MathCad functions and commands explained with numerical method of root finding.
dinamica estructutral 1 grado de libertad
kjhj
kjhj
EJERCICIO EN MATHCADDescripción completa
ejercicios resueltos de engranajes conicos
Full description
Spreader Bar design example
Deskripsi lengkap
Ensayoo de matlab y mathcadFull description
K Peter's Method for Upheaval Buckling Analysis 1 - Pipeline Input data for bend angle =311 Deg Pipeline Outside diameter = D Pipeline wall thickness = t Pipeline intwernal Diameter = d
D := 219mm t := 12.7mm d := D − 2t d = 0.194 m E := 207000MPa
Modules of Elasticity = E P := 13.85MPa Internal Pressure = P T2 := 110 Maximum Design Temperature(Degtrees Celsius)=T2 T1 := 28 Installation Temperature(Degtrees Celsius)=T1 SMYS := 415MPa Specific Minimum Yield Stress=SMYS t1 := 0.3mm FBE Thickness = t1
kg
ρfbe := 1500
3
FBE Density = ρfbe
m t2 := 0.2mm
Adhesive Thickness = t2
ρad := 900
kg 3
m
Adhesive Density = ρad t3 := 2mm Polypropylene Thickness = t3
kg
ρpp := 990 Polypropylene Density = ρpp
Steel Density = ρs
3
m ρs := 7850
kg 3
m ρcont := 119
kg 3
m
Content Density=ρcont γ := 0.3 Poissons Ratio=γ Thermal Expansion Coefficient = α Uplift Coefficient = f Pipeline Burial Depth to top including 1m for berm = HI Backfill Dry Soil Density over Active Length (compacted) = ρbc
α := 0.0000117 f := 0.4 HI := 2m ρbc := 1600
kg 3
m
(
)
⎡ D2 − d 2 ⎤ ⎥ ⎣ 4 ⎦
Pipeline Calculation
Aσ := π⋅ ⎢
Pipe cross section Area = Aσ
Aσ = 8.231 × 10 Ap :=
Pipe Internal Area = Ap
π⋅ d
2
2
Ap = 0.029 m
(
)
⎡ D4 − d4 ⎤ ⎥ ⎣ 64 ⎦ −5
I = 4.395 × 10 Flexural Regidity = EI
2
m
4
I := π⋅ ⎢ Moment Of Inertia = I
−3
4
m
EI := E⋅ I 3 6 m ⋅ kg
EI = 9.099 × 10
2
s
OD := D + 2t1 + 2t2 + 2t3 Outside Diameter Over all Coating = OD
OD = 0.224 m
ρfbe⋅ ⎡⎣( D + 2t1) − D ⎤⎦ 2
Wfbe := π FBE Weight = Wfbe
Wfbe = 0.31
2
4
kg m
⎡⎣( D + 2t1 + 2t2) 2 − ( D + 2t1) 2⎤⎦ Wad := π⋅ ρad⋅ 4