Standart Kompetensi :
6. Menggunakan sifat dan aturan geometri dalam menentukan kedudukan
titik, garis dan bidang ; jarak ; sudut dan volum
Kompetensi dasar :
1. Menentukan kedudukan titik, garis, dan bidang dalam ruang dimensi tiga.
Indikator :
1. Menentukan kedudukan titik dan garis dalam ruang
2. Menentukan kedudukan titik dan bidang dalam ruang
3. Menentukan kedudukan antara dua garis dalam ruang
4. Menentukan kedudukan garis dan bidang dalam ruang
5. Menentukan kedudukan antara dua bidang dalam ruang
Kedudukan Titik, Garis dan Bidang
1. Titik, Garis dan Bidang
a. Titik
Titik tidak dapat didefinisikan, tetapi dapat dinyatakan dengan
tanda noktah ( . ) atau dengan tanda silang (x). Nama sebuah titik
biasanya menggunakan huruf kapital seperti A, B, C, P, Q, atau R.
b. Garis
Garis yang dimaksud disini adalah garis lurus. Garis tidak
memiliki lebar atau tebal tetapi memiliki panjang yang tidak
terhingga. Sehingga hanya digambarkan sebagian (wakil garis) dari
garis tersebut, Nama dari sebuah garis dapat dinyatakan dengan
menyebut nama dari wakil garis itu dengan memakai huruf kecil
seperti g, h, l atau dengan menggunakan dua huruf kapital yang
terletak pada pangkal dan ujung garis tersebut, misal : AB, AC.
c. Bidang
Bidang yang dimaksud disini adalah bidang datar yang dapat
diperluas seluas-luasnya. Sebuah bidang hanya dilukiskan sebagian
saja yang disebut sebagai wakil bidang. Wakil dari sebuah bidang
mempunyai ukuran panjang dan lebar. Nama dari wakil bidang
dituliskan pada pojok bidang dengan memakai huruf greek misal : (,
(, ( atau huruf kapital H, U, V, K atau dengan menyebut titik
sudut dari wakil bidang itu.
2. Kedudukan Titik dan Garis
Kedudukan titik dan garis ada dua macam yaitu :
a. Titik terletak pada garis
Sebuah titik A dikatakan terletak pada garis , jika titik A
dapat dilalui oleh garis .
b. Titik diluar garis
Sebuah titik B dikatakan berada di luar garis k, jika titik B
tidak dapat dilalui garis k.
3. Kedudukan Titik dan Bidang
Kedudukan titik dan bidang ada dua macam yaitu :
a. Titik terletak pada bidang.
Titik A dikatakan terletak pada bidang U jika titik A dapat
dilalui oleh bidang U.
b. Titik di luar bidang.
Titik B dikatakan di luar bidang V jika titik B tidak dapat
dilalui oleh bidang V
4. Kedudukan dua buah garis
Kedudukan dua garis dalam ruang kemungkinannya ada empat yaitu :
a. berimpit
b. berpotongan kedua garis terletak pada satu bidang
c. sejajar
d. bersilangan (kedua garis tidak satu bidang).
5. Kedudukan garis dan bidang
Kedudukan sebuah garis terhadap bidang di dalam suatu ruang,
kemungkinannya adalah :
a. garis terletak pada bidang.
b. garis sejajar bidang.
c. garis memotong / menembus bidang.
a. Garis terletak pada bidang
Sebuah garis k dikatakan terletak pada bidang U, jika garis k dan
bidang U itu sekurang-kurangnya mempunyai dua titik persekutuan.
b. Garis sejajar bidang
Sebuah garis dikatakan sejajar bidang V, jika garis dan bidang
V itu tidak mempunyai satupun titik persekutuan.
c. Garis memotong atau menembus bidang.
Sebuah garis m dikatakan memotong atau menembus bidang W, jika
garis m dan bidang W hanya mempunyai titik persekutuan. Titik
persekutuan ini disebut titik potong atau titik tembus.
6. Kedudukan dua buah bidang
Kedudukan dua buah bidang di dalam suatu ruang, kemungkinannya adalah
:
a. Berimpit
b. Sejajar
c. Berpotongan
a. dua bidang berimpit
Bidang U dan bidang V dikatakan berimpit, jika setiap titik yang
terletak pada bidang U juga terletak pada bidang V atau
sebaliknya.
b. dua bidang sejajar
Bidang U dan V dikatakan sejajar, jika kedua bidang itu tidak
mempunyai satupun titik persekutuan.
c. dua bidang berpotongan
Bidang U dan V dikatakan berpotongan, jika kedua bidang itu
memiliki tepat sebuah garis persekutuan.
Isilah titik-titik di bawah ini dengan menyatakan hubungan kedudukan titik,
garis dan bidang pada kubus ABCD, EFGH seperti gambar berikut :
1. a. Titik P ………………………… garis HF
b. Titik C ………………………… garis AQ
c. Titik D ………………………… garis BF
d. Titik P ………………………… bidang ACGE
e. Titik G ………………………… bidang EFH
f. Titik A ………………………… bidang BDHF
2. a. garis AC ……………….. garis BD f. garis BP ……………….. garis CD
b. garis CP ……………….. garis QE g. garis CG ……………….. garis AD
c. garis EP ……………….. garis CQ h. garis AP ……………….. garis BC
d. garis AP ……………….. garis CG i. garis AG ……………….. garis PQ
e. garis FQ ……………….. garis DH j. garis HB ……………….. garis AC
3. a. garis AE ……………….. bidang BDHF f. garis DF …………….. bidang
BCGF
b. garis AG ……………….. bidang ACGE g. garis BD …………….. bidang
AFH
c. garis PQ ……………….. bidang CDHG h. garis AP …………….. bidang
CDHG
d. garis BD ……………….. bidang ADHE i. garis GQ …………….. bidang
ABFE
e. garis GE ……………….. bidang ABCD j. garis EF …………….. bidang
EFGH
4. a. bidang ADHE ………… bidang BCGF e. bidang AFH ………… bidang BDG
b. bidang ACGE ………… bidang BDHF f. bidang BCHE ………… bidang ACGE
c. bidang ACP ………… bidang ACGE g. bidang ABCD ………… bidang AFH
d. bidang GEQ ………… bidang ABCD
Nyatakan kedudukan titik, garis dan bidang pada kubus ABCD, EFGH dengan
ketentuan CP = DC, BR = CR dan EQ = AE seperti gambar berikut :
1. a. Titik P dan garis DC
b. Titik P dan garis AR
c. Titik R dan garis AB
d. Titik C dan garis AP
e. Titik P dan bidang ABCD
f. Titik P dan bidang DCGH
g. Titik R dan bidang BDG
h. Titik Q dan bidang EFGH
2. a. garis AR dan garis DC f. garis HG dan garis AQ
b. garis PQ dan garis FG g. garis RQ dan garis HE
c. garis PR dan garis AD h. garis AR dan garis AP
d. garis BP dan garis AC i. garis BG dan garis PF
e. garis BP dan garis GE j. garis CH dan garis BP
3. a. garis AQ dan bidang ADHE f. garis PG dan bidang BCHE
b. garis PQ dan bidang EFGH g. garis PH dan bidang DCGH
c. garis RC dan bidang ADHE h. garis DQ dan bidang ADHE
d. garis RG dan bidang ABFE i. garis HB dan bidang BCHE
e. garis RQ dan bidang CDHG j. garis RG dan bidang BCGF
4. a. bidang ACGE dan bidang FHQ d. bidang GEQ dan bidang ACGE
b. bidang ACGE dan bidang PFR e. bidang BDG dan bidang FHQ
c. bidang DEG dan ACF f. bidang BPF dan bidang ACGE
Kompetensi dasar :
2. Menentukan jarak dari titik ke garis dan dari titik ke bidang dalam
ruang dimensi tiga.
3. Menentukan besar sudut antara garis dan bidang dan antara dua bidang
dalam ruang dimensi tiga
Indikator :
1. Menggambar dan menghitung jarak titik ke garis dan titik ke bidang
2. Menggambar dan menghitung jarak dua garis yang bersilangan pada benda
ruang
3. Menggambar dan menghitung jarak dua bidang sejajar pada benda ruang
4. Menggambar dan menghitung sudut antara garis dan bidang
5. Menggambar dan menghitung sudut antara dua bidang
6. Mengambar irisan suatu bidang dengan benda ruang
Proyeksi
1. Proyeksi titik pada garis
Proyeksi titik pada garis adalah titik kaki dari garis yang dibuat
melalui titik itu tegak lurus garis tersebut.
Garis g disebut garis proyeksi
Titik A disebut titik yang diproyeksikan
A/ disebut titik hasil proyeksi
Garis AA/ garis pemroyeksi
2. Proyeksi titik pada bidang
Proyeksi titik pada bidang adalah titik kaki dari garis yang dibuat
melalui titik itu tegak lurus bidang tersebut.
Bidang U disebut bidang proyeksi
Titik A disebut titik yang diproyeksikan
A/ disebut titik hasil proyeksi atau Proyeksi A pada bidang U
Garis g garis pemproyeksi
3. Proyeksi garis pada bidang
Perhatikan gambar disamping :
Langkah untuk menentukan proyeksi garis g pada bidang U adalah
sebagai berikut :
a. Ambil dua titik sembarang pada garis g misal titik A dan B
b. Proyeksikan titik A dan B pada bidang U (diperoleh A/ dan B/)
c. Hubungkan titik A/ dan B/. Misal garis g/.
d. Garis g/ merupakan proyeksi garis g pada bidang U
Contoh :
Pada kubus ABCD.EFGH dengan panjang rusuk 6 cm, tentukan proyekasi :
a. Titik H pada garis FG
b. Titik H pada bidang ACGE
c. Garis AG pada bidang ABCD
Jawab :
a. Proyeksi titik H Pada garis FG adalah titik G (karena haris HG ( FG )
b. Proyeksi titik H Pada bidang ACGE adalah titik H/ (H/ titik tengah-
tengah GE atau tengah-tengah FH)
c. Proyeksi garis AG pada bidang ABCD adalah garis AC. (Proyeksi A pada
ABCD adalah A, Proyeksi G pada ABCD adalah C)
Jarak
1. Jarak antara dua buah titik
Jarak antara dua titik adalah ruas garis yang menghubungkan kedua
titik itu.
2. Jarak antara titik dan garis
Jarak antara titik dan garis adalah ruas garis yang menghubungkan
titik dan proyeksi titik tersebut pada garis.
Perhatikan gambar disamping.
A/ adalah proyeksi titik A pada garis g . Jarak
antara titik A dan garis g adalah ruas garis
AA/ = d.
3. Jarak antara titik dan bidang
Jarak antara titik dan bidang adalah ruas garis yang menghubungkan
titik dan proyeksi titik tersebut pada bidang.
Perhatikan gambar disamping.
A/ adalah proyeksi titik A pada Bidang V . Jarak antara titik A dan
bidang V adalah ruas garis AA/ = d.
4. Jarak dua buah garis sejajar
Jarak antara dua garis sejajar adalah ruas garis yang menghubungkan
salah satu titik pada garis yang satu dengan proyeksi titik itu pada
garis yang lain.
Perhatikan gambar disamping.
Langkah untuk menentukan jarak dua garis sejajar :
a. Tentukan sebuah titik pada garis g, misal titik A
b. Proyeksikan titik A pada garis k didapat titik A/.
c. Jarak antara garis g dan k adalah ruas garis AA/ = d.
5. Jarak antara garis dan bidang saling sejajar.
Jarak antara garis dan bidang yang saling sejajar adalah ruas garis
yang menghubungkan salah satu titik pada garis dengan proyeksi titik
itu pada bidang.
Perhatikan gambar disamping.
Langkah untuk menentukan jarak antara garis h dan bidang ( yang
saling sejajar :
a. Proyeksikan garis h pada bidang (, misal garis k.
b. Tentukan sebuah titik pada garis h, misal titik A.
c. Proyeksikan titik A pada garis k, didapat titik A/.
d. Jarak antara garis h dan ( adalah ruas garis AA/ = d.
6. Jarak antara dua bidang sejajar
Jarak antara dua bidang sejajar adalah ruas garis yang menghubungkan
salah satu titik pada bidang yang satu dengan proyeksi titik itu pada
bidang yang lain.
Perhatikan gambar disamping.
Langkah untuk menentukan jarak dua garis sejajar :
a. Tentukan sebuah titik pada bidang (, misal titik A.
b. Proyeksikan titik A pada bidang (. Didapat titik A/.
c. Jarak antara bidang ( dan ( adalah ruas garis AA/ = d.
Contoh :
Pada kubus ABCD.EFGH dengan panjang rusuk 6 cm. Tentukan :
a. Jarak antara titik A dan B
b. Jarak antara titik E dan garis FG
c. Jarak antara titik H dan bidang ABCD
d. Jarak antara garis EH dan garis BC
e. Jarak antara garis EH dan bidang BCGF
f. Jarak antara bidang EFGH dan ABCD
Jawab :
a. Jarak antara titik A dan B adalah ruas garis AB = 6 cm
b. Proyeksi titik E pada garis FG adalah titik F
Jarak antara titik E dan garis FG adalah ruas garis EF = 6 cm.
c. Proyeksi titik H pada bidang ABCD adalah titik D.
Jarak titik H dan bidang ABCD adalah ruas garis HD = 6 cm.
d. Titik E pada garis EH, proyeksi titik E pada garis BC adalah titik B.
Jarak antara garis EH dan garis BC adalah ruas garis EB = 6 cm.
e. Titik E pada garis EH, proyeksi titik E pada bidang BCGF adalah titik
F.
Jarak garis EH dan bidang BCGF adalah ruas garis EF = 6 cm.
f. Titik E pada bidang EFGH, proyeksi titik E pada bidang ABCD adalah
titik A.
Jarak antara bidang EFGH dan bidang ABCD adalah ruas garis EA = 6 cm.
7. Jarak dua garis bersilangan
Jarak antara dua garis bersilangan adalah ruas garis yang memotong
tegak lurus kedua garis itu.
Pada kenyataannya untuk menentukan garis yang memotong tegak lurus
dua garis yang bersilangan tidak mudah. Untuk itu perlu dilakukan
langkah-langkah berikut :
Garis h dan k saling bersilangan
Cara I :
a. Buatlah bidang melalui garis h yang sejajar garis k. Misal bidang
(.
b. Proyeksikan garis k pada bidang (, didapat garis k/.
c. Tentukan titik potong garis h dan k/. Misal titik B.
d. Proyeksikan titik B pada garis k, didapat titik A.
e. Jarak antara garis h dan k saling bersilangan adalah ruas garis AB
= d
Cara II :
a. Buatlah bidang ( tegak lurus garis k yang sejajar garis k.
b. Tentukan titik tembus garis k pada bidang (, misal titik P.
c. Proyeksikan garis h pada bidang (, didapat garis h/.
d. Buat sebuah garis melalui P memotong tegak lurus garis h/ di Titik
Q,
e. Buat garis melalui Q tegak lurus bidang (, dan memotong garis h di
titik B.
f. Buat garis melalui B sejajar garis QP, dan memotong garis k
dititik A.
g. Jarak antara garis h dan k saling bersilangan adalah ruas garis AB
= d
Contoh :
Pada kubus ABCD.EFGH dengan panjang rusuk 12 cm.
a. Tentukan jarak antara garis AE dan garis FG
b. Lukis dan dan tentukan jarak AE dan DF.
Jawab :
a. Jarak garis AE dan FG
Bidang melalui FG sejajar AE adalah bidang BCGF
Proyeksi garis AE pada bidang BCGF adalah garis BF
Titik potong garis BF dan dan FG adalah titik F
Proyeksi garis F pada garis AE adalah titik E.
( jarak garis FG dan AE adalah ruas garis EF = 12 cm
b. Jarak garis AE dan DF
Bidang yang tegak lurus garis AE adalah bidang ABCD.
Proyeksi garis DF pada bidang ABCD adalah garis DB
Garis melalui A tegak lurus DB adalah AC, memotong DB di P.
Garis melalui P tegak lurus bidang ABCD adalah garis PR.
RS sejajar AP.
Jarak garis AE dan DF adalah ruas garis SR
Panjang garis SR = AP = AC = 6
1. Pada kubus ABCD.EFGH, dengan panjang rusuk 5 cm. Tentukan proyeksi :
a. Titik E pada garis AD e. Titik G pada bidang BDHE
b. Titik E pada garis AH f. Garis EF pada bidang DCHG
c. Titik E pada garis HB g. Garis EF pada bidang ABGH
d. Titik G pada bidang ADHE h. Garis AG pada bidang BDE
2. Pada limas segiempat beraturan tegak dengan panjang rusuk alas 4 cm,
rusuk tegak 4cm. Tentukan proyeksi :
a. Titik A pada garis TC c. Garis AT pada ABCD
b. Titik T pada bidang ABCD
3. Pada Kubus ABCD.EFGH dengan panjang rusuk 5 cm, hitunglah jarak antara :
a. Titik A dan F h. Garis AE dan CG
b. Titik C dan E i. Garis AE dan bidang CGHD
c. Titik A dan garis CG j. Garis AE dan bidang BFHD
d. Titik A dan garis BG k. Bidang ABFE dan DCGH
e. Titik A dan bidang BDHF l. Bidang AFH dan BDG
f. Titik A dan bidang BDE m. Garis AE dan BC
g. Garis AE dan BF n. Garis dan BG
1. Pada Kubus ABCD.EFGH, dengan panjang rusuk 6 cm, titik P tengah-tengah
FG, titik Q tengah-tengah AE dan O tengah-tengah AC. tentukan proyeksi :
a. Titik G pada garis FC h. Titik E pada bidang BDG
b. Titik G pada garis HB i. Titik Q pada bidang BDG
c. Titik P pada garis BG j. Garis PQ pada bidang ABCD dan hitung
panjangnya
d. Titik Q pada garis HB k. Garis QO pada bidang BDE dan hitung
panjangnya
e. Titik O pada garis EH l. Garis FE pada bidang ACH dan hitung
panjangnya
f. Titik P pada bidang ABCD m. Garis CG pada bidang BDG dan hitung
panjangnya
g. Titik Q pada bidang BDHF n. Garis AG pada bidang BDG dan hitung
panjangnya
2. Pada limas segietiga beraturan tegak T.ABC dengan panjang rusuk alas 6
cm dan rusuk tegak 8. tentukan proyeksi :
a. Titik T pada garis AB d. Titik A pada bidang TBC
b. Titik A pada garis AB e. Garis TC pada bidang TAB dan hitung
panjangnya
c. Titik T pada bidang ABC
3. Pada kubus ABCD. EFGH dengan panjang rusuk 8 cm, titik P, Q dan O masing-
masing tengah-tengah EF, BC dan BD. Hitung jarak antara :
a. Titik P dan D j. Garis PO dan garis FQ
b. Titik Q dan H k. Garis PQ dan EO
c. Titik P dan garis BC l. Garis OG dan bidang AFH
d. Titik H dan garis OQ m. Garis PO dan bidang BCGF
e. Titik P dan ABGH n. Bidang BCGF dan bidang ADHE
f. Titik Q dan bidang BDHF o. Bidang ACF dan bidang DEG
g. Titik C dan bidang BDE p. Garis DE dan garis FG
h. Titik O dan bidang BDE r. Garis FQ dan garis AD
i. Garis EH dan garis BC s. Garis PO dan garis CG
Sudut
1. Sudut antara garis dan bidang
Sudut antara garis dan bidang adalah sudut yang dibentuk oleh garis
itu dengan proyeksi garis tersebut pada bidang proyensi.
Sudut antara garis h dan bidang ( dapat ditentukan dengan langkah
berikut :
a. Tentukan titik tembus garis h pada bidang (, dititik titik P.
b. Titik Q pada garis h, proyeksikan pada bidang (, di titik Q/.
c. Garis PQ/ atau h/ proyeksi garis h pada bidang (.
d. Sudut antara garis h dan bidang ( adalah ( QPQ/ = (
2. Sudut antara dua bidang
Sudut antara dua bidang adalah sudut yang dibentuk oleh dua buah
garis yang saling berpotongan dan tegak lurus garis perpotongan kedua
bidang.
Sudut antara bidang ( dan bidang ( dapat ditentukan dengan cara
sebagai berikut :
a. Tentukan garis perpotongan antara bidang ( dan bidang (, misal
garis k
b. Buat garis pada bidang ( yang tegak lurus garis k di titik A,
misal garis g
c. Buat garis melalui titik A pada bidang ( dan tegak lurus garis k,
misal garis h.
d. Sudut antara bidang ( dan bidang ( adalah susut antara garis g dan
h
Contoh :
Pada Kubus ABCD.EFGH dengan panjang rusuk 6 cm, tunjukkan :
a. Sudut antara garis AH dan bidang ABCD.
b. Sudut antara garis CE dan bidang ABCD
c. Sudut antara bidang BCGF dan bidang BCHE
d. Sudut antara bidang ACH dan bidang ABCD
Jawab :
a. Sudut antara garis AH dan bidang ABCD.
Titik tembus garis AH pada bidang ABCD adalah titik A.
Titik H pada garis AH, proyeksi titik H pada bidang ABCD adalah
titik D.
Proyeksi garis AH pada ABCD adalah garis AD.
Sudut antara garis AH dan Bidang ABCD adalah ( DAH
b. Sudut antara garis CE dan bidang ABCD
Titik tembus garis CE pada bidang ABCD adalah titik C.
Titik C terletak pada garis CE, proyeksi titik C pada bidang ABCD
adalah titik A
Proyeksi garis CE pada bidang ABCD adalah garis AC.
Sudut antara garis CE dan bidang ABCD adalah (ACE.
c. Sudut antara bidang BCGF dan bidang BCHE
Garis potong bidang BCGF dan BCHE adalah garis BC.
Garis pada bidang BCGF yang tegak lurus garis BC, garis BE.
Titik potong garis EB dan BC, titik B.
Garis melalui B terletak pada bidang BCGF tegak lurus BC, garis BF
( sudut antara bidang BCGF dan bidang BCHE adalah (EBF.
d. Sudut antara bidang ACH dan bidang ABCD
Garis potong bidang ACH dan bidang ABCD, garis AC
Garis pada bidang ACH tegak lurus garis AC, garis HO ( O tengah-
tengah AC)
Garis terletak di O pada bidang ABCD yang tegak lurus AC, garis
OD.
( sudut antara bidang ACH dan bidang ABCD adalah (DOH.
3. Sudut antara dua garis yang bersilangan
Untuk menentukan sudut antara dua garis g dan h yang bersilangan
dapat dilakukan dengan langkah sebagai berikut :
a. Buat bidang ( melalui garis g.
b. Proyeksikan garis h pada bidang (, misal garis h/.
c. Tentukan perpotongan garis g dan h/.
d. Sudut antara garis g dan h adalah (.
Contoh :
Pada Kubus ABCD.EFGH dengan panjang rusuk a cm, tunjukkan :
a. Sudut antara garis AH dan DC.
b. Sudut antara garis CF dan DH.
Jawab :
a. Sudut antara garis AH dan DC.
Buat bidang memuat garis AH, bidang ABGH
Proyeksi garis DC pada bidang ABGH, garis PQ
Tentukan perpotongan garis AH dan PQ.
Sudut antara garis AH dan DC adalah ( QPH.
b. Sudut antara garis CF dan DH.
Buat bidang yang memuat garis CF, bidang BCGF
Proyeksi garis DH pada bidang BCGF, garis CG
Tentukan perpotongan garis CG dan BC, titik C
Sudut antara garis CG dan BC adalah (FCG
1. Pada Kubus ABCD.EFGH dengan panjang rusuk 4 cm. Tunjukkan dengan gambar
sudut antara :
a. Garis AF dan bidang ABCD d. Bidang AFH dan ABCD
b. Garis CE dan bidang AFH e. Garis AD dan BF
c. Bidang ABGH dan CDEF f. Garis AG dan DC
2. Pada limas segiempat tegak beraturan dengan panjang rusuk alas 6 cm dan
rusuk tegak 8 cm.
a. Sudut antara garis AT dan Bidang ABCD adalah (. Tentukan Cos (.
b. Sudut antara bidang TAB dan TDC adalah (. Tentukan cos (.
c. Sudut antara garis TB dan DC adalah (. Tentukan tg (
3. Pada bidang empat beraturan T.ABC dengan panjang rusuknya 8 cm. Tentukan
cosinus sudut antara :
a. Garis TA dan bidang ABC c. Garis TA dan BC
b. Bidang TBC dan ABC
1. Pada kubus ABCD.EFGH dengan panjang rusuk 6 cm. Titik P tengah-tengah AE
dan Q tengah-tengah GE. Tunjukkan sudut antara :
a. Garis BG dan bidang ABCD h. Bidang BCHE dan bidang ACGE
b. Garis BG dan bidang BFHD i. Bidang PFH dan bidang AFH
c. Garis BG dan bidang AFGD j. Bidang PFH dan bidang CFH
d. Garis CE dan bidang BDG k. Garis CF dan garis AE
e. Garis AG dan bidang BDHF l. Garis CF dan garis BE
f. Garis PQ dengan bidang AFH m. Garis CG dan garis PQ
g. Bidang EFGH dan bidang ABGH n. Garis CP dan garis AD
2. Diketahui segi empat beraturan tegak T.ABCD dengan panjang rusuk alas 6
cm, rusuk tegak 6. Hitunglah :
a. Tg sudut antara bidang TAB dan bidang ABCD
b. Cosinus sudut antara garis AP dan bidang ABCD (titik P tengah-tengah
TC).
3. Diketahui bidang empat tegak T.ABC dengan TA tegak lurus bidang alas
ABC. (ABC siku di B dengan AB = 6 cm dan BC = 8 cm. Panjang TA = 24 cm.
Tg sudut antara bidang TBC dan bidang ABC.
4. Diketahui bidang empat beraturan A.BCD dengan panjang rusuk 6 cm. E
tengah-tengah BC. Hitunglah :
a. Tg sudut antara bidang ABD dan bidang BCD
b. Cos sudut antara garis AE dan bidang BCD
I. Pilihlah salah satu jawaban yang paling tepat!
1. Pada kubus ABCD.EFGH, Titik P terletak di perpanjangan DH, sehingga
DH:DP = 1: 2, Pernyataan berikut yang benar adalah ... .
A. Titik P terletak pada garis AH
B. Titik P terletak pada garis BH
C. Titik P terletak pada bidang CDHG
D. Titik P di luar bidang ADHE
E. Titik P diluar garis DH
2. Pada balok ABCD.EFGH disamping, kedudukan antara garis BD dan CH saling
… .
A. sejajar
B. berpotongan
C. berpotongan tegak lurus
D. bersilangan tegak lurus
E. bersilangan
3. Titik P dan Q berturut-turut adalah titik tengah rusuk AE dan CG pada
kubus ABCD.EFGH. Diantara pasangan garis di bawah ini yang berpotongan
adalah … .
A. CE dan BG D. BD dan EC
B. PQ dan CH E. EQ dan CH
C. PG dan AC
4. Pada balok ABCD.EFGH, garis yang tidak menembus bidang BCHE adalah… .
A. DG
B. AF
C. DF
D. AG
E. AD
5. Pada kubus ABCD.EFGH, bidang yang sejajar dengan bidang ACF adalah … .
A. DEG D. DHE
B. EHG E. ABC
C. DHG
6. Dalam kubus ABCD.EFGH, bidang CDHG mewakili bidang (, bidang BFHD
mewakili bidang (, dan bidang ABGH mewakili mewakili bidang (.
Pernyataan berikut ini yang benar adalah … .
A. bidang BCGF, sejajar dengan bidang (
B. bidang ACGE,sejajar dengan bidang (
C. bidang CDEF, berpotongan dengan bidang (
D. bidang ABFE, berpotongan dengan bidang (
E. bidang BCHE,sejajar dengan bidang (
7. Pada kubus ABCD.EFGH dengan panjang rusuk a cm, Panjang proyeksi garis
BF ke bidang ABGH adalah ... cm.
A. a D. a
A. a E.
B. a
8. Pada Kubus ABCD.EFGH dengan panjang rusuk a cm, panjang proyeksi garis
BE ke bidang diagonal ACGE sama dengan ... .
A. D.
B. E.
C.
9. Kubus ABCD.EFGH panjang rusuknya 4 dm, titik P tengah-tengah EH. Jarak
titik P ke garis BG adalah ... dm
A. 2 D. 3
B. 3 E. 2
C. 2
10. Dalam kubus ABCD.EFGH terletak titik P pada tengah-tengah garis BH.
Panjang rusuk = 2a cm. Panjang jarak titik P ke garis AD adalah ... cm.
A. a D. 2a
B. 2a E. a
C. a
11. T.ABCD adalah bidang empat dengan panjang rusuk 4 cm. Jika P tengah-
tengah AB dan Q tengah-tengah TC, maka panjang PQ sama dengan ... .
A. 2 D. 3
B. 2 E. 5
C. 8
12. Jarak antara titik C dengan bidang BDG dalam kubus ABCD.EFGH yang
panjang rusuknya 6 cm adalah ... cm.
A. 3 D.
B. 2 E. 2
C.
13. Pada kubus ABCD.EFGH panjang rusuk a cm. Titik P dan Q masing-masing
titik tengah garis AC dan EG. Jarak antara garis PF dan DQ adalah ...
cm.
A. a D. a
B. a E. a
C. a
14. Kubus ABCD.EFGH dengan panjang masing-masing rusuknya a cm. Titik C
diangkat setinggi a cm. Titik A tetap di lantai dan letak titik B dan D
sama jaraknya dari lantai. Jarak titik G dari lantai adalah ... cm.
A. 2a D. a
B. a(1 + ) E. 3a
C. a(1 + )
15. Diketahui kubus ABCD.EFGH panjang rusuk a cm. Sudut antara garis AF dan
garis BH adalah ... .
A. 30o D. 75o
B. 45o E. 90o
C. 60o
16. Besar sudut antara garis AH dan EG pada kubus ABCD.EFGH adalah ... .
A. 0o D. 60o
B. 30o E. 90o
C. 45o
17. Pada Kubus ABCD.EFGH dengan panjang rusuk a cm. Nilai tangen sudut
antara CG dan bidang BDG adalah ... .
A. D.
B. E.
C.
18. Pada kubus ABCD.EFGH besar sudut antara garis BG dengan bidang BDHF
adalah ... .
A. 30o D. 75o
B. 45o E. 90o
C. 60o
19. Pada Balok ABCD.EFGH dengan alas ABCD bujur sangkar AB = 20 cm, AE
a cm. Besar sudut antara bidang ABCD dan ACH adalah ... .
A. 900 D. tg sudutnya
B. 600 E. tg sudutnya
C. 450
20. Kubus ABCD.EFGH dengan panjang tiap rusuknya a cm. T suatu titik pada
perpanjangan AE sehingga TE = a cm. Jika sudut antara bidang TBD
dan bidang ABCD adalah (, maka tg ( = ... .
A. D. 3
B. E. 3
C.
-----------------------
A
B
F
E
D
C
G
H
A
B
F
E
D
C
G
H
A