2 atan2 2 S T T 4 S U 360 deg
CROSSED 2 atan2 2 S T T 4 S U 360 deg 3.
4.
Use equation 4.18 to find values of 3 for the open and crossed circuits. OPEN
91.400 deg
CROSSED
118.739 deg
Determine the magnitude of the instantaneous "length" of link 3 from equation 4.20a. OPEN
b1
CROSSED
b2
sin
a sin c sin
sin
a sin c sin
b1 2.727 in
b2 11.212 in
DESIGN OF MACHINERY
5.
SOLUTION MANUAL 4-12c-2
Find the position vector RB from the definition given on page 162 of the text. OPEN
CROSSED
RB1 acos j sin b 1cos j sin RB1 RB1
RB1 8.356in
arg RB1
31.331 deg
RB2 acos j sin b 2cos j sin RB2 RB2
RB2 12.764 in
arg RB2
12.488 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-13a-1
PROBLEM 4-13a Statement:
Find the transmission angles of the linkage in row a of Table P4-1.
Given:
Link 1
d 6 in
Link 2
a 2 in
Link 3
b 7 in
Link 4
c 9 in
Solution: 1.
See Mathcad file P0413a.
Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1
d a
2
d
K2
K1 3.0000
K3
c
K2 0.6667
2 a c
C 3.5566
Use equation 4.10b to find 4 for the open circuit.
2
θ 2 atan2 2 A B
B 4 A C
θ 242.714 deg
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2 a b
2
K4 0.8571 K5 0.2857
D cos θ K1 K4 cos θ K5
D 1.6774
E 2 sin θ
E 1.0000
F K1 K4 1 cos θ K5
F 2.5906
Use equation 4.13 to find 3 for the open circuit.
θ 2 atan2 2 D E
2
E 4 D F
θ θ 360 deg 5.
2
B 1.0000
C K1 K2 1 cos θ K3
4.
2
A 0.7113
B 2 sin θ
3.
2
a b c d
K3 2.0000
A cos θ K1 K2 cos θ K3
2.
θ 30 deg
θ 271.163 deg θ 631.163 deg
Use equations 4.32 to find the transmission angle.
θtrans θ θ
t θ θ
θtrans θ θ 208.449 deg
return t if t 0.5 π π t otherwise 6.
It can be shown that the triangle ABO4 in Figure 4-17 is symmetric with respect to the line AO4 for the crossed branch and, therefore, the transmission angle for the crossed branch is identical to that for the open branch.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-14-1
PROBLEM 4-14 Statement:
Find the minimum and maximum values of the transmission angle for all the Grashof crankrocker linkages in Table P4-1.
Given:
Table P4-1 data:
i 1 2 14 Row i
"a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" Solution: 1.
d
a
b
c
6 7 3 8 8 5 6 20 4 20 4 9 9 9
2 9 10 5 5 8 8 10 5 10 6 7 7 7
7 3 6 7 8 8 8 10 2 5 10 10 11 11
9 8 8 6 6 9 9 10 5 10 7 7 8 6
i
i
i
i
See Table P4-1 and Mathcad file P0414.
Determine which of the linkages in Table P4-1 are Grashof. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Row a
Condition( 6 2 7 9 ) "Grashof"
Row b
Condition( 7 9 3 8 ) "Grashof"
Row c
Condition( 3 10 6 8 ) "Grashof"
Row d
Condition( 8 5 7 6 ) "Special Grashof"
Row e
Condition( 8 5 8 6 ) "Grashof"
Row f
Condition( 5 8 8 9 ) "Grashof"
Row g
Condition( 6 8 8 9 ) "Grashof"
Row h
Condition( 20 10 10 10) "non-Grashof"
Row i
Condition( 4 5 2 5 ) "Grashof"
Row j
Condition( 20 10 5 10) "non-Grashof"
Row k
Condition( 4 6 10 7 ) "non-Grashof"
Row l
Condition( 9 7 10 7 ) "non-Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-14-2
Row m
Condition( 9 7 11 8 ) "non-Grashof"
Row n
Condition( 9 7 11 6 ) "non-Grashof"
2.
Determine which of the Grashof linkages are crank-rockers. To be a Grashof crank-rocker, the linkage must be Grashof and the shortest link is either 2 or 4. This is true of rows a, d, and e.
3.
Use equations 4.32 and 4.33 to calculate the maximum and minimum transmission angles.
Row a
i 1
b 2 c 2 d a 2 i i i i μ acos 2 b c i i
μ if μ
π 2
π μ μ
b 2 c 2 d a 2 i i i i μ acos 2 b c i i
Row d
i 4
π 2
π μ μ
b 2 c 2 d a 2 i i i i μ acos 2 b c i i
i 5
μ 25.209 deg
b 2 c 2 d a 2 i i i i μ acos 2 b c i i μ if μ
Row e
μ 58.412 deg
μ 0.000 deg
μ 25.209 deg
b 2 c 2 d a 2 i i i i μ acos 2 b c i i
μ if μ
π 2
π μ μ
b 2 c 2 d a 2 i i i i μ acos 2 b c i i
μ 44.049 deg
μ 18.573 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-15-1
PROBLEM 4-15 Statement:
Find the input angles corresponding to the toggle positions of the non-Grashof linkages in Table P4-1.
Given:
Table P4-1 data:
i 1 2 14 Row i
"a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" Solution: 1.
d
a
b
c
6 7 3 8 8 5 6 20 4 20 4 9 9 9
2 9 10 5 5 8 8 10 5 10 6 7 7 7
7 3 6 7 8 8 8 10 2 5 10 10 11 11
9 8 8 6 6 9 9 10 5 10 7 7 8 6
i
i
i
i
See Table P4-1 and Mathcad file P0415.
Determine which of the linkages in Table P4-1 are Grashof. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Row a
Condition( 6 2 7 9 ) "Grashof"
Row b
Condition( 7 9 3 8 ) "Grashof"
Row c
Condition( 3 10 6 8 ) "Grashof"
Row d
Condition( 8 5 7 6 ) "Special Grashof"
Row e
Condition( 8 5 8 6 ) "Grashof"
Row f
Condition( 5 8 8 9 ) "Grashof"
Row g
Condition( 6 8 8 9 ) "Grashof"
Row h
Condition( 20 10 10 10) "non-Grashof"
Row i
Condition( 4 5 2 5 ) "Grashof"
Row j
Condition( 20 10 5 10) "non-Grashof"
Row k
Condition( 4 6 10 7 ) "non-Grashof"
Row l
Condition( 9 7 10 7 ) "non-Grashof"
DESIGN OF MACHINERY - 5th Ed.
2.
SOLUTION MANUAL 4-15-2
Row m
Condition( 9 7 11 8 ) "non-Grashof"
Row n
Condition( 9 7 11 6 ) "non-Grashof"
There are six non-Grashof rows in the Table: Rows h, and j through n. For each row there are two possible arguments to the arccos function given in equation (4.37). They are: i 8
Row "h"
j 1
i
ai di bi ci 2
arg
j 1
2
2
2
b c
2 a d
i i
arg
j 2
i i
ai di bi ci 2
2
2
2
2 a d
Row "j"
i i
ai di bi ci 2
j 1
2
2
2
b c
2 a d
i i
j 2
2
2
2
2 a d
Row "k"
2
2
2
b c
2 a d
i i
j 2
2
2
2
b c
2 a d
i i
i 12
Row "l"
i i
ai di bi ci 2
j 1
2
2
2
b c
2 a d
i i
j 2
2
2
2
2 a d
Row "m"
2
2
2
b c
2 a d
i i
j 2
2
2
2 a d
i i
i i
a d
i i
ai di bi ci 2
arg
a d
i i
ai di bi ci 2
j 1
i i
j 5
i
arg
a d b c
i i
i 13
i i i i
ai di bi ci 2
arg
i i
a d
j 4
i
arg
i i
a d
i i
ai di bi ci 2
arg
a d
i i
ai di bi ci 2
j 1
i i
j 3
i
arg
a d b c
i i
i 11
i i i i
ai di bi ci 2
arg
i i
a d
j 2
i
arg
b c
i i
i 10
i i
a d
2
b c
i i
a d
i i
DESIGN OF MACHINERY - 5th Ed.
i 14
SOLUTION MANUAL 4-15-3
Row "n"
j 6
i
ai di bi ci 2
arg
j 1
2
2
2
b c
2 a d
i i
arg
j 2
2
2
2 a d
2
b c
i i
1.250 1.188 0.896 arg 0.960 0.960 0.833 3.
a d
i i
ai di bi ci 2
i i
i i
a d
i i
0.688 4.938 1.262 1.833 1.262 0.250
Choose the argument values that lie between plus and minus 1,
1 2
θ2h 75.5 deg
2 2
θ2j 46.6 deg
3 1
θ2k 26.4 deg
4 1
θ2l 16.2 deg
θ2h acos arg θ2j acos arg
θ2k acos arg θ2l acos arg
5 1
θ2m 16.2 deg
6 1
θ2n 33.6 deg
θ2m acos arg θ2n acos arg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-16a-1
PROBLEM 4-16a Statement:
The link lengths, gear ratio, phase angle, and the value of 2 for some geared fivebar linkages are defined in Table P4-4. The linkage configuration and terminology are shown in Figure P4-4. For row a, draw the linkage to scale and graphically find all possible solutions for angles 3 and 4.
Given:
Link 1
d 4 in
Link 2
a 1 in
Link 3
b 7 in
Link 4
c 9 in
Link 5
f 6 in
Gear ratio
λ 2.0
Phase angle
ϕ 30 deg
Input angle
θ 60 deg
Solution: 1.
See Mathcad file P0201.
Determine whether or not an idler is required. idler
"required" if λ 0 "not-required" otherwise
idler "required" 2.
Choose radii for gears 2 and 5 by making a design choice for their center distance (which must be increased if an idler is required). Let the standard center distance when no idler is required be C 0.5 c then C = r2 r5
and
λ =
r2 r5
Solving for r2 and r5, r5
C λ 1
r2 r5 λ
r5 1.500 in r2 3.000 in
If an idler is required, increase the center distance. C if idler = "required" C r5 C
C 6.000 in
Note that the amount by which C is increased if an idler is required is a design choice that is made based on the size of the gears and the space available. 3.
Using equation 4.27c, determine the angular position of link 5 corresponding to the position of link 2. θ λ θ ϕ
θ 150 deg
4.
Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.
5.
Draw link 2 to some convenient scale at its given angle.
6.
Draw a circle with center at the free end of link 2 and a radius equal to the given length of link 3.
7.
Locate pivot O4 on the x-axis at a distance from the origin equal to the given length of link 1.
8.
Draw link 5 to some convenient scale at its calculated angle.
9.
Draw a circle with center at the free end of link 5 and a radius equal to the given length of link 4.
10. The two intersections of the circles (if any) are the two solutions to the position analysis problem, crossed and open. If the circles don't intersect, there is no solution. 11. Draw links 3 and 4 in their two possible positions (shown as solid for open and dashed for crossed in the figure) and measure their angles 3 and 4 with respect to the x-axis. From the solution below,
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-16a-2
θ 173.64 deg
OPEN
θ 360 deg 177.715 deg θ 182.285 deg
CROSSED
θ 360 deg 115.407 deg
θ 360 deg 124.050 deg
θ 244.593 deg
θ 235.950 deg
12. Draw gears 2 and 5 schematically at their calculated radii. If an idler is required, draw it tangent to gears 2 and 5. Its diameter is a design choice that will be made on strength and space requirements. It does not affect the gear ratio.
y C
4
B
177.7152°
173.6421° 3
5 2
B`
124.0501° x
O2
3
150.0000°
115.4074°
4
O5
DESIGN OF MACHINERY - 5th ed.
SOLUTION MANUAL 4-17a-1
PROBLEM 4-17a Statement:
Given:
Solution: 1.
The link lengths, gear ratio, phase angle, and the value of 2 for some geared fivebar linkages are defined in Table P4-4. The linkage configuration and terminology are shown in Figure P4-4. For row a, using the vector loop method, find all possible solutions for angles 3 and 4. Link 1
d 4 in
Link 2
a 1 in
Link 3
b 7 in
Link 4
c 9 in
Link 5
f 6 in
Gear ratio
λ 2.0
Phase angle
ϕ 30 deg
Input angle
θ 60 deg
See Mathcad file P0417a.
Determine the values of the constants needed for finding 3 and 4 from equations 4.27h and 4.27i.
A 2 c d cos λ θ ϕ a cos θ f
2
A 36.6462 in 2
B 2 c d sin λ θ ϕ a sin θ
2
2
2
2
2
B 20.412 in
C a b c d f 2 a f cos θ 2 d a cos θ f cos λ θ ϕ 2 a d sin θ sin λ θ ϕ
2
C 37.4308 in
2
D C A
D 0.78461 in
E 2 B
E 40.823 in
F A C
F 74.077 in
2 2
a cosθ f
G 28.503 in
a sinθ
H 15.876 in
2
G 2 b d cos λ θ ϕ
2
H 2 b d sin λ θ ϕ
2
2.
2
2
2
2
K a b c d f 2 a f cos θ 2 d a cos θ f cos λ θ ϕ 2 a d sin θ sin λ θ ϕ
K 26.569 in
L K G
L 1.933 in
M 2 H
M 31.751 in
N G K
N 55.072 in
2
2 2
2
Use equations 4.28h and 4.28i to find values of 3 and 4 for the open and crossed circuits. OPEN
M 4 L N
E 4 D F
M 4 L N
E 4 D F
θ 2 atan2 2 L M θ 2 atan2 2 D E
CROSSED
θ 2 atan2 2 L M θ 2 atan2 2 D E
2
2
2
2
θ 173.642 deg θ 177.715 deg θ 115.407 deg θ 124.050 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18a-1
PROBLEM 4-18a Statement:
The angle between the X and x axes is 25 deg. Find the angular displacement of link 4 when link 2 rotates clockwise from the position shown (+37 deg) to horizontal (0 deg). How does the transmission angle vary and what is its minimum between those two positions? Find the toggle positions of this linkage in terms of the angle of link 2.
Given:
Link lengths: Crank
L2 116
Coupler
L3 108
Rocker
L4 110
Ground link
L1 174
Crank angle for position shown (relative to O2O4):
θ 62 deg
Y y
A
2
Crank rotation angle from position shown to horizontal:
37°
Δθ 37 deg 3 X O2
25°
B
O4
4
x
Solution: 1.
See Figure P4-5a and Mathcad file P0418a.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1
L1
K2
L2
K1 1.5000
2
L1
K3
L3
K2 1.6111
2
2
L2 L3 L4 L1
2
2 L2 L4
K3 1.7307
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ 2.
Determine 4 for the position shown and after the crank has moved to the horizontal position.
θ θ θ
θ θ θ Δθ 3.
θ 183.5 deg
θ 212.8 deg
Subtract the two values of 4 to find the angular displacement of link 3 when link 2 rotates clockwise from the position shown to the horizontal. θ θ
4.
2 4 A θ Cθ
B θ
29.2 deg
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
L1 L3
2
K5
2
2
L4 L1 L2 L3 2 L2 L3
2
K4 1.6111
K5 1.7280
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18a-2
D θ cos θ K1 K4 cos θ K5
5.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the crossed circuit.
θ θ 2 atan2 2 D θ E θ 6.
Determine 3 for the position shown and after the crank has moved to the horizontal position.
θ θ θ
θ 275.1 deg
θ θ θ Δθ 7.
2 4 Dθ F θ
E θ
θ 256.1 deg
Use equations 4.28 to find the transmission angles. μ π θ θ
μ 88.4 deg
μ θ θ
μ 43.4 deg
The transmission angle is smaller when the crank is in the horizontal position. 8.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition L1 L2 L3 L4 "non-Grashof" 9.
Using equations 4.37, determine the crank angles (relative to the XY axes) at which links 3 and 4 are in toggle. 2
arg1
2
2
2 L2 L1 2
arg2
2
L2 L1 L3 L4
2
2
2
L2 L1 L3 L4 2 L2 L1
L3 L4 L2 L1 L3 L4 L2 L1
θ2toggle acos arg2 The other toggle angle is the negative of this.
arg1 1.083
arg2 0.094
θ2toggle 95.4 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18b-1
PROBLEM 4-18b Statement:
Find and plot the angular position of links 3 and 4 and the transmission angle as a function of the angle of link 2 as it rotates through one revolution.
Given:
Link lengths: Wheel (crank)
L2 40
a L2
Coupler
L3 96
b L3
Rocker
L4 122
c L4
Ground link
L1 162
d L1
Two argument inverse tangent atan2( x y )
Y
return 0.5 π if x = 0 y 0 return atan
y
B
A
2
return 1.5 π if x = 0 y 0
y 3 X
if x 0 x
O2 4
y atan π otherwise x Solution: 1.
See Figure P4-5b and Mathcad file P0418b. O4
Check the Grashof condition of the linkage. Condition( a b c d )
x
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof" 2.
Define one cycle of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1
d
K2
a
K1 4.0500
2
d
K3
c
K2 1.3279
2
2
a b c d
2
2 a c
K3 3.4336
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ 4.
2 4 A θ Cθ
B θ
If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ
DESIGN OF MACHINERY - 5th Ed.
5.
SOLUTION MANUAL 4-18b-2
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2
K4 1.6875
2 a b
K5 2.8875
D θ cos θ K1 K4 cos θ K5
6.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the crossed circuit.
θ θ 2 atan2 2 D θ E θ 7.
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ
8.
Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link). Angular Displacement of Coupler & Rocker
Coupler or Rocker angle, deg
200
150
θ θ deg
100
θ θ deg
50
0
0
45
90
135
180
225
270
θ deg Crank angle, deg
9.
Use equations 4.32 to find the transmission angle.
Tran θ θ θ θ θ
Trans θ if Tran θ
π 2
π Tran θ Tran θ
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18b-3
10. Plot the transmission angle.
Transmission Angle 90
Transmission Angle, deg
80
Trans θ
70
deg 60
50
40
0
45
90
135
180 θ deg
Wheel angle, deg
225
270
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18c-1
PROBLEM 4-18c Statement:
Find and plot the position of any one piston as a function of the angle of crank 2 as it rotates through one revolution. Once one piston's motion is defined, find the motions of the other two pistons and their phase relationship to the first piston. Y
Given: L2 19
a L2
Piston-rod length L3 70
b L3
Crank length
6
3
2
5
8 X
c 0
Offset
4
Solution:
See Figure P4-5c and Mathcad file P0418c. 7
1.
Let pistons 1, 2, and 3 be links 7, 6, and 8, respectively.
2.
Solve first for piston 6. Establish 2 as a range variable: θ 0 deg 2 deg 360 deg
3.
Determine 3 and d using equations 4.16 and 4.17.
a sin θ b
θ θ asin
4.
c
d 1 θ a cos θ b cos θ θ
For each piston (slider) the crank angle is measured counter-clock-wise from the centerline of the piston, which goes through the O2 in all cases. Thus, when the crank angle for piston 1 is 0 deg, it is 120 deg for piston 2 and 240 deg for piston 3. Thus, the crank angles for pistons 2 and 3 are
θ θ θ 120 deg 5.
π
θ θ θ 240 deg
Determine 3 and d for pistons 2 and 3.
a sin θ θ b
θ θ asin
c
π
b cosθθ
d 2 θ a cos θ θ
a sin θ θ c π b
θ θ asin
b cosθθ
d 3 θ a cos θ θ
6.
Plot the piston displacements as a function of crank angle (referenced to line AC (see next page).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18c-2
Piston Displacement (1, 2, and 3) 90
Piston displacement, mm
80
d2 θ 70 d3 θ d1 θ
60
50
0
60
120
180
240
300
θ deg Piston 1 crank angle, deg.
The solid line is piston 1, the dotted line is piston 2, and the dashed line is piston 3.
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18d-1
PROBLEM 4-18d Statement:
Find the total angular displacement of link 3 and the total stroke of the box as link 2 makes a complete revolution.
Given:
Ground link
L1 150
Input crank
L2 30
Coupler link
L3 150
Output crank
L4 30
Solution:
See Figure P4-5d and Mathcad file P0418d.
Y 3 2
B
A
O2
O4
X A 4
1.
This is a special-case Grashof mechanism in the parallelogram form (see Figure 2-17 in the text). As such, the coupler link 3 executes curvilinear motion and is always parallel to the ground link 1. Thus, the total angular motion of link 3 as crank 2 makes one complete revolution is zero degrees.
2.
The stroke of the box will be equal to twice the length of the crank link in one complete revolution of the crank stroke 2 L2
stroke 60
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18e-1
PROBLEM 4-18e Statement:
Determine the ratio of angular displacement between links 8 and 2 as a function of angular displacement of input crank 2. Plot the transmission angle at point B for one revolution of crank 2. Comment on the behavior of this linkage. Can it make a full revolution as shown?
Given:
Link lengths:
Crank (O2A)
a 1 20
Coupler (L3)
b 1 160
Crank (O4B)
c1 20
B
A
Ground link (O2O4) d 1 160
O2
3
4 O4 G
E
2 D
5
C
6
7
Ground link (O4O8) d 2 120
Solution:
Crank (O4G)
a 2 30
Coupler (L6)
b 2 120
Crank (O8F)
c2 30
O8 H
F 8
See Figure P4-5e and Mathcad file P0418e.
1.
This is an eightbar, 1-DOF linkage with two redundant links (3 and 6 or 5 and 7) making it, effectively, a sixbar. It is composed of a fourbar (1, 2, 3, and 4) with an output dyad (7 and 8). The input fourbar is a special-case Grashof in the parallelogram configuration. Thus, the output angle is equal to the input angle and the couplers execute curvilinear motion with links 3 and 5 always parallel to the horizontal. The output dyad also behaves like a special-case Grashof with parallelogram configuration so that the angular motion of link 8 is equal to that of link 4. Therefore, the ratio of angular displacement between links 8 and 2 is unity. The mechanism is not capable of making a full revolution. The couplers 3 and 5 (also 6 and 7) cannot pass by each other near 2 = 0 and 180 deg because of interference with the pins that connect them to their cranks.
2.
Define the approximate range of motion of the input crank: θ 0 deg 2 deg 180 deg
3.
Define 3 and 4.
θ 0.deg
Use equations 4.32 to find and plot the transmission angle.
tran θ θ θ θ
Tran θ if tran θ π tran θ π tran θ
Trans θ if Tran θ
π 2
π Tran θ Tran θ
Transmission Angle at B Transmission Angle, deg
4.
θ θ θ
90 80 70 60 Trans θ 50 40 deg 30 20 10 0
0
45
90 θ deg Crank angle, deg
135
180
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18f-1
PROBLEM 4-18f Statement:
Find and plot the displacement of piston 4 and the angular displacement of link 3 as a function of the angular displacement of crank 2.
Given:
Link lengths: Crank length, L2
Solution:
a 63
Piston-rod length, L3
b 130
Offset
c 52
4
B Y, x
3
See Figure P4-5f and Mathcad file P0418f.
1.
Establish 2 as a range variable: θ 0 deg 1 deg 360 deg
2.
Determine 3 and d in global XY coord using equations 4.16 and 4.17.
A
a sin θ 90 deg c θ θ asin π b
2 y
X
O2
d θ a cos θ 90 deg b cos θ θ
Plot the piston displacement (directly below) and rod angle (next page) as functions of crank angle in the global XY coordinate frame. Piston Displacement 200
150 Piston displacement, mm
3.
d θ 100
50
0
0
60
120
180 θ deg Crank angle, deg.
240
300
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18f-2
Piston-Rod Angular Displacement 260
Angular displacement, deg
240
220
θ θ deg
200
180
160
0
60
120
180 θ deg Crank angle, deg.
240
300
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18g-1
PROBLEM 4-18g Statement:
Find and plot the angular displacement of link 6 versus the angle of input link 2 as it is rotated from the position shown (+30 deg) to a vertical position (+90 deg). Find the toggle positions of this linkage in terms of the angle of link 2.
Given:
Link lengths:
Y
Input (L2)
a 49
Rocker (L4)
c 153
B
Coupler (L3)
b 100
Ground link (L1)
d 87
3 30° A
2 4
Angle from x axis to X axis:
α 121 deg
Starting angle:
θ 30 deg
Crank rotation angle from position shown to vertical:
Solution:
O6
X
6
C O2 5
D
y
O4
Δθ 60 deg
x
121°
See Figure P4-5g and Mathcad file P0418g.
1.
Define one cycle of the input crank in global coord: θ θ θ 1 deg θ Δθ
2.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1
d
K2
a
K1 1.7755
2
d
K3
c
K2 0.5686
2
2
a b c d
2
2 a c
K3 1.5592
A θ cos θ α K1 K2 cos θ α K3
θ θ 2 atan2 2 A θ B θ 3.
C θ K1 K2 1 cos θ α K3
B θ 2 sin θ α
2 4 A θ Cθ α
B θ
If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ
4.
Plot 4 as a function of the crank angle 2 (measured from the X-axis) as it rotates from the position shown to the vertical position.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18g-2
Angular Displacement of Rocker Link 4 120
Rocker angle, deg
110
θ θ
100
deg
90
80 30
40
50
60
70
80
90
θ deg Crank angle, deg
4.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" 5.
Using equations 4.37, determine the crank angles (relative to the x-axis) at which links 3 and 4 are in toggle. 2
arg1
2
2
2 a d 2
arg2
2
a d b c
2
2
a d b c 2 a d
θ2toggle acos arg1
2
b c a d b c a d
arg1 0.840
arg2 6.338
θ2toggle 32.9 deg
The other toggle angle is the negative of this. Thus, in the global XY frame the toggle positions are:
θ2XYtoggle θ2toggle α
θ2XYtoggle 88.130 deg
θ2XYtoggle θ2toggle α
θ2XYtoggle 153.870 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-18h-1
PROBLEM 4-18h Statement:
Find link 4's maximum displacement vertically downward from the position shown. What will the angle of input link 2 be at that position?
Given:
Link lengths:
c2
a 19.8 mm
Crank length, L2 or L8
Solution:
Coupler length, L3 or L5
b1 19.4 mm
Offset of 1, 2, 3, 4
c1 4.5 mm
Distance from O2 to O8
L1 45.8 mm
Coupler length, L5 or L7
b2 13.3 mm
Offset of 1, 2, 5, 6
c2 22.9 mm
Angle of link 2 as shown
θ 47 deg
6
O2
O8
A
2
8
7
5
C
B
9
3
4
D
E
c1
See Figure P4-5h and Mathcad file P0418h.
1.
Links 1, 2, 3, 4, 5, and 6 make up two offset slider-cranks with a common crank, link 2. Links 7, 8, and 9 are kinematically redundant and contribute only to equalizing the forces in the mirror image links. Slider-crank 1, 2, 3, 4 is in the open circuit, and slider-crank 1, 2, 5, 6 is in the crossed circuit.
2.
Calculate the displacement of link 4 with respect to link 2 angle for the position shown in Figure P4-5h using equations 4.17 and 4.16b.
a sin θ c1 π b1
θ 149.038 deg
d 10 30.14 mm
θ asin
d 10 a cos θ b1 cos θ 3.
Link 4 will reach its maximum downward displacement when links 8 and 9 and links 2 and 3 are in the toggle position. However, it is possible that they may not be able to reach this position because links 5 and 7 may be too short to allow links 2 and 8 to rotate far enough to reach toggle with 3 and 9, respectively.
4.
Using equation 4.16a, determine the angle that the crank will make with the x axis (see layout below) when links 5 and 7 are horizontal (5 = -90 deg). This will be the least value of the angle 2.
a sin θ c2 θ asin b2
22.9 = c2 O2
y
θ 90 deg
A
a b2
29.0°
sin θ 1.000
a sin θ c2 b2
B
47°
A'
D' b1
1.000
c2 b2 θ asin a
D 5.90 D'
θ 29.00 deg 4.5= c1
DESIGN OF MACHINERY - 5th Ed.
5.
SOLUTION MANUAL 4-18h-2
Use equations 4.17 and 4.16b to determine the displacement of D' with respect to O2.
a sin θ c1 π b1
θ 164.759 deg
d 1 36.03 mm
θ asin
d 1 a cos θ b1 cos θ 6.
The maximum displacement of link 4 from the position shown in Figure P4-5h is the difference between the displacement found in step 5 and that found in step 2.
Δdmax d 1 d 10
Δdmax 5.90 mm
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-19-1
PROBLEM 4-19 Statement:
For one revolution of the driving link 2 of the walking-beam indexing and pick-and-place mechanism in Figure P4-6, find the horizontal stroke of link 3 for the portion of their motion where their tips are above the platen. Express the stroke as a percentage of the crank length O2B. What portion of a revolution of link 2 does this stroke correspond to? Also find the total angular displacement of link 6 over one revolution of link 2.
Given:
Measured lengths: Input crank length (O2A)
a 40
Coupler length (L3)
b 108
Output crank length (L4)
c 40
95
Q
3
A
64
2
4
O4
p 119.81
Coupler data (finger at Q) Distance from O2 to the platen surface
1.
D
C
Ground link length (O2O4) d 108
Solution:
73
E
6
δ 37.54 deg e 64
B
O2
7
O6 O5 185
See Figure P4-6 and Mathcad file P0419.
Links 1, 2, 3 and 4 are a special-case Grashof linkage in the parallelogram form. The tip of the finger at point Q (left end of the coupler) is used as the coupler point. The distance from the tip to the platen is . Top platen surface Q p
b D
A a
c d
x
O2
O4
y
2.
Define the crank angle as a range variable and define 3 ,which is constant because the coupler has curvilinear motion.. θ 0 deg 1 deg 360 deg θ 0 deg
3.
82
5
Use equations 4.27 to define the y-component of the vector RP. RP RA RPA
RA a cos θ j sin θ
RPA p cos θ δ j sin θ δ
RPy θ a sin θ p sin θ δ
DESIGN OF MACHINERY - 5th Ed.
4.
SOLUTION MANUAL 4-19-2
Define the distance of point Q above the platen (note the direction of the positive y axis in the figure above).
ε θ e RPy θ 5.
Plot as a function of crank angle 2. Height of Q Above Platen 60
14
168
Height Above Platen
40
20
ε θ
0
20
40
0
60
120
180
240
300
360
θ deg
6.
From the graph we see that the coupler point Q is above the platen when the crank angle is greater than 168 deg and less than 14 deg. To find the horizontal stroke during that range of 2, calculate the x-components of any point on the coupler, say point A, for those two crank angles and subtract them. Ax1 a cos( 14 deg)
Ax1 38.812
Ax2 a cos( 168 deg)
Ax2 39.126
Horizontal stroke when above the platen normalized by dividing by the crank length Stroke 7.
Ax1 Ax2
Stroke 1.95
a
times the crank length
Links 1, 4, 5, and 6 constitute a Grashoff crank-rocker-rocker. The extreme positions of the output rocker (link 6) occur when links 4 and 5 are in extended and overlapping toggle positions (see Figure 3-1b in the text for example, but in this case the mechanism is in the crossed circuit). C2
29.609°
C1
6
O6
B1
O5 5
B2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-19-3
Given link lengths: LO5B 13
L7 193
LO6C 92
LO5O6 128
In the first position (links 5 and 7 extended), the angle between link 6 and the ground link is:
L 2 L 2 L L 2 O6C O5O6 O5B 7 α acos L 2 L O6C O5O6
α 138.312 deg
In the second position (links 5 and 7 overlapping), the angle between link 6 and the ground link is:
LO6C2 LO5O62 L7 LO5B 2 α acos 2 LO6C LO5O6
α 108.702 deg
The total angular displacement of link 6 is the difference between these two angles.
Δ12 α α
Δ12 29.609 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-20-1
PROBLEM 4-20 Statement:
Figure P4-7 shows a power hacksaw, used to cut metal. Link 5 pivots at O5 and its weight forces the saw blade against the workpiece while the linkage moves the blade (link 4) back and forth on link 5 to cut the part. It is an offset slider-crank mechanism. The dimensions are shown in the figure. For one revolution of the driving link 2 of the hacksaw mechanism on the cutting stroke, find and plot the horizontal stroke of the saw blade as a function of the angle of link 2.
Given:
Link Lengths:
3
Crank length, L2
a 75 mm
Coupler length, L3
b 170 mm
Offset
c 45 mm
B
A 4
5
2 O2 O5
1
Assumptions: The arm that guides the slider (hacksaw blade carrier) remains horizontal throughout the stroke. Solution:
See Figure P4-7 and Mathcad file P0420.
1.
This is a slider-crank mechanism in the crossed circuit. The offset is the vertical distance from the horizontal centerline through O2 to point B.
2.
Establish 2 as a range variable: θ 0 deg 2 deg 360 deg
3.
Determine 3 and d using equations 4.16a and 4.17.
a sin θ c b
θ θ asin
d θ a cos θ b cos θ θ
Plot the blade (point B) displacement as a function of crank angle. Hacksaw Blade Stroke 50
100 Blade displacement, mm
4.
d θ
150
mm
200
250
0
60
120
180 θ deg Crank angle, deg.
240
300
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-21-1
PROBLEM 4-21 Statement:
Given:
For the linkage in Figure P4-8, find its limit (toggle) positions in terms of the angle of link O2A referenced to the line of centers O2O4 when driven from link O2A. Then calculate and plot the xy coordinates of coupler point P between those limits, referenced to the line of centers O2O4. P Link lengths: Input (O2A)
a 5.00 in
Coupler (AB)
b 4.40 in
Rocker (O4B)
c 5.00 in
Ground link
d 9.50 in
y
Y
Coupler point data:
B
p 8.90 in δ 56 deg
3 A
4
Coordinate transformation angle: x
2
α 14 deg
O4 1
14.000° X
O2
See Figure P4-8 and Mathcad file P0421. Solution: 1. Define the coordinate systems. The local frame has origin at O2 with the positive x axis going through O4. Let the global frame also have its origin at O2 with the positive X axis to the right. 2.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" 3.
Using equations 4.37, determine the crank angles (relative to the line AD) at which links 3 and 4 are in toggle. 2
arg1
2
2
2 a d 2
arg2
2
a d b c 2
2
a d b c 2 a d
2
b c a d b c a d
θ2toggle acos arg2
arg1 1.209 arg2 0.283
θ2toggle 73.6 deg
The other toggle angle is the negative of this. 4.
Define one cycle of the input crank between limit positions: θ θ2toggle θ2toggle 1 deg θ2toggle
5.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.
DESIGN OF MACHINERY - 5th Ed.
K1
SOLUTION MANUAL 4-21-2
d a
K1 1.9000
2
d
K4
K5
b
K4 2.1591
2
2
c d a b
2
2 a b
K5 2.4911
D θ cos θ K1 K4 cos θ K5
6.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the open circuit.
2 4 Dθ F θ
θ θ 2 atan2 2 D θ E θ 7.
E θ
Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
RA a cos θ j sin θ
RPA p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ 8.
Transform the coupler point coordinates in the local frame to the global frame using coordinate transformation equations.
XP θ RPx θ cos α RPy θ sin α YP θ RPx θ sin α RPy θ cos α Plot the coordinates of the coupler point in the global system.
COUPLER CURVE 1.2
1
0.8
Y
9.
RPy θ a sin θ p sin θ θ δ
0.6
0.4
0.2
0 0.4
0.2
0
0.2 X
0.4
0.6
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-22-1
PROBLEM 4-22 Statement:
For the walking beam mechanism of Figure P4-9, calculate and plot the x and y components of the position of the coupler point P for one complete revolution of the crank O2A. Hint: Calculate them first with respect to the ground link O2O4 and then transform them into the global XY coordinate system (i.e., horizontal and vertical in the figure).
Given:
Link lengths:
Coupler point data:
Ground link
d 2.22
Crank
a 1
Coupler
b 2.06
Rocker
c 2.33
1.
δ 31.000 deg
α 26.5 deg
Coordinate transformation angle: Solution:
p 3.06
See Figure P4-9 and Mathcad file P0422.
Define the coordinate systems. The local frame has origin at O2 with the positive x axis going through O4. Let the global frame also have its origin at O2 with the positive X axis to the right. Y
x
y O4 4
1
26.500° X
O2
P
2 A 3 B
2.
Define one revolution of the input crank: θ 0 deg 2 deg 360 deg
3.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1
d
K4
a
K1 2.2200
2
d
K5
b
K4 1.0777
2
2 a b
K5 1.1512
D θ cos θ K1 K4 cos θ K5
4.
Use equation 4.13 to find values of 3 for the crossed circuit.
θ θ 2 atan2 2 D θ E θ 5.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
2 4 Dθ F θ
E θ
Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
2
c d a b
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-22-2
RA a cos θ j sin θ
RPA p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ 6.
Transform the coupler point coordinates in the local frame to the global frame using coordinate transformation equations.
XP θ RPx θ cos α RPy θ sin α YP θ RPx θ sin α RPy θ cos α Plot the coordinates of the coupler point in the global system.
COUPLER CURVE 0.5
0
Y
7.
RPy θ a sin θ p sin θ θ δ
0.5
1
1.5
2
2.5
3
3.5 X
4
4.5
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-23-1
PROBLEM 4-23 Statement:
For the linkage in Figure P4-10, calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O2A for one revolution.
Given:
Link lengths:
B
y 3
Ground link
d 2.22
Crank
a 1.0
Coupler
b 2.06
Rocker
c 2.33
b
Coupler point data: p 3.06
P p
A
δ 31.00 deg
2
a
4
2
4
c d
Solution:
x
1
O2
O4
See Figure P4-10 and Mathcad file P0423.
1.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
2.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1
d a
K1 2.2200
d
K2
2
K3
c
K2 0.9528
2
2
a b c d
2
2 a c
K3 1.5265
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 3.
B θ
If the calculated value of 4 is greater than 2, subtract 2 from it.
θ θ if θ θ 2 π θ θ 2 π θ θ 4.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2
K4 1.0777
2 a b
D θ cos θ K1 K4 cos θ K5
5.
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 6.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it.
θ θ if θ θ 2 π θ θ 2 π θ θ
K5 1.1512
DESIGN OF MACHINERY - 5th Ed.
7.
SOLUTION MANUAL 4-23-2
Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link). Angular Displacement of Coupler 240
Coupler angle, deg
260
280
θ θ deg
300 320 340
0
60
120
180
240
300
360
300
360
θ deg Crank angle, deg
Angular Displacement of Rocker 200
Rocker angle, deg
220
θ θ
240
deg 260
280
0
60
120
180
240
θ deg Crank angle, deg
8.
Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
RA a cos θ j sin θ
RPA p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ 9.
RPy θ a sin θ p sin θ θ δ
Plot the coordinates of the coupler point in the local xy coordinate system.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-23-3
COUPLER POINT CURVE 3
2.5
Y
2
1.5
1
0.5 1.5
2
2.5
3 X
3.5
4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-24-1
PROBLEM 4-24 Statement:
For the linkage in Figure P4-11, calculate and plot the angular displacement of links 3 and 4 with respect to the angle of the input crank O2A for one revolution.
Given:
Link lengths: Link 2
a 2.00 in
Link 3
b 8.375 in
Link 4
c 7.187 in
Link 1
d 9.625 in
A 3 2
B
2
O2 4
1
O4
Solution:
See Figure P4-11 and Mathcad file P0424.
1.
Define one revolution of the input crank: θ 0 deg 2 deg 360 deg
2.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1
d a
K1 4.8125
2
d
K2
K3
c
K2 1.3392
2
2
a b c d
2
2 a c
K3 2.7186
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 3.
B θ
If the calculated value of 4 is greater than 2, subtract 2 from it.
θ θ if θ θ 2 π θ θ 2 π θ θ 4.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2
K4 1.1493
2 a b
D θ cos θ K1 K4 cos θ K5
5.
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 6.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it.
θ θ if θ θ 2 π θ θ 2 π θ θ
K5 3.4367
DESIGN OF MACHINERY - 5th Ed.
Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link).
Angular Displacement of Coupler
Coupler angle, deg
290
300
310
320
330
0
60
120
180
240
300
360
300
360
Crank angle, deg
Angular Displacement of Rocker 220
230 Rocker angle, deg
7.
SOLUTION MANUAL 4-24-2
240
250
260
0
60
120
180 Crank angle, deg
240
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-25-1
PROBLEM 4-25 Statement:
For the linkage in Figure P4-12, find its limit (toggle) positions in terms of the angle of link O2A referenced to the line of centers O2O4 when driven from link O2A. Then calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O2A over its possible range of motion referenced to the line of centers O2O4.
Given:
Link lengths: Input (O2A)
a 0.785
Coupler (AB)
b 0.356
Rocker (O4B)
c 0.950
Ground link
d 0.544
A
1.
B
158.286° c
a O2
Coupler point data: p 1.09 Solution:
b
O4
d
δ 0 deg
See Figure P4-12 and Mathcad file P0425.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof" 2.
double rocker
Using the geometry defined in Figure 3-1a in the text, determine the input crank angles (relative to the line O2O4) at which links 2 and 3, and 3 and 4 are in toggle.
d2 ( a b ) 2 c2 θ acos 2 d ( a b)
θ 55.937 deg
a2 d 2 ( b c) 2 2 a d
θ acos 3.
θ 158.286 deg
Define one cycle of the input crank between limit positions: θ θ θ 1 deg θ
4.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1
d
K2
a
K1 0.6930
2
d
K3
c
K2 0.5726
K3 1.1317
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ
2 4 A θ Cθ
B θ
2
2
a b c d 2 a c
2
DESIGN OF MACHINERY - 5th Ed.
5.
SOLUTION MANUAL 4-25-2
If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 6.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2
d
K4
K5
b
2
2
c d a b
2
K4 1.5281
2 a b
K5 0.2440
D θ cos θ K1 K4 cos θ K5
7.
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 8.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 9.
Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link). Angular Displacement of Coupler & Rocker
Coupler or Rocker angle, deg
360 300 240 180 120 60 0 50
60
70
80
90
100
110
120
130
Crank angle, deg Coupler Rocker
10. Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
RA a cos θ j sin θ
140
150
160
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-25-3
RPA p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ
11. Plot the coordinates of the coupler point in the local xy coordinate system.
COUPLER POINT PATH
Coupler Point Coordinate - y
2
1.5
1
0.5
0
0
0.5
RPy θ a sin θ p sin θ θ δ
1
Coupler Point Coordinate - x
1.5
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-26-1
PROBLEM 4-26 Statement:
For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle of link O2A referenced to the line of centers O2O4 when driven from link O2A. Then calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O2A over its possible range of motion referenced to the line of centers O2O4.
Given:
Link lengths: a 0.86
Input (O2A) Coupler (AB)
b 1.85
Rocker (O4B)
c 0.86
Ground link
d 2.22
1.
B c
a O2
Coupler point data: p 1.33 Solution:
116.037° b
A
O4
d
δ 0 deg
See Figure P4-13 and Mathcad file P0426.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" 2.
Using equations 4.33, determine the crank angles (relative to the line AD) at which links 3 and 4 are in toggle. 2
arg1
2
2
2 a d 2
arg2
2
a d b c
2
2
a d b c 2 a d
2
b c
arg1 1.228
a d b c
arg2 0.439
a d
θ2toggle acos arg2
θ2toggle 116.037 deg
The other toggle angle is the negative of this. 3.
Define one cycle of the input crank between limit positions: θ θ2toggle θ2toggle 1 deg θ2toggle
4.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1
d
K2
a
K1 2.5814
d c
K2 2.5814
2
K3
K3 2.0181
A θ cos θ K1 K2 cos θ K3
B θ 2 sin θ
2
2
a b c d
C θ K1 K2 1 cos θ K3
2 a c
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-26-2
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 5.
B θ
If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 6.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2
d
K4
K5
b
2
2
c d a b
2
K4 1.2000
2 a b
K5 2.6244
D θ cos θ K1 K4 cos θ K5
7.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 8.
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 9.
Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link). Angular Displacement of Coupler & Rocker
Coupler or Rocker angle, deg
360 300 240 180 120 60 0 120
80
40
0
40
Crank angle, deg Coupler Rocker
10. Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
RA a cos θ j sin θ
80
120
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-26-3
RPA p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ
11. Plot the coordinates of the coupler point in the local xy coordinate system.
COUPLER POINT PATH 1
Y
0.5
0
0.5 0.5
1
RPy θ a sin θ p sin θ θ δ
1.5 X
2
2.5
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-27-1
PROBLEM 4-27 Statement:
For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle of link O4B referenced to the line of centers O4O2 when driven from link O4B. Then calculate and plot the angular displacement of links 2 and 3 and the path coordinates of point P with respect to the angle of the input crank O4B over its possible range of motion referenced to the line of centers O4O2.
Given:
Link lengths:
116.037° b 3 4
a 0.86
Input (O4B)
b 1.85
Coupler (AB) Rocker (O2A)
c 0.86
Ground link
d 2.22
x
Coupler point data: p 0.52
c A
O2
B a O4
d
δ 0 deg y
Solution: 1.
See Figure P4-13 and Mathcad file P0427.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" 2.
Using equations 4.33, determine the crank angles (relative to the line O4O2) at which links 2 and 3 are in toggle. 2
arg1
2
2
2 a d 2
arg2
2
a d b c
2
2
a d b c 2 a d
2
b c a d b c a d
θ4toggle acos arg2
arg1 1.228
arg2 0.439
θ4toggle 116.037 deg
The other toggle angle is the negative of this. 3.
Define one cycle of the input crank between limit positions: θ θ4toggle θ4toggle 1 deg θ4toggle
4.
Use equations 4.8a and 4.10 to calculate 2 as a function of 4 (for the open circuit). K1
d a
K2
d c
2
K3
K1 2.5814
K2 2.5814
B θ 2 sin θ
C θ K1 K2 1 cos θ K3
A θ cos θ K1 K2 cos θ K3
2
2
a b c d
K3 2.0181
2 a c
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-27-2
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 5.
B θ
If the calculated value of 2 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 6.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2
d
K4
b
K5
2
2
c d a b
2
K4 1.2000
2 a b
K5 2.6244
D θ cos θ K1 K4 cos θ K5
7.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 8.
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 9.
Plot 3 and 2 as functions of the crank angle 4 (measured from the ground link). Angular Displacement of Coupler & Rocker
Coupler or Rocker angle, deg
360 300 240 180 120 60 0 120
80
40
0
40
Crank angle, deg Coupler Rocker
10. Use equations 4.31 to define the x- and y-components of the vector RP. RP RB RPB
RB a cos θ j sin θ
80
120
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-27-3
RPB p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ
11. Plot the coordinates of the coupler point in the local xy coordinate system. COUPLER POINT PATH 1
Y
0.5
0
0.5
1
0
0.25
0.5
RPy θ a sin θ p sin θ θ δ
0.75 X
1
1.25
1.5
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-28-1
PROBLEM 4-28 Statement:
For the rocker-crank linkage in Figure P4-14, find the maximum angular displacement possible for the treadle link (to which force F is applied). Determine the toggle positions. How does this work? Explain why the grinding wheel is able to fully rotate despite the presence of toggle positions when driven from the treadle. How would you get it started if it was in a toggle position?
Given:
Link lengths:
x
Input (O2A)
a 600 mm
Coupler (AB)
b 750 mm
Rocker (O4B)
c 130 mm
Ground link
d 900 mm
B
B''
c
O4
B'
b
d
43.331° A'' 25.182° a
A
O2
A'
y
Solution: 1.
See Figure P4-14 and Mathcad file P0428.
Use Figure 3-1(b) in the text to calculate the angles that link O2A makes with the ground link in the toggle positions.
a2 d 2 ( b c) 2 θ acos 2 a d
θ 43.331 deg
a2 d 2 ( b c) 2 2 a d
θ 68.513 deg
θ acos 2.
Subtract these two angles to get the maximum angular displacement of the treadle. θ θ
3.
25.182 deg
Despite having transmission angles of 0 deg twice per revolution, the mechanism will work. That is, one will be able to drive the grinding wheel from the treadle (link 2). The reason is that the grinding wheel will act as a flywheel and will carry the linkage through the periods when the transmission angle is low. Typically, the operator will start the motion by rotating the wheel by hand if it is in or near a toggle position.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-29-1
PROBLEM 4-29 Statement:
For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle of link O2A referenced to the line of centers O2O4 when driven from link O2A. Then calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O2A over its possible range of motion referenced to the line of centers O2O4.
Given:
Link lengths: Input (O2A)
a 0.72
Coupler (AB)
b 0.68
Rocker (O4B)
c 0.85
Ground link
d 1.82
P A B
Coupler point data: p 0.97
1.
O4
O2
δ 54 deg Solution:
55.355°
See Figure P4-15 and Mathcad file P0429.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" 2.
Using equations 4.37, determine the crank angles (relative to the line AD) at which links 3 and 4 are in toggle. 2
arg1
2
2
2 a d 2
arg2
2
a d b c 2
2
a d b c 2 a d
2
b c
arg1 1.451
a d b c
arg2 0.568
a d
θ2toggle acos arg2
θ2toggle 55.355 deg
The other toggle angle is the negative of this. 3.
Define one cycle of the input crank between limit positions: θ θ2toggle θ2toggle 0.5 deg θ2toggle
4.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1
d a
K1 2.5278
K2
d c
K2 2.1412
2
K3
K3 3.3422
A θ cos θ K1 K2 cos θ K3
B θ 2 sin θ
2
2
a b c d
C θ K1 K2 1 cos θ K3
2 a c
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-29-2
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 5.
B θ
If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 6.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2
K4 2.6765
2 a b
K5 3.6465
D θ cos θ K1 K4 cos θ K5
7.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of θ3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 8.
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 9.
Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link).
Angular Displacement of Coupler & Rocker
Coupler or Rocker angle, deg
360 300 240 180 120 60 0 60
45
30
15
0
15
30
Crank angle, deg Coupler Rocker
10. Use equations 4.27 to define the x- and y-components of the vector RP. RP RA RPA
45
60
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-29-3
RA a cos θ j sin θ
RPA p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ
11. Plot the coordinates of the coupler point in the local xy coordinate system.
COUPLER POINT PATH 1.4
1.2
Y
1
0.8
0.6
0.4
0.2 0.2
0.4
0.6
RPy θ a sin θ p sin θ θ δ
0.8 X
1
1.2
1.4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-30-1
PROBLEM 4-30 Statement:
For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle of link O4B referenced to the line of centers O4O2 when driven from link O4B. Then calculate and plot the angular displacement of links 2 and 3 and the path coordinates of point P with respect to the angle of the input crank O4B over its possible range of motion referenced to the line of centers O4O2.
Given:
Link lengths: Input (O4B)
a 0.85
Coupler (AB)
b 0.68
Rocker (O2A)
c 0.72
Ground link
d 1.82
P 47.885° c
Coupler point data: p 0.792 δ 82.032 deg Solution: 1.
B A
a
b
O4
O2
See Figure P4-15 and Mathcad file P0430.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" 2.
Using equations 4.37, determine the crank angles (relative to the line O4O2) at which links 2 and 3 are in toggle. 2
arg1
2
2
2 a d 2
arg2
2
a d b c 2
2
a d b c 2 a d
θ4toggle acos arg2
2
b c
arg1 1.304
a d b c
arg2 0.671
a d
θ4toggle 47.885 deg
The other toggle angle is the negative of this. 3.
Define one cycle of the input crank between limit positions: θ θ4toggle θ4toggle 0.5 deg θ4toggle
4.
Use equations 4.8a and 4.10 to calculate 2 as a function of 4 (for the open circuit). K1
d
K2
a
K1 2.1412
d c
K2 2.5278
2
K3
K3 3.3422
A θ cos θ K1 K2 cos θ K3
B θ 2 sin θ
2
2
a b c d
C θ K1 K2 1 cos θ K3
2 a c
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-30-2
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 5.
B θ
If the calculated value of 2 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 6.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2
K4 2.6765
2 a b
K5 3.4420
D θ cos θ K1 K4 cos θ K5
7.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 8.
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 9.
Plot 3 and 2 as functions of the crank angle 4 (measured from the ground link). Angular Displacement of Coupler & Rocker
Coupler or Rocker angle, deg
360 300 240 180 120 60 0 60
45
30
15
0
15
30
Crank angle, deg Coupler Rocker
10. Use equations 4.27 to define the x- and y-components of the vector RP. RP RB RPB
45
60
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-30-3
RB a cos θ j sin θ
RPB p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ
11. Plot the coordinates of the coupler point in the local xy coordinate system.
COUPLER POINT PATH 1.5
Y
1
0.5
0
0
0.2
0.4
0.6 X
RPy θ a sin θ p sin θ θ δ
0.8
1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-31-1
PROBLEM 4-31 Statement:
Write a computer program (or use an equation solver such as Mathcad, Matlab, or TKSolver) to find the roots of y = 9x2 + 50x - 40. Hint: Plot the function to determine good guess values.
Solution:
See Mathcad file P0431.
1.
Plot the function. 2
x 10 9.5 10
f ( x) 9 x 50 x 40
200
100
f ( x)
0
100
200 10
8
6
4
2
0
2
x
2.
From the graph, make guesses of x1 6 , x2 1
3.
Define the program using the pseudo code in the text. nroot( f df x)
y f ( x) y TOL
return x if
while y TOL xx
y df ( x)
y f ( x) x
where,
3
TOL 1.000 10
4.
Define the derivative of the given function. df ( x) 18 x 50
5.
Use the program to find the roots. r1 nroot f df x1
r1 6.265
r2 nroot f df x2
r2 0.709
4
6
8
10
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-32-1
PROBLEM 4-32 Statement:
Write a computer program (or use an equation solver such as Mathcad, Matlab, or TKSolver) to find the roots of y = -x3 - 4x2 + 80x - 40. Hint: Plot the function to determine good guess values.
Solution:
See Mathcad file P0432.
1.
Plot the function. 3
x 15 14.5 10
2
f ( x) x 4 x 80 x 40
200
100
f ( x)
0
100
200 20
15
10
5
0
x
2.
From the graph, make guesses of x1 11 , x2 0 , x3 7
3.
Define the program using the pseudo code in the text. nroot( f df x)
y f ( x) y TOL
return x if
while y TOL xx
y df ( x)
y f ( x) x
where,
3
TOL 1.000 10
2
4.
Define the derivative of the given function. df ( x) 3 x 8 x 80
5.
Use the program to find the roots. r1 nroot f df x1
r1 11.355
r2 nroot f df x2
r2 0.515
r3 nroot f df x3
r3 6.840
5
10
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-33-1
PROBLEM 4-33 Statement:
Figure 4-18 (p. 193) plots the cubic function from equation 4.34. Write a computer program (or use an equation solver such as Mathcad, Matlab, or TKSolver) to investigate the behavior of the Newton-Raphson algorithm as the initial guess value is varied from x = 1.8 to 2.5 in steps of 0.1. Determine the guess value at which the convergence switches roots. Explain this root-switching phenomenon based on your observations from this exercise.
Solution:
See Figure 4-18 and Mathcad file P0433.
1.
Define the range of the guess value, the function, and the derivative of the function. xguess 1.8 1.9 2.5 3
2
2
f ( x) x 2 x 50 x 60 2.
df ( x) 3 x 4 x 50
Define the root-finding program using the pseudo code in the text. nroot( f df x)
y f ( x) y TOL
return x if
while y TOL xx
y df ( x)
y f ( x) x 3.
Find the roots that correspond to the guess values. r( xguess) nroot( f df xguess) 1
1
f ( xguess) df ( xguess)
1
1
1
1.800
1
33.080
1
-2.362
1
-1.177
2
1.900
2
31.570
2
-2.564
2
-1.177
3
2.000
3
30.000
3
-2.800
3
-1.177
2.100 df ( xguess) 4
28.370
nextx( xguess) 4
-3.079
r( xguess) 4
-1.177
xguess 4
4.
nextx( xguess) xguess
5
2.200
5
26.680
5
-3.410
5
-1.177
6
2.300
6
24.930
6
-3.807
6
-1.177
7
2.400
7
23.120
7
-4.289
7
6.740
8
2.500
8
21.250
8
-4.882
8
-7.562
Find the roots of the derivative (values of x where the slope is zero). ddf ( x) 6 x 4
5.
xz1 nroot( df ddf 5 )
xz1 4.803
xz2 nroot( df ddf 4 )
xz2 3.470
For guess values up to 2.3, the root found is that whose slope is nearly the same as the slope of the function at the guess value. At 2.4, the value of x that is calculated next results in a slope that throws the next x-value to the right of the extreme function value at x = 3.470. Subsequent estimates of x then follow down the slope to x = 6.740. At a guess value of 2.5, the value of x that is calculated next is to the left of the extreme function value at x = -4.803. Subsequent estimates of x follow up the slope to x = -7.562.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-34-1
PROBLEM 4-34 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 4 and the position of slider 6 in Figure 3-33 as a function of the angle of input link 2.
Given:
Link lengths: Input crank (L2)
a 2.170
Fourbar coupler (L3)
b 2.067
Output crank (L4)
c 2.310
Sllider coupler (L5)
e 5.40
Fourbar ground link (L1) Solution:
d 1.000
See Figure 3-33 and Mathcad file P0434.
1.
This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a slidercrank mechanism using the output of the fourbar, link 4, as the input to the slider-crank.
2.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit) in the global XY system. K1
d
K2
a
K1 0.4608
2
d
K3
c
K2 0.4329
2
2
a b c d
2
2 a c
K3 0.6755
A θ cos θ K1 K2 cos θ K3
θ θ 2 atan2 2 A θ B θ 4.
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
2 4 A θ Cθ 102 deg
B θ
If the calculated value of 4 is greater than 2, subtract 2 from it and if it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 5.
Determine the slider-crank motion using equations 4.16 and 4.17 with 4 as the input angle.
c sin θ θ π e
e cosθθ
θ θ asin
f θ c cos θ θ 6.
Plot the angular position of link 4 and the position of link 6 as functions of the angle of input link 2. See next page.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-34-2
Angular Position of Link 4 360 315 270
θ θ
225 180
deg 135 90 45 0
0
45
90
135
180
225
270
315
360
315
360
θ deg
Position of Slider 6 With Respect to O4 8 7.167 6.333
f θ
5.5 4.667 3.833 3
0
45
90
135
180 θ deg
225
270
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-35-1
PROBLEM 4-35 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B and C of the linkage in Figure 3-33 as a function of the angle of input link 2.
Given:
Link lengths: Input crank (L2)
a 2.170
Fourbar coupler (L3)
b 2.067
Output crank (L4)
c 2.310
Sllider coupler (L5)
e 5.40
d 1.000
Fourbar ground link (L1) Solution:
See Figure 3-33 and Mathcad file P0435.
1.
This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a slidercrank mechanism using the output of the fourbar, link 4, as the input to the slider-crank.
2.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1
d a
K1 0.4608
2
d
K2
K3
c
K2 0.4329
2
2
a b c d
2
2 a c
K3 0.6755
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 4.
B θ
If the calculated value of 4 is greater than 2, subtract 2 from it and if it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if θ θ 0 θ θ 2 π θ θ 5.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d b
K5
2
2
c d a b
2
K4 0.4838
2 a b
K5 0.5178
D θ cos θ K1 K4 cos θ K5
E θ 2 sin θ
F θ K1 K4 1 cos θ K5 6.
Use equation 4.13 to find 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 7.
2 4 Dθ F θ
E θ
If the calculated value of 3 is greater than 2, subtract 2 from it and if it is negative, make it positive.
θ θ if θ θ 2 π θ θ 2 π θ θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-35-2
θ θ if θ θ 0 θ θ 2 π θ θ 8.
Calculate (using equations 4.32) and plot the transmission angle at B.
θtransB1 θ θ θ θ θ
θtransB θ if θtransB1 θ
π 2
π θtransB1 θ θtransB1 θ
Transmission Angle at B 40 35 30
θtransB θ
25 20
deg 15 10 5 0
0
45
90
135
180
225
270
315
360
θ deg
9.
Determine the slider-crank motion using equations 4.16 and 4.17 with 4 as the input angle.
c sin θ θ π e
θ θ asin
10. Calculate (using equations 4.32) and plot the transmission angle at C.
θtransC1 θ θ θ
θtransC θ if θtransC1 θ
π 2
π θtransC1 θ θtransC1 θ
Transmission Angle at C 30 25
θtransC θ
20 15
deg 10 5 0
0
45
90
135
180 θ deg
225
270
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-36-1
PROBLEM 4-36 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of the coupler point of the approximate straight-line linkage shown in Figure 3-29f (p. 142). Use program Fourbar to check your result.
Given:
Link lengths: Input (O2A)
a 1.000
Coupler (AB)
b 1.600
Rocker (O4B)
c 1.039
Ground link
d 1.200
p 2.690
Coupler point data:
α 60 deg
Coordinate rotation angle: Solution: 1.
δ 0 deg
See Figure 3-29f and Mathcad file P0436.
Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" Since b (link 3) is the longest link and the linkage is non-Grashof, this is a Class 3 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 2 and 3 colinear:
( b a) 2 d2 c2 π 2 d ( b a)
θ acos
θ 240 deg
For links 3 and 4 colinear:
a2 d 2 ( b c) 2 θ acos 2 d a 2.
θ 27.683 deg
θ θ
Define one cycle of the input crank (driving through the links 2-3 toggle position): θ θ θ 1 deg 360 deg θ
3.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1
d
K4
a
K1 1.2000
2
d
K5
b
K4 0.7500
2
2 a b
K5 1.2251
D θ cos θ K1 K4 cos θ K5
E θ 2 sin θ 4.
F θ K1 K4 1 cos θ K5
Use equation 4.13 to find values of 3 for the open circuit.
2
c d a b
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-36-2
θ θ 2 atan2 2 D θ E θ 5.
2 4 Dθ F θ
E θ
Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
RPA p cos θ δ j sin θ δ RA a cos θ j sin θ
RPx θ a cos θ p cos θ θ δ
Plot the coordinates of the coupler point in the global X,Y coordinate system using equations 4.0b to rotate the local coordinates to a global frame.
PX θ RPx θ cos( α) RPy θ sin( α) PY θ RPx θ sin( α) RPy θ cos( α) COUPLER POINT PATH 2
1
Coupler Point Coordinate - Y
6.
RPy θ a sin θ p sin θ θ δ
0
1
2
3
4
0
1
2 Coupler Point Coordinate - X
3
4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-37-1
PROBLEM 4-37 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 6 in Figure 3-34 as a function of the angle of input link 2.
Given:
Link lengths:
Solution: 1.
Input crank (L2)
g 1.556
First coupler (L3)
f 4.248
First rocker (L4)
c 2.125
Third coupler (CD)
b 2.158
Output rocker (L6)
a 1.542
Second ground link (O4O6) d 1.000
Angle CDB
δ 36 deg
Distance (BD)
O2O4 ground link offsets:
h X 3.259
h Y 2.905
See Figure 3-34 and Mathcad file P0437.
Calculate the length of the O2O4 ground link and the angle that it makes with the global XY system. h
2.
p 3.274
2
hX hY
2
hY hX
γ atan
h 4.366
γ 41.713 deg
Calculate the distance BC on link 5. This is the length of vector R51. Also, calculate the angle between vectors R51 and R52 e
b p 2 b p cos δ 2
2
e 1.986
Second coupler (BC)
b 2 e2 p 2 2 b e
α acos
α 104.305 deg
β π α
β 75.695 deg
3.
This is a Stephenson's sixbar linkage similar to the one shown in Figure 4-13. Since the output link 6 is known to rotate 180 deg and return for a full revolution of link 2 we can use links 6, 5, and 4 as a first-stage fourbar with known input (link 6) and then solve for vector loop equations to get the corresponding motion of link 2.
4.
Define the rotation of the output crank: θ 90 deg 91 deg 270 deg
5.
Use equations 4.8a and 4.10 to calculate 4 in the local xy coordinate system as a function of 6 (for the crossed circuit). K1
d
K2
a
K1 0.6485
2
d
K3
c
K2 0.4706
2
2
a b c d
2
2 a c
K3 0.4938
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ 6.
2 4 A θ Cθ
B θ
Use equations 4.12 and 4.13 to calculate 5 in the local xy coordinate system as a function of 6 (for the crossed circuit). K4
d b
K4 0.463
2
K5
2
2
c d a b
K5 0.529
2 a b
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-37-2
D θ cos θ K1 K4 cos θ K5
E θ 2 sin θ
F θ K1 K4 1 cos θ K5
θ θ 2 atan2 2 D θ E θ 7.
2 4 Dθ F θ
E θ
Transform the angles for 4 and 52 into the global XY system and define 51 in the global system.
θ θ θ θ 90 deg
θ θ θ θ 90 deg θ θ θ θ β 8.
Define a vector loop for the remaining links and solve the resulting vector equation by separating it into real and imaginary parts using the method of section 4.5 and the identities of equations 4.9.
Y X
O2 2 R2
R1
6
A
O6
y
D R 5 R52 3 C R4
3
O4 4 x
R51 B R1 + R4 + R51 + R3 - R2 = 0. In this equation the unknowns are 3 and 2. Following the method of Section 4.5, substitute the complex number notation for each position vector and separate the resulting equations into real and imaginary parts:
f cos θ = g cos θ G1 f sin θ = g sin θ G2 where
e cosθθ
G1 θ h cos γ c cos θ θ
e sinθθ
G2 θ h sin γ c sin θ θ 9.
Solve these equations in the manner of equations 4.11 and 4.12 using the identities of equations 4.9 gives:
2 G2θ2 f 2
2
g G1 θ
G3 θ
2 g
A' θ G1 θ G3 θ
B' θ 2 G2 θ
C' θ G1 θ G3 θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-37-3
θ B' B'2 4 A' C' = 2 A' 2
tan
θ θ 2 atan2 2 A' θ B' θ
2 4 A' θ C'θ
B' θ
10. Plot 6 vs 2 in global XY coordinates: Rotation of Link 6 vs Link 2 320 300 280 260
θ θ
240 220
deg 200 180 160 140 120
0
20
40
60
80 θ deg
100 90
120
140
160
180
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-38-1
PROBLEM 4-38 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B, C, and D of the linkage in Figure 3-34 as a function of the angle of input link 2.
Given:
Link lengths:
Solution: 1.
Input crank (L2)
g 1.556
First coupler (L3)
f 4.248
First rocker (L4)
c 2.125
Third coupler (CD)
b 2.158
Output rocker (L6)
a 1.542
Second ground link (O4O6) d 1.000
Angle CDB
δ 36 deg
Distance (BD)
O2O4 ground link offsets:
h X 3.259
h Y 2.905
See Figure 3-34 and Mathcad file P0438.
Calculate the length of the O2O4 ground link and the angle that it makes with the global XY system. h
2.
p 3.274
2
hX hY
2
hY hX
γ atan
h 4.366
γ 41.713 deg
Calculate the distance BC on link 5. This is the length of vector R51. Also, calculate the angle between vectors R51 and R52 e
b p 2 b p cos δ 2
2
e 1.986
Second coupler (BC)
b 2 e2 p 2 2 b e
α acos
α 104.305 deg
β π α
β 75.695 deg
3.
This is a Stephenson's sixbar linkage similar to the one shown in Figure 4-13. Since the output link 6 is known to rotate 180 deg and return for a full revolution of link 2 we can use links 6, 5, and 4 as a first-stage fourbar with known input (link 6) and then solve for vector loop equations to get the corresponding motion of link 2.
4.
Define the rotation of the output crank: θ 90 deg 91 deg 270 deg
5.
Use equations 4.8a and 4.10 to calculate 4 in the local xy coordinate system as a function of 6 (for the crossed circuit). K1
d
K2
a
K1 0.6485
2
d
K3
c
K2 0.4706
2
2
a b c d
2
2 a c
K3 0.4938
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ 6.
2 4 A θ Cθ
B θ
Use equations 4.12 and 4.13 to calculate 5 in the local xy coordinate system as a function of 6 (for the crossed circuit). K4
d b
K4 0.463
2
K5
2
2
c d a b
K5 0.529
2 a b
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-38-2
D θ cos θ K1 K4 cos θ K5
E θ 2 sin θ
F θ K1 K4 1 cos θ K5
2 4 Dθ F θ
θ θ 2 atan2 2 D θ E θ 7.
E θ
Transform the angles for 4 and 52 into the global XY system and define 51 in the global system.
θ θ θ θ 90 deg
θ θ θ θ 90 deg θ θ θ θ β 8.
Define a vector loop for the remaining links and solve the resulting vector equation by separating it into real and imaginary parts using the method of section 4.5 and the identities of equations 4.9.
Y X
O2 2 R2
R1
6
A
O6
y
D R 5 R52 3 C R4
3
O4 4 x
R51 B R1 + R4 + R51 + R3 - R2 = 0. In this equation the unknowns are 3 and 2. Following the method of Section 4.5, substitute the complex number notation for each position vector and separate the resulting equations into real and imaginary parts:
g cos θ = f cos θ G1 g sin θ = f sin θ G2 where
G1 θ h cos γ c cos θ θ
e cosθθ
G2 θ h sin γ c sin θ θ
9.
e sinθθ
Solve these equations for 2 in the manner of equations 4.11 and 4.12 using the identities of equations 4.9 gives:
2 G2θ2 f 2
2
g G1 θ
G3 θ
2 g
A' θ G1 θ G3 θ
B' θ 2 G2 θ
C' θ G1 θ G3 θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-38-3
θ B' B'2 4 A' C' = 2 A' 2
tan
θ θ 2 atan2 2 A' θ B' θ
2 4 A' θ C'θ
B' θ
10. Solve these equations for 3 in the manner of equations 4.11 and 4.12 using the identities of equations 4.9 gives:
2 G2θ2 f 2
2
g G1 θ
G4 θ
2 f
D' θ G1 θ G4 θ
E' θ 2 G2 θ
F' θ G1 θ G4 θ
θ E' E'2 4 D' F' tan = 2 D' 2
θ θ 2 atan2 2 D' θ E' θ
2 4 D'θ F'θ
E' θ
11. Calculate (using equations 4.32) and plot the transmission angle at B.
θtransB1 θ θ θ θ θ
θtransB θ if θtransB1 θ
π 2
π θtransB1 θ θtransB1 θ
Transmission Angle at B 90 80 70 60
θtransB θ 50 deg
40 30 20 10 0 125
150
175
200
225
θ θ deg
12. Calculate (using equations 4.32) and plot the transmission angle at C.
θtransC1 θ θ θ θ θ
250
275
300
325
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-38-4
θtransC θ if θtransC1 θ
π 2
π θtransC1 θ θtransC1 θ
Transmission Angle at C 60 55 50
θtransC θ
45
deg 40 35 30 125
150
175
200
225
250
275
300
325
θ θ deg
13. Calculate (using equations 4.32) and plot the transmission angle at D.
θtransD1 θ θ θ θ
θtransD θ if θtransD1 θ
π 2
π θtransD1 θ θtransD1 θ
Transmission Angle at D 60 50 40
θtransD θ
30
deg 20 10 0 125
150
175
200
225
θ θ deg
250
275
300
325
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-39-1
PROBLEM 4-39 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of the coupler point of the approximate straight-line linkage shown in Figure 3-29g (p. 142). Use program Fourbar to check your result.
Given:
Link lengths: Input (O2A)
a 1.000
Coupler (AB)
b 1.200
Rocker (O4B)
c 1.167
Ground link
d 2.305
p 1.5
Coupler point data:
α 30 deg
Coordinate rotation angle: Solution: 1.
δ 180 deg
See Figure 3-29g and Mathcad file P0439.
Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" Since d (link 1) is the longest link and the linkage is non-Grashof, this is a Class 1 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 3 and 4 colinear:
a2 d 2 ( b c) 2 2 d a
θ acos 1.
θ 81.136 deg
θ θ
Define one cycle of the input crank: θ θ θ 0.5 deg θ
2.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1
d
K4
a
K1 2.3050
2
d
K5
b
K4 1.9208
2
2 a b
K5 2.6630
D θ cos θ K1 K4 cos θ K5
3.
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 4.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
2 4 Dθ F θ
E θ
Use equations 4.31 to define the x- and y-components of the vector RP.
2
c d a b
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-39-2
RP RA RPA
RPA p cos θ δ j sin θ δ RA a cos θ j sin θ
RPx θ a cos θ p cos θ θ δ
Plot the coordinates of the coupler point in the global X,Y coordinate system using equations 4.0b to rotate the local coordinates to a global frame.
PX θ RPx θ cos( α) RPy θ sin( α) PY θ RPx θ sin( α) RPy θ cos( α) COUPLER POINT PATH 2
1
Coupler Point Coordinate - Y
5.
RPy θ a sin θ p sin θ θ δ
0
1
2 2
1.5
1 Coupler Point Coordinate - X
0.5
0
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-40-1
PROBLEM 4-40 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 6 in Figure 3-35 as a function of the angle of input link 2.
Given:
Link lengths:
Solution:
Input crank (L2)
a 1.00
First coupler (L3)
b 3.80
Common rocker (O4B)
c 1.29
Second coupler (L5)
b' 1.29
First ground link (O2O4)
d 3.86
Common rocker (O4C)
a' 1.43
Output rocker (L6)
c' 0.77
Second ground link (O4O6) d' 0.78
Angle BO4C
α 157 deg
See Figure P3-35 and Mathcad file P0440.
1.
This sixbar drag-link mechanism can be analyzed as two fourbar linkages in series that use the output of the first fourbar, link 4, as the input to the second fourbar.
2.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1
d
K2
a
K1 3.8600
2
d
K3
c
K2 2.9922
2
2
a b c d
2
2 a c
K3 1.2107
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 4.
B θ
Use equations 4.8a and 4.10 to calculate 6 as a function of 2 (for the open circuit).
K' 1
d'
K' 2
a'
K' 1 0.5455
θ θ θ θ α
Input angle to second fourbar:
2
d'
K' 3
c'
K' 2 1.0130
2
2
2 a' c'
K' 3 0.7184
K'1 K'2 cosθθ K'3
A' θ cos θ θ
θ θ 2 atan2 2 A' θ B' θ
5.
K'3
C' θ K' 1 K' 2 1 cos θ θ
B' θ 2 sin θ θ
2 4 A' θ C'θ
B' θ
Plot the angular position of link 6 as a function of the angle of input link 2.
2
a' b' c' d'
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-40-2
Angular Position of Link 6 100 75 50 25
θ θ
0 25
deg 50 75 100 125 150
0
45
90
135
180 θ deg
225
270
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-41-1
PROBLEM 4-41 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B, C, and D of the linkage in Figure 3-35 as a function of the angle of input link 2.
Given:
Link lengths:
Solution:
Input crank (L2)
a 1.00
First coupler (L3)
b 3.80
Common rocker (O4B)
c 1.29
Second coupler (L5)
b' 1.29
First ground link (O2O4)
d 3.86
Common rocker (O4C)
a' 1.43
Output rocker (L6)
c' 0.77
Second ground link (O4O6) d' 0.78
Angle BO4C
α 157 deg
See Figure P3-35 and Mathcad file P0441.
1.
This sixbar drag-link mechanism can be analyzed as two fourbar linkages in series that use the output of the first fourbar, link 4, as the input to the second fourbar.
2.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1
d
K2
a
K1 3.8600
2
d
K3
c
K2 2.9922
2
2 a c
K3 1.2107
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ 4.
2 4 A θ Cθ
B θ
Use equations 4.12 and 4.13 to calculate 3 as a function of 2 (for the crossed circuit). K4
2
d
K5
b
K4 1.016
2
2
c d a b
2
2 a b
K5 3.773
D θ cos θ K1 K4 cos θ K5
E θ 2 sin θ
F θ K1 K4 1 cos θ K5
θ θ 2 atan2 2 D θ E θ 5.
2 4 Dθ F θ
E θ
Calculate (using equations 4.32) and plot the transmission angle at B.
θtransB1 θ θ θ θ θ
θtransB θ if θtransB1 θ
π 2
2
a b c d
π θtransB1 θ θtransB1 θ
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-41-2
Transmission Angle at B 90 82.5 75 67.5
θtransB θ
60
deg 52.5 45 37.5 30
0
45
90
135
180
225
270
315
360
θ deg
6.
Use equations 4.8a and 4.10 to calculate 6 as a function of 2 (for the open circuit).
K' 1
d'
K' 2
a'
K' 1 0.5455
θ θ θ θ α
Input angle to second fourbar:
2
d'
K' 3
c'
K' 2 1.0130
2
2
2
a' b' c' d' 2 a' c'
K' 3 0.7184
K'1 K'2 cosθθ K'3
A' θ cos θ θ
2 4 A' θ C'θ
θ θ 2 atan2 2 A' θ B' θ 7.
K'3
C' θ K' 1 K' 2 1 cos θ θ
B' θ 2 sin θ θ
B' θ
Use equations 4.12 and 4.13 to calculate 5 as a function of 2 (for the crossed circuit). K' 4
2
d'
K' 5
b'
K' 4 0.605
2
2
2
c' d' a' b' 2 a' b'
K' 5 1.010
K'1 K'4 cosθθ K'5
D' θ cos θ θ
K'5
F' θ K' 1 K' 4 1 cos θ θ
θ θ 2 atan2 2 D' θ E' θ 8.
2 4 D'θ F'θ
E' θ
Calculate (using equations 4.32) and plot the transmission angle at C.
θtransC1 θ θ θ θ θ
θtransC θ if θtransC1 θ
π 2
E' θ 2 sin θ θ
π θtransC1 θ θtransC1 θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-41-3
Transmission Angle at C 30
24
θtransC θ
18
deg 12
6
0
0
45
90
135
180
225
270
315
360
θ deg
9.
Calculate (using equations 4.32) and plot the transmission angle at D.
θtransD1 θ θ θ θ θ
θtransD θ if θtransD1 θ
π 2
π θtransD1 θ θtransD1 θ
Transmission Angle at D 120 100 80
θtransD θ
60
deg 40 20 0
0
45
90
135
180 θ deg
225
270
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-42-1
PROBLEM 4-42 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of the coupler point of the approximate straight-line linkage shown in Figure 3-29h (p. 142). Use program Fourbar to check your result.
Given:
Link lengths: Input (O2A)
a 1.000
Coupler (AB)
b 1.000
Rocker (O4B)
c 1.000
Ground link
d 2.000
p 2.0
Coupler point data: Solution: 1.
δ 0 deg
See Figure 3-29h and Mathcad file P0442.
Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" Since d (link 1) is the longest link and the linkage is non-Grashof, this is a Class 1 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 3 and 4 colinear:
a2 d 2 ( b c) 2 2 d a
θ acos 1.
θ 75.522 deg
θ θ
Define one cycle of the input crank: θ θ θ 0.25 deg θ
2.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. d
K1
K4
a
K1 2.0000
2
d
K5
b
K4 2.0000
2
2 a b
K5 2.5000
D θ cos θ K1 K4 cos θ K5
3.
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 4.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
2 4 Dθ F θ
E θ
Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
RA a cos θ j sin θ
2
c d a b
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-42-2
RPA p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ
COUPLER POINT PATH 2
Coupler Point Coordinate - Y
1.5
1
0.5
0
1
1.5
RPy θ a sin θ p sin θ θ δ
2 Coupler Point Coordinate - X
2.5
3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-43-1
PROBLEM 4-43 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 8 in Figure 3-36 as a function of the angle of input link 2.
Given:
Link lengths:
Solution:
Input crank (L2)
a 0.450
First coupler (L3)
b 0.990
Common rocker (O4B)
c 0.590
First ground link (O2O4)
d 1.000
Common rocker (O4C)
a' 0.590
Second coupler (CD)
b' 0.325
Output rocker (L6)
c' 0.325
Second ground link (O4O6) d' 0.419
Link 7 (L7)
e 0.938
Link 8 (L8)
f 0.572
Link 5 extension (DE)
p 0.823
Angle DCE
δ 7.0 deg
Angle BO4C
α 128.6 deg
See Figure P3-36 and Mathcad file P0443.
1.
This eightbar can be analyzed as a fourbar (links 1, 2, 3, and 4) with its output (link 4) as the input to another fourbar (links 1, 4, 5, and 6). Since links 1 and 4 are common to both, we have an eightbar linkage with links 7 & 8 included. Start by analyzing the input fourbar.
2.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). d
K1
K2
a
K1 2.2222
2
d
K3
c
K2 1.6949
2
2
a b c d
2
2 a c
K3 1.0744
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ 4.
2 4 A θ Cθ
B θ
Use equations 4.8a and 4.10 to calculate 6 as a function of 2 (for the open circuit).
K' 1
d'
K' 2
a'
K' 1 0.7102
θ θ θ θ α
Input angle to second fourbar:
2
d'
K' 3
c'
K' 2 1.2892
2
2
2 a' c'
K' 3 1.3655
K'1 K'2 cosθθ K'3
A' θ cos θ θ
θ θ 2 atan2 2 A' θ B' θ 5.
K'3
C' θ K' 1 K' 2 1 cos θ θ
B' θ 2 sin θ θ
2 4 A' θ C'θ
B' θ
Use equations 4.11b, 4.12 and 4.13 to calculate 5 as a function of 2.
2
a' b' c' d'
DESIGN OF MACHINERY - 5th Ed.
K' 4
SOLUTION MANUAL 4-43-2 2
d'
K' 5
b'
K' 4 1.289
2
2
2
c' d' a' b' 2 a' b'
K' 5 1.365
K'1 K'4 cosθθ K'5
D' θ cos θ θ
E' θ 2 sin θ θ
K'5
F' θ K' 1 K' 4 1 cos θ θ
θ θ 2 atan2 2 D' θ E' θ 6.
2 4 D'θ F'θ
E' θ
Define a vector loop for links 1, 5, 6, 7, and 8 as shown below and write the vector loop equation.
Y C
4 R12
O4
5 O6
X D
R6 6
8
R8 RDE
F
R7 7
E
R12 + R6 +RDE + R7 - R8 = 0. Solving for R7 gives R7 = R8 - R12 - R6 - RDE. In this equation the only unknowns are 7 and 8. Following the method of Section 4.5, substitute the complex number notation for each position vector and separate the resulting equation into real and imaginary parts:
e cos θ = f cos θ D1 e sin θ = f sin θ D2 where
p cosθθ δ
D1 θ d' c' cos θ θ
p sinθθ δ
D2 θ c' sin θ θ 7.
Solve these equations in the manner of equations 4.11 and 4.12 using the identities of equations 4.9 gives:
DESIGN OF MACHINERY - 5th Ed.
D3 θ
f
2
SOLUTION MANUAL 4-43-3
2 D2θ2 e2
D1 θ
2 f
A' θ D1 θ D3 θ
B' θ 2 D2 θ
C' θ D1 θ D3 θ
θ B' B'2 4 A' C' = 2 A' 2
tan
θ θ 2 atan2 2 A' θ B' θ 8.
2 4 A' θ C'θ
B' θ
Plot the angular position of link 8 as a function of the angle of input link 2. If 81 is greater than 360 deg, subtra 2 from it.
θ θ if θ
π
θ θ 0 θ θ 2 π θ θ
4
Angular Position of Link 8 360 315 270 225
180
θ θ
135
deg 90 45 0 45 90
0
45
90
135
180
225
270
θ deg
The graph shows that link 8 rotates 360 deg between 2 = 19 deg and 2 = 209 deg. θ( 19 deg) 42 deg θ( 209 deg) θ( 19 deg) 360.0 deg
θ( 209 deg) 2 π 42 deg
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-44-1
PROBLEM 4-44 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B, C, D, E, and F of the linkage in Figure 3-36 as a function of the angle of input link 2.
Given:
Link lengths:
Solution:
Input crank (L2)
a 0.450
First coupler (L3)
b 0.990
Common rocker (O4B)
c 0.590
First ground link (O2O4)
d 1.000
Common rocker (O4C)
a' 0.590
Second coupler (CD)
b' 0.325
Output rocker (L6)
c' 0.325
Second ground link (O4O6) d' 0.419
Link 7 (L7)
e 0.938
Link 8 (L8)
f 0.572
Link 5 extension (DE)
p 0.823
Angle DCE
δ 7.0 deg
Angle BO4C
α 128.6 deg
See Figure P3-36 and Mathcad file P0444.
1.
This eightbar can be analyzed as a fourbar (links 1, 2, 3, and 4) with its output (link 4) as the input to another fourbar (links 1, 4, 5, and 6). Since links 1 and 4 are common to both, we have an eightbar linkage with links 7 & 8 included. Start by analyzing the input fourbar.
2.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). d
K1
K2
a
K1 2.2222
2
d
K3
c
K2 1.6949
2
2
a b c d 2 a c
K3 1.0744
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ 4.
2 4 A θ Cθ
B θ
Use equations 4.12 and 4.13 to calculate 3 as a function of 2 (for the open circuit). K4
2
d
K5
b
K4 1.010
2
2
c d a b
2
2 a b
K5 2.059
D θ cos θ K1 K4 cos θ K5
F θ K1 K4 1 cos θ K5
θ θ 2 atan2 2 D θ E θ 5.
2 4 Dθ F θ
E θ
Use equations 4.8a and 4.10 to calculate 6 as a function of 2 (for the open circuit). Input angle to second fourbar:
E θ 2 sin θ
θ θ θ θ α
2
DESIGN OF MACHINERY - 5th Ed.
K' 1
SOLUTION MANUAL 4-44-2
d'
K' 2
a'
K' 1 0.7102
2
d'
K' 3
c'
K' 2 1.2892
2
2
2
a' b' c' d' 2 a' c'
K' 3 1.3655
K'1 K'2 cosθθ K'3
A' θ cos θ θ
θ θ 2 atan2 2 A' θ B' θ 6.
K'3
C' θ K' 1 K' 2 1 cos θ θ
B' θ 2 sin θ θ
2 4 A' θ C'θ
B' θ
Use equations 4.11b, 4.12 and 4.13 to calculate 5 as a function of 2. K' 4
2
d' b'
K' 4 1.289
2
2
2
c' d' a' b'
K' 5
2 a' b'
K' 5 1.365
K'1 K'4 cosθθ K'5
D' θ cos θ θ
E' θ 2 sin θ θ
K'5
F' θ K' 1 K' 4 1 cos θ θ
θ θ 2 atan2 2 D' θ E' θ
2 4 D'θ F'θ
E' θ
θ θ if θ θ 2 π θ θ 2 π θ θ
θ θ if 105 deg θ 322 deg θ θ 0 θ θ 2 π θ θ 7.
Define a vector loop for links 1, 5, 6, 7, and 8 as shown on the next page and write the vector loop equation. R12 + R6 +RDE + R7 - R8 = 0. Solving for R7 gives R7 = R8 - R12 - R6 - RDE. In this equation the only unknowns are 7 and 8. Following the method of Section 4.5, substitute the complex number notation for each position vector and separate the resulting equation into real and imaginary parts:
e cos θ = f cos θ D1 e sin θ = f sin θ D2 where
p cosθθ δ
D1 θ d' c' cos θ θ
p sinθθ δ
D2 θ c' sin θ θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-44-3
Y C
4 R12
O4
5 X
O6
D
R6 6
R8
8
RDE
R7
F
E
7 8.
Solve these equations in the manner of equations 4.10 using the identities of equations 4.9 gives:
D3 θ
f
2
2 D2θ2 e2
D1 θ
2 f
A' θ D1 θ D3 θ
B' θ 2 D2 θ
C' θ D1 θ D3 θ
θ B' B'2 4 A' C' = 2 A' 2
tan
θ θ 2 atan2 2 A' θ B' θ
θ θ if θ 9.
2 4 A' θ C'θ
B' θ
π
θ θ 0 θ θ 2 π θ θ 4
Similarly, solve these equations in the manner of equations 4.11, 4.12 and 4.13 using the identities of equations 4.9 gives:
D4 θ
f
2
2 D2θ2 e2
D1 θ
2 e
D' θ D1 θ D4 θ
θ E' E'2 4 D' F' = 2 D' 2
tan
E' θ 2 D2 θ
F' θ D1 θ D4 θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-44-4
2 4 D'θ F'θ
θ θ 2 atan2 2 D' θ E' θ
E' θ
10. Calculate (using equations 4.32) and plot the transmission angle at B.
θtransB1 θ θ θ θ θ
θtransB θ if θtransB1 θ
π 2
π θtransB1 θ θtransB1 θ
Transmission Angle at B 90 80 70
θtransB θ 60 deg
50 40 30 20
0
45
90
135
180
225
270
315
360
θ deg
11. Calculate (using equations 4.32) and plot the transmission angle at C.
θtransC1 θ θ θ θ θ θtransC2 θ if
π
2
θtransC1 θ 2 π π θtransC1 θ θtransC1 θ
Transmission Angle at C 150
100
θtransC θ deg 50
0
0
45
90
135
180 θ deg
225
270
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-44-5
12. Calculate (using equations 4.32) and plot the transmission angle at D.
θtransD1 θ θ θ θ θ π θtransD2 θ if
π
2
θtransD1 θ π π θtransD1 θ θtransD1 θ
Transmission Angle at D 90 80 70 60
θtransD θ 50 deg
40 30 20 10 0
0
45
90
135
180
225
270
315
360
315
360
θ deg
13. Calculate (using equations 4.32) and plot the transmission angle at E.
θtransE1 θ θ θ θ θ
θtransE θ if θtransE1 θ
π 2
π θtransE1 θ θtransE1 θ
Transmission Angle at E 90 80 70
θtransE θ
60
deg 50 40 30
0
45
90
135
180 θ deg
225
270
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-45-1
PROBLEM 4-45 Statement:
Model the linkage shown in Figure 3-37a in Fourbar. Export the coupler curve coordinates to Excel and calculate the error function versus a true circle.
Given:
Link lengths: Input (O2A)
a 0.136
Coupler (AB)
b 1.000
Rocker (O4B)
c 1.000
Ground link
d 1.414
Coupler point data: Solution: 1.
p 2.000
δ 0 deg
See Figure 3-37a and Mathcad file P0445.
Model the linkage in Fourbar.
2.
Write coupler point coordinates to a data file.
3.
Import the data file into Excell and add columns for the true circle coordinates and radius. Analyze the coupler point radius to determine its mean, maximum deviation from mean, and average absolute deviation from its mean (See next two pages, note that the last four columns were added to the imported data).
DESIGN OF MACHINERY - 5th Ed.
FOURBAR P0445 Tom Cook
SOLUTION MANUAL 4-45-2
Design #
Selected Linkage Parameters a = 0.136 b = 1.000 Angle Step Deg
2
8/9/2006
c = 1.000
d = 1.414
Coupler Pt Coupler Pt Coupler Pt Coupler Pt True Circ True Circ True Circ Coupler Pt X Y Mag Ang X Y R R in in in in in in in in 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210
1.414 1.4283 1.4423 1.4561 1.4693 1.4819 1.4937 1.5046 1.5145 1.5233 1.5309 1.5373 1.5425 1.5465 1.5493 1.5508 1.5512 1.5505 1.5488 1.546 1.5424 1.5379 1.5326 1.5266 1.52 1.5128 1.5052 1.4971 1.4887 1.4799 1.471 1.4618 1.4524 1.4429 1.4333 1.4237 1.414 1.4043 1.3947 1.3851 1.3756 1.3662 1.357
1.5384 1.5379 1.5363 1.5336 1.5299 1.5251 1.5195 1.5129 1.5055 1.4974 1.4885 1.479 1.469 1.4585 1.4475 1.4363 1.4248 1.4131 1.4014 1.3897 1.378 1.3665 1.3552 1.3442 1.3336 1.3235 1.314 1.3051 1.2969 1.2895 1.2829 1.2772 1.2725 1.2688 1.2661 1.2645 1.2639 1.2645 1.2661 1.2688 1.2725 1.2772 1.2829
2.0895 2.0988 2.1072 2.1147 2.1212 2.1265 2.1307 2.1337 2.1355 2.136 2.1353 2.1333 2.1301 2.1258 2.1203 2.1138 2.1063 2.0979 2.0887 2.0788 2.0683 2.0572 2.0458 2.0341 2.0221 2.0101 1.998 1.9861 1.9744 1.9629 1.9518 1.9411 1.931 1.9214 1.9124 1.9041 1.8965 1.8897 1.8836 1.8784 1.8739 1.8703 1.8674
47.413 47.1164 46.8058 46.4846 46.1562 45.8237 45.4901 45.1581 44.8303 44.5088 44.1957 43.8925 43.6007 43.3213 43.0555 42.8038 42.567 42.3456 42.1401 41.9507 41.7781 41.6225 41.4846 41.3647 41.2636 41.1819 41.1204 41.0799 41.0612 41.0654 41.0931 41.1453 41.2227 41.3257 41.455 41.6105 41.7924 42.0001 42.2329 42.49 42.7699 43.0708 43.3907
1.4140 1.4021 1.3904 1.3788 1.3675 1.3565 1.3460 1.3360 1.3266 1.3178 1.3098 1.3026 1.2962 1.2907 1.2862 1.2826 1.2801 1.2785 1.2780 1.2785 1.2801 1.2826 1.2862 1.2907 1.2962 1.3026 1.3098 1.3178 1.3266 1.3360 1.3460 1.3565 1.3675 1.3788 1.3904 1.4021 1.4140 1.4259 1.4376 1.4492 1.4605 1.4715 1.4820
1.5500 1.5495 1.5479 1.5454 1.5418 1.5373 1.5318 1.5254 1.5182 1.5102 1.5014 1.4920 1.4820 1.4715 1.4605 1.4492 1.4376 1.4259 1.4140 1.4021 1.3904 1.3788 1.3675 1.3565 1.3460 1.3360 1.3266 1.3178 1.3098 1.3026 1.2962 1.2907 1.2862 1.2826 1.2801 1.2785 1.2780 1.2785 1.2801 1.2826 1.2862 1.2907 1.2962
0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360
0.1244 0.1247 0.1255 0.1268 0.1284 0.1302 0.1322 0.1341 0.1359 0.1375 0.1386 0.1394 0.1398 0.1398 0.1394 0.1386 0.1376 0.1365 0.1354 0.1342 0.1334 0.1327 0.1324 0.1325 0.1330 0.1340 0.1353 0.1370 0.1389 0.1409 0.1430 0.1449 0.1466 0.1480 0.1492 0.1498 0.1501 0.1498 0.1492 0.1480 0.1466 0.1449 0.1430
DESIGN OF MACHINERY - 5th Ed.
215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360
1.3481 1.3393 1.3309 1.3228 1.3152 1.308 1.3014 1.2954 1.2901 1.2856 1.282 1.2792 1.2775 1.2768 1.2772 1.2787 1.2815 1.2855 1.2907 1.2971 1.3047 1.3135 1.3234 1.3343 1.3461 1.3587 1.3719 1.3857 1.3997 1.414
1.2895 1.2969 1.3051 1.314 1.3235 1.3336 1.3442 1.3552 1.3665 1.378 1.3897 1.4014 1.4131 1.4248 1.4363 1.4475 1.4585 1.469 1.479 1.4885 1.4974 1.5055 1.5129 1.5195 1.5251 1.5299 1.5336 1.5363 1.5379 1.5384
SOLUTION MANUAL 4-45-3
1.8655 1.8643 1.864 1.8645 1.8659 1.868 1.871 1.8747 1.8793 1.8846 1.8907 1.8975 1.905 1.9132 1.922 1.9314 1.9415 1.952 1.963 1.9744 1.9861 1.998 2.0101 2.0222 2.0342 2.0461 2.0577 2.0688 2.0795 2.0895
43.7272 44.0777 44.439 44.8081 45.1815 45.5556 45.9269 46.2915 46.6458 46.986 47.3085 47.61 47.8871 48.1368 48.3563 48.5433 48.6956 48.8117 48.8904 48.9308 48.9328 48.8966 48.823 48.713 48.5685 48.3915 48.1846 47.9504 47.6921 47.413
1.4920 1.5014 1.5102 1.5182 1.5254 1.5318 1.5373 1.5418 1.5454 1.5479 1.5495 1.5500 1.5495 1.5479 1.5454 1.5418 1.5373 1.5318 1.5254 1.5182 1.5102 1.5014 1.4920 1.4820 1.4715 1.4605 1.4492 1.4376 1.4259 1.4140
1.3026 1.3098 1.3178 1.3266 1.3360 1.3460 1.3565 1.3675 1.3788 1.3904 1.4021 1.4140 1.4259 1.4376 1.4492 1.4605 1.4715 1.4820 1.4920 1.5014 1.5102 1.5182 1.5254 1.5318 1.5373 1.5418 1.5454 1.5479 1.5495 1.5500
The mean value of the coupler point radius is
0.1366
The maximum deviation from the mean is
0.0135
The average absolute deviation from the mean is
0.005127
0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360
0.1409 0.1389 0.1370 0.1353 0.1340 0.1330 0.1325 0.1324 0.1327 0.1334 0.1342 0.1354 0.1365 0.1376 0.1386 0.1394 0.1398 0.1398 0.1394 0.1386 0.1375 0.1359 0.1341 0.1322 0.1302 0.1284 0.1268 0.1255 0.1247 0.1244
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-46-1
PROBLEM 4-46 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point P in Figure 3-37a as a function of the angle of input link 2. Also plot the variation (error) in the path of point P versus that of point A.
Given:
Link lengths: Input (O2A)
a 0.136
Coupler (AB)
b 1.000
Rocker (O4B)
c 1.000
Ground link
d 1.414
p 2.000
Coupler point data: Solution: 1.
δ 0 deg
See Figure 3-37a and Mathcad file P0446.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ
return "non-Grashof" otherwise crank rocker Condition( a b c d ) "Grashof" 1.
Define one cycle of the input crank: θ 0 deg 1 deg 360 deg
2.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. d
K1
K4
a
K1 10.3971
2
d
K5
b
K4 1.4140
2
2
c d a b
2
2 a b
K5 7.4187
D θ cos θ K1 K4 cos θ K5
3.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the crossed circuit.
θ θ 2 atan2 2 D θ E θ 4.
2 4 Dθ F θ
E θ
Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
RA a cos θ j sin θ
RPA p cos θ δ j sin θ δ
RPx θ a cos θ p cos θ θ δ 5.
RPy θ a sin θ p sin θ θ δ
Plot the coordinates of the coupler point in the local xy coordinate system.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-46-2
COUPLER POINT PATH
Coupler Point Coordinate - y
1.2
1.414
1.3
1.4
1.414
1.5
1.6 1.2
1.3
1.4
1.5
1.6
Coupler Point Coordinate - x
6.
Replot, transforming the coupler path to 0,0 and plot the path of point A.
XA θ a cos θ
YA θ a sin θ
PATHS OF POINTS A &P 0.2
0.1
0
0.1
0.2 0.2
0.1 Point P Point A
0
0.1
0.2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-47-1
PROBLEM 4-47 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angle at point B of the linkage in Figure 3-37a as a function of the angle of input link 2.
Given:
Link lengths: Input (O2A)
a 0.136
Coupler (AB)
b 1.000
Rocker (O4B)
c 1.000
Ground link
d 1.414
p 2.000
Coupler point data: Solution: 1.
δ 0 deg
See Figure 3-37a and Mathcad file P0447.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof" 1.
crank rocker
Define one cycle of the input crank: θ 0 deg 1 deg 360 deg
2.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1
d
K2
a
K1 10.3971
2
d
K3
c
K2 1.4140
2
2 a c
K3 7.4187
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ 3.
2 4 A θ Cθ
B θ
Use equations 4.12 and 4.13 to calculate 3 as a function of 2 (for the crossed circuit). K4
2
d
K5
b
K4 1.414
2
2
c d a b
2
2 a b
K5 7.419
D θ cos θ K1 K4 cos θ K5
E θ 2 sin θ
F θ K1 K4 1 cos θ K5 θ θ 2 atan2 2 D θ E θ
2 4 Dθ F θ
E θ
2
a b c d
2
DESIGN OF MACHINERY - 5th Ed.
4.
SOLUTION MANUAL 4-47-2
Calculate (using equations 4.32) and plot the transmission angle at B.
θtransB1 θ θ θ θ θ
θtransB θ if θtransB1 θ
π 2
π θtransB1 θ θtransB1 θ
Transmission Angle at B 90
85
θtransB θ deg 80
75
0
45
90
135
180 θ deg
225
270
315
360
DESIGN OF MACHINERY - 5thEd.
SOLUTION MANUAL 4-48-1
PROBLEM 4-48 Statement:
Figure 3-29f shows Evan's approximate straight-line linkage #1. Determine the range of motion of link 2 for which the point P varies no more than 0.0025 from the straight line X = 1.690 (assuming that O2 is the origin of a global coordinate frame whose positive X axis is rotated 60 deg from O2O4).
Given:
Link lengths: Input (O2A)
a 1.000
Coupler (AB)
b 1.600
Rocker (O4B)
c 1.039
Ground link
d 1.200
p 2.690
Coupler point data:
α 60 deg
Coordinate rotation angle: Solution: 1.
δ 0 deg
See Figure 3-29f and Mathcad file P0448.
Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" Since b (link 3) is the longest link and the linkage is non-Grashof, this is a Class 3 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 2 and 3 colinear:
( b a) 2 d2 c2 π 2 d ( b a)
θ acos
θ 240 deg
For links 3 and 4 colinear:
a2 d 2 ( b c) 2 2 d a
θ acos 1.
θ 27.683 deg
θ θ
Define one cycle of the input crank (driving through the links 2-3 toggle position): θ θ θ 1 deg 360 deg θ
2.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1
d
K4
a
K1 1.2000
2
d
K5
b
K4 0.7500
2
2 a b
K5 1.2251
D θ cos θ K1 K4 cos θ K5
E θ 2 sin θ 3.
F θ K1 K4 1 cos θ K5
Use equation 4.13 to find values of 3 for the open circuit.
2
c d a b
2
DESIGN OF MACHINERY - 5thEd.
SOLUTION MANUAL 4-48-2
θ θ 2 atan2 2 D θ E θ 4.
2 4 Dθ F θ
E θ
Use equations 4.31 to define the x-components of the vector RP. RP RA RPA
RPA p cos θ δ j sin θ δ RA a cos θ j sin θ
RPx θ a cos θ p cos θ θ δ 5.
Plot the X coordinate of the coupler point in the global X,Y coordinate system using equations 4.0b to rotate the local coordinates to a global frame.
PX θ RPx θ cos( α) RPy θ sin( α) X COORDINATE 1.7 1.698 Coupler Point Coordinate - X
1.696 1.694 1.692 1.69 1.688 1.686 1.684 1.682 1.68 180
210
240
270
300
Input Angle - Theta2
6.
RPy θ a sin θ p sin θ θ δ
Using the graph for guess values, solve by trial and error to find 2 for X = 1.6900 +/-0.0025. PX ( 201.525 deg) 1.69250
θ2min 201.525 deg
PX ( 273.450 deg) 1.69250
θ2max 273.450 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-49-1
PROBLEM 4-49 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point P in Figure 3-37b as a function of the angle of input link 2.
Given:
Link lengths:
Solution: 1.
Input crank (L2)
a 0.50
First coupler (AB)
b 1.00
Rocker 4 (O4B)
c 1.00
Rocker 5 (L5)
c' 1.00
Ground link (O2O4)
d 0.75
Second coupler 6 (CD)
b' 1.00
Coupler point (DP)
p 1.00
Distance to OP (O2OP)
d' 1.50
See Figure 3-37b and Mathcad file P0449.
Links 4, 5, BC, and CD form a parallelogram whose opposite sides remain parallel throughout the motion of the fourbar 1, 2, AB, 4. Define a position vector whose tail is at point D and whose tip is at point P and another whose tail is at O4 and whose tip is at point D. Then, since R5 = RAB and RDP = -R4, the position vector from O2 to P is P = R1 + RAB - R4. Separating this vector equation into real and imaginary parts gives the equations for the X and Y coordinates of the coupler point P.
XP = d b cos θ c cos θ
YP = b sin θ c sin θ
2.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1
d a
K1 1.5000
2
d
K2
K3
c
K2 0.7500
2
2
a b c d
2
2 a c
K3 0.8125
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 4.
B θ
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2
2 a b
D θ cos θ K1 K4 cos θ K5
K4 0.7500
K5 0.8125
E θ 2 sin θ
F θ K1 K4 1 cos θ K5 5.
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ 6.
2 4 Dθ F θ
E θ
Define a local xy coordinate system with origin at OP and with the positive x axis to the right. The coordinates of P are transformed to xP = XP - d', yP = YP.
c cosθθ d'
xP θ d b cos θ θ
c sinθθ
yP θ b sin θ θ
DESIGN OF MACHINERY - 5th Ed.
7.
SOLUTION MANUAL 4-49-2
Plot the path of P as a function of the angle of link 2.
Path of Coupler Point P About OP 0.6 0.5 0.4 0.3 0.2 0.1
yP θ
0
0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.5
0.4 0.3
0.2 0.1
0
xP θ
0.1
0.2
0.3
0.4
0.5
0.6
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-50-1
PROBLEM 4-50 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B, C, and D of the linkage in Figure 3-37b as a function of the angle of input link 2.
Given:
Link lengths:
Solution:
Input crank (L2)
a 0.50
First coupler (AB)
b 1.00
Rocker 4 (O4B)
c 1.00
Rocker 5 (L5)
c' 1.00
Ground link (O2O4)
d 0.75
Second coupler 6 (CD)
b' 1.00
Coupler point (DP)
p 1.00
Distance to OP (O2OP)
d' 1.50
See Figure 3-37b and Mathcad file P0450.
1.
Links 4, 5, BC, and CD form a parallelogram whose opposite sides remain parallel throughout the motion of the fourbar 1, 2, AB, 4. Therefore, the transmission angles at points B and D will be the same and the transmission angle at point C will be the complement of the angle at B.
2.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
3.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1
d a
K1 1.5000
2
d
K2
K3
c
K2 0.7500
2
2
a b c d
2
2 a c
K3 0.8125
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
2 4 A θ Cθ
θ θ 2 atan2 2 A θ B θ 4.
B θ
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4
2
d
K5
b
2
2
c d a b
2
K4 0.7500
2 a b
D θ cos θ K1 K4 cos θ K5
E θ 2 sin θ
F θ K1 K4 1 cos θ K5 5.
Use equation 4.13 to find values of 3 for the crossed circuit.
θ θ 2 atan2 2 D θ E θ 6.
2 4 Dθ F θ
E θ
Calculate (using equations 4.32) and plot the transmission angles at B and D.
θtransB1 θ θ θ θ θ
θtransB θ if θtransB1 θ
π 2
K5 0.8125
π θtransB1 θ θtransB1 θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-50-2
Transmission Angles at B and D 80
60
θtransB θ
40
deg
20
0
0
45
90
135
180
225
270
315
360
θ deg
6.
Calculate and plot the transmission angle at C.
θtransC1 θ 180 deg θtransB θ
θtransC θ if θtransC1 θ
π 2
π θtransC1 θ θtransC1 θ
Transmission Angle at C 80
60
θtransC θ
40
deg
20
0
0
45
90
135
180 θ deg
225
270
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-51-1
PROBLEM 4-51 Statement:
Figure 3-29g shows Evan's approximate straight-line linkage #2. Determine the range of motion of link 2 for which the point P varies no more than 0.005 from the straight line X = -0.500 (assuming that O2 is the origin of a global coordinate frame whose positive X axis is rotated 30 deg from O2O4).
Given:
Link lengths: Input (O2A)
a 1.000
Coupler (AB)
b 1.200
Rocker (O4B)
c 1.167
Ground link
d 2.305
p 1.50
Coupler point data:
α 30 deg
Coordinate rotation angle: Solution: 1.
δ 180 deg
See Figure 3-29g and Mathcad file P0451.
Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" Since d (link 1) is the longest link and the linkage is non-Grashof, this is a Class 1 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 3 and 4 colinear:
a2 d 2 ( b c) 2 2 d a
θ acos 1.
θ 81.136 deg
θ θ
Define one cycle of the input crank (driving through the links 2-3 toggle position): θ θ θ 0.5 deg θ
2.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1
d
K4
a
K1 2.3050
2
d
K5
b
K4 1.9208
2
2 a b
K5 2.6630
D θ cos θ K1 K4 cos θ K5
3.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the open circuit.
θ θ 2 atan2 2 D θ E θ
2 4 Dθ F θ
E θ
2
c d a b
2
DESIGN OF MACHINERY - 5th Ed.
4.
SOLUTION MANUAL 4-51-2
Use equations 4.31 to define the x and y-components of the vector RP. RP RA RPA
RPA p cos θ δ j sin θ δ RA a cos θ j sin θ
RPx θ a cos θ p cos θ θ δ 5.
Plot the X coordinate of the coupler point in the global X,Y coordinate system using equations 4.0b to rotate the local coordinates to a global frame.
PX θ RPx θ cos( α) RPy θ sin( α) X COORDINATE 0.48
Coupler Point Coordinate - X
0.485 0.49 0.495
PX θ
0.5 0.505 0.51 0.515 0.52
0
15
30
45
60
θ deg Input Angle - Theta2
6.
RPy θ a sin θ p sin θ θ δ
Using the graph for guess values, solve by trial and error to find 2 for X = -0.500 +/-0.005 PX ( 11.59 deg) 0.49500
θ2min 11.59 deg
PX ( 57.80 deg) 0.50500
θ2max 57.80 deg
75
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-52-1
PROBLEM 4-52 Statement:
For the linkage in Figure P4-16, what are the angles that link 2 makes with the positive X-axis when links 2 and 3 are in toggle positions?
Given:
Link lengths:
Solution: 1.
Input (O2A)
a 14
Rocker (O4B)
c 51.26
b 80
Coupler (AB)
O4 offset in XY coordinates:
O4X 47.5
Ground link:
d
2
O4X O4Y
O4Y 76 12 2
O4Y 64.000
d 79.701
See Figure P4-16 and Mathcad file P0452.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof" 2.
Define the coordinate frame transformation angle:
O4Y O4X
δ π atan 3.
crank rocker
δ 126.582 deg
Calculate the angle of link 2 in the XY system when links 2 and 3 are in the overlapped toggle position.
( b a) 2 d2 c2 δ 2 ( b a) d
θ21XY acos 4.
θ21XY 86.765 deg
Calculate the angle of link 2 in the XY system when links 2 and 3 are in the extended toggle position.
( b a) 2 d2 c2 δ 2 ( b a) d
θ22XY acos
θ22XY 93.542 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-53-1
PROBLEM 4-53 Statement:
The coordinates of the point P1 on link 4 in Figure P4-16 are (114.68, 33.19) with respect to the xy coordinate system when link 2 is in the position shown. When link 2 is in another position the coordinates of P2 with respect to the xy system are (100.41, 43.78). Calculate the coordinates of P1 and P2 in the XY system for the two positions of link 2. What is the salient feature of the coordinates of P1 and P2 in the XY system?
Given:
Vertical and horizontal offsets from O2 to O4. O2O4X 47.5 in
O2O4Y 64 in
Coordinates of P1 and P2 in the local system
Solution: 1.
P1x 114.68 in
P1y 33.19 in
P2x 100.41 in
P2y 43.78 in
See Figure P4-16 and Mathcad file P0453.
Calculate the angle from the global X axis to the local x axis.
O2O4Y O2O4X
δ 180 deg atan 2.
3.
δ 126.582 deg
Use equations 4.0b to transform the given coordinates from the local to the global system. P1X P1x cos( δ) P1y sin( δ)
P1X 95.00 in
P1Y P1x sin( δ) P1y cos( δ)
P1Y 72.31 in
P2X P2x cos( δ) P2y sin( δ)
P2X 95.00 in
P2Y P2x sin( δ) P2y cos( δ)
P2Y 54.54 in
In the global XY system the X-coordinates are the same for each point, which indicates that the head on the end of the rocker beam 4 is designed such that its tangent is always parallel to the Y-axis.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-54-1
PROBLEM 4-54 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 4 with respect to the XY coordinate frame and the transmission angle at point B of the linkage in Figure P4-16 as a function of the angle of input link 2 with respect to the XY frame.
Given:
Link lengths:
Solution: 1.
Input (O2A)
a 14
Coupler (AB)
b 80
Rocker (O4B)
c 51.26
Ground link
d 79.70
See Figure P4-16 and Mathcad file P0454.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "Grashof" 2.
Define the coordinate frame transformation angle: δ 90 deg atan
47.5
64
3.
crank rocker
δ 126.582 deg
Define one cycle of the input crank with respect to the XY frame:
θ2 θ2XY θ2XY δ
θ2XY 0 deg 1 deg 360 deg 4.
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1
d
K2
a
K1 5.6929
2
d
K3
c
K2 1.5548
2
2
a b c d
2
2 a c
K3 1.9339
A θ2XY cos θ2 θ2XY K1 K2 cos θ2 θ2XY K3 B θ2XY 2 sin θ2 θ2XY
C θ2XY K1 K2 1 cos θ2 θ2XY K3
θ θ2XY 2 atan2 2 A θ2XY B θ2XY
2
θ θ2XY θ θ2XY δ 2 π 5.
Use equations 4.12 and 4.13 to calculate 3 as a function of 2 (for the crossed circuit). K4
d b
K4 0.996
2
K5
2
2
c d a b
K5 4.607
2 a b
B θ2XY 4 A θ2XY C θ2XY
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-54-2
D θ2XY cos θ2 θ2XY K1 K4 cos θ2 θ2XY K5 E θ2XY 2 sin θ2 θ2XY F θ2XY K1 K4 1 cos θ2 θ2XY K5
θ θ2XY 2 atan2 2 D θ2XY E θ2XY 6.
E θ2XY 4 D θ2XY F θ2XY 2
Plot the angular position of link 4 as a function of the input angle of link 2 with respect to the XY frame.
Angular Position of Link 4 40 35 30 θ θ2XY 25 20 deg 15 10 5
0
0
45
90
135
180
225
270
315
360
θ2XY deg
7.
Calculate (using equations 4.32) and plot the transmission angle at B.
θtransB1 θ2XY θ θ2XY θ θ2XY
θtransB θ2XY if θtransB1 θ2XY
π 2
π θtransB1 θ2XY θtransB1 θ2XY
Transmission Angle at B 90 85 80
θtransB θ2XY
75 70
deg 65 60 55 50
0
45
90
135
180
θ2XY deg
225
270
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-55-1
PROBLEM 4-55 Statement:
For the linkage in Figure P4-17, calculate the maximum CW rotation of link 2 from the position shown, which is -20.60 deg with respect to the local xy system. What angles do link 3 and link 4 rotate through for that excursion of link 2?
Given:
Link lengths: Input (O2A)
a 9.17
Coupler (AB)
b 12.97
Rocker (O4B)
c 9.57
Ground link
d 7.49
Initial position of link 2: θ 26.00 deg 2 π (with respect to xy system) Solution: 1.
See Figure P4-17 and Mathcad file P0455.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( d b a c) "non-Grashof" 2.
Using equations 4.37, determine the crank angles (relative to the line O2O4) at which links 3 and 4 are in toggle 2
arg1
2
2
2 a d 2
arg2
2
a d b c
2
2
a d b c
2
2 a d
b c
arg1 0.936
a d b c
arg2 2.678
a d
θ acos arg1
θ 20.55 deg
The other toggle angle is the negative of this. θ θ 2 π 3.
θ 339.45 deg
Calculate the CW rotation of link 2 from the initial position to the toggle position. Δ θ θ
4.
Δ 313.45 deg
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1
d
K4
a
K1 0.8168
2
d
K5
b
K4 0.5775
2
2 a b
K5 0.9115
D θ cos θ K1 K4 cos θ K5
6.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the crossed circuit.
θ θ 2 atan2 2 D θ E θ
2 4 Dθ F θ
E θ
2
c d a b
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-55-2
Initial angular position of link 3:
θ θ 2 π 647.755 deg
Final angular position of link 3:
θ θ 0.001 deg 250.764 deg
θ θ 0.001 deg θ θ 2 π 7.
898.518 deg
Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1
d
K2
a
K1 0.8168
2
d
K3
c
K2 0.7827
2
2 a c
K3 0.3621
A θ cos θ K1 K2 cos θ K3
C θ K1 K2 1 cos θ K3
B θ 2 sin θ
θ θ 2 atan2 2 A θ B θ
2 4 A θ Cθ
B θ
Initial angular position of link 4:
θ θ 2 π 659.462 deg
Final angular position of link 4:
θ θ 0.001 deg 250.615 deg
θ θ 0.001 deg θ θ 2 π
2
a b c d
910.077 deg
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-56-1
PROBLEM 4-56 Statement:
Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point P in Figure P4-17 with respect to the XY coordinate system as a function of the angle of input link 2 with respect to the XY coordinate system.
Given:
Link lengths: Input (O2A)
a 9.174
Coupler (AB)
b 12.971
Rocker (O4B)
c 9.573
Ground link
d 7.487
p 15.00
Coupler point data: Solution: 1.
δ 0 deg
See Figure P4-17 and Mathcad file P0456.
Check the Grashof condition of the linkage. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( a b c d ) "non-Grashof" 2.
Using equations 4.37, determine the crank angles (relative to the line O2O4) at which links 3 and 4 are in toggle 2
arg1
2
2
2 a d 2
arg2
2
a d b c
2
2
a d b c
2
2 a d
b c
arg1 0.937
a d b c
arg2 2.679
a d
θ2toggle acos arg1
θ2toggle 20.501 deg
The other toggle angle is the negative of this. 3.
Define the coordinate transformation angle. Transformation angle:
4.
α atan
6.95
2.79
α 68.128 deg
Define one cycle of the input crank between limit positions: θ θ2toggle θ2toggle 1 deg 2 π θ2toggle
5.
Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1
d
K4
a
K1 0.8161
2
d
K5
b
K4 0.5772
D θ cos θ K1 K4 cos θ K5
2
2
c d a b 2 a b
K5 0.9110
2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-56-2
6.
F θ K1 K4 1 cos θ K5
E θ 2 sin θ
Use equation 4.13 to find values of 3 for the crossed circuit.
θ θ 2 atan2 2 D θ E θ 7.
2 4 Dθ F θ
E θ
Use equations 4.31 to define the x- and y-components of the vector RP. RP RA RPA
RPA p cos θ δ j sin θ δ RA a cos θ j sin θ
RPx θ a cos θ p cos θ θ δ 8.
Transform these local xy coordinates to the global XY coordinate system using equations 4.0b.
RPX θ RPx θ cos α RPy θ sin α RPY θ RPx θ sin α RPy θ cos α Plot the coordinates of the coupler point in the global XY coordinate system. COUPLER POINT PATH 5
0
Coupler Point Coordinate - Y
9.
5
10
15
20 10
5
0
RPy θ a sin θ p sin θ θ δ
5
10
Coupler Point Coordinate - X
15
20
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-57-1
PROBLEM 4-57 Statement:
For the linkage in Figure P4-17, calculate the coordinates of the point P in the XY coordinate syste if its coordinates in the xy system are (2.71, 10.54).
Given:
Vertical and horizontal offsets from O2 to O4. O2O4X 2.790 in
O2O4Y 6.948 in
Coordinates of P in the local system Px 12.816 in Solution: 1.
See Figure P4-17 and Mathcad file P0457.
Calculate the angle from the global X axis to the local x axis.
O2O4Y O2O4X
δ atan 2.
Py 10.234 in
δ 68.122 deg
Use equations 4.0b to transform the given coordinates from the local to the global system. PX Px cos( δ) Py sin( δ)
PX 14.273 in
PY Px sin( δ) Py cos( δ)
PY 8.079 in
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-58-1
PROBLEM 4-58 Statement:
The elliptical trammel in Figure P4-18 must be driven by rotating link 3 in a full circle. Derive analytical expressions for the positions of points A, B, and a point C on link 3 midway between A and B as a function of 3 and the length AB of link 3. Use a vector loop equation. (Hint: Place the global origin off the mechanism, preferably below and to the left and use a total of 5 vectors.) Code your solution in an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point C for one revolution of link 3.
Solution:
See Figure P4-18 and Mathcad file P0458.
1.
Establish the global XY system such that the coordinates of the intersection of the slot centerlines is at (d X,d Y ). Then, define position vectors R1X, R1Y , R2, R3, and R4 as shown below. Y
4 B
3 R3
3
C
R2 2
R4
A 1
R1Y
X R1X
2.
Write the vector loop equation: R1Y + R2 + R3 - R1X - R4 = 0 then substitute the complex number notation for each position vector. The equation then becomes:
π π j j θ 3 2 j ( 0) j ( 0) 2 dY e a e c e dX e b e = 0 j
3.
Substituting the Euler identity into this equation gives: d Y j a c cos θ3 j sin θ3 d X b j = 0
4.
Separate this equation into its real (x component) and imaginary (y component) parts, setting each equal to zero. a c cos θ3 d X = 0
5.
Solve for the two unknowns a and b in terms of the constants d X and d Y and the independent variable 3. Where (a,d Y ) and (d X,b) are the coordinates of points A and B, respectively, and c is the length of link 3. With no loss of generality, let d X = d Y = d. Then, a = d c cos θ3
6.
b = d c sin θ3
The coordinates of the point C are: CX = d 0.5 cos θ3
7.
d Y c sin θ3 b = 0
CY = d 0.5 c sin θ3
Using a local coordinate system whose origin is located at the intersection of the centerlines of the two slots and transforming the above functions to the local xy system:
DESIGN OF MACHINERY - 5th Ed.
8.
SOLUTION MANUAL 4-58-2
a x = c cos θ3
ay = 0
bx = 0
b y = c sin θ3
To plot the path of point C as a function of 3, let c 1 and define a range function for 3
θ3 0 deg 1 deg 360 deg Cx θ3 0.5 c cos θ3
Cy θ3 0.5 sin θ3 Path of Point C
1
0.5
Cy θ3
0
0.5
1 1
0.5
0
Cx θ3
0.5
1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-59-1
PROBLEM 4-59 Statement:
Calculate and plot the angular position of link 6 in Figure P4-19 as a function of the angle of input link 2.
Given:
Link lengths:
Solution: 1.
Input crank (L2)
a 1.75
First coupler (AB)
b 1.00
First rocker (O4B)
c 1.75
Ground link (O2O4)
d 1.00
Second input (BC)
e 1.00
Second coupler (L5)
f 1.75
Output rocker (L6)
g 1.00
Third coupler (BE)
h 1.75
Ternary link (O4C)
i 2.60
See Figure P4-19 and Mathcad file P0459.
Because the linkage is symmetrical and composed of two parallelograms the analysis can be done with simple trigonometry.
39.582°
C B
5
D
3
3
A
2
4
6 E
O4
2.
1
O2
Calculate the fixed angle that line BC makes with the extension of line O4B using the law of cosines.
c2 e2 i 2 2 c e
δ π acos
δ 39.582 deg
3.
Define one revolution of the input crank: θ 0 deg 1 deg 360 deg
4.
Because links 1, 2, 3, and 4 are a parallelogram, link 4 will have the same angle as link 2 and AB will always be parallel to O2O4. And because links BC, 5, 6, and BE are also a parallelogram, link 6 will have the same angle as link BC. Thus,
θ θ θ δ 5.
Plot the angular position of link 6 as a function of the angle of input link 2 (see next page).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-59-2
Angular Position of Link 6 400 360 320 280 240
θ θ
200
deg 160 120 80 40 0
0
45
90
135
180 θ deg
225
270
315
360
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-60a-1
PROBLEM 4-60a The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row a, draw the linkage to scale and graphically find all possible solutions (both open and crossed) for angles 2 and θ3.
Statement:
Given:
Link 2
a 1.4 in
Link 3
b 4 in
Offset
c 1 in
Slider position
d 2.5 in
See Figure P4-2, Table P4-5, and Mathcad file P0460a.
Solution: 1.
Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.
2.
Draw a circle centered at the origin with radius equal to a at some convenient scale.
3.
Draw construction lines to define the point (d,c).
4.
From the point (d,c) draw an arc with radius equal to b.
5.
The two intersections of the circle and arc are the two solutions to the position analysis problem, crossed and open. If the circle and line don't intersect, there is no solution.
6.
Draw links 2 and 3 in their two possible positions (shown as solid for branch 1 and dashed for branch 2 in the figure) and measure the angles θ2 and 3 for each branch. From the solution below, Branch 1:
θ21 176.041 deg
θ31 ( 180 13.052) deg
θ31 193.052 deg
Branch 2:
θ22 132.439 deg
θ32 ( 180 30.551) deg
θ32 210.551 deg
13.052° 30.551°
176.041° 000 b = 4.
c = 1.000"
a = 1.400
132.439°
d = 2.500"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-61a-1
PROBLEM 4-61a Statement:
Given:
Solution: 1.
The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row a, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2
a 1.4 in
Link 3
Offset
c 1 in
Slider position
d 2.5 in
See Figure P4-2, Table P4-5, and Mathcad file P0461a.
Determine both values of 2 using equations 4.20 and 4.21. 2
2
2
K1 a b c d
2
2
K1 6.790 in
2
K2 2 a c
K2 2.800 in
K3 2 a d
K3 7.000 in
A K1 K3
A 0.210 in
B 2 K2
B 5.600 in
C K1 K3
C 13.790 in
2
2 2 2
2 atan2 2 A B
θ21 2 atan2 2 A B θ22 2.
b 4 in
2 B 4 A C 2
B 4 A C
θ21 176.041 deg θ22 132.439 deg
Determine both values of 3 using equation 4.16a or 4.17.
β ( a b c d α)
θ asin
a sin( α) c
b
d 1 a cos( α) b cos( θ ) return θ if d 1 = d asin
a sin( α) c b
π otherwise
θ31 β a b c d θ21
θ31 193.052 deg
θ32 β a b c d θ22
θ32 210.551 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-61b-1
PROBLEM 4-61b Statement:
Given:
Solution: 1.
The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row b, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2
a 2 in
Link 3
Offset
c 3 in
Slider position
d 5 in
See Figure P4-2, Table P4-5, and Mathcad file P0461b.
Determine both values of 2 using equations 4.20 and 4.21. 2
2
2
K1 a b c d
2
2
K1 2.000 in
2
K2 2 a c
K2 12.000 in
K3 2 a d
K3 20.000 in
A K1 K3
A 22.000 in
B 2 K2
B 24.000 in
C K1 K3
C 18.000 in
2
2
2 2
2 atan2 2 A B
θ21 2 atan2 2 A B θ22 2.
b 6 in
2 B 4 A C 2
B 4 A C
θ21 54.117 deg θ22 116.045 deg
Determine both values of 3 using equation 4.16a or 4.17.
β ( a b c d α)
θ asin
a sin( α) c
b
d 1 a cos( α) b cos( θ ) return θ if d 1 = d asin
a sin( α) c b
π otherwise
θ31 β a b c d θ21
θ31 129.640 deg
θ32 β a b c d θ22
θ32 168.433 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-61c-1
PROBLEM 4-61c Statement:
Given:
Solution: 1.
The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row c, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2
a 3 in
Link 3
Offset
c 2 in
Slider position
d 8 in
See Figure P4-2, Table P4-5, and Mathcad file P0461c.
Determine both values of 2 using equations 4.20 and 4.21. 2
2
2
K1 a b c d
2
2
K1 13.000 in
2
K2 2 a c
K2 12.000 in
K3 2 a d
K3 48.000 in
A K1 K3
A 61.000 in
B 2 K2
B 24.000 in
C K1 K3
C 35.000 in
2
2 2 2
2 atan2 2 A B
θ21 2 atan2 2 A B θ22 2.
b 8 in
2 B 4 A C 2
B 4 A C
θ21 88.803 deg θ22 60.731 deg
Determine both values of 3 using equation 4.16a or 4.17.
β ( a b c d α)
θ asin
a sin( α) c
b
d 1 a cos( α) b cos( θ ) return θ if d 1 = d asin
a sin( α) c b
π otherwise
θ31 β a b c d θ21
θ31 172.824 deg
θ32 β a b c d θ22
θ32 215.249 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-61d-1
PROBLEM 4-61d Statement:
Given:
Solution: 1.
The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row d, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2
a 3.5 in
Link 3
Offset
c 1 in
Slider position
d 8 in
See Figure P4-2, Table P4-5, and Mathcad file P0461d.
Determine both values of 2 using equations 4.20 and 4.21. 2
2
2
K1 a b c d
2
2
K1 22.750 in 2
K2 2 a c
K2 7.000 in
K3 2 a d
K3 56.000 in
A K1 K3
A 78.750 in
B 2 K2
B 14.000 in
C K1 K3
C 33.250 in
2 2
2
2
2 atan2 2 A B
θ21 2 atan2 2 A B θ22 2.
b 10 in
2 B 4 A C 2
B 4 A C
θ21 286.648 deg θ22 300.898 deg
Determine both values of 3 using equation 4.16a or 4.17.
β ( a b c d α)
θ asin
a sin( α) c
b
d 1 a cos( α) b cos( θ ) return θ if d 1 = d asin
a sin( α) c b
π otherwise
θ31 β a b c d θ21
θ31 25.806 deg
θ32 β a b c d θ22
θ32 11.556 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-61e-1
PROBLEM 4-61e Statement:
Given:
Solution: 1.
The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row e, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2
a 5 in
Link 3
Offset
c 5 in
Slider position
d 15 in
See Figure P4-2, Table P4-5, and Mathcad file P0461e.
Determine both values of 2 using equations 4.20 and 4.21. 2
2
2
K1 a b c d
2
2
K1 125.000 in 2
K2 2 a c
K2 50.000 in
K3 2 a d
K3 150.000 in
A K1 K3
A 25.000 in
B 2 K2
B 100.000 in
C K1 K3
C 275.000 in
2
2 2 2
2 atan2 2 A B
θ21 2 atan2 2 A B θ22 2.
b 20 in
2 B 4 A C 2
B 4 A C
θ21 123.804 deg θ22 160.674 deg
Determine both values of 3 using equation 4.16a or 4.17.
β ( a b c d α)
θ asin
a sin( α) c
b
d 1 a cos( α) b cos( θ ) return θ if d 1 = d asin
a sin( α) c b
π otherwise
θ31 β a b c d θ21
θ31 152.759 deg
θ32 β a b c d θ22
θ32 170.371 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-61f-1
PROBLEM 4-61f Statement:
Given:
Solution: 1.
The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row f, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2
a 3 in
Link 3
Offset
c 0 in
Slider position
d 12 in
See Figure P4-2, Table P4-5, and Mathcad file P0461f.
Determine both values of 2 using equations 4.20 and 4.21. 2
2
2
K1 a b c d
2
2
K1 16.000 in 2
K2 2 a c
K2 0.000 in
K3 2 a d
K3 72.000 in
A K1 K3
A 88.000 in
B 2 K2
B 0.000 in
C K1 K3
C 56.000 in
2 2
2 2
2 atan2 2 A B
θ21 2 atan2 2 A B θ22 2.
b 13 in
2 B 4 A C 2
B 4 A C
θ21 282.840 deg θ22 282.840 deg
Determine both values of 3 using equation 4.16a or 4.17.
β ( a b c d α)
θ asin
a sin( α) c
b
d 1 a cos( α) b cos( θ ) return θ if d 1 = d asin
a sin( α) c b
π otherwise
θ31 β a b c d θ21
θ31 13.003 deg
θ32 β a b c d θ22
θ32 13.003 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 4-61g-1
PROBLEM 4-61g Statement:
Given:
Solution: 1.
The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row g, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2
a 7 in
Link 3
Offset
c 10 in
Slider position
d 25 in
See Figure P4-2, Table P4-5, and Mathcad file P0461g.
Determine both values of 2 using equations 4.20 and 4.21. 2
2
2
K1 a b c d
2
2
K1 149.000 in
2
K2 2 a c
K2 140.000 in
K3 2 a d
K3 350.000 in
A K1 K3
A 499.000 in
B 2 K2
B 280.000 in
C K1 K3
C 201.000 in
2
2 2 2
2 atan2 2 A B
θ21 2 atan2 2 A B θ22 2.
b 25 in
2 B 4 A C 2
B 4 A C
θ21 88.519 deg θ22 44.916 deg
Determine both values of 3 using equation 4.16a or 4.17.
β ( a b c d α)
θ asin
a sin( α) c
b
d 1 a cos( α) b cos( θ ) return θ if d 1 = d asin
a sin( α) c b
π otherwise
θ31 β a b c d θ21
θ31 186.898 deg
θ32 β a b c d θ22
θ32 216.705 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-1-1
PROBLEM 5-1 Statement:
Design a fourbar mechanism to give the two positions shown in Figure P3-1 of output rocker motion with no quick-return. (See Problem 3-3).
Given:
Coordinates of the points C1, D1, C2, and D2 with respect to C1: C1x 0.0
D1x 1.721
C2x 2.656
D2x 5.065
C1y 0.0
D1y 1.750
C2y 0.751
D2y 0.281
Assumptions: Use the pivot point between links 3 and 4 (C1 and C2 )as the precision points P1 and P2. Define position vectors in the global frame whose origin is at C1. Solution:
See solution to Problem 3-3 and Mathcad file P0501.
1.
Note that this is a two-position function generation (FG) problem because the output is specified as an angular displacement of the rocker, link 4. See Section 5.13 which details the 3-position FG solution. See also Section 5.3 in which the equations for the two-position motion generation problem are derived. These are really the same problem and have the same solution. The method of Section 5.3 will be used here.
2.
Two solution methods are derived in Section 5.3 and are presented in equations 5.7 and 5.8 for the left dyad and equations 5.11 and 5.12 for the right dyad. The first method (equations 5.7 and 5.11) looks like the better one to use in this case since it allows us to choose the link's angular positions and excursions and solve for the lengths of links 2 and 3 (w and z). Unfortunately, this method fails in this problem because of the requirement for a non-quick-return Grashof linkage, which requires the angular displacement of link 3 in going from position 1 to position 2 to be zero (2 = 0) causing a divide-by-zero error in equations 5.7d.
3.
Method 2 (equations 5.8 and 5.12) requires the choosing of two angles and a length for each dyad.
4.
To obtain the same solution as was done graphically in Problem 3-4, we need to know the location of the fixed pivot O4 with respect to the given CD. While we could take the results from Problem 3-3 and use them here to establish the location of O4, that won't be done. Instead, we will use the point C as the joint between links 3 and 4 as well as the precision point P.
5.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
C1x C1y
R2
C2x C2y
P21x R2 R1 P21y
P21x 2.656 P21y 0.751
p 21 6.
2
2
P21x P21y
p 21 2.760
From the trigonometric relationships given in Figure 5-1, determine 2. From the requirement for a non-quick-return, α 0. δ atan2 P21x P21y
7.
δ 15.789 deg
From a graphical solution (see figure below), determine the values necessary for input to equations 5.8. z 5.000
β 180 deg
ϕ δ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-1-2
3.483 5.0000
1.380
2.027 5.621
O4
1
A1 O2
2
4 2.095
0.989
3
56.519°
A2 C1
D2 C2 2.922
D1
8.
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
Z1x 4.811
A 2.000
D sin α
B 0.000
E p 21 cos δ
C 0.000
F p 21 sin δ
A cos β 1 B sin β
C cos α 1
W1x
W1y w
Z1y z sin ϕ
D 0.000
E 2.656
F 0.751
A C Z1x D Z1y E B C Z1y D Z1x F
W1x 1.328
2 A A C Z1y D Z1x F B C Z1x D Z1y E
W1y 0.375
2 A 2
Z1y 1.360
2
W1x W1y
w 1.380
θ atan2 W1x W1y
θ 164.211 deg
This is the expected value of w (one half of p 21) based on the design choices made in the graphical solution and the assumptions made in this problem. 9.
From the graphical solution (see figure above), determine the values necessary for input to equations 5.12. s 0
γ 56.519 deg
ψ 0 deg
10. Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 0.000
S 1y s sin ψ
A 0.448
D sin α
B 0.834
E p 21 cos δ
A cos γ 1 B sin γ
S 1y 0.000 D 0.000
E 2.656
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-1-3
C cos α 1
C 0.000
F p 21 sin δ
A C S 1x D S 1y E B C S 1y D S 1x F
U1x
2 A A C S 1y D S 1x F B C S 1x D S 1y E
U1y
2
U1x 2.027
U1y 2.095
2 A
u
F 0.751
2
U1x U1y
u 2.915
σ atan2 U1x U1y
σ 134.048 deg
This is the expected value of u based on the design choices made in the graphical solution and the assumptions made in this problem. 11. Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 4.811
V1y z sin ϕ s sin ψ
V1y 1.360
θ atan2 V1x V1y
θ 15.789 deg
v Link 1:
2
2
V1x V1y
v 5.000
G1x w cos θ v cos θ u cos σ
G1x 5.510
G1y w sin θ v sin θ u sin σ
G1y 1.110
θ atan2 G1x G1y
θ 11.391 deg
g
2
2
G1x G1y
g 5.621
12. Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 152.820 deg
θ2f θ2i β
θ2f 332.820 deg
13. Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 5.000
δp 0.000 deg
which is correct for the assumption that the precision point is at C. 14. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ 0 deg R1
2
ρ 0.000 deg 2
C1x C1y
R1 0.000
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-1-4
O2x 3.483
O2y 0.985
O4x 2.027
O4y 2.095
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
15. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 11.391 deg
16. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "Grashof" 17. DESIGN SUMMARY Link 2:
w 1.380
θ 164.211 deg
Link 3:
v 5.000
θ 15.789 deg
Link 4:
u 2.915
σ 134.048 deg
Link 1:
g 5.621
θ 11.391 deg
Coupler:
rp 5.000
δp 0.000 deg
Crank angles:
θ2i 152.820 deg θ2f 332.820 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-2-1
PROBLEM 5-2 Statement:
Design a fourbar mechanism to give the two positions shown in Figure P3-1 of coupler motion.
Given:
Coordinates of the points A1, B1, A2, and B2 with respect to A1: A1x 0.0
B1x 1.721
A2x 2.656
B2x 5.065
A1y 0.0
B1y 1.750
A2y 0.751
B2y 0.281
Assumptions: Use the points A1 and A2 as the precision points P1 and P2. Define position vectors in the global frame whose origin is at A1. Solution:
See solution to Problem 3-4 and Mathcad file P0502.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. See Section 5.3 in which the equations for the two-position motion generation problem are derived.
2.
Two solution methods are derived in Section 5.3 and are presented in equations 5.7 and 5.8 for the left dyad and equations 5.11 and 5.12 for the right dyad.
3.
Method 1 (equations 5.7 and 5.11) requires the choosing of three angles for each dyad. Method 2 (equations 5.8 and 5.12) requires the choosing of two angles and a length for each dyad. Method 1 is used in this solution.
4.
In order to obtain the same solution as was done graphically in Problem 3-4, the necessary assumed values were taken from that solution as shown below.
5.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
A1x A1y
R2
A2x A2y
P21x R2 R1 P21y
P21x 2.656 P21y 0.751
p 21 6.
7.
2
2
P21x P21y
p 21 2.760
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α atan2 A2x B2x A2y B2y atan2 A1x B1x A1y B1y
α 303.481 deg
δ atan2 P21x P21y
δ 15.789 deg
From the graphical solution (see figure below), determine the values necessary for input to equations 5.7. θ 94.394 deg
β 40.366 deg
ϕ 45.479 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-2-2
O4 93.449° jY 54.330° 2.760 u
A1 X 45.479°
0.281
P 21
15.789°
B2
0.751
v 1.750
A2 134.521° 2.656
2.409
B1 w
40.366°
94.394° 75.124° O2
8.
Solve for the WZ dyad using equations 5.7.
A cos θ cos β 1 sin θ sin β
B cos ϕ cos α 1 sin ϕ sin α
C p 21 cos δ
D sin θ cos β 1 cos θ sin β
E sin ϕ cos α 1 cos ϕ sin α w
C E B F
F p 21 sin δ z
A E B D
w 4.000
A F C D A E B D
z 0.000
These are the expected values of w and z based on the design choices made in the graphical solution and the assumptions made in this problem. 9.
From the graphical solution (see figure above), determine the values necessary for input to equations 5.11. σ 93.449 deg
γ 54.330 deg
ψ 134.521 deg
10. Solve for the US dyad using equations 5.11.
A' cos σ cos γ 1 sin σ sin γ
B' cos ψ cos α 1 sin ψ sin α
C p 21 cos δ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-2-3
D' sin σ cos γ 1 cos σ sin γ
E' sin ψ cos α 1 cos ψ sin α u
C E' B' F
F p 21 sin δ s
A' E' B' D'
u 4.000
A' F C D' A' E' B' D'
s 2.455
These are the expected values of u and s based on the design choices made in the graphical solution and the assumptions made in this problem. 11. Solve for the links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 1.721
V1y z sin ϕ s sin ψ
V1y 1.750
θ atan2 V1x V1y
θ 45.479 deg
v
Link 1:
2
2
V1x V1y
v 2.455
G1x w cos θ v cos θ u cos σ
G1x 1.655
G1y w sin θ v sin θ u sin σ
G1y 6.231
θ atan2 G1x G1y
θ 75.123 deg
g
2
2
G1x G1y
g 6.447
12. Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 19.271 deg
θ2f θ2i β
θ2f 21.095 deg
13. Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 0.000
δp 0.000 deg
which is correct for the assumption that the precision point is at A. 14. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ 0 deg R1
ρ 0.000 deg
2
A1x A1y
2
R1 0.000
O2x 0.306
O2y 3.988
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-2-4
O4x 1.962
O4y 2.243
O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
15. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 75.123 deg
16. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 17. DESIGN SUMMARY Link 2:
w 4.000
θ 94.394 deg
Link 3:
v 2.455
θ 45.479 deg
Link 4:
u 4.000
σ 93.449 deg
Link 1:
g 6.447
θ 75.123 deg
Coupler:
rp 0.000
δp 0.000 deg
Crank angles:
θ2i 19.271 deg θ2f 21.095 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-3-1
PROBLEM 5-3 Statement:
Design a fourbar mechanism to give the three positions of coupler motion with no quick return shown in Figure P3-2. (See Problem 3-5). Ignore the fixed pivot points in the Figure.
Given:
Coordinates of points A and B with respect to point A1: A1x 0.0
A1y 0.0
B1x 0.741
B1y 2.383
A2x 2.019
A2y 1.905
B2x 4.428
B2y 2.557
A3x 3.933
A3y 1.035
B3x 6.304
B3y 0.256
Assumptions: Let points A1, A2, and A3 be the precision points P1, P2, and P3, respectively. Solution: 1.
2.
3.
See Figure P3-2 Mathcad file P0503.
Determine the magnitudes and orientation of the position difference vectors. 2
2
p 21 2.776
δ atan2 A2x A2y
δ 43.336 deg
2
2
p 31 4.067
δ atan2 A3x A3y
δ 14.744 deg
p 21
A2x A2y
p 31
A3x A3y
Determine the angle changes of the coupler between precision points.
θP1 atan2 A1x B1x A1y B1y
θP1 107.273 deg
θP2 atan2 A2x B2x A2y B2y
θP2 164.856 deg
θP3 atan2 A3x B3x A3y B3y
θP3 161.812 deg
α θP2 θP1
α 57.582 deg
α θP3 θP1
α 269.085 deg
The free choices for this linkage are (from the graphical solution to Problem 3-5): β 78.375 deg
4.
β 135.560 deg
γ 59.771 deg
γ 107.023 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:
D sin α G sin β L p 31 cos δ
A cos β 1
A F AA B G
B C D
G H K A D C F K H
B sin β
H cos α 1 M p 21 sin δ E p 21 cos δ
E L CC M N
F cos β 1 K sin α N p 31 sin δ C cos α 1
W1x W1y AA 1 CC Z1x Z1y
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-3-2
The components of the W and Z vectors are: W1x 2.178
W1y 0.286
Z1x 0.000
Z1y 0.000
θ atan2 W1x W1y
θ 172.523 deg
ϕ atan2 Z1x Z1y
ϕ 174.344 deg
W1x2 W1y2 , w 2.197
The length of link 2 is: w
Z1x2 Z1y2 , z 0.000
The length of vector Z is: z 5.
Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
M p 21 sin δ
B' C D
E L CC M N
G' H K
F' K H
A'
D C
N p 31 sin δ
U1x U 1y AA 1 CC S1x S1y
The components of the U and S vectors are: U1x 1.995
U1y 3.121
S 1x 0.741
S 1y 2.383
σ atan2 U1x U1y
σ 122.591 deg
ψ atan2 S 1x S 1y
ψ 107.267 deg
The length of link 4 is: u
U 2 U 2 , u 3.704 1y 1x
The length of vector S is: s 6.
S 1x2 S 1y2 , s 2.495
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x Z1x S 1x
V1x 0.741
V1y Z1y S 1y
V1y 2.383
θ atan2 V1x V1y
θ 72.734 deg
v Link 1:
2
2
V1x V1y
G1x W1x V1x U1x
v 2.495 G1x 0.558
DESIGN OF MACHINERY - 5th Ed.
G1y W1y V1y U1y
G1y 0.452
θ atan2 G1x G1y
θ 39.009 deg
g 7.
8.
9.
SOLUTION MANUAL 5-3-3
2
2
G1x G1y
g 0.718
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 211.532 deg
θ2f θ2i β
θ2f 75.972 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 0.000
δp 247.078 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x z cos ϕ w cos θ
O2x 2.178
O2y z sin ϕ w sin θ
O2y 0.286
O4x s cos ψ u cos σ
O4x 2.736
O4y s sin ψ u sin σ
O4y 0.738
10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 39.009 deg
11. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "Grashof" 12. DESIGN SUMMARY Link 2:
w 2.197
θ 172.523 deg
Link 3:
v 2.495
θ 72.734 deg
Link 4:
u 3.704
σ 122.591 deg
Link 1:
g 0.718
θ 39.009 deg
Coupler:
rp 0.000
δp 247.078 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-3-4
Crank angles:
θ2i 211.532 deg θ2f 75.972 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
Y
0.718 2.197 O4 O2
2
A1
1a
B3
2.496
A3
3 4 A2 B1
B2 3.704
This is the same result as that found in Problem 3-5.
X
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-4-1
PROBLEM 5-4 Statement:
Design a fourbar mechanism to give the three positions shown in Figure P3-2 (see Problem 3-6). Use analytical synthesis and design it for the fixed pivots shown.
Given:
Link end points (with respect to A1): A1x 0.0
B1x 0.741
A2x 2.019
B2x 4.428
A3x 3.933
B3x 6.304
A1y 0.0
B1y 2.383
A2y 1.905
B2y 2.557
A3y 1.035
B3y 0.256
Fixed pivot points (with respect to A1): O2x 0.995 Solution: 1.
2.
3.
O2y 5.086
O4x 5.298
O4y 5.086
See Figure P3-2 and Mathcad file P0504.
Determine the angle changes between precision points from the body angles given.
θP1 atan2 A1x B1x A1y B1y
θP1 107.273 deg
θP2 atan2 A2x B2x A2y B2y
θP2 164.856 deg
θP3 atan2 A3x B3x A3y B3y
θP3 161.812 deg
α θP2 θP1
α 57.582 deg
α θP3 θP1
α 269.085 deg
Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. P21x A2x
P21x 2.019
P31x A3x
P31x 3.933
P21y A2y
P21y 1.905
P31y A3y
P31y 1.035
R1x O2x
R1x 0.995
R1y O2y
R1y 5.086
R2x R1x P21x
R2x 1.024
R2y R1y P21y
R2y 3.181
R3x R1x P31x
R3x 2.938
R3y R1y P31y
R3y 4.051
2
2
R1 5.182
2
2
R2 3.342
2
2
R3 5.004
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 101.069 deg
ζ atan2 R2x R2y
ζ 72.156 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-4-2
ζ atan2 R3x R3y 4.
ζ 54.048 deg
Solve for 2 and 3 using equations 5.34
C3 8.007
C4 5.127
C5 5.851
C6 1.294
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ 2
2
C2 3.679
A1 C3 C4
A1 90.406
A2 C3 C6 C4 C5
A2 19.633
A3 C4 C6 C3 C5
A3 53.487
A4 C2 C3 C1 C4
A4 22.524
A5 C4 C5 C3 C6
A5 19.633
A6 C1 C3 C2 C4
A6 29.689
K1 A2 A4 A3 A6
K1 1.146 10
K2 A3 A4 A5 A6
K2 1.788 10
2
K3
3 3
2
2
2
A1 A2 A3 A4 A6
2
2
3
K3 1.769 10
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 90.915 deg
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 23.770 deg
The first value is the same as 3, so use the second value
β β
A5 sin β A3 cos β A6 A1
β 16.790 deg
A3 sin β A2 cos β A4 A1
β 16.790 deg
β acos
β asin
Since both values are the same, 5.
C1 1.352
Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2.
β β
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-4-3
R1x O4x
6.
7.
R1x 5.298
R1y O4y
R2x R1x P21x
R2x 3.279
R2y R1y P21y
R2y 3.181
R3x R1x P31x
R3x 1.365
R3y R1y P31y
R3y 4.051
2
2
R1 7.344
2
2
R2 4.568
2
2
R3 4.275
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
R1y 5.086
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 136.170 deg
ζ atan2 R2x R2y
ζ 135.869 deg
ζ atan2 R3x R3y
ζ 108.621 deg
Solve for 2 and 3 using equations 5.34
C3 3.636
C4 9.430
C5 3.855
C6 4.927
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ 2
2
C1 1.023 C2 4.349
A1 C3 C4
A1 102.135
A2 C3 C6 C4 C5
A2 18.434
A3 C4 C6 C3 C5
A3 60.472
A4 C2 C3 C1 C4
A4 25.460
A5 C4 C5 C3 C6
A5 18.434
A6 C1 C3 C2 C4
A6 37.287
K1 A2 A4 A3 A6
K1 1.785 10
K2 A3 A4 A5 A6
K2 2.227 10
3 3
DESIGN OF MACHINERY - 5th Ed.
2
K3
SOLUTION MANUAL 5-4-4
2
2
2
A1 A2 A3 A4 A6
2 3
K3 2.198 10
2
K K 2 K 2 K 2 2 1 2 3 γ 2 atan K1 K3
γ 90.915 deg
K K 2 K 2 K 2 2 1 2 3 2 atan K1 K3
11.643 deg
The first value is the same as 3, so use the second value
γ
A5 sin γ A3 cos γ A6 A1
11.069 deg
A3 sin γ A2 cos γ A4 A1
11.069 deg
acos
asin
γ
Since both angles are the same, 8.
Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21
2
2
P21x P21y
p 21 2.776
δ atan2 P21x P21y p 31
2
δ 43.336 deg
2
P31x P31y
p 31 4.067
δ atan2 P31x P31y 9.
δ 14.744 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector: A cos β 1 B sin β C cos α 1
E p 21 cos δ
H cos α 1
D sin α G sin β
L p 31 cos δ
A F AA B G
B C D
G H K A D C F K H
10. The components of the W and Z vectors are:
M p 21 sin δ
E L CC M N
F cos β 1
K sin α
N p 31 sin δ
W1x W1y AA 1 CC Z1x Z1y
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-4-5
W1x 3.594
W1y 7.810 2
w
11. The length of link 2 is:
Z1x 4.589
2
W1x W1y
Z1y 2.724
w 8.597
12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
M p 21 sin δ
B' C D
N p 31 sin δ
E L CC M N
G' H K A' D C F' K H
U1x U1y AA 1 CC S1x S1y
13. The components of the W and Z vectors are: U1x 2.400
14. The length of link 4 is:
U1y 7.549 2
u
U1x U1y
S1x 2.898
2
S1y 2.463
u 7.921
15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x Z1x S1x
V1x 1.691
V1y Z1y S1y
V1y 0.261
The length of link 3 is:
v
2
2
V1x V1y
v 1.711
G1x W1x V1x U1x
G1x 4.303
G1y W1y V1y U1y
G1y 5.329 10
The length of link 1 is:
g
2
G1x G1y
2
14
g 4.303
16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x Z1x W1x
O2x 0.995
O2y Z1y W1y
O2y 5.086
O4x S1x U1x
O4x 5.298
O4y S1y U1y
O4y 5.086
These check with Figure P3-2.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-4-6
17. Determine the location of the coupler point with respect to point A and line AB. 2
2
z 5.336
2
2
s 3.803
Distance from A to P
z
Z1x Z1y
Angle BAP (p)
s
S1x S1y
rP z
ψ atan2( S1x S1y)
ψ 139.639 deg
ϕ atan2( Z1x Z1y )
ϕ 149.309 deg
θ atan2 z cos ϕ s cos ψ z sin ϕ s sin ψ θ 171.233 deg
δp ϕ θ
δp 21.924 deg
18. DESIGN SUMMARY Link 1:
g 4.303
Link 2:
w 8.597
Link 3:
v 1.711
Link 4:
u 7.921
Coupler point:
rP 5.336
δp 21.924 deg
19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-5-1
PROBLEM 5-5 Statement:
See Project P3-8. Define three positions of the boat and analytically synthesize a linkage to move through them.
Assumptions: Launch ramp angle is 15 deg to the horizontal. Solution: 1.
See Project P3-8 and Mathcad file P0505.
This is an open-ended design problem that has many valid solutions. First define the problem more completely than is stated by deciding on three positions for the boat to move through. The figure below shows one such set of positions (dimensions are in mm). Y 3539 1453 1 deg. P2
15 deg.
725 X
P1 1179
1261
1431
0 deg. P3
O4
O2
WATER LEVEL 331 2694 RAMP
2.
From the figure, the design choices are: P21x 1453
P21y 725
P31x 3539
P31y 1261
O2x 331
O2y 1179
O4x 2694
O4y 1431
Body angles:
θP1 15 deg
θP2 1 deg
θP3 0 deg
3.
The methods of Section 5.8 are used to get a solution for this problem. The solution is sensitive to small changes in the design choices so a trial-and-error approach is warranted.
4.
Determine the angle changes between precision points from the body angles given.
5.
α θP2 θP1
α 14.000 deg
α θP3 θP1
α 15.000 deg
Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x O2x
R1x 331.000
R1y O2y 3
R2x R1x P21x
R2x 1.122 10
R2y R1y P21y
R2y 1.904 10
R3x R1x P31x
R3x 3.208 10
R3y R1y P31y
R3y 82.000
3 3
R1y 1.179 10
3
DESIGN OF MACHINERY - 5th Ed.
6.
7.
SOLUTION MANUAL 5-5-2
2
2
R1 1.225 10
3
2
2
R2 2.210 10
3
2
2
R3 3.209 10
3
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 74.318 deg
ζ atan2 R2x R2y
ζ 120.510 deg
ζ atan2 R3x R3y
ζ 178.536 deg
Solve for 2 and 3 using equations 5.34
C3 3.833 10
C4 1.135 10
C5 1.728 10
C6 840.097
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ
C4 R1 sin α ζ R3 sin ζ
C6 R1 sin α ζ R2 sin ζ 2
C2 1.433 10
3
3
3
C5 R1 cos α ζ R2 cos ζ
3
3
C3 R1 cos α ζ R3 cos ζ
C1 2.542 10
2
7
A1 C3 C4
A1 1.598 10
A2 C3 C6 C4 C5
A2 5.182 10
A3 C4 C6 C3 C5
A3 5.671 10
6
A4 C2 C3 C1 C4
A4 2.607 10
6
A5 C4 C5 C3 C6
A5 5.182 10
6
A6 C1 C3 C2 C4
A6 1.137 10
7
K1 A2 A4 A3 A6
K1 5.096 10
K2 A3 A4 A5 A6
K2 7.370 10
2
K3
6
13 13
2
2
2
A1 A2 A3 A4 A6
2
2
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
13
K3 3.015 10
β 125.675 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-5-3
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 15.000 deg
The second value is the same as 3, so use the first value
β β
A5 sin β A3 cos β A6 A1
β 39.836 deg
A3 sin β A2 cos β A4 A1
β 39.836 deg
β acos
β asin
β β
Since both values are the same, 8.
Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x O4x
9.
R1x 2.694 10
3
R1y O4y
R2x R1x P21x
R2x 1.241 10
3
R2y R1y P21y
R2y 2.156 10
3
R3x R1x P31x
R3x 845.000
R3y R1y P31y
R3y 170.000
2
2
R1 3.050 10
3
2
2
R2 2.488 10
3
2
2
R3 861.931
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
R1y 1.431 10
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 27.976 deg
ζ atan2 R2x R2y
ζ 60.075 deg
ζ atan2 R3x R3y
ζ 168.625 deg
10. Solve for 2 and 3 using equations 5.34
C3 3.818 10
C4 514.981
C5 1.719 10
C6 1.419 10
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ
C1 2.536 10
3
C2 1.392 10
3
3
3 3
3
DESIGN OF MACHINERY - 5th Ed. 2
SOLUTION MANUAL 5-5-4
2
7
A1 C3 C4
A1 1.484 10
A2 C3 C6 C4 C5
A2 6.303 10
A3 C4 C6 C3 C5
A3 5.832 10
6
A4 C2 C3 C1 C4
A4 4.008 10
6
A5 C4 C5 C3 C6
A5 6.303 10
6
A6 C1 C3 C2 C4
A6 1.040 10
7
K1 A2 A4 A3 A6
K1 3.537 10
K2 A3 A4 A5 A6
K2 8.891 10
2
K3
6
13 13
2
2
2
A1 A2 A3 A4 A6
2
2
13
K3 1.115 10
K K 2 K 2 K 2 2 1 2 3 γ 2 atan K1 K3
γ 151.615 deg
K K 2 K 2 K 2 2 1 2 3 2 atan K1 K3
15.000 deg
The second value is the same as 3, so use the first value
γ γ
A5 sin γ A3 cos γ A6 A1
56.167 deg
A3 sin γ A2 cos γ A4 A1
56.167 deg
acos
asin
γ
Since both angles are the same,
11. Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21
2
2
P21x P21y
δ atan2 P21x P21y
p 31
2
2
P31x P31y
δ atan2 P31x P31y
3
p 21 1.624 10
δ 153.482 deg
3
p 31 3.757 10
δ 160.388 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-5-5
12. Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
F cos β 1
G sin β
K sin α
L p 31 cos δ
M p 21 sin δ
B C D
A F AA B G
C cos α 1
N p 31 sin δ
E L CC M N
G H K A D C F K H
W1x W1y AA 1 CC Z1x Z1y
13. The components of the W and Z vectors are: W1x 1.331 10
3
w
14. The length of link 2 is:
W1y 1.653 10 2
3
Z1x 1.000 10
2
W1x W1y
3
Z1y 474.187
w 2122.473
15. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
M p 21 sin δ
B' C D
N p 31 sin δ
E L CC M N
G' H K A' D C F' K H
U1x U1y AA 1 CC S1x S1y
16. The components of the W and Z vectors are: 3
U1x 1.690 10
17. The length of link 4 is:
u
U1y 951.273 2
U1x U1y
2
S1x 1.004 10
3
S1y 479.727
u 1939.291
18. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x Z1x S1x
V1x 2.004 10
V1y Z1y S1y
V1y 953.914
The length of link 3 is:
v
2
2
V1x V1y
v 2219.601
3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-5-6
G1x W1x V1x U1x
G1x 2.363 10
G1y W1y V1y U1y
G1y 252.000
The length of link 1 is:
2
g
G1x G1y
2
3
g 2376.399
19. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x Z1x W1x
O2x 331.000
O2y Z1y W1y
O2y 1179.000
O4x S1x U1x
O4x 2694.000
O4y S1y U1y
O4y 1431.000
These check with the design choices shown in the figure above. 20. Determine the location of the coupler point with respect to point A and line AB. 2
2
z 1106.834
2
2
s 1112.770
Distance from A to P
z
Z1x Z1y
Angle BAP (p)
s
S1x S1y
rP z
ψ atan2( S1x S1y)
ψ 25.538 deg
ϕ atan2( Z1x Z1y )
ϕ 154.633 deg
θ atan2 z cos ϕ s cos ψ z sin ϕ s sin ψ θ 154.547 deg
δp ϕ θ
δp 0.086 deg
21. DESIGN SUMMARY Link 1:
g 2376.4
Link 2:
w 2122.5
Link 3:
v 2219.6
Link 4:
u 1939.3
Coupler point:
rP 1106.8
δp 0.086 deg
22. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct. The solution is drawn below to show the locations of the moving pivots for the three positions chosen (see next page). 23. The design needs to be checked for the presence of toggle positions within its desired range of motion. This design has none, but is close to toggle at position 1. This could be used as a locking feature. 24. The transmission angles need to be checked also. This design has poor transmission angles, especially in and near positions 1 and 3. Unfortunately, this is where a large overturning moment is created by the mass of the boat. A large mechanical advantage input device will need to be used here, such as a hydraulic cylinder or geared drive. Note that the drive mechanism must also resist being overdriven (back driven) by the load as the boat descends from its high point onto the trailer.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-5-7
A2 A1
B2
B1 A3 B3 WATER LEVEL
RAMP
O4
O2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-6-1
PROBLEM 5-6 Statement:
See Project P3-20. Define three positions of the dumpster and analytically synthesize a linkage to move through them. The fixed pivots must be located on the existing truck.
Solution:
See Project P3-20 and Mathcad file P0506.
1.
This is an open-ended design problem that has many valid solutions. First define the problem more completely than it is stated by deciding on three positions for the dumpster box to move through. The figure below shows one such set of positions (dimensions are in mm). 1999 59.1 deg. 590
30.3 deg.
P3 P2 1817 0 deg.
1202
226 311
P1 O2 O4
2036 2094
2.
From the figure, the design choices are: P21x 590
P21y 1202
P31x 1999
P31y 1817
O2x 2094
O2y 226
O4x 2036
O4y 311
Body angles:
θP1 0 deg
θP2 30.3 deg
θP3 59.1 deg
3.
The methods of Section 5.8 are used to get a solution for this problem. The solution is sensitive to small changes in the design choices so a trial-and-error approach is warranted.
4.
Determine the angle changes between precision points from the body angles given.
5.
α θP2 θP1
α 30.300 deg
α θP3 θP1
α 59.100 deg
Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x O2x
R1x 2.094 10
3
R1y O2y
R2x R1x P21x
R2x 1.504 10
3
R2y R1y P21y
R2y 1.428 10
3
R3x R1x P31x
R3x 95.000
R1y 226.000
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-6-2
R3y R1y P31y
6.
7.
R3y 2.043 10
3
2
2
R1 2.106 10
3
2
2
R2 2.074 10
3
2
2
R3 2.045 10
3
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 6.160 deg
ζ atan2 R2x R2y
ζ 43.515 deg
ζ atan2 R3x R3y
ζ 87.338 deg
Solve for 2 and 3 using equations 5.34
C3 786.433
C4 130.152
C5 189.927
C6 176.392
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ 2
2
C1 495.777 C2 212.019
5
A1 C3 C4
A1 6.354 10
A2 C3 C6 C4 C5
A2 1.140 10
A3 C4 C6 C3 C5
A3 1.723 10
5
A4 C2 C3 C1 C4
A4 2.313 10
5
A5 C4 C5 C3 C6
A5 1.140 10
5
A6 C1 C3 C2 C4
A6 3.623 10
5
K1 A2 A4 A3 A6
K1 3.607 10
K2 A3 A4 A5 A6
K2 8.115 10
2
K3
5
10 10
2
2
2
A1 A2 A3 A4 A6
2
2
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
10
K3 8.816 10
β 72.976 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-6-3
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 59.100 deg
The second value is the same as 3, so use the first value
β β
A5 sin β A3 cos β A6 A1
β 34.802 deg
A3 sin β A2 cos β A4 A1
β 34.802 deg
β acos
β asin
β β
Since both values are the same, 8.
Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x O4x
9.
R1x 2.036 10
3
R1y O4y
R2x R1x P21x
R2x 1.446 10
3
R2y R1y P21y
R2y 1.513 10
3
R3x R1x P31x
R3x 37.000
R3y R1y P31y
R3y 2.128 10
3
2
2
R1 2.060 10
3
2
2
R2 2.093 10
3
2
2
R3 2.128 10
3
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
R1y 311.000
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 8.685 deg
ζ atan2 R2x R2y
ζ 46.297 deg
ζ atan2 R3x R3y
ζ 89.004 deg
10. Solve for 2 and 3 using equations 5.34
C3 741.712
C4 221.269
C5 154.965
C6 217.266
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ
C1 486.018 C2 161.777
DESIGN OF MACHINERY - 5th Ed. 2
SOLUTION MANUAL 5-6-4
2
5
A1 C3 C4
A1 5.991 10
A2 C3 C6 C4 C5
A2 1.269 10
A3 C4 C6 C3 C5
A3 1.630 10
5
A4 C2 C3 C1 C4
A4 2.275 10
5
A5 C4 C5 C3 C6
A5 1.269 10
5
A6 C1 C3 C2 C4
A6 3.247 10
5
K1 A2 A4 A3 A6
K1 2.406 10
K2 A3 A4 A5 A6
K2 7.828 10
2
K3
5
10 10
2
2
2
A1 A2 A3 A4 A6
2
2
10
K3 7.953 10
K K 2 K 2 K 2 2 1 2 3 γ 2 atan K1 K3
γ 86.724 deg
K K 2 K 2 K 2 2 1 2 3 2 atan K1 K3
59.100 deg
The second value is the same as 3, so use the first value
γ γ
A5 sin γ A3 cos γ A6 A1
39.743 deg
A3 sin γ A2 cos γ A4 A1
39.743 deg
acos
asin
γ
Since both angles are the same,
11. Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21
2
2
P21x P21y
δ atan2 P21x P21y p 31
2
2
P31x P31y
δ atan2 P31x P31y
p 21 1338.994 δ 116.144 deg p 31 2701.387 δ 137.731 deg
12. Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-6-5
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
F cos β 1
G sin β
K sin α
L p 31 cos δ
M p 21 sin δ
B C D
A F AA B G
C cos α 1
E L CC M N
G H K A D C F K H
N p 31 sin δ
W1x W1y AA 1 CC Z1x Z1y
13. The components of the W and Z vectors are: W1x 3.194 10
3
W1y 829.763
Z1x 1.100 10
3
Z1y 603.763
14. The length of link 2 is: w
2
2
W1x W1y
w 3299.543
15. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
M p 21 sin δ
B' C D
N p 31 sin δ
E L CC M N
G' H K A' D C F' K H
U1x U1y AA 1 CC S1x S1y
16. The components of the W and Z vectors are: 3
U1x 1.621 10
U1y 13.492
S1x 415.016
S1y 297.508
17. The length of link 4 is: u
2
U1x U1y
2
u 1621.040
18. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x Z1x S1x
V1x 1.515 10
V1y Z1y S1y
V1y 901.272
3
DESIGN OF MACHINERY - 5th Ed.
The length of link 3 is:
SOLUTION MANUAL 5-6-6 2
v
2
V1x V1y
v 1762.404
G1x W1x V1x U1x
G1x 58.000
G1y W1y V1y U1y
G1y 85.000
The length of link 1 is:
2
g
G1x G1y
2
g 102.903
19. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x Z1x W1x
O2x 2094.000
O2y Z1y W1y
O2y 226.000
O4x S1x U1x
O4x 2036.000
O4y S1y U1y
O4y 311.000
These check with the design choices shown in the figure above. 20. Determine the location of the coupler point with respect to point A and line AB. 2
2
z 1254.370
2
2
s 510.637
Distance from A to P
z
Z1x Z1y
Angle BAP (p)
s
S1x S1y
rP z
ψ atan2( S1x S1y)
ψ 35.635 deg
ϕ atan2( Z1x Z1y )
ϕ 151.228 deg
θ atan2 z cos ϕ s cos ψ z sin ϕ s sin ψ θ 149.244 deg
δp ϕ θ
δp 1.984 deg
21. DESIGN SUMMARY Link 1:
g 102.9
Link 2:
w 3299.5
Link 3:
v 1762.4
Link 4:
u 1621.0
Coupler point:
rP 1254.4
δp 1.984 deg
22. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct. The solution is drawn below to show the locations of the moving pivots for the three positions chosen (see next page). 23. The design needs to be checked for the presence of toggle positions within its desired range of motion. This design has none, but is close to toggle at position 3.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-6-7
24. The transmission angles need to be checked also. A large mechanical advantage input device will need to be used here, such as a hydraulic cylinder. Note that the drive mechanism must also resist being overdriven (back driven) by the load as the dumpster descends from its high point onto the truck.
A3
A2
B3
B2
O2
B1 O4
A1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-7-1
PROBLEM 5-7 Statement:
See Project P3-7. Define three positions of the computer monitor and analytically synthesize a linkage to move through them. The fixed pivots must be located on the floor or wall.
Solution:
See Project P3-7 and Mathcad file P0507.
1.
This is an open-ended design problem that has many valid solutions. First define the problem more completely than it is stated by deciding on three positions for the computer monitor to move through. The figure below shows one such set of positions (dimensions are in inches). Y 33.816
O2 97 deg. 11.580 P1
O4
X
90 deg. 7.812
1.272
14.472
P2
WALL 85 deg.
P3
2.148
5.736
2.
From the figure, the design choices are: P21x 2.148
P21y 7.812
P31x 5.736
P31y 14.472
O2x 33.816
O2y 11.580
O4x 33.816
O4y 1.272
Body angles:
θP1 97 deg
θP2 90 deg
θP3 85 deg
3.
The methods of Section 5.8 are used to get a solution for this problem. The solution is sensitive to small changes in the design choices so a trial-and-error approach is warranted.
4.
Determine the angle changes between precision points from the body angles given.
5.
α θP2 θP1
α 7.000 deg
α θP3 θP1
α 12.000 deg
Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x O2x
R1x 33.816
R1y O2y
R2x R1x P21x
R2x 31.668
R2y R1y P21y
R2y 19.392
R3x R1x P31x
R3x 28.080
R3y R1y P31y
R3y 26.052
R1y 11.580
DESIGN OF MACHINERY - 5th Ed.
6.
7.
SOLUTION MANUAL 5-7-2
2
2
R1 35.744
2
2
R2 37.134
2
2
R3 38.304
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 161.097 deg
ζ atan2 R2x R2y
ζ 148.519 deg
ζ atan2 R3x R3y
ζ 137.146 deg
Solve for 2 and 3 using equations 5.34
C3 7.405
C4 21.756
C5 3.307
C6 12.019
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ 2
2
C1 3.962 C2 10.052
A1 C3 C4
A1 528.143
A2 C3 C6 C4 C5
A2 17.049
A3 C4 C6 C3 C5
A3 285.981
A4 C2 C3 C1 C4
A4 11.771
A5 C4 C5 C3 C6
A5 17.049
A6 C1 C3 C2 C4
A6 248.020
K1 A2 A4 A3 A6
K1 7.073 10
K2 A3 A4 A5 A6
K2 7.595 10
2
K3
4 3
2
2
2
A1 A2 A3 A4 A6
2
2
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
4
K3 6.760 10
β 24.258 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-7-3
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 12.000 deg
The second value is the same as 3, so use the first value
β β
A5 sin β A3 cos β A6 A1
β 12.435 deg
A3 sin β A2 cos β A4 A1
β 12.435 deg
β acos
β asin
β β
Since both values are the same, 8.
Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x O4x
9.
R1x 33.816
R1y O4y
R2x R1x P21x
R2x 31.668
R2y R1y P21y
R2y 6.540
R3x R1x P31x
R3x 28.080
R3y R1y P31y
R3y 13.200
2
2
R1 33.840
2
2
R2 32.336
2
2
R3 31.028
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
R1y 1.272
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 177.846 deg
ζ atan2 R2x R2y
ζ 168.331 deg
ζ atan2 R3x R3y
ζ 154.822 deg
10. Solve for 2 and 3 using equations 5.34
C3 4.733
C4 21.475
C5 1.741
C6 11.924
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ
C1 2.856 C2 9.867
DESIGN OF MACHINERY - 5th Ed. 2
SOLUTION MANUAL 5-7-4
2
A1 C3 C4
A1 483.571
A2 C3 C6 C4 C5
A2 19.043
A3 C4 C6 C3 C5
A3 264.299
A4 C2 C3 C1 C4
A4 14.646
A5 C4 C5 C3 C6
A5 19.043
A6 C1 C3 C2 C4
A6 225.402
K1 A2 A4 A3 A6
K1 5.929 10
K2 A3 A4 A5 A6
K2 8.163 10
2
K3
4 3
2
2
2
A1 A2 A3 A4 A6
2
2
4
K3 5.630 10
K K 2 K 2 K 2 2 1 2 3 γ 2 atan K1 K3
γ 27.678 deg
K K 2 K 2 K 2 2 1 2 3 2 atan K1 K3
12.000 deg
The second value is the same as 3, so use the first value
γ γ
A5 sin γ A3 cos γ A6 A1
14.435 deg
A3 sin γ A2 cos γ A4 A1
14.435 deg
acos
asin
γ
Since both angles are the same,
11. Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21
2
2
P21x P21y
δ atan2 P21x P21y
p 31
2
2
P31x P31y
δ atan2 P31x P31y
p 21 8.102 δ 74.626 deg
p 31 15.567 δ 68.379 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-7-5
12. Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
F cos β 1
G sin β
K sin α
L p 31 cos δ
M p 21 sin δ
B C D
A F AA B G
C cos α 1
N p 31 sin δ
E L CC M N
G H K A D C F K H
W1x W1y AA 1 CC Z1x Z1y
13. The components of the W and Z vectors are: W1x 36.030
W1y 8.098
Z1x 2.214
Z1y 3.482
14. The length of link 2 is: w
2
2
W1x W1y
w 36.929
15. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
M p 21 sin δ
B' C D
N p 31 sin δ
E L CC M N
G' H K A' D C F' K H
U1x U1y AA 1 CC S1x S1y
16. The components of the W and Z vectors are: U1x 32.294
U1y 2.592
S1x 1.522
17. The length of link 4 is: u
2
U1x U1y
2
u 32.398
18. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x Z1x S1x
V1x 3.736
V1y Z1y S1y
V1y 7.346
S1y 3.864
DESIGN OF MACHINERY - 5th Ed.
The length of link 3 is:
SOLUTION MANUAL 5-7-6 2
v
2
V1x V1y
v 8.241
G1x W1x V1x U1x
G1x 0.000
G1y W1y V1y U1y
G1y 12.852
The length of link 1 is:
2
g
G1x G1y
2
g 12.852
19. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x Z1x W1x
O2x 33.816
O2y Z1y W1y
O2y 11.580
O4x S1x U1x
O4x 33.816
O4y S1y U1y
O4y 1.272
These check with the design choices shown in the figure above. 20. Determine the location of the coupler point with respect to point A and line AB. 2
2
z 4.126
2
2
s 4.153
Distance from A to P
z
Z1x Z1y
Angle BAP (p)
s
S1x S1y
ψ atan2( S1x S1y)
ψ 111.494 deg
ϕ atan2( Z1x Z1y )
ϕ 57.551 deg
rP z
θ atan2 z cos ϕ s cos ψ z sin ϕ s sin ψ θ 63.046 deg
δp ϕ θ
δp 5.495 deg
21. DESIGN SUMMARY Link 1:
g 12.852
Link 2:
w 36.929
Link 3:
v 8.241
Link 4:
u 32.398
Coupler point:
rP 4.126
δp 5.495 deg
22. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct. The solution is drawn below to show the locations of the moving pivots for the three positions chosen (see next page). 23. The design needs to be checked for the presence of toggle positions within its desired range of motion. This design has none.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-7-7
24. The transmission angles need to be checked also. A means to support the weight of the monitor must be provided. The figure below shows a spring placed between links to provide the balancing moment. Further design and analysis needs to be done to optimize the spring placement in order to compensate for its change in force with deflection and the change in moment arm as the linkage moves.
SPRING O2
A1
A2 O4
B1
WALL A3 B2
B3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-8-1
PROBLEM 5-8 Statement:
Design a linkage to carry the body in Figure P5-1 through the two positions P1 and P2 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Use the free choices given below.
Given:
Coordinates of the points P1 and P2 with respect to P1: P1x 0.0
P1y 0.0
P2x 1.236
P2y 2.138
Angles made by the body in positions 1 and 2:
θP1 210 deg
θP2 147.5 deg
Free choices for the WZ dyad : z 1.075
β 27.0 deg
ϕ 204.4 deg
γ 40.0 deg
ψ 74.0 deg
Free choices for the US dyad : s 1.240 Solution:
See Figure P5-1 and Mathcad file P0508.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. Because of the data given in the hint, the second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
P1x P1y
R2
P2x P2y
P21x R2 R1 P21y
P21x 1.236 P21y 2.138
p 21 3.
4.
2
2
P21x P21y
p 21 2.470
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP2 θP1
α 62.500 deg
δ atan2 P21x P21y
δ 120.033 deg
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
Z1y z sin ϕ
A 0.109
D sin α
B 0.454
E p 21 cos δ
C 0.538
F p 21 sin δ
A cos β 1 B sin β
C cos α 1
W1x
Z1x 0.979
A C Z1x D Z1y E B C Z1y D Z1x F 2 A
Z1y 0.444 D 0.887
E 1.236
F 2.138
W1x 1.462
DESIGN OF MACHINERY - 5th Ed.
W1y w
SOLUTION MANUAL 5-8-2
A C Z1y D Z1x F B C Z1x D Z1y E
W1y 3.367
2 A 2
2
W1x W1y
w 3.670
θ atan2 W1x W1y 5.
θ 113.472 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 0.342
A 0.234
D sin α
B 0.643
E p 21 cos δ
C 0.538
F p 21 sin δ
A cos γ 1 B sin γ
C cos α 1
U1x
U1y u
S 1y s sin ψ
D 0.887
E 1.236
F 2.138
A C S 1x D S 1y E B C S 1y D S 1x F 2 A A C S 1y D S 1x F B C S 1x D S 1y E
2
U1x U1y
u 5.461
σ atan2 U1x U1y 6.
σ 125.619 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 1.321
V1y z sin ϕ s sin ψ
V1y 1.636
θ atan2 V1x V1y
θ 128.914 deg
v Link 1:
2
2
V1x V1y
v 2.103
G1x w cos θ v cos θ u cos σ
G1x 0.398
G1y w sin θ v sin θ u sin σ
G1y 0.564
θ atan2 G1x G1y
θ 54.796 deg
g 7.
U1x 3.180
U1y 4.439
2 A 2
S 1y 1.192
2
2
G1x G1y
g 0.690
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 58.677 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-8-3
θ2f θ2i β 8.
9.
θ2f 85.677 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 1.075
δp 333.314 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ 0 deg R1
ρ 0.000 deg
2
2
P1x P1y
R1 0.000
O2x 2.441
O2y 3.811
O4x 2.838
O4y 3.247
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 54.796 deg
11. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 12. DESIGN SUMMARY Link 2:
w 3.670
θ 113.472 deg
Link 3:
v 2.103
θ 128.914 deg
Link 4:
u 5.461
σ 125.619 deg
Link 1:
g 0.690
θ 54.796 deg
Coupler:
rp 1.075
δp 333.314 deg
Crank angles:
θ2i 58.677 deg θ2f 85.677 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-8-4
13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
O2
1.236
G1 Y
O4 U2
P2 S2
B2
V2 2.138
W2
U1
Z2 A2
Z1 62.5°
W1
A1 X
P1 V1
S1 B1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-9-1
PROBLEM 5-9 Statement:
Design a linkage to carry the body in Figure P5-1 through the two positions P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Hint: First try a rough graphical solution to create realistic values for free choices.
Given:
Coordinates of the points P2 and P3 with respect to P1: P2x 1.236
P2y 2.138
P3x 2.500
P3y 2.931
Angles made by the body in positions 1 and 2:
θP2 147.5 deg Solution:
θP3 110.2 deg
See Figure P5-1 and Mathcad file P0509.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1.
P2x P2y
R1
R2
P3x P3y
P21x R2 R1 P21y
P21x 1.264 P21y 0.793
p 21 3.
2
2
P21x P21y
p 21 1.492
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP3 θP2
α 37.300 deg
δ atan2 P21x P21y
δ 147.897 deg O4
4.
From a graphical solution (see figure at right), determine the values necessary for input to equations 5.8.
Y
1.250
P3 43.806°
z 0.0 B3
β 43.806 deg
P2 32.500°
57.012° B2
O2
ϕ 32.500 deg
P1
5.
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
Z1x 0.000
Z1y z sin ϕ
A 0.278
D sin α
B 0.692
E p 21 cos δ
C 0.205
F p 21 sin δ
A cos β 1 B sin β
C cos α 1
Z1y 0.000 D 0.606
E 1.264
F 0.793
X
DESIGN OF MACHINERY - 5th Ed.
W1x
W1y w
SOLUTION MANUAL 5-9-2
A C Z1x D Z1y E B C Z1y D Z1x F
W1x 1.618
2 A A C Z1y D Z1x F B C Z1x D Z1y E
W1y 1.175
2 A 2
2
W1x W1y
w 2.000
θ atan2 W1x W1y 5.
θ 35.994 deg
From the graphical solution (see figure above), determine the values necessary for input to equations 5.12. s 1.250
6.
γ 57.012 deg
ψ 147.5 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 1.054
A 0.456
D sin α
B 0.839
E p 21 cos δ
C 0.205
F p 21 sin δ
A cos γ 1 B sin γ
C cos α 1
U1x
U1y u
S 1y s sin ψ
A C S 1x D S 1y E B C S 1y D S 1x F 2 A A C S 1y D S 1x F B C S 1x D S 1y E 2 A 2
2
U1x U1y
E 1.264
F 0.793
U1x 0.675
U1y 1.883
σ 70.278 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 1.054
V1y z sin ϕ s sin ψ
V1y 0.672
θ atan2 V1x V1y
θ 32.500 deg
v Link 1:
2
2
V1x V1y
v 1.250
G1x w cos θ v cos θ u cos σ
G1x 1.997
G1y w sin θ v sin θ u sin σ
G1y 2.386
θ atan2 G1x G1y
θ 50.070 deg
g 8.
D 0.606
u 2.000
σ atan2 U1x U1y 7.
S 1y 0.672
2
2
G1x G1y
g 3.112
Determine the initial and final values of the input crank with respect to the vector G.
DESIGN OF MACHINERY - 5th Ed.
9.
SOLUTION MANUAL 5-9-3
θ2i θ θ
θ2i 14.077 deg
θ2f θ2i β
θ2f 29.729 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 0.000
δp 0.000 deg
which is correct for the assumption that the precision point is at C. 10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ atan2 P2x P2y R1
2
ρ 120.033 deg
2
P2x P2y
R1 2.470
O2x 2.854
O2y 0.963
O4x 0.857
O4y 3.349
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y 12. Determine the Grashof condition. Condition( a b c d )
θrot 50.070 deg
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 13. DESIGN SUMMARY Link 2:
w 2.000
θ 35.994 deg
Link 3:
v 1.250
θ 32.500 deg
Link 4:
u 2.000
σ 70.278 deg
Link 1:
g 3.112
θ 50.070 deg
Coupler:
rp 0.000
δp 0.000 deg
Crank angles:
θ2i 14.077 deg θ2f 29.729 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-10-1
PROBLEM 5-10 Statement:
Design a linkage to carry the body in Figure P5-1 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Use the free choices given below.
Given:
Coordinates of the points P1 and P2 with respect to P1: P1x 0.0
P1y 0.0
P2x 1.236
P3x 2.500
P3y 2.931
P2y 2.138
Angles made by the body in positions 1, 2 and 3:
θP1 210 deg
θP2 147.5 deg
θP3 110.2 deg
Free choices for the WZ dyad : β 30.0 deg
β 60.0 deg
Free choices for the US dyad : γ 10.0 deg Solution: 1.
2.
3.
γ 25.0 deg
See Figure P5-1 and Mathcad file P0510.
Determine the magnitudes and orientation of the position difference vectors. 2
2
p 21 2.470
δ atan2 P2x P2y
δ 120.033 deg
2
2
p 31 3.852
δ atan2 P3x P3y
δ 130.463 deg
p 21
P2x P2y
p 31
P3x P3y
Determine the angle changes of the coupler between precision points. α θP2 θP1
α 62.500 deg
α θP3 θP1
α 99.800 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
K sin α
L p 31 cos δ
M p 21 sin δ
B C D
E L CC M N
G H K
F K H A
F cos β 1
G sin β
A F AA B G
C cos α 1
D C
N p 31 sin δ
W1x W 1y AA 1 CC Z1x Z1y
The components of the W and Z vectors are: W1x 2.920
W1y 1.720
Z1x 0.756
Z1y 0.442
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-10-2
θ atan2 W1x W1y
ϕ 149.697 deg
W1x2 W1y2 , w 3.389
The length of link 2 is: w
Z1x2 Z1y2 , z 0.876
The length of vector Z is: z 4.
ϕ atan2 Z1x Z1y
θ 30.493 deg
Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
M p 21 sin δ
B' C D
E L CC M N
G' H K A' D C F' K H
N p 31 sin δ
U1x U 1y AA 1 CC S1x S1y
The components of the U and S vectors are: U1x 1.009
U1y 2.693
S 1x 0.792
S 1y 2.418
σ atan2 U1x U1y
σ 110.545 deg
ψ atan2 S 1x S 1y
ψ 108.125 deg
The length of link 4 is: u
U1x2 U1y2 , u 2.875
The length of vector S is: s 5.
S 1x2 S 1y2 , s 2.544
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x Z1x S 1x
V1x 0.036
V1y Z1y S 1y
V1y 1.976
θ atan2 V1x V1y
θ 88.968 deg
v Link 1:
2
2
V1x V1y
v 1.977
G1x W1x V1x U1x
G1x 3.965
G1y W1y V1y U1y
G1y 1.003
θ atan2 G1x G1y
θ 14.202 deg
DESIGN OF MACHINERY - 5th Ed.
g 6.
7.
8.
9.
2
SOLUTION MANUAL 5-10-3
2
G1x G1y
g 4.090
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 16.291 deg
θ2f θ2i β
θ2f 76.291 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 0.876
δp 238.665 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x z cos ϕ w cos θ
O2x 2.164
O2y z sin ϕ w sin θ
O2y 1.278
O4x s cos ψ u cos σ
O4x 1.801
O4y s sin ψ u sin σ
O4y 0.274
Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 14.202 deg
10. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "Grashof" 11. DESIGN SUMMARY Link 2:
w 3.389
θ 30.493 deg
Link 3:
v 1.977
θ 88.968 deg
Link 4:
u 2.875
σ 110.545 deg
Link 1:
g 4.090
θ 14.202 deg
Coupler:
rp 0.876
δp 238.665 deg
Crank angles:
θ2i 16.291 deg θ2f 76.291 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-10-4
12. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
Y
P3 S3
Z3 A3
B1
S2 P2
B3
V3
V2 S1
A2
W3
60.0°
B2
10.0° 25.0° V1
Z1
30.0°
A1
U2 U1 X
W2
P1 W1 G1
O2
O4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-11-1
PROBLEM 5-11 Statement:
Given:
Solution: 1.
2.
Design a linkage to carry the body in Figure P5-1 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis and design it for the fixed pivots shown. P21x 1.236 O2x 2.164
P21y 2.138 O2y 1.260
P31x 2.500 O4x 2.190
P31y 2.931 O4y 1.260
Body angles:
θP1 210 deg
θP2 147.5 deg
θP3 110.2 deg
See Figure P5-1 and Mathcad file P0511.
Determine the angle changes between precision points from the body angles given. α θP2 θP1
α 62.500 deg
α θP3 θP1
α 99.800 deg
Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x O2x
3.
4.
R1x 2.164
R1y O2y
R2x R1x P21x
R2x 0.928
R2y R1y P21y
R2y 3.398
R3x R1x P31x
R3x 0.336
R3y R1y P31y
R3y 4.191
2
2
R1 2.504
2
2
R2 3.522
2
2
R3 4.204
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
R1y 1.260
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 30.210 deg
ζ atan2 R2x R2y
ζ 74.725 deg
ζ atan2 R3x R3y
ζ 94.584 deg
Solve for 2 and 3 using equations 5.34
C3 1.209
C4 6.538
C5 1.189
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C1 0.372 C2 3.726
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-11-2
C6 R1 sin α ζ R2 sin ζ 2
C6 4.736
2
A1 C3 C4
A1 44.206
A2 C3 C6 C4 C5
A2 2.046
A3 C4 C6 C3 C5
A3 32.399
A4 C2 C3 C1 C4
A4 6.937
A5 C4 C5 C3 C6
A5 2.046
A6 C1 C3 C2 C4
A6 23.911
K1 A2 A4 A3 A6
K1 760.497
K2 A3 A4 A5 A6
K2 273.669
2
K3
2
2
2
A1 A2 A3 A4 A6
2
K3 140.232
2
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 60.217 deg
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 99.800 deg
The second value is the same as 3, so use the first value
β β
A5 sin β A3 cos β A6 A1
β 30.143 deg
A3 sin β A2 cos β A4 A1
β 30.143 deg
β acos
β asin
β β
Since both values are the same, 5.
Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x O4x
R1x 2.190
R1y O4y
R2x R1x P21x
R2x 3.426
R2y R1y P21y
R2y 3.398
R3x R1x P31x
R3x 4.690
R3y R1y P31y
R3y 4.191
R1
2
2
R1x R1y
R1 2.527
R1y 1.260
DESIGN OF MACHINERY - 5th Ed.
6.
7.
SOLUTION MANUAL 5-11-3
2
2
R2 4.825
2
2
R3 6.290
R2
R2x R2y
R3
R3x R3y
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 150.086 deg
ζ atan2 R2x R2y
ζ 135.235 deg
ζ atan2 R3x R3y
ζ 138.216 deg
Solve for 2 and 3 using equations 5.34
C3 6.304
C4 2.247
C5 3.532
C6 0.874
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ 2
2
C1 2.380 C2 3.298
A1 C3 C4
A1 44.796
A2 C3 C6 C4 C5
A2 2.431
A3 C4 C6 C3 C5
A3 24.233
A4 C2 C3 C1 C4
A4 15.441
A5 C4 C5 C3 C6
A5 2.431
A6 C1 C3 C2 C4
A6 22.414
K1 A2 A4 A3 A6
K1 505.612
K2 A3 A4 A5 A6
K2 428.679
2
K3
2
2
2
A1 A2 A3 A4 A6
2
2
K3 336.363
K K 2 K 2 K 2 2 1 2 3 γ 2 atan K1 K3
γ 19.215 deg
K K 2 K 2 K 2 2 1 2 3 2 atan K1 K3
99.800 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-11-4
The second value is the same as 3, so use the first value
γ γ
A5 sin γ A3 cos γ A6 A1
6.628 deg
A3 sin γ A2 cos γ A4 A1
6.628 deg
acos
asin
Since 2 is not in the first quadrant , 8.
γ
Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2
p 21
2
P21x P21y
p 21 2.470
δ atan2 P21x P21y 2
p 31
δ 120.033 deg
2
P31x P31y
p 31 3.852
δ atan2 P31x P31y 9.
δ 130.463 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
F cos β 1
G sin β
K sin α
L p 31 cos δ
A F AA B G
C cos α 1
M p 21 sin δ
B C D
E L CC M N
G H K A D C F K H
N p 31 sin δ
W1x W1y AA 1 CC Z1x Z1y
10. The components of the W and Z vectors are: W1x 2.915 11. The length of link 2 is:
w
W1y 1.702 2
Z1x 0.751
2
W1x W1y
Z1y 0.442
w 3.376
12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
A' cos γ 1
D sin α
B' sin γ
E p 21 cos δ
C cos α 1
F' cos γ 1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-11-5
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
H cos α 1
M p 21 sin δ
B' C D
N p 31 sin δ
E L CC M N
G' H K A' D C F' K H
U1x U1y AA 1 CC S1x S1y
13. The components of the W and Z vectors are: U1x 1.371
14. The length of link 4 is:
U1y 3.634 2
u
U1x U1y
S1x 0.819
2
S1y 2.374
u 3.884
15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x Z1x S1x
V1x 0.068
V1y Z1y S1y
V1y 1.932 v
The length of link 3 is:
2
2
V1x V1y
v 1.933
G1x W1x V1x U1x
G1x 4.354
G1y W1y V1y U1y
G1y 2.220 10
g
The length of link 1 is:
2
G1x G1y
2
15
g 4.354
16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x Z1x W1x
O2x 2.164
O2y Z1y W1y
O2y 1.260
O4x S1x U1x
O4x 2.190
O4y S1y U1y
O4y 1.260
These check with Figure P5-1. 17. Determine the location of the coupler point with respect to point A and line AB. 2
2
z 0.871
2
2
s 2.511
Distance from A to P
z
Z1x Z1y
Angle BAP (p)
s
S1x S1y
rP z
ψ atan2( S1x S1y)
ψ 109.037 deg
ϕ atan2( Z1x Z1y )
ϕ 149.555 deg
θ atan2 z cos ϕ s cos ψ z sin ϕ s sin ψ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-11-6
θ 87.994 deg
δp ϕ θ
δp 237.549 deg
18. DESIGN SUMMARY Link 1:
g 4.354
Link 2:
w 3.376
Link 3:
v 1.933
Link 4:
u 3.884
Coupler point:
rP 0.871
δp 237.549 deg
19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-12-1
PROBLEM 5-12 Statement:
Design a linkage to carry the body in Figure P5-2 through the two positions P1 and P2 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Use the free choices given below.
Given:
Coordinates of the points P1 and P2 with respect to P1: P1x 0.0
P1y 0.0
P2x 1.903
P2y 1.347
Angles made by the body in positions 1 and 2:
θP1 101.0 deg
θP2 62.0 deg
Free choices for the WZ dyad : z 2.000
β 30.0 deg
ϕ 150.0 deg
γ 40.0 deg
ψ 50.0 deg
Free choices for the US dyad : s 3.000 Solution:
See Figure P5-2 and Mathcad file P0512.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. Because of the data given in the hint, the second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
P1x P1y
R2
P2x P2y
P21x R2 R1 P21y
P21x 1.903 P21y 1.347
p 21 3.
4.
2
2
P21x P21y
p 21 2.331
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP2 θP1
α 39.000 deg
δ atan2 P21x P21y
δ 35.292 deg
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
Z1y z sin ϕ
A 0.134
D sin α
B 0.500
E p 21 cos δ
E 1.903
C 0.223
F p 21 sin δ
F 1.347
B sin β
C cos α 1
Z1y 1.000
A cos β 1
W1x
Z1x 1.732
A C Z1x D Z1y E B C Z1y D Z1x F 2 A
D 0.629
W1x 0.452
DESIGN OF MACHINERY - 5th Ed.
W1y w
SOLUTION MANUAL 5-12-2
A C Z1y D Z1x F B C Z1x D Z1y E
W1y 1.896
2 A 2
2
W1x W1y
w 1.949
θ atan2 W1x W1y 5.
θ 76.607 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 1.928 A 0.234
D sin α
B 0.643
E p 21 cos δ
E 1.903
C 0.223
F p 21 sin δ
F 1.347
B sin γ
C cos α 1
U1y u
D 0.629
A C S 1x D S 1y E B C S 1y D S 1x F 2 A A C S 1y D S 1x F B C S 1x D S 1y E
2
2
U1x U1y
u 6.284 σ 81.540 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 3.660
V1y z sin ϕ s sin ψ
V1y 3.298
θ atan2 V1x V1y
θ 137.980 deg
v Link 1:
2
2
V1x V1y
v 4.927
G1x w cos θ v cos θ u cos σ
G1x 4.133
G1y w sin θ v sin θ u sin σ
G1y 7.617
θ atan2 G1x G1y
θ 118.485 deg
g 7.
U1x 0.924
U1y 6.216
2 A
σ atan2 U1x U1y 6.
S 1y 2.298
A cos γ 1
U1x
S 1y s sin ψ
2
2
G1x G1y
g 8.667
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 195.092 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-12-3
θ2f θ2i β 8.
9.
θ2f 165.092 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 2.000
δp 12.020 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ 0 deg R1
ρ 0.000 deg
2
2
P1x P1y
R1 0.000
O2x 1.281
O2y 0.896
O4x 2.853
O4y 8.514
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 118.485 deg
11. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "Grashof" 12. DESIGN SUMMARY Link 2:
w 1.949
θ 76.607 deg
Link 3:
v 4.927
θ 137.980 deg
Link 4:
u 6.284
σ 81.540 deg
Link 1:
g 8.667
θ 118.485 deg
Coupler:
rp 2.000
δp 12.020 deg
Crank angles:
θ2i 195.092 deg θ2f 165.092 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-12-4
13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
O4
Y
1.903
U2 G1
U1
B2
S2
39.0° B1
V2 P2
V1 O2 S1
Z2 1.347
W1
W2
P1
X Z1 A1
A2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-13-1
PROBLEM 5-13 Statement:
Design a linkage to carry the body in Figure P5-2 through the two positions P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Hint: First try a rough graphical solution to create realistic values for free choices.
Given:
Coordinates of the points P2 and P3 with respect to P1: P2x 1.903
P2y 1.347
P3x 1.389
P3y 1.830
Angles made by the body in positions 1 and 2:
θP2 62.0 deg Solution:
θP3 39.0 deg
See Figure P5-2 and Mathcad file P0513.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1.
P2x P2y
R1
R2
P3x P3y
P21x R2 R1 P21y
P21x 0.514 P21y 0.483
p 21 3.
4.
2
2
P21x P21y
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP3 θP2
α 23.000 deg
δ atan2 P21x P21y
δ 136.781 deg
From a graphical solution (see figure next page), determine the values necessary for input to equations 5.8. z 3
5.
p 21 0.705
β 45.0 deg
ϕ 100 deg
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
Z1x 0.521
Z1y z sin ϕ
A 0.293
D sin α
B 0.707
E p 21 cos δ
A cos β 1 B sin β
W1x
W1y w
D 0.391
C 0.079 F p 21 sin δ A C Z1x D Z1y E B C Z1y D Z1x F
C cos α 1
2 A A C Z1y D Z1x F B C Z1x D Z1y E 2 A 2
2
W1x W1y
θ atan2 W1x W1y
Z1y 2.954
E 0.514 F 0.483 W1x 1.476
W1y 1.807 w 2.333 θ 50.759 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-13-2
Y
B3 2.000
O4
20.000°
P3
B2
P2
20.0°
3.000 X
P1
100.0°
23.0° A3 45.000° A2
O2
5.
From the graphical solution (see figure above), determine the values necessary for input to equations 5.12. s 2.000
6.
γ 20.0 deg
ψ 20.0 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 1.879
A 0.060
D sin α
B 0.342
E p 21 cos δ
C 0.079
F p 21 sin δ
A cos γ 1 B sin γ
C cos α 1
U1x
U1y
u
S 1y s sin ψ
A C S 1x D S 1y E B C S 1y D S 1x F 2 A A C S 1y D S 1x F B C S 1x D S 1y E 2 A 2
2
U1x U1y
σ atan2 U1x U1y 7.
S 1y 0.684 D 0.391
E 0.514
F 0.483
U1x 3.346
U1y 0.306
u 3.360 σ 5.216 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 2.400
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-13-3
V1y z sin ϕ s sin ψ θ atan2 V1x V1y v Link 1:
2
θ 123.413 deg
2
V1x V1y
v 4.359
G1x w cos θ v cos θ u cos σ
9.
G1x 4.271
G1y w sin θ v sin θ u sin σ
G1y 5.751
θ atan2 G1x G1y
θ 126.601 deg
g 8.
V1y 3.638
2
2
G1x G1y
g 7.163
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 75.842 deg
θ2f θ2i β
θ2f 30.842 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 3.000
δp 23.413 deg
10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ atan2 P2x P2y R1
2
ρ 35.292 deg
2
P2x P2y
R1 2.331
O2x 0.948
O2y 3.414
O4x 3.323
O4y 2.337
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 126.601 deg
12. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-13-4
13. DESIGN SUMMARY Link 2:
w 2.333
θ 50.759 deg
Link 3:
v 4.359
θ 123.413 deg
Link 4:
u 3.360
σ 5.216 deg
Link 1:
g 7.163
θ 126.601 deg
Coupler:
rp 3.000
δp 23.413 deg
Crank angles:
θ2i 75.842 deg θ2f 30.842 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-14-1
PROBLEM 5-14 Statement:
Design a linkage to carry the body in Figure P5-2 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown.
Given:
Coordinates of the points P1 and P2 with respect to P1: P1x 0.0
P1y 0.0
P2x 1.903
P3x 1.389
P3y 1.830
P2y 1.347
Angles made by the body in positions 1, 2 and 3:
θP1 101 deg
θP2 62.0 deg
θP3 39.0 deg
Free choices for the WZ dyad : β 40.0 deg
β 75.0 deg
Free choices for the US dyad : γ 0.0 deg Solution: 1.
2.
3.
γ 30.0 deg
See Figure P5-2 and Mathcad file P0514.
Determine the magnitudes and orientation of the position difference vectors. 2
2
p 21 2.331
δ atan2 P2x P2y
δ 35.292 deg
2
2
p 31 2.297
δ atan2 P3x P3y
δ 52.801 deg
p 21
P2x P2y
p 31
P3x P3y
Determine the angle changes of the coupler between precision points. α θP2 θP1
α 39.000 deg
α θP3 θP1
α 62.000 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1 D sin α G sin β
L p 31 cos δ
A F AA B G
B C D
G H K A D C F K H
The components of the W and Z vectors are:
C cos α 1
M p 21 sin δ
E L CC M N
F cos β 1
K sin α
N p 31 sin δ
W1x W 1y AA 1 CC Z1x Z1y
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-14-2
W1x 3.110
W1y 1.061
Z1x 0.297
Z1y 3.201
θ atan2 W1x W1y
θ 18.843 deg
ϕ atan2 Z1x Z1y
ϕ 84.698 deg
W1x2 W1y2 , w 3.286
The length of link 2 is: w
Z1x2 Z1y2 , z 3.215
The length of vector Z is: z 4.
Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
M p 21 sin δ
B' C D
E L CC M N
G' H K A' D C F' K H
N p 31 sin δ
U1x U 1y AA 1 CC S1x S1y
The components of the U and S vectors are: U1x 1.658
U1y 3.361
S 1x 2.853
S 1y 2.013
σ atan2 U1x U1y
σ 63.740 deg
ψ atan2 S 1x S 1y
ψ 144.792 deg
The length of link 4 is: u
U1x2 U1y2 , u 3.748
The length of vector S is: s 5.
S 1x2 S 1y2 , s 3.492
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x Z1x S 1x
V1x 3.150
V1y Z1y S 1y
V1y 1.188
θ atan2 V1x V1y
θ 20.657 deg
v Link 1:
2
2
V1x V1y
v 3.367
G1x W1x V1x U1x
G1x 4.602
G1y W1y V1y U1y
G1y 3.234
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-14-3
θ atan2 G1x G1y
g 6.
7.
8.
9.
2
θ 35.099 deg
2
G1x G1y
g 5.625
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 16.256 deg
θ2f θ2i β
θ2f 91.256 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 3.215
δp 64.041 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x z cos ϕ w cos θ
O2x 3.407
O2y z sin ϕ w sin θ
O2y 2.140
O4x s cos ψ u cos σ
O4x 1.195
O4y s sin ψ u sin σ
O4y 5.374
Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 35.099 deg
10. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 11. DESIGN SUMMARY Link 2:
w 3.286
θ 18.843 deg
Link 3:
v 3.367
θ 20.657 deg
Link 4:
u 3.748
σ 63.740 deg
Link 1:
g 5.625
θ 35.099 deg
Coupler:
rp 3.215
δp 64.041 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-14-4
Crank angles:
θ2i 16.256 deg
θ2f 91.256 deg
12. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
Y
P3 P2
Z3 A3 Z2 P1
V3 W3
X
S3
A2
S2
S1
75.0°
W2
B3
Z1
V2
B1 , B2
40.0° O2
W1 V1 30.0°
A1 G1
U1 U2
U3
O4
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-15-1
PROBLEM 5-15 Statement:
Given:
Solution: 1.
2.
Design a linkage to carry the body in Figure P5-2 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis and design it for the fixed pivots shown. P21x 1.903
P21y 1.347
P31x 1.389
P31y 1.830
O2x 0.884
O2y 1.251
O4x 3.062
O4y 1.251
Body angles:
θP1 101 deg
θP2 62 deg
θP3 39 deg
See Figure P5-2 and Mathcad file P0515.
Determine the angle changes between precision points from the body angles given. α θP2 θP1
α 39.000 deg
α θP3 θP1
α 62.000 deg
Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x O2x
3.
4.
R1x 0.884
R1y O2y
R2x R1x P21x
R2x 2.787
R2y R1y P21y
R2y 2.598
R3x R1x P31x
R3x 2.273
R3y R1y P31y
R3y 3.081
2
2
R1 1.532
2
2
R2 3.810
2
2
R3 3.829
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
R1y 1.251
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 54.754 deg
ζ atan2 R2x R2y
ζ 42.990 deg
ζ atan2 R3x R3y
ζ 53.582 deg
Solve for 2 and 3 using equations 5.34
C3 0.753
C4 3.274
C5 1.313
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C1 0.103 C2 2.205
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-15-2
C6 R1 sin α ζ R2 sin ζ 2
C6 2.182
2
A1 C3 C4
A1 11.288
A2 C3 C6 C4 C5
A2 2.654
A3 C4 C6 C3 C5
A3 8.134
A4 C2 C3 C1 C4
A4 1.324
A5 C4 C5 C3 C6
A5 2.654
A6 C1 C3 C2 C4
A6 7.297
K1 A2 A4 A3 A6
K1 55.842
K2 A3 A4 A5 A6
K2 30.136
2
K3
2
2
2
A1 A2 A3 A4 A6
2
K3 0.392
2
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 118.708 deg
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 62.000 deg
The second value is the same as 3, so use the first value
β β
A5 sin β A3 cos β A6 A1
β 59.564 deg
A3 sin β A2 cos β A4 A1
β 59.564 deg
β acos
β asin
β β
Since both values are the same, 5.
Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x O4x
R1x 3.062
R1y O4y
R2x R1x P21x
R2x 1.159
R2y R1y P21y
R2y 2.598
R3x R1x P31x
R3x 1.673
R3y R1y P31y
R3y 3.081
2
2
R1 3.308
2
2
R2 2.845
R1
R1x R1y
R2
R2x R2y
R1y 1.251
DESIGN OF MACHINERY - 5th Ed.
R3 6.
7.
SOLUTION MANUAL 5-15-3
2
2
R3x R3y
R3 3.506
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 157.777 deg
ζ atan2 R2x R2y
ζ 114.042 deg
ζ atan2 R3x R3y
ζ 118.502 deg
Solve for 2 and 3 using equations 5.34
C3 1.340
C4 0.210
C5 0.433
C6 0.301
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ 2
2
C1 1.111 C2 1.204
A1 C3 C4
A1 1.840
A2 C3 C6 C4 C5
A2 0.495
A3 C4 C6 C3 C5
A3 0.517
A4 C2 C3 C1 C4
A4 1.847
A5 C4 C5 C3 C6
A5 0.495
A6 C1 C3 C2 C4
A6 1.236
K1 A2 A4 A3 A6
K1 1.553
K2 A3 A4 A5 A6
K2 0.344
2
K3
2
2
2
A1 A2 A3 A4 A6
2
2
K3 1.033
K K 2 K 2 K 2 2 1 2 3 γ 2 atan K1 K3
γ 62.000 deg
K K 2 K 2 K 2 2 1 2 3 2 atan K1 K3
36.991 deg
The first value is the same as 3, so use the second value
γ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-15-4
A5 sin γ A3 cos γ A6 A1
73.415 deg
A3 sin γ A2 cos γ A4 A1
73.415 deg
acos
asin
Since 2 is not in the first quadrant , 8.
γ
Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2
p 21
2
P21x P21y
p 21 2.331
δ atan2 P21x P21y 2
p 31
δ 35.292 deg
2
P31x P31y
p 31 2.297
δ atan2 P31x P31y 9.
δ 52.801 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
F cos β 1
G sin β
K sin α
L p 31 cos δ
M p 21 sin δ
B C D
A F AA B G
C cos α 1
E L CC M N
G H K A D C F K H
N p 31 sin δ
W1x W1y AA 1 CC Z1x Z1y
10. The components of the W and Z vectors are: W1x 1.262 w
11. The length of link 2 is:
W1y 1.109 2
Z1x 0.378
2
W1x W1y
Z1y 2.360
w 1.680
12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
L p 31 cos δ
M p 21 sin δ
F' cos γ 1
K sin α
N p 31 sin δ
DESIGN OF MACHINERY - 5th Ed.
A' F' AA B' G'
SOLUTION MANUAL 5-15-5
B' C D
E L CC M N
G' H K A' D C F' K H
U1x U1y AA 1 CC S1x S1y
13. The components of the W and Z vectors are: U1x 0.326
14. The length of link 4 is:
U1y 0.830 2
u
U1x U1y
S1x 2.736
2
S1y 0.421
u 0.892
15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x Z1x S1x
V1x 2.359
V1y Z1y S1y
V1y 1.939 v
The length of link 3 is:
2
2
V1x V1y
v 3.054
G1x W1x V1x U1x
G1x 3.946
G1y W1y V1y U1y
G1y 1.110 10
g
The length of link 1 is:
2
G1x G1y
2
15
g 3.946
16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x Z1x W1x
O2x 0.884
O2y Z1y W1y
O2y 1.251
O4x S1x U1x
O4x 3.062
O4y S1y U1y
O4y 1.251
These check with Figure P5-2. 17. Determine the location of the coupler point with respect to point A and line AB. 2
2
z 2.390
2
2
s 2.769
Distance from A to P
z
Z1x Z1y
Angle BAP (p)
s
S1x S1y
ψ atan2( S1x S1y)
ψ 171.262 deg
ϕ atan2( Z1x Z1y )
ϕ 99.095 deg
rP z
θ atan2 z cos ϕ s cos ψ z sin ϕ s sin ψ θ 39.430 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-15-6
δp ϕ θ
δp 59.666 deg
18. DESIGN SUMMARY Link 1:
g 3.946
Link 2:
w 1.680
Link 3:
v 3.054
Link 4:
u 0.892
Coupler point:
rP 2.390
δp 59.666 deg
19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-16-1
PROBLEM 5-16 Statement:
Design a linkage to carry the body in Figure P5-3 through the two positions P1 and P2 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown.
Given:
Coordinates of the points P1 and P2 with respect to P1: P1x 0.0
P1y 0.0
P2x 0.907
P2y 0.0
Angles made by the body in positions 1 and 2:
θP1 111.8 deg
θP2 191.1 deg
Free choices for the WZ dyad : z 1.500
β 44.0 deg
ϕ 50.0 deg
γ 55.0 deg
ψ 20.0 deg
Free choices for the US dyad : s 2.500 Solution:
See Figure P5-3 and Mathcad file P0516.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
P1x P1y
R2
P2x P2y
P21x R2 R1 P21y
P21x 0.907 P21y 0.000
p 21 3.
4.
2
2
P21x P21y
p 21 0.907
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP2 θP1
α 79.300 deg
δ atan2 P21x P21y
δ 180.000 deg
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
B sin β
A cos β 1
C cos α 1 W1x
W1y
Z1x 0.964
Z1y z sin ϕ
A 0.281
D sin α
B 0.695
E p 21 cos δ
C 0.814
F p 21 sin δ
A C Z1x D Z1y E B C Z1y D Z1x F 2 A A C Z1y D Z1x F B C Z1x D Z1y E 2 A
Z1y 1.149 D 0.983
E 0.907
F 0.000 W1x 1.705
W1y 2.490
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-16-2
2
w
2
W1x W1y
w 3.018
θ atan2 W1x W1y 5.
θ 124.405 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 2.349
S 1y s sin ψ
A 0.426
D sin α
B 0.819
E p 21 cos δ
C 0.814
F p 21 sin δ
A cos γ 1 B sin γ
C cos α 1
D 0.983
E 0.907
F 0.000
A C S 1x D S 1y E B C S 1y D S 1x F
U1x
2 A A C S 1y D S 1x F B C S 1x D S 1y E
U1y
2
2
U1x U1y
u 2.654
σ atan2 U1x U1y 6.
σ 76.373 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 1.385
V1y z sin ϕ s sin ψ
V1y 2.004
θ atan2 V1x V1y
θ 124.648 deg
v Link 1:
2
2
V1x V1y
v 2.436
G1x w cos θ v cos θ u cos σ
8.
G1x 3.715
G1y w sin θ v sin θ u sin σ
G1y 2.094
θ atan2 G1x G1y
θ 150.596 deg
g 7.
U1x 0.625
U1y 2.579
2 A
u
S 1y 0.855
2
2
G1x G1y
g 4.265
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 275.001 deg
θ2f θ2i β
θ2f 319.001 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 1.500
δp 74.648 deg
DESIGN OF MACHINERY - 5th Ed.
9.
SOLUTION MANUAL 5-16-3
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ 0 deg R1
ρ 0.000 deg
2
2
P1x P1y
R1 0.000
O2x 0.741
O2y 1.341
O4x 2.975
O4y 3.434
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 150.596 deg
11. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 12. DESIGN SUMMARY Link 2:
w 3.018
θ 124.405 deg
Link 3:
v 2.436
θ 124.648 deg
Link 4:
u 2.654
σ 76.373 deg
Link 1:
g 4.265
θ 150.596 deg
Coupler:
rp 1.500
δp 74.648 deg
Crank angles:
θ2i 275.001 deg
θ2f 319.001 deg
13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-16-4
Y
A1 Z1 P2
V1
P1
Z2 A2
X S1
44.0°
B1
W2 V2
S2
55.0° U1
G1
B2 U2
O4
W1 O2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-17-1
PROBLEM 5-17 Statement:
Design a linkage to carry the body in Figure P5-3 through the two positions P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown.
Given:
Coordinates of the points P2 and P3 with respect to P1: P2x 0.907
P2y 0.0
P3x 1.447
P3y 0.0
Angles made by the body in positions 1 and 2:
θP2 191.1 deg
θP3 237.4 deg
Free choices for the WZ dyad : z 2.000
β 66.0 deg
ϕ 60.0 deg
γ 44.0 deg
ψ 30.0 deg
Free choices for the US dyad : s 3.000 Solution:
See Figure P5-3 and Mathcad file P0517.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
P2x P2y
R2
P3x P3y
P21x R2 R1 P21y
P21x 0.540 P21y 0.000
p 21 3.
4.
2
2
P21x P21y
p 21 0.540
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP3 θP2
α 46.300 deg
δ atan2 P21x P21y
δ 180.000 deg
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
A 0.593
D sin α
B 0.914
E p 21 cos δ
C 0.309
F p 21 sin δ
B sin β
C cos α 1
W1y
Z1y z sin ϕ
A cos β 1
W1x
Z1x 1.000
A C Z1x D Z1y E B C Z1y D Z1x F 2 A A C Z1y D Z1x F B C Z1x D Z1y E 2 A
Z1y 1.732 D 0.723
E 0.540
F 0.000 W1x 0.227
W1y 1.771
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-17-2
2
w
2
W1x W1y
w 1.786
θ atan2 W1x W1y 5.
θ 97.314 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 2.598
S 1y s sin ψ
A 0.281
D sin α
B 0.695
E p 21 cos δ
C 0.309
F p 21 sin δ
A cos γ 1 B sin γ
C cos α 1
D 0.723
E 0.540
F 0.000
A C S 1x D S 1y E B C S 1y D S 1x F
U1x
2 A A C S 1y D S 1x F B C S 1x D S 1y E
U1y
2
2
U1x U1y
u 2.608
σ atan2 U1x U1y 6.
σ 65.609 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 1.598
V1y z sin ϕ s sin ψ
V1y 3.232
θ atan2 V1x V1y
θ 116.310 deg
v Link 1:
2
2
V1x V1y
v 3.606
G1x w cos θ v cos θ u cos σ
8.
G1x 2.902
G1y w sin θ v sin θ u sin σ
G1y 3.836
θ atan2 G1x G1y
θ 127.111 deg
g 7.
U1x 1.077
U1y 2.375
2 A
u
S 1y 1.500
2
2
G1x G1y
g 4.810
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 224.425 deg
θ2f θ2i β
θ2f 290.425 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-17-3
rp 2.000 9.
δp 56.310 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ atan2 P2x P2y R1
2
ρ 180.000 deg
2
P2x P2y
R1 0.907
O2x 1.680
O2y 0.039
O4x 4.582
O4y 3.875
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 127.111 deg
11. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 12. DESIGN SUMMARY Link 2:
w 1.786
θ 97.314 deg
Link 3:
v 3.606
θ 116.310 deg
Link 4:
u 2.608
σ 65.609 deg
Link 1:
g 4.810
θ 127.111 deg
Coupler:
rp 2.000
δp 56.310 deg
Crank angles:
θ2i 224.425 deg
θ2f 290.425 deg
13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-17-4
Y
A2 66.0° V1
Z1
A3
W1 Z2 W2
P3
O2
P2
S1
B2
U1
S2
V2
G1 44.0° B1 U2
O4
P1 X
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-18-1
PROBLEM 5-18 Statement:
Design a linkage to carry the body in Figure P5-3 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown.
Given:
Coordinates of the points P1 and P2 with respect to P1: P1x 0.0
P1y 0.0
P3x 1.447
P3y 0.0
P2x 0.907
P2y 0.0
Angles made by the body in positions 1, 2 and 3:
θP1 111.8 deg
θP2 191.1 deg
θP3 237.4 deg
Free choices for the WZ dyad : β 40.0 deg
β 80.0 deg
Free choices for the US dyad : γ 20.0 deg Solution: 1.
2.
3.
γ 50.0 deg
See Figure P5-3 and Mathcad file P0518.
Determine the magnitudes and orientation of the position difference vectors. 2
2
p 21 0.907
δ atan2 P2x P2y
δ 180.000 deg
2
2
p 31 1.447
δ atan2 P3x P3y
δ 180.000 deg
p 21
P2x P2y
p 31
P3x P3y
Determine the angle changes of the coupler between precision points. α θP2 θP1
α 79.300 deg
α θP3 θP1
α 125.600 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
K sin α
L p 31 cos δ
M p 21 sin δ
B C D
E L CC M N
G H K
F K H A
F cos β 1
G sin β
A F AA B G
C cos α 1
D C
N p 31 sin δ
W1x W 1y AA 1 CC Z1x Z1y
The components of the W and Z vectors are: W1x 1.696
W1y 0.038
Z1x 0.396
Z1y 0.872
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-18-2
θ atan2 W1x W1y
ϕ 114.406 deg
W1x2 W1y2 , w 1.696
The length of link 2 is: w
Z1x2 Z1y2 , z 0.958
The length of vector Z is: z 4.
ϕ atan2 Z1x Z1y
θ 1.280 deg
Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:
A' cos γ 1
B' sin γ
C cos α 1
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
M p 21 sin δ
B' C D
E L CC M N
G' H K
F' K H
A'
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
D C
N p 31 sin δ
U1x U 1y AA 1 CC S1x S1y
The components of the U and S vectors are: U1x 1.483
U1y 0.409
S 1x 0.048
S 1y 0.650
σ atan2 U1x U1y
σ 15.412 deg
ψ atan2 S 1x S 1y
ψ 85.790 deg
The length of link 4 is: u
U1x2 U1y2 , u 1.538
The length of vector S is: s 5.
S 1x2 S 1y2 , s 0.652
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x Z1x S 1x
V1x 0.444
V1y Z1y S 1y
V1y 0.222
θ atan2 V1x V1y
θ 153.426 deg
v Link 1:
2
2
V1x V1y
v 0.496
G1x W1x V1x U1x
G1x 0.230
G1y W1y V1y U1y
G1y 0.225
θ atan2 G1x G1y
θ 135.700 deg
DESIGN OF MACHINERY - 5th Ed.
g 6.
7.
8.
9.
2
SOLUTION MANUAL 5-18-3
2
G1x G1y
g 0.322
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 134.419 deg
θ2f θ2i β
θ2f 214.419 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 0.958
δp 39.020 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x z cos ϕ w cos θ
O2x 1.300
O2y z sin ϕ w sin θ
O2y 0.834
O4x s cos ψ u cos σ
O4x 1.530
O4y s sin ψ u sin σ
O4y 1.059
Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 135.700 deg
10. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "Grashof" 11. DESIGN SUMMARY Link 2:
w 1.696
θ 1.280 deg
Link 3:
v 0.496
θ 153.426 deg
Link 4:
u 1.538
σ 15.412 deg
Link 1:
g 0.322
θ 135.700 deg
Coupler:
rp 0.958
δp 39.020 deg
Crank angles:
θ2i 134.419 deg θ2f 214.419 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-18-4
12. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
Y A3 B3
A2
P3 P2 W2 O2 O4
U1
B2 U2
B1 W1
X
P1 S1 A1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-19-1
PROBLEM 5-19 Statement: Given:
Solution: 1.
2.
Design a linkage to carry the body in Figure P5-3 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis and design it for the fixed pivots shown. P21x 0.907
P21y 0.0
P31x 1.447
P31y 0.0
O2x 1.788
O2y 1.994
O4x 0.212
O4y 1.994
Body angles:
θP1 111.8 deg
θP2 191.1 deg
θP3 237.4 deg
See Figure P5-3 and Mathcad file P0519.
Determine the angle changes between precision points from the body angles given. α θP2 θP1
α 79.300 deg
α θP3 θP1
α 125.600 deg
Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x O2x
3.
4.
R1x 1.788
R1y O2y
R2x R1x P21x
R2x 0.881
R2y R1y P21y
R2y 1.994
R3x R1x P31x
R3x 0.341
R3y R1y P31y
R3y 1.994
2
2
R1 2.678
2
2
R2 2.180
2
2
R3 2.023
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
R1y 1.994
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 48.118 deg
ζ atan2 R2x R2y
ζ 66.163 deg
ζ atan2 R3x R3y
ζ 80.296 deg
Solve for 2 and 3 using equations 5.34
C3 3.003
C4 1.701
C5 2.508
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C1 0.238 C2 1.150
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-19-2
C6 R1 sin α ζ R2 sin ζ 2
C6 0.133
2
A1 C3 C4
A1 11.912
A2 C3 C6 C4 C5
A2 4.666
A3 C4 C6 C3 C5
A3 7.307
A4 C2 C3 C1 C4
A4 3.048
A5 C4 C5 C3 C6
A5 4.666
A6 C1 C3 C2 C4
A6 2.671
K1 A2 A4 A3 A6
K1 5.293
K2 A3 A4 A5 A6
K2 34.731
2
K3
2
2
2
A1 A2 A3 A4 A6
2
K3 25.158
2
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 125.600 deg
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 37.070 deg
The first value is the same as 3, so use the second value
β β
A5 sin β A3 cos β A6 A1
β 18.241 deg
A3 sin β A2 cos β A4 A1
β 18.241 deg
β acos
β asin
β β
Since both values are the same, 5.
Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x O4x
R1x 0.212
R1y O4y
R2x R1x P21x
R2x 1.119
R2y R1y P21y
R2y 1.994
R3x R1x P31x
R3x 1.659
R3y R1y P31y
R3y 1.994
R1
2
2
R1x R1y
R1 2.005
R1y 1.994
DESIGN OF MACHINERY - 5th Ed.
6.
7.
SOLUTION MANUAL 5-19-3
2
2
R2 2.287
2
2
R3 2.594
R2
R2x R2y
R3
R3x R3y
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 96.069 deg
ζ atan2 R2x R2y
ζ 119.300 deg
ζ atan2 R3x R3y
ζ 129.760 deg
Solve for 2 and 3 using equations 5.34
C3 0.161
C4 3.327
C5 0.880
C6 1.832
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ 2
2
C1 1.297 C2 0.811
A1 C3 C4
A1 11.096
A2 C3 C6 C4 C5
A2 3.222
A3 C4 C6 C3 C5
A3 5.954
A4 C2 C3 C1 C4
A4 4.186
A5 C4 C5 C3 C6
A5 3.222
A6 C1 C3 C2 C4
A6 2.906
K1 A2 A4 A3 A6
K1 3.816
K2 A3 A4 A5 A6
K2 34.288
2
K3
2
2
2
A1 A2 A3 A4 A6
2
2
K3 25.658
K K 2 K 2 K 2 2 1 2 3 γ 2 atan K1 K3
γ 125.600 deg
K K 2 K 2 K 2 2 1 2 3 2 atan K1 K3
41.699 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-19-4
The first value is the same as 3, so use the second value
γ
A5 sin γ A3 cos γ A6 A1
31.159 deg
A3 sin γ A2 cos γ A4 A1
31.159 deg
acos
asin
γ
Since both values are the same , 8.
Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2
p 21
2
P21x P21y
p 21 0.907
δ atan2 P21x P21y 2
p 31
δ 180.000 deg
2
P31x P31y
p 31 1.447
δ atan2 P31x P31y 9.
δ 180.000 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
F cos β 1
G sin β
K sin α
L p 31 cos δ
A F AA B G
C cos α 1
M p 21 sin δ
E L CC M N
B C D
G H K A D C F K H
N p 31 sin δ
W1x W1y AA 1 CC Z1x Z1y
10. The components of the W and Z vectors are: W1x 1.943
11. The length of link 2 is:
w
W1y 1.529 2
Z1x 0.155
2
W1x W1y
Z1y 0.465
w 2.472
12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
A' cos γ 1
D sin α
B' sin γ
E p 21 cos δ
C cos α 1
F' cos γ 1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-19-5
G' sin γ
K sin α
L p 31 cos δ
A' F' AA B' G'
H cos α 1
M p 21 sin δ
B' C D
N p 31 sin δ
E L CC M N
G' H K A' D C F' K H
U1x U1y AA 1 CC S1x S1y
13. The components of the W and Z vectors are: U1x 0.395 14. The length of link 4 is:
U1y 2.460 2
u
U1x U1y
S1x 0.183
2
S1y 0.466
u 2.491
15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x Z1x S1x
V1x 0.338
V1y Z1y S1y
V1y 0.931 v
The length of link 3 is:
2
2
V1x V1y
v 0.991
G1x W1x V1x U1x
G1x 2.000
G1y W1y V1y U1y
G1y 0.000
g
The length of link 1 is:
2
G1x G1y
2
g 2.000
16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x Z1x W1x
O2x 1.788
O2y Z1y W1y
O2y 1.994
O4x S1x U1x
O4x 0.212
O4y S1y U1y
O4y 1.994
These check with Figure P5-3. 17. Determine the location of the coupler point with respect to point A and line AB. 2
2
z 0.491
2
2
s 0.501
Distance from A to P
z
Z1x Z1y
Angle BAP (p)
s
S1x S1y
ψ atan2( S1x S1y)
ψ 68.558 deg
ϕ atan2( Z1x Z1y )
ϕ 108.446 deg
rP z
θ atan2 z cos ϕ s cos ψ z sin ϕ s sin ψ θ 109.959 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-19-6
δp ϕ θ
δp 1.513 deg
18. DESIGN SUMMARY Link 1:
g 2.000
Link 2:
w 2.472
Link 3:
v 0.991
Link 4:
u 2.491
Coupler point:
rP 0.491
δp 1.513 deg
19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-20-1
PROBLEM 5-20 Statement:
Write a program to generate and plot the circle-point and center-point circles for Problem 5-19 using an equation solver or any program language.
Given: P21x 0.907
P21y 0.0
P31x 1.447
P31y 0.0
O2x 1.788
O2y 1.994
O4x 0.212
O4y 1.994
Body angles:
θP1 111.8 deg
θP2 191.1 deg
θP3 237.4 deg
Assumptions: Let the position 1 to position 2 rotation angles be: β 18.241 deg and γ 31.159 deg Let the position 1 to position 2 coupler rotation angle be: α 79.3 deg Solution: 1.
See Figure P5-3 and Mathcad file P0520.
Use the method of Section 5.6 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21
2
2
P21x P21y
p 21 0.907
δ atan2 P21x P21y p 31
2
δ 180.000 deg
2
P31x P31y
p 31 1.447
δ atan2 P31x P31y 2.
δ 180.000 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α 125.6 deg
β 0 deg 1 deg 360 deg
B sin β
E p 21 cos δ
A cos β 1 D sin α
C cos α 1
F β cos β 1
K α sin α
N p 31 sin δ
H α cos α 1
M p 21 sin δ
G β sin β L p 31 cos δ
B C D A F β G β H α K α AA α β B A D C G β F β K α H α
E L CC M N
1 CC
W1y α β DD α β 2
Z1y α β DD α β 4
DD α β AA α β
W1x α β DD α β 1 Z1x α β DD α β 3
DESIGN OF MACHINERY - 5th Ed.
3.
SOLUTION MANUAL 5-20-2
Check this against the solutions in Problem 5-19:
W1y α 37.070 deg 1.529
Z1y α 37.070 deg 0.465
W1x α 37.070 deg 1.943 Z1x α 37.070 deg 0.155
These are the same as the values calculated in Problem 5-19. 4.
Form the vector N, whose tip describes the center-point circle for the WZ dyad.
Nx α β W1x α β Z1x α β Ny α β W1y α β Z1y α β 5.
Plot the center-point circle for the WZ dyad. Center-Point Circle for WZ Dyad 0
1
Ny α β 2
3
4 2
1
0
1
2
Nx α β
4.
Form the vector Z, whose tip describes the center-point circle for the WZ dyad. β 37.070 deg
α 0 deg 1 deg 360 deg
Zx α β Z1x α β
5.
Zy α β Z1y α β
Plot the circle-point circle for the WZ dyad (see next page).
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-20-3
Circle-Point Circle for WZ Dyad 0.1
0.2
Zy α β 0.3
0.4
0.5 0.2
0.1
0
0.1
0.2
0.3
Zx α β
6.
Evaluate terms in the US coefficient matrix and constant vector from equations (5.31) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α 125.6 deg
γ 0 deg 1 deg 360 deg
B sin γ
E p 21 cos δ
A cos γ 1 D sin α
C cos α 1
F γ cos γ 1
K α sin α
N p 31 sin δ
H α cos α 1
M p 21 sin δ
G γ sin γ L p 31 cos δ
B C D A F γ G γ H α K α AA α γ B A D C G γ F γ K α H α
E L CC M N
1 CC
U1y α γ DD α γ 2
S1y α γ DD α γ 4
DD α γ AA α γ
U1x α γ DD α γ 1 S1x α γ DD α γ 3 7.
Check this against the solutions in Problem 5-19:
U1x α 41.699 deg 0.395
U1y α 41.699 deg 2.460
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-20-4
S1x α 41.699 deg 0.183
S1y α 41.699 deg 0.466
These are the same as the values calculated in Problem 5-19. 8.
Form the vector M, whose tip describes the center-point circle for the US dyad.
Mx α γ U1x α γ S1x α γ My α γ U1y α γ S1y α γ 9.
Plot the center-point circle for the US dyad. Center-Point Circle for US Dyad 0
0.5
1
My α γ
1.5
2
2.5 1.5
1
0.5
Mx α γ
0
0.5
10. Form the vector S, whose tip describes the center-point circle for the US dyad. γ 41.699 deg
α 0 deg 1 deg 360 deg
Sx α γ S1x α γ
11. Plot the circle-point circle for the WZ dyad (see next page).
Sy α γ S1y α γ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-20-5
Circle-Point Circle for the US Dyad 1.5
1
Sy α γ
0.5
0 0.5
0
Sx α γ
0.5
1
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-21-1
PROBLEM 5-21 Statement:
Design a fourbar linkage to carry the box in Figure P5-4 from position 1 to 2 without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.
Given:
Coordinates of the points P1 and P2 with respect to P1: P1x 0.0
P1y 0.0
P2x 184.0
P2y 17.0
Angles made by the body in positions 1 and 2:
θP1 90.0 deg
θP2 45.0 deg
Coordinates of the points A1 and B1 with respect to P1: A1x 17.0
A1y 43.0
B1x 69.0
B1y 43.0
Free choice for the WZ dyad : β 44.0 deg Free choice for the US dyad : γ 55.0 deg Solution:
See Figure P5-4 and Mathcad file P0521.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
P1x P1y
R2
P2x P2y
P21x R2 R1 P21y
P21x 184.000 P21y 17.000
p 21 3.
4.
2
2
P21x P21y
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP2 θP1
α 45.000 deg
δ atan2 P21x P21y
δ 5.279 deg
Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z
P1x A1x2 P1y A1y 2
z 46.239
s
P1x B1x 2 P1y B1y 2
s 81.302
v
A1x B1x 2 A1y B1y2
v 52.000
v2 z2 s2 2 v z
ϕ acos
v2 s2 z2 2 v s
ψ π acos 5.
p 21 184.784
Solve for the WZ dyad using equations 5.8.
ϕ 111.571 deg
ψ 148.069 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-21-2
Z1x z cos ϕ
Z1x 17.000 A 0.281
D sin α
B 0.695
E p 21 cos δ
E 184.000
C 0.293
F p 21 sin δ
F 17.000
B sin β
C cos α 1
W1y w
D 0.707
A C Z1x D Z1y E B C Z1y D Z1x F
W1x 53.979
2 A A C Z1y D Z1x F B C Z1x D Z1y E
W1y 192.131
2 A 2
2
W1x W1y
w 199.570
θ atan2 W1x W1y 6.
θ 105.693 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 69.000
D sin α
B 0.819
E p 21 cos δ
E 184.000
C 0.293
F p 21 sin δ
F 17.000
C cos α 1
U1y u
S 1y 43.000
A 0.426
B sin γ
U1x
S 1y s sin ψ
A cos γ 1
D 0.707
A C S 1x D S 1y E B C S 1y D S 1x F 2 A A C S 1y D S 1x F B C S 1x D S 1y E
2
U1x 15.598
U1y 154.713
2 A 2
U1x U1y
u 155.497
σ atan2 U1x U1y 7.
Z1y 43.000
A cos β 1
W1x
Z1y z sin ϕ
σ 95.757 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 52.000
V1y z sin ϕ s sin ψ
V1y 0.000
θ atan2 V1x V1y
θ 0.000 deg
v Link 1:
2
2
V1x V1y
v 52.000
G1x w cos θ v cos θ u cos σ
G1x 13.619
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-21-3
G1y w sin θ v sin θ u sin σ
G1y 37.418
θ atan2 G1x G1y
θ 70.000 deg
g 8.
9.
2
2
G1x G1y
g 39.819
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 35.692 deg
θ2f θ2i β
θ2f 8.308 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 46.239
δp 111.571 deg
10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ 0 deg R1
ρ 0.000 deg
2
2
P1x P1y
R1 0.000
O2x 70.979
O2y 235.131
O4x 84.598
O4y 197.713
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 70.000 deg
12. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof"
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-21-4
13. DESIGN SUMMARY Link 2:
w 199.570
θ 105.693 deg
Link 3:
v 52.000
θ 0.000 deg
Link 4:
u 155.497
σ 95.757 deg
Link 1:
g 39.819
θ 70.000 deg
Coupler:
rp 46.239
δp 111.571 deg
Crank angles:
θ2i 35.692 deg
θ2f 8.308 deg
14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
Y
P1
X Z1 A1
P2
S1 B1
Z2
V1 A2
V2 55.0°
U1 44.0° W1
W2
O4
O2
U2
S2
B2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-22-1
PROBLEM 5-22 Statement:
Design a fourbar linkage to carry the box in Figure P5-4 from position 1 to 3 without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.
Given:
Coordinates of the points P1 and P3 with respect to P1: P1x 0.0
P1y 0.0
P3x 211.0
P3y 180.0
Angles made by the body in positions 1 and 3:
θP1 90.0 deg
θP3 0.0 deg
Coordinates of the points A1 and B1 with respect to P1: A1x 17.0
A1y 43.0
B1x 69.0
B1y 43.0
Free choice for the WZ dyad : β 70.0 deg Free choice for the US dyad : γ 95.0 deg Solution:
See Figure P5-4 and Mathcad file P0522.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
p 21 3.
4.
P1x P1y
R2
2
P3x P3y
P21x R2 R1 P21y
2
P21x P21y
P21y 180.000 p 21 277.346
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP3 θP1
α 90.000 deg
δ atan2 P21x P21y
δ 40.467 deg
Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z
P1x A1x2 P1y A1y 2
z 46.239
s
P1x B1x 2 P1y B1y 2
s 81.302
v
A1x B1x 2 A1y B1y2
v 52.000
v2 z2 s2 2 v z
ϕ acos
ϕ 111.571 deg
v2 s2 z2 2 v s
ψ π acos 5.
P21x 211.000
ψ 148.069 deg
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
Z1x 17.000
Z1y z sin ϕ
Z1y 43.000
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-22-2
A 0.658
D sin α
B 0.940
E p 21 cos δ
C 1.000
F p 21 sin δ
A cos β 1 B sin β
C cos α 1 W1x
W1y w
D 1.000
E 211.000
F 180.000
A C Z1x D Z1y E B C Z1y D Z1x F
W1x 34.467
2 A A C Z1y D Z1x F B C Z1x D Z1y E
W1y 184.825
2 A 2
2
W1x W1y
w 188.012
θ atan2 W1x W1y 6.
θ 79.436 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 69.000
A 1.087
D sin α
B 0.996
E p 21 cos δ
C 1.000
F p 21 sin δ
A cos γ 1 B sin γ
C cos α 1 U1x
U1y u
S 1y s sin ψ
D 1.000
E 211.000
F 180.000
A C S 1x D S 1y E B C S 1y D S 1x F 2 A A C S 1y D S 1x F B C S 1x D S 1y E
2
U1x U1y
u 154.999
σ atan2 U1x U1y 7.
U1x 44.882
U1y 148.358
2 A 2
S 1y 43.000
σ 73.168 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 52.000
V1y z sin ϕ s sin ψ
V1y 0.000
θ atan2 V1x V1y
θ 0.000 deg
v Link 1:
2
2
V1x V1y
v 52.000
G1x w cos θ v cos θ u cos σ
G1x 41.585
G1y w sin θ v sin θ u sin σ
G1y 36.467
θ atan2 G1x G1y
θ 41.248 deg
DESIGN OF MACHINERY - 5th Ed.
g
8.
9.
2
SOLUTION MANUAL 5-22-3 2
G1x G1y
g 55.310
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 38.188 deg
θ2f θ2i β
θ2f 31.812 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 46.239
δp 111.571 deg
10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ 0 deg R1
ρ 0.000 deg
2
2
P1x P1y
R1 0.000
O2x 17.467
O2y 227.825
O4x 24.118
O4y 191.358
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 41.248 deg
12. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 13. DESIGN SUMMARY Link 2:
w 188.012
θ 79.436 deg
Link 3:
v 52.000
θ 0.000 deg
Link 4:
u 154.999
σ 73.168 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-22-4
Link 1:
g 55.310
θ 41.248 deg
Coupler:
rp 46.239
δp 111.571 deg
Crank angles:
θ2i 38.188 deg θ2f 31.812 deg 14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design. Y
P1
X Z1
S1 B1
A1
V1
U1 W1 70.0°
95.0° P3
O4
O2
W2
A3
U2
Z2
V2
S2 B3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-23-1
PROBLEM 5-23 Statement:
Design a fourbar linkage to carry the box in Figure P5-4 from position 2 to 3 without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.
Given:
Coordinates of the points P2 and P3 with respect to P1: P2x 184.0
P2y 17.0
P3x 211.0
P3y 180.0
Angles made by the body in positions 1 and 3:
θP2 45.0 deg
θP3 0.0 deg
Coordinates of the points A1 and B1 with respect to P1: A1x 17.0
A1y 43.0
B1x 69.0
B1y 43.0
Free choice for the WZ dyad : β 60.0 deg Free choice for the US dyad : γ 45.0 deg Solution:
See Figure P5-4 and Mathcad file P0523.
1.
Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.
2.
Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1
p 21 3.
4.
P2x P2y
R2
2
P3x P3y
P21x R2 R1 P21y
2
P21x P21y
P21y 163.000 p 21 165.221
From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α θP3 θP2
α 45.000 deg
δ atan2 P21x P21y
δ 80.595 deg
Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z
0.0 A1x 2 0.0 A1y 2
z 46.239
s
0.0 B1x2 0.0 B1y 2
s 81.302
v
A1x B1x 2 A1y B1y2
v 52.000
v2 z2 s2 45 deg 2 v z
ϕ acos
ϕ 66.571 deg
v2 s2 z2 45 deg 2 v s
ψ π acos 5.
P21x 27.000
ψ 103.069 deg
Solve for the WZ dyad using equations 5.8. Z1x z cos ϕ
Z1x 18.385
Z1y z sin ϕ
Z1y 42.426
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-23-2
A 0.500
D sin α
B 0.866
E p 21 cos δ
C 0.293
F p 21 sin δ
A cos β 1 B sin β
C cos α 1
W1x
W1y w
D 0.707
E 27.000
F 163.000
A C Z1x D Z1y E B C Z1y D Z1x F
W1x 117.950
2 A A C Z1y D Z1x F B C Z1x D Z1y E
W1y 70.852
2 A 2
2
W1x W1y
w 137.594
θ atan2 W1x W1y 6.
θ 30.993 deg
Solve for the US dyad using equations 5.12. S 1x s cos ψ
S 1x 18.385
A 0.293
D sin α
B 0.707
E p 21 cos δ
C 0.293
F p 21 sin δ
A cos γ 1 B sin γ
C cos α 1 U1x
U1y u
S 1y s sin ψ
D 0.707
E 27.000
F 163.000
A C S 1x D S 1y E B C S 1y D S 1x F 2 A A C S 1y D S 1x F B C S 1x D S 1y E
2
U1x U1y
u 204.640
σ atan2 U1x U1y 7.
U1x 201.643
U1y 34.896
2 A 2
S 1y 79.196
σ 9.818 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x z cos ϕ s cos ψ
V1x 36.770
V1y z sin ϕ s sin ψ
V1y 36.770
θ atan2 V1x V1y v Link 1:
2
θ 45.000 deg
2
V1x V1y
v 52.000
G1x w cos θ v cos θ u cos σ
G1y w sin θ v sin θ u sin σ
G1x 46.924 G1y 0.813
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-23-3
θ atan2 G1x G1y g 8.
9.
2
θ 179.007 deg
2
G1x G1y
g 46.931
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 210.000 deg
θ2f θ2i β
θ2f 150.000 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 46.239
δp 111.571 deg
10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ atan2 P2x P2y R1
2
ρ 5.279 deg
2
P2x P2y
R1 184.784
O2x 47.665
O2y 130.278
O4x 0.742
O4y 131.092
O2x R1 cos ρ z cos ϕ w cos θ O2y R1 sin ρ z sin ϕ w sin θ O4x R1 cos ρ s cos ψ u cos σ O4y R1 sin ρ s sin ψ u sin σ
These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 179.007 deg
12. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 13. DESIGN SUMMARY Link 2:
w 137.594
θ 30.993 deg
Link 3:
v 52.000
θ 45.000 deg
Link 4:
u 204.640
σ 9.818 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-23-4
Link 1:
g 46.931
θ 179.007 deg
Coupler:
rp 46.239
δp 111.571 deg
Crank angles:
θ2i 210.000 deg θ2f 150.000 deg 14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design. Y
P1
X P2
A2
Z2
S2
V2
B2
W1 O4
U1 O2
W2 P3 U2 A3 V2 B3
Z2 S2
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-24-1
PROBLEM 5-24 Statement:
Given:
Design a fourbar linkage to carry the box in Figure P5-4 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use any points on the object as attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base. Coordinates of the points P1 , P2 and P3 with respect to P1: P1x 0.0
P1y 0.0
P2x 184.0
P3x 211.0
P3y 180.0
P2y 17.0
Angles made by the body in positions 1, 2 and 3:
θP1 90.0 deg
θP2 45.0 deg
θP3 0.0 deg
Free choices for the WZ dyad : β 80.0 deg
β 160.0 deg
Free choices for the US dyad : γ 80.0 deg Solution: 1.
2.
3.
γ 170.0 deg
See Figure P5-4 and Mathcad file P0524.
Determine the magnitudes and orientation of the position difference vectors. 2
2
p 21 184.784
δ atan2 P2x P2y
δ 5.279 deg
2
2
p 31 277.346
δ atan2 P3x P3y
δ 40.467 deg
p 21
P2x P2y
p 31
P3x P3y
Determine the angle changes of the coupler between precision points. α θP2 θP1
α 45.000 deg
α θP3 θP1
α 90.000 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector: A cos β 1 B sin β C cos α 1
D sin α G sin β L p 31 cos δ A F AA B G
H cos α 1 M p 21 sin δ E p 21 cos δ
B C D
E L CC M N
G H K
F K H A
F cos β 1 K sin α N p 31 sin δ
D C
W1x W 1y AA 1 CC Z1x Z1y
The components of the W and Z vectors are: W1x 51.854
W1y 109.176
Z1x 43.555
Z1y 29.523
θ atan2 W1x W1y
θ 115.406 deg
ϕ atan2 Z1x Z1y
ϕ 145.869 deg
The length of link 2 is: w
W1x2 W1y2 , w 120.864
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-24-2
Z1x2 Z1y2 , z 52.618
The length of vector Z is: z 4.
Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:
D sin α
E p 21 cos δ
A' cos γ 1
C cos α 1
G' sin γ
H cos α 1
M p 21 sin δ
B' C D
E L CC M N
G' H K
F' K H
A'
K sin α
L p 31 cos δ
A' F' AA B' G'
F' cos γ 1
B' sin γ
D C
N p 31 sin δ
U1x U 1y AA 1 CC S1x S1y
The components of the U and S vectors are: U1x 35.056
U1y 94.023
S 1x 62.812
S 1y 62.282
σ atan2 U1x U1y
σ 110.448 deg
ψ atan2 S 1x S 1y
ψ 135.242 deg
The length of link 4 is: u
U1x2 U1y2 , u 100.345
The length of vector S is: s 6.
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
V1x Z1x S 1x
V1x 19.256
V1y Z1y S 1y
V1y 32.759
θ atan2 V1x V1y
θ 59.552 deg
v Link 1:
2
2
V1x V1y
v 38.000
G1x W1x V1x U1x
G1x 2.458
G1y W1y V1y U1y
G1y 17.606
θ atan2 G1x G1y
θ 82.052 deg
g 7.
S 1x2 S 1y2 , s 88.456
2
2
G1x G1y
g 17.777
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 197.458 deg
θ2f θ2i β
θ2f 37.458 deg
DESIGN OF MACHINERY - 5th Ed.
8.
9.
SOLUTION MANUAL 5-24-3
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 52.618
δp 205.422 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x z cos ϕ w cos θ
O2x 95.410
O2y z sin ϕ w sin θ
O2y 138.699
O4x s cos ψ u cos σ
O4x 97.868
O4y s sin ψ u sin σ
O4y 156.305
10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 82.052 deg
11. Determine the Grashof condition. Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "non-Grashof" 12. DESIGN SUMMARY Link 2:
w 120.864
θ 115.406 deg
Link 3:
v 38.000
θ 59.552 deg
Link 4:
u 100.345
σ 110.448 deg
Link 1:
g 17.777
θ 82.052 deg
Coupler:
rp 52.618
δp 205.422 deg
Crank angles:
θ2i 197.458 deg
θ2f 37.458 deg
13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-24-4
Y
P1
X Z1 S1
P2
A1 V1 B1
Z2 S2
W1
A2 V2 B2
W2
U1
U2
O2 W3
O4
P3
U3
S3
V3 B3
Z3 A3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-25-1
PROBLEM 5-25 Statement:
Design a fourbar linkage to carry the box in Figure P5-4 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.
Given:
Coordinates of the points P1 , P2 and P3 with respect to P1: P1x 0.0
P1y 0.0
P2x 184.0
P3x 211.0
P3y 180.0
P2y 17.0
Angles made by the body in positions 1, 2 and 3:
θP1 90.0 deg
θP2 45.0 deg
θP3 0.0 deg
Coordinates of the points A1 and B1 with respect to P1: A1x 17.0 Solution: 1.
2.
3.
A1y 43.0
B1y 43.0
See Figure P5-4 and Mathcad file P0525.
Determine the magnitudes and orientation of the position difference vectors. 2
2
p 21 184.784
δ atan2 P2x P2y
δ 5.279 deg
2
2
p 31 277.346
δ atan2 P3x P3y
δ 40.467 deg
p 21
P2x P2y
p 31
P3x P3y
Determine the angle changes of the coupler between precision points. α θP2 θP1
α 45.000 deg
α θP3 θP1
α 90.000 deg
Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z
P1x A1x2 P1y A1y 2
z 46.239
s
P1x B1x 2 P1y B1y 2
s 81.302
v
A1x B1x 2 A1y B1y2
v 52.000
v2 z2 s2 2 v z
ϕ acos
v2 s2 z2 2 v s
4.
B1x 69.0
ϕ 111.571 deg
ψ π acos
ψ 148.069 deg
Z1x z cos ϕ
Z1x 17.000
Z1y z sin ϕ
Z1y 43.000
S 1x s cos ψ
S 1x 69.000
S 1y s sin ψ
S 1y 43.000
Use equations 5.24 to solve for w, , 2, and 3. Since the points A and B are to be used as pivots, z and are known from the calculations above.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-25-2
Guess:
W1x 50
W1y 200
β 80 deg
Given
W1x cos β 1 W1y sin β = p 21 cos δ Z1x cos α 1 Z1y sin α
β 160 deg
W1x cos β 1 W1y sin β = p 31 cos δ Z1x cos α 1 Z1y sin α W1y cos β 1 W1x sin β = p 21 sin δ Z1y cos α 1 Z1x sin α W1y cos β 1 W1x sin β = p 31 sin δ Z1y cos α 1 Z1x sin α
W1x W1y Find W1x W1y β β β β β 86.887 deg
β 165.399 deg
The components of the W vector are: W1x 65.636 The length of link 2 is: w 5.
θ atan2 W1x W1y
W1y 86.672
θ 127.136 deg
W1x2 W1y2 , w 108.720
Use equations 5.28 to solve for u, , 2, and 3. Since the points A and B are to be used as pivots, s and are known from the calculations above. Guess:
U1x 30
U1y 100
γ 80 deg
Given
U1x cos γ 1 U1y sin γ = p 21 cos δ S 1x cos α 1 S 1y sin α
U1x cos γ 1 U1y sin γ = p 31 cos δ S 1x cos α 1 S 1y sin α U1y cos γ 1 U1x sin γ = p 21 sin δ S 1y cos α 1 S 1x sin α U1y cos γ 1 U1x sin γ = p 31 sin δ S 1y cos α 1 S 1x sin α
γ 160 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-25-3
U1x U1y Find U1x U1y γ γ γ γ γ 76.700 deg
γ 161.878 deg
The components of the U vector are: U1x 33.074
U1y 110.894
The length of link 4 is: u 6.
Link 1:
V1x 52.000
V1y Z1y S 1y
V1y 0.000
θ atan2 V1x V1y
θ 0.000 deg
2
2
V1x V1y
v 52.000
G1x W1x V1x U1x
G1x 19.438
G1y W1y V1y U1y
G1y 24.222
θ atan2 G1x G1y
θ 51.253 deg
g
9.
U1x2 U1y2 , u 115.721
V1x Z1x S 1x
v
8.
σ 106.607 deg
Solve for links 3 and 1 using the vector definitions of V and G. Link 3:
7.
σ atan2 U1x U1y
2
2
G1x G1y
g 31.057
Determine the initial and final values of the input crank with respect to the vector G.
θ2i θ θ
θ2i 178.389 deg
θ2f θ2i β
θ2f 12.990 deg
Define the coupler point with respect to point A and the vector V. rp z
δp ϕ θ
rp 46.239
δp 111.571 deg
Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x z cos ϕ w cos θ
O2x 82.636
O2y z sin ϕ w sin θ
O2y 129.672
O4x s cos ψ u cos σ
O4x 102.074
O4y s sin ψ u sin σ
O4y 153.894
10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-25-4
to the line O2O4.
θrot atan2 O4x O2x O4y O2y
θrot 51.253 deg
11. Determine the Grashof condition.
Condition( a b c d )
S min ( a b c d ) L max( a b c d ) SL S L PQ a b c d SL return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise
Condition( g u v w) "Grashof" 12. DESIGN SUMMARY Link 2:
w 108.720
θ 127.136 deg
Link 3:
v 52.000
θ 0.000 deg
Link 4:
u 115.721
σ 106.607 deg
Link 1:
g 31.057
θ 51.253 deg
Coupler:
rp 46.239
δp 111.571 deg
Crank angles:
θ2i 178.389 deg
Y
θ2f 12.990 deg P1
13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.
X Z1 A1
P2
S1 B1 V1
A2
U1
14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.
Z2
S2
V2
B2
W2
W1
U2
O2 O4
W3
P3 A3
U3
Z3
V3
S3 B3
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-26-1
PROBLEM 5-26 Statement:
Given:
Solution: 1.
2.
Design a fourbar linkage to carry the box in Figure P5-4 through the three positions shown in their numbered order using the fixed pivots shown. Determine the range of the transmission angle. P21x 184.0
P21y 17.0
P31x 211.0
P31y 180.0
O2x 86.0
O2y 132.0
O4x 104.0
O4y 155.0
Body angles:
θP1 90 deg
θP2 45 deg
θP3 0 deg
See Figure P5-4 and Mathcad file P0526.
Determine the angle changes between precision points from the body angles given. α θP2 θP1
α 45.000 deg
α θP3 θP1
α 90.000 deg
Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x O2x
3.
4.
R1x 86.000
R1y O2y
R2x R1x P21x
R2x 98.000
R2y R1y P21y
R2y 115.000
R3x R1x P31x
R3x 125.000
R3y R1y P31y
R3y 48.000
2
2
R1 157.544
2
2
R2 151.093
2
2
R3 133.899
R1
R1x R1y
R2
R2x R2y
R3
R3x R3y
R1y 132.000
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 123.085 deg
ζ atan2 R2x R2y
ζ 49.563 deg
ζ atan2 R3x R3y
ζ 21.007 deg
Solve for 2 and 3 using equations 5.34
C2 R3 sin α ζ R2 sin α ζ C1 R3 cos α ζ R2 cos α ζ
C3 7.000
C4 134.000
C5 65.473
C6 39.149
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C2 24.329
C3 R1 cos α ζ R3 cos ζ
C1 60.553
C6 R1 sin α ζ R2 sin ζ
DESIGN OF MACHINERY - 5th Ed. 2
SOLUTION MANUAL 5-26-2
A1 C3 C4
2
A1 1.800 10
4
A2 C3 C6 C4 C5
A2 9.047 10
3
A3 C4 C6 C3 C5
A3 4.788 10
3
A4 C2 C3 C1 C4
A4 7.944 10
A5 C4 C5 C3 C6
A5 9.047 10
A6 C1 C3 C2 C4
A6 3.684 10
3
K1 A2 A4 A3 A6
K1 5.423 10
7
K2 A3 A4 A5 A6
K2 7.136 10
7
2
K3
3 3
2
2
2
A1 A2 A3 A4 A6
2 7
K3 7.136 10
2
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 90.000 deg
K K 2 K 2 K 2 2 1 2 3 β 2 atan K1 K3
β 164.466 deg
The first value is the same as 3, so use the second value
β β
A5 sin β A3 cos β A6 A1
β 85.240 deg
A3 sin β A2 cos β A4 A1
β 85.240 deg
β acos
β asin
Since 2 is not in the first quadrant, 5.
β β
Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x O4x
R1x 104.000
R1y O4y
R2x R1x P21x
R2x 80.000
R2y R1y P21y
R2y 138.000
R3x R1x P31x
R3x 107.000
R3y R1y P31y
R3y 25.000
2
2
R1 186.657
2
2
R2 159.512
R1
R1x R1y
R2
R2x R2y
R1y 155.000
DESIGN OF MACHINERY - 5th Ed.
R3 6.
7.
SOLUTION MANUAL 5-26-3
2
2
R3x R3y
R3 109.882
Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ atan2 R1x R1y
ζ 123.860 deg
ζ atan2 R2x R2y
ζ 59.899 deg
ζ atan2 R3x R3y
ζ 13.151 deg
Solve for 2 and 3 using equations 5.34
C3 48.000
C4 129.000
C5 43.938
C6 45.141
C1 R3 cos α ζ R2 cos α ζ C2 R3 sin α ζ R2 sin α ζ C3 R1 cos α ζ R3 cos ζ
C4 R1 sin α ζ R3 sin ζ
C5 R1 cos α ζ R2 cos ζ
C6 R1 sin α ζ R2 sin ζ 2
C2 13.338
A1 C3 C4
A1 1.894 10
4
A2 C3 C6 C4 C5
A2 7.835 10
3
A3 C4 C6 C3 C5
A3 3.714 10
3
A4 C2 C3 C1 C4
A4 9.682 10
A5 C4 C5 C3 C6
A5 7.835 10
A6 C1 C3 C2 C4
A6 5.561 10
3
K1 A2 A4 A3 A6
K1 5.520 10
7
K2 A3 A4 A5 A6
K2 7.953 10
7
2
K3
2
C1 80.017
3 3
2
2
2
A1 A2 A3 A4 A6
2
2
K K 2 K 2 K 2 2 1 2 3 γ 2 atan K1 K3 K K 2 K 2 K 2 2 1 2 3 2 atan K1 K3 The first value is the same as 3, so use the second value
7
K3 7.953 10
γ 90.000 deg
159.525 deg γ
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-26-4
A5 sin γ A3 cos γ A6 A1
75.253 deg
A3 sin γ A2 cos γ A4 A1
75.253 deg
acos
asin
Since 2 is not in the first quadrant , 8.
γ
Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2
p 21
2
P21x P21y
p 21 184.784
δ atan2 P21x P21y 2
p 31
δ 5.279 deg
2
P31x P31y
p 31 277.346
δ atan2 P31x P31y 9.
δ 40.467 deg
Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
B sin β
E p 21 cos δ
H cos α 1
A cos β 1
D sin α
F cos β 1
G sin β
K sin α
L p 31 cos δ
A F AA B G
C cos α 1
M p 21 sin δ
B C D
E L CC M N
G H K A D C F K H
N p 31 sin δ
W1x W1y AA 1 CC Z1x Z1y
10. The components of the W and Z vectors are: W1x 62.394
11. The length of link 2 is:
w
W1y 91.663 2
Z1x 23.606
2
W1x W1y
Z1y 40.337
w 110.884
12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:
A' cos γ 1
B' sin γ
E p 21 cos δ
H cos α 1
D sin α
G' sin γ
C cos α 1
F' cos γ 1
K sin α
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-26-5
L p 31 cos δ
A' F' AA B' G'
M p 21 sin δ
B' C D
N p 31 sin δ
E L CC M N
G' H K A' D C F' K H
U1x U1y AA 1 CC S1x S1y
13. The components of the U and S vectors are: U1x 29.920
14. The length of link 4 is:
U1y 116.933 2
u
U1x U1y
2
S1x 74.080
S1y 38.067
u 120.700
15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x Z1x S1x
V1x 50.474
V1y Z1y S1y
V1y 2.270 v
The length of link 3 is:
2
2
V1x V1y
v 50.525
G1x W1x V1x U1x
G1x 18.000
G1y W1y V1y U1y
G1y 23.000
g
The length of link 1 is:
2
G1x G1y
2
g 29.206
16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x Z1x W1x
O2x 86.000
O2y Z1y W1y
O2y 132.000
O4x S1x U1x
O4x 104.000
O4y S1y U1y
O4y 155.000
These check with Figure P5-4. 17. Determine the location of the coupler point with respect to point A and line AB. 2
2
z 46.736
2
2
s 83.288
Distance from A to P
z
Z1x Z1y
Angle BAP (p)
s
S1x S1y
ψ atan2( S1x S1y)
ψ 152.803 deg
ϕ atan2( Z1x Z1y )
ϕ 120.337 deg
rP z
θ atan2 z cos ϕ s cos ψ z sin ϕ s sin ψ θ 2.575 deg
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-26-6
δp ϕ θ
δp 117.762 deg
18. DESIGN SUMMARY Link 1:
g 29.206
Link 2:
w 110.884
Link 3:
v 50.525
Link 4:
u 120.700
Coupler point:
rP 46.736
δp 117.762 deg
19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.
DESIGN OF MACHINERY - 5th Ed.
SOLUTION MANUAL 5-27-1
PROBLEM 5-27 Statement:
Design a fourbar linkage to carry the box in Figure P5-5 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use any points on the object as attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.
Given:
Coordinates of the points P1 , P2 and P3 with respect to P1: P1x 0.0
P1y 0.0
P2x 421.0
P3x 184.0
P3y