LAYER OF PROTECTION ANALYSIS
Sebuah Risiko…..
Protesha Sinergy – Copyright 2010
Analisis Risiko
Protesha Sinergy – Copyright 2010
Siklus Analisis Risiko System Description Hazard Identification Scenario Identification
Accident Probability
Accident Consequences
Risk Determination
Risk and/or Hazard Acceptance
NO
YES
Build and/or Operate System Protesha Sinergy – Copyright 2010
Modify Design
Aliran Analisis Risiko
Protesha Sinergy – Copyright 2010
Milestone Analisis Risiko
Non-Based Scenario
Based-Scenario
Protesha Sinergy – Copyright 2010
Hazard Scenario
Refer to reactor system shown.
Cooling Coils o o e Monomer Feed Cooling Water to Sewer Cooling Water In
T C
Thermocouple
The reaction is exothermic. exothermic A cooling system is provided to remove the excess energy of reaction. In the event of cooling li function f i is i lost, l the h temperature of reactor would increase. This would lead to an increase in reaction rate leading to additional energy release. The result could be a runaway reaction with pressures exceeding the bursting pressure of the reactor. The temperature within i hi the h reactor is measured and is used to control the cooling water flow rate by a valve. 7
Protesha Sinergy – Copyright 2010
HAZOPS untuk HAZARD Scenario Guide Word
Deviation
Causes
Consequences
Action
NO
No cooling
Cooling water valve malfunction
Temperature increase in reactor
Install high temperature alarm (TAH)
REVERSE
Reverse cooling flow
Failure of water source resulting in backward flow
Less cooling, possible runaway reaction
Install check valve
MORE
More cooling fl flow
Control valve f il failure, operator t fails to take action on alarm
Too much cooling, reactor t cooll
Instruct operators on procedures d
AS WELL AS
Reactor product d iin coils
More pressure in reactor
Off-spec product
Check maintenance i procedures and schedules
OTHER THAN
Another material besides cooling water
Water source contaminated
May be cooling inefffective and effect on the reaction
If less cooling, TAH will detect. If detected, isolate water source. Back up water source? 8
Protesha Sinergy – Copyright 2010
Analisis dalam LOPA
Protesha Sinergy – Copyright 2010
Definisi A Simplified Si lifi d fform off risk i k assessment which hi h uses order of magnitude categories for initiating event frequency, q y, consequence q severity, y, and the likelihood of failure of independent protection layers (IPLs) to approximate the risk of a scenario. an analysis tool that typically builds on the information developed during g a qualitative hazard evaluation, such as a process hazard analysis (PHA)
REDUCE FREQUENCY TO ACHIEVE TOLERABLE RISK Sumber : CCPS Protesha Sinergy – Copyright 2010
Risk of Scenario
Protesha Sinergy – Copyright 2010
Tahapan dalam LOPA 1. Pengidentifikasi dan pendefinisian skenario 2.. Penentuan e e tua skenario ske a o insiden s de 3. Identifikasi “Initiating Event” 4 P 4. Pengidentifikasian id tifik i penyebab b b (I (Initiating iti ti E Event) t) dan penentuan “Initiating Event Frequency” 5 P 5. Pengidentifikasian id tifik i “Protection “P t ti Layer” L ”d dan penentuan “Probability Failure on Demand (PFD) (PFD)” 6. Penentuan “Risk Frequency”
Protesha Sinergy – Copyright 2010
Konsep dasar LOPA Intiating Event (Cause)
Enabling Events & Condition
Conditional Modifier (Condiitional Influence)
Diagram alir skenario Independent Protection Layer (IPL)
Consequence
1. Initiating Event : Penyebab tunggal pada suatu skenario yang berujung pada terjadinya konsekuensi yang tidak dii diinguinkan i k 2. Enabling Event & Condition : Penyebab lanjutan yang dipicu oleh I iti ti Event Initiating E t 3. Conditional Modifier : Kemungkinan dampak tambahan yang memperparah konsek ensi konsekuensi (Probability of ignition, Probability of fatal injury, etc) Protesha Sinergy – Copyright 2010
Konsep dasar LOPA Initiating Event
IPL1
IPL2
Preventive F Feature
Preventive F Feature
Success Initiating Event
IPL3
Mitigated Risk = reduced frequency * same consequence S Scenario i Consequence
Preventive F Feature Safe Outcome
Success
Safe Outcome Success
Failure Failure Failure
Diagram alir cara kerja IPL
Safe Outcome
Consequences exceeding criteria
Key: Thickness of arrow represents frequency of the consequence if later IPLs are not successful
Protesha Sinergy – Copyright 2010
Impact Event
frequency
Analisis Konsekuensi Guide Word
Deviation
Causes
Consequences
Action
NO
No cooling
Cooling water valve malfunction
Temperature increase in reactor
Install high temperature alarm (TAH)
REVERSE
Reverse cooling flow
Failure of water source resulting in backward flow
Less cooling, possible runaway reaction
Install check valve
MORE
More cooling fl flow
Control valve f il failure, operator t fails to take action on alarm
Too much cooling, reactor t cooll
Instruct operators on procedures d
AS WELL AS
Reactor product d iin coils
More pressure in reactor
Off-spec product
Check maintenance i procedures and schedules
OTHER THAN
Another material besides cooling water
Water source contaminated
May be cooling inefffective and effect on the reaction
If less cooling, TAH will detect. If detected, isolate water source. Back up water source? 15
Protesha Sinergy – Copyright 2010
Analisis Konsekuensi Metode analisis konsekuensi yang sering di pakai dalam LOPA 1 Category 1. C A Approach h without ih di direct reference f to h human h harm 2. Qualitative estimates with human harm 3. Qualitative estimates with human harm with adjustments for postrelease probabilities 4 Quantitative estimates with human harm 4. 5. Overall cost resulting from potential incident (e.g., capital losses, production losses etc.)
Protesha Sinergy – Copyright 2010
Analisis Konsekuensi 1. Category Approach without direct reference to human harm Fokus pada upaya pencegahan daripada mitigasi Tidak menggunakan ukuran “human injury/fatality” Menggunakan matrix untuk masing-masing kategori
Protesha Sinergy – Copyright 2010
Analisis Konsekuensi 2 Qualitative estimates with human harm 2. Fokus pada dampak yang diderita noleh manusia Hasil perhitungan risiko dapat dibandingkan secara langsung dengan Risk Tolerance Criteria
Protesha Sinergy – Copyright 2010
Analisis Konsekuensi 3. Qualitative estimates with human harm with adjustments for postrelease probabilities Serupa dengan metode no. no 2, namun penekanannya lebih pada setelah penyebab terjadi (misal : release-nya bahan kimia) Memperthitungkan : Probabilitas kejadian yang menjadi penyebab, probabilitas manusia yang ada disekitarnya, probabilitas terjadinya i j /f t lit injury/fatality
Protesha Sinergy – Copyright 2010
Analisis Initiating Event Untuk menentukan suatu penyebab (Initiating Event) dalam skenario selalu didahului pertanyaan : What is the likelihood of the undesired event in the scenario ? What Wh t iis th the risk i k associatedwith i t d ith thi this scenario i ? Are there sufficient risk mitigation measures ?
Protesha Sinergy – Copyright 2010
Analisis Initiating Event Jenis jenis penyebab (Type of Initiating Event) Jenis-jenis Jenis kejadian
Contoh
Kegagalan bersifat mekanis (Mechanical failures)
Korosi, Vibrasi, Erosi, Fracture, PSV stuck open, fabrication defect, brittle, gas/seal/flange bocor
Kegagalan karena sistem pengendali (Control System Failures)
Sensor/Logic/Control Element Failures, Wiring failures, Software crashes, Interface blocked
Kegagalan karena sistem penunjang (Utility Failures)
Power failures, Cooling System failure, Instrument air system failure
Kegagalan karena bencana alam (Natural external events)
Gempa bumi, Tornado, Banjir, Petir
Kegagalan egaga a karena a e a kondisi o d s eksternal e ste a
Pabrik ab tetangga teta gga failure, a u e, d ditabrak tab a kendaraan
Kegagalan karena ketidakmampuan kondisi manusia (Human Failures)
Operational Error, Maintenance Error, Response Error
Protesha Sinergy – Copyright 2010
Analisis Initiating Event Sumber data untuk menentukan Initiating Event Frequency diperoleh dari : 1. Data Industri (biasanya dari lembaga eksternal - contoh : OREDA)) 2. Pengalaman Perusahaan 3 Data 3. D t vendor d (d (data t ddarii pembuat b t alat) l t)
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) IPL : Sistem/Alat/Aktifitas Si /Al /Ak ifi yang b bertujuan j mencegah h (preventing) atau memindahkan (mitigate) penyebab ((initiating g event)) agar g tidak menjadi j dampak p yang y g tak diharapkan (the undesired consequences) Tipe-tipe p p yyang g tergolong g g IPL : • Process Design (Inherently Safer Design) • Basic Process Control System • Critical C i i l Al Alarm and dH Human IIntervention i • Safety Instrumented System • Physical y Protection • Post-release Protection • Plant Emergency Response • Community Emergency Response Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) COMMUNITY EMERGENCY RESPONSE
PLANT EMERGENCY RESPONSE
MITIGATION Mechanical Mitigation Systems Fire and Gas Systems
PREVENTION Safety Critical Process Alarms
Safety Instrumented Systems
Basic Process Control Systems Non-safety Process alarms Operator Supervision Process Design
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) Agar suatu sistem/alat/tindakan (safeguard) dapat dipertimbangkan sebagai IPL maka harus memenuhi : • Efektif dalam mencegah agar tidak terjadi dampak ketika berfungsi Dapat men-detect penyebab Dapat D men-decide d id tindakan i d k yang akan k dilakukan dil k k Dapat men-deflect dampak supaya tidak muncul • Independent p dari p penyebab y (Initiating ( g Event)) dan komponen p IPL lainnya untuk skenario yang sama • Auditable dalam hal tingkat efektifannya dalam mencegah dampak, p , terutama dalam hal PFD
Apabila p seluruh IPL dipengaruhi p g oleh Common-Cause Scenario, maka seluruh IPL tersebut dianggap IPL tunggal Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) P Process Design D i Umumnya ada 2 hal yang terkait dalam Inherently Safer Design dalam IPL IPL-Process Process Design • Eliminasi dengan menggunakan metode Inherently Safer g Design • Memberikan angka non-zero PFD pada langkah Inherently safer Design yang lain Nilai PFD Inherently (CCPS,2001)
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) BPCS adalah sistem yang memonitor, mengendalikan dan mempertahankan proses dalam rentang operasional yyangg aman
Komponen-komponen Komponen komponen sederhana dari Loop BPCS
BPCS memiliki 3 fungsi safety terkait dengan IPL 1.
Continuous Control Actions - mempertahankan process dalam rentang operasional yang aman (level controller)
2.
Actions Alarm - Adanya Logic Solver/Alarm trips : mempertahankan process dalam rentang operasional normal dan alarm untuk operator
3.
Return process to stable state - Adanya Logic Solver/ Control relay : secara otomatis mengembalikan proses kepada keadaan yang aman
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) BPCS Failure Rate Data (CCPS, 2001)
PFD dalam BPCS dipengaruhi p g oleh : • Adequacy of security and access procedures - terkait dengan manusia • Level of redundancy - terkait dengan back-up system • Historic failure rate - terkait dengan latar belakang terjadinya terjadin a kerusakan/kegagalan • Effective test rate - terkait dengan test •
Other factors - Other factors to be considered include design design, manufacture manufacture, installation and maintenance. Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) C i i l Alarm Critical Al and d Human H Intervention I i (CAHI)
PFD dalam da a CAHI C d dipengaruhi pe ga u o oleh e : • Detection - Saat alarm berbunyi • Decision - Saat response • Action A ti - Saat S t tindakan ti d k dilakukan dil k k
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) SIS adalah Safeguard/IPL yang terdiri atas sensor, logic solver, dan final element Fungsinya adalah “hanya” hanya membawa kondisi operasi ke “Safe Safe State” State Dikenal dengan berbagai nama : Safety Interlock System, Emergency Shut-down System, dll PFD dalam SIS dikenal pula sebagai RRF (Risk Reduction Factor) dan secara International Standard (IEC 61511) dikategorikan dalam Safety Integrity Level (SIL)
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) PFD dalam SIL
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) Physical Protection Relief Valve Rupture R Disc Di PFD untuk Physical Protection
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) Physical Protection Faktor yang mempengaruhi nilai PFD Sizing alat Design Instalasi I l i Kualitas Inspeksi Kualitas Perawatan Kebersihan cairan proses
Protesha Sinergy – Copyright 2010
Analisis Independent Protection Layer (IPL) Post-Release Protection Blast Wall Dike Dik PFD untuk Post-Release Protection
Protesha Sinergy – Copyright 2010
Studi Kasus - 1
Protesha Sinergy – Copyright 2010
Format tabel LOPA 1
2
3
4
5
6
7
8
9
Additional mitigation (safety valves, dykes, restricted access, etc.)
Mitigated event likelihood
10
Protection Layers #
Initial Event Description
Initiating cause
Likelihood = X
Cause likelihood
Process design
BPCS
Alarm
SIS
Probability of failure on demand = Yi
Mitigated likelihood = (X)(Y1)(Y 2) (Yn)
Protesha Sinergy – Copyright 2010
Notes
Kasus 1: Flash drum for “rough” component separation for this proposed design. cascade
PAH
Split p range g
Feed Methane Ethane (LK) Propane Butane Pentane
T1
PC-1
T5
T2
LAL LAH
FC-1
F2
TC-6
Vapor product
T3
LC-1
F3 AC-1 Process fluid
Steam
L. Key
Protesha Sinergy – Copyright 2010
Liquid Li id product
Kasus 1: Flash drum for “rough” component separation. Complete the table with your best estimates of values. 1
2
3
4
5
6
7
8
9
10
Protection Layers #
Initial E t Event Description
Initiating cause
1
High g pressure
Connection (tap) for pressure sensor P1 becomes plugged
Cause lik lih d likelihood
Process d i design
BPCS
Alarm
SIS
Additional mitigation iti ti (safety valves, dykes, restricted access, etc.)
Mitigated eventt likelihood
Notes
Pressure sensor does not measure the drum pressure
Assume that the target mitigated likelihood = 10-5 event/year Protesha Sinergy – Copyright 2010
Kasus 1: Some observations about the design.
•
The drum pressure controller uses only one sensor; when it fails, the pressure is not controlled.
•
The same sensor is used for control and alarming. Therefore, the alarm provides no additional protection f this for thi initiating i iti ti cause.
•
No safety valve is provided (which is a serious design flaw). flaw)
•
No SIS is provided for the system. (No SIS would be provided for a typical design.)
Protesha Sinergy – Copyright 2010
Kasus 1: Solution using initial design and typical published values. 1
2
3
4
5
6
7
8
9
10
Protection Layers #
Initial Event Description
Initiating cause
Cause likelihood
Process design
BPCS
Alarm
SIS
1
High pressure
Connection (tap) for pressure sensor P1 becomes plugged
0.10
0.10
1.
1.0
1.0
Additional mitigation (safety valves, dykes dykes, restricted access, etc.) 1.0
Mitigated event likelihood
Notes
.01
Pressure sensor does not measure the drum pressure
Much too high! We must make improvements to the design.
Protesha Sinergy – Copyright 2010
Kasus 1: Solution using enhanced design and typical published values. 1
2
3
4
5
6
7
8
9
10
Protection Layers #
Initial Event Description
Initiating cause
Cause likelihood
Process design
BPCS
Alarm
SIS
1
High pressure
Connection (tap) for pressure sensor P1 becomes plugged
0.10
0.10
1.0
0.10
1.0
Additional mitigation (safety valves, dykes, restricted access, etc.) PRV 0.01
Mitigated event likelihood
Notes
.00001
Pressure sensor does not measure the drum pressure
Enhanced design includes separate P sensor for alarm and a pressure relief valve.
The enhanced design achieves the target mitigated likelihood.
Sketch on process drawing.
Verify table entries.
Protesha Sinergy – Copyright 2010
The PRV must exhaust to a separation (k k t) (knock-out) drum and fuel or flare system.
Studi Kasus - 2
Protesha Sinergy – Copyright 2010
Scenario The two-phase separator V 180 is under level control (Level control LC 213). In case of high high liquid level, the level switch LSHH 214 would close emergency shutdown valve ESDV 172 and shutdown compressor C 130 downstream of V 180. This is to prevent carrying liquid over to the compressor leading to compressor damage. Protesha Sinergy – Copyright 2010
Hasil PHA (HAZOPs)
Protesha Sinergy – Copyright 2010
Analisis LOPA
Protesha Sinergy – Copyright 2010
Analisis LOPA
Protesha Sinergy – Copyright 2010
Evaluasi Risiko
Protesha Sinergy – Copyright 2010
Terima Kasih
Protesha Sinergy – Copyright 2010