en ca
....e::t CI)
LLI
cc: o Co:)
3:
o
.... .... o :::c
March 2006 4th Edition
2.2.0 '
en
I
2:
w
I Z
PRODUCT
1
DESIGN
2
ELEMENT DETAILS
3
0
u
COMBINED;LOAD
'-'-
4
HOLLGWCORE SLAB UPC 8/150
5
SLAB ~UPC ·6/20G
6
HOLLOWCORE SLAB ·UPC5/265
7
HOLLOWCORE SLAB UPC 4/320
8
1;1 0LLOWCORESLAB UPC 4/400 .
9
H0LLOWCORE
.......
CURV. ~
HOLLOWGORE SLAB UPC 4/500
10
DES"IGN EXAMPLES
11
DIAPHRAGM ACTION
12
STANDARD.DEfAI es
14
SPECIAL SLABS
17
FASTENINGS AND SUSPENSIONS
19
PRODUCT CHARACTERISTICS
20
MATERIAL SPECIFICATIONS ..
21
DIMENSIONS / TOLERANCES
22
OUALITY CONTROL
23 -
ERECTION
24
I (.)
::::::»
The standard HOLLOWCORE SLAB from United Precast Concrete Oubai L.L.C. (UPC) is among the most advanced product in the Precast Concrete Industry in the U,A.E. UPC's slabs are used in all kinds of buildings (hotels, offices, villas....... etc.) Throughout the past two decades, these slabs have been widely used for flooring and roofing and occasionally for walls.
Listed below are some of the advantages of pre stressed hol lowcore slabs: • No cracks for service loads. • No positive deflection for normal dead
loads,
• Minimum deflection for super imposed
loads,
• Longer span/greater loads than conven
tional slabs of same depth.
• One way span, meaning less beams and
columns requred. gives more unobstruct
ed space for the client.
The casting of the HOLLOWCORE SLAB elements is performed by the PCE Extruder now used worl dwide. A very special feature of the HOL LOWOCRE SLABS is the high quality product with very low use of material and very fast delivery. In order to save time and money for our valued clients, we always focus on sched ules. UPC can manufacture and erect 2700 - 4000 m2 Hollowcore Slabs per day,
The HOLLOWCORE SLAB elements weigh upto 40-50% less than conventional reinforced con crete slabs of the same dimensions, The reduced weight results in considerable over all savings in construction costs. With the reduced slab weight, the structural frame can be more lightly constructed. The reduced - com bined - weight of frame and flooring leads to red uced dimens ions of the foundations.
UPC's HOLLOWCORE SLAB elements have all the advantages of prestressed hollowcore slabs. Standard HOLLOWCORE SLABS are prestressed, precast, extruded slab elements Witll tnicknesses of 150mm, 200mm, 265mm, 320mm , 400mm and 500mm. After casting and curing, the HOLLOWCORE SLABS are transported to site for erection.
C
o
c:::
e,
Verification of the chosen slab
The ultimate super imposed load Pd must be less:
than qulS'
Pd is the factored load as defined in BS 8110,
section 2.4,
Pd = 1,4 Gk + 1,6 Ok'
Shear, bending capacity and allowable stresses
are automatically fulfilled if Pd.s:: quls' The deflec
tion should be checked for compliance with BS
8110, 3.4,6,3.,
"
Short term ~ambe r. sho uld not exceed «,» span/300 ,j ",/:, .. '.' '" Short terrr{ deflecfion for live load Ok' should' not ~xC8ci(i 'S:pan!350. The defl~c~6~ ' is ciitOlateCl as : . ,~ -.:
.....---
= aSh,l
ash
-~~::o,,~ 'l!,~)
*
q;,s "':. -:
"
Short terfl:(defleGtion for ,d¢ad load Gk, should not ex ceed~sp~m t350 : . , The deflectlon:is ca I2u late,d;~'a s\ , -
"
--<~.
". ..;
~ _.
,
: :" ,::'::-' ,aSh = a'Sli'~t* 'Gk : '; ~\~ " \ .' . : ,;.', '.>,·<¢ ~~6i n' e ~ $~ort ,t~rTJ).,cam~r'?ri ~ : ";
UPC's servi~es ', ' UPC's experienced Structural ~n~mee!:s < , are>/ .' .", ' d~flecJ i 9r.tf6T Gk sho~Jd , Q~texceed :" ;>.
always at your service to assist and a9,vj,s~:Y0~'.~rr , _" ' , " '/ span'l3'pQ: " /' "" , ;' , " _. ".' '\
all matters related to the design ;/s,~d /~pe ~jf!€ati~n . , ~< ,,> -: '" Tll~"i s :' q a !9,y la~ed as : ' ,~ " ,\ ' ' '>~,~
of the HOLLOWCORE SLABS ;:, :~ : ,v~ , : . i/ ' ' ; I ~ a~ = Csh_+ ~str'- _ _', ' , ,, ',' , .' ,:-:;/, '
Please be advised that 1:t~er }lJins , (' g!-~~ter : ' J '::- ton'g Je(tn ,def!eJjtl,on\fo r d?ad lo~d :: G~ , ", ,:..' ,
loads than specified- ' i n")his>9roch u re.~can. ~e~, ~ ( .. is'calculated;,'ai >:- ' .";' \, : ' , ,? ~> :~.; ~<~
achieved under certain cond i !.!Ons> ",< ~ ' : ' '._::r' >/ ;caf~" ,~a i;';~* ':G~;:,'bj;7 ," '~\ , ' ~::f " ,;: ~/ ~, ,:-.,
r . • , /~~ '; , ' , .. • :Y~ fln~U;om qj rreq I bn:~,ter~, P?mber ,:an ~'~ /' :: ; ! Load Tables q,<", " ".-:<" " ' " >"'deflect iQr1Jdr,. .:",0 ~.' sh&:1 l.q :rilif~xceed " . ~-:.--.. :~;".~ " "'. The slabs are designed in eccordance wrt~)~~r~tish , ',,<,f ," '$p,a&f2:5 tL:~(' »: ;,< f., _ <: ,:;'\ , . ' " ..... " , Standard BS 8110, For simply supported "sl?~~, : > ' " "ihi§iis,'eaicu'iated 'as ~ \ ~>:... . \ / /' ;" ,:4'0 values fo r load capacity and deflections aregh7en " , ;:::~<" " a\ "" )(:'c~I'~ ' 0 '::. ~: al'~T :'-- :< "",.- ",.." ' \¥ ':'-: ::....... '; ' :~' ~.;,.:. ~ ". r: , .... . . ,;; . -, . 2:'·'v· co· ,
in the load tables on pages 5 to 10 for the ,_v,ari -; ,
~'PpHG:q trory.- Oft~e.'d,ead) ba-d _G~; ShO~ l d', not ./ " The following definitions are used in the IO~d ,,'{ > ~",/ ,~X:Ce,e d\~p'~rf/35~'/" , , , ' " ' ~~" " ~;. " ..: '.:::::"'". tables, , ',',/ ,-' .>~<~" ,:fhjS~s~ttleqi~ntJt}~is 'calcu~~ed/a~ '; qulo maximum ultimate (limit state) des ign./~\ '· ,;.::,-' '\: -: "a', ~~ a 2"' ~' al:\:':~ -.: " , ,/ "",,:"'/ o , "';.: ;.;~.... ' ~-~, .3 A ~ .... ~ . ~ . . -, ::.;"'- v load in excess of the slab welg ht. $:':-\" .,' ,' .':-.,/ :' " " \.,/ , :' ,\ ;/ .. .. .... .,... . . ... qsls = maximum characteristic (s'ervice Ijrn~ ~ ' '-\ . ,:, ..: ~.,~ , ' .... ' \ ., :' .: }\~', , state) design load in exce ~s of the Jg:I~ b_:: ' ·\ . "" ::, '\ .::' .:, :,:y \ ; "-", , weight. " / '/ :<;,. ~ ,:::.:.-: _::~:;: : ~; _ ~ :~'?~ ,,':.\,:-.. y':\ csh = short term camber due to prestr e.ss Jbr~ .. "f.:;" ,f" / ' " one week old slabs. i Cia = long term camber due to prestress , aSh,1 = short term deflection due to adapplied load of 1kN/m 2 . alO,l = long term deflection due to an applied load of 1kN/m 2 ,
<:,
:<',
'.
-
,'-:'
-,
-'
.
. .~/ .
.
.".... ~
/ ;.
../'
~.
~
.v.
.:..~ • .•.'
.<:.
'. '
....
"' ~.
-::' ;'-
=;
,
' ,'
f"
~ - ' -'
/
~
.
,
';
~
'/
.
'
~
<..
,",,-
'"
~ .
~, , :. ...
"
U')
....J
c:x:
I
W
o[I~~~1
~
I
I
I
I
I
I
gt
150mm
C
STANDARD
:z w
::2E LU
-I
LU
200mm
STANDARD
265mm
STANDARD 152
224
224
>I'
182
320mm
STANDARD
400mm
o o
STANDARD
-t
500mm
STANDARD
o
o0/)
Note:
Strand locations are possible locations. Actual strand pattern will be determined throug h structural calculations
I
LU
> a:
~ (.)
Design load quls (kN/m 2) in excess of slab self weight
C
c::r::
o
....J
C
LU
Z
c:I
:E
o
_ 22000
(.)
UJ
.c
-
~
UJ
Q,)
u
;I:
10....
0
-er OJ
0>
""
0...
15000
(,J
;: _ 14000
0
-:::E: 0
-
11000
en
U
c..
~ 10....
0
'I
UJ
10000
Q,)
2: ~
9000
(,J
"'C
8000
~
0
.....I
7000 -
1-------:-
1
6000 5000
o
.,r
C'l
o
o
N
o <.ci .,....
o C'l
o o
--EE
12000
13000
c:
as c..
LOAD AND DEFORMATION TABLE
UPC HCS 8/150
Slab weight
2.25 kN/m 2 Maximum ult imate design load (q vl) and maxim um load at serviceability limit state
Jo in t grout
0 .11kN/ m 2
~
nos 9.3mm
f~ v
'" 1 770 N/mm 2
M ul,
= 31l kNm/su
v~
= 57 kt\I!S U
= 1770
I 4.0 I 4.5
5.0
I 5 .5 I 6 .0
qu ls
25. 1 17.6 12.7 9.3 _.._..
6 .9
i
q sls
16. 7 11.7
6.2
4.6
C, h
-1
-'1
-'1
a lo I
0
qu ls
29.6 22.4 16 .4 12 .3 9.3
1
Csh
= 47 kNm ! su
a,h 1
I
fpu = 1770 N/mm 2
I
I M vls '" 56 kN rn/su
-2
I
7 n0 5 9.3 m m
= 1770 N!mm 2
0
,0
= 65 kNm !Sll
I
4
7.1
5.4 14 .'1
4.7
3.6
2.8
-1
0
2. 1 1 1
-2
-1
1
3
4
-2
-2
-4
-4
-3
0
1
1
2
I
2 I
4.3
3 .3
I
2. 9
2. 2
I
Clo
-3
-4 _...
I -5
-5
-5
-5
-5
1-4
a sh 1
0
0
0
1
I
2
2
3
al a,l
0
1
1
1
~ 2
3
4
c sh
I
-3
-3 I -4
-5
-6
-7
-7
0
0
1
1
1
q sls Csh
I
:
1
--=----L4
-I
5
8
n
6
5.5
4.3
1 I
I
2
!
I
1 1
3.6 I 2.9 I 2. 3
I
-3
-3
-7
-5
2
2
3
4
3
-9
0
1
1
I 2
1
'1
2
I 3
I
10
-3
0
5
7
11
14
I 5.3 I 3 .3
4 .3
3 .4
2.7
2 .2
-3
-2
-10
-9
-8
-7
-4
0 10
2
3
4
5
7
9
IS
11
14 ' 17
41 6
7.0
5.7
4.7
13.4 10.5 8.3 6.7 15.4
4.4
3.6
2. 9
-6
-5
-5
L
-9
i - 11
1 . 1 I
-9
1-1
2 1.4 116.7 13 .3 '10 .7 8 .6
-5
I
I
1
-7
-8
I
I
I
3.4
-7
-7
I I
ala,1
1 -2 4
,
~2 .
ash, I
0
-
6 8 ,4 i 24. 3 120 .3 15. 8 112 .5 10 .0 8. 1 I 6.6 16. 2 -12.7 9.9 I 7.8 6.3 5.1 ! 4. 1 -3 -4 _..... ..._-4 -5 -4 -5 -5 . 1
qu i,
Cia
1
I
I
~ . ~ --
-2
q ul s
Csh
-
27.2 23.4 17.9 13 .9 10 .9 .~ . 6 i 6. 9 18.1 15. 2 11.6 1 9 .1 7. 1 5.7 14 .6 .. ,~
I
5 .5 -2
I
_
7.1 -2
I
I
8
-3
q sls
I
I
6
-3
1
I
3.1
4
-3
I
I
:; 68 kN !,1I
3
I
-2
a la, l
vd
2
-2
'" 6& kN
= 81 kr-Jm/s u
2
I
-2
Vel
M"I'
0
Csh
a sh, l
= 1770 N/mm2
-1
I
3.7
= 73 kNm/sli
i pLi
0
-3 1
I
-'1
4.7
M""
9 n05 9.3m m
I
6.0
L~} o / SLI
1 6.2
I
20.6 17 .4 13.4 10 .1 7.7 '-'-._-
a lo,l
I f pu =
1
1 2
9.0
3.4 2.5 ...•.
q ,l s
1
I
1770 N/m111 2
I
8.5
8.0
I
5 .2 1 3.8
q ul s
a sh,'
Vu :::: 64 kN ! su
7.0, 7.5
2 3 1 3 1. 0 26. 1 ' 20 .0 15.1 11. 6 j 9 .0 0
c lo
8 nos 9.3rnm
1
1
-3
qllis
M ul'
-2
!19 .7 115 .0 10. 9 1 ~:2 -2 I -2 -1 -2
a lo 1
6 110s 9.3mm
i pLJ
-2
I
N!m m 2
6.5
~
I
0
q sl,
= 62 kN/su
-1 I - 1 -2 -2 10 0
_~5b J
Vo '" 59 kN !su
Vo
8 .4
-2
Clo M"I'
3.5
I Clo
5 nos 9.3mm
II'''
3 .0 -
I
weight in kN/m 2 and calculated deformation in mm
SPAN
_
STRANDS
. (q,,) in excess of slob
11 2
-6
-6
1-6
- 12 -1 2 -12 2
I
1
2
4 .,
3
4
6
1-4
I -2
-S
-5
7
9
-"12 -10
3
5
~ .
8
, 11
I 3.8 I 2.4
-
! 14
17
For guidance only
..
LOAD AND DEFORMATION TABLE
UPC HCS 61200
Slab weight
2.90 kN/m 2 M"xlmum ultimate design load (q",) and maximum load at serviceability limit state
Joint grout
0.16 kN/m 2 (q",l in excess of slab weight in kN/m 2 and calculated deformati on in mm
STRANDS 4
no, 9.3mm
fplI = 17 70 N/mm 2
= 56
Mill,
= 73
V rl
kNrn/SLJ
SPAN
,4.0 4.5 5.0' 5.5 6.0 6.5
q.,
8.31 6.4 4.8 '3.6 19.314.4 10.9 .
~6 ,
kN/su
-1
-1
-1
Clo
-2-2
-3
a ,h.'
a 1°
0
I
c,
0
~ q ,I<
90 kN/su
1
I1
;
1
1
2
14.4
.. I
111
I
I I
I
1
-1
2
3
5
6
,
I
I
7.4 6.0 4.9 I 3. 9
.5 9.2 7.5 6.1 4.91 4 .0 3.3 2.6
, -5
I I
-
,
a'o,1
,
I.
,
$;8 : : '~-3~4 ' ~* tH t
i __
I
I
-1 0 - 11 -'12 -12 -12 -11 -1 0 -8
- 'I 1 -6 _2
'I
1
6
1
2
-6 1-6
-5
1 I
3
,
-6
-6
-5
-4 1-3
2
,2
3
4
5
4
5
6
8
110
1
I
8
,
12 15
i
20.7 17.4 '14.5 12.2 10.3 8 .7 7.4 6.2 5.3 4.4 I
13.2 10.9' 9.1 17.6 6.4 , 5.4 4.6 3.9 3.3 2.8 1
I
,
,
a ,h.1
1 -7 I' -8 -9 -9 -9 -9 -8 -8 -6 -4 -15 -16 -17 -18 -18 -18 -17 -15 -13 -9
1
....
2
1
2
2 5
_I
3
4
5
6
8
9
4
:3
I
1
-9
-8 I
1
I
8 10 12 , 15 18 6 20 .918.7 15.6 13 .1 111.1 9.4 18.0 , 6.8 5.8 ~. 9 1 4. 2 13.9 11.7 9.7 8.2 16 .9 5.9 5.0 4 .3 3.6 3.1 2 .6
a 'o,1
a., 1
0 I
3 4 5 68 10 i I 21.1 '17.9 '14.7 12.1 10.0 8.3 16 .9 5? 14.8 13 .9 .. I 14.011.4 9.4 7.8 6.5 5.4 4.5 3.8 3.2 2.6
a 'h,1
a 'h.1
I
"
C,h
q., c., c, -
I
I
I
.2 9.1 21.7 17.2 13.811 ..
2
I
4
3
1
c.,
,
· 0
1
..
Vd =
0
-
"
J'o,1
q ui,
160 kN m/ Sll
0
-2 ! - 1 -4 -2
-5 I-4 1 ,2
1
M ub = 14 2 kN m/ su
=:
-5
1
= 1770 N/ mm 2
M, ,!,
-4
-2
-2
a
Csh
= 1770
-4
-2
_~5h,1
5 nos 12,5mrn
[pu
-2
-8
~
I
..
1
-7 ..
2 nos 9.3 01 01 +
N/ mm 2
2
-6
quI> q,ls
7 nos 12,5rn m
1
C'o
83 kN / su
Va = 89 k N/su
'I
-4
,
(pu
1
-4
(' v
Vo =
0
-3
79 kN /su
M ill, = 11 8 kN m/ su
-1
, C' h
Mill s = 96 kNm/ su
fplI = 1770 N/mm 2
-2
,
-2
-4
J' v.l
5 nos 12.501m
-2
I
= 76 kN/5U
Vd =
0
,
-2 0
i plJ = 1770 N/mm 2
-1
" ,
a 'h,1
4 nos 12.5 mm
-1
18.614.1 10.9 8.6 6.8 5.4 4.3 3.4 2.7 ..
=76 kNm/ SlJ
M ul> V rl
.
C,h
i pu = 1770 N/mm 2
I
-1
'I 2 4 3 1 12 7 . 8 2 1.2 16.4 '12.8 10.2 8.1 6.4 5.1 4.0
CJ,!s
2 nos '12.5rnm
I
I
1
0
a'o. 1 q ui,
2 no, 9,3mn1 +
7.5,8.0 8.5 9.0 9.5 10.0 10.5 11.0
7.3 5.6 4 .2 3.2 2.4
Csh
~,
17.0
..
I
-10 ,-11
-8
-5
-17 ,-18 -20 -21 -22 -22 ,-22 -20 -1 8 -15
-11
1
1
1
2
I
1
3
I
2
2
4
5
-11 1-'11 I
3
4
6
8
-11 1- 10 5
6
10 : 12
-9 8 15
I 9 18
Fo r gu id ance o n ly
11 22
LOAD AND DEFORMATION TABLE
UPG HGS 5/265
S la b
we ight
j oint gro u t
STRA NDS
13.75 kN/m 2 10.1 9
l'vlax im um ul ti mate design
kN/m 2 (q ;l)
I SPAN
6.0 : 7 .0
8.0
18 .4 10. 6 6.3
3.7 1 2 .0
I
II>U = 1770 N/m m2
Csh
1- 1
-1
anrl rn axirnurn lo ad at serv ic eab i lit y li mi t state
in kN /m 2 and
5.6
q sls
= 85 kNisu
w eight
27 .7 15 .9 9.4
4 nos 9.3 mm
Vd
of slab
5.0
4 .0
qu ls
M"" = 79 kr-J m/su
e xcess
In
load (q"l)
3. 1
-1
a
1 1
I
1 13 I
1
I
1-1
-2
-2
a sh 1
10
0
a
1
10
0
'1
i
23.7 14.9 9.6 i 6 .1
3 .8
i
6.4 I 4 .1 ..... -
2 .5
I
I
2
I
I
I
I
I I
q sls
2 nos 12.5 mm
c sh
-1
-2
-2
-1
1
ipli = 1770 Nirn rn!
c lo
-3
-3
-3
-2
1
a sh 1
0
0
1
1
2
al o 1
0
1I 1
2
3
4
quls
2 5 .3! 20 .21 13.5 9.1
= 108
kNmisu
v d = 89 kNisu
.. ..,
I
4 no, 12.5 mm
q sls
16.9 ! 13 .5 1 9 .0
6. 1 .......
4 .1
4 .0 I 2 .7 I
Ir u = 1770 Ni m m 2
cs h
-2
-3
I -3
-1
0
c lo
-4
-5
-5
-2 -5
-3
1
M u b = 137 kt-lrn/s«
as h,!
0
0
'I
1
2
3
v d = 91 kNi su
a lo I
0
1
2
3
4
6
1
[, nos 12.5 mrn II'''
= 1770
Nimm 2
Mull = 201 kNm/su
= 99 kN/su
Vd
8 nos ' 2.5 mm [po
= 1770
M ob
Vd
N/mm 2
= 2& 1 kNm/,u = 105 kN/su
1770 N/mm Z
4 .1
j
14 .9 12.3 9 .8
7.2 15 .2
3 .8
2.7
Csh
-4
-5
1-4
-2
Cia
I -9
-11
1-9
I -5
2
a sh,1
10
- '10 _. -11 1 1
3
7
a l o. 1
1
2
4
15 9 1
q sls
.,-
I
= 313 kN m/ su
Vu = 111 kN/su
-5
-6
3
2
1
6
--
1
.--.
13
q uls
24 .1 19 .9 16.8 13.7 10.8,_. 7.6
5 .7
4 .1
q sls
16.1 ._-.13.3 11 .2 18 .6
6 .8
4 .8
3.5
2 .6
I I 1 I
-6
-7
-8
1-9
-9
-8
-5
-1
Cu l s
-12
-14
-17
! - 18
- 17
- 15
-'10
-2
3 ,h .'
I
0
1
1
12
3
5
7
19
!
1
13
! 18 I
Csh
a,o,'
....
!
q sls
2
I
3
4
16
..
'- ~ -
9
, I
!
II
2 5 .6 2 1 .21 1 7.9 15.4 1 1 2 . 0 9.1
6.9 i 5. 2
3.8
I
'17.1 14 .2 ·12 .0 9 .9
,
Csh
-7
c lo
-15 I -1 9 . ~
Mul<
I
5 .9
q ub
fl'O =
i
22 .4 '18 .5 15. 5 11.4 8 .2
I
10 no , 12.5 mm
6 .1
II
qu i,
'14.0
I
Clo
alo,1
mm
10. 0 11. 0 1 12 .o i 13.0 I 1 I
9.0
15 .8 1 9 .9
Mu"
in
-1
q uls 2 nos 9,3 mm +
ca lc ulated defo rmatio n
, .
_
-9
-11 -22
7 .5
5.7
4.3 13 .2
2 .4
-1 2 1- 13 -24 -2 6
- 13
-11
-8
-3
-25
-22
-16
-6
5
7
9
12
9
13
18
24
1
.
J <; h,'
I
a
I 1
1
a lo , !
I
1
2
3
ti-#--
1
For guidance only
LOAD AND DEFORMATION TABLE
lIPC HCS 4/320
Slab weight [oint gro ut
14.05 kN/rn 2 \ Ma x imum ulum ate design load (q",,) and maximum load <:II serviceabili ty limn state 0 .22 kN/m 2 (q,,) in excess of slab weighl m kN/m 2 and ca lcu lated deformation in rnm
STRANDS
SPAN
, 6.0 1 7.0 18 .0
10.01 1.0 12 .0 13.0114.0 :15.0116.0 ~ 27.71 23.01' 16.6 1I 12.0 8.7 6.2 : 4 .3 I I!
~) S 5 nos 12 ,5 mm
f pu '" 1770
N/mm 2
Me,!, '" 212 kNm/su Vd
= 119
kN/su
1 1 8 ' ~m
L Qsl5
M ul, = 291 kNm/su
Vd
=]
30 kN/su
0
, a, h, I
I
al
I o
~_ ~
1
-
[pu == 1770 N/mm 2
330 kNm/su
MlIl,
'"
Vd
= 135 kN/su
Vd
=
138 kN/su
(pu = 1770
N/m m 2
Muls = 404 kNm/su Vd
= 141
kN/ sli
~I
-
i
4
I 2 ~ I 6 '-,...-S- ----L.,-
---+--+--
'1-
--1
- ,J----i
I
2
3
'
1
I
I ash, I al o I
I
1
1 '1
I2
I3
_t-+ ~ '
!
r-r-
I- :~: ,
I
I
~I
I~'
:I
a SI~-+--\_ a lo .1 ,
M,oI, = 438 kNm /su
I
:~: ,]
31 01
' 5.6 I 4 .3 _ ~._.
14 :6 I 3.5\_2_.7-+!_--I
-~1_2_-+--l
! 4161 8
I
6
11
---r_
,I
' ~ 4 .9
~1 -11
I
-~~I
!2 T374
)1
-11 1-10 1-9
--- -:---1_ 0 ,----;-_
15
-1
i 20
6.1 4.7
3.8 I 2.9
1-6 1-2
,- 213""- \ 4 6 8 111 -I' 15 120 T 23 .8 20 .5 ' 17.7 13.7 10 .7 18 .4 : 6.5 I 5.'1 3.8 I 15.9 13.7 11. 0 1 8.6 , 6.7 5.2 4. 1 3.2 2 .4
I
\ -10
I
-11 I -1 2 , -13
-12
-11 I -9
\-24 ; -25
-25
-22
-18 1-10 1 '1
6
7
Cu~_--~ -22
I Csh
-9 -19
15
I
1
I al o,1
I q sls
-9
I 5.9
I 7.3
F=F~ ;17 ;20· ;2 ~~2~~18 1~---+1-_--1
Csh
fplI = 1770 N/mm2
7.7
11
23 .2 20·~1·16.8 113.0 10.1 7.9 - + -_11_15 .5 1 13 .4'1'0:5 8.1
q sls
1
9.9
_~
1
,8
15.9 12.3 9.5
\--I~~
i
6
;1
I 15 .1, 13 .0
1
Lei I c:;
_
4
I 22 .6 1 19 .5
1_
I q",
I
I
.
Lq uls
= 143 kr-l/su
I
1 ,_
1
-6,-6~1 _~~ ~
,1
al o .]
11 nos 12.5 mm
Vd
2
I
I
I
Quls
10 nos 1 2,5 rnrn
2.9
4.1
~~~. : -13T14 r~-~~-r~_.,~~b,l ! 0 + . \' 1 2 ~.~1 6 7 I '1_ _
9 nos 12,5 mm fpu = 1770
5 .8
25 .51 21.6 18.5 13.9 ; 10.61 8.0 , ? O 1 4 . ~_LI_ 17 ·~t14.4 1 1'1 .8 18.9 6.8 I 5 .2 1 4~
I
qu ls
N/mm 2
1
1
I1
=t=f? 1
, qul5 8 nos 12.5 mill
1
~-II-:a !:~ I:; II:; I,~ ; -+2'-.3u15
7 nos 12 .5 rnm
9 .0
I
I 1
1
2
3
I2
3
i4
I6
I4
-rs---
I
11
-5
1
1
10
13
' 15 ! 20
25
I~ ' 24.41 2'1.1\.18.4\ 14.5 '11.4 8.9 .~. 5 16 .21. 14.0' 11.6 9.1 I
I
I I
-
10
- 'I 2
- 13
\ -1 4
4
1
7.1 \. 5.6 - 14
-1 4
4.4
4.2 2.6
3.4
I -12_1-8
1
-3
· ~~~-~II : ;:~ I~i-11 6
I8
I
15
20
For guidance onl y
25
LOAD AND DEFORMATION TABLE UPC HCS 4/400
14 .69 kN/m21Maxi nlum u lum ate design loa d (qui,) and max imum IOJd at servicea bility lim il 0.26 kN/m2 1(q",l in excess of sla b wei ght in kN/m 2 and ca lc ulate d deformati on in mm
Slab w eight Jo in t gro ut
ST RANDS
SPAN
14 .3 .9 10 .9 8 .0 I -3 -3 -3
:;: )
fpu '" 1770 N/mm
Csh
: -6 ..0 1
I cl o M lI \, v~
'"
2 75 kNm/sll
a sh, I
'" 174 kN/, u
7 nos 12.5mm (ftU
'"
9 .0 10 .0 "11 .0 11 2.0 13.0 14 .0 15.° 116.0 17.0 ' 18.0 19 .0 I 16.3 12.0 8.8 I 6.4 4.5 3.0 I i
8 .0
q"''==:t2
5 nos 12.Smm
3101 qul s
I
q sls
1770 N/m m 2
I
-7
-6
1
1
i
1
4 3 6 S 124.9 '18.9 14. 5 11.2 8.6 6.6 16 .4 12.61 9. !_ 7.51 5.7 4.4 -7
-6 -13
-13
-6 -12
2
2
I
- '1 2
Clo M ul, = 379 kNm/su
a sh 1
! 1
1
v cl '" 139 kN /su
aiD 1
'I
2
~~u l s 9 nos 12,5mm fpu
'"
MlIl•
'"
480 kN m/su
-10
Clo
-20 I
I ,
I
qLlls q ,l s Csh
.
Clo
1\\", = 5713 kNmj,lI V ri
'" 2 16 kN I<;u
i
,
al o. 1
I quls 13 nos 12,5mm
q sls
2 fp
c sh
M ub
= 655 kNm/ SlI
a sh.1
Vd
'" 222 kN I su
a lo ,1
I I
,
I
I
q lli s
fpu '" 1770 N/mm 2
q sls
- Csh _
.. I
Clo M,d. '" 692 kNm/s,J V'I
= 225 kN /S U
ash, I al o ,l
2.4
4
:
I I
4
-1
7
5
7
11
14 I 6.0 4.6
7.6
I
3.5
2
~~
-1'1 I -11 -11 -2 1 -22 -21 .. 4 2 2 I 3
5
I
I 7
19
11
11 I 14 22 .6 '18.1 14. 5 11 .7 9.5 7.6 i 14. 1 11.3 9.1 I 7.3 5.9.. 4 .8 3
4
Isl 23 I 6.1 4.8 3.8 3.0 -1 5 -1 6 -16 1 -16 -1 5 -1 3 -1 0 -6 -29 -31 I -32 -~ ~6 -20 -11 4 2 2 7 9 ~_ 3 5 1 1 I---I 14 18 23 4 3 6 I 8 11 . 23.4 18 .8 15.1 12.2 9.9 I 8.0 6.4 5.1 4.0 14. 6 11.7 9.5 7.7 6. 2 5.0 4.0 3.2 2 .5 -15 I -"17 -17 -18 -17 -15 -1 2 -8 -2 -31 -33 -35 -3? I -34 -30 -25 -1 6 -5 7 11 I 14 2 2 9 3 , 4 5 14 18 23 4 3 6 11 28 8 1 23 .8 19 .1 15.4 12.5 10 . '1 8.2 6.6 I 5.3 4 .1 14 .9 u.s 9 .6 7.8 6 .3 5.1 4 .1 3.3 2.6 -16 -17 -lS i -18 -18 -16 1 -14 -10 i -4 -32 -35 -36 -37 -36 -33 1I -27 -19 -8 4 14 2 I 3 2 5 I 7 9 I 11 11 14 I 18 23 28 4 8 3 6
I 6
8
.,
I
Clo
14 nos 12,5mln
3 .3
I
~. I
3.5
I
I
2 .2 6 °'$ 7 29 -10 -5 -1 5 -19 -1 5 -10 -f-1-.22,
'
ai D I
I
3
I
I
I 1 I
fpu '" 1770 N/ mm 2
-10 -6
4.9 0
-3
4 6 I 8 3 1 24 .4 19 .1 '15.2 12.1 9.6 ' 15 .2 12.0 9.5 7.5
Csh
a sh' 1
II nos 12,S mm
,
0
~.
v J '" 202 kN Isu
-5
1
q sls
1770 N/mm 2
I
I
2
-6
C~ h
1=
5.9 i 4.3 3.0 2.0 I , -1 I 1 3 -3 7 -5 -3 1 4 2 2 3 I
I
state
I
i
For guidance only
o o an ...... q-
LOAD AND DEFORMATION TABLE
UPC HCS 4/500
U
c..
~
16.25 kN/m 2 1Maximum ultim ate desig n load (qv''! and m axi mu m load at serviceabil ity lim it state ,0:43 kN/m21 (q,,) in excess of slab w eigh! i n k N/rn 2 and calc ulated de format to n in rnrn
Slab weight Joint grout
SPAN
STRANDS
_guls 6 nos 12.5rnrn
q sl;
Ipu = 1770 N/rnm
2
V"
'18.8 14 .0 10 .31 7.4
5 ,_1-,--3_.3-1-_ _
1'12.6 9.3
4.9
3:4
I' Csh Clo
M,d, = 421 kl-Jm/su
10 .0 "1"1 .0 112.01 3.014.0 11 5.0 16.0 ' 17.0 18 .p 19.0)0 .0 12 1.0
I
, 8 ,h , I
quI; B nos 12.5mm
M u l,
= 555
Vd
-'"
~:
286 kN
co
-1
0
-2
'I
5
'1
1- 1'
2
lU no,> 12.5mm I pu = 1770 N/mm
2
,1
I
I
1
= 304 kN
Isu
3
I 4
5
I 2
c sh
Vd
= 320 kN
/su
I
1_
2
I
!
,
(,>U
'=
17 70 N/lnm
Mul-
= 10 79 1
Vd
=343kN /su
I
1
.6 9.3 \ 7.4
4.4 -3
3.3 i 2.3
I
3
°
57
4
+ r
I
-
-
-:- .-----I
1
!
-6
I
i
-10 I -9
3
-27j -28, 1 3
q uls
I
qsls
I
Csh
I
Clo
1+ I
- <-
I
3
3 4 5 7 23 .4 19.0,'5.5 12.6 14 . 6 '11 .9 9.7 7. 9 I -13 -' 4 1 -141-1 3
1
I
0 I
3.4 I
5 '0
'
41-5-1-7~1---'-·----1
9- 1- 11
13
6.9 5A 4 .3 I 3.4
4 .0
3. 2 10 .6 8.6 6.9 5.5 I 2.5 - ---'-- --+- ----:-+- ._------,---:-- ..
I
I
-
-l--I
5.8 1-5 I
2
.
--,----
4.9
,
ala ,l
--j-- -
-I-------!
I
6 ,6
ash, l
ash, l
,i
----;---
8.6
I -, 9
a lo, l
I
-----,_ _ 1
9
-22 I -2 '
,_ a sh, 1
1_
' 7
-22
Clo
2
4-1 5
c lo
c sh
17 nos 12,5111111
I
1_°------+, _3 -------'--
-11
q sls
vd =33 l kN Isu
1
-
-"
q uls
M,,!> -'" 9 73 kNm/su
3
---1
:
121.21.17.° 113.7111.0 8.8
al o 1
15 nos 12.5mm
1"4 ' I -2
.1_ ---1-_
~.--+---t,--+---
-8 ~ -7 - 16 I -' 6 - 'I 6 -'4 -, ~2 3 ! 3
_ c sh
= 362 kNm/su
-I
7.2 5._ 2 _1_ 3_,6-;' 4 .8 , 3.5 4. 2
-5
--1-_
1_ -----,
+-I~ 17.8 '4 " 1' 1.,
q sls
Mu b
I
1_
I
a lo I
nos 12 .5111111
2
3
I -5
4" , 13
11
I
Clo
Vd
1
_
f ir ;9 ,7I:r ~ : ~----+------'~I
I2 ,
I
2
q ; I~-t-~I "
a sh,l
M uL< = 685 kNl11/, u
I
21. 31, 6.5 1, 2.7 9.? 14 .2 " .0 8 .4 I 6.4
quI;
CL
I,
-2
-4
I -5
a lo 1
I,u
Q.)
en
2
-3
-5
qsl s
kNm /su
2'
-3
Csh
CJ
p.:
-6
, a lo 1
-'" 267 kNh u
6.8
1 1 ' -_
I
I
-Sf
-8
-1
4
-1'0 -2
8
-15
I
4
I5
9
I
I',
7
8
13
I , 6
I
'0 .2 CitJ~ ) 6 .5
3.8
6.4 -1 2
2.3 4
5.' -9
-271-26 f.-23
-19
5.0 1 4 .0 3.' -6 -2
I
7-
-13
-4
3 I4 5 7 ~ '11
7 13
8 1 '0 16 20
20.516.8 1' 3.7 11.219.'
7.3
5.7 4 .4
2 I4
I 3 5
I
. O 5.7 ! 4.5 3.6 2.8 12. 8 '10.5 8. 6 ~ -16 -16 1-1 6 -15 -13 - '\0 -6 -1 32 32 13 3 ' -2 I -2 1 '-'-'"0 -2 1-·? 3 I' -3 56 7 3 - , -4- - 5 7 1 9
1 ' 3 '-6 1
Ii 4~- 0
Rs
1;
20
For guidance only
tJ)
W ....J
Example using load tables Roof structu re, span 17m Loads: Chippings Insulation & Roofing Screed Live Load
g = 1.00 kN/m2 g = 0.25 kN/m
2
9 = 1.50 kNlm2 q = 0.75 kN/m2
- Resu lting short term deformation for Gk: - Long term camber - Long term deflection for dead load Gk: - Resu lting long term deformation for Gk: - Long term settlement for Gk:
c..
a1
:=
Clo =
-12 + 25 = 13mm -25mm
alo = 1& 2.75 = 50mm a2
= -25 + 50 = 25mm
a3
= 25 - 13 = 12mm
Conclusion
=
3.50 kN/m 2
Total ultimate design load Pd Pd = 1.4(1.00+0.25+1.50) +
1.6xO.75 =
5.05 kN/m z
Total characteristic dead load Gk Gk = 1.00+0.25+1.50 =
2.75 kN/m2
1. Load Capacity HOLLOWCORESLAB UPC 4/400 with 13Nos, strands of 12.5 mm has z the capacity quls = 6.40 kN/m > Pd 2. Deformations - Short term camber csh = -12mm - Short term deflection for live load Ok: ash = 9 x 0.75 = 7mm - Short term deflection for dead load GI< : 3sll = 9 x 2.75 = 25mm
I
Drstnbunon oi IOJd from partition wall on Hollowcore Slab
>< w
Z ~
tJ)
Total characteristic load PI< Pk = 1.00+0.25+1.50+0.75
:2:
Elastic settlement for full live load is at any time 7mm < span / 350. Final combi ned long term deflection and camber is 25mm < span/250, and the deflection taking place after application of long term load is 12mm < span/350. Concentrated loads Hollowcore slabs are capable of resisting concen trated loads lil
w
C
z
o t O
et :2: e,:, et
a: :::I: c.. et
c
Hollowcore slabs can act as diaphragms for transfer of horlzontal forces to the bracing ele ments. Horizontal forces are generally wind loads, seismic load and load due to eccentric ver tical load. The diaphragm action is obtained by connecting the hollowcore slabs and providing the completed floor with a tying system capable of transferring the horizontal forces by arching or bending. The tying system shall be able to obtain all forces due to in-plane action like bending, shear and tension, and shall be continuous both in longitudinal and transverse direction, Typical con nections between hollowcore slabs and bracing elements are shown on the sectional details.
t
TIE ABOVE
~rtM~W¢~6
I
i
I I'
HACKING AT INTERVALS MAX. 1200 MM STIRRUP PLACED IN EACH HACKING MIN. Yl0 LOCKER BAR YlO
I
TAMPING
(NOT NECESSARY ON PRECAST BEAM/WALL) DOWEL BAR BEAM/WALL
"
SO '" Side Overlab
Section 2
Schematic system of diaphragm action
,TIE ABOVE BEAM/WALL ,iMIN. 1 NOS. Y10
i
TIE IN EACH SLAB JOINT / MIN 1 NO. Y10
- - - , --l
':~
. ~-
-
-
-
-
"7 -
-
'-
~ --
1
HOLLOWCORE SLAB -
80,80
-
TAMPING (NOT NECESSARY ON PRECAST BEAM/WALL)
\
DOWEL BAR
i_
Diaphragm action without topping Diaphragm action can be achieved without topping , by placing the tie reinforcement in the joints between the slabs, as shown below: TIE ABOVE BEAM/WALL
Diaphragm action with topping If topping is provided, the diaphragm can be established in the topping as shown below: ..
__. -,--
I
MI~ . 2 Y10 V-BAR IN EACH StAB JOINT MIN. Yl0
-
--~
I
J SCREED
·: ~ :. :. ·I ·" ·· "·
HOLLOWCORE SLAB
-~ , ~
"<,
TAMPING (NOT NECESSARY ON PRECAST BEAM/WALL)
~ L-BAR
DOWEL BAR .
.
I-:::: MESH
MT' 2 YlO
TAMPING (NOT NECESSARY ON PRECAST BEAM/WALL)
', --
. .
TIE ABOVE BEAM/WALL
BEAM/WALL
BEAM/WALL Section 1
'r
Section 1
,r- ,
- -- -- --
-
-
-
-
-
-
-
-
-
-
-
---
-,
- - - -------- ---- -- - -
TIE ABOVE BEAM/WALL MIN, 2 Yl0
I
"
MESH
1l
I
,e...
f0-
-,
< ,
f- -
-
-
-
-
~
- "- -
HOLLOWCORE SLAB
-¥ "<,
80, 80
TAMPING
(NOT NECESSARY ON PRECAST BEAM/WALL)
11 ~
~L - 8AR
-
--
\ :1
HOLLOweORE SLAB
TAMPING (NOT NECE SSARY ON ~ P R ECAST BEAM/WALL) DOWEL BAR BENT IN T SCREED BEAM/ WALL Section 3 ~ __ . ~ . _._._~ ..J
a
--
so = SideOverlab
,
-
BEAM/WALL
,,
.'
I
.
~
- -- - -- ,- --- ,-- - - -
I
SCREEDl ;
-
TIE ABOVE BEAM/WALL {MIN. 1 NOS. YIO
Section 2
_.....
,.
.
~.
Structural Topping Provided that the topp ing is connected properly to the hollowcore slabs, the moment capacity of the hollowcore slabs can be enhanced as the hollowcore slab and the topping will act as a composite slab. UPC will advise about the enhanced capacity and requirements for connecting the topping to the hollowcore slabs. Typical connections between topping and Hollowcore Slabs are shown on the sectional details below. If a structural topping is chosen , it is most eco nomical to also create the diaphragm in the top ping .
,( '.
- - - _._-- -
-
-
- --
-
--
--
Reinf. bars in screed: A142
Screed conere te: C35min.
L~
Y8 U- links every 400 mm uos t lck min. 30 mm in all joints.
A-f1
~B Screed
,.,J.,.
r----
400
.
..
'>
.,';
,
~B Seclion A-A
'
- .
.
.
.
.,;J
:
rr
'===
HCS
. .. ..
Section B-B
en
...J ~
----------_._--,
Slab Joint The joints between the slabs can be filled with out the need of shuttering ,
I
w
C
---- ---·----------..-- - - - '1
C
a: ~ c
I
T10 @ 400 GROUTED INTO
BLOCK WALL UPTO 400mm ABOVE SSL (TYP.)
_
TIE BAR IN SLAB JOINT
z
'¢ l
I
;=<-'""""""'"""""""3mm- sea lant 001 required
,,
L~~ b J.Oin~_(Shc~KeY) ~
_
I
HOLLOWCORE SLAB
----j
TAMPING 2T10 , U-BLOCK
Bearing Under normal conditions the HOLLOWCORE SLABS will need a minimum bearing not less than 60mm,
LOAD BEARING BLOCK WALL -
o• 2
-
Bearing will, under normal cond itions , always be designed as 80mm in order to allow for toler ances in the main load bearing structure , For spans more than 12m, the designed bearing shou ld be 100mm due to the increased toler ances. For support on blockwork wa lls, it is important to check that the compression stresses in the blockwork wall are acceptable in the support zone of the hollowcore slabs, If not a reinforced concrete coping beam should be provided on the top.
--------
I I
-~~::: :, StAB
- - -- - - -
~
J
-
-
I
JOINT
-
- -
-
------r
TAMPING 2TlD · U-BLOCK . LOAD BEARING D - 3 BLOCK WALL-
Ii
For erection on cast in-situ concrete beams or block wal ls, a 20mm horizontal joint is required to take the variances of the level of the support and secure a uniform load transfer. Concrete beams can be cast full , half or not at all , before erection of the hollowcore slabs as shown in the details below:
l
Typical details for Hollowcore Slabs sup ported on load bearing blockwork walls (D1 - 03).
Typical details of Hollowcore Slabs sup ported on concrete beams (D4 - 08).
--------_...._,-------------.-.-- . . ....--_.....
~
!
('J
HO LLOWCO~~~~~:- //l~~
:
.I----l--
~
DOWEL BAR
".- CASHN-SITU BEAM
~
I
2T10 U-BLOCK LOAD BEARING BLOCK WALL
!i
BLOCK WALL
I
i
- __
-
!,' D - 4
.
--'
.
..
.
i
.
.
.
I
HOLLOWCORE SLAB
'- TAMPING
-
I
IjO _
-
1
l. D -1
I
-
1
I
-
i
_~~~ ~IN:
7
~
i
~!:.
I
I
I
I !
!
I
I
TIE REINFORCEMENT
-
I I
i !
:
1
_-_ ._ ~--------------.
-
I
I
i
TlO @ 400 GROUTED INTO BLOCK WALL UPTO 400mm ABOVE SSL (TYP.)
__ . _. .._..
j
- - ~ -' - - - -' -
-
:
i
r - - ' ~ - -- - - "
!
-
1i
_-- -~
J
~~. ~ - - --- --- -----
~
~
j
HOLLOWCORE SLAB
~
en
en
....J
NOS ~ -~~;;I;;_~~- ~~H ;~;---il
2
.
TO BE CASTED WITH SCREED
- TIE REINFORCEMENT
..
!
ii
I !
-U-BAR
I
Ij
CAST-IN-SITU BEAM
I
I
:j
BLOCK WALL
~D_~ i
,
!:
.
.
__ • •_ ._.
SO = Side
... .
ove ~~J
! i
i i i
r
TIE BAR IN BETWEEN SLAB JOINT
EVERY HCS : RECESS
._._. .__.
CASHN-SITU BEAM
l ~~~
I!
\
-
!
D-6
:~ .
_
4
_
.,,
.-
... . .,. . . . . . . . . . , _
. . . - . ,.,.
'"
_
_
.....
_~
HOL LO~C ORE ~LA B
~ T A M PI N G
-
~
CAST-IN-SITU BEAM
1
!
BLOCK WN.L
I
j
/
i
//
'w,to
,J
roo
[",COON " HCSj
_
j
i
/
I
U- BAR IN HACKING
I
1
i
!
I, Ii
I .
~
I ! I
so
I i
i
II I!
D -10
I
STEEL BEAM SO '" Side Overlab
I J.
- -_·_- -----1
r
I I
HOLLOWCORE SLAB
-
!!. D - 9 .
CAST -IN-SITU BEAM
(1) 0)
ro
D...
I
jDOWEL BAR
!,
• I
L1)
,
------------, / TIE REINFORCEMENT I
i
r,.
en
i
TEMP. SUPPORT
Typical details of Hollowcore Slabs sup ported on steel structures (09 - D16). (.._--_.. _---_ __
U-BAR
~ ~_
I
i
Diaphragm action in the slabs can be achieved as on all other supports if required. See page 12 for further details.
.(.
z
~
For erection on steel structures, precast beams
and wal ls, the slabs can be placed directly on the
support structure or on a bearing strip. Typical
details for support on steel beams are shown
below and for details 0-15 & 0-1 6 the capacity
of thesteel beams can be increased as the beam
and slab work as composite action.
. -- ---- - _ . _- - --- - _. _ .-. - . ~----
.
c::: c
c:(
I
e
(L ± 140mm)
C
i
:1 116mm U BARI
EXTENDED STRAND
C
_-
1 '
HOLLOWCORE SLAB TAMPING
t
w
STRUCTURAL TOPPING WITH MESH GROUTING AFTER [ ERECT ION
. ~
I / / I
TIE REINFORCEMENT
DOWEL BAR (- U- BAR IN SLAB JOINT
:
!
Ii {
CI)
-
,..
...l
..-----------.
w c c a:
~,·GROUT
\
I
f
SHEAR STUD @ 300 C/C
TIE REINFORCEMENT
WELDED TO BEAM
,.--DOWEL BAR
I
I/
/
I!
I
en
,
:'
Ii HOLLOWCORE SLAB I 1
I
I
STRUCTURAL TOPPING '
I BAR IN ! SLAB JOINT
i r
,_ J-
I
i
HOl LOWCORE SLAB
I ~
- - STEEL BEAM
If---
STEEL BEAM
If---
!
!
,L-,..0 -1 1
-.
... . . . .
i
SCR EED
.-....--- _ ~
..1
~
I 0 -1 5 1.-_ - - - - - - -- - -- - - --
--~
,---------------_.._-------- For details 012 - 014, the steel beams have to also work as tie beams, as no tie reinforcements are provided. Steel beams have to be checked for torsion , specially 012. ----------------------------; t
!
- --- - - 1
, '---
l
SLIMFLOR BEAM
1 0 -,- 1 L
--_.
_
f - - - '- -
.
~ - _._ --._---
I
~;
i
I
~
! 0 - 13
_
~
:, !
I
_50 _=
-- -.-.-.-
I i
Si~=~~~~:,b_l
---1
:
~- --~J[C-~ I
IHOl lOWCORE SLAB +8°1_
l~
I
HOLlOWCORE SLAB SLIMFLOR BEAM
D - 14
l~L ---
1
I
TRANSVERSE STEEL TO CREATE COMPOSITE
ACTION WITH THE STEEL BEAM , rSHEAR STU D e 300 C/ C
JO 'NT GROUT!
j
I
WELDED TO BEAM SCREED
I
, HOlLOWCORE SLAB
I
! L
- STEEL BEAM
0 - 16 _
J
I I I
i
i
HOlLOWCORE SLAB
!
I
i
I
HOl lOWCORE SLABl SLIMFLOR BEAM
!
..1
i II
Tie Reinforcement Tie reinforcement according to BS 8110 can either be placed in a structural screed or in the joints between and attheend of the HOLLOWORE SLABS. See also under Diaphragm action for fur ther explanations.
en cc
cr
All slabs can be produced with reduced widths, The narrow slabs are produced by cutting the standard width slabs after the extrusion. The location ofthe longitudinal cut should correspond to the location of a longitudinal void, in a distance of 35mm-70mm from the prestressed strands, for 150mm-265mm thickness and 50mm-100mm for 320mm-500mm thickness, It is recommend ed that the cut edge is placed over a wall or beam, as the cut edge will be straight without chamfer as for full width slabs,
....J
en ....J
e:t u w 0.. en
-
Minimum widths of narrow slabs Slab thickness(mm) 150
Min ,width(mm) 350
200
450
265 320
540 690
400 500
690 690
Example of Defining Width of Part Slab 265mm Ulick hollowcore slab. Required width is approximately 1aOOmm. Fro m the element details on Page 4, we will find the possible width .as W=61 +(4 x 182) + (4 x 42) + 35 to 70 = 992mm to 1027mm. Narrow slab of width = 1OOOmm is acceptable. large Openings If the width of an opening in the floor exceeds 800mm, it is most advisable to cut the slab com pletely through. The slab is then suspended from the adjoining slabs by a steel saddle beam . This requires that the adjacent slabs should be able to withstand the reaction forces from the steel beam. Any requirement for large openings and steel saddle support should be discussed with UPC's structural engineers.
Large Holes Before making holes through the concrete sepa rating the voids, it is necessary to check the capacities of the adjoining slabs during the initial design, i.e. to decide whether loads can be trans ferred from a slab with such holes to the adjoin ing slab, The maximum size of hole that can be made in the slab without special arrangements depends on the span and the load the slab has to carry. The conditions during transport and site erection also affect the maximum permitted size of the holes.
toOOOO\ \
b
~
Holes must be made in such a position as to min imize cracks in the web between voids: for exam ple, the longer side of a rectangular side of a rec tangular hole should lie in the longitudinal direc tion of the slab. The possible dimensions for
(J)
= Cd 0...
c:n a::I c:r:: ..... c:n
.....
c:r::
c.J
w c..
Cantilever Slabs Hollowcore slabs can be cantileve red by 1mto 2m depending on the slabs thickness, by providing top strands. The cantilevered slabs can be used for making balconies, bay windows, extensions and other decorative structures.
openings, on condition that the structural capac ity is safe, are shown 0 n page 17. Any requirement for large holes should be dis cussed with UPC's Structural Engineers.
c:n
Small Holes Small holes and recesses between strands at the position of the voids are usually made at the buildinq site. Their positions are indicated by the shaded areas on the adjoining cross-section diagram below. Holes may be circular or rectan gUlar, and up to three are normally perm itted in the same cross-section. Holes are considered to be in the same cross-section if they are less than 750mm apart in the longitudinal slab direction.
\
ro
When making holes, great care must be taken not to damage the slab. It is particularly important that the prestressing stra nds are not exposed through the concrete.
\
I
""' .........,. _
~
__
__
~ _ ~_~
~_
. . _.._
r._ ._ _
.J
-. _....._.• ....".-.....
~
i
~'OO HOLE ~~-) IGROUT
f SCREED
HOlLOWC~:E SLA~
-{-:>.::";.:.. . ~:•.::-:"::-.:- >.>....~. ~: ~.... .:..~ .:.-;,; ~ ·~. ~ ~ ~:r~,i ::..:~~....- >:"':.:.......,...~.:,:::~~ . :'r: · :~··~~ :· ""
-- - - - - - - - - - iy-- -- --- -- - kI
I' ·1 ;
!i -,r-L
CANlllEVER - ---./'
HOLLOWCORE SLAB
~
TAMPING
~DOWEL
BAR
~---;..;t--CAST -IN-SITU BEAM /-A---BlOCK WALL !
~ ~
~
~~
__
~ _ .~
•••
~
~.
_ ~
•• _ _ ••
•• • r
~~
~
· "" "" _
. ~
"' '''' '''' ''''
r-r-----r---.--.---.--r-r-----r---r--r--r ,l
i:
c...
. __..
. . __. _.. ..
1130 ~ . __.
.
Strands protected by 30mm of concrete
. Ii
,
~ ~..- __ ~ ~ __ ~ . . ~_ ~ r~~ ~~ ~.~ ~ ~ .~ ~_~~~ .~_~~~ ~ _~_. ~~~ ~. , ~_~
l. ...
-
••
,
I I Ii'
..........
CI)
Z
. .. . ---~
lightweight Suspensions
o
-
, . _ ----
C I)
Z
Lightweight suspensions can be fixed drilling the fixing to the soffit of the slabs. Different means of anchors, bolts and screws can be used, some only to be anchored in the vo ids, but others e.g . expansion bolts with a drill depth less than 30mm can be used all over the soffit.
w
THROUGH GOJ.t~G BOLT STEEL PLATE MIN. 150)( 150x lOMM
c.. CI)
::::::>
I
CI)
D.O..O.G
c
z
c:r: CI)
Examples of permissible suspens ion loads:
..
-- - - -- - - _ . _ - _ . _ - ~ ,
Position 2 : max. 30 kN .- . " . ,, ~'
,. ~ ~.,
~
..
~~ .
.,
_--_
c.::::s
..:
-' ~I
I
Drill Depth Max. (mm) Suspension (kN)
Anchor
Spring bolt plug M4 Spring bolt M6 Expansion bolt M6 Expansion bolt M8 Expansion bolt M1 0 Chemical anchor
Up to HCS Up to HCS 30 30 30 30
0.3
1.0
1.5
2.3
2,5
2,5
---
-- ---- -
Position 3 : max. 30 kN - - - - ~--- --~ --~ ._ --~;
Installations
Electrical conduit can be taken through the hollow cores as wel l as through longitudinal and trans verse joints. The conduits are thus out of sight and safe from damage.
r--------- -·--,.·-----'-'
CHEMICAL ANCHOR SPRING ANCKOR L~_ ~
~
".".,__" "~. ,""
' __ ' __. .!
.........
Heavier fastenings can be attached either in the joint between the slabs or throu gh the core in the slabs itself. The extra load due to suspension must be taken into account in the design calcula tions. Maximum suspension loads are shown in the figures. r -- - ' -- ~ ~ ~ ~ - ~
I
_.-
~~-_ . _ -
- ----- -
-
-- - _ ._ -_ .~~ --_ .~ ~ ~
-- -------
-~
--
If screed is provided on top of the slabs, the con duits are normally run in the screed and holes are drilled through the slab for installation of the elec trical boxes,
-~ - - - -~~-~-~
'
I
I
4~
I
I,
Heavy suspensions
i
I !'~~-~----Position 1 : max. 30 kN ' -"" '- - ---- ....... ~ ~---..~~ ..... ~ ~~ ~ ~-. ... _....... -- _... -_ .~~ - ~ ~. _~
z
w
t
CI)
c:r: LL
CONCRETE C-30 min,
EXPANSION .ANCHOR
z
If false ceiling is provided, it is most common that the conduit is placed between the soffit of the slabs and the false ceiling.
Fire resistance
HOLLOWCORE SLAB elements meet the very
highest requirements for non-flammability and
fire resistance.
For fire rating of prestressed concrete elements,
reference is made to BS 8110:
Part 1: 1997, section 4.12.3.1.3.
Noise reduction and thermal resistance
Noise reduction and thermal resistance proper ties for HOLLOWCORESLABS are accord ing to the table below:
For details of noise reduction factors , reference is made to BS 8233, 1987.
0
N (l)
Slab type
R-value (m 2KfW)
U-value(WIm 2 K)
HCS 150
0.1 2
8.33
50
HCS 200
0.15
6.67
53
HCS 265
0.19
5.26
56
HCS 320
0.20
5.00
58
HCS400
0,22
4.55
60
HCS 500
0.26
3.85
63
HCS 150+60
0.16
6.25
53
HCS 200+60
0.19
5.26
56
HCS 265+60
0.23
4.35
59
HCS 320+60
0.24
4.16
61
HCS 400+60
0.26
3.85
63
HCS 500+60
0.30
3.33
65
Solid slab t==21 0
0.13
7.62
56
Solid slab t==260
0,16
6.15
58
Solid slab t=325
0.20
4.92
61
Solid slab t=380
0.24
4.21
63
Solid slab t=460
0.29
3.48
65
Solid slab t=560
0.35
2.86
67
Noise reduction (dB)
Ol
co
CL
For easy reference the Hollowcore Slabs are compared with solid in-situ concrete slabs of different thick nesses.
CJ:)
2: 0
Cement "
....
Ordinary Portland cement complying with the
(,j
requirements of BS 12 and ASTM C150 Type 1.
LL
-
U
Microsilica
Densified or undensified microsilica grade 920 or 940.
W D..
en
...J
-
to
Water
:aE
Clean water with total dissolved solid contents not
exceeding 700 p.p.m.
Coarse Aggregates
Crushed local aggregates complying with BS 882 , Fine Aggregates All fine aggregates are local sand, comply ing with BS 882.
;;:j a.>
0)
'"
0
Admixtures
Water reducing admixtures complying with ASTM C494-80 Type A orType D,
,
Strength
Characteristic cube strength fcu=60 N/mm ~ Rei nforcement
All prestressing strands complying with either BS 5896, ASTM A416 or EN 138/79, The strands are placed at the bottom of the slab
with nominal cover 30mm to both cores and sot-
fit in accordance with BS 8110.
Finishes
HOLLOWCORE SLAB elements have a light
broomed top surface allowing for good bond to
J
the floor finish or structural topping. The soffit is
smooth, off steel mould finish which requi res only a minimum of preparation before painting,
en z -en0 zw :2:
c
HOLLOWCORE SLAB elements are produced in standard width of 1200mm. Special widths and cut-outs can be made under certain conditions.
Dimensions and tolerances are shown in the table below. Element details are shown in the figure on page 3.
Dimensions Length
Tolerances Up to 4.5m 4.5m to 6m 6m to 12m 12m to 18m
Width bottom
1200mm
Depth
150mm
200mm
265mm 320mm 400mm
500mm
±9mm ± 12mm ± 18mm ± 24mm
+Omm -3mm
+3mm
-7mm
Width of part slab
± 20mm
Flatness (maximum deviation from 1.5m straight edge)
6mm
N ('oJ (l)
0)
Camber
'"
0...
See calculated values
± 50%
Variation in camber between closely assoiciated units
9mm
Positions of strands (maximum deviation from position)
5mm
Size and positions of cut-outs as required with respect to detailed structural analysis
As required
± 20mm
UPC has been certified as being ISO 9001 com pliant by Det Norske Veritas B. V.,NETHERLANDS
Quality control will be performed according to UPC standard quality control procedures in our own laboratory,
The concrete strength is at least 60% of the design strenqth before the tension in the pre stressing strands is released, After the slabs have been cross-cut, strand slippage must remain within the permitted limits. UPC has 3 independent mixer plants, all using the latest technology available. All ofthem are kept at a very high operational standard and are fre quently calibrated to ensure a uniform production. All concrete used is mixed in our own mixer plants,
•
Comprehensive Strength is determined by stan
dard test cubes from the wet concrete and these are tested in accordance with BS 1881 : Part 108: 1983 an d BS 1881 : Part 11 6: 1983
,
UPC carries out full structural tests at fixed inter va s to determine the actual shear and bearing capacity of the slabs,
J
All materials are of local origin, and are inspected and tested when received. After production, all slabs are checked visually for cracks, broken edges and strand slipppage before being released for erection. A full schedule of UPC's standard quality control procedures can be obtained from UPC's Quality Department. As a special service, UPC can offer a full Quality Control Report forthe individual project consisting of casting dates, cube tests and other quality checks for the particular project. This service shall be agreed with our Sales Department.
z o
-
~
u w a: w
Erection is carried out in a continuous operation, On steel and precast structures the Hollowcore Slabs are placed directly on top of the support. On insitu concrete structures the Hollowcore slabs are placed on plywood shims for levelling purpose .
i
y
;"IIWllI~Jf""""'~' j
Lifting of Hollowcore Slabs Slabs are lifted directly from the trailer and into position.
I
_
__
~
_ _ .. ..
..
_
~
~.
~
r __
. ~
Progressive Erection of : PrecastCo ncrete Elcmenl i BIJ'Idin0 Structure i
~ ~
~
J
J
...
Full slabs are lifted using the specially designed lifting equipment.
........... _--'
The erection operation will in most cases, take 1 to 2 days for approximately 500m 2 depending on the complexity of the job. The final levelling will take place not later than two days after erection.
When lifting narrow slabs (Width less than 1200mm) and slabs with cut-outs near the end, sling belts will be used (sling belts are not sup plied by UPC). When lifting with clamps always use the safety chains underneath the slab. The chain should not be released until the slab is about 100mm from the support.
Erection of the Hollowcore Slabs In some cases, UPC's customers i.e., the Main Contractors, erect the Hollowcore slabs them selves.
In this event, it is very important that the lifting and handling of the slabs is done correctly fol lowing the procedure described below. For erection purposes, UPC will provide the spe cially designed lifting equipment (to be returned immediately after completion of erection) for lift ing and placing of the slab. UPC has no responsibility for tile slabs during lifting, handling, at erection, if erection is done by the Contractor . UPC will only guarantee the slabs after completion of grouting and tamping according to the specifications in this manual.
Work to be performed after erection Immediately after erection and levelling, it is important to grout the joints and tamp between the Hollowcore slabs and the cast in-situ support beam.
z o ----.
l"" e:."
w
Tamping
c: w
.
Surface of Ins;tu bee m
_ _ _T_am-,-p_ing and
Gr~~
__,
_
For steel and precast structures only the grouting
is needed.
For grouting, use dry mortar with aggregate
sizes less than 1Omm, and strength ~ 25MPa
For tamping, use a relatively dry sand -cement
mortar, with strength? 25MPa
For detailed information of lhe mix designs, do not
hesitate to contact UPC.
HOLLOWCORE SLAB
GROUTING
STEEL BEAM
_
."" .-
_ ._ _.-- - - - - - --; ..•.
HOLLOWCORE SLAB GROUTING
+ .3
I
STEEL BEAM - GrOiJting -;1I1'hBea~ng'on Steel Beam
I
d-
It is very important that the customer assures
himself that tile slabs are levelled to Ilis satisfac
'I
tion before grouting and tamping takes place, because once grouting and tamping is complet ed, the levelling of the slabs cannot be adjusted .
•
If the customer, prior to grouting, finds that the
slabs are not of level, he is welcome to contact UPC for rectification as early as possible.
UNITED PRECAST CONCRETE UAE, DUBAI P.O. Box 52900 Dubai. UAf Tel: (971 4) 347 4440 Fax: (971 4) 347 4746 E-mail: [email protected]
UAE, ABU DHABI P.O . Box 43774 Abu Dhabi, UAE Tel:.(971 2) 551 5404 Fax: (971 2) 551 5405 E-mail: [email protected]
QATAR P.O. Box 22995 Doha. Qatar Tei: (974)477 0167 Fax: (974)477 0157 E-mail: [email protected]
OMAN PO. Box 2150 Ruwi, PC 112 Sultanate of Oman rei: (968) 244 788 11 Fax: (968) 244 788 11 E-mail: upcoman@omantel nel.COIll
.._.._... .
ltO- lIlO lktas.Tl UD "~ '"
""
-.
~
I"flE.CiUT/ffilS TFlI,SU[]I
CONCAffl' INl nr uU
WWW.BPCGROUP.BIZ