UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de ciencias. Escuela Profesional Profes ional de F´ısica.
T´ opicos opicos de investigaci´on on I.
Simul mulac´ıon o ´n de radiaci´ on electromagnetica usando on el metodo de los momentos (MoM).
Ticse Torres Royer.
Asesor: Dr. Carlos Javier Solano Salinas
1
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Resumen En este e ste trabajo trabajo intro i ntroducimos ducimos los fundamentos del M´ etodo etodo de los Momentos, Mo mentos, una poderosa herramienta para la soluci´ on de problemas de campo electromagnetico, mostramos una aplicacion a la antena lineal obteniendo el patron de radiaci´ on.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
´Indice general 1. Introdu Introducci´ cci´ on on 1.1. Ob jetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 2
2. Meto do de los momentos (MoM). 2.1. Planteamiento . . . . . . . . . . . . 2.2. Metodo odo de los momentos . . . . . . 2.3. Principio de equivalencia . . . . . . 2.4. Funciones de base y prueba . . . . 2.4.1. Funciones base . . . . . . . 2.4.2. Funciones Prueba . . . . . .
. . . . . .
3 3 3 5 6 6 7
3. Ecuaciones Integrales 3.1. Ecuaci Ecuaci´ on o´ n Inte Integr gral al del del Camp Campoo Elec Electr tric ico( o(EF EFIE IE)) . . . . . . . . .
8 8
4. Aplicac Aplicaci´ i´ on a la antena lineal 4.1. Antena lineal . . . . . . . . . . . . 4.2. 4.2. Ecu Ecuaci acion integra gral de Pock ocklington . 4.3. 4.3. Apli Aplica cand ndoo el m´etod e todoo de mo mome men ntos tos 4.3.1. Matriz de imped pedancia . . . 4.4. Program Programaci aci´ o´n . . . . . . . . . . . . 4.4.1 4.4 .1.. Patr´ Patr´ on on de radiaci´on . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
10 10 11 12 13 14 15
5. Resultados
16
Bibliograf´ıa
21
A. NEC(Numerical Electromagnetics Co de) A.1. Eje Ejemplo1. Antena lineal . . . . . . . . . . . . . . . . . . . . .
22 22
B.
25 B.1. D ia iadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 B.2. B.2. C´ odigo utilizado . . . . . . . . . . . . . . . . . . . . . . . . . 25
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cap´ıtulo 1
Introducci´ on on El m´ etodo etodo de momentos, momentos, aplicado aplicado a problemas problemas de electromagnet electromagnetismo, ismo, fue introdu introducid cidoo por Roger Roger F. Harrigto Harrigton n in 1967 en su art´ art´ıculo, ıculo, “Ma “Matrix trix Methods for Field Problems”. La implemen implementaci´ taci´ on del metodo de momentos on en Lawrence Livermore National Labs durante los 70s, establecio esta tecnica de soluci´on on para el dise˜no no de antenas. Para determinar la distribuci´on on de corriente en una antena lineal resultado de una exitacion arbitraria puede ser establecido en terminos de una ecuacion integral. Esta ecuacion emplea una funci´on on de Green el cual relaciona un campo electrico conocido de las condiciones de contorno con una distribuci´on desconocida de corriente en la antena. El m´etodo etodo de momentos (MoM) aplica expanciones para convertir la ecuaci´on on integral en un sistema de ecuaciones lineales. Funciones de base son usados para la expanci´on de la corriente y funciones de prueba para el campo electrico. La distribuci´on on de coriente es luego contruido de los coeficientes de la expanci´on. Las caracteristicas de la radiacion de la antena son derivadas luego del calculo de la distribucion dee corriente. En este este trabajo trabajo se implem implemen enta ta el m´ etodo etodo para el analisi analisiss de una anten antenaa lineal. La teoria matem´atica atica en el cual es basada es presentada y se derivan las ecuaciones ecuaciones integrales integrales que describen la corriente corriente en la antena. La soluci´ soluci´on on de esta ecuacion integral es realizada por p or el m´etodo etodo de momentos el cual se basa en la expancion de la corriente en un conjunto de funciones base.
1.1. 1.1.
Obje Objetiv tivo
Estimar la distribuci´on on de la corriente y el patr´on on de radiaci´on on en una antena lineal, implementando un programa para el an´ alisis alisis de la antena usando el m´etodo etod o de momentos. momentos .
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cap´ıtulo 2
Metodo de los momentos (MoM). 2.1. 2.1.
Plan Plante team amie ien nto
Numerosos problemas f´ısicos conducen a ecuaciones integro-diferenciales que pueden expresarse de la forma: Lu = v
(2.1)
Donde “u” es un elemento desconocido de un espacio de funciones U , U , “y“ es un elemento conocido(prefijado) de un espacio de funciones V (que puede coincidircon U ) U ) y L es un operador integro-diferencial de U en V . V . La ecuaci´on on (2.1) estar´ a completada con alg´ un un tipo de condici´on on de contorno aplicable a “u”. En general, g eneral, “u” constituye la respuesta del sistema f´ısico ısico considerando una exitaci´on on “v”, el operador L representa los fen´omenos omenos f´ısicos que relacionan relaci onan exitaci´on on y respuesta junto a datos dat os tales como geom´ g eom´ etria etria del sistema. En problemas electromagn´eticos, eticos, la funci´on on “v” representa magnitudes de tipo corrientes, potenciales y campos camp os tanto electricos como magn´eticos eticos con valores impuestos al sistema (condiciones de contorno) y la funci´on “u” suele represent representar ar corrientes corrientes,, densidades densidades de carga, etc.
2.2. 2.2.
Metodo Metodo de los los mome momen ntos tos
El m´ etodo etodo de los momentos momentos es un procedimien procedimiento to general para obtener soluciones aproximadas de ecuaciones de la forma (2.1). El primer paso consiste consiste en represent representar ar la funci´ on incognita “u” como combinaci´ on on on lineal de infinitas funciones que se denominan funciones base: ∞
u=
I n f n
(2.2)
n=1
donde f son las funciones base y I son coeficientes desconocidos. En la
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Figura 2.1: Diagrama del M´etodo etodo de los lo s momentos.
N
u
≈ un =
I n f n
(2.3)
n=1
Las funciones de la forma un estaran contenidas en el espacio funcional U n definido definido por la base u1 ...un . como se representa en la figura. Si se sustituye el desarrollo de u (2.3) en (2.1) y por la linealidad del operador.
{
}
N
I n Lf n = v
(2.4)
n=1
Esta expresi´on on es valida si el operador L se puede aplicar aplicar sobre las funciones funciones base, si su eleccion es adecuada , puede obtenerse a partir del generador L un operador extendido con las mismas propiedades de L que se pueda aplicarse sobre las funciones base. El espacio generado por las N funciones I n Lf n , en general, no contiene la funcion v. Por tanto, al sustituir por su aproximaci´on aparecera un error. N
I n Lf n
n=1
− v = eN
(2.5)
Los coeficientes I n deber´an an escogerse de forma que minimicen la funci´on error eN . En el m´ etodo etodo de los momentos este error se minimiza de la siguiente forma: 1. Se define un producto escalar escalar valido valido tanto en V como en Lf n . 2. Se definen tantas funciones de peso o prueba, wm linealmente independientes como funciones base N. 3. Se escogen escogen los coeficientes coeficientes w
de forma que los N productos escalares
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Multiplicando escalarmente (2.5) N
I n Lf n , wm = v, wm
n=1
(2.7)
donde m = 1, 2,...,N , que constituye un sistema de N ecuaciones, una por cada funci´on on de peso, y N inc´ognitas, ognitas, los coeficientes I n . sustituyendo los valores obtenidos al resolver (2.7) en (2.3) se obtiene la soluci´on on aproximada buscada. El conjunto de ecuaciones (2.7) se puede escribir de forma matricial como: [Z][I ][I] = [V]
(2.8)
donde Z es la matriz del sistema (N ( N N ), N ), denominada matriz de impedancias, con Z m,n ognita (N (N 1), m,n = wm , Lf n , I es el vector de pesos inc´ con I n = I n y V es el vector columna de valores conocidos ( N 1), con V m = v, wm . Despejando el vector de incognitas:
×
×
[I] = [Z]−1 [V]
×
(2.9)
En caso particular de que las funciones funciones base y peso sean id´enticas, enticas, al m´etodo eto do de los momentos se le suele denominar denomin ar m´etodo eto do de Galerkin .
2.3. 2.3.
Princi Principio pio de equiv equivale alenci ncia a
El problema general que se predende resolver es de la forma representada en la figura.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Figura 2.3: Problema equivalente.
s = n J
i + H s ) (H
(2.10)
s = n K
i + E s ) (E
(2.11)
××
Con esta suposici´on on el campo impreso estar´a generado por las fuentes originales, y el campo inducido se deber´a a las corrientes superficiales denominadas corrientes inducidas. Para ambos casos se considera espacio infinito, lineal, homogeneo e is´otropo otropo con las caracteristicas del medio 1.
2.4. 2.4.
Fun unci cion ones es de bas base e y pru prueb eba a
2.4.1. 2.4.1.
Funcion unciones es base base
Las funciones de base se pueden clasificar en dos categorias [3]: Funciones definidas en todo el dominio del operador. Este tipo de funciones se caracteriza por anularse en un n´umero umero finito de puntos del dominio. Sobre geometrias particulares estas funciones permiten obtener un n´ umero umero reducido de inc´ognitas. ognitas. Funciones base de subdominios, es subdividir la antena en peque˜nos nos segmentos y modelar la distribucion de corriente en cada segmento por una construccion geometrica que puede ser rectangular, triangular o sinusoidal. La amplitud de estas construciones representa los coeficientes de la funcion expandida. Varios tipos de funcion base definidas en un subdoinio: Funci´ on on base pulso
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
T S n (x) =
sen β (x xn−1 )/ sen β (xn xn−1 ), si xn−1 x xn sen β (xn+1 x)/ sen β (xn+1 xn ), si xn x xn+1 0, resto
−
−
−
−
≤ ≤ ≤ ≤
donde β es la constante de variaci´on on de fase de la funci´on on a representar.
2.4.2. 2.4.2.
Funcion unciones es Prueba Prueba
An´ alogamente a las funciones base, las funciones de prueba se pueden alogamente clasificar en [3]: Funciones de prueba definidas en el dominio del operador Estas funciones no suelen utilizarse en la practica debido a los largos c´ aculos aculos que originan. Funciones de prueba definidas en un intervalo del dominio. Dentro de esta es ta categor cate gor´´ıa se incluyen inclu yen las funcuones funcu ones presentadas pre sentadas anteriorm a nteriormente ente y a˜nadimos nadimos algunas. Funciones prueba delta de Dirac δ (x xn ) La elecci´on on de este tipo de funciones han sido utilizadas en el an´alisis de antenas sencillas, modeladas con subdominios de dimenciones similares, pero cuando la geometr´ geometr´ıa de la antena antena se complica complica o los subdominios subdominios tienen dimensiones diferentes los resultados se vuelven inestables. Funciones de prueba pulso de exitaci´ on on Este tipo de funciones intentan mejorar los resultados que se obtiene con las funciones pulso.
−
P E n (x) =
y (x)/ 0,
xn2 xn1
y (x)dx, si xn1 resto
≤ x ≤ xn2
Presentan la ventaja de permitir una representaci´on o n exacta de la exitaci´on, on, salvo en los extremos del intervalo, y el inconveniente de requerir c´alculos alculos mas complicados que la funci´on on pulso.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cap´ıtulo 3
Ecuaciones Integrales 3.1. 3.1.
Ecua uacci´ on Integral del Campo Electrico(EFIE) on
Para un sistema de cargas y corrientes que varian con el tiempo, podemos efectuar efectuar un analisis analisis de Fourier de la dependencia dependencia temporal y tratar de forma separada cada una de las componentes.Por tanto, no perdemos generalidad si consideramos que los potenciales, los campos y la radiaci´on on debidos a un sistema localizado de cargas var´ var´ıan sinusoidalmente con el tiempo.[2] ρ(x, t) = ρ(x)e− jwt (x, t) = J (x)e− jwt J Para obtener las magnitudes magnitudes f´ısicas ısicas tomaremos la parte real de las expreexpresiones. siones. Los potenciales y campos electromagneticos electromagneticos presentan presentan el mismo tipo de dependencia con el tiempo. El campo electrico en funci´on on de los potenciales esta dado por: = E
−φ − jw A
,de la condici´on on de Lorentz:
.A + µjwφ = 0 .A φ=− jwµ
luego,
(3.1)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
= µ E 4π
{−
− jk| jk | r−r |
(r ) e jw J
− jk| jk |r− r| 1 (r ) e + [ .(J )] dv jwµ r r
|r − r| ) = φ.A + A φ: de la identidad .(φA − jk| jk | r−r |
(r ) e .(J
jk |r− r| − jk| jk |r−r | e− jk| (r ) + J (r ). ( e ) = . J ) r r r r
| − |
|r − r|
(3.3)
| − | }
| − |
jk | r−r | jk | r−r | e− jk| e− jk| .(J (r ) ) = J (r ). ( ) r r r r
| − | (r ) = 0. Luego usando la identidad (A. B ) = A × ( × B ) + ya que .J × ( × A ) + ( A. )B + (B. )A , tenemos que: B (r ). ( e [J
| − |
− jk| jk |r−r |
|r − r|
jk |r−r | jk |r− r| e− jk| e− jk| ( ( ))) + ( ( )) ( r r r r
(r ) ( )] = J
| − | × ×J (r ))
× × | − |
jk |r−r | jk |r−r | e− jk| e− jk| (r ) + (J (r ). )( ( )) + (( ( )). )). )J r r r r
− jk| jk |r−r |
(r ). ( e [J
| − |
(r ). )( ( e )] = (J
| − |
− jk| jk |r−r |
2
jk |r−r | e− jk| (r ) ( )))J r r
|r − r | |r − r| )) + (( | − | jk |r−r | jk | r−r | e− jk| e− jk| [J (r ).( |r − r| )] = (J (r ).)(( |r − r| ))
sustituyendo en (3.3): = µ E 4π
{− {−
µ = E 4πjwµ
− jk| jk | r−r |
(r ) e jw J
|r − r|
jk |r−r | 1 e− jk| + [J (r ). ] ( ) dv jwµ r r
| − | }
jk |r− r| e− jk| (r ). + J jw( jw ( jwµ) jwµ)J (r ) r r
µ = E 4πjwµ
| − |
{
jk | r−r | e− jk| ( ) dv r r
| − | }
(r ).[( jw)( J jw )( jwµ) jwµ)I +
−
jk |r−r | e− jk| ] dv
|
|}
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cap´ıtulo 4
Aplicaci´ on on a la antena lineal 4.1. 4.1.
Ante Antena na line lineal al
Un dipolo electrico radiante es una antena lineal, que puede ser vista como un conductor perfecto cilindrico con radio a y longitud l en posicion a lo largo del eje z alimentada por su centro como se muestra en la figura. La variable R representa la distancia entre la fuente de corriente y el punto
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
i es debido a la exitacion, que es distindonde, el campo electrico impreso E tode cero solo en el gap de alimentacion i = V z, E z , z < ζ /2 ζ
(4.3)
| |
s debido a la corriente inducida en la y el campo electrico dispersado E superficie de la antena .
4.2. 4.2.
Ecuac Ecuacion ion integ integral ral de Pocklin ocklingto gton n
s se relaciona con la ecuacion (3.4) El campo E = E
−
µjw 4π
(r ).[I + 1 J k2
reemplazando valores: s
E = s
E = s
E =
−
µjw 4π
−
µjw 4π
−
µjw 4π
jk |r−r | e− jk| ] dv r r
| − |
√ − √ − √ − L/2 L/2
1 I (z )z.[ z. [I + 2 k −L/2 L/2 L/2 L/2
1 I (z )[z + 2 z. z. k −L/2 L/2 L/2 L/2
1 ∂ I (z )[z + 2 k ∂z −L/2 L/2
]
e− jkr (z
(z −z )2 +ρ2
z )2 + ρ2
e− jkr ] (z
(z −z )2 +ρ2
e− jkr ] (z
(z −z )2 +ρ2
z )2 z )2
+ +
ρ2 ρ2
dz dz dz
la condici´on imponiendo al campo electrico total E on de contorno de que su componente tangencial sea cero en cualquier posici´on on sobre la superficie. i + E s ) z (E
|
=0
(4 4)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
4.3.
Aplicando Aplicando el m´ etodo etodo de momentos momentos
El procedimiento de soluci´on on se inicia definiendo la desconocida distribu ci´on on de corriente I z (z ) in terminos de un conjunto ortogonal de funciones base. En la figura se muestra algunas construcciones de las funciones base,
Figura 4.2: Funciones unciones base en subdominios.[5] subdominios.[5] donde se mantiene la continuidad de la distribucion de corriente a lo largo de la antena. antena. Discretizamo Discretizamoss el dominio dominio f´ısico de las fuentes fuentes en un n´umeros umeros
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
4.3.1 4.3.1..
Matr Matriz iz de de impe impeda danc ncia ia
La matriz de impedancia esta dado por Z m,n m,n = wm , Lf n
reemplazando, tenemos
√(z−z ) +a e δ (z − mh) mh) f n (z )[k )[k 2 + 2 ] dz ∂z (z − z )2 + a2 −L/2 L/2 −L/2 L/2 √(z−z ) +a L/2 L/2 − jk 2 ∂ e Z mn f n (z )[k )[k 2 + 2 ] | mn = z =mh dz 2 2 ∂z (z − z ) + a −L/2 L/2
L/2 L/2
Z mn mn =
L/2 L/2
∂ 2
∂ 2 f ∂z 2
Aproximando
√
(z −z )2 +a2
(z
− z )2 + a2
reemplazando
L/2 L/2
Z mn mn =
Z
L/2 L/2
dz
2
(4.8)
≈ h12 [f ( f (z − h) − 2f ( f (z ) + f ( f (z + h)]
≈ √ − −
f n (z )[k )[k
1 h2
− jkRm 2e
−L/2 L/2
1
2
mediante diferencias finitas(Apendice):
jk
−
e
2
∂ 2 f ∂z 2 ∂ 2 f ∂z 2
2
− jk
f ( )[
Rm
jk
−
e
(z
1 + 2 h
e− jkRm−1
√( ) + − (z − z )2 + a2 z )2 + a2
(z −h−z )2 +a2
h
e− jkRm−1 Rm−1
+ (k2 h2
jk
−
2e
2)
−
z −z
2
a2
√( + ) + (z + h − z )2 + a2 jk
−
+
e
e− jkRm e− jkRm+1 2 + ]dz Rm Rm+1
e− jkRm
+
e− jkRm+1
]dz (4.9)
z
h−z
2
a2
z =mh
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Ahora, llenamos los valores conocidos para el vector columna V , V , dado por: V m = wm , v
− − −
V m =
δ( z
V mh) mh), 4πjw ς
−
L/2 L/2
V m =
−L/2 L/2
V m (z ) =
δ( z
mh) mh)
− 4πjw V ς dz
4 jπw V ς , para m = 0, resto
(4.12)
N +1 N +1 2
Teniendo Z mn co eficiente ntess I n de la relaci´on on (2.9) mn y V m podemos calcular los coeficie [I] = [Z]−1 [V]
4.4. 4.4.
Prog Progra rama maci ci´ on o ´n
La codificaci´on on puede hacerse en cualquier lenguaje de m´aquina, aquina, o usando software como Matem´atica atica o Matlab, incluso incluso existen c´odigos odigos comerciales, como el NEC (Numerical Electromagnetic Code)[ver apendice A], que es util en la soluci´on on de varios problemas y que emplea las ecuaciones resuelta por el M´ etodo etodo de Momentos Momentos pero que tiene limitacione limitaciones, s, principalme principalmente nte para estructuras complicadas que requieren qran cantidad de segmentaciones. En este trabajo usamos el software matem´atico atico Matlab por su sencilla manipulaci´on on de matrices y la representaci´on on de datos y funciones. A continuaci´on on explicamos el prcedimiento seguido para la soluci´on o n de nuestro problema.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
4.4. 4.4.1. 1.
Patr´ atr´ on on de radiaci´ on on
El patr´ on on de radiaci´on on es una de las caracteristicas m´as as importantes de una antena, antena, porque describe describe el comportamient comportamientoo direccional direccional de la energ´ energ´ıa que radia. Basicamente es una funci´on on que asocia a cada posible direcci´on on de radiaci´on, on, un valor proporcional a la densidad de potencia que radia la antena en dicha direcci´on. on. El patr´on on de radiaci´on on de una antena no depende de la distancia entre un punto y la antena; y simplemente indica la cantidad de potencia que fluye en cada direcci´on, referenciada a la potencia que fluye en otras direcciones. Dado por [4] F ( F (θ) =
|N θ (θ)|
π/2)| |N θ (π/2)
donde: N θ (θ) = [ I (z )ez e jkz cosθ dz ].eθ F ( F (θ) se puede estimar, numerica-
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cap´ıtulo 5
Resultados Prueba 1 Descripci´on longitud de onda (normalizada) gap de alimentacion alimentacion
s´ımbolo λ ς
valor 1 0.01 λ
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Distribuci´on on de los coeficientes I n de las funciones base.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
patr´on on de radiaci´on on L = 0,5λ .
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Figura 5.6: Distribucion de corriente patr´on on de radiaci´ L
λ
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Conclusiones
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Bibliograf´ıa
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Ap´ endice A
NEC(Numerical
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.