Welcome to the CD-ROM edition of the Pressure Vessel Handbook.
Click on the arrow buttons on the tool bar above to page through the book. Pages which were blank in the print version of the Pressure Vessel Handbook have had substitute pages inserted in order to retain the book's page numbering. To jump to a section from the table of contents, click your mouse on the section title.
WARNING! This document is copyright 1997 by Pressure Vessels Inc., and may not be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, recording or otherwise, without prior written permission. It is intended for single user use. Information about site licenses and network use may be obtained by contacting: Pressure Vessels Incorporated P.O. Box 35365 Tulsa, OK 74153 USA www.pressure-vessel.com
P
V H T
E e d
ni
withforeword by
P
B
Professor of Chemical Engineering University of Tulsa Tulsa, Oklahoma
E
M
PRESSURE VESSEL PUBLISHING, INC. P.O. Box 35365 “ Tulsa, OK 74153
t t i
oh
FOREWORD
Engineers who design equipment for the chemical process industry are sooner or later confronted with the design of pressure vessels and mounting requirements for them. This is very often a frustrating experience for anyone who has not kept up with current literature in the field of code requirements and design equations. First he must familiarize himself with the latest version of the applicable code. Then he must search the literature for techniques used in design to meet these codes. Finally he must select material properties and dimensional data from various handbooks and company catalogs for use in the design equations. Mr. Megyesy has recognized this problem.
For several years he
has been accumulating data on code requirements and calculational methods. He has been presenting this information first in the form of his “Calculation Form Sheets” and now has put it all together in one place in the Pressure Vessel Handbook. I believe that this fills a real need in the pressure vessel industry and that readers will find it extremely useful.
Paul Buthod
PREFACE This reference book is prepared for the purpose of making formulas, technicaldata, designand construction methods readily available for the designer, detailer, Iayoutmen and others dealing with pressure vessels. Practical men in this industry often have difficulty finding the required data and solutions, these being scattered throughout extensive literature or advanced studies. The author’s aim was to bring together all of the above material under one cover and present it in a convenient form. The design procedures and formulas of the ASME Code for Pressure Vessels, Section VIII Division I have been utilized as well as those generally accepted sources which are not covered by this Code. From among the alternative construction methods described by the Code the author has selected those which are most frequently used in practice. In order to provide the greatest serviceability with this Handbook, rarely occurring loadings, special construction methods or materials have been excluded from its scope. Due to the same reason this Handbook deals only with vessels constructed from ferrous material by welding, since the vast majority of the pressure vessels are in this category. A large part of this book was taken from the works of others, with some of the material placed in different arrangement, and some unchanged. The author wishes to acknowledge his indebtedness to Professor S4ndor Kalinszky, J&os Bodor, Lasz16F61egyhiizyand J6zsef Gyorii for their material and valuable suggestions, to the American Society of Mechanical Engineers and to the publishers, who generously permitted the author to include material from their publications.
The authorwishesalso to thank all those who helpedto improvethis new edition by their suggestions and corrections. Suggestions and criticism concerning some errors which may remain in spite of all precautions shall be greatly appreciated. They contribute to the further improvement of this Handbook. Eugene F. Megyesy
9
CONTENTS PART I
Design and Construction of Pressure Vessels .................................... 11
PART II
Geometry and Layout of Pressure Vessels ...................................... 25’7
PART III
Measures and Weights .................................................................... 321
PART IV
Design of Steel Structures .............................................................. 447
PARTV
Miscellaneous ................................................................................. 465
PART L DESIGN AND CONSTRUCTION
OF PRESSURE VESSEL
1. VesselsUnderinternalPressure_~__~~_~~~~~~~..~.~~~~ti~ti~~~~. 15 StressesinCylindricalShel~Definitions,Formulas,Pressureof Fluid, Pressure-TemperatureRatings of American Standard ,CarbonSteelPipe Flanges. 2.
Vessels Under External Pressure .......................................................... Definitions, Formulas, Minimum Required TicknessofCylindricalSheH,ChafiforDeteminingThicknessofCylindrical and SphericalVesselsunderExternal PressurewhenConstructedof Carbon Steel,
31
3.
Design ofTall Towers .......................................................................... Wind Load, Weight of Vessel, Seismic Load, Vibration, Eccentric Load, Elastic Stability, Deflection, Combination of Stresses, Design of Skirt Support, Design of Anchor Bolts (approximate method), Design of Base Ring (approximate method), Design of Anchor Bold and Base Ring, Anchor Bolt Chair for Tall Towers.
52
4.
Vessel Suppotis ..................................................................................... Stresses in Large Horizontal Vessels Supported by Two Saddles, Stresses in Vessels on Leg Support, Stresses in Vessels Due to Lug support.
86
5.
Openings ............................................................................................... 122 Inspection Openings, Openings without Reinforcing Pad, Opening with Reinforcing Pad, Extension of Openings, Reinforcement of Openings, Strength of Attachments, Joining Openings to Vessels, Length of Couplings and Pipes for Openings.
6.
Nozzle Loads ........................................................................................ 153
7.
Reinforcement at the Junction of Cone to Cylinder .............................. 159
8.
Welding of Pressure Vessels ................................................................. 170 Welded Joints, But Welded Joint of Plates of Unequal Thicknesses, Application of Welding Symbols.
9.
Regulations, Specifications ................................................................... 181 Code Rules Related to Various Services, Code Rules Related to Various Plate Thicknesses of Vessel, Tanks and Vessels Containing Flammable and Combustible Liquids, Properties of Materials, Description of Materials, Specification for The Design and Fabrication of Pressure Vessels, Fabrication Tolerances.
10. Materials of Foreign Countries ............................................................. 194 11. Welded Tanks ....................................................................................... 204
13. Rectangular Tanks ................................................................................ 212 14. Corrosion .............................................................................................. 221 15. Miscellaneous ... ... .... .. . . . ..~...o..o...u,mv..u.mv..~..u...ti..~..~..~..u..~ 232 Fabricating Capacities, Pipe and Tube Bending, Pipe Engagemerit, Drill Sizes for Pipe Taps, Bend Allowances, Lengthof Stud Bolts, Pressure Vessel Detailing, Preferred Locations, CommonErrors,LiRingAttachments, SafeLoadsforRopesand Chains, Transportation ofVessels. 16. Painting Steel Surfaces ..~...o..o...~....a...~.
U.V......O...
247
1NREFERENCESTHROUGHOUTTHISBOOK"CODE"sTANDSF0RASME O O C MI E EC HT AEYNN I GC I FA N BL E O E AR I S ) L (AMERICAN S
N E R P R E VS SE CU S RS SO E E EV C DRL T II FU EO C O LNI N S OET RI US C T IR O N O P R E VS ES SU D SRI F EE V1— LI A SSA , I M O E N S R T I A C N AND NA R D .
1
E
D
S
P
V
Pressure vessels are subject to various loadings, which exert stresses of different intensities in the vessel components. The category and intensity of stresses are the function of the nature of loadings, the geometry and construction of the vessel components. LOADINGS (Code UG-22) a, Internal or external pressure b. Weight of the vessel and contents c. Static reactions from attached equipment, piping, lining, insulation, internals, supports d. Cyclic and dynamic reactions due to pressure or thermal variations e. Wind pressure and seismic forces f. Impact reactions due to fluid shock g“ Temperature gradients and differential thermal expansion
STRESSES (Code UG-23) a. Tensile stress b. Longitudinal compressive stress
c. General primary membrane stress induced by any combination of loadings. Primary membrane stress plus primary bending stress induced by combination of loadings, except as provided in d. below. d. General primary membrane stress induced by combination of earthquake or wind pressure with other loadings (See definitions pages beginn-ing473.)
MAXIMUM ALLOWABLE
STRESS
Sa The smaller of S. or the value of factor B determined by the procedure described in Code UG 23 (b) (2)
S 1.5 Sa
1.2 times the stress permitted in a., b., or c. This rule applicable to stresses exerted by internal or external pressure or axial compressive load on a cylinder.
Seismic force and wind pressure need not be considered to act simultaneously. S.= Maximum allowable stress in tension for carbon and low alloy steel Code Table UCS-23; for high alloy steel Code Table UHA-23., psi. (See properties of materials page 180- 184,)
/
,
STRESSES IN CYLINDRICAL SHELL
Uniforminternalorexternalpressureinducesinthelongitudinalseamtwotimeslargerunit stress than in the circumferentialseam becauseof the geometryof the cylinder. A vessel under external pressure, when other forces (wind, earthquake, etc. ) are not Tn C l factors, must be designed to resist the circumferential buckling o
oh y .d i e od dh t e e tsh ms o tie rdge e qhn uf ei’ rW ei o mo t e hlns t t o . aaeh d ei n n r r g s present, these combined loadings m g o a a hv e e p an rw y vl be n ir a i eed q rt ul ei r l e t t ph w l ah wh a s a ni t t i esact fer a chte t co sisrr yc ui m h f sbe ro ue t n oct ie ak l nl i ln gy p
r
T
ot
m v
c o m p sh r edt s t se r i xev epetu r es a e r t ss n e sse a onudntl trs i r e in pe lt ud r ese e r ss n se a ou l r b dh e t a eb tr lfm oi nlr em eh d u l a y se :
s
F
t
.
D
$
R
M
U
L
A
S
C I R C U M F E R E N T I A LL O N G I T U D I N A L J O I N JT O I N
.
+
O
s, 3 .$
‘
D= P= s, = s* = [ =
S2 ‘
s, ‘/ ~
,R
T
s~ = ~
M I
N O T A T I O N d ie ao vm a eei ts n e s cr e h l f ,e n ot e e x r pt n r e ae pr sl n s a ur l r s e ,
s i
Longitudinal stress, psi 1 Circumferential (hoop) stress, psi Thickness of shell, corrosion allowance excluded, inches
EXAMPLE ;iven
D
=
P= f
=
96 inches 15 psi 0.25 inches
PD s, = ~
s* = $
15 X 96
=
~
= 1440 psi
15 X 96
=
= 2
p
8
8s
lhmi v pt
cr e e h s
2 X 0.25 F s
t s
ou gti
iw o n n pe t d r er a er rewss nl s r at iunc l or r h eni o rc vvb ea ep sp rera osnb x t is fm ao nt ree hdm
H=%
3
w
Hh= C 2
haeat d iwdi b c cd ghaoe u I y ae :
er h i r oet t i ei foc (
ga w l h e t t r
f ,
.
I
P
N
R
1. OPERATING PRESSURE The pressure which is required for the process, served by the vessel, at which the vessel is normally operated. 2.
DESIGN PRESSURE
The pressure used in the design ofa vessel. It is recommended to design a vessel and its parts for a higher pressure than the operating pressure. A design pressure higher than the operating pressure with 30 psi or 10 percent, whichever is the greater, will satis@this requirement, The pressure of the fluid and other contents of the vessel should also be taken into consideration. See tables on page 29 for pressure of fluid. 3.
MAXIMUM ALLOWABLE WORKING PRESSURE
The internal pressure at which the weakest element of the vessel is loaded to the ultimate permissible point, when the vessel is assumed to be:
(a) in corroded condition (b) under the effect ofa designated temperature (c) in normal operating position at the top (d) undertheeffectof otherloadings(wind load, external pressure, hydrostatic pressure, etc.) which are additive to the internal pressure. When calculations are not made, the design pressure may be used as the maximum allowable working pressure (MA WP) code 3-2. A common practice followed by many users and manufacturers of pressure vessels is to limit the maximum allowable working pressure by the head or shell, not by small elements as flanges, openings, etc. See tables on page 28 for maximum allowable pressure for flanges. See tables on page 142 for maximum allowable pressure for pipes. The term, maximum allowable pressure, new and cold, is used very oflen, It means the pressure at which the weakest element of the vessel is loaded to the ultimate permissible point, when the vessel: (a) is not corroded (new) n (b) t
i
h
t
(
te
and the other conditions (c and d above) also need not to be taken into consideration. 4.
HYDROSTATIC TEST PRESSURE
O and one-halfntimes the maximum e allowable working pressure or the design pressure to be marked on the vessel when calculations are not made to determine the maximum allowable working pressure.
If the stress value of the vessel material at the design temperature is less than at the test temperature, the hydrostatic test pressure should be increased proportionally. H
y
d
r t o ss
t bea hc t oi
cnas a d
aul ftc a tl b le re hdil bec
a c t roi e am ol np
le e
ts e n d
.
I t
c
pressure s i e hshall en be: s s ,
t h at
e
t
1
StressValueS Temperature )( M A . W.Press. al l xx o5 w. . StressValueS At DesignTemperature (Or DesignPress.)
V f
e w s tsh me e al xhasr li l s a bn ht g eae aa p ss r l, tse
P
r S i e m r
H
y
d
av
r i
yc
l emwo uweo m ap r br k l el ei si nbs m t gu i r t e lsei h tse dt u o rat ew hb nl ne e :
eh
d
+
e
900 lb
r t o os mt uea l t t ii -c svc h ea m Cs t b sU ef r eo ( Gl
s d- :
e9 e
9
)
A Pneumatic test may be used in lieu of a hydrostatic test per Code UG-100 P s a
tr t e oe s s ot m a t afb lxa s i li sol mhwo uwo m pa r br k l ew ei s t ns h gu r ehe n ro ae pn go t t an v h ec r fh sayb c tsn o f en m e w lpo s ua t it t i ese f dt a c t oh r y s o us r a ap frn e ce si eCct r Uy i f obG , e - d d1 0 n e1 .
t s
5. MAXIMUMALLOWABLESTRESS VALUES
The maximuma
l
a g i it t b u i t l o n g ic t C p U o
s ct g
l l t o ews an vt b s l apr ie e lel r f m uesd i i est f mt sfo ea e dt r e e r nr i t a r ova p 1eb eaT n l m 8 n ga e xa9hn l ie l m c o. o uwm e am p s rb e l ts es ri v e sd eo ce hys o l e i sd n gdnsh er u in ebc t ajlf l l e o clt at p s ed rhd i o n doa g u o u md pi snr ea itls t s ris v se h b hshd ee s t a elna re cl ml c i t ol n ree d i n abC cd & d -r e 2 . 3 , , .
s e
6. JOINT EFFICIENCY The efficiency of different types of welded joints are given in table on page 172. The efficiency of seamless heads is tabulated on page 176. T f o l phl o c aw o i t h i ac kt nm e an s f r e qu u t e nso y st l g f i t l .v o ~o ge hs i t T e
s f
fgen o g t eru am t s icu s nlo at m esr p e uqdw h tu o ei a r ee ld xhsa li l mdw o uw eo m ap r br kl ef ei st n sm gu o r ho e ar a yeph h eTe de f n s lo a rfo hcl m d y d lu i. sl n aeda hr s i c e a f lr l usn ed iur ni aeas tl nugm ao hc ,vl eel i r y n s .
it t h rg se i whs e ger s oiot na ew v hlnte mch ir r l lc un m eh f j ey r en no t ie a il ii lc i t e oen chn y te s l- ao hsn sga hinj lt u fe do f i f n eiia ocl wi ne n cht y ,
f
e l
n e
r
besides the internal pressure additional loadings(wind load, reaction of s t t
a t s
ad cd al l euor ns s g ) i ib t une ed o gin t n dae l inT snr i g ef o ih ani r . s o o e n r sh at rhrai t i eg s t ss i ie phsn er gper o s t nau eq i h niumo n and oe r -c e h ah l s f it t hlr o ne g ihs s t e u sed i nn aea l m .
T
f
o
rf htm g u s l io aeh c serc o r t rda ei nh g ml y : t
PR = 24SE+ 0.4P
Seenotation on page 22.
P=
2SEt R – 0.4t
I
P
N
R
FORMULAS IN TERMS OF INSJDEDIMENSIONS NOTATION P = D
pe o p vt
w S= S
E = J e of f ip i c 1i en a n c t y 7g. r s o e m i s a sg l aul n or R = wex I a bnrr . l as ei d i n i dc u eh s e, r r pke is sn u gs rD = e I ndi i s a i m i n e d t c ee hr , e o rm a ea pl t ps e u ssr at i e= a if t l g h i ,i c e k n n ec s hs , e C = C o rAa r l ol ois wi .n ao nnc c eh .
A
CYLINDRICAL SHELL ( t
R e
PR f= SE– O.6P
P
LS
EO
A N
s t su i at t ll hr s l e i yog h seo ev S ns e arn en p r ep c e a d i g n g e . 2 W [ w h t h aiehe c x ok. lhcnn o ete isl ae n s nd r oa P e d x 0 i c S u. et f es 3 o drgE r 8 hsm i i u5 t C A po h 1p s e db nah dep - ei ap x l l i 2e
SPHERE
HEMISPHERICAL
PR ‘= 2SE–0,2P
2 s
s e
s
M G )
SE t = m-m
1. U
B
e s
p=
gi m ne g s . slhs ie f l v , a e se l de .
HEAD
2SE t R +0.2t
r 1-
R
-1 -–
f
1. F h
w e i aos at t o t h t s ej h hi o t s i e[ h h a 2 W t w h t h aiehe 0 S . t f 6 o gE r I s b -ah p ap3
. .
Ih r d loua r t aisu e gnft fhg si i ol a et f it e eeld hfno f l si e m h fa e s d n e c x 0k. l cnnR o. ePe e sl e 3xs d 6 hm i ti uC 5 lvA, a epo hse p l li , e l d e .
thce i , e n e c thac if { es n c . 6e c 5s e e nd n n de ei
2:1 ELLIPSOIDAL HEAD
I
b
0
“
PD ‘= 2SE– O.2P 1. F
a 1
/1 = 1>/4
e l l ih po m a i i on 4 (
P= -Dy;jt
sw e o t ia hrd rado leta smh r t , a ehi j e o o nxt t 2 1 os hihC d r A e aspo espr e nd n : , de ei c ) .
E D
ED P =
S= 1 5 E = 0 j s
S
AI
G T
X NA
p d pe r s p 7s vt5 o 1p @5 6l . e . f f oi8 s cp oo s ia hh n h e
:
E = 1
j . e of 0f oi is c0 ei n ea , n m tc l y e s f h e a d s ni rnc a hs d ie i8 ds u es * e is sg ui R n=r 4 ie 9 i e ni f A dnc i hsa mie e6 dst e e r * rsSa 0 e l 0 s Dtiu= s e wq [ u h i ai irc ken ln d ec s lhs , e 5a 7 0t 0 ”e= r I F C = 0 . nc A 1o c ra 2r hl. ol e5so iws o u n n c e oi 5t e - ne x, c a ym i n ef i d . r eHe t tnm sl e i f l * s dac .o crd oi r o ngo d d vi e nt a di ot n e w t c i o r a rhlt ol so ihw o ea n n c e l l
SEEDESIGNDATAABOVE SEE DESIGN[),N”f’A AIK)VE
I)c[crmincIhc rcquird lhicknms, 01”o shell ,=
I(K) x 48.1?5
=
().325 in.
fhwrmine the maximum:Ill(nv;IbleIf(whingpressure, P I’br().5()() in thi~k kh{.11wtlrn Ihc tIS<,Il i, in IICW currditi(m.
() 125 in.
P =
I7500 x 0.85 -- 0.6 x 100 + C.A.
17500 x ().X5 x ().5(M) - 154psi 48 + x
in. fJse: ().50() in, pkrfc —.
SEE DESIGNDATAABOVE The head furnishedwithmrtslraigh[ Ilwrge. Detcrrnirrethe required thickness. I d’ ii hemispherical head. /=
]00 x 48, Izfi 2 x I7500 x 0.85 -- 0.2 x I00
SEE DESIGNL)A’rAABOVE Determine IIw maximumallowuhlcvrn-kingpressure. P I’or().3125 in [hi(k head. when it is in IICNctmdili(m
= ().16? in.
+ C.A.
p ,..
,? x I7500 x 0.X5x 0.3 I25 W + 0.2 x (),3I25
0.125 in.
+ IOJ p~i
0.287 in. Use: ().3125 in MIN.
HEAD
SEE DESIGNDATAABOVE Dctcrrninethe requiredthicknessot’a SCJMICSS ellipsoidal head 100 X 96.25 ‘ -
–
— = 0,275 in. 0.2 x 100
+ C.A.
0.125 in,
2 x 17500 x 1.0
in, Use: o 437s in, MIN. THK. HEAD
SEE DESIGNDA’I’AABOVE Determinethe maximumdlmv:iblc U[wkingprcwurc. P for 0,275 in. thick. seamless head \!’heni! is in corroded condition. 2
X
17500 X
1,0
X
0.275
96.?5 + 0.2 x 0.275—
= 10(1psi
I
P
N
FORMULAS IN TERMS OF INSIDE DIMENS1ONS D = I
NOTATION P = D
w S= . E = J R = I
dn i s ai mi n e d tc e e hr , e hbr o. l t ei an n (c lhI a eu p fd fe dni eg g l r e e ,e s oa,s d e dii i din suec sh l grn kn n sr u ai i c dd nk i e cl u e h s t e h 2ai i c k n ln ec s l sh , e s o r a r l ol ois wi n ao nnc c eh ,
pe r s o e m i s a sg l aul n or a we=x Oa o p r r pke si sn u gs r ea Sv to m a r a ;pl t ps e u ssr aLi e= Ia if r = I e of f ip i c 1i en a n c t y g7,r = W rn a is d ni i dc u he s e,= C
1
CONE
‘
c
CONICAL SECTION 2SEt c ‘= 2D + 1.2t s
a (SE–= O.6P) o
a
o a
1 T h a a a h apnn g lg re. t el e3 fo e axh ,t e0a t W i‘Dgh r t e 3e s nah pa. t a ne e0ia racs re l i q ny au ;s ( A C p 1po e- dn 5 d (e i ex ) )
A %
~ 2
A
E
F SL A M D N GI H EN ES D H E ( T O R I S P HH E R I EC A L A W
‘
=h 1
0.885PL f= SE– o. 1 ‘
6e /
P=
ED A D
2 n
SEt 0.885 L+0.lt
fr
P
~ When Vr l
< \
1
‘ M
t
PLM ‘= 2SE– O.2P
1. J
V .0
r
A O LF 50
UA 0
1e
h
s
s
n
2SEt ‘= LM+oo2t
“ EC
ST
OM F R
”
3
1
2
3
●
.
0
1
M *
a
: L = D + 2t
(see note 2 on
f
pa
ca
i
21
E
X
DESIGN DATA: P = lOOpsidesignpressure S = 17500psistressvalueof SA515-70plate@650°F E = 0.85,efficiency ofspot-examined joints E = 1.00,jointefficiencyofsearnless
R = 48inchesinsideradius* D = 96inchesinsidediameter* wallthickness,inches ~ = required L = 30°0nehalfoftheapexangle t = Resuiredwallthickness inches C.A = 0,125inchescon-osionallowance * incorrodedcondition greaterwith thecorrosionallowance
SEE DESIGN DATAABOVE Cos30° = 0.866 Determine the required thickness, r of a cone
SEE DESIGN DATAABOVE Determine the maximum allowable working pressure, P for 0.500 in. thick cone, when the vessel is in new condition.
100x 96.25 ‘2X 0.866(17500X
2x
+C.A. Use0,500in.plate
0,125in. 0.500in.
xO.85xO.500x0.866= 133psi 96+ 1.2XOo500Xo.866
SEE DESIGN DATAABOVE
SEE DESIGN DATAABOVE
L/r = 16$
Determine the maximum allowable working pressure, P for 0.6875 in. thick seamless head, when the vessel is in new condition.
Determine the required thickness, t of a seamless ASME flanged and dished head. f=
0.885X100x96.I25 17500x 1.0-0.1x 100 +C.A. Use0.625in.plate
=0.486 in.
(j
0.125in. 0.606in.
Use0.625in.min.thickhead o La i g t r t NOTE: When the r A
b4 c
a ml
bc t ua f l
= 141psi
SEEDESIGNDATAABOVE ~= 61
~= 1.75 from table. Determine the required thickness t of a seamless ASME flanged and dished head. 100x96,125X1.75 t= ‘0.481 in. 100 2 x 17500 +C.A.
17500x1,0x0,6875 0.885x96+ 0,1 x0,6875
0.125in. 0.611in.
SEEDESIGNDATAABOVE Knuckle radius r = 6 in. L/r=
p.
% Knuckle radius r = 6 in. L/r= ~ = 16 A4= 1.75 from table Determine the maximum allowable working pressure, P for a 0.481 in. thick seamless head when the vessel is in corroded condition. p=
2 x 17500X1.0xO.481 = 100psi 96.125X 1.75+0,2 xO.481
i/e 1 a nho to6f nreca so- r n3 Cs tn otr uv,d c te aoi o hnl ) oay tir ehe% md +ul k L l y ae (l /: = r 3 )
u
22
I
P
N
FORMULAS IN TERMS OF OUTSIDE DIMENSIONS NOTATION P=D
pe op vt
w S= S 1
7 E = Joint efficiency,page 1 r s o e m i s a sgl aul n or w . l t einches =ex O a ubr radius, s i d e r r pke si sn u gs r: eO u id ti asi m i n e d= tc ee hr o rm a ae pl t ps e u ssr ai e= W a if t l g h ai , i c e k n ln ec s l sh , 8 9 C.A: = Comosionallowance,inches
A
CYLINDRICAL SHELL ( +
PR * = SE + 0.4P
R
LS
P = R y;4t
EO
, e
A N
.
b
~ 1 U
G3)
2
B
s t su iat t l hr sl .e i yogh seo e v snS e arn en p 1 a g e 4 W t w h t h aiehe c x ok. lhcnn o eet isl ae ns nd r oa P e d x 0i c S u. et fse 3 o dr gEr 8shim v u5 t C A po h 1p s e db nah dep - ei ap x l l i 2 e
g slhs e l
SPHERE and HEMISPHERICAL HEAD PR f = 2SE + 0.8P @
f
d’
R
1 F h o t h o t s
P - ~ y;
B*
w e i ao s at t fh r d .loua r t asiu e gnft fhgsi thce t s ej h hi i oi la e t fi te leed hnf o fl is t hca f i et hh a e m h f ae s d n e . R
S
.
t
P
E h
,
e
1-3,shallbe applied. c
2:1 ELLIPSOIDAL HEAD PD
h
‘= 2S45+1,8P
-
P=D~l— .
+ 1 F e l l hi po wes o t ai hr d. odra t eal m s h art ,a hei j m a ii o tnx t 2 so hC hi :Ar e paso e1ps1 r e- nd n 4 ,
u h = D14
23
E
X
DESIGN DATA: P = IOOpsidesignpressure S = 17500psistressva1ueof SA515-70plate@650°F E= O.8&efliciencyofspot-examined joints ofshellandhemis.headtoshell E = 1.00,jointefficiencyofseamless
E = 1.OOjointefficiency ofseamlessheads l? =48inchesoutsideriidius D= 96 inchesoutsidediameter t =Requiredwallthickness, inches C.A.= 0.125inchescorosionallowance
SEE DESIGN DATAABOVE
SEE DESIGN DATAABOVE
Determine the required thickness, t of a shell
Determine the maximum allowable working pressure, P for 0.500 in. thick shell when the vessel is in new condition.
100X48 ‘= 17500x0.85-0.4x 100 ‘0”322 ‘n” +C.A.
P=
0.125in. 0.447in.
17500xO.85xO.500 = 155psi 48-0.4 x0,500
Use:0.500in.thickplate
SEE DESIGN DATAABOVE Head furnished without straight flange. Determine the required thickness, t of a hemispherical head. t=
2x17500 %;t0.8x100 +
‘0-161 ‘r-
C
0.
.A
i
SEE DESIGN DATAABOVE Determine the maximum allowable working pressure, P for 0.3125 in. thick head, when the vessel is in new condition.
ip. 1.
2x 17500xO.85x().3125 48-0.8 x0,3125 n 2
5
=194psi
.
0.286in. Use:0.3215in.min.thickhead SEE DESIGN DATAABOVE
SEE DESIGN DATAABOVE
Determine the required thickness t of a seamless ellipsoidal head.
Determine the maximum allowable working pressure, P for 0.273 in. thick head, when it is in new condition.
t=
100x96 2 x 17500 X 1 1
.
+C.A. Use0.4375in.min.thickhead
.
0
0,125in. 0.398in.
x 17500x1.0X 8 p. + 2X
96-1.8 xO.273
= 100psi
I
P
N
FORMULASIN TERMSOF OUTSIDEDIMENSIONS N
~
A
T
I
O
N
Outsidediameter.inches ~ = one half of the included(apex) P = Designpressureor max. allowable dn eg g l r e e w o p r r psi ke si sn u g r ea S= S v & o m a e a pl ts p e u ssr aLi e= O a fi l gu r t , oa dse dii i din E = J
e of ur
R=O
,e s esuc sh kn n sr u ai i c dd nk i e lc u e h t e h 2ai ic k n ln ec s l sh , e os r a r l ol ois wi n ao nnc c eh
r = I f ip i c 1i en a n c t y g7, = W =e, C t a i s d ni i dc u e hC.A: s
)
CONE
CONICAL SECTION
PD ‘=2 Cos CY(SE+ O.4P) d
p=
2bsEfCos CY a D –0.8t
1 T h a a a h apnn g gl re.t el e3 of eaxh t, e0a t 2 W i hg rt e 3e snah p.a0t a ne eai rasc r°e l i qny au , s “ ( A C p 1po e- dn 5 d ( e i ex ) )
@L
E
A
F sL A MD N GI H EN ES D H E ( T O R I S P HHE R I EC A L A W
h = 1e
0.885PL 2=SE + 0.8P
f
W
n 6 L
P=
Lh
T
2/
r
ED D /
SEt 0.885L– O.8t
ee1
h
6 sn
a2
s
. i
PL M f= 2SE+P(M– O.2)’
2SEt ‘= ML –t(ikf-O.2)
VALUES OF FACTOR M ‘
/ 1.
1 M
1
1.
2 1. 0
2 .r2
4 .0 0 3 .0 6 .5 0 3. 5 0 5. 50 3. 2 5 4 .7 5 2. 7 5 5. 2 5 6 .0 5 . 00 .0 0 16 0
2.
% ‘ 7 : L-t = D
●
.
2
25
E
X
3ESIGN DATA: P = IOOpsidesignpressure S = 17500psistressvalueof SA 515-70plate@650°F E = 0.85,efficiency ofspot-examinedjoints E = 1.00,jointefficiencyofseamlessheads R = 48inchesoutsideradius
D = 96inchesoutside dimeter ~ = 3@onehalfoftheapexmgle L = 96inchesoutsideradiusofdish t = Requiredwallthickness, inches C.A = 0.125inchescomosionallowmce
SEE DESIGN DATAABOVE
SEE DESIGN DATAABOVE
:0s 30° = 0.866 Determine the required thickness, t of a cone 00 96 ‘=2 x0.866X(l\50; X0.85+Oc4X100) = =0.372 in.
Determine the maximum allowable working pressure, P for 0.500 in. thick cone.
+-CA.
~= 2X 17500X C).85X ().5()()X().866= 134psi 96- (0.8xO.500xO.866)
0.125in. 0.497in.
Use:0.500in.thickplate SEE DESIGN DATAABOVE
SEE DESIGN DATAABOVE
L/r = 16$ Determine the required thickness, t of a seamless ASME flanged and dished head.
Determine the maximum allowable working pressure, P for 0.625 in. thick seamless head, when the vessel is in corroded condition.
0,885x 100x96 =0.483 in. ‘= 17500x1.0+0.8x 100 +C.A. U
0
0.125in. 0.608in. in.min.thickhead s. 6e 2 :
17500x 1.0xO.625 P= 0.885
SEE DESIGN DATAABOVE
%
~ =1 Knuckle radius r= 6 i M M 1.75 from table. Determine the required thickness t of a seamless ASME flanged and dished head. 100X96X1.75 t= =0.478 in. 2x 17500x1.0x 100(1.75-0.2) +-CA.
0.125in. 0.603in.
5
SEE DESIGN DATAABOVE K r p= 6 in. L/r= ~
=16
~= 1.75 from table. Determine the maximum allowable working pressure, P for a 0.478 in. thick seamless head when the vessel is in corroded condition. 2X17500x1.OX().478 . ‘= 1.75X96-0478(1.75-0.2)=100ps*
Use0.625in.min.thickhead t r h o La i ehg t r t n i/e 1 ea, h(o nt f ore a6c ns or -n sC nt tor u:vd c et aoi o hnl ) NOTE: W Mm
ca a
l y bc t u fbl
oa
etA r eh% md +u~
l ly ae ( :
=
3
)
&u
Y
I
E
P
F NOTATION E=joint efficiency P = Internal or external design pressure psi d =Inside diameter ofshell, in. S =Maximumaflowable stiessvalue ofmaterial, psi t = Minimum required thickness of head, exclusive of corrosion allowance, in. t~ = Actual thickness of head exclusive of corrosion allowance, in. tr = Minimumrequired thicknessof seamless shell for pressure, in. t~ = Actual thickness of shell, exclusive of corrosion allowance, in.
27
I
E
P
E DESIGNDATA P = 300 psi design pressure E=joint d =24in. inside diameter ofshell
efficiency
s
=15,0001psi maximum allowable stress value of SA-515-60 plate tr =0.243 i required thickness n of seamless . shell for pressure. t~ =0.3125 in. actual thickness ofshell. DETERMINE THE MINIMUM REQUIRED THICKNESS, t t=d
~ 0.13 PISE = 24 ~ 0.13x300/15,000
x 1 = 1.223 in.
Use l.250in. head t~
Checking the limitationof
— d
=
1.250 — 24
=
0.052,
Theratio ofhead thickness to the diameter of the shell is satisfactory SEE DESIGN DATA ABOVE c = 0.33 ;
s
= 0,33 —
t = d =
0.243 0.3125
= 0.26
0.26 x 300/1 ~,000 x 1 == 1.731 in.
= 24
Use 1.75 in. plate Using thicker plate for shell, alesser thickness wfil be satisfactory for the head t~ = 0.375 i
n
c = 0.33 +
0.243 = 0.33 — = 0.214
t=
d &
.
0.375
= 24 J
0.214 x 300/15,000 x 1 = 1.57 in.
Use 1.625 in. plate The shell thickness shall be maintained along a distance 2 dt, from the J inside face of the head 2 m
= 6 in”
- .. . . . .... . .
“
28
PRESSURE – TEMPERATURE RATINGS F
S
T P O FLANGES E I E AND R P FLANGED L E FITTINGS American National Standard ANSI B16.5-1981
150lb. 300 l HYDROSTATIC TEST PRESSURE,PSIG
450
1125
4
6 b lb. 0 900 b l 0 .1
l
2225
1500
3350
0l
. 25b 0 l
5575
9275
50b
TEMPERATURE, F MAXIMUMALLOWABLENON-SHOCKpRESSURE PSIG. -20 to 100 200 300 400
285 260 230 200
740 675 655 635
990 900 875 845
1480 1350 1315 1270
2220 2025 1970 1900
3705 3375 3280 3170
6170 5625 5470 5280
500 600 650 700
170 140 125 110
600 550 535 535
800 730 715 710
1200 1095 1075 1065
1795 1640 1610 1600
2995 2735 2685 2665
4990 4560 4475 4440
750 800 850 900
95 80 65 50
505 410 270 170
670 550 355 230
1010 325 535 345
1510 1235 805 515
2520 2060 1340 860
4200 3430 2230 1430
950 1000
35 20
105 50
140 70
205 105
310 155
515 260
860 430
Ratings apply to materials: SA-1051’2 SA-515-702 SA-516-702 SA-537-C1.13 SA-216-WCB2
SA-181-70]’2 SA-350-LF2
NOTES: 1. For service temperatures above 850 F it is recommended that killed steels containing not less than 0.10070residual silicon be used. 2. Upon prolonged exposure to temperatures above 800 F, the carbide phase of carbon steel may be converted to graphite. a s t h ne hb r u i ai eat o shll i a cl e k21/2 bt ni e ed o s n s v n e 3. T m
Flangesof ANSIB16.5shall not be used for higher ratings exceptwhereit is justified by the design methods of the Code. Ratings are maximum allowable non-shock working pressures expressedas gage pressure, at the tabulated temperatures and may be interpolated between temperatures shown, Temperatures are those on the inside of the pressure-containing shell of the f
l I ga
en i ni g t e se r
a. a t a lhon t,
hc m ot s ne m a hte aa st i t en f r ee i d a
l
2-
P
F STATIC HEAD
The fluid in the vessel exerts pressure on the vessel wall. The intensity of the pressure when the fluid is at rest is equal in all directions on the sides or t t h u eo t h i f s gae l o ht be up t o iof he v di bottom of the vessel and i d a w
t h p
T v
s
T w
t
T t
H F
ri
ht s
e
hwa s
ab a
f
nst hs u i
e a t ph pi ae sl e l .
h bs e e
t t
ie ch cso
lt r
dre e e r
ci eb c had a
e
ds .
bnt ad lt e d dl
ep le rh s eoe dt i s
l rh e e o lsb oha w e t t it wpo w rne eaes h hes .
osg e u n hr
sn eo ut n i re
eg
h
as
pi r fe hnas os o udf ot ren lt e h wu hretai y v tdr a ag es hil irnt u , v e e eh bb hm ul la ew t i tl sp s li lpi gee hdt rc o tia fhf v i e icl co htn su yi d e i rf ae t di
P
r
e
o e
ie P s a
osp
d e2
1
uSu , 3t
r qIn e 4
efud Dnn asi 5
f rH rfoc eeo eWr he a nar 6
7
8
t d t
se
9
0
b
w
a a F at h e r e e .q n rp h u et4p oia r t p elu3s s s iqns 3 uue nd r a e c T f t p i r pe shns qsi o ufdeu aren fae h r ocnr e n eg e i h tie rt ao y va ta dbhe bt o n m u t l f t h i b ep.h e l 4y e a 3e t d3 y . H o eW ai aF dC t o er sr ee s f tper oC n nde P it nr rg t e as si o un r i P o p Su qnI eud nn as r rc e h 0
1
2
3
4
5
6
7
8
9
0
i
t
30
T f
q
c u o om i po ra cr e i r qps k out nl hi
ir aace weight fk d t n forevarious ne s smaterialsdand
at different degree of radiographic examination.
A Stress values at tem~. . -20 to 650° F. S
B
A C
S 5 2 S 58 S 5
-
3 15 1
5 6
A B -S 5 6 A1 0 5 -S 5 6 A1 0 6
85V0J. E.
11730
12750
14875
100Yo J. E.
13800
15000
17500
Ratios of Stress Values 11730
12750
13800
14875
15000
17500
11730
—
1.09
1.18
1.27
1.28
1.49
12750
0.92
—
1.08
1.17
1.18
1.37
13800
0.85
0.92
—
1.08
1.09
1.27
14875
0.79
0.86
0.93
—
1.01
1.18
15000
0.78
0.85
0.92
0.99
—
1.17
17500
0.67
0.73
0.79
“ 0.85
0.86
—
Table A shows the stress value of the most frequently used shell and head materials. Table B shows the ratios of these stress values. EXAMPLE: 1.
Foravesselusing SA 5 15-70 plate, whenspotradiographed, therequiredthickness 0.4426 inches and the weight of the vessel 12600 lbs.
2.
What plate thickness will be required and what will the weight of the vessel be, using SA 285-C plate and fill radiographic examination: In case 1.
The stress value of the material 14875
In case 2.
The stress value of the material 13800
The ratio of the two stress values tlom Table B = 1.08. In this proportion will be increased the required plate thickness and the weight of the vessel. 0.4426 x 1.08 = 0.4780 in. 12600 X 1.08= 13608 lb.
31
E D V w r e e
eP
rs
P
e is
gs
un r
X
e
e i sn st f ese n el u d sr o ee nv dx i wdt c ero eper r r n kre oa si1 l sp n ou a h t b is t r c wa thm C i pe s oe eohyt dd m e dhnc b oeo moet pwi l fo e xl tp o eer er s ssn sb arh ud l r e a e sf , ila m g lna oeexa d li x pt er ero 1S ns p sa o u2l pr ces m fete oti m rnh 5 ar r xptah x pt r e e wr s hn s i aiucs l r h m ee Ca, v lLe -lro (e r sdJ . 2 f e
lg r e e ss tni a gi n c l m o r uw ioe m s n su e G 8 )
A v ew si hd s e i sae icc l og n hn s n tet sCr d u r c e t oqd e u d i fr dei m noe net to es p r ae w s s i hru n er i qte b u cd di e rh sf e ai s ed g x n ptoo e ere d oer 1 snp r sa n ul r o l n ne be d se eost rCi s grd nof t u et e ed dl x optoe here cers o sn rn saed uli tr H o w n e e xv pt e rer rer, snam saob t usl ri whae n t oC gi s wy t ohtea un m d hp ei l C re e oq u is fr dee m xse pnet tores aer msn Csa r uU le r r o ( G e nt d- eo . f2 et T s 2 F a U -
nh h b a ai p i o tpl vs l l iei o t hespe dea s a tr eef aem tlp bee sr dm a e t u itlr e n t d ep n rhs ie d0i se dtsg ee ub rnt rmC ei U n e -oshd ( ( dCo yC6 e ce 2 o S ( t Ha 5t v bn e Ao c o 1hie i )s mots d i p ete ya s c f tt .
V C
e w s l s ji e o U -o 2 ( d
T
P
re
e
s s s
lC iat s U n ei u
tr
o- th2 G
( sp Nd : 8 )
c
y egl i ovGn
de 8jr
is) a cn sac l e k
e
S i n g vl e e - d ws e a s ls f l ei v gl a n so ocep d ua v ru ar to m c i s n ua rb hlul s u b t j a e i c n t ht e y ed d r r t on oso ant w ael t a ih hcys d r teo t si trn ane t p r a c t ai pc na be l t ue m ,U e-a (t soi c t9 f . G 9 )
i
ma y c
E d i
it ot t y h s ebe phm r a as ae ap flr t ned l ls ets e u1e o1 tr h t e s t i a t/ m s i f f b e er ent n woc a eet r m e om spn par h eeal r s t i scm u in r ndh e i e m d s u e n at eb prs rno e U al s -ul s ( t u e r e9 . f G 9 )
P
n
T V t
d
e tu
m C e a U t - soi
c
t 1d
:
0e
G
0
em h se o t it f goh e l pnolh ocd a w o i tngnA ne fg eC o S f sr P o mM r e S s e V s c De tI 1l iT IIs co nIoh Vp h a. 4 at .r 4 .gta e he s ex cn rf ser C ho di e s .
e doos E s r 2 pru t 7
32
PRESSUREX
E
FORMULAS N
O
T
A
T
I
O
N
P= P = d.= L =
External design pressure, psig. Maxunumallowableworking pressure, psig. Outside diameter, in. the length, in. ofvessel section between: 1. circumferential line on a head at one-third the depth of the head-tangent line, 2. stiffening rings 3. jacket closure 4. cone-toqdinderjunction or knuckle-to-cylinderjunction of a toriconicalhead or section, 5. tube sheets (see pa e 39) t = Minimum requiredwa fithickness, in. m 2
A.
D.
1~ t.
,
CYLINDRICAL SHELL Seamless or with Longitudinal Butt Joints When D./l equal to or greater than 10 the maximum allowable pressure: 4B Pa = 3(D0It ) T value of B hshall be determined e by the following procedure: 1. Assume a value for t; See pages 49-511) n d Determine L/DQ a b oI 2 E Fn U G t i O ( e - g42) .2P rat8 the.a. value O g a n5 w t L/Dpheis greater r e t 0 of L/DO. E than 50, and at 0.05 when L/D. is l e 0.05. h oo r i z t vo t n tl a e rl el ipyh r e s ne o 3. M
A
—
t
i
!
m z
A
B
.
A u z 2
u z t E M Lal L
~ F O t p r/ o oi t noh t ie. rm m s nev ce ot t i eo o ayf i h n aA t l t dc e a t t el v r l m ol e c u te 4 E t n a p t p lhme i ac. crat be (e lh r e p i a aa 4 3a t vo4 aA M h7 l v ) e o ur tt tet iev c fa a p p t he cm ap l eb r l i a e t nu r e * 5 F t ir n t e orhm s e h. cm o to r i ieo zan ov n t a r t v e o aB ha l du e e f . C o t m m p a u ax h t l i el m wo uw o e p amr b kr l s r e , Pa.u
If the maximum allowable working pressure is smaller than the design pressure, the design procedure must be repeated increasing the vessel thickness or decreasing L b s t i rf f ei n
A
F
* a c
v p p b c
F ao A l f o ua t tl er l l s o i t efnh g tl ei mc pa leb r lt a ie vt u nof r a ePOh e l a l a bc t u fl ao tn r eeh md u l y ae ~ A
t
s
1 !-$? 2
Pa =
1 W
t
hv g
W
S
TI I
F RF T E
b aG N p N II H N
p
3
/t)
(
D
oaD eh il l no tu e 1e /e th fs t i i t Cv U eGoh - 2 n s8 d ( n Che ) i e de . Gl
0
33
E E DATA S
D
I
G
X N
P = IS e x dt e epressure r sn ai l g n D. = 96 in. outside diatmeter of the shell fe ths ra sl n t ef ot ge i al e l nmn 4n igf t O ie n=e 5n o i ett Length o t v H 2 e e l a l i :pd s o s i d 1 a M a o t s e S rh- i C eap 2 l ll f8 T e m p 5e r Fa t 0 u r e 0 E = M o of delasticity u ol m u a s t2 e7 o p 4 ) a g n e D
e
t te
rr
em
qis hnut ehhi
l la
A
e
° ,r 3
0i p 0a @05l f , ,“s 0 ( 0 c0 i0 s Jh
i r ce eek dn i e
i mcet =k0e n l i e ( s. l ps
5t
n : 7 8
s l s
: 4s 5n a
.
ae? 0
.
A
s a s s t huh
e 0 9g
. e
e
L
eL = 592 n in. (length g t of shell h 576 in. and one third of the depth of n . ) heads 16 i
)
Do/t = 96/0.5= 192
L/DO= 592/96 = 6.17
A=O.00007 from chart (page 42)determined by the procedure described on the facing page. Since the value of A is falling to the left of the applicable temperature-line in Fig. UCS-28.2 (page 43), P* = 2A E/3( DOlt) = 2 x 0.00007x 27,000,000/3x 192= 6.56 psi. Since tlie maximum allowable pressure P stiffening rings shall be provided.
is smaller than the design pressure
Using 2 stiffening rings equally spaced between the tangent lines of the heads, Length of one vessel section, L = 200 in.(length of shell 192 in. plus one third of depth of head 8 in.) L/DO= * a
3000 f
G
‘k *
i
*Z
‘ ‘
d f
=
=
from chart (page
=
s
: + “
=
e
t ap
c
r( h
4 po a
e b r t m p i r n oe dhcd ee c a i g0 n eg
Pa =o 4B/3(DOlr)
a rm 3 g t
sd o cuy r er i e b .
= 4 xQ 3000/3 x 192= 20.8 psi.
●
GG ‘;
“00
e
Since the maximum allowable pressure P. is greater than the design pressure P, the assumed thickness of shell using two stiffening rings, is satisfactory. See page 40 for design of stiffening rings.
) e
34
EXTERNAL PRESSURE FORMULAS NOTATION = External design pressure psig. P Pa = Maximum allowable working pressure psig. DO = Outside diameter of the head, in. RO = Outside radius of sphere or hemispherical head, 0.9D0 for ellipsoidal heads, inside crown radius of flanged and dished heads, in. = Minimum required wall thickness, inches. ; = Modulus of elasticity of material, psi. (page 43)
SPHERE and HEMISPHERICAL HEAD B The maximum ‘“ = (RO/t) allowable pressure: The value of B shall be determined by the followingprocedure: 1. Assume the value for t and calculate the value of o r m u / ( l) (seea page49) : A using the f 2 E t
v
t n a p t p ml h ei a c c. t ar e(b hel r p4e i a a3aa l rgo a A. h Move l vertically u e to ethe applicable f
temperature line.* 3. From the intersection move horizontally and read
t
R.
t-
R.
DO -
t
v
o aB h
l
u
e
e
f
.
*For values of A falling to the left of the applicable temperature line, the value of POcan be cal~~–•°à–•Tá–•Xæ–• culated by the formula:Pc = 0.0625V~R0/ t ): If the maximum allowable working pressure f’. computed by the formula above, is smaller than the design pressure, a greater value for [ must be selected and the design procedure repeated.
2:1 ELLIPSOIDAL HEAD I R. t +%
DO
The required thickness shall be the greater of the following thicknesses. (1) The thickness as computed by the formulas given for internal pressure using a design pressure 1.67 times the external pressure and joint efficiency E= 1.00. (2) The thickness proofed by formula Fa=BARo/1) where&=O.9 00, and B to be determined as for sphere.
ANDDISHED HEAD ASMEFLANGED
( T O R I S P HH E R I EC A L A
R. ( +
f,
The required thickness and maximum allowable pressure shall be computed by the procedures given for ellipsoidal heads. (See above)ROmaximum=D,, W
D
35
E
X
DESIGN DATA: P = 15psigexternal design pressure Do= 96 inches outside diameter of head Material of the head SA-285C plate 500°F design temperature
Determine the required head thickness. SEE DESIGN DATA ABOVE Assume a head thickness: t,=0.25 i
R = 4 n
i
8
.
.n
A = 0 . 1 2 5 / ( 4 8 . =0 0 / 0 . 2 5 0) 0 0 6 5 F F rU Ci oS( - g4 2p m 8= 8 a.3 d2 eg5 t) e eb r 0t m B p i r n 0 oe hcd d e s o c t r f i bap e hc da i g nn e eg .
Pa = 8 5 0 0 / ( 4 8 . 0= 04 / 0 .p245 )
,s
2
i
7
.
~ e
.
d
uy
er
.
S t i m an xa h cl i l mweo uwo e pamr rb k Pa le isiesexceedingly ns ug greater r e than the design pressure f’, a lesser thickness would be satisfactory.
For a second trial, assume a head thickness: t = 0.1875 in. i 8 . n0 0 . RO= 4 A = 0 . 1 2 5 / ( 4 8 . 0 0 /=0 0. 1 8 7. 5 ) 0 0 0 5 B = 6 f 7 c (r0 hp a0 Pa oag = B/(RJt) e, r 4m = 3 6700/256 t ) , = 26.2 psi. The assumed thickness: t = 0.1875 in. is satisfactory.
SEE DESIGNDATAABOVE. A
sah s
t
uh e i mc f =k 0ae n
Procedure(2.) e. i s d 3s =: n1 x 2 = . 5 in.
.
A = 0.1 25/(86.4/0.3125)= 0.00045 B = 6100 from chart (page 43 ), Pa = B/( RO\r)I= 6100/276= 22.1 psi. Since the maximum allowable pressure Pa i g P t
a
s
r t e t adh t s hh u i i m cs ak et eni sd e f as c s t o r ys .
t ep e rhass r e
i s n sg e
SEE DESIGN DATA ABOVE. Procedure (2.) Assume a head thickness: t = 0.3125 in., RO=,DO= 96 in. A = 0.125/(96/0.3125)= 0.0004 f 2c r ( h 0 4 p o Pa a =0aB/( 3 rm RO/t) g t=) 5200/307 e , = 16.93 psi. B a5 Since the m ~ t
a
s
a xa l i l mpo ruw Peam i sbg ls r etu e rt adeh t s hh u i i m cs ak et eni sd e f as c s t o r ys .
t ep ae rha s r e
i s n sg e
36
E
P
X
FORMULAS CONICAL N SE(XION D
CONE A
WHEN a IS EQUALTOORLESSTHAN60< and Dl\r, > 10 a ax l i l pmo r wu e am s bs l u e r The m
L
‘a AX D
4
,
‘
L
3(D,/f,.)
=
“
s a v s forauthickness, ml ~., e u e The valuesof B s b determined h a by thel followingprocedure: 2 D e t t eL., r andmthe iratios , n .L/Dl e and , 1 A
s l%
D1/te 3. Enter chart UGO-28(page42) at the wdue E a 5 wn L/Dl t h e of LJDI (.L/D&)( h o or0 i tz tov n t is greater than 5 M line representing~it. From the point of intersection move vefically to determine factor A, 4. Enter the applicable material chart at the value of A* and move verticallyto the line of applicable temperature. From the intersection move horizontally and read the value of B.
te
a
L
I
a DI
‘1 NOTATION A = factordeterminedfrom fig.UGO-21L0(page , B = fhctordetermined from 3 charts (pages 4
5 C4
o
t m m p2 a u ax h tl i . l ewmo
owu e arm
pressure,Pa.
4 7 ) c lh l I eu Pa fdis s f e e mdt at dl h l ep f er has etr si sn ( aa g xl r d )e e e t ,e ds s i pe gr hs o nmust ci ,be e repeated gd e u n r Dl = outside diameter at the increasing the thickness or decreasingL b
a = o
D s= E = L = Le = P =
h
o t
ian n pdn eeg
large end, in. outside diameter at the small e i n modulusof elasticityof material (page 43) length of cone, in. (see page 39) equivalent length of conicalsection, in.(L/’2)(l+D~/Df) external design pressure, .
t
h
i ic
k
n
effectivethickness,in. = t Cos a
n
●F
v
d
. oa A f ol
at ut l l e ol r t sia e h n fp
g
cable line, the value of P can be calculated by the formula: Pa = 2A E/3(D,/t,.) For cones havingD A ratio smallerthan 10, see Code UG-33(~(b) W
HI G
ER
ETN A 6 a TH
E S RA 0
The thicknessof the conesshallbe the sameas the required t h i f c a kf nh e o lt se s
Pa = flbum allowable workingpressure, psi t = minimumrequired te =
using of stiffeningrings.
e
sn s d , P c
i
o w oa t. mc
e h qt i l u a co a r hfu hl g t e ot he nr ef e .
r a o d v er eiq i dun o f ate o ctr y j l u i nSn cp d t 1 eu ar e e
coe i n n h . g5
37
E
X
DESIGN DATA F’ = 15 psi external design pressure Material of the cone SA 285-C plate 500 F design temperature CONICAL HEAD
a =2n
D( = 9 i
e2 6 g. D, =r. O e
d
e5
Determine the required thickness, t Length, f. =( D1/2)hncx=48/.4142= 115.8,say 116in 1. Assume a head thickness, t, 0.3125 in. 2. fe = t cosa=O.3125x .9239 = 0.288; / )l= 1 X +D(1 + 0/96) 6 D = 58 1/ L, =L/2 ( L, /~, =58/96 =0.6 L), Ite = 96/,288 = 333 cf ph r 4 a oa r mt 2g , 3. A =0.00037 ( 4 ~
=
(5
c, f
2ph r 04 a. 0oa r
mt g3
s
L (1 A7 2
1
w e
,
e
) )
4 X 5,200 = 20.8 psi. . 3(333) Since the maximum allowable pressure is greater than the design pressure, the assumed plate thickness is satisfactory. 4B
5 p,, =
3(D,/t@)
=
CONICAL SECTION (See design data above) DI = 144 in. D
e
L
D, =96 in.
a =30 d
t t e r r em tqi h nu i eic e
rk
e ne e e d s
L n= [ (gD r D t J )h / 2=], / 2t a n4 a= /
g s
. i 45
m 1
Le=(L/2)(1 L
w
1 t i m
s
4n .
6
.
0 i . 3 n7 ~ X( O ) . . 8 3. 6 , 76 =5 0 . 3 2 4
+ D~\Dl)=41.6\2 X
+ 9
I
$
S
O
, 7 17
a
2 t =tC
.
’
6 = /3 1 4 4 4. ) 6 Le/D[ = 3 4 . 6 7 / 1 4 4 = 0 . 2 4 1 D1/te= 1 4 4 / 4 0 . 3 2 44 =
4
3. A =0.00065 (from chart, page42J
4 B= 8( , c f 6 ph r 04 a. oa0 r mt 3g 2 1 4 4 94 6 4 X8 6 2 5. pa = 4B = 3 X (144/0.324) 4 4 3(DJr J s i . = 25.8 p an xah cl i l mpeo ruw e P. eam is sbgreater ls ethan u r de the ep rs e i s
P, the assumed thickness is satisfactory. EXAMPLES
7
&
, 0
sg
u
39
E
P
X
FORMULAS
7 L J
o T
R
L
Use L in calculation as shown when the strength of joints of cone to cylinder does not meet the requirements described on pages 163-169 It will result the thickness for the cone not less than the minimumrequired thickness for the joining qdindrical shell.
7 H
Use L in calculationas shownwhen the strength of joints of cone to cylinder meets the requirements described on pages 163-169
r L. 1 -a
40
E
P
DESIGN OF STIFFENING
X RINGS
NOTATION A : Factor determined from the chart (page 42) for the material used in the stiffening ring. A, = Cross sectional area of the stiffening ring, sq. in. DO= Outside Diameter of shell, in. E = Modulus of elasticity of material (see chart on page 43) 1, = Required moment of inertia of the stiffening ring about its neutral axis parallel to the axis of the shell, in.4. f’,, = Required moment of inertia of the stiffening ring combined with the shell section which is taken as contributing to the moment of inertia. The width of the shell section 1.10 @ in.4.
L, = The sum ofone-halfofthe
distances on both sides of the stiffening ring from the center line of the ring to the (1) next stiffening ring, (2) to the head line at depth, (3) to a jacket connection, or (4) to cone-to-cylinderjunction, in.
P = External design pressure, psi. t
= Minimum required wall thickness of shell, in.
I. Select the type of stiffening ring and determine its cross sectional area A II. Assume the required number of rings and distribute them equally between jacketed section, cone-to-shell junction, or head line at % of its depth and determine dimension, L,. 111.Calculate the moment of inertia of the selected ring or the moment of inertia of the ring combined with the shell section (see page 95). IV. The available moment of inertia ofa circumferential stiffening ring shall not be less than determined by one of the following formulas: D02L,(t+A~L)A ~, = Do’L,(t+A]L)A {,= ~ .s 10.9 The value of A shall be determined by the following procedure: 1. Calculate factor B using the formula:
“’[*J 2. Enter the applicable material chart (pages 43 -47) at the value of B and move horizontally to the curve of design temperature. When the value of B is less than 2500, A can be calculated by the formula: A = 2B/E. 3. From the intersection point move vertically tothebottom of the chart andreadthe value of A. 4. Calculate the required moment of inertia using the formulas above. If the moment of inertia of the ring or the ring combined with the shell section is greater than the required moment of inertia, the stiffening of the sheH is satisfactory. Otherwise stiffening ring with larger moment of inertia must be selected, or the number of rings shall be increased. Stiffening ring for jacketed vessel: Code UG-29 (f)
41
E E DATA: S
D
P= D.=
1 9 L H M T E= M o 1 = 0
p
I
G
X N
,e
xs dt e epi r r s5ne . asi sl g u rn e . i o u nd t i sao. t m i s 6 de , ht e ehe r l fl e . eo t nv gfe ths ra h st n t ef ot ge i al e l nmn 4n igf t O ie n=e 5n o i et 2 e e l a l i :pd s o s i d 1 a l a o t t es tr i i rf haf S el - in i f ne ng 3 g A 6 e m p 5e r Fa t 0 u r e 0 ° o o de l u a ols m t u ai sct2 ie7 t ,rf y0i p 0a@05l f , ‘,s 0 ( 0 c 0 i0 s h p 4 a 3g n e ) i . t h 5 i o csn 0 k nh 0 e se. s l f l
I A a z =
II. U s o h
o n6 x 4 g s3 i 4 .
. ae
- s l .e5n l e /e 0q n , 3
cf 1 t . .
2 s s t ii fr fn e i ngq i n nu g ag pb ea o t cn wet e -de td e eh ni hp r ( e f i as gLj =du1 e in. rf s e e) 9 ,
m o oh m i ne o e tne III. T selected angle: 11.4in.
1. T
n : 7
v
o aF h a
lc
t
r t
uo e r
B= 3/4[PDOjct
t e1
i 3f
=
3/4 ~5 X 96/(0.5 + 3.03 ~1961
= 2095 2 S t
2
t i v no a B hi c l l . e u e e h 5 a0 0 n ,
e
A = 2BiE. = 2 X 2095/27,000,000= 0.00015 IV. The required moment of inertia:
I
[1102L$(r+ A,\Q4] , = 14 S m e S t i a S p
962X 196X (0.5+ 3.03/ 196)X 0.00015 = g 97 in ~ = = . . 14
t i r e n qm h cu o io eim r ene e( de ni 9 r ) it ts . im fnt 9a a t l7 h l ” e ahs o o i m n oe te ns r et t al hi ef( na1c i t fg) ete vd l. nei ae h s 1 4 s ” de q su t a i t f ef el n y e d . i r f fm ei b ns in unt algbg a bj sut e cyTe c kes r tl hiab con lo g ni . us d t d t ir te im q ho u no on i i mr n o e ee d rn t t i a f . a g fe es ~ t 9 i 5r f - cof 9ae e l7i cn ui l narn tg i o ng s .
i l ds
ed
4
2
owl
Cacml
.
001
0
1
SA
SL
A
THE VALUES OF FACTOR U
I
FS
O
REM F
UV DL E ANO U SS
A
S NE E X R D L T SPEE R R
E N R
U
e Uolwj
-
I
I
I
I
n r I I I
i
z
I I 1 I
I \ \ w
II
111111
I
# , I l
w
8
Pa
E
45
46
..
t
t 1
I 1
I 1 I I I I
1 I
1
1
I
1
\
,
,,
,
I
\ I \
e Ho13vd
.
Y-RII\]
, I I
I I ! 1 I I I
I I
I
I
t
I 1 I
I
.
u)
.
!
Ua
E
4
48
E
P
CONSTRUCTION
X
OF STIFFENING RINGS
LOCATION Stiffening rings may be placed on the inside or outside of a vessel.
SHAPEOF RINGS T
r
m i b h o nr e ac g t oea a ns og y u s let eafn rc h t
i e ro y n r s
.
CONSTRUCTION I i p r e ft ue rp a ilb tc l ssoae n st t a rcoe ou emc pst o is innt ge -s s et c ti ri of n f i e r at ut hs hs t easai tnr r nd us n ac hg trT ua dr r p ae f le th a sl ns. h oo oi ei ni n oe t d i f f oih rc u o l h t l i eseel ts ri aus n c fh vtgb ua a ry pba leel uo sct n,as ue t shoc s t a i td r j t t t u ich yus or not vht ase t g Fhu o l reh e ed a li o avfrl eme t . ge s rt s ee m a xp e i r m o i uos rsm io b uul c ne r d n ei eat 1a s–f 2 si u g l bnn te t nac w t s a h t h r e T ni c lh benhe l l idg aimie t i . vn s ae tnmr eeh tde o i t m cr f aibe l ie h c o o t pu ui ls he act T tt s ti f eeo ccen hbtsnf .i col a i ne ansu o rs mn t ot e ee l a t b u h tn t -t weo e igld pd en e ltd h a e c r e n .
n r
r a
DRAIN AND VENT S b d a
t
i r f pf i o f dt r i ah ma t d n a on
F r
t m s iC
ao Fn
e li ntn aei r gc no h ehsso rd i is z nd hhoe nea het aaof l gl oa l tv s l ae ln t a oo ia t nm t a nf gr v eh Poe r do a nct o et hi pt c o r aa 3.lani l y e ob t oe a l rh1% t i t ed noitn e ahm ma ct ed ot t i hse a l rht i o s fe a tc e tf s oef ct deo hrns cd tFei tt iisA eo gns s u. r e . xah oi s m r l uhreu mn ees u pblc pf efo lor c tg te ai d s u t oei Ug Gg d., u’ e 2 re 9 .e 2 .
is a f ef
e
WELDING According to the ASME Code (UG 30): Stiffener rings may be attached “to the shell by continuous or intermittent welding. The total length of intermittent welding on each side of the stiffener ring shall be:
1 f r o i t oo n u nt ghl. s r t i s ode no hehe t, s o aan tu c s it hrln cs ue mi ff ed er ee o t v e sh s e fle ; 2 f r o i t oi n no t ghs.v r esi n nlshd et s e o ee o t fh l e o h,st nac t i i s rn rh ce f e o tr v e e n s hc s e e f l e . W c h o r ea r l o rl si o t i ebw op a nr n o ct v es i t di rfes ho fdse e , bin ah i t ne antg t the shell with continuous filleto or seal weld.ASME. Code (UG.30.) M S pa 1 tf i n 8t f e x
a rt rt
cx oe o1e
i ri ri
n. n2 n
a
lc g
g a rn l ar n l
4 1 F
E T t
X
A
f t
h
F iA g u r e i M R P LO : T 1 G I E UN Sx 3 Il Sf D %wE f 4wE i R II NN S? Gx 2I l SD
iB
g
o lg6 ec l ” o lg6 ec l ”
u
r
e
te” l . t r te“ l . tr
w t l h e ei s g b -e nhl esl tit a dzt e osel h m ols at hae fl t o l s l en1l hiose wt i o cvh k w e n o es seta s sia t f e jlf f le o n l hie r r n tt e .
i
d d
n /f ge
49
CHARTS FOR DETERMINING THE WALL THICKNESS FOR VESSELS SUBJECTED T U T C
~“
F
V
t s c ih t ah n rw r digt i i asef a f, l set trss h e uih nc mckt nbe ea ds vs aeo s i d c h bh a d ree a v t iee a esl c oc s pown er tdd da i n emcn ehtse o Ait h gh S e no S o e V dc D tI e i i 1v I ,o i nsI i ,o n .
1
30 040“
50
602
70
”80 090 100 110 120 130140
150 160170
180 190200
SPHERICAL, ELLIPSOIDAL, FLANGED AND DISHED HEADS (Specified yield strength 30,000 to 38,000 p i n sc l u is
i
v
,e
)
T f t r i e hq hnut hi e oi r d1c Deke aedn t e Res2d rEs m : t inc n . aet th vh e a , a. r hr o R 3 M v e o r t t t i ev cfm ,ap .llee lr4 yaM i t uh nroo oer i e za ovr n, tt a. ele nl y a I
t
R
D.
= R = F F F
e qh u t ih e ir ci e k ad n e h e m i so ph h e etr i i c ar a nlr d 2 e l l o i h:p s 0 oe i .r d a1 a9 f l a a od n ih g n s et r i hda
= Outside diameter of the head, in.
s dn s , . has i s d i , i d eu n e s , . l dx Ds 0 ncedd hsrdrs ai i,o RmW=Do dd e w i e u nn s
,
50 CHARTS FOR DETERMINING THE WALL THICKNESS FOR VESSELS SUBJECTED TO FULL VACUUM 323.
525.
5m.
502
475.
475
a
m
6a
Qo.
e a
37s
375
35a
350.
s
225
3m.
2m.
27s
27s.
Zm.
m
225
2Z-3.
2ca
a
175
r?s.
Isa
(5a
1=
123.
Im
Ice.
-Q5
L
!Ea
I
D
!
5
14
l
Isa
1
3
laa
1
2
I la
,
Ioa
I
m
90.
m.
m
70.
n).
30.
a
3a
30.
Q.
a
2a
m
m.
m.
la
3
d
5
67*9
2
1.
3
*
5
C Y L I N DS R I C H A LE (
S facing page
f
0
7
a
o ,..
L
e xe p l a o en a t i o nr )
!0.
L
51 CHARTS FOR DETERMINING THE WALL THICKNESS FOR VESSELS SUBJECTED TO FULL VACUUM 525”
\
10
Is
,Xl
.25
.32
.sS
.4
.5s
.50
.%
.(M
.05
.70
75
.s0
.03
.90
.95
!.00 S5
Soo.
X0.
4?5.
415
492.
441
-Q5
45.
-QO.
-no.
3n
3T5
330.
330.
325
325
o ~. n 2
X 7
’
5
.
2?s ?3a
—’2EQ. 2?5.
2ZS
ma
290.
ITS.
17S
,3.
Isa
125
!25
ICo. .10
. 15
.20
.2s
.=
,35
.Q
.65
.542 .55
.m
.63
.m
.75
.m
.55
.90
.s5
ICC.. ,.m
t =
C Y L I N DS R I H C A LE (
S
p
ye
T f 1 E 2 M M 4 M 5 E 6 M 7 M
t
t
= =
L
= L eo t 1 D i t 2 T g 3 T d l p
T
l h v h c h v
ir3e e e d0 t nl 3 , g d8t0p
hi , 0n
L
0sc 0 l 0u ois 0 i
v
,e
P J “ Bo H Y D R O CP AR L P o J “ g S ia
)
r i e sq hn ut hhi o i rdce e ke dn l e s l s : n c o t ( h wf e p a. e ar act r vr i g ont aL ehg l ) u t e e o or i z t ocv n t ur .a eel prl ry evDs e e n ot si n g . e o r t t t i ev c m a p lle l r ya ti u ro e n e o or i z a ov rn t D.a el e nl y o a /d d t n a h t a bt a ev o . or raD vh t l eo u t e / e f t o or i z t ocv n t D.au el l ry v o e e o r dt i va c roa . lt e l v ewyn o at han l d du e e f
o s ih e ln l f , . oeg v hst s e ehs st c efasteat li l e okra o l nt r ehf , og l n e l h oss e w t et t att nwa !c e.nohe t ieg h ne np e on e hte t al o ths d nfu eio es hrs h r a in u e ni s r go e sn de t , . r d e ih ab s t et ae at. t se naw t ck e snej etw a i nr fc fi ei ye nonn ti ng n g i f s ht t c ar noe t. ceohfn es tti mi her f er tf rt e hisnf tei nt ane hg n o i thirdl of t n h n u d eeie h s ep l t n e h d , . vn bs
h
C o p y r i g
c s i i tf
L
i pe s gag
e N a. A s C eSe.A , dod M . . d.nC wde FE hn V eid aTe a hn rsi ” c d s kt n es e RO BC O E5N SN S 5 IM N 1G , po 2 9a 51 7. , y7 6 . . m A.np pl , i tp f. . r..i P, oeA r daVe c H seh sD s ueeo Hsr s Yeie D a g Rl nO d,C ”A N o v1 ep 2 m 9 b 6e 7 r 5 6 . . h t e d
52
D
T WIND
T LOAD
The computationof wind load is based on Standard ANSIiASCE7-93, approved 1994. The basic wind speed shall be taken from the map on the following page. The basic wind speed is 80 mph. in Hawaii and 95 mph. in Puerto Rico. The minimum design wind pressure shall be not less than 10 lb.hq. ft. When records and experience indicates that the wind speeds are higher than those reflected in the map, the higher values of wind speed shall be applied. The wind pressureon the projected area of a cylindrical tower shall be calculated by the following formula. F=qz G CjA~
(Table 4) ANSI/ASCE 7-93 STANDARD (References made to the tables of this standard) Projected area of tower, sq. ft. = @x H) Shape factor = 0.8 for cylindrical tower (Table 12) Gust response factor = (G~& GZ)* When the tower located: in urban, suburban areas, Exposure B; in open terrain with scattered obstruction, Exposure C; in flat. unobstructed areas, Exposure D. (Table 8)
= Velocity pressure, 0.00256 K, (1~2 IESIGN WIND ‘ R E Sl S m projected
a
o t
U
R kEb ,
I I
*See tables below for values of q and for combined values of Gh, G,& K,
Wind speed, mph. Importance factor, 1.0 (structures that . represent low hazard to human life in event of failure). Velocity Pressure Exposure Coefficient* Exposures B, C & D (Table 6)
VELOCITY PRESSURE, q Basic wind speed, mph, Y Velocity Pressure p 0.00256 V2,q
70 13
80 17
90 100 110 120 130 21 26 31 37 44
53
DESIGN OF TALL TOWERS WIND LOAD (Continue~ COEFFICIENT G (Gust r Abo?eE~~~~d,il. 0-15 20 40 60 80 100 140 200 300 500
f
EXPOSUREB 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.9
c
w
E
EXPOSUREC 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9 2.0 2.3
The area of caged ladder maybe approximated platform 8 sq. Il.
C EXPOSURED 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4
as 1 sq. ft. per lineal il. Area of
Users of vessels usually specifi for manufacturers the wind pressure without reference to the height zones or map areas. For example: 30 lb. per sq. fl. This specified pressure shall be considered to be uniform on the whole vessel. The total wind pressure on a tower is the product of the unit pressure and the projected area ofthetower. With good arrangement of the equipment the exposed area of the wind can be reduced considerably. For example, by locating the ladder
90 degrees from the vapor line. EXAMPLE: Determine the wind load, F DESIGN DATA:
t w b v d
s
V D
vessel height, H Diameter of tower, D Height of the tower, H The tower located in flat, unobstructed area, exposure
= 1 =
= = = ..
m 6 fi~ 80 ft. 6 ft. 80 ft. D
The wind load, F=q x G x (9.8xA qf t r a= psf ob l2m e G from table = 1.8 Shape factor = 0.8 Area, A = DH = 6 x 80 = 480 sq. ft. F =26X 1.8X 0.8X 480= 17,971 Ibs.
6
W
MAP
S
(miles per hour)
.
r-v
—
(q 90
i
u
j-----
---
i i ---- =“r ~-i_.. _.T‘-.’ i----
m
. .. . .. . ... ...
my ,-—---- —-/
‘&—— ,, ~ A
I L
A ‘
S
K
’,
A
i
.- \kl
2
.
M
W
S
(miles per hour)
NOTES:1 V 2 3 4 5 6
a a f a l s ts ue r asp3 et t -a.e ms g i ebel fre edl o ox cs p uva tooCa 3 t n. sae ea ud sg r s ro neo r c yi w a a ipn r ono bt0 au b . iah l n i0l t y 2 f . L i i n t ne br peeow l tasa t. cwiri poo eni an ecn t c n oee pud t dra bs l e s . C ai t u o wt s i hc oisp o. in m n e nont eu oerne f tudeoa Adri g nsi laoi udnaos v ns i s ks ef W s f iHp i a8ena fw o Pe . daRu di n9i em or ii r s 0p tdc r o h o s 5 . W l hr o eo et c cei r o nr h.a r de r 5 idi la 0wcgs is-a rhnptyi seee b uhearnh dr s a esd e, l W s m i pb a sent b sac e . uo db nm d e cs ye to te adawat sn noe te eit el ncainnh nor l en e at ds oe
56
D
T WIND
T LOAD
l a i a o l tm n e a erb dn to ads ht st es ASA ao nA58.1-1955.This ed d da rn d Computationof w b b s s o u l ti es u s tic e oa loe f t om ldc d ron enu e e n i ts rg di ne s standardis o T t
w m
T a
t
p o t
rih fh
ae 3 s fn ls e ua de r g tbe v r f o tteo0 U v. u l nSo en h i ti ds t a a ap hc a e i p g nn e eg .
ohr e t e
b a hg e b t i lw l epvo re i h eew f s v nss au he r ode e ai si o g bg u rhf os t ot i r n d be i t c ma a t s eah d p y e . W C
P
H
E
SR I l
RI
E
I I 20
E p SW N S TU H H DR O ER EIH Z O w●NN T EA L O SC QTSO IU R SEO C A TN AR N * G E U L R A R G H M AT R A E A P S 2 3 3 4 4 o 5 5 0 5 0 2 2 0 5
. doe
vs u
o
0
5
30 to 49 I 25 I 30 I 40 I 45 I 50 I 55 I 60 [ 50 to 99 100 to 499 I 30 I 40 I 45 I 55 I 60 I 70 I 75 I
EXAMPLE F
t
T a
v m
I I F w
wi
p
rinh
P e
fs nd sm eur d r a e o
ie i h ns tt s oe r a 3 I r t e km
t t
h h c
y p
ez ez
hli hfi
w p
.
enpe i dO le ekr s dl aw a ht oi ohie tm wian , p c ri h m e h s n ss n e 0aeh a t d w rai p . rnihe es f sp v ns a au he rr od ez i s ioa o ug r n rs h
t o g 3e nfh hen 2t s l o3g t r 4nh fen 3t o l
ape ts s f n b 0e .q t 5 pe s m t f 0b oe 9 q . t 0
. .
r r
. .
. .
l i ton d t or i v ch wra as l e ebl hm suur al eebt si ls p f lh l i a0 ee a td c t .p t h y oe 6 ri ie d s ni s f z uf d rewo reb 1e n ain n 1t e l lp ssn f l r bee se 5p qde tc 8 t .i vr e .
I m e q a u i a p na m t e f tnty trta st c hi o i eahe f a( a cc ct t oB r ro d o uir wnt n0g e f l c . loy )l U e s
m
dw v t iieo sen a rtc bs r tl s eeh a h i v8on dpe ro si5 c sra l e l .
o sv e eu s s rss u pe sfa elmlf acs nl ui fyo aft c tw y u rp e r rri hs w e s in rs t eu h d re o l sp p p .s l f reTb : e q h t0 r t t e h n ez c h i oo emg ano h e rF et ae e xs a a3 or m p e p c r i se f sib hecs odu na r st eibl du e ln r oeei t d f w o v ohr hee m o s snl ee
Relationbetweenwindpressureand windvelocitywhenthe horizontalcrosssection is circular,is givenby the formula: w
Pw= 0.0025 X VW* E W
X
A
M
Ph
= we
Vw = w P
L
p v
r i l e pe s s n fs W u b dre e i ml o n c i p dt
qe t y
E
o
1i m v n e 0 el p d o xa pcf 0er i eht r s y st u s r e : .x Vwz= 0 2 p0 op2 e r s uq5u a r ne f o o dt po r5ne ts hs ue rpe r o j e oc ft ea dc a yr el ai n d r ae a h s oe 3s f i ea g gle b h r t oot e uf v0 nt ed .
Pw= 0 v
T t w o hp tri eo a s tne s l i ou t d r p we r o oehtn du r pu sr cneh ea t st i s f ue n p r o a j oe t cr t t eoW ed hgw ai ea r or f r aet no . gto ee hmq edu n t hit ep mx e pf h ne o a o t rw c eb ihr e anca do f neu s di cd F en eer ea dxb l aby ol .m o p tc l l a er ta , i hd n 9 d e f g t rvr e l a e o0h i s p nm o e e r .
M
W
P
57
.
58 D
E O ST
IT
AGO
NWL
EF
LR
S
WIND LOAD
~ =
v=
t
N O T A T I O N W o ti v w de i hnst si e suh f l etfta e t l ic hot E E f f o it cw i jee no hl c iy d n e f t e d s L a ef rv e tm r , . D i f s b t t ras naeu cocc eons tn s mii df d eoe roean H,HIHZ= L oe v noe v g ss e te sfs ch e st f il e ot r l n M =M a mx o(i t mbm uf el a ma hn s t t be t MT =M oa h mhe f el i n g ~t t h b t t , - ~ = r oea v dei a si s u n en s l f , R =M vt o m ra a eo lat s es cu rsp t t i e rau fs l e a =S s v =T s olh te ab rl , . f =R e dt q h ui c ci o kr ren e rxe docsi sl ,iu od nen
h,
T J_
-
t=R2nSE
P.D, h,)
= = = =
r
~z
hr(V-
-
D2 t Y~ I I 1
D]
i
E G
X
D
e
L S U S T M
h2
HI
i
A tt
! :)
x
> 4
’
D,
k 4u z %
P
~l
2 5
1
II = ~
-
e r 6 o X 2n =7 1 08 2 8 6 , 0 1 e r 3,960 o Xn78 = 308,880 1a 0 l M,4 69 f l 78 , 0 0 a hlt n n t t gi o te e mnn t e = . 5 X
X4 X
=
~ ‘ <0 s !‘ - J ’
A ”M P L E : i D1 =v 3 ft. 6ein. H n= 100ft. : Oin. hT = 4 ft. Oin. N a f 4 o = r pm s f D e tt ew r m m ioih n m e n e e nd t = H12= 50 f Oi t n . . V X h, = M Pw x D] X H = 0X 5 ,= 5 5 2 0 5 V e 30 x s 3.5 xs 100 e = 1l L a 3 xd 9 l d f e i= r2 t =n ,04 = 819 . 4. 4 4 2 x 9 = 24 3 Platform 30 x 8 lin. ft. = F oa V = 1l 3 M ,= 6 6 9 82 T o t I g M o a t mb eot anht l ntt g oi t e m n n f t I e g 5 k = M – hT (V f – 0 PwD, h=) ~ =. -
! ‘ O -
I z
w X t 5 i= p X t 44 i= t v = to e – 0
1
3 ,
= H1[2= 28’-0”
o 3 cX 4 p e 30’cX 3 o oa t bm
e
– 4 t
ew
P L E : ”= e ’= n - : = 0 ’= p0 s” rm m ioih n m e n e e nd t
= HI + (HZ12) = 78’-0” Pw X D X H = V X h = M
MT = M –
h,
M
=v 4 = 4
E G t
6
X 6
9 – 24 ( , 1 1– 30 0 X, 3 0 X 6 3 8.X 4 0= 6 . 3 5 8 f l ’ ’ m . S- tE X = A “ EFl M CP OL M EO L S B I O N P REA 6DA D
59 D
WEIGHT
E O ST
OF
IT
THE
AGO
NWL
EF
LR
S
VESSEL
The weight of the vessel results compressive stress only when eccentricity does not e U ih sh s et s u s e a f le l exist and the resultant force c o i wn ct ia i d o et xshtv c o m p dr et st s wi ou eni i hni s i gge an ohi i ef n i t cc ao nnsn t t or o l ld i sn t g . T
w
A E
es r
1 2 3 4 5 6 7 8 9 1 1 1
w e
B O
r
l a hcfe ut lt l v a lat co eeroh d ni
c e wt i i i gh on . hnct i
twl
c,u eo dt hh i e
C T
w e
c e tt i si g o i hn h t1 utt
w
e w i ie e w
sr e a
i ghs n h ct i. twl
w
where
Ct
w
eo d h ii
o
c,u eo dt hh i e
ce s oc en t .d il i o tn ni ts e. t r
c o m p hs r e dts st rit ev we u egs
=
soao fn h so w l
l ef oe
sg h h e et f : E q u i p m e n t s : 1 1 1 1 1 1
i n s u 3 l a t i o. f i r e p4 r o o f i .n p l a 5t f o r. l a 6d d e . p i 7p i n . m i s c e 8 l l a n e o .u
uf s g o h g s d h d et
: h e 1r e
ie e sr ce s oc en t .d il i o tn ni r a y . s p e f r ai t q i n u. g i d
1 v 2 t
do oti r ttu ei
m o
1
r y
d
uf s 8g
n g m r g s
h
.
e weight,which r a t i includesthe n . g weight of the:
p
1 v 2 t 3 o
T
ga
s h e l . l h e a d . s i n pt ew l r n ao a . lt r e k t s ur p p a o r . yt s i n s ru l ai t i n o . n g s o p e n i n g . s s k i r . t b r a i s n . e g a nr c ih o n. r g a nl 0c uh o .g r s m i s c e 1 l l a n e o .u s + 6 o t 2w 9 eo i h i . 1t tg % h feh 1er f t m o o v e ro w t ep i gal hwhat eat n i bfed e t w e l h d i n ge s E
T
h bi hc
h ibs i
n
sg h o
h e
et
f
:
n g e v oh e y e t
n
:
S = u s t pn r e i ss st , i W= w oe v i ae g t s b s h s e out ec hc fvnotl n si eid dlo ee rena t i ro c = c i r c u mo sf e or seh n oc teke m idl i ef hrali mr tae nt e e t = t h i o tc sk no she his k es i l f r en l t r , .
f vg f
eeh e rl st eea ngsmf t ei e it n rl bat v es b g eo i lpe n n 3en nai s n
g g7
60 D
E O ST
IT
AGO
NWL
EF
LR
S
V I B RAT I ON
A a r eo w s t ut i losa d ntwe vl vfei d be r r T l l a s pot i peoo t hnr v. ii b ohre s hb l o i sm u li li tn ad ena pd ert ce, ou vgr er i i beaco r ll ad t t fs ie aa of f tn a a i i ngl T a l l p oh weh ab r b c el i oeea m o f p det u mr ts ane pxodh e i r mm d i eus ef sml i e b c T s c ha h a l r v lmi beoei rnon dad i ti c is i ocot nu H s a hs s nest dd t i bi t o n nosr a u s a u p aa p t l l s l h isu ny ep e pdr t oi e ad r v rrt o e tsi h np s rt hi o n eb ig l e
F P
b i Tr sec. ao t
eo V r i
M a o V i
O
A x li l m Po w u e am rb b r a s t i o e nf ,
l i e c
o
O
T
D H
= O = L
g
= 3 = T = T = W = W
w
v
D
= 3
H
= 1 f Oi
g t
= 3 = 0 = 1 =
i o w
e
f Oi . f
t2 . 4
l l p
ce
e
A
S ~ z
( D )F T
d
=0
.
A
D : e tt p oe v 1 t 2n 5 0 t n 0 l s. e c2 7‘ o ~5 b4 0 b or an td i i nt n =
=
f
X
n
T a
R
L
A
T
I
r
O
~
.
a l
d
M
P
L
8
N
ud ti o asv mi ef ed s t e s e ert l f , oe v ni e n g scs tl f sku h de i i f l nr t g t f p s2 s q tea. eu c ca e c2r l e.e r da. t , i o h io s c ak t knb e i isa s h r s fn t e t e s olh t se bp a 6 ra.l e , g, e oe t ilo gw h eb t r f , . oe t ip of go h wh oele te i ofg r hbr t t E
i
U
T=
nf ,
t v w
v w
M
id o
N
G
R
. , n , e
. 1
f ,
E
ea r a cmm iht an a uxe nl ila eom l w u da mb i r b i r a o t id o f n . . . . 2 ’ ’ ’ ( $ z =j e = ‘ “ ’ . . gi o xn 1 = ~ ~ S 0 e 0 1440 X 32.2
“
v c i htdb rn u ea o tatx ei lv oi wb ar ab tl ie
eF r re C nE e cVee i : s b o er. V a , e t P ri . r ot : Veni
“
locoe n e h se o n
t d
sc eA sa f sPul S rs1 a e e M p9 l
61 DESIGN OF TALL TOWERS
S
LOAD (EARTHQUAKE)
The loading condition of a tower under seismic forces is similar to that of a cantilever beam when the load increases uniformly toward the free end. The design method below is based on Uniform Building Code, 1991 (UBC). FORMULAS MOMENT
SHEAR F~~
&l = [F, x H + (V – F,) x (2H/3)]
4
41 t
H13
Z[c ~ v—=
x
V—
IWX= [F, x
Rw
for X > H13 B
S
T
S
a h
T b t b t s
‘
eL
for X S ‘is
MX = [F, X X + (V -~j X (X – H/3)]
H
4
X
se
ae
r
s aih ht t esh oo e har esit zre osa sin e at shl a ml e i o a t a h oT t swr i ee al he n ro fgp au. a lad eat ir t n e o ht th a s o dph h wei due e ae to e that fg e aloading r ar m
are shown in Fig. (a) and (b). A portion Ft of total i o D s a i m d a hi i go c nr r si g az e ofm in Vt sois aassumed ml r ito becappliedeat the top of the tower. The remainder of the base shear is distributed throughout the length of the tower, including the top. O
v
e
r
t Mu
r on
i mn
g e
n
t
The overturning moment at any level is the algebraic sum of the moments of all the forces above that level.
NOTATION C = Numericalcoefficient = (need not exceed 2.75)
1 7?/3
Outside diameterof vessel ft ;=NumeticalcOef ficient ‘:””: = Efficiencyof weldedjoints =
F, = Total horizontal seismic force at top of the vessel, lb. determined from the following formula:
(b)Seismic ShearDiagram BaseS
h
e
a
r
F, = 0.07 TV (F,,need not exceed 0.25V) = O, for T <0.7 H = Length of vessel includingskirt, ft.
62 D
E O ST
IT
AGO
NWL
EF
LR
S
SEISMIC LOAD (EARTHQUAKE)
NOTATION I
= Occupancy importance coefficient (use 1.0 for vessels) M = Maximum moment (at the base), ft-lb. MX= Moment at distance X, ft-lb. R =Meanradius
of vessel, in.
Rw = Numerical coefficient (use 4 for vessels) S =Sitecoefficient -0
r
(a) A rock-likematerialcharacterized bya sheu-wavevelocitygreaterthan2,500feetper secondor byothersuitablemeansof classification. (b)Stiffor densesoilconditionwherethesoildepthis lessthan200feet.S = 1 t s depthexceeds o200feet. h A soilprofilewithdenseor stiffsoilconditions, s = 1.2 A soilprofile40 feetor morein depthandcontaining morethan20feetofsoftto mediumstiffclaybutn~ morethan40feetof softclay.S = A soilprofilecontainingmorethan40 feetof softclay.S = 2.0
x
H
L. L
for soil characteristics
Asoilprofilewitheither:
St = Allowable tensile stress of vessel plate material, psi T = Fundamental period of vibration, seconds = c, X t
= Required corroded vessel thickness, in.
=
IV
12 M T R2Sr E
or
12 M,. TR2Sr E
= Total seismic shear at base, lb.
W = Total weight of tower, lb. Distance from top tangent line to the level under consideration, ft. Seismic zone factor, 0.15 for zone 2A, 0.075 for zone 1, 0.3 for zone 3, 0.2 for zone 2B, 0.4 for zone 4, (see map on the following pages for zoning)
i
63 D
E O ST
IT
AGO
NWL
EF
SEISMIC LOAD (EARTHQUAKE)
EXAMPLE‘
Given: Seismiczone: 2B D = 37.5 in. = 3.125 ft.
z = 0.2 X = 96 ft. O in.
H = 100 ft., O in.
W = 35,400 lb.
Determine: The overturning moment due to earthquake at the base and at a distance X from top tangent line First, fundamental period of vibration shall be calculated T =
C, Xf13/4
and I = 1,
c
=
0.035X 1003/4= 1.1 sec.
s = 1.5 1.25S T213
=
ZIC
Xw
v=
Rw
Rw = 4,
1.25 X 1.5 1.1213 =
= 1.76 <2.75
0.2 X 1 X 1.76 X 35,400 = 3115 lb. 4
~,= 0.07 TV= 0.07 X 1.1 X 3115 = 2401b. M = [EH + (V - F’t)(2H/3) ] = =[240 X 100 + 3115- 240)(2X 100/3)]= 216,625ft. lb. x>
H —
3
M = [Rx
=
thus + (v– F) (X – H/3)] =
= [240X 100+ 3115- 240) (96 - 100/3)]= 205,125ft. -lb.
LR
S
64 SEISMIC ZONE MAP OF THE UNITED STATES
66 D
E O ST
IT
ECCENTRIC
Towersand their i a a l m s f
a t o o t w
n
AGO
NWL
EF
LR
S
LOAD
et
qe u r ai n pu ams lse uyrn m at m ale t lrert iyvoc ae ul r h nt tx t whni eo t hu is v dg se s uhh sec eot s m pfe sret e l ots s s E ri n vpq e u l is p y tt ta vc hoe te h s od su c othec e s lu ani san yd eum emd esi t snr ti ecr o ai t lb u t i d a t td w i u ena rhgi ie gbe n soeh es un t t Td l dr ui nt e snh yns m g msa ie rt. r ri cs aa s e e m q nu ai p p t mal i efo nl ppt e,mn enb ni sen ga gd bl set cb t yee u denh , d er ex b seh s r eee t q s uea ai d ap v dm yd eyti rnt t bti o e ns neaht l dr r e ie s ons eu sgl ro s i e ol i n os m m da i r cd .
F
e M
O
M
O
ES
R
M
NT
U
T R
L
A
S
R E Q U I T E H IS C SK N
c 5 1 *
w
; R
s
* -P
t
w
N O T A T I O N = E c c e t n dt r i i f cs i t htt t y ra, a ont c choe xwoe m ne e c lc ef on t ar i t cd , . = E f f o iw c jie e o ln ic d y n e t f d s . = M oo e m c lc e ef lonn t t ar i t f bcd , r oea v dei a si s u n en s l f , . = M = S vt o m ra a e o tl a es b cur s ie st ae n tpl uf d, r ai e r n ear dlr l lifo i ,ons wgi a o = T h io vc kee nxs ecc ss lo su = E c lc el on t ar ib cd , .
E i e R t
w
W t
t at
v= 4 ft.e O m: n = 15 in, i . = 0 l 0 = 1
h i hm tee oo r k e si o hua n el
2
—
e
G
nR 2t
‘
I
\
1 We t =R z n SE
~= 1
M=
X
A
M
P
L
E
: Determinemoment,M, and stress, S. M o Mm = Wee= 1000 n Xt 4 = , n2 1 I = 0b W ~
f l 5 . 12 x 4J = 2 e 0_ x 1000 . = 2 p 3 X 1 .X 0 1 5,
t
4
2
7
2
r ehn c r e c l anes etn o m t n r ao ei sm ch d b e hs un, mate m sa l r i ct g ac l nel ont t a r f i ld c s .
67 Design of Tall Towers ELASTIC A tower u 1 2 I t t s e E s i
STABILITY
an
c xod m pi em r e fasr is ti l oaaw n b iw ae oy ci nl ya s n t uo a bss i el i B b u oc t k w l iv. h nhy(e go Esb luf su ec eekl l el i n r g ) B l b o u c c k . la iy ln g t h i n v- w e a( ls l twesn td e hh li o hcest k s nn i e hl es ht s e oe nh lf e eos - l at se s i n r s ha l i d bd oi u e eu cmc ” sko al) a ic a auln lcg l n u t oy t er i rh a t e h s t q a d u asi c f a a o uti wl s uvoh ehre T oes o solf r ee ho e luu on. t d sen iet ah vsf h s e e i g n f i f ai i tc c ar net t s i ohun sl r t t a Tinb enfi l go i trf hy m i. n uv e l s o etao i sg a t i l s at a as b@t i iil t i cr Ht e ayh n d e ebi n vo bneo W slk o, ia p Nel de s w n o m y an l e o mt ev n ewt h ss ah sp ifr e ei urcm] af hr so i elp t yeou hr ( pd e to r s r r u p d p o o w r nb t c smoa , m b cer or na s sa i a)d s e lyt r i ee af dsf g eb an u oe i c rs nks ls c l s o p sL ao e n c g l i efs ty tu d di iif. n f na el tc n rr e ier of sga the h is tower de more i te y
effectively than circumferential stiffeners. If the rings are not continuous around the shell, its stiffening effect shall be calculated with the restrictions outlined i t
C
U
oh( C
d- c
e2 e )
E i R
G
t
Given:
v= 1 ie = 0 i
Ay = 1 sq. in. dy = 2 i
9
X
.
A
M
P
L
E
m e pas r b e (t les se r i v ee S n D : e n t t e a r I 8m l .c i oho n w . n 2 5 . 0 0 2 1 , 5 x 0 f =0 1 , , 0 5 0x 00 0 0 , 0. = 2 0p , s = 1 R
n 4 . D e t t e a r l m l c i oho n w m e pa s r b e (tles u se r i vs ee S s t i r f f i e n n e rg s L o n g si t t u id if n f a el n e r i n u t s oh e e d s tn , s :1 =0 ’ 5~ : ’ 0 0 = tx= t = 0.25 in. 1 — 1= , 5 0 0 , 0 0 0 ~ x0 0 =. 2 . 22P .25 4 ‘y = t + 24 1 8 = 0 + 0 . = 0 . 2 . 0 5 2 4 9 R S
e
f eW r ah C eo
ei Wn lMc ase N : o e n . wNn, Mt Tn . Sa, drt . kro hT e Cn . y gh: l iet n h di lEl u E l m Sn sn Ux s s Itg, nb p 2 ila.u 1 . v5l l.9 . l 35 . . 3 , .
s 8 8 is
S93
r
68
1 D
E O ST
IT
AGO
NWL
EF
LR
S
D
rowers s r m
hb d o e ust d i l eg n d nm f elte d e6o i hc onp tr 100 c afeet o heof height. e ne s e f ldh e t c t t wi ueol n m ih bo ce n a o laae cb d u ld t a s yft eeoi df r h n m f l o o cr am a n lbtd yi lee e dv a e r m ”
d i
A
F
M
O
N
R
O
T
M
A
U
T
I
L
O
A
N
S
AM = M D1 = W =M E
a dx e i f ( m l t e tu c itm oi a oh np o ti t d w o i thn wsi hue l ef fat e t t ri o o ed l ua psl t ui c s i ts yf , L eo v n e i g sn = scts lf ekh u l idf , er H = R t m o o 3 i m n f et e cnnr y ,hl t o is ni r. ( R>lot) w h e n = M r e a o t t d a o i i h w u n se n rf R = T h i o c s k i k n e i s s r n t f , t wind p r e p s s u r s e , Pw =
E G
i
v
6i = 30,000,000 = 48 ft., Oin.
= 2 f
E H
= ~ = 30 p = 1 i = 0
I R t
T f
m 4
.i
e t
Dn
A
M
P
L
e : t t e m r am dxi he n i f e lA me n. , .
AM=
3
X
n ) ohn
td t fd i ah r e f
E cu et mi o
n
:
I
PJI,H (12H)3 8EI
30 fx 2.5 x 48 (12 X 48)3 s n ‘ = 8 x 3 20 . , 0x 01 0x M3, 0 x 00 2 .0 1 n 2 5 .
axh l i l d m o e wuf e6lai meb ncp l t1e ci f oo hhn e ee0 48 X 6 n8 8 . 8= ~ ’ o . = 2 ( i ) r . ” a
S t ia dcn e htf cdl uen ece aot e xit l ol ocen s a t i s f a c t o r y .
t d ih e
, .
ti s
= 1 .
g r h0
i 31
. 31
.t f :
e t s h i i og tc ns k eine kde m s e it i d t s ,
A m e f ct a hl c douo e l fad l twei cnr t tg t hi ho ni o,ech t kt n n i eo n esh c sw s gt ba i S Sn Tv .O t “ e v, SC1ea n Mh m y e9ob.f “ uCnter a 6rhl t c Touo t8l Dado te i f wnr l. gAe H y d r oP c r a or kcb oe ns s i n g
69
D
E O ST
IT
AGO
NWL
EF
LR
S
COMBINATION OF STRESSES T
s
t
i r h ne
bsd t s up e r c es evdh i de o s ul cyso rel shallbe aiy bd investigatedin ei dn g s
combinationto establishthe governingstresses. C o m b oi nw a lt i i(o neo a nr t v e sh s e le :
t aol hf dqoi u dn aa pressure tkr dee and r ) weight n , a of l
Stress Condition A w + S + S – S
i dt dt dt
ns d w t rw e t ri p e t rw ee
Ae l e —o S d es + o S. . eh —o S t
i a rt d ui s s n ur n s e s s t u si sg
C o m b oi nw a lt i i(o neo a n r t v e sh s e le : S A windward side
t
+ Stress due to wind – Stress due to ext. press. – Stress due to weight T s
B r
e
T
s
e rw ri rw
t aol hf dqoe u dx aa ptkr
w i a r td d e u is s n e p e u nr s e s t se ee u si sg eh deer
e o os o
aer ) w sn , sa eo ul n i r
t r e s s Condition At leeward side – Stress due to wind – Stress due to ext. press. – Stress due to weight
s so e
e
t s wu ham ei et a s a dr h h bw d o e e u sef ierl a t e r .
tnnl h tqd o udn a o dak es ci dmo u lc ts a nt uoe o t u sr h g diw n otoe e e di ha r et rnl h r qw uhod a i ki rc e ah
sn tdc i ra b n eu cg css e nsse t r bdih sc ui y tam y m wla rt i l siz s f u wl rto ei i an or g t l nh m q o u d a ak r e d . t
s r h be hc s a s l a cae tu sl fl
ao l tl leelh odo c wa it t nie
1.
At the bottom of the tower
2. 3.
At the joint of the skirt to the head A t A c
4
1.
s t t t
p o s s h id i t e t i g evn a en ot sn ts ei ne sgo h adn i t ecid go vnm e penor T e st s s i e u m om t a s t ti ior hne w ds ish f tceee aes t o t nch eo s m e ip r ir oge osn sv i e or r n
I i a t t g r
T
e dt .dt dt
s
t
b
oh h o ad
f r uh er
i
fe e
l
ii n t ne i go
n
D D D
U s v
tn d h di f ce ef o en s rrd t ie w et n i toeo n t h si v , g ae chh eso nt ss en qfte ue e ln ct o r n dae i a t s di oi s l rfn B fs e es r ds e e inuoe dt r.r e eo sid c ,i nts mi gta o n nt ie n us is n noe otd e le x er s pt t n rer ae r ls n s a ur l r e . a n a ot l a n t d mb
tn l t n
:
t s
t s hs se br e hem s ox ra a ei tm l f i o n l l ce leh o do n wd
r r oe id c i nst mi ga o n r ei n. s g p r e ir a n . t ig o
s
dr th e
2 3
F H
ue ut uo
ht t t te s otj eha mho e d i lo en l ni aog . t m eh t e is ot c t ekfv rn ee shrs s
og n
et
nr g
ys zt i r ohrn et g nt g ao eut w h vnl e a f ld r rl o iseab odt r ui oa o xs hk i ,tt m hrhas u ebeen e m applied. os rs y
ns
70
C
O S
O
(cont.)
The b t T t
e mn od d im t wn e ig dun i e ct rf ne et a bosr di ont s toght t ot tm o h e om ot t w p h e t l h r hui ca,c a k sbt n d e el eae s c as r cs ec oan r sod ei e n d g l y . A aa F b i B aln gc oe u n var de t ne f i i te edn i t di ds hn t fs a oot nd r ce w e o t t o f o wh wa hc p o eef it e rh r cit i craa hkd i ne neq su sa t e s . * 1 1 6 . .1 1 (. 1 9 . 1 ) . 1 1 . 1 2 . 3 . 0 0.5 0 m 1 . 0 3 . 1 1 2 .2 . 2 . 2 8. 2 9 . 3 0 . 3 2 . 3 4 . 4 6 . 4 8 . 5 0 .
0.53 0.51 0.50 0.48 0.46 0.44 0.42 0.41 ().39 ().37 ()<35 0.33 0.32
m
T A
S t f w d l p
\ x
H
t E
X
A
M
AA V
BA
O LL F
UEA
m EC , S T
O F
R
t i c i r i n F i f fa r e = x
l o n g his ct u dt d eti rin e an el put sre ier so snh e s ao o u l anr c u m h f se r et on t rhie a eol t sarn se w q, l h tu e h i afi r cf e ek pt ore ier a sn v saart uril lr te ae b b s el sf ien h o dsot o i t r n T nr A a u d o fb s . am lcmi cb fe n t t, o aogd i ur X s h nt n ot tr tw a ohl nnow g mi w i e e tt nhp nt ht h i ii ce ch cn ka n hl i nt pt o eer ers ad sn t isar s aulf atr cr etl o et r w y s i ih s s u r e . H x m tp = T r e t q h u i f i ci r kn eenp t deroe se r s s n s a r u l r ( TH e i on s oi o np n ) . t = T r e tq h u i f i w cw r k peen r dieoae ts sbs n s oh ur hdtr ee =t so j ih i e n l n tl o , . i .3 . = 63 n, 4 W = 4 . P L = 0E : i . r = 02n k = 100 ft. F T rm = a 0 oab X .= lmH m = 0.43 n4e X 1 3= 43d f 0
z 5 g b 5 E Q Q x
1 R b a t
0 . 1 F B i oa p tt l h i i ar c oek t qna f teu e si s r e h d o ( t + tt t t rot h m/w i r c e2k qn e)u soi s r c o n shh i ed e i tr ege d h t .
g t e
d
e
.
71
DESIGN OF TALL TOWERS EXAMPLE - A Required thicknessof cylindricalshell under internal pressureand wind load. ~,- ~,, D
~ A
f dt s = 4 f Oi l eo tt n o g 8 .wt . h e f r i ft s ntt b ar t nt . bac oh. e o sm ht et hT = 4 f O i d h t s ej h oa e i dl no l t P m= 2 p i n p5t rse e r s n 0 s a i u l r e Pw = 3 p w p ri s e s n s 0 uf dr e R = 1 i i rn aons v di e id2 s . ue s s e f l = 1 p 3s v 7 t o rsSa5 2 e Cl0 s i u s 8 e f A s I m a a t2 e t 0re mi 0pa e l r ” a t t uF r e s o l h t e a b a l r . =T v N a l l f o c wo ar nr o oco se i o nr .
H
: o “ v
d
II
: o
I . =
*
i
: 4 o
-e m
z
M
E C O S N I D I G T I NO N S
D = 2 ft. Oin. insidediameterof vessel D1 = 2 ft. 6 in. width of towerwith insulation,etc. en E = 0.85 e f f oi wc i je e nol c dyi
\
r n e itq m h u i fu i ci m r kn epn t dreoe cse ro ssnn sst ai rsu dl ter orret i h1en
t
sgn
goe h t e a h n m
PR 250 X 12 3000 ==0.260 i 11,538 = SE – 0.6P = 13,750 X 0.85 – 0.6 x 250
n
Minimumrequiredthicknessfor internalpressureconsideringthe strengthof the girthseams: 3,000 PR 250 X 12 =0.128 in. t 3X 0 , + 0 7 . x 25 = 820 . 3 5 5 , 44 = 2SE + 0.4P = 2 X 1 R
e
t q h u i f i cl rok ne ng dbeio t seu dsd nti wnd ra p li ru i neM sg
onsa t ue m b or d( ee
07
.a M hn
t _s
PW x D1 X H = v X h] = M 3 M
x 2
x 4
= 3
oa t mb
eos
n(ht
. x ,2 ett
=0 86
5 6f 0l 8 ,
~ o t ae m =
m
04
t 04b
0
.
.
)
MT = M – IIT(V – 0.5 Pw D, h=j= 86,400- 4(3,600 – 0.5 x 30 X 2.5 x 4) = 86,400 – 13,800 = 72,600 ft. lb. = 72,600 x 12 = 871,200in. lb. Requiredthickness: MT t = R T S T F F
8 = 1
x 3
7 x 12 .
, 2 1 , 2 8 0 7 0 1 23x 0E ,1 = 25 7 4 , 4 25 = 8080 7 i , . 55
0 0 21 3 n 6
r e t q hh u i c i ca r kl w ecne utde ls s ia t s t or et hetdb n og gh sht t ei ht e r o f ae tm m h w p ri o e s0 n s i .ur dr 1 e n6 5 . i p r n oe s 0 ts i u . r r . 1e n2 8 . T i g h r t et ti ah h t i c s cehaa skl r wcn une l se ia s t T O T0 A. t L2s t 9o r t hle o3 nn gg sih t et u hhde ei t nrf eae al f h o r m m i t n h i i 0 mc i ku. s n mbe2 uh s ns9 sa 3 el .
to
I
L D
E O ST
IT
AGO
NWL
EF
LR
S
EXAMPLE B R w —
e
t q h u i o icc yr k l enis dne u d sh rc s in oce am l fd l obl o aiei oe t i o g w h e t r f . .
P /
l
lndn prei t r dne ew gr s a sns
i ua f r
D ED S I G TN A A 3 f Oi i dn t i sna m i e .d t . ee r t =f 3 fo 6 i r w m o vit w ne di ns sit . aus .ll h eal ft tof il wo han D] p ie p it n gc , . = 0 e f .f o iw c 8ise e lne 5c d y a e m f d s E i f st t nt b rat t n b a. cho .ho e t ssht m e t e h e h~ = 4 f Oi d j o i n t . 1 f Oi l 0oe t t nn o g 0 w .t . he f r = 1 p i n p ot5 r se e r s n s0 a iu l r e P p r e s s u r e P. = . 1 ; i n s i Qdo n ve - r e a d si8 u. ss e f l R . 1 p 3s o v t 7 o Sras 5 Ae ml -0 sa a2u2i t s 8 e e0 5r f iC0 s t e m po e r a t u r e . T s o l hI te ab rl , . v 2e s e a e a l :m H dl il p: e t s 1i sc a l cm = C i r c u ’oms f eo rt he mn cd ee i e hai l m f ael tn nee ( c o a r l r l no ors w ei oqa nnuo ci re e d t )
a
‘ ‘m ‘ -m I < 1..
Minimumrequiredthicknessfor internalpressurec o n st i s d te orr t i hle n o gnn gg ih tt e s o shdi. e a m f 150 X 18 PR 0 i . U 0 2 i pn 3. s l 3 n2 a . – 0 .x 1 = 8 . 55 6 0 t = SE – 0.6P = 13,750 X 0 M i t s
r n e itq m h u i fu i ci m r kn pent rdeoe c es ro ssnn sst ai srud l t er orr te i hce n i gnr c g u h m te o i s e h a ae ll m l f . 150 X 18 PR 0 i . 1 n1 ‘ 2 X. 1 3X4 0 E, + 0 P 7 . x 15 80 . 55 4 0 t = — B + 0
I M
=
i
r n e i t q mh u i uf i ch mr k en edeo s
PD W V P L
L
i e
l
a a
PW o X D, n XH a d s 30 x s 3.5 x e 100 l t 30 fx 8 olin. ft. r m d 3 x d9 l e f r
Totalshear
I
M
r d
= 0.231 i
n
= 2 X 13,750 X 0.85 – 0.2 x 150
t = BE – 0.2P I
sa
150 X 36
oa t mb
eoh
snht
= dv
x h]
= 1
= i=
0X5 , 2 X9 2,940 t nX0 49
V= 13,680
(ett
M
e J o t ae ’ ma
= 55 2O 5 O , 0 0 4 = 42 3 , 0 0 6 4 8= 144,060 . . oa t bm = 692,100f l m b a s
l d
Tm
)
MT = M – h~ (V – 0.5 P#,hJ = 1 – 03 X (3 Xj 3 692,100 – 4 ( 1 X 6 3 2 8 1 M,
.X 8 4 =0 6 . 3 5f 8l 0 , 52 t 2)b 7 2 , 226 .50 0 8 , . 6 4 6 0 –, —
t = R2 = SE =
–
i
p
X
f
X
lt
X
l n a c o o o ht
F i p r n oe wu . e r e r s e er
.u r r . 1 e s0 ts sE i
0
n
73 EXAMPLE
The preliminary calculation of the required wall thickness shows that at the bottom approximately 0.75 in.
plate is required,to withstandthe windload and internal pressure, while at the top the wind load is not factor and for internal pressure(hoop tension) only 0.25 plate is satisfactory.F e c o n or o em i iai ac srad l ov t i n s sa
4
A
:o “m “ N &
: 0, -
: o, -o
u d i ~f p sf te lh r i e ca aenk v nt t ea hs rse ee oi s ti o g u ht t o w e r . T t h i r hc e k fqn h ue etsi sroe o( e n di o0s s i r.en po r 2n t r ae t s wl i l stihs oa cot ne od raei dtds atd a io n f t tr o o h m p e . 0 F t di ~ i h (s n ft i at dnr A X acP s e7ob a ) l m g e o t = w0 . 2 / 3 3= 2t/ 0t . p X 6 =40h .4 x H =.e4 f 7 4n F d r i Ba P o g 7 r ac ma b fm g t oa ,r e eu 0q h nun t h i a c l.k ne o e t n ns i ns gt e rthdsm hes dh e i f ac e te t e i U 8 sf w mi p iln t av g dt se e hb. s hecs os , n a se et rl l u e o. f r m : ( 0 t .58 hf w 2i c o)i ct 5u kdr f s . e s t ( 0 t .48 hf w 5i c o)i ct 0u 3kdr f s . e s t ( 0 t e .38 hf w 7i c o)i ct 5u 2kdr f s . e s t T om t a l #
:~ ~
~ : o b t “ -m ~ o : 1 o t -
E O IT TG HO H T W FE E R Sba e b g o e ipl n 3 en e ai s n7 g g 4 n e l 0 7 3l 87Skirt 4 8x 195 0 9 6 2 r 4 a i 0 s n7 e 2 5B 9 7 4 nr 5 c i 6h o 2n r 0 4A .n o3a o1 d1 2 m p 5 A .6 nl c uh0 o 1g r .en 8 ot 1 3 2 .m 5 9. 3 1 ao t t r .8 e k 0 0 + 6 1 p p a o r yt1 s 1 0 1 l ia t in o n2g s 2 0 S a 2 l n i n g9 0 0 4 I 7n s 5u l a9 t i o n 1 9 P l a8 t f 4 o r1 m 1 1% L a d d e2 r 2 l 0 3i .n 1 P 9 i b4 p g a y, 2 1 0 0 0 (
S
4 hx 9 3 X 1 2 x 2 H t 0 e b 0 I p wnl T s ur I n s ru O p e + 6 S
T T O
W t
IE W’C
ET A 3I L OG3l N H,
r el r
a ai
y t qi
s nu g
W e
c
t
to
6 2i 3
+E T
r OO
e
) 8 2 6 2
g g s 8
% 1 9 0 6 1 8 4
y
9960
C E YR
p
B (CONT.)
P TE
Test water + Erection Wt.
i
n 3
T0
S :b 0
1a .
0
0
0
d
4
0
0
l . 3l
0 ,
0b b0
0
R WEIGHT: AA T LI 36.000 N G lb.
42,000 lb. 33,000 lb.
TOTAL TEST WEIGHT: 75,000 lb. — For weight of water content, see rage 416
0
0l
0
. .
,
y 0
74
E
B(
Checkingthe stresseswith the preliminarycalculatedplate thicknesses: Stress in the shellat the bottomhead to shelljoint: P S
t
lh
i 0 ac i k t.n e e s nP 7 s 1 5X 3 . 65 dt t ir n ep tu r se eSr s=s ~n es=a ou l r e = 1 4 x X 6 s sn e o d dt t wr e ui s Rz n t = 1 8 x 3. 3 1 w = — dt t wr ee u i s g s s h e t= o , 1 x 10 r c e o c n t d i i ot n ni o n 3 4 w = p ec ro an t d i i ns=—= tn g i o n 1 xm10 C
S S i e i o
W
I
i
p
S S
dt dt
pe e
I t a
l t
S
‘o -m e I *
A
‘ ‘ b
!
sr 1
i
3 8 , 2 2 0 = = 9 p , 6 3x 0 7. 5 . 12 7 4 , 0 0 0 3= p 5 s 5 ! . 7 5 5 , 0 0 0 3 p 9 s 5 . 7 5 5 t. DD
o 6d 9
e
3 x 3 x 7 = 7 . x , 3 =0 52 5 7 6 22 0, , . x - 68 =f 0 1t . 6 a o 3 t x f8 l o io r n=m240 , 0 Ia 0 3d X 7 d l mie = n2 r . x , 3- =0f 1 7 t 0 .30 =nl 3 t 6 f 1 t , T M o o MXt m ae 1 X 3 6 9 28 0 1 M 21 r , = = R v t 1 8X 3 . X 0 2 z. = 5 8. 12 ‘ ’ 5 4 3 dt t ir n e p tu rse e r s s n es a ou l r e , 8 c a l pc Ar u e l v a i t o es u ds l y ) 1 T o1 0pt , a
Shell P L
‘ ‘m v
5
a e7h f h sd e sf ol nt t e t r l o wt t 2oho. p on w t ml h e ie 0acpr i kf t.n. S dt t w r e iu s n s de o . x 7 , x X = V x ; = Mx PW x D]
s 1
3s
e s nh 1t s r1pi i e,leo pe0s e sc 8sr o a 5n to d it i i nwn t g i i nos h dng wo i a vn re l s oh wft ta r pb elem elo ash wta s 0e jtrr i ei e. eo af t f l ii8 1c hi 1n ep5 6n t c8 sh e 0l uh ei tc . st p h ee 7an dlt i b a5c o o . thkt v te ie sot ahes t mi ss f afe
it t
A
70
I O P E R CA OT NI D NN IG T I O N u nr s+ e1s t se, So s .8 dt . t 3r w e 7 u is – 9 s n , e o 6d u i s+ 9 s n e, Stress o d6 due to4 weight 0 3 – + 1 1 , 4 7 7 1 0 , – 3 9dt S t ri pe 2u nr s+ 1 es t s, e os 8 + 1 1p , 0 s8 5 –i 8 p, 1
Stress due to weight
T T T
8
u i s+ 9 s n , e So 6d dt 4t r w 0e u is– 9 s n , e 3 Stress5 due to weight 8 – – 3 p, + 9 p, 2 s8 2 i– 9 s ue ts r ruoe ric. et n i og n )
r nN de
t ri t rw
.D
C O M B I N OA ST IT O RN E S S EF S DS W A I R D D LE E ES W AI R I E M ( E RP E CCT TON I N YO DN I ) T I O N
N
S dt t rw e Stress due to weight (
p
T S (
l
T c a l c hou s l at tar it eeo b ns o sh het hf ss te otht e ata m os h t d wor thsae n s w i n s d i ow i p a e rc r do a n tg d i e iona n t gt vi e o e n fon tr hfw n e ei id hc i e n tg n i f T i h c e wa r nei ft f t . ou hc r ra oe l t cu i uhc tl bea s t r i t o at en t h e s e t nnh at es 1 0p d , n 1e o s 4x t a2oec l lei s osh e w1tt ad1 r b p, eleT6 e 8tss s7h s e. 0il5 hu e c i t p h i nsl ia t ia cs f .at kc t oe r ys .
75 EXAMPLE B (CONT.)
Stressin the shellat 40 ft. down from the top of the tower. Platethickness0.25 in.
S
dt
t w r
e iu
s
n s
de
o .
PW x D1 X X = v X : = Mx S P L s S (
8 h 30 x e 3.5 X 40 l = 4,200 l X 20 = 8 a ?0t x f8 lin.o ft. r = m240 x 36 = 2 30d x 38d lint ft.e = 1,140 x 19 = a r T M o ol t m v a e . =nl 1 ft 1 1 x 1 1 24 , , 3 1 M = = 5 RI n t = 1 8 x .3 1x 0 2. 5 . 1 dt t ir n ep tu r se e r s s n es a ou l r e c a l pc Ar u e l v a i t o esu ds l y ) 1 T o 7 l
4
, ,
0 6
1 , 6 f X4 t , . 20 0 p , 3 2 4 p , pt ,
8 a 1
T 0 i t .h p h 2nf l i se a5 c h4 o. f t k de ie l sf r t t t l a ro t nt 0 tc . ooe i o h m w s a t i s Nf af c ut co ra yl t. c i uhr l e ea o toq r it uos ni r r aeehms d ea m n asnt ei bo eo non
76 DESIGN OF SKIRT SUPPORT A skirt is the most frequently u v s
e I si a s o t iw
a ts m s ena oth i ssd f saud cf ept v ot pre y or o t r t e tb l ca s o c .n h t w iet sne d tu lt o hduy s ai uenh s g t uanr o ea e qld h u l d eh dz l e tdi e et i r tfmn sh i gi no hcet kss n ke esh i s r ft e .
F i A ga uB s r t en hm s c ooho d t m w os smy e t okth pna i t e t aer cI fha t m eo c a l c ou t l ra t e i qow hnu s i te ri vf ee lzaod j h l e edo uf f, eig e c sbi ni te fn vt c y C ( o1 mU bd u ’2 ase W e ) yd e .
G
t is
vv
E X A M P L E a ceh eo sn mins E s i edxee eB a r l em d p
D = 37.5 in. E“ = 0.60 for butt joint 3 f 8l , MT = 6 D
F
w
W
e
, 0 b 0 0 . . . pFm uc rt o up r o ar s l e
t t e r r e m sq i ht un hk ei i rc i ke e ndr e
1 = i o 1 MT n R2 ~ SE
r =1
1 x 6
d
U R E F E R TE N h Ce E rS : m
23
8x 3 . X 1 7 .
w ef = o i g h r t D X 3 x SE= . 3
.
= 18,000*stress value of SA-285-Cplate
W = 3 1l 2 t 2b 0 * s t
= 18.75 in.
R
F
S
l n e
8 8)5 0
3 1 , X 13 7 X 1 4, .8X 0 T ( Y ‘
t i
! p sh f 4 sl i i
s ts
.
.
, 0 2 i 2. 0 6 = ,12 0 4 0. 0 0i . 0 =0 0 ,1 5 0 4 0. =f 0 A i . L 6k a ec oi ” t kr
n4 (
0 0 6 e t
n2
6 n6 r
.
l 8
2
77 I
DESIGN OF ANCHOR BOLT
V s r
e vr et s si o o k s t t i n
csta eat a l o cm s nw , bk f ues a rst d sthe t s ce nt f e e d ir huf c dbetr m u r r ra oa e al m an b e cna o yt h s b l o ( fn btr ah e g .
The number of anchor bolts. The anchor bolts m b inumultiple of s four andt for tall towers it is preferred to use minimum eight bolts. Spacing of anchor bolts. The strength of too closely spaced anchor bolts is not fully developed in concrete foundation. It is advisable to set the anchor bolts not closer than about 18 inches. To hold this minimum spacing, in the case of small diameter vessel the enlarging of the bolt circle may be necessary by using conical skirt or wider base ring with gussets. Diameter of anchor bolts. Computing the required size of bolts the area within the root of the threads only can be taken into consideration. The root areas of bolts are shown below in Table A. For corrosion allowance one eighth of an inch should be added to the calculated diameter of anchor bolts. For anchor bolts and base design on the following pages are described: 1. 2.
o as
rs d i
e
An approximate method which may be satisfactory in a number of cases. A method which offers closer investigation when the loading conditions and other circumstances make it necessary. ? TABLE B 13 12 NUMBER OF ANCHOR BOLTS TABLE A I Diameter of Q Minimum Maximum Bolt circle in.
Bolt Bolt * Size RootAreas i Y 5 3 x 1 l l 1 l 1 1 1 2 z 2 2 3 * F
0 0 0
0 0 1 1 1 1 2 2 3 3 4 5 b
Dimensionin. 1
24 to 36
4
4
3 8 . t 5 2 8o 4 1 o 8 1 6 t 7 0 5 22 / 8 . 7 1 6 8 t/ 1 8 1 41 o 2 2 3 08 / 4 0 . /I 2 21 1 t 1 0 2 82 o 6 / 6 . 1 3 - 1 1 0A1 21 / 3 t 1 8 20 4 3 2 24 o 4 1 5 / -3 1 / / 8 1 6 1 -1 % 8 2/ . 1 6 -1 9 13 /1 4 AC 4/T B L E . 1 8 -1 9x 3 0 /1 XA8 / IL LM8 O USW M TA B R FLE E S S E O .3 1 0 -1 5A 7 - M 4 /A3 O U/ AL 2S S A T N EB C H DO O S RL % .2 2 1 9 4B 1 .5 2 5 -1 1A1 - S 5p / 5e c i 8 f/ i c a8 t i o nM a al l x D t ne r 3 4i b ai em S re pt r se .2 / 7 1 44- 4N 3 u 1 / 4m 8 8/ . 72 0 -1 4A3 9 /7 2 A d 2 i a mlA 1e5 t 5 e rl, s 0 . 2 3 -2 0 1 S 0 3/ n n1 d8 %e, d 0 / 1 B 74 / 2 a 4 u . 2 0 -2 2%3 - SA0 193 . 3 7- ; 1 1% - /S 5 1 1: B 6 ; 2 a 9 ; u 1 nA n1 3 d 68 %e, d 0 1 6 B 78 O v t ei r n2 o Y c 2, l 0 / . 3 6 - - 1%3 SA8 193 9 v8 t 1 ie A r1n3 o265 c %, l 7 . 3 6 -2 2 5 - S 1 1/ 7 B 8 / O 4 w o s o t li at nht t rdr s ea hra dd s . q n1
.
D
O A (
B M
A
A simple method for the design of anchor bolts is to assume the bolts replaced by a continuous ring whose diameter is equal to the bolt circle. The required area of bolts shall be calculated for empty condition of tower.
FORMULAS Maximum Tension lb./lin. in. Required Area of One Bolt Sq. - in. S B
it Anchor r p o s
~= —.— 12iu w A8 Ce
T
B,= ;+ e
s l
s t
i
TC8 sg -— - b. N
n . N
~
A
T
w rt i b t c e hi so h i r i a c nl l q e ne t AB = A l c n fl C* = C i r c u mo fb e cr e ni io c e r M oa t mb d e t awnh o te usia rt et f enhl M= N u o a m nb b c oe h r l o f t r N= a ax l i l s mo vw t u ao m r ba b mel l ea osp t SB = M W oe t vi dge huehs r rts el cief et nli w=
E G
A
O ,
t
N .
e
. . uo dk t e rb ,
qe s u se l sr e i f at i l obg n , .
M
P
L
s
i
0
. .
qbe
ue e di
.
17 X. 8 . 6 6 , 02 00 – — = , 14 l , b i .4 i . 9 0 7 f 6l 4 t 0b 0 7 . . M-= 8 6 l d 0 ue r b0r e ci t 01n i . ox g 9 n4 . w= 0 2 4 -4 p 5 t m 0s a 0x hB i i= 0= m . u e =m 2.196 sq. in.~ SB = 1 9 a l l s o vw t ao r a b el l e s u s e f al m o gc eh r . eO t a nb mhc a o ht Fe o r T le i r rAa aP tl 7- obt ar 4 n uof bolts. m b 2 eb ir 2 os . i l3 q“0 nt s 0 . N= (See TableB on the A d0 id . forcorrosion, i 1 n nuse: 2g 5 .
CB = 9 i
PrecedingPage)
q n
.
E
ze v=io 3 i r e t l c nnhD l te eet .t e s nr 0a m; n :i h nuo re nm a nb co hl ot rs
b i c
A~ = 7
X
I
n
T= 4
(4)2Y’”bolts. C
h
se
ci t a k
r inb ne c go s h
1,402X 94 – 14,324p SB= 2 x .4 3 0
ls o 0
nt
s
S t im a n ax h l ci l s mo e i w tu e a m r b el 1 5p t , s se0 n l 0 heui a 0cs m t , ebe i nd e o b a os a t il s rf at c tf so r ey .
79
D
O B
R
b l e a n t r d o i gsu t e rge i hb l u n o i of t oa c r om dfnl ho yc u r na ed nt ate nt e it h eno n xt ou a c l d le s oh et w o b e l a o tr o f i o nu an gh d a dt i fo en . T t h i o hc t kb n r e seash rsi h tes bfna se e e s li n hg it ds l n ri tb d w n ee u og s c i se e a r t h q u a k e . F O R M U L A S M l
a C x oim m p r b i . / 1 1 in i n . A p p r 1oW x i o m i B Ring in. a s
7
m 1 -
Is
t*
12
_Di
. +
9
ue s m s ~i . o 1 n ,n c . A, . a td e e
t
2
P h
M f
“t
Approximate Thickness of Base Ring in.
D
y C,
t8=
B
e S a
pt r
ri
ne
sg s
B
e oS n
pt d
ir
ne
& s. ~
i
sg s S = s3 x s, 1;i
t52
N ~ A T I O N r = a 0 i . ( s –7 nD Df 8se i g5z Z 4 q i O n ) . rti s t s ke ih hi i a r qn n t e , . . = C i r c u mo fO e ro es n . ci ke iD r nn . t f , . = S b ea l a o c rfo os i np nceSa rgT se E dt oa ePne i , b h .l e eg
AR = Areao b As = A w
.
;
, n e
= Cantileverinsideor outside, whicheveris greater,in.
l: 13= Dimensions,as shownon sketch above. (For minimumdimensionssee Table A on page77) M = Momentat the base due t w o e ai r t f hnl q u oa d k t erb , W
= W
oe v
i de
g uos
hp rs eot trie al f nlet E
G ;
i v e = 8 6f l , = 500 psi from
n 4
TableE Page 80
W = 7,500lb. operating A O T
C S 1
X
A
M
i g os
nb
P
L
t
r ,
.
E
D: e t t e m r im wni h nai iet m h dui e cnm t k r0 f a o. i .p ecs ron anf etd iig tn r i g o to 0bb
Pc =
12 x 86,400 4
+
7,500 7 7
= 2
.
.
n h e n .
l ,b . / 2 l i n7 . 7 6
7 5 8l t , 0 e b 0 2 s0 , . t 2 = 4 i b . f n T 5 r A uap. 75obt a, tl m 1 = 5(3(3 (co 2 hi l o t 4 r! s n : ) A . m i d n i i m f m e l = n u s m i oo . 2 k 4i D i . 6r. n f2 t 5 . 2V4 m.t 2 i a f 1 y = n n o A . As = h4 s i e 7 qn n 6 . . u 6 i w ’ bs r i n / a i de 2ns C = 7 i n $ 7 . r~ = 0.32 x 5 = 1.60 in. U 1 i t bs h r n ia i e c%ns . k g e . h se tc r k e i s n s g e s : = 2,273 X 77 = 305 psi S – 3 x 305 X 52 = 10,167 psi e s n5 t d ri 2 ne B e s7 a t r r i 4 ne g s1 s B. 5 1 nb o s
C
80
DESIGN OF ANCHOR BOLT AND BASE RING
When a tower is under wind or earthquakeload, on the windwardside tensional stressarisesin the steel and on the oppositesidecompressivestressin the concrete foundation. It is obviousthen that the area of the boltingand the areaof the base ring are related. As the anchor bolt area increased,the base ring area can be decreased. With the designmethod givenhere, the minimumrequiredanchorbolt area for a practical size of base ring can be found. me strength Ofthe steel and the concrete is different, therefore, the neutral axis does not coincide with the centerlineof the skirt. 1 D C a D 4 C f I a c C U c s
Sa
k
t t ev lt c r nb Sco e t t ei
0
.
6
:
0
O::s:
:
r u p r
omka i h n l. e e l sq a h aut nei i hl 7 T ota e B ars nm i hs n ei
th s te i r t h ce a s. knbs heace o s h l u n d a t i o n d e vb hi e a t tt a i wfl oe l ean oh e w na cs tt ar u te las sarlr e o ert s pg e a l c u l a t i o n a lt cb ur lt aah i ti ec s kn ne ee gs g u p s s l a as n t ce ec ht o sh a , o o m p r r ie i s i isn i eo cnfn eb s esg afot d t i s r t ir tei b us r t oi sasoh in k s nn F
f X
s ..
0 1
0.500 0.667
1.000 1 2 3
. . . 0
EA II 2 0
2 f p
fb
8
s1 1
n
B
1000
I
s
I
1
I
0
E
0 0
II 0
0 0
c Ii 1
8
e
,
- O .i – 0 . 0 . b0 0 7 8 4 - o .1 0.0293&b’ –0 . 2 0.0558f. b2 0f. Ii o.0972f, b2 5 0 -0.1245 0 b 0.123fcb2 0 0 - 0 0 .b 0.131f.bz 0 0 J .b 0 -1 00 b3 . -10 0 . b3 0 . f,b2
I
L
Y
1 M
M
/ b
O.000
T
u e e r u o ee nzmd g .b e le d e e
o t
T DA B L E V oa C ol n u s te a sn t f s a F u no Kc t i o n s s z a U
I1
:
e a
x
s o 2 / , 3 2 . 1 1 13 1 32
81
DESIGN OF ANCHOR BOLT AND BASE RING F * —— 1
O
R
M
9
U
L
A
9
S /(.=
k
1+
I
~
4
1
-
Bt
+I
& ‘~b~
i
v
I
I
t
Lb
1
.
b
-
‘f, z:::/
T
el
on a so nb i
Fcloal
ehl
d~o(t. M n b rs
,
T
es
ni t a s r nb i
eSlco p es hl
s ots a n rs
i ,
t . ,
.
a
-.
t
t,=e~
h
B
W
Fc,
t
CirCk.
t
@.
“b=
(/4 + ;,)
S
B
n
.
f
tB= il ~ 1
E
~B
p
r
t ah i iw c gs k n uin tl i a t B ne N
b d
: j 1 M M
n :
s w z
T
A
T
I
O
eh B
t
=
N
= The distancebetweengusset plates, measuredon arc of bolt circle in. = T
C
O
ee s gs t ss , ,‘ .
= CC = D = D = C = C = C = 1– = M =
= R = R = T = M = W = C
a or e rt f q a ua e nbi slr oc i ea o hd o q lr n r t . . o n, s s TtC a D ona , t te ps b ,r e pl ch e e ea d i ng ne g e . i oa a m nbe ct c ei io h r r o c l f rl n e t , . i oa a m nbe ct c ei fo h r r o c l f rl t et , . o m p s r e i t st s cr i vo eea n t h soc re s ue o nht t e dbt e r e pgta hei r nses o m p s r e it st s cr i vo eean t h sbc cr s ei ponh t er e c sl l t e e ti , o ns sT t D aoa tne p tb r, e pl ch e e ea d i ng ne g e . t i = w o ti n4 b dr i a ht,i . hns nf eg e , . oa t mb d e t awnh o t e usia rt etf elnh qe uo da t k br e . o w h i i cg hr Se e Tv ra eF ot ar t ee p br rs . e p l ch e e ae d i ng ne g o m a o ot ed l iu a o sls o t ua i ftc sc oi eE t nf yn cSse T r f/ elE aEtd ee cb ao b dc iiio r u c ls l n f e t , . e s n i t a s r nib . el pco es hl s ot n rs i , . a ax l i l s mo vw t u aom r ba b pel l e pals u as s et fe ei , . oe t ti agot bhh wl ta he f se rb e t e , . o nS sT t Daoa tne pt b r. e pl ch e e ae d i ng ne g e .
82
DESIGN OF ANCHOR BOLT AND BASE RING EXAMPLE DETERMINE:
DESIGNDATA: D d
= 5 f Oi d t i oa a n.m nbe c t,c = in. diameterof anchor bolt circle.
n
= 1
s
w
M S A
O
o m a 0o ot ed l ui a o ,sls ot u i ft sc i Tet fwy ea i t f h hl d i cn t k ns o ( n n cT E Pr a 8e tbda e l 0g e o b. e r ) a i p , a l 2l c o s 0ows at m0 obr lpie e n r g . t h f 11 = 6)1 o (n cT E Pr a8e bta e l 0g e , e ) 1 5p a , l l 0s o s v0w t ao 0r ba b eli l e as u s s e f e i n g . 8p a , l l 0t o s e0w s na 0it b s lri oi e e l l es t s s n . 6l w , oe 0t bti 0 og 0 hw h . te fr e . 9 f 2l m , 1o a tt 0bmb 0 e a nh. . s t e t e .
L U T I O N : s 8 i sw bu r i mn a a aeci d o m s .npnse r eeat st gsb r id cv ee if.oh = sr 1,Ooo cs lpsi.l t e e t 1 1 18 1 x 1
1 1 +
‘
Sa
‘fctj
f
. fc —2 c . 2kd * 1 R
e
B, = 2 n U 2
aq 1
T T = 0.35
~ 2N k 2 xb 0.35 X 60d ‘ 2 x 0.35 X 60 X
ou a i r nbr e c eod h – W = ~2 ; 1 xz 6 2 C, S. jd “
cc
,
0 + 0j z
,
1
=
t c h o nf hse t D aa b r l = 1.640 0= 2 0 . 3 0. = 00 0 7 = 0 . 4
T
rA 1a
i
dob ?i
8
s.
es =
~:;
=
~d
n i t t s ar i
t
al
=
hces o
hs l on e t r
157,150 0.125 X 3 x 2
2 3 = = 3.14 x 60
F.
e
= .1 .
i
73p 5
, 3 09 0
3
= (
7+ 1 .x 0 8
7
t
r nr ot o g
57 5
7
3s 6
n
0
i
. = . 7. d
i1.
.
280
193,150 r
.
s
C o m p l r eo ts osc i o v ne aL hc= 1r– ted = t8n ’ ee– 0: =
r
bal mw nm4 e ebo os t a8 et u. il rbs fal a t cd%dti ofud rec y oi
nbel
3 8 2
l ao f t r s M 9 – 23 d ) x 1068 20x “w 0! ~2 4 = 2 s 3i X, 1 83x 0 , 3 x . 60 3 07 08
use (12) -2 in. diameteranchorbolts. Tensileload on the anchorbolts 9 – 23 , 6x 10 z, 0 x . 05 0= 1 04 ~ 0l 2 M– W D = 6 = 9 0 X.5 7 8 3 jD T
ra nn e e
T i i shu f af i igc m 0 w t e0 a i s 8 n s h t u 1 l p , u v o fCb= a
,
1 sa nbi tco nr hle g rqot ha2u rsf io o r,r b e eo d oe on =. 1 5 i 0 . / 19 2n 5 8 .
3
F
nm z
anchor bolts;
r c
a =1 c = 1 r = 1 = 3 = 6
f=
oTc l f s rl a e nt i h. uo
ei o. h rr
.3 7x 11
5 =2 .4
p50 6
)
43 0 s 0
n57
DESIGN OF ANCHOR BOLT AND BASE RING EXAMPLE (CONT.)
Checkingvalueof k whichwascalculatedwithassumedvaluesof~,~= 1,000psiand S. = 18,000 Thentheconstantsfrom 1 S1
1
k=
I
+‘
jD
F, r~rCf = 0
1 5 7 X. 3 X 21
1
5p 65
l
e e 8c 8,
1 6
= 1
9
,
4
6 7
5 l
2 6 8 0
1
,
s 2 3
1 b 9
4
i
+ W = 157,192 + 36,000 = 193,192lb,
=
fcb =
FC (14 + n fsjr CC= (
193,192 7+ 1 .X 0 8
C o m p s r e i t st s ar i v nbee hcos S = n = 1 xf 5 = 5, p. , 9 b C o m p s r e i t st s cr i ov eean t h sco
fc = fcb x 2 :M+ 1= 596 X R
X. 5
, = 1 .2
b r . .
= = 0.461
j z
692,100 – 36,000 X 0 = x 5
M –
Sa =
= 0.19 17 _ , x
‘fCb
=
T D aa = 10 c 9 + 6 = 2 c
e
= 6
2 X 0.19 X 60 ss
3 X 805 = 2.406 i 1 5 , 0
d
rs 0
res ue o nht t e dbt e r
2 X 0.19 X 60 + 8
t q h u i oi bc r kr e n fade= i6s i
tB = 11~
hsl ont e 0 s 66
9
= 5 5 2.
.3 7X 11
n
= 8
e tga ehi
r 0
,
n 0
)
9 s 8 0
4
i
p
f en g 0
:
p 50 1
nes
f eg e
s
5
, .
T d e t c t r h e i o act h bks o rne eua hiseg s puns lsfs eg a es t , e ee t s U ( s g i2pu l tsn d4a s igt bse e) h et tts at g ,nwu c ese he s e e n t se ,
.
~d 6 b= — = 7.85” ; ~ = — = 0.764 24 b 7.85 f
:
T rF a = M = 0 m
ob
l m e : . 1 fC1,2= 0.196 x 89 Y x & 6= 5 ~
1
e
.i
U5 I =
0i
l 6
0i t n 7 sb hM6p n ial .
5 n8 b e ac” s .t k
0 ee
. .
84
ANCHOR BOLT CHAIR FOR TALL TOWERS
The chairsare designedfor the maximumload whichthe bolt can transmitto them. The anchor b s a o b i p l ansz l b t hc as e a dla t cae du l eel as lot c t ee r fd i b o e hs g
po
A c l s
o
a
n o t
i
g
n e
gs
.
te l a oc d t t pi gnl sl g ehba hw st eaw fe ecl los din t l fei net widu oT l ueh s l ’ l i ef wi z sh l gbe lhoe hfe lae o t anlt d h lj li heo pne i fnt nl hf e eii acr n k ngt
-
DIMENSIONS inches hchor 1 dim bolt
A
1 1 1
2
1
ls/~ 13/4
23f~ 2 2 3
2 2
3lj~ 2
3
c
3
2
3 3 4 4 5
3
5 s5 6
3 3/ 4
6
4 5 5
1
1 1
1
1
13/4 1lj~
2 21/8
{
1
3
3 3
G
F
E
D
1
4
518 5fa
11/4 11/4 1
13 e 1 1
11/
2
/
2z
/
21 4
21
/
2
31 2 /
3 4
f ba v eS kl erc h Aee e o Ssi n .m C hm at AnDou n B r . cto a t hl t ni Rr enoe lgJgf e i.1 u num 9e r n6 , 3e .
st o
7 7
3
. T B
B
1 1
13 2 2 2
3 3
3 3 3 !
a R
tb Sa
h i at o i P zes
86
STRESSESIN LARGE
H
V SUPPORTEDBY SADDLES
The design methods of supports for horizontal vessels are based on L. P. Zick’s analysis presented in 1951. The ASME published Zick’s work (Pressure Vessel and Piping Design) as recommended practice. The API Standard 2510 also refers to the anaIysis of Zick. The British Standard 1515 adopted this method with slight modification and further refinement. Zick’s work has also been used in different studies published in books and various technical periodicals. The design method of this Handbook is based on the revised analysis mentioned above. (Pressure Vessel and Piping; Design and Analysis, ASME, 1972)
A horizontalvesselon saddle support acts as a beamwith the followingdeviations: 1. The loadingconditionsare different for a full or partiallyfilledvessel.
vesselvary accordingto the angleincludedby the saddles.
2.
3. The load due to the weight of the vessel is combined with other loads.
LOADINGS: 1.
a a
2. Internal Pressure. Since the longitudinal stress in the vessel is only one half of the circumferential stress, about one half of the actually used plate thickness is available to resist the load of the weight. 3. External Pressure. If the vessel is not designed for full vacuum because vacuum occurs incidentally only, a vacuum relief valve should be provided especially when the vessel outlet is connected to a pump. 4. Wind load< Long vesselswith very small t/r values are subject to distortion
from wind pressure. According to Zick “experience indicates that a vessel designedto 1 psi. external pressure can successfullyresist external loads encounteredin normaIservice.” 5.
87
LOCATIONOF SADDLES. The use of only two saddles is preferred both statically and economicallyover the multiple support system, this is true even if the use of stiffener rings is necessary. The location of the saddles is sometimes determined by the location of openings, sumps, etc., in the bottom of the vessel. If this is not the case, then the saddles can be placed at the statically optimal point. Thin walled vessels with a large diameter are best supported near the heads, so as to utilize the stiffening effect of the heads. Long thick wa!led vessels are best supported where the maximal longitudinal bending stress at the saddles is nearly equal to the stress at the midspan. This point varies with the contact angle of the saddles. The distance between the head tangent line and the saddle shall in no case be more than 0.2 times the length of the vessel. (L) Contact Angle O The minimum contact angle suggested by the ASME Code is 120°, except for very small vessels. (Code Appendix G-6). For unstiffened cylinders under external pressure the contact angle is mandatorily limited to 120° by the ASME Code. (UG-29). Vessels supported by saddles are subject to:
1. Longitudinal bending stress 2. Tangential shear stress 3. Circumferential stress
1
STRESSES IN VESSELS ON TWO SADDLES
R t~ = =
o ~
m
A Q
C . 1
oa
n o sn t
daa g ced
lt
A
Max. Allow.Stress
I i e :4
*
~d
~ L ~ Z
n
o Sf
o pa $ -l &
v AT MIDSPAN
YYo Am Au
QL —-
(Tensio~at ihe Bottom Compression the
uJ~
z:
0
]+2~
e c t a ie
xt
pt
t s l dt t n hru r e ( e r Ps n sRs a n/u lh 2r a c l l es oh ew t adr b
en g n g
e S1
4A
4H - T
4 *
S1 p
n
()
1 ‘zr
R2ts
e a t d
l
l s o e r
vw t i
x0 t c t ie . ao r avb el m el e s s a l .
S3 plus stress
n<
IN
= 0*Q ~ti
K4Q
HEAD
u< m UJ A n a-$
ADDlTIONAL STRESS [N HEAD
w zQ
AT HORN
!3 g
SA%LE
Et
r
AT
n
i
on
g
K5Q S3. = ~
“L~ BOTTOM ,= O ,=0 .= SHELL L 3
4
1t
timesthe
S4
i2&QR ——
Q
s4=–
‘j 3 :
.
3K6Q Q -— &=-~t~(b+l.5@s) ?(:
M
2
Q
=— Ilth
IN
q I/l!
,J
S*
SHELL
w
-— K4 – ~ts
.~
Lt$ 5(
K7Q s5=– ts(b+1.56@@ F
~b
+ s
)
ma
89 STRESSES IN VESSELS ON TWO SADDLES
~
NOTES:
YY JJ
positive
$ 4 ~
D ~ ~ z w m ~ 4 ~ n ~ ~ uz
I
Values
denote
t
e stresses n and s negative i l values e denote compression.
E z Modulus of elasticity of shell or stiffener ring materidpound per square inch
The maximum bending stress S1 may be either tension or compression. Computing the tension stress in the formula for S1, for factor K the values of K1 shall be used. Computing the compression stress in the formula for S1, for factor K the values of K8 shall be used. When the shell is stiffened, the value of factor K = 3.14 in the formula for S1. The compression stress is not factor in a steel vessel where t/R SO.005 and the vesselis designed to be fully stressed under internal pressure. Use stiffener ring if stress S1 exceeds the maximum allowable stress.
~
& $ m m $ G z w u ~
If wear plate is used, in formulas for S2 for the thickness ts may be taken the sum of the shell and wear plate thickness, provided the wear plate extends R/10 inches above the horn of the saddle near the head and extends between the saddle and an adjacent stiffener ring. In Unstiffened shell the maximum shear occurs at the horn of the saddle. When the head stiffness is utilized by locating the saddle close to the heads, the tangential shear stress can cause an additional stress (S3) in the heads. This n put r e e r s n se auo lr stress shall be added to the stress in the heads d t i W
s
t h i r f aef i u e
ntnns em r rgae
xs hs d i o eh m , ca ute e cem aqu
u hr a
st
e o
e
A ~ ~ ~ & a L ~ Q ~ ~ Q
I w p ei ul i asf o fet rfr m S edf u the s l, oicknessts a n so may rbe 4taken r the sum of the shelland wearplate thicknessand for ts!? maybe”takenthe shellthickness squared plus the wear plate thickness squared, provided the wear plate extends R]l Oinchesabovethe horn of the saddle , and A< It12. The combined circumferentialstress at the top edge of the wear plate should alsobe checked. Whencheckingat this point: ts = shellthickness, b = width of saddle O = centralangleof the wearplate but not more than the includedangleof the saddleplus 12° i sf o e rf m S d f u t l, t o ahn sio t chm k rb n5t er t esaa s If wear plate is u
k s o t s u a h w h ue mten l hl f ie capl k r d nt ot re w vs e si o ,idt hwe d pd eth l e h e qa l u b +e 1 a al. s s5 t t6 I t s i nh sh t e i tf o lm f f ee a nl sxehs tdi ot , m cra ut e ceh m ous t oshrs a s r d h t de T s iht n br t ia e ot ds ts i s d n s preSSUK4reSS. tt e h ee o rd n o ae l I a s t i s f tf h em n aene xrhdi nl i g - mc lo mu epi rm ae ts s ib o n o o hs t ht s oet U s t i r sf i f t ei c in r ece un m rh f be r gee n sft nei a etdl xir t cn em eg as e xh sd i s m a l l so w t ar b e l se s .
90 STRESSESIN LARGEHORIZONTALVESSELSSUPPORTEDBYTWO SADDLES
VALUESOF CONSTANTK (Interpolate for IntermediateValues)
‘K, = 3.14 if the shellis stiffened by ring or head (A < R/2) ;ONTACT ANGLE 0 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152
K2
1.171 1.139 1.108 1.078 1.050 1.022 0.996 0.971 0.946 0.923 0.900 0.879 0.858 0.837 0.818 0.799 0.781
1 1 1
0.335 0.345 0.355 0.366 0.376 0.387 0.398 0.409 0.420 0.432 0.443 0.455 0.467 0.480 0.492 0.505 0.518 0.531 5 0.544 5 0.557 5
1
0
162 164 166 168 170 172 174 176 178 180
0.585 0.599 0.613 0.627 0.642 0.657 0.672 0.687 0.702 0.718
0
0.763
0.746 0.729 0.698 0.683 0.668 0.654 0.640 0.627 0.614 0.601 0.589 0.577
K5
K3
0.880 0.846 0.813 0.781 0.751 0.722 0.694 0.667 0.641 0.616 0.319 0.592 0.569 For 0.547 Any 0.526 Con0.505 Tact Angles 0.485 0.466 0 4 0.448 0.430 6 8 0.413
K(5
i 0.401,
0.393 0.385 0.377 0.369 0.362 0.355 0.347 0.340 0.334 0.327 0.320 0.314 0.308 0.301 0.295 0.289 .0.283 0.278 0.272
0
0
0.380 0.365 0.350 0.336 0.322 0.309 0.296 0.283 0.271 0.260
0.261 0.256 0.250 0.245 0.240 0.235 0.230 0.225 0.220 0.216
See chart on facing page
K7
0.760 0.753 0.746 0.739 0.732 0.726 0.720 0.714 0.708 0.702 0.697 0.692 0.687 0.682 0.678 0.673 0.669 ;.;;: 0:657 0.654 0.650 0.647 0.643 0.640 0.637 0.635 0.632 0.629 0.627 0.624
0.603 0.618 0.634 0.651 0.669 0.689 0.705 0.722 0.740 0.759 0.780 0.796 0.813 0.831 0.853 0.876 0.894 0.913 0.933 0.954
0 0.994 1.013 1.033 1.054 1.079 1.097 1.116 1.137 1.158 1.183
91 STRESSES IN LARGE HORIZONTALVESSELSSUPPORTEDBYTWO
SADDLES VALUESOF CONSTANTK6
0.01
0
: 0
uA
0 : R
5 A
T
I
O
92 STRESSESIN LARGEHORIZONTALVESSEIS SUPPORTEDBY‘IWO SADDLES EXAMPLECALCULATIONS DesignData s 48 in. distancefrom tangentline of head to the center of saddle 24 in. w o is ad d t d h l 21 in. depth of dish of head 960in. lengthof vesseltan.-tan. = 250psi. internaldesignpressure 300,000lb. load on one saddle 60 in. outsideradiusof shell 1.00in. thicknessof shell = 120deg.contact angle SheI.1 material: SA515-70plate Allowablestress value 17,500 psi. Yieldpoint 38,000 psi. Joint Efficiency: 0.85
L
=
I
o 6“
LONGITUDINALBENDINGSTRESS (S,) Stress at the saddles
~,
,A(.1-:jj:)3m,mx4(_l-~::;j~~)=522psi
K1R2t.
x 602x I
=
Stress at midspan ~:%(+:~j.2-%)3m*qxw(::~%)=4,,,psi =
S
nRzt,
dt t i r
=
3.14 x 602 x 1
2 xd PR n pe t u r es e— r s s= ns— e ua o r l= 7e
5 p:
2X1 4959+ ir oe 75(XI nsm = as f12,459 le spsi : 2t~
S
0 s0
o
Thes o t e nsu st 0e5 ph4 It d n e o tx s coe v t eo hrta s eg et sl d i s 1 ehu srx7 . ae =,t 1f m C o m ps r ei t ns fs r i soa en t oci sO
t /sn1.
os= 00t c Rr/ 0 . e
5>6 0
0
0: , 8 0 8 ;
10
i
s 57 7
93
STRESSESIN LARGEHORIZONTALVESSELSSUPPORTEDBYTWO SADDLES EXAMPLECALCULATIONS (cont.) TANGENTIALSHEARSTRESS(S,) SinceA (48)>IV2(60/2),the applicableformula: ‘,=%L*H)=
1“’’;”:?*OOO
doesnot exceedthe s
tv
( :::3”.4:1
)=’$’mPsi
of r ashellmaterialmultipliedby e l s us e 0.8; 17,500x 0.8
= 14,000psi.
CIRCUMFERENTIAL STRESS Stress at the horn of saddle (S4) Since L (960)> 8R(480), A(48) > R/2 (60/2), the applicable formula: s4=-
4
Q
.—3K6Q
t
A/R =48160 = 0.8; K = 0.036 (from chart) s, ‘–
300,000 4 X 1 (24 + 1.56 d-)
3 X0.036X 300,000 = –18,279 psi – 2t
S4 does not exceed the stress value of shell material multiplied by 1.5; 17,500 x 1.5 =26,250 psi Stress at bottom of shell (Ss) K, Q Ss =— . r~ +1 ~ . S =–
x 300,000 1(24 + 1.56 <~’)
5
6
5=–6,319 psi
% doesnot exceedthe compressionyieldpoint multipliedby 0.5; 38,000x0.5 = 19,000psi
94 STIFFENER RING FOR LARGE HORIZONTAL VESSELS SUPPORTED BY SADDLES N O T A T I O N . A = C s r e ac o t i rso
/ II II II l!
1 = K =
(
L Q R = R
8@
2
o o os oa d
aI i
n s ae l
ad n = db u
dl s
ne
= @ =
A S
1 t
r
~
1 .
~
R I ni s ni d ge . C o m p r e s sS i oK ~ n 6K ~ a t S h h e l t e Il G 1 ov e r n s
5 +
< c
~ Saddle
d
- ,r 3
and Ring
=9
~ O u tn s i dK ge K .~ 9 S at t r e s h s ~ s ~ ~t e = S h e l l % R O ui t s n i d ge . K9Q Stress at the S ~ 6. K, ~QR = o t h f l/d e
Q– /
& 5
. 5 sm Q ,–
Es
“: ~
Q.
Q +
–
,
“
-
U
w
,
+
-
d
S R ! +
h I j
e s
ni !
~ t
~
‘
ni ~
d Ss h. aK
l ge . t ● K ~ –e I
9
w G “ $ Q6 T Q / =
3 c
and Ring +
l
! 3
$
~
:
s 6 = - K # - K ’ :j ~ R : e < m“
95 STIFFENER RING FOR LARGE HORIZONTAL VESSELS SUPPORTED BY SADDLES
VALUES OF CONSTANT,K (Interpolate for Intermediate Values) Contact Angle e
1200
1300
1400
1500
1600
1700
1800
K9
.34
.33
.32
.30
.29
.27
.25
K1o
.053
.045
.037
.032
.026
.022
.017
NOTES: 1. In figures & fmrnulas A-F positive signs denote tensile stresses and negative signs denote compression. 2. The first part of the formulas for S6 gives the direct stress and the second part givesthe circumferential bending stress. 3. If the governing combined stress is tensional,. the stress due to internal pressure, —PR shall be added. $ CALCULATION OF MOMENTOF INERTIA (1) 1. Determine the width of shell that is effective to resist the circumferential ; 0.78 ~~ bending moment. The effective width = 1.56 ~~ on both sides of the stiffener ring. 2. Divide the stiffener ring into rectangles and adculate the areas (a) of each rectangles, including the area of shell section within the effective width. Add the areas (a) total area = A, 3. Multiply the areas (a) with the distances (Y) from the shell to the center of gravity of the rectangles. Summarize the results and denote it AY. 4. Determine the neutral axis of the stiffener ring,the distance (C) from the shell to the neutral axis c = Amy 5. Determine the distances (h) from the neutral axis to the center of gravity of each rectangle of the stiffener. 6. Multiply the square of distances (h2) by the areas (a) and summarize the results to obtain AI-IZ b d3 7. Calculate the moment of inertia Ig of each rectan~es Ig =~,where b = the width and d = the depth of the rectangles. 8. The sum of AH2 and Z I gives the moment of inertia of the stiffener ring and the effective area of the & en. See example calculations on the following pages.
96 M
O MINERTIA(I) E N OFTSTIFFENER~NGS F
O
EXAMPLECALCULATIONS A R=7
D I M EL I N I S IN O LN C S H O U RT A S O ISD D 2 IH E U E
E N S S L F L
1= 0.78~x ~
11
= =
X
X
1 A
RI
b2d: =
0.5 x 63 = ~.oo in. 4
+ a
R
E
4
0
I Y
A 0 .
A
I S . 9 1
I
h
b
2. 3 7
5 .1 2
2 13 .
1
I
I
~
A
A
‘\
—
I=
=
2 +
=
+
i 4
=
n
1=1.56 ~~
=
x
=
““”251-F%-’2’””25
q
* X
h,d;
=
in4
77-
=
12
1
b
MARK I AREA I a
Y
A=
–
a X h2
h
o @
‘ ~ –- A – — A
O =—
=
–
‘ 1 =”
1
=
-
=
–
0.10 .
35
@ A=
@
d ;
b, = 9.86
i
E 1
1
MARK I ‘AREA I
i
-
2 – +l Y =
s
+
=
4
MOMENTOF INERTIA (I) OF STIFFENER RINGS EXAMPLE CALCULATIONS ALLD1MENS1ONS ININCHES R = 72 in. OUTSIDERADIUSOF SHELL 1 = 0.78 ~~
CJ $ , I
0.78 J72 X0.5 = 4.68
m A
*
I
RI
E
b, d: ~ 12 *
=
x 12
4x0 — 12 = 12 a
2
h
Y
A o “
@ “
=g
~ “
‘
.
=0
4
.
5
b —
1 2 3 A= ~
AY A
‘—=
-
25.23 — = 2S4
9
-
=
.
I = AH 2 + Ig = 6 9
3
1
=
+ 94l z 7 . i 34 0
=
. 3 n 1 .a
7
/
~ = A
2— 8
= 2~2
.
” I. = A =9 2 + 7I =3 5 4 3
2+ 90
= 5 . .H i 94 7 g 0 . 3 n 7 3
6
.“
D
S
M A
1
T c
s s r
A R
E
aa t hdl ods . hew l m e c eer t tuset ieh tso sr ni fi h z s( too Tn t et r~eaf l f c he ) c e o otc s t s ati r hosd te n dl s i lfhoei o te s oi oht at nv is er d hr as(R). s e dsd efi
F=K1lQ,Where
Q= the load on one saddle, lbs. K,, = constantas tabulated.
Theaveragestressshallnot exceedtwothirdsofthe compressionyieldpoint ofthe material.(See examplebelow.) VALUES OF CONSTANT K,l IntactA Kll
X
120° n .204
g 130° l
.222
140° e .241
150° .259
160° .279
170° .298
180° .318
EXAMPLE: Diameter of vessel= 8’- 6“ Weight of vessel= 375,000 lbs. Q= 187,500 Ibs. Saddle material: SA 285 C Web plate thickness = 0.25 in. Contact angle = 120° Kl, = 0 f t a
R =5 =1 i F F = K,, x
0.204 x Q187,500= 38,250 = lb.
To resist this force the effective area of web plate= lU3 x 0.25= 4.25 in.2 38,250/4.25 = 9,000 lbs. per square inch. The allowable stress = ?4 x 30,000= 20,000 psi. The thickness of the web plate is satisfactory for horizontal force (F). 2. The base plate and wear plate should be thick enough to resist longitudinal bending over the web. 3. The web plate should be stiffened with ribs against the buckling.
99 E
X O
P
A AN
C S OI NO T NNR A C T ID O N
H O R I Z VO NE T SF A LS
B
A
E
L
S
4 9
~ ~ BOLTS – ~B
O
R I
L
-
*
2
T
QS
S
A
~ D
D
2 L
E
S
++
“
CONTRACTING VESSEL
EXPANDINGVESSEL
For thermal expansion and contraction, one of the saddles, preferably the one on the opposite side of the pipe connections, must be allowed to move. In this saddle for the anchor bolts slots are to be used instead of holes. The length of the slots shall be determined by the expected magnitude of the movement. The coefficient of linear expansion for carbon steel per unit length and per degree F = 0.0000067. The table below shows the minimum length of the slot. Dimension “a” calculated for the linear expansion of carbon steel material between 700F and the indicated temperature. When the change in the distance between the saddles is more than 3/8” inch long, a slide (bearing) plate should be used. When the vessel is supported by concrete saddles, an elastic, waterproof sheet at least 1/4” thick is to be applied between the shell and the saddle. MINIMUM LENGTH OF SLOT (DIM. “a”) DISTANCE FOR TEMPERATURE oF BETWEEN SAD-DLEs -50 100 200 300 400 500 600 700 Ft.
a H @ z :‘u ~ ~ $ ~ & le width of h s h d n l
e o i bc + y
ql
10 20 30 40 50 60 70
0 0 1/4 1/4 3/8 3/8
0 0 1/8 1/8 1/4 1/4
1 1 o a el t 1 3 a m e . 90 5[8 ho o l r318 5 33 0 4 1 * u 8
1/2 0 1/4 3/8 3/8 1/4 3/8 5/8 3/4 1 7/8 1-1/8 1-3/8 3/8 5/8 3/8 3/4 1-1/8 1-1/2 1-7/8 1-3/8 1-5/8 2-1/4 1/2 1 5/8 1-1/4 1-5/8 12-1/8 2-3/4 3 1 / s 3 1 / f 1-3/4 7/8 t 1 1 [
5/8 1-1/8 1-5/8 2-1/8 2-5/8 3-1/8
800
900
3/4 1-1/4 1-5/8 2-3/8 3 3-5/8
3/4 1-3/8 2 2-1/2 3-3/8 4-1/8
1/ - / 2 - 3 23 - 74 / 3 -4 1 / 84 - 1 / 84 5 /12 2/ - 0 / 2 - 1 23 - 18 / 4 -4 7 / 24 - 5 / 8 5 - 1 / 8
2-3/8 3-1/4 4 21 -0
- /8 -7 / 8
4-5/8 5-3/8 6
3 - 7 84 - 58 / 5 - 5 / 86 - 1 / 8 6 1 / 8 - 12
S FOR SUPPORT OF HORIZONTAL
r
-
B
VESSELS
j’” H
O
]
i L
E
G Ii k
&
~
E
Q ‘-
E
L
SUB
PA ;~
T \
H
MH
‘“;
LA : - LSC Y E
&D-
I
H I I
C: C ‘:
E
:
-
The design based on: 1. the vessel supported by two saddles 2. toresisthorizontal force (“)duetothemaximumo peratingweightofvessel as tabulated. 3. the maximum allowable stress is % of the compression yield point: % of 30,000 = 20,000 psi. 4. the maximum allowable load on concrete foundation 500 psi. 5. the minimum contact angle of shell and saddle 120°. Weld: %“ continuous fillet weld all contacting plate edges. Drill and tap %“ weep holes in wear plate. At the sliding saddle the nuts of the anchor bolts shall be hand-tight and secured by tack welding.
SEE FACING PAGE FOR DIMENS1OIW
“
J
101
SADDLE
{OMN.U lwAMEITR )F\EY$EL
0
1-2 1-4 1-6 1-8 1-1o 2-o 2-2 2-4
l-x 1-2 1-3!L 1-5!4 1-7 1-9 1-1OY2 2-2Y2
1-1 1-2 1-3 1-4 1-5 I-6 1-7 1-8
c
D
4
4
4
4
E F
o-3~z
!/Z
o
Y? Yl % V2 % K !4
o o o o o o o o o o o o o o o o o
K
% ‘h % N % % % %
‘% % % % % % % ‘/4
‘A
42,000 50,000 56,000 62,000 70,000 76,000 84,000 90,000
‘/2
%
‘%
98,000
% !4
% %
% %
Y2
‘A
‘/4
% 5 !4 % % %
%
‘h
‘/4
‘A
3/8
3/8
1 3-
3/4
13/8
104,000 112,000 128,000 134,000 144,000 210,000 220,000 252,000 282,000 312,000 344,000
2-o
6
2-1
6
11
1-0
3/4
2-2 2-3 2-6 3-o
6 6 6 6
11 11
11 11
1-1 1-2 1-4 1-6
3A % % ‘h
3
6-
1
-1
4%
4-9!4
3-6
6
11
1-1o
%
1
%
5-25 5-8
3-9
9
18
2
%
1
%
‘
4-o 4-3 4-6
9 9 9
18 18 18
2-2 2-4 2-6
3/4
1
3/4
‘/2
3/8
3/8
9
18
2-8
1
Y2
3/8
5-o 5-3 5-6 5-9
9 9 9 9
18 18 24 24
2-10 3-O 3-2 3-4
1 1 1 1% 1% IK 1% 1%
3/4 1 1 1 1 1 1 1
Yl Y’
4-9
1 1 1 2 2 2 2 2 21 31 31
% ‘/2 ‘h 3/4
‘/2
!L? ‘/2 ‘/2
3/4
Y2
940,000
% ‘A ?4
Y2 % %
986,000
2“2
2-8 2-1o 3-o 3-2 3-4 3-6 4-o 4-6 5-o 5-6
2-4 2-5 2-6% 2-9 2-11 3-!4 3-6 3-11
6-O 6-6
4
7-o 6-1 7-6 6-6 8-O 6-1IY2 8-6 7-4% 9-o 7-9% 9-6 8-3% 1o-o 8-8
4 4 4 4 4 4 4
1-9 4 1-1o 4 1-11 6
10-6
9-1%
6-O 9
24
3-6
11-0
9-6!A 1o-o 10-5
6-3
9
24
6-6
9
24
6-9
9
24
3-8 3-lo 4-o
12-O
H
G
0-4 4 0-5 4 0-6 4 O-6YZ 6 0-7 6 0-7% 6 0-8 6 0-8% 6 0-9 6 0-9!4 11 0-1o 11 0-11
2-6
11-6
MAXIMUM
OF
‘/2
% % l/2 !4
1 1
8
3/8
/ 402,000
436,000 470,000 502,000 536,000 760,000 806,000 852,000
896,000
1,030,000 1,076,000
8
102 r
S
V
LEG SUPPORT NOTATION:
w,
W = Weight of vessel, lbs. n = number of legs
Q = ~
Load on one leg, Ibs.
R = Radius of head, inch
*
H = Leverarmof load, inch. 2A, 2B = Dimensionsof wear plate S = Stress, pound per sq. inch t = wall thicknessof head, inch K = Factors,see charts C = inch C = radius of circular wear plate, in
Q
@lI’
El D=1,82S n
o
Rtf
E
LONGITUDINALSTRESS:
Q [
C
K (Kl + 6 OK2) + ; f
CIRCUMFERENTIAL
Q [
cos a
(
R ~ S(K3 + 6 K.)
1
STRESS: + 6 KG)+K H
Rf
f (K7 +5 6 K8) ]
NOTES: Positive values denote tensile stresses and negative values denote compression. Computing the maximum tensile stresses, in formulas for S1 and S2, K,, K3, K5 and K, denote negative factors and K2, Kq, KGand K8 denote positive factors. Computing the maximum compression stresses, in formulas for SI and S2, K,, K2, K3, K4, K5, KG, K, and K8 denote negative factors. The maximum tensile stresses S1 and S2, respectively,PIUSthe tensilestressdue to ~ internal pressure shall not exceed the allowable tensile stress value of head material. The maximum compression stresses S1 and S2, respectively,plus the tensile
due to internalpressure shall not exceedthe allowablecompressionstressvalueof head material. 4
103 STRESSES IN VESSELS ON LEG SUPPORT
0.2OAO.6 0.81.01.2 1.5
4
3
2.0
.
D & K5
020.40608101.2
1.5
4.0
2.0
D VALUE OF Kz 8LKG
STRESSES IN VESSELS ON LEG SUPPORT
0.20
~ k O 0 0 .0.2040.60.81.01.2
1
2
4.0
3.0 D
VALUE OF K3 8ZK,
0.60 0.50 k!? -0.40 Q? 0.30 0.20 0.10 020.4060.81.012 1.5
2.0
3.0
4.0
D VALUE OF Kz 8ZKg
105 STRESSES IN VESSELS ON LEG SUPPORT EXAMPLE CALCULATIONS DESIGN DATA
800,000 lb, weight of vessel n = 4, numberof legs w 800,000 Q d = 200,000 lb, load on one leg R = 100 inch, rr,diusof head H= 5 inch, leverarmof load
2A = 30 inch, 2B = 30 inch, dimensionsof wear plate ? = 1.8 inch thicknessof head Cos~ = 0.800 P = 100 SA — 515–70 Allowable stress value: 17,500 psi Joint Efficiency: 0.85 Yield point: 38,000 psi. Factors K (see charts): c=
~
= ==
15 inch
K1 = 0.065, Kz = 0.030, K3 = 0.065, Kq = 0.025, K5 = 0.020, K6 0.010, K, = 0.022, Kg = 0.010.
LONGITUDINAL STRESS: 1.) Maximumtensile stress:
S1 =
200,000 1
[
5 0.800 (–0.065 + 6 x 0.030) + — r . 8 2 100 (-0.065
+ 6 X 0.025)
The stress due to internal pressure: PR —— 100 x 100
2t –
2 X 1.8
= + 2778 psi
The sum of tensional stresses: 7.634 + 2.778 = 10,412 psi
It does not exceed the stress value of the girth seam: 17,500 x 0.85 = 14,875 psi
100 — 1.8
1
= + 7,634 psi
106 STRESSES IN VESSELS ON LEG SUPPORT 2.) Maximum compressional stress:
Q
S1 = ~ S1 =
cos ~ ( – K, – 6KZ) + g V [ R
200,000 1.82
[
0.800 ( –0.065
R T( – K3 – 6KQ)
1
5 – 6 X 0.030) + — r 100 ( –0.065 – 6 X 0.025)
100 G
1
= – 17,0:44psi
The stress due to internal pressure: PR 100 x 100 ——
= + 2778 psi 2t – 2 x 1.8 The sum of stresses: – 17,044 + 2,778 = – 14,266 psi It does not exceed the stress value of the girth seam: 17,500 x 0,85 = 14,875 psi C i r c u m f es r e tn t ir a l e
s
s
:
1.) Maximum tensile stress:
= ~Q S2 =
[
cos ~ ( –K5 + 6K6) + ; V
200,000 1.82
[
0.800 ( –0.020
R ~ (–K7
+
5 + 6 X 0.010) + — v 100 (–0.022
1
15K8)
100 =
+ 6 X 0.010)
The stress due to internal pressure: PR —=
100 x 100
2t
2 X 1.8
1 =+
2,849 psi
= + 2778 psi
The sum of tensile stresses: 2,849 + 2,778 = 5,627 psi It does not exceed the stress value of the girth seam: 17,500 x 0,85 = 14,875 psi 2.) Maximum compressional stress:
= ~Q
[
cos m ( – K5 – 6 K6) + ~ R r
R 7( –K7 – 6K8)
1
STRESSESIN VESSELSON LEG SUPPORT
S2 =
200,000 1.8Z
[
0.800 ( –0.020
5 – 6 X 0.010) + — v 100
—
x 0.010)
1
(–0.022 The
-6
due to internal pressure:
PR —— 100 x 100 = + 2778 psi 2t – 2 X 1.8 The sum of stresses: – 5837 + 2778 = – 3,059 psi. It does not exceed the stress value of the girth seam: 17,500 x 0.85 = 14,875 psi
100 1.8
= -5,837 psi
.
-
LEG SUPPORT
Notch out angles \ to clear seam I I I I \ I
I I I
! I I I
f;
‘ 8 + *
& ~“1
A
‘
“!!!! 1
SECTION A-A
V
E D
S V S EE H I E M I
S L ANG.LE S E L GA SIZE H A T m
I
a
XI
x
2’-6” 3 X3 X3
84“
f 5
10’-0”
~
X3
x
x .3
.
5/
x1
/
x5 x 1 6 X6 X5
—
°68
,
° 0
”
7
” ”
”
21 ’
1
-
2
/ 7
.
’ 5
“
“ -
81‘ “
“
” 0 ”-
/ 0 ” o
109
... .
—
STRESSES IN VESSELS DUE TO
L
S
U N S T I F F E N E D S T S H E L LS
I
F H
F
E E
N
E
D
L
N
2A, 2B = Dimensions of wear plate O
W = Weight of vessel, lb n = Number of lugs ~=:. Load on one lug, lb
S = Stress, pound per sq. in t = Wall thickness of shell, in shape factor, see table Factors, see charts K= ~.d — 3 B A R r
R = Radius of shell, in H = Lever arm of load. in
L
LONGITUDINALSTRESS: ,,.
K2R CIK1 + 6 — +
~ E D R2t
N
I t~ t
c2t
(
2 (1.17 + B/A) ‘~A
e S pnE t s s li : dt o tn hirun
s
vt
ohr as
l t e
em lh as t etue s et i eerl f imff laoi hgcle i s ei s n e cer y a t
fm
E
S
S
:
Kd R C3K3+ 6 —
QH DR2f
)
n e p1tu s rse ePe r s sns Res an o uhel / r x ae2 oc
C I R C U M F E R E NS T I T AL R
‘2 = *
D
(
c4t
)
NOTE: In tension S2 plus the stress due to internal pressure PR/t shall not exceed the stress value of shell material multiplied by 1.5.
110 STRESSES IN VESSELS DUE TO LUG SUPPORT
8
6
4
2
0 0
0
0.10
0
0 n
VALUE OF K]
0
111 STRESSES IN VESSELS
DUE TO LUG SUPPORT
0
0
0
0
0
0
0
0
0
0
VALUE OF Kz
0
0 (
0
112 STRESSES IN VESSELS DUE TO LUG SUPPORT
10
5
0 0
0
0
0
0 D
VALUE OF Kj
0
STRESSES IN VESSELS DUE TO LUG SUPPORT
0
0
0
0
0 0.05
0
0.10
0
0.15 (
VALUE OF K4 BIA
1/2
1
2
0
C
R/t
c,
C2
C3
C’4
50
0.72
1.03
0.95
1.07
100
0.68
1.02
0.97
1.06
200
0.64
1.02
1.04
1.05
300
0.60
1.02
1.10
1.04
50
1
1
1
1
100
1
1
1
1
200
1
1
1
1
300
1
1
1
1
50
0.85
1.10
0.85
0.92
100
1.15
1.07
0.81
0.89
200
1.32
0.98
0.80
0.84
300
1,50
0.90
0.79
0.79
VALUE OF C
114 DUE TO LUG SUPPORT
STRESSES IN VESSELS
—. EXAMPLE CALCULATIONS D
E D S
IA
G
TN
A
W = 1,200,000lb. weight of vessel n = 4 number of lugs Q = : = 1,200,000 = 300,000 lb. load on one lug 4 R = 90 in, radius of shell H = 5 in, leverarrn of load 2A = 30 in, 2Z? = 30 in, dimensions of wear plate t = 1.5 in, thickness of shell p = 100 psi internal pressure
Shell material:SA -515-70 Allowablestress value 17,500psi Yield point 38,000 psi Joint Efficiency:0.85 Shape factors C, (see table): RI, = $
B/A = 15/15) = 1,0
= 60,
c1 = C2 = CJ = C4 = 1.0 The factors K, (see charts)
K1 = 2.8,
w=
K2 = 0.025,
L o n g i St u t d i r n ae l ,
=
&
UR “
“
K3 = 6.8 s
s
:
C,K1 + 6, ~ 2
+
.~
(
~ = 300,000 x 5 , X228+ 1 0.167 x 902 x 1.5 ( 902 0.167 x 5 x 15 ) 2 (1.17 + 15/15)
+
Stress due to internal pressure:
PR = z
100 x 90 2 x 1.5
=
3000 psi
’
=
%
=
6
Kd = 0.021 D
2 (1.17 + B/A) ‘x ~A
~ 0.025 x 90 1 x 1.5
_ )
+
– 11,795 psi –
The sum of tensional stresses: 11,795 + 3000 = 14,795psi
It does not exceed the stress value of the girth seam: 17,500 x 0.85 = 14,875 psi
0
115
STRESSES IN VESSELS DUE TO LUG SUPPORT C i r c u m f Se r e t n t ri a le
s~ = & s~ =
QH
DR2t
(
C3K3 + 6
300,000 x 5
0.167 X 902 X 1.5 (
s
s
:
KJ?
c~i
)
1 X 6.8 + 6
0.021 x 90
1 x 1.5
)
= 10,616psi
Stress due to internal pressure: PR —=
100 x 90
t
1.5
= 6000”psi
The sum of tensional stresses: 10,616 + 6000 = 16,616psi
It does not exceedthe stress value of shell materialmultipliedby 1.5: 17,500 x 1.5 = 26,250
116
L
S
FOR INSULATEDVESSELS
I
r !1
[J
L u’ Lb,d --l,&
h t
T hl
h
6(Y t 3
ug
T 4
a L L
Ax l i l o One o L u
_
_
_
}
V
m o
wu a m b lD eI M E N S I O N S W ~ a ~ ~ d ~n ~ ~ ~ ~ “O L w F bI g s 1 , . 1
1,400
6!/2
5
2,200
674 5VZ
3,600
5% 3Y4
5%
%
‘/4
7
5%
5/8 5%
‘/4
‘/4
9
8~4 63/4 7y4 6Y4
7
Y4 6?4
‘/4
‘/4
16
5,600
10Y4 83A 9Y4 9%
9y8
1
8Y2
‘/4
1/4
24
9,000
12y*
1
10Y2 ~8
3/8
58
12V4 17 17Y8 1
1l!A %
3/8
72
6
5
4
14Y414%
14,000
13y4 llfi
22,000
15y2 13 1374 lg% 1878
90,000
22Y4 18!/2 19k 31
140,000
~8
oe L
%
lti
18
388
25% 2072 21Y23478 3578 2
20
482
All dimensionsare in inches Stressesin vessel shall be checked. Use wear plate if necessary
I
i un
117
L
S
FOR UNINSULATEDVESSELS
Jl
4
t T
hl
h
60°
l ‘L– — T w ~
j
~ L
Ai
l ml o uw o Oo ~ a ~n L u b1 g
L
a m bD lI M E N S I O N S W ~ d ~ n e~ ~ ~ ~ O L w F s I , . I
4?46 YJ4 1% %6 full
1,400
2!4
2,200 3,600
3!4 2Y2 3 5% 5?46 4 3y4 3?4 6~4 (jl~b
5,600
53/4 5y4 6y4 974
9,000
7Y4
2
7
2%
4
oe L
1
full
2
2Y?2 %6 full
4
2
1
4
1/4
‘/4
9
1
5%
%6
‘/4
21
17 17%6 1
6ti
%6
‘/4
28
10
774 14~ 14%6
14,000
9y~ 8~z 9y4
22,000
10
9y’ 10M 18
18y8 lti
7
3/8
‘/4
45
36,000
12
11!4 2Y2 22
22Y2 1%
9
‘/2
3/8
80
y16
3/8
148
5/8
3/8
218
5/8
3/8
260
56,000 90,000 140,000 A S U
15 6V4 28H 29 !46 1Y2 12 161/2 1574 7 31 y? 32yg 174 13 15
18
17% 8Y4 34Y2 3578
2
14
d i m e al n i si i on rnl cs h e n s t ir v e es s bs hce shs a ee nc l l k el de w p ies nl e aca e e st r s ae r f y
,
i un
g b
L
: L
a I .
VESSEL WEIGHT (LBS)
.
—
— —
D (IN)
(1:)
I
.&
R (IN)
H (IN)
L (IN)
WELD (Min)
J
12,000
1
~/~
1v?
5
10
20,000
1%
3/4
2
6
10
30,000
1%
1
2Y8
6
10
co .-_ &J~ ~.= gL &s
50,000
1%
1%
2YI
7
12
25
70,000
2%
1
3Y2
8
12
100,000
2Y?
172
4Y2
9
16
150,000
3
11/4
5
10
16
200,000
4
2
6
12
18
250,000
4%
6Yz
13
18
300,000
4fi
2 21/!
7
14
20
.5 ~ %b= EL as =5 ~ “~
Notes: 1. All dimensionsare in inches 2. The design is based on conditions: a. x = 45° “maximum b. Minimumtensile strengthof lug material 70,000 psi. c. Direction of force is in the plane of lugs. e buckling due to normal or sudden 3, U wear plate ifs necessary to eliminate loading.
LIFTINGATTACHMENTS
f-h
MINIMUMDIMENSIONSOF LIFTINGLUGSUSINGSHACKLE Sh~~kle HoIe Diam. Di~m. m Lug D1
~~;d
Sheared Edge H
A
5/16 3/8 7/16 I
. J-
l
282(-)I SIR -
I 1
I
/,-” , .,117 - I1 - ,-
11300 13400
7/$?
21A II -I 11
Y
22 42 72 3 1 3 “
j
I
I
.[>
I I
cl? .OL
-.94
1.13
L .90
I
1
1
1.22 1.47
1 la
I
1 cc
1-1/4 IQ 1-2 A u
1-1/2 1-5/8 1 9 1A 1-d/+ 506 0 -
]
..<”
I
1.72
1 .U2
1L
-
1.75 1.88
2.28 2.45
2 - 2 2 01 - 02/ 2 01 - 02/ 2 0 / - 02 0 0 3-1;8 .
1 3 5 7
. 2/ 4 . 3/ 2 . 3/ 4. 31 .
L
1
1/0
8 1-1/8
I 1
I
‘“’A
4-1\+
a - /. ,
L
2-5/8 2-7/8 A . ,- >-l/ 1
I
u-l/
./
1 -1”
1
I
I
718
1-1/4 1-1/2 ‘
1-1/8 1-1/4
16500 1-3[8 20000 1-1/2 23750 1-518 32350 2 4 5 6 8 .
.69u /
/
5
: 7/8
63’75
.4U Al .U4
Arm of Mo~ent
B
●
710 1060 1600 -%/
Rdl;d cut
.
.
1.44 . -1.75 : 2.12
1 1-118 ‘m I
2
1-3175
-1 .
Z.Y4
I I‘ 3.06
1--‘!LB 13.62 2 II4.06 —.
I
i
m
ei l ni
-
2 1 4 5- 9 2 3 -34 / 5 6- 3 31 35 / 1 - 6 39 / -66 1 1 5- 48 2 / 1A 12— 7. . 5-7/;6 ;:;f ‘:” I‘ 8: l
82 . 3 85 . 4 88 . 4 89 .
I
A d
,
s ni
oc nl hs
e
s n
.
J
. 3 .4 .8 .6 Q .
6 / /
0
120 LIFTINGATTACHMENTS (cont.) RECOMMENDED MATERIAL: A 515-70, A 302 or equivalent. The thickness, and length of the lifting lug shall be determined by calculation.’ WELD: When fillet welds are used, it is recommended that throat areas be at least 50 per cent greater than the cross sectional area of the lug. To design the lugs the entire load should be assumed to act on one lug. All possible directionsof loadingshould be considered(during shipment,storage, erection, handling.) When two or more lugs are used for multileg sling, the am gle between each leg of the slingand the horizontal should be assumedto be 30 degrees. EYE - BOLT
r w
Threaded fasteners smaller than 5/8” diameter should not be used for lifting because of the danger of overtorquingduringassembly. Commercial eyebolts are supplied with a rated breaking strength in the X direction. For loadingsother than along the axis of the eyebolt, the following ratings are recommended. Theseare expressed as percentage of the rating in the axialdirection. 100%0 Y = 33% 20% w = 10% z=
EXAMPLE: An eyeboit of 1 in. diameter which is good for 4960 lb. load in tension(direction x) can carryonly 4960x 0.33 = 1637lb. load if it acts in directiony. The abovedimensionsandrecommendationsare takenfromC. V.Moore:Designing Lifting Attachments,Machine Design, March 18, 1965.
● Assuming shear load only thru the minimum section, the required thickneas may be calculated by the formula: R I
6
P t = 2S (R-DIP)
see page
where
t = required thickness of lug, in. P = load, Ibs. S = allowable shear stress, psi.
for designofweldand lengthofW.
121 SAFELOADSFOR ROPESANDCHAINS
The stress in ropes and chains under load is increasing with the reduction of the angle between the sling and the horizontal. Thus the maximum allowable safe load shall be reduced proportionally to the increased stress. If the ailowable load for a single vertical rope is divided by the cosecant of the angle between one side of the rope and the horizontal, the result will indicate the allowable load on one side of the inclined sling. Example: The allowable load for a rope in vertical position is 8000 lb. If the rope applied to an angle of 30 degrees, in this position the allowable load on one side will be 8000/cosecant 30 deg. = 8000/2 = 40001b. Forthetwo-rope sling the total allowable load 2 times 4000 = 8000 lb. The table shows the load-bearing capacity of ropes and chains in different positions. Multiplying with the factors shovm in the table the allowable load for a certain rope or chain, the product will indicate the allowable load in inclined position.
FACTORSTO CALCULATESAFELOADSFOR ROPESANDCHAINS
.
L
A
A
A
&
Angle of Inclination
9(30
600
450
300
1(-JO
On One End
1.00
0.85
0.70
0.50
0.17
On Two Ends
–
1.70
1.40
1.00
0.34
122
O
P
externalpiping is connectedto the vessel,the scope of the Code includes: (a) the weldingend comection for the first circumferentialjoint for welded connections (b) the first threadedjoint for screwedconnections (c) the face of the first flangefor bolted, flangedconnections (d) the first sealingsurface for proprietaryconnectionsor fittings CodeU-l(e)(1) SHAPEOF OPENINGS: Openingsin pressure vessels shall preferablybe circular,ellipticalor obround.An obroundopeningis onewhichis formedby twoparallelsidesand semicircularends. Theopeningmadeby apipeor acircularnozzle,theaxisofwhichisnotperpendicular tothevesselwallorhead,maybeconsideredanellipticalopeningfordesignpurposes. Openingsmaybe of shapesotherthan the above. (See CodeUG-36.) SIZEOF OPENINGS: Properlyreinforcedopeningsare not limitedas to size,but, whenthe openingin the head of a cylindershell is largerthan one half the inside diameterof the head, it is recommendedto use in place of heads, shell reducer sectionsas shownin the Code FigureUG-36, NOZZLENECK THICKNESS(CodeUG-45) For vesselsunder internalpressurethe wallthicknessof openingnecks shall not be less than: (1) the thickness computedfor the applicableloadingsin UG-22 on the neck (pressure,reaction of piping, etc.), plus corrosionallowance. (2) forotherthan accessandinspection openingsshallnotbe lessthanrequired for the applicableloadingsand not less than the smallestof the following: (a) the thickness of the shell or head (to which the opening is attached), required for internal pressure (assuming E = 1), p a
b nf
w c
evu e ol ei n d, cs
tle s rt ad e 1e
c o l r a r oul s l i ihl s / ns o a e n1 s n
i tn h h i i omcs kut e naw m e np s dp sa ac i or lf lrd a pr l oul l so e w (b) t m i soa The minimumthicknessof a pipe (ANSI/AB36.1OM)is the nominal thicknessless 12.5percent allowabletolerance(see page 140).
I
1
—
123
I
O
All pressure vessels for use with compressed air and those subject to internal corrosion, erosion or mechanical abrasion, shall be provided with suitable manhole, handhole, or other inspection openings for examination and cleaning. The required inspection openings shown in the table below are selected from the alternatives allowed by the Code, UG46, as they are considered to be the most economical. INSIDE DIAMETER OFVESSEL
1NSPECTION OPENING REQUIRED
over 12 in. less than 18 in. I.D.
two - 1% in. pipe size threaded opening
18 in. to 36 in. inclusive
min. 15 in. I.D. manhole or two -2 in. pipe size threaded opening
I.D.
over 36 in.
I.D.
min. 15 in. I.D. manhole or
two -6 in. pipe sizenozzle
INSPECTION OPENINGSARENOTREQUIRED: 1. for vessels 12 in. or less inside diameter if there are at least two minimum % in. pipe size removable connections. 2. for vessels over 12 in. but less than 16 in. inside diameter, that are to be installed so that they must be disconnected from an assembly to permit inspection, if there are at least two removable connections not less than 1% in. pipe size. UG46(e). 3. for vessels over 12 in. inside diameter under air pressure which also contain other substances which will prevent corrosion, providing the vessel nontains suitable openings through which inspection can be made conveniently, and providing such openings are equivalent in size and number to the requirement of the table. UG-46(C). 4. for vessels(not over 36 in. I.D.) which are provided with teltale holes (one hole min. per 10 sq. ft.) complying
withthe provisionsof the CodeUG-25, which are subject only to corrosion and are not in compressedair service. UG-46(b).
The preferablelocation of smallinspectionopeningsis in each head or near each head. In place of two smaller openingsa singleopening may be used, provided it is of such size and location as to afford at least an equal view of the interior. Compressed air as used here is not intended to include ~ which has had moisture removed to the degree that it has an atmospheric dew point of -50 F or less. The manufacturer’s Data Report shall include a statement “for non-corrosive service” and Code paragraph number when inspectionopeningsare not provided.
NOZZLENECKTHICKNESS The wall thickness of a nozzle neck or other connection used as access or inspection opening only shall not be less than the thicknesscomputed for the applicableloadingsplus corrosion allowance.
.1
2-
O
4.
W
R
P
Below the most commonly used types of welded attachments are shown. For other
typessee Code, Fig. UW-16.I.
125 B
O
the e
l
o
W
w
R
THREADED AND WELDED FITTINGS
T
F
I BGH USE R T L E HE M SOC OOO HW M UM WS TO E N S OT YLW Y EPE C O N N E C S T CI O FN SO UE. W I F D-~ G 1E T E6HO .Y. 1EP
N
O
T
A
T
I
a=~ t o ( = 1
O
) w .h
N i3i tc 7 sh , m 5e. r via , hel
- t i s 1 mm o /at ht loe 41 li r = the smallestof t, t. or 0.375in.
+
o
LE D D R ER
t
se
rl
se
e t
sn s et
n
,
.
f , . r
.
b= no minimumsizerequirement c = the smallest
d=t
t
h
o to 1 i i o cSh k1 pn
1 n ew cse i i 6s a
f r 2 . plf h n 0l e
,
.
e = the smallestof t o 3/4in. , i aos nn cn e , t = t h i o vc k we n l es ac s sos e lr ae r l f lolls ois w t =n o t mh i io fc n ki wan. tl el ct sa o sie r a nrl l fol gs ois wil aos nn cn e
T
S
w
N
s
d ehi e h
O ~EF
.
fzla
ti eem e nd i es r rn ehd qi u im e r e u me em n t s .
A PE C E
IAS
N N GG
E
.
THREADED AND WELDED FITTINGS T
F
I BGH U$E R T L H EE M SOC OOO HW M UM WS TO E N S OTYLW Y EPE LE D D S E C O N N E C S T CI O FN SO UE. I1WF D O- G E T 1TE O 6 Y .H . PE R ER S
SEENOTATIONON FACINGPAGE: GJ
a I
I
318in. min. t
t 7:
Dm
= o
ud — .
a it
o asp
m+i 3 exidi t e e .
pr/ -
n
f e
%+ s
d
4
3i i .
z
FITTINGS NOT EXCEEDING 3 IN. PIPE SIZE. In somecasestheweldsare exemptfromsizerequirements,or fittingsandboltingpads maybeattachedtothevesselsby filletwelddepositedfiomthe outsideonlywithcertain limitations(CodeUW-16 (f) (2) and (3)) such as: 1. The maximumvesselthickness:3/8 in. 2. Themaximumsizeofthe openingis limitedtothe outsidediameterof the attached pipe plus 3Ain. 3. Theweldthroatshall bethe greateroftheminimumnozzleneckthicknessrequired by the CodeUG-45(a)or that necessaryto satisfythe requirementsof UW 18for the applicableloadingsof UG 22. 4. Theweldingmayeffectthe threadsof couplings.It is advisabletokeep the threads aboveweldingwith a minimumY’in. or cut the threads after welding. 5. Strengthcalculationof attachmentsis not requiredfor attachmentsshownin Figs. A, C and E, and for openings: 3 in. pipe size fittingsattachedto vessel walls of 3/8 in. or less in thickness,2 in. pipe size fittings attached to vessel walls over 3/8 in. in thickness. (Code UG36(c)(3)).
ne
128
1 SUGGESTED MINIMUM EXTENSION OF OPENINGS
The tables give the approximate minimum outside projection of openings. When insulation or thick reinforcing pad are used it may be necessary to increase these
dimensions. OUTSIDEPROJECTION,INCHESUSINGWELDINGNECKFLANGE NOM. PRESSURERATINGOF FLANGELB PIPE 900 I 1500 2500 300 600 150 SIZE 2 3 4 6 8 10 12 14 16 18 20 24
6 6 6 8 8 8 8 8 8 10 10 10
6 6 8 8 8 8 8 10 10 10 10 10
6 8 8 8 10 10 10 10 10 12 12 12
8 8 8 10 10 12 12 14 14 14 14 14
8 8 8 10 12 14 16 16 16 18 18 20
8 10 12 14 16 20 22
OUTSIDEPROJECTION,INCHESUSINGSLIPONFLANGE PRESSURERATINGOF FLANGELB NOM. PIPE 1500 2500 900 600 300 150 SIZE 2 3 4 6 8 10 12 14 16 18 20 24
6 6 6 8 8 8 8 10
8 10 10
6 8 8 8 10 10 10 10
1
1
1
10 10 10
10 10
12 12 12
6 6 8 8 8
12
8 8 8 10 10 12 12 12 12 12 12 12
8 8 10 12 12 12 12
8 10 10 12 12 14 1
INSIDE EXTENSION a &
a P
c
c t ti
- S f d n -lc E e uM o i sue n tx hi t m te tnxu stf meir eon i ns n pi of e ooo rn tupt hc u e r t vh of aew t eu o rle o e d o o i p n t r u g hr
129
R D
F
I
O P
Single, welded openings not subject to rapid fluctuationin pressure do not require reinforcing if they are not larger than: 3 inch pipe size - in vessel wall 3/8 in. or less. 2 inch pipe size in vessel wall over 3/8 in. (Code UG-36 (c) (3). Largervesselopeningsthantheaboveshallbereinforced.Therules for reinforcementof openingsare takenfromthe Code,UG-26 throughUG-44,andareintendedtoapplyprimarilytoopeningsnot exceedingthefollowing: Forvessels60in.indiameterandless:%thevesseldiameter,butnot > to exceed20 in. Forvesselsover60in.indiameter:%thevesseldiameter,butnotto exceed40 in. Largeropeningshouldbegivenspecialattentionas describedin CodeAppendix1-7. Fig.A Hereisgivena briefoutlineofreinforcement designforbetterunderstanding oftheprocedure describedin thefollowingpages. Thebasicrequirementis thataroundtheopeningthevesselmustbereinforcedwithanequal amountofmetalwhichhasbeencutout for the opening.The reinforcementmaybe an integral part of the vessel and nozzle or may bean additionalreinforcingpad. (Fig. A.) This simple rule, however,needs further refinementsas follows: 1.
It is not necessaryto replacethe actuallyremovedamountof metal,but only the amount which is requiredto resist the internalpressure.@). This requiredthicknessof the vessel at the openingsis usually less than at other points of the shell or head.
2.
The plate actually used and nozzle neck usually are thicker than would be required accordingto calculation.The excessin the vesselwall (Al) and nozzlewall (AJ serveas reinforcements.Likewisethe insideextensionofthe opening(Aj) andthe areaof the weld metal (AJ) can also be taken into considerationas reinforcement.
3.
The reinforcementmust be within a certain limit.
4.
The areaof reinforcementmustbe proportionallyincreasedif its stressvalueis lowerthan that of the vessel wall.
.5.
The area requiredfor reinforcementmust be satisfiedfor all planesthroughthe center of opening and normalto vessel surface.
The required cross sectionalarea of the reinforcementshall then be: The required area for the sell or head to resist the internalpressure, (A).From this area subtractedthe excessareaswithinthe limit(Ai.4zAj AJ). If the sumof the areasavailable for reinforcement(AJ+A?+Aj +A,) is equalor greaterthan the area to be replaced, (A), the opening is adequately reinforced. Otherwise t difference must h be supplied by e reinforcingpad (AJ). Somemanufacturersfollowa simplepracticeusingreinforcingpadswith a cross-sectionalarea which is equal to the metal area actually removed for the opening.This practice results in oversizedreinforcement, butwiththeeliminationof calculationstheyfind it moreeconomical.
E
f
130 REINFORCEMENT FOR OPENINGS DESIGN
FOR INTERNAL
1
PRESSURE
(continue@j 1.
u
d
D
I-Q--l E ~
f
0.8D
,
NC!?@ r
AREA OF REINFORCEMENT
For vesselsunder internalpressurethe total cross-sectional area required for reinforcementof openingsshall not be — less than: A = d XI,, where d= the insidediameterof openingin its corrodedcondition, inches. t, = the requiredthicknessof shell or head computedby the applicableformulasusingE = 1.0whenthe openingis in solidplateor in a categoryBjoint. Whenopeningpasses throughanyotherweldedjoint, E= the efilciencyof that joint. When the opening is in a vessel which is radiographicallynot examined,E = 0.85 for type No. 1joint and E = 0.80 for type No. 2 joint. When the opening and its reinforcement are entirely withinthe sphericalportionof a flangedanddishedhead, t, is the thickness required by the applicable formulas usingAl= 1. Whentheopeningis ina cone,t, isthe thicknessrequired for a seamlesscone of diameter,D measuredwhere the nozzle axis intersectswith the wall of the cone. Whentheopeninganditsreinforcementare ina2: 1ellipsoidal head and are located entirelywithin a circle the centerof whichcoincideswiththe centerof the head and the diameter of which is equal to 0.8 times the head diameter,t,is the thicknessrequiredfor seamlesssphere of radius 0.9 times the diameterof the head. If the stress value of the opening’smaterial is less than that of the vesselmaterial,the required area A shall be increased.(See next page for examples.) 2. AVAILABLEAREASOF REINFORCEMENT i the vessel wall (t—t,)d or ’ Area of excessthicknessin ) (t–t,)(t,, + ~2
use the largervalue, square inches, If the stress value of the opening%material is less than that of the vessel material, area AI shall be decreased. (See next page for examples.) h,)5t or Areaof excessthicknessinthenozzlewall (’t,,— (L-t,,,) 5t,,use — the smaller value, square inches.
Area ofinside extension ofnozzle square inches (t,,-@2h.
ud
Area of welds,square inches. IfthesumofA, A2AJandA~is lessthanthe area forreinforcementrequired,A the differencemustbe suppliedby reinforcingpad.
f
131 . .
REINFORCEMENT FOR OPENINGS DESIGN FOR INTERNAL PRESSURE (continued) G
3. LIMITSOF REINFORCEMENT xx
Themetal usedas reinforcementmustbe located within the limits. R n k trn The limitmeasuredparallelto the vesselwall~= dor R. + t. + t, use larger value. t Y The limit measured parallel to the nozzle wall Y= 2.5 tor 2.5t., —, R 1, use smallervalue. troy When additional reinforcing pad is used, the limit, Yto be d measuredfromthe outsidesurfaceof the reinforcingpad. + Rn=insideradius of nozzle in corrodedcondition,inches. NOTATION: t= thicknessoftheves- For other notations,see the precedingpage. selwalllesscorrosion allowance, 4. STRENGTHOF REINFORCEMENT inches. If the strengthof materialsin AI Az Aj AJ and A5 or the t,= seepreceedingpage materialofthe reinforcingpad are lowerthanthat of the vessel 1.= nominalthickness material,their area consideredas reinforcementshall be proof nozzlewallirrespectiveofproduct portionately decreased and the required area, A in inverse formles~co~osion proportionincreased.Thestrengthofthe depositedweldmetal allowance,inches. shallbe consideredas equivalentto the weakermaterialof the tm= requiredthickness joint. Of;fy:;:sno=’e It is advisableto useforreinforcingpadmaterialidenticalwith the vesselmaterial. h= dist~nce riozzle projectsbeyondthe No credit shall be taken for additional strengthof reinforceinnersurfaceofthe ment havinghigher stress value than that of the vessel wall. vesselwalllesscorrosion allowance, EXAMPLES: inches. 1. a. The stress value of nozzle material: 15,000psi. c = corrosion allowThe stress value of shell material: 17,500 psi. ance,inches.
d= seeprecedingpage.
H
fn(f-1, )
r
f“ Im TF \
I
-------
P t. x t,
Itr
I
Ratio 15,000/17,5000 = 0.857 To the required area, A shalI be added: + 2tMX (1Q 0.857)
b. From the area AI shall be subtracted: (1— 0.857) —2t. 2. Usingidenticalmaterialforthevessel andreinforcingpad, the requiredarea for reinforcementis 12 square inches. If the stress value of vessel material= 17,500psi., the stress value of the nozzle material= 15,000psi., ratio 17,500/15,000= 1,167 Inthisproportionshallbe increasedtheareaofreinforcing pad: 12x 1.167= 14.00square inches.
,
132
REINFORCEMENT FOR OPENINGS DESIGN FOR INTERNAL PRESSURE (continued
DESIGN FOR EXTERNAL PRESSURE. The reinforcement required for openings in single-walled vessels subject to external pressure need be only 50 percent ofthat required for internal pressure where t,isthewall
thicknessrequiredbytherulesforvesselsunderextemalpressure.CodeUG-37(d) (l). REINFORCEMENTOF OPENINGSFOR EXTERNALPRESSURE. The cross-sectionalarea (A)of reinforcementrequiredfor openingsin vesselssubject to externalpressure: /4=
dxt ~
where ii= Diameter in the givenplane of the openingin its corrodedcondition,inches. 1,= The wall thicknessrequired for externalpressure,inches. F = Factor for computation of the required reinforcement area on different planes (as the pressure-stress varies) when the opening is in cylindrical shell or cone and integrally reinforced. For all other configurations the value of F = 1
—
1-JJ
REINFORCEMENT OF OPENINGS EXAMPLES EXAMPLE 1. t“ tr
Rn ~ I
tr
I I “
T * + h
w
P? d
DESIGNDATA: Insidediameterof shell: 48 in. Designpressure:250 psi at 200°F. ShellMaterial: SA-285-C n S 13,800 psi = t= 0.265 in. , The vessel is spot radiographed t No allowancefor corrosion Nozzle material:SA-53-B S=15,000 psi. tn=0.432 in. Nozzle nom. size: 6 in. Extensionof nozzle insidethe vessel: 1.5 in. h = 2.5t~= 2.5 x 0.432 = 1.08in. The nozzle does not pass through seams. Fillet weld size: 0.375 in.
Wall thicknessrequired: for shell,t ‘SE
—.
for nozzle, tm=~*p
6P =
250 X24 = 0.440 in. 13,800X 1.0-0.6X 250 X 2.88 = = 0.048 in. 15,000X 1.0-0.6X 250
AREAOF REINFORCEMENTREQUIRED A,= dt, = 5.761 x 0.440=
2.535 sq. k.
AREA OF REINFORCEMENT AVAILABLE A,= (Excess in shell.) Larger of following:
(t–tr)d = (0.625-0.440) x 5.761 or (t-t,) (...+ ~ 2 = (0.625-0.440)x (0.432+ 0.625)x2=
1.066Sq.in. 0.391 sq. in.
Az = (Excessin nozzle neck.) Smallerof following: (tn–tm)5t = (0.432—0.048)x 5 x 0.625 = 1.200 s i (tn–tm)5tn= (0.432-0.048) X5 X0.432 = (No credit for additionalstrengthof nozzlematerialhaving higherstress valuethan that of the vesselwall.)
q
n
0.829 sq. in.
Aj = (Insideprojection.)t. x 2h = 0.432 x 2 x 1.08= 0.933 sq. in. A,= (Area of fillet weld) 0.3752
0.140 Sq.in.
Aj = (Areaof fillet weld inside)0.3752
0.140 Sq.in.
TOTALAREAAVAILABLE Sincethis area is greaterthan the area required for reinforcement,additionalreinforcementis not needed.
3.108 sq. in.
.
.
134
REINFORCEMENT OF OPENINGS EXAMPLES EXAMPLE 2.
DESIGN DATA: Inside radius of shell: R =24 in.
t“ tr I ~
tr
J
Designpressure:P = 300 psi at 200° F. Shellmaterial: t= 0.500 in. SA-516-70plate, n S = 17,500psi The vessel is spot examined There is no allowancefor corrosion Nozzle nominal size: 6 in. Nozzle material: SA-53 B S = 15,000 psi. t.= 0.432 in.
T
Extensionof nozzle insidethe vessel: 1.5 in. Fillet weld size inside:0.500 in.;
! h
Fillet weld size outside: 0.625 in. Ratio of stress values: 15,000/17,500= 0.857
Wall thickness required: Shell, t,=
‘R
Nozzle, t,.=
sap
SE - 0.6P
=
300 X 24 = 0.416 in. 17,500X 1-0.6X300 300 X 2.88 = = 0.058 in. 15,000X 1.0-0.6 X 300
-. Since the strength of the nozzle material is lower than that of the vessel material, the required area for reinforcement shall be proportionally increased and the areas available for reinforcement proportionally reduced. AREA OF REINFORCEMENT REQUIRED 2.397 sq. in. ~ = dt, = 5.761 X 0.416=
Area increased:+2tnxt,(1-15,000/17,500) = 2 x 0.432x 0.416 (1-0,857)= 0.051 sq. in. 2.448 sa. in. AREAOF REINFORCEMENT AVAILABLE Al = (Excess in shell.)Largerof the following: (1- t,)d= (0.500- 0.416)x 5.761= 0.484 s i o q n . (t-t,) (t.+ t,)2=(0.500-0.416) x (0.432 + 0.500)x 2 ‘O.156sq. in. (1-0.857)= Area reduced:-2 x t.(t-t,) -2 x 0.432x (0.500-0.416)(1-0.857)= -0.010 sq. in. 0.474 sq. in. A2=(Excess in nozzleneck.) Smallerof following: (t.- t,n)5t= (0.432-0.058)5X 0.500= 0.935 (t.- t,n)5tn= (0.432-0.058)5 X 0.432= 0.808 Area reduced: 0.857 x 0.808 = 0.692 sq. in. Since the strength of the nozzle is lower than that of the shell, a decreased area shall be taken into consideration. 15,000/17,500 = 0.857, 0.857 X 0.808 = ,43= (Insideprojection.)tnx 2A= 0.432 x 2 x 1.08‘0.933 Area decreased0.933 x 0.857 =
AJ‘(Area of fillet weld)2 x 0.5 x .6252x 0.857= ~j ‘(Area of fillet weld inside)2 x 0.5 x .5002x 0.857 = TOTALAREAAVAILABLE Additionalreinforcementnot required.
0.692 sq. in. 0.800 sq. in.
0.334 sq. in. 0.214 sa. in. 2.514 SCI.in.
.
135 REINFORCEMENT OF OPENINGS EXAMPLES EXAMPLE 3.
t“ trn
tr t r # h
+ t
d u
DESIGNDATA: Insidediameterof shell:48 in. Designpressure:300 psi at 200° F. Shellmaterial:0.500 in. SA-516-60plate, The vesselfidlyradiographed,E = 1 There is no allowancefor corrosion Nozzlenominalsize: 8 in. Nozzie material:SA-53B, 0,500 in. wall Extensionof nozzle insidethe vessel: 0.5 in. The nozzledoes not pass throughthe main seams. of fiilet welds 0.375 in. (Reinforcement pad to nozde neck.)
Wall thicknessrequired: Shell t,=
‘R SE– O.6P =
Nozzle, t,. =
SAP —.
300 X 24 = 0.486 in. 15,000X 1-0.6X300 300 X3.8125 = 0.077 in. = 15,000X ].0–0.6 X300
AREAOF RE~FORCEMENT REQUIRED A = dx [,= 7.625 X 0.486=
3.706 sq. in.
AREAOF REINFORCEMENT AVAILABLE AI = (Excess in shell.)Largerof the following: 0.106 sq. in. (t -t, )d= (0.500 - 0.486) 7.625= or (t - [, ) (t. + t) 2 = (0.500-0,486)(0.500+ 0.500)2 ‘0.028 sq. in. Az =(Excess in nozzle neck.) Smallerof following: @-t,.)5t = (0.500-o.077)5x 0.5 = 1.058or 1.058sq. in. (tn–tr.)5t. = (0.500-0.077)5X0.5= 1.058 0.500 sq. in. A3= (Insideprojection.)L x 2h = 0,500 x 2 x 0.5 = 0.141 sa. in. AJ ‘ o f w 0 (The area of pad to shell weld disregarded) 1.805 SQ.in. TOTALAREAAVAILABLE Thisareais lessthantherequiredarea,thereforethedifferenceshallbe provided byreinforcingelement. itmaybeheaviernozzlenec~ kirgerextensiono fthenozzle insideofthevesselor reinforcingpad.Usingreinforcingpad,therequiredareaof pad:3.706–1.805=1.901sq,in. UsingO.375in.SA-516-60plateforreinforcing padthe widthofthe pad 1.901/0.375=5.069in. Theoutsidediameterof reinforcingpad: Outsidediameterof pipe: 8.625 widthof reinforcingpad: 5.069 13.694in.
136 STRENGTH OF ATTACHMENTS JOINING OPENINGS TO VESSEL At the attachments, joining openings to the vessel, failure may occur through the welds or nozzle neck in the combinations shown in figures A and B.
a b
The strength of the welds and the nozzle neck in those combinations shall be at least equal to the smaller of:
P c P
1.
2 T
1. Thestrength intensionofthecross-sectionalareaofthe
considered,or o p s o sfa i a bt i l elementof lhe u s reinforcementbeing r f e h
r a o
un g
The allowablestressvalueof the weldsis the stressvalue of the weakermaterialconnectedby the weldsmultiplied by the followingfactors:
a i &
2. hdThe strengthin tensionofareaxf (A = ~ f less the .@ @ ) strengthin tensionofthe excessinthe vesselwall @j.
e b c
Groove-weldtension Groove-weldshear Fillet-weldshear
0.74 0.60 0.49
Possible pathsoffailure The allowablestressvalueof nozzleneck in shear is 0.70 times the allowablestressvalue of nozzle material. 1. Through@and@ 2. Through@@ and@ The strengthof thejoints shallbe consideredfor its entire d @ 3. T h r a o u ng h @ lengthon each side of the plane of reinforcementarea. EXAMPLE3 A = 2.397 sq. in. AI = 0.484 sq. in. b d.= 6.625 in., outside diameterof nozzle ;“% a dttr=6.193 in., mean diameterof nozzle 8 S = 17,500psi allowablestressvalue of vesselmaterial S.= 15,000psi allowablestressvalue of nozzle material Ft A G= 0.432 in. wall thicknessof nozzle. dm c ‘* t = 0.500 in. wall thicknessof vessel 0.375 in. fillet weld leg. ~heckthe strengthof attachmentof nozzle load to be carriedby welds. Loadto be carriedby welds (A-AI)S = 2.397-0.484 x 17,500= 33,478 lb. STRESSVALUEOF WELDS: 0.49 x 17500= 8575 psi. Fillet-weldshear 0.74 x 17500= 12950psi. Groove-weldtension 0.70 x 15000= 10500psi. Stressvalueof nozzlewall shear STRENGTHOF WELDSANDNOZZLENECK: ~ xweldIegx8575= 10.4065xO.375x8575 =33463lb. a. Fillet-weld shear ~, Xt. X10500=9.72x0,432X10500 = 44090lb. b.Nozzle-wall shear c Gr~ove.weldtensi~n~. xweidleg x 12950-10.4065X().50()X” 12950=67382lb. POSSIBLE PATHOFFAILURES: 33463+44090= 77553lb. 1.Througha.andb. 2.Througha.andc. 33463+ 67382=100845lb. Both pathsarestrongerthantherequiredstrength33478lb.
,
127/
STRENGTH OF ATTACHMENTS JOINING OPENINGS TO VESSEL
EXAMPLE4 DESIGNDATA A= 3.172sq.in.,A,=0.641sq.in.,A.F0.907sq. in. = 1
2i o . u d 8 t i n 4osa r mei5 i edn p. tf e oe r rac
i
n f gd
8.625in.outsidediameterof nozzle.
C L
h s the
t e of r a ce t
T OB
C
A
RB
8 i .m d 1 i e noa2 n m ao 5e z t . nze rl e f . S = 1 7p a , l l 5s o s v0w t ao0r vab leim e le as s ut s s e e re S 1 5p a . , l l 0s o s v0w t = ao0r nab leiomle sa z ut s z e e rl t =0 i .t h 5i o vc n 0k w e n 0es a s . s s l e f l l . t =0 i . t h 5i o cn n 0k w o.n 0ez a s . zs l l f l e . 0 i .l o f 3 - w i n 7e a l 5e l . eg l f t d 0 i .l o f 2 - w i n 5e d l 0e l . eg l f t d i . t h 2i o rc n e5k i nn p0ef os . r s ac i n f gd t, = 0 nt ka go cn t h ohm ez n z t l e f . W D R
I EO E EL D
D
SY
:
(A–A,)S = (3.172—0.641) 17,500= LOADTO BE CARRIEDBY WELDSa, c, e: (A2+21“OS= (0.907 + 2 x 0.500x 0.500) 15,000= STRESSVALUEOF WELDS: Fillet - weld shear Groove- weldtension
44,293 lb. 21,105 lb.
0.49 x 17,500= 8,575psi 0.74 x 17,500= 12,950psi
STRESSVALUEOF NOZZLEWALLSHEAR: 0.70 x 15,000= 10,500psi STRENGTHOF WEL~S ANDNOZZLENECK: a. Filletweldshear ~ x weldlegx 8,575= 13.55X0.375X8,575= 43,572lb. b. Nozzlewallshem ~ x tnX10,5OO = 12.76X0.500X 10,500‘66,990 lb. c. Grooveweldte~ion @ x weldlegx12,950= 13.55X0.500x 12,950=87,7361b. d. Filetweldshear Z#2Xweld1egx 8,575= 20.18X0.25X8,575= 43,260lb. e. Grooveweldtension ~ weldlegx 12,950-13.55 x 0.25x 12,950=43,868lb. POSSIBLEPATHOFFAILURE: 1. Throughb andd 66,990+ 43,260 = 110,250lb. 2. ThOU@c andd 87,736+ 43,260 = 130,996lb. 43,572 + 87,736+ 43,868= 175,176lb. 3. Througha, c ande Paths 1.and2. arestrongerthanthetotalstrengthof 44,293lb. Path3. is strongerthanthe strengthof 21,105lb. wi d sl et l 43,260 r ee llb. nis tgreater g d than t hthe reinforcing pad strength of The outerf (dP-do) t. X 17,500= 1.055x 17,500= 18,463lb.
12R .
LENGTH
OF COUPLINGS
AND PIPE FOR OPENINGS
139 LENGTH OF COUPLING
AND P
FOR OPENINGS
140
N
N
T
THE REQUIRED THICKNESS UNDER INTERNAL
FOR NOZZLE NECKS IN VESSELS PRESSURE (Code UG-45)
1 T
a
t
c
f
t
l
i U
p
c
but for other than access and inspection openings, not less than the smaller of the following: 2. The thickness required for the vessel for internal pressure (assuming joint efficiency, E = 1.0), but in no case less than the minimum for shells and heads specified in UG-16 (b); 3. The minimum thickness of standard wall pipe plus corrosion allowance. THE REQUIRED THICKNESS FOR ACCESS AND INSPECTION OPENINGS (manways, handholes) IN VESSELS UNDER INTERNAL OR EXTERNAL PRESSURE. 1. The thickness computed for the applicable load plus corrosion allowance (there is no other requirement). For selection of required pipe under internal pressure, see table “Maximum Allowable Internal Working Pressure for Pipes” on the following pages. EXAMPLES for using the table: 1. Opening Diam: 18” Design Pressure: 800 psig. Corrosion Allowance: 0.125” The Required Pipe for Manway: The Required Pipe for Nozzle:
Sch. 60, Sch. 60,
0.750” Wall 0.750” Wall
2. Opening Diam: 18” Design Pressure: 150 psig. Corrosion Allowance: 0.125” The Vessel Wall Thickness: 0.3 125” The Required Pipe for Manway: The Required Pipe for Nozzle:
Sch. 10, Std. Wt.
0.250” Wall 0.375” Wall
3. Opening Diam: 18” Design Pressure: 140 psig. Corrosion Allowance: 0.125” Vessel Wall Thickness: 0.750” Sch. 10, 0.250” Wall The Required Pipe for Manway: The Required Pipe for Nozzle: Std. Wt. 0.328” + 0.125” Corr. Allow. = 0.453, Min. Wall= Sch. 40 Pipe
h
141
THE REQUIRED NOZZLE NECK THICKNESS FOR VESSELS UNDER EXTERNALPRESSURE(Code UG-45) 1. Thethicknessforthe applicableload t
s
m o t ah f l o
ll l heoe wr
less t i
n f eg
h
:
2. The thicknessof head or shell required for internalp r ue s t s sexternal u i r hen designpressureas an equivalentinternalpressure,but k no case less than the minimumthicknessspecifiedfor material in UG-16(b)(1/16 in. for shells and heads,3/32in.incompressedair,steamandwaterservice,%in.forunfiredsteam boilers),plus corrosionallowance; 3. The minimumthicknessof standardwall pipe plus corrosionallowance. EXAMPLE1. Externaldesignpressure:P = 35 psi. MaterialSA 516-60; S= 15,000 Outsidediameterof cylindricalshell: Do= 96 in. Shellthickness:t = 1 in. The requiredticknessfor 14 O.D., 12 in. long nozzleneck: 1. To withstand25 psi externalpressureapproximately0.05 in. wallrequired,but the thicknessshall not be less than the smallerof; 2. Thethicknessrequiredforthe shellunder35 psi internalpressure(as equivalent externalpressure) = 35x 47 = O~lo in PR ‘= SE - 0.6P 15,000- n “ 3. The minimumthicknessof standard wall pipe: 0.328 in. (0.375 in. nom.) The smallerof 2. and 3.0.110 in. for wall thicknessof nozzleneck is satisfactory. EXAMPLE2. Externaldesignpressure: P = 15 psi. Material SA 516-60; S= 15,000 Outside diameter of cylindrical shell, Do = 36 in. Shell thickness: t= 0.3125 in.
The requiredthicknessfor a 14 in. D.O., 12 in. long nozzleneck: 1. To withstand15psi externalpressureapproximately0.02 in. wallrequired,but the thicknessshallnot be less than the smallerof the following: 2. The thicknessrequiredfor the shell under 15psi. internalpressure PR = 15x 17.6875 = o 0~8 in 15,000-9 “ “ t =SE - 0.6P 3. The minimumthicknessof standardwall pipe: 0.328 in. (0.375 in. nom.) The smallerof 2. and 3. is 0.018 in.,but the thicknessof the nozzleneck shall in no case be lessthan 0.0625 in. UG-45 (a) (2).
142
M W
I
A P
F
The CalculationsBasedon the Formula: P=
23Et D+ 1.2t
P , where
P = The max.allowableworkingpressure,psig. S = 15,000psig.the stressvalueof the most commonlyusedmaterialsfor pipe (A53B,A106B)at temperature-20 to 650°F. For highertemperature see notes at the end of the tables. E= 1.0joint efficiencyof seamlesspipe D = Insidediameterof pipe, in. t = Minimumpipe wall thickness,in. (.875 times the nominal thickness). The figuresunderlinedare the maximumallowablepressurein corrodedcondition for the pipe of which wall thicknessis minimumthe standard wall plus corrosion allowance. NOM. DESIG‘IPE NATION UZE
PIPE WALL THICKNESS NOM. ~ MIN.
CORROSIONALLOWANCE IN.
T=E 3/4
I 1
xX-STG. 0.294 STD. 0.113 X-STG. 0.154 SCH.160 0.218 XX-STG. 0.308 STD. I 0.133 X-STG. 0.179 SCH.160 0.250 XX-STG. 0.358 STD. 0.140
X
1-1/4
1-1/2
2
I
0.191 0.250 0.382 0.145
SCH.160 XX-STG. STD. X-STG. 0.200 SCH.160 0.281 XX-STG. 0.400 STD. 0.154 X-STG. 0.218 SCH.160 0.343 XX-STG. I 0.436
0.095 0.129 0.164 ~‘;:”:g 5392 I 2658 0.257 12153 I 8526 0.099 1072 I I I 288 0.135 4299 2192 100 1985 0.191 6386 4069 2515 0.270 9712 7041 %7 0.116 2847 1261 744 I 0.154 3959 2287 732 0.219 5764 3946 2274 0.313 8820 7423 4842 — .3099 0.123 2362 1126 0.167 3282 1988 774 0.219 4424 I 3059 ! 1779 ] 578 ! 2848 0.334 7194 G 31 0.127 2118 1046 806 0.175 2982 1864 947 0.246 4333 3139 2013 0.350 6481 I 5164 3924 2754 126 0.135 1786 938 852 44 1696 0.191 G 0.300 4215 I 3260 I 2348 1477 2629 0.382 5537 X2 G —
I
I
1’4 252
580
I
I 1494
I 1582 I
I
1648
642 1744
I
143 MAXIMUMALLOWABLE WORKINGPRESSURE(cent) NOM. PIPE SIZE
DESIGNATION STD.
2%
3 . 3
4
5
6
X-STG. SCH-160 XX-STG. STD. X-STG. SCH. 160 XX-STG. STD. X-STG. XX-STG. STD. X-STG. SCH.120 SCH.160 XX-STG. STD. X-STG. SCH.120 SCH.160 XX-STG. STD. X-STG. SCH.120 SCH.160 XX-STG. SCH.20 SCH.30
PIPEWALL THICKNESS NOM. MIN. 0.203 0.276 0.242 I 0.375 0.328 0.552 0.483 0.216 0.189 0.263 0.300 0.438 0.383 0.600 0.525 0.226 0.318 0.636 0.237 0.337 0.438 0.531 0.674 0.258 0.375 0.500 0.625 0.75C 0.280 0.432 0.562 0.71$ o.86f 0.25( 0.27t
CORROSIONALLOWANCE IN. 3/16 o I 1/16 I 1/8 I 1/4 Max.Allow.PressurePsig. 561 1245 577 2707 1971 1261 I 831 1525 2245 2991 3766 2599 3359 — — 5822 4969 Z
l
~ 2398 3597 5113
0.198 1546 0.278 G 0.557 4701 0.208 ~ 0.295 2075 0.383 2739 0.465 I 3379
I
12 556 1116 658 1801 1221 1754 2964 2350 — 3134 4432 3773 78 555 1044 691 1689 1183 2992 3546 4115 — — 137 561 995 730 1616 1168 1802 1350 2= —— I 2890 1- 2412 I 1946
280 908 1490 2412
552 1127
773
425
1767
1401
1042
2X
2044
1673
4394
3880
3379
0.226 0.328
1259 G
902
0.438
2520
1488 2140
0.547
3201
2808
0
.3 .1
0
211 1937
2890 208
0.590
6 39 2 81
111 1175 — 2515
30 5 3 40 6 2 1 96 2 7 0 9 5 6 4 5 45 4 2 3 5
0.378 1793 0.492 2368 0.628 3077 0.756 3767 0.219 777 0.242 861
1485 G 2748 3427 552 634
1181 G 2425 3093 329 411
882 1431 =6 2764 113 190
58~ 112[ F 2440
8 X-STG. SCH.1OO SCH.120
0.500
0.438
1587
1353
1121
892
665
0.593 0.718
0.519 0.628
1896 2319
1658 2075
E 1835
1189
959
=
u
144 MAXIMUM ALLOWABLE WORKINGPRESSURE(con~ NOM. PIPE
S 8
10
12
1
DESIGNATION SCH.140 SCH.160 XX-STG. SCH.20 SCH.30 STD. X-STG. SCH.80 SCH.100 SCH.120 SCH.140 SCH.160 SCH.20 SCH.30 STD. SCH.40 X-STG. SCH.60 SCH.80 SCH.100 SCH.120 SCH.140 SCH.160 SCH.10 SCH.20 STD. SCH.40 X-STG. SCH.60 SCH.80 SCH.100 SCH.120 SCH.140
PIPEWALL THICKNESS NOM. MIN. 0.812 0.711 0.906 0.793 0.875 0.766 0.250 0.219 0307 0.269 0.365 ~0.319 0.500 0.438 0.593 0.519 0.718 0.628 0.843 0.738 1.000 0.875 1.125 0.984 0.250 0.219 0.330 0.289 0.375 0.328 0.406 0.355 0.500 0.438 0.562 0.492 0.687 0.601 0.843 0.738 1.000 0.875 1.125 0.984 1.312 1.148 0.250 z 0.312 0.273 0.375 0.328 0.438 0.383 0.500 4 o.43t 0.593 0.51$ 0.75G 0.65{ 0.937 0.82( 1.093 0.95( 1.250 1.094
I
CORROSIONALLOWANCE IN o I 1/16 I 1/8 I 3/16 i“”;/4 Max.Allow.PressurePsig. 2647 2400 2155 1913 1675 2977 2725 2476 2231 1988 2868 2617 2370 2126 1885 90 264 441 621 228 50 406 585 766 370 193 549 729 ~ 712 532 1263 l= 894 948 ~ 1506 1318 1132 1838 1647 1458 1270 1085 2179 1984 1792 1601 1413 2611 2413 2216 1986 1829 2963 2760 2560 2362 2166 371 222 76 522 540 389 692 91 240 635 483 ~7 333 184 701 549 248 854 398 904 751 486 1059 598 1194 1038 ~ 730 578 ~ 1469 1311 1154 ~ 1820 1659 1500 1341 1184 10 81 54 1530 2178 2 1690 23 10 31 1810 2467 2 1972 2s72 2910 2 2 2 69 202 475 338 49 184 319 456 594 167 303 440 716 577 287 423 561 839 699 407 544 682 962 ~ 585 pJ 863 1146 004 ~ 1173 1031 1460 316 1550 1406 1262 1843 696 2166 2017 1869 1722 1576 2500 2348 2198 2048 1900
145 MAXIMUM ALLOWABLEWORKINGPRESSURE(cont.) NOM. DESIGPIPE NATION SIZE 14 SCH.160 SCH.10 SCH.20 SCH.30. STD. SCH.40X-STG. SCH.60 16 SCH.80 SCH.100 SCH.120 SCH.140 SCH.160 SCH.10 SCH.20 STD. SCH.30 X-STG. SCH.40 18 SCH.60 SCH.80 SCH.100 SCH.120 SCH.140 SCH.160 SCH.10 SCH.20 STD. SCH.30 X-STC SCH.40 SCH.60 20 SCH.80 SCH.100 SCH.120 SCH.140 ISCH.160
PLPEWALL o THICI iESS gOM. MIN. 1.406 1.230 2834 0.250 0.219 m 518 0.312 0.273 625 0.375 0.328 & 0.500 0.438 0.656 0.574 1108 0.843 0.738 1436 1.031 0.902 1771 1.218 1.066 2111 1.438 1.258 2517 1.593 1.394 2809 368 0.250 G 460 0.312 0.273 554 0.375 0.328 649 0.438 0.383 744 0.500 0.438 838 0.562 0.492 0.750 0.656 1129 0.937 0.820 1418 1.156 1.012 1766 1.375 1.203 2118 1.562 1.367 2425 1.781 1.558 2789 T B m 4~ 0.375 0.328 0.500 0.438 668 0.593 0.519 795 0.812 0.711 1097 1.031 0.902 1403 1.281 1.121 1760 1.500 1.313 2078 1.750 1.531 2446 1.968 1.722 2774
ROSIONALLOWANCE IN. 1/4 1/8 3/16 1/16 [ax.All :P s i x E ~ 5 166 43 6 1 398 279 146 6 2 504 384 355 7 4 717 596 617 3 7 C4 861 937 0 1310 1185 1 1263 3 8 1643 1515 1 1595 7 2 1980 1851 1 1990 1 2 2384 2251 2 2275 4 0 2674 2540 2 5 262 157 38 4 1 354 248 130 3 2 447 341 222 2 3 541 434 315 2 4 636 529 407 1 5 729 621 689 7 1015 ~6 974 0 8 1306 1195 1 4 2 1314 1652 1539 1 18 78 77 1658 2002 1 21 09 70 2308 2 1958 2314 25 45 30 2669 2 4 m x 2 3 0 117 1 402 3 7 4 7 284 ~ 5 0 6 0 407 697 ~ 8 0 900 998 1004 1 1 0 1303 1202 1353 1 4 5 1657 1555 1665 1 7 6 1974 1870 2025 2 1 2 2340 2234 2346 2 4 5 2666 2558
146 MAXIMUM ALLOWABLE WORKINGPRESSURE(cont.) NOM. PIPE SIZE
22
24
PIPEWALL THICI JESS MIN. N 0.250 0.219 0.312 0.273 0.375 0.328 0.437 0.382 0.500 0.438 0.562 0.492 0.625 0.547 0.688 0.602 0.750 0.656 SCH.10 0.250 0.219 SCH.20 STD. 0.375 0.328 X-STG. 0.500 0.438 SCH.30 0.562 0.492 SCH.40 0.687 0.601 SCH.60 0.968 0.847 SCH.80 1.218 1.066 SCH.100 1,531 1.340 SCH.120 1.812 1.586 SCH.140 2.062 1.804 SCH.160 2.343 2.050 DESIG NATION
0.250 0.312 0.375 0.437
26
0.500 0.562 0.625 0.688 0.750 0.312
30
0.375 0.500
376 452 G 606 681 761 839 916 275 414 z 625 766 1089 1381 1753 2093 2399 2750
0.219 0.273 0.328 0.382 0.438 0.492 0.547 0.602 0.656
2
0.273 0.328 0.438
275 330 443
3 3 4 5 5 6 7 7
214 289 365 440 519 G 672 750 827 196 334 475 5Z 685 1006 1297 1667 2006 2311 2660 181 244 308 372 438 502 567 633 697 211 267 379
I
T
128 116 202 31 192 278 106 267 136 353 344 431 258 419 332 507 409 496 584 486 G 661 z 649 738 40 117 97 176 255 236 315 395 304 464 384 443 524 6X G 842 924 1214 1131 1048 1582 1498 1413 1919 1833 1747 2223 2135 2048 2571 2482 2393 37 4 5 108 98 7 26 1 171 162 2 90 8 235 225 6 152 4 298 291 2 218 1 364 354 6 281 7 428 419 1 345 4 493 F4 7 410 0 558 548 2 474 7 622 148 204 315
85 141 252
23 78 188
147 NOTE: IF THESTRESSVALUEOF PIPELESSTHAN15,000PSIG. DUETO HIGHERTEMPERATURE,MULTIPLYTHEMAX. ALLOWABLE PRESSUREGIVENIN THETABLESBYTHE FACTORSIN THISTABLE: TEMPERATURENOTEXCEEDINGDEGREEOF 900 950 750 850 1000 650 700 800 – – A 53 B Stress 15000 14350 12950 10800 8650 6500 6500 4500 2500 12950 : 15000 s ’ 14350 + : s 10800 8650 A 106B ‘ 1.000 0.9566 0.8633 0.7200 0.5766 0.4333 0.3000 0.1666 FACTOR Example:
The MaximumAllowancePressurefor 6“ x Stg.PipeWitha Corrosion Allowanceof 1/8” From Table= 1181psi.- at Temperature800°F The Max.Allow.Press.1181x 0.72= 850 psig. Example to find max. allow. pressure for any stress values:
The Max.Allow.Press.1181Psig.From Tables The StressValue 13000psi. For ThisPipeThe Max.Allow.Pressure ~Wo
x 1181 = 1023psi.
w
NOZZLEEN~CMKpTT~CKNESS
I
I
C
O
R
R
O
S
I
O
o
N
0.250$ 0.018
0.3125
J.E. 0.85 0.250
0.250
0.3125
J.E. 1.00 0.213
0.213
0.2660
NOM.
0.280
0.280
0.280
MIN.
0.245
0.245
0.245
1 Requiredfor Loadings(UG-22) 2 Vessel Wall
3 6 in. Std. Pipe
Minimumf 4 I C F *
o
U m
S
&h H
m
pA rS e
nS
f o B ti
Ti
oe Ue l
( Ga l
r
s-d
b1s
st i W s een Sd ara e U mtr , ( vG &e o rUe i e r( lGad
e
-m r
r n e i ht a mh u i ufei cn mr k onen
0
i
bs1 deoz s e zs
0 6
. 0 ) 0 . 06 0 . 2 6 0 5 2
0- rc
b. e1 0
0 . 6 090
06
.)0
2 . 05 2 . 0 5 2 0 0 0 .C 0 kI 0 . 3 1
l cr
e
) .93
30 8
8
148
R
W I
U
T
F
P
P
The required wall thickness for pipes, tabulated on the following pages, has been computed with the following formula: PR ‘= SE– O.6P
, where
t = the required minimum wall thickness of pipe, in. P = internal pressure, psig.
S = 15,000psig.t
s
vt
ohr at
me l c s oe ouh sm u m e sm o f asen tfor t l epipe. yer
A 53 B and A 106 B @temperature –20 to 650°F. E = Joint efficiency of seamless pipe R = inside radius of the pipe, in. For the inside diameter of the pipe round figures are shown. With interpolation the required thickness can be determined with satisfactory accuracy. The thicknesses given in the tables do not include aIlowance for corrosion. For the determination of the required pipe wall thickness in piping systems the various piping codes shall be applied. Selecting pipe,the 12.5% tolerance in wall thickness shall be taken into consideration. The”minimum thickness of the pipe wall equals the nominal thickness times .875.
i
a dl
149 REQUIRED PIPE WALL THICKNESS FOR INTERNAL PRESSURE
1.s. 11AM, 50
PRESSURE PSIG. 100
150
200
250
300
350
400
450
500
0.0
00.0 00.0
020. 030.
30.0 710.0
0500. 0010.
07.0 103.0
8010. 7020.
10. 20.
021. 042.
0.
0.0
00.0
1050.
0520.
0.
0.0
00.0
1070.
5030. 400.
30. 40.
054. 085.
5
0
0,
0.0
00.0
1080.
720.0
0020. 0530.
20.0 307.0
0
0
010.0 320.0
404.0
2050.
501.
096.
0
6
0
0.
0.0
7
0
0.
0.0
01.0 01.0
200. 2020.
030.0 30.0
040. 0540.
500.0 507.0
1060. 9070.
701. 810.
018. 139.
8
0
0.
0.0
01.0
2030.
9
0
0.
0.0
604.0 700.0
0780. 1690.
910. 010.
150. 162.
0
0.
0.0
3050. 3070.
050. 0560.
1
01.0 01.00
740.0 040.0 350.0
060.
817.0
1400.
10.
183.
1
0
0.
0.0
130.
0.0
080,
11.0
120.
310. 410.
104.
0.
750.0 0600
914.0
0
3080. 400.
0570.
1
01.01 02.02
1
0
0.
0.0
130.
0,
0.0
4600 700
17.0
0
402. 403.
580.
1
02.03 02.04
090.
14.0
140.
5120. 6120.
147. 269.
1
0
0.
0.0
. 02 5
0 55
00 .
50.
1.0
150.
720.
270.
1
0
0.
0.0
02. 6
507
0
0.
0.0
02. 7
s08
00. 60.
1.0 1.o
160.
1
480 780
. 270
1 1
0 0
0. 0.
0.0 0.0
03. 8 03. 9
60 602
090 490
10. 6.
1.0 10
280. 90.
820. ~ 020. 3 120.
2
0
0.
0.0
03. 0
613
700
1.
20
2
0
0.
0.0
03. 1
715
7.
2
0
0.
0.0
03. 2
71
00 410
2
0
0.
2
0
0.
0.0 0.0
03. 3 04. 4
718 810
2
0
0.
0.0
04. 5
2
0
0.
0.0
2
0
0.
2
0
2 3
1
0
0.
0.0
2
0
0.
3
0
4
7
126.
291. 21. ( 234.
20.
25.
00.
20.
37.
20
10.
230.
38.
1.
20
20.
230.
39.
710 020
6.
20
30.
3.0
31,
1.
20
40.
30,
32.
812
420
6.
20
50.
3.0
33.
04. 6
814
1.
20
60.
3.0
3S.
04. 7 04. 8
951 971
6.
20
70.
3.0
46.
0.
0.0 0.0
730 030
1.
20
80.
3.0
47.
0
0.
0.0
04. 9
981
40 740
6.
20
9.
340
9.
0
0.
0.0
15. 0
01
050
1.
30
0,
40
0.
0
03
0
150 REQUIREDPIPEWALLTHICKNESS FORINTERNALPRESSURE(cent) PRESSUREPSIG.
1 IAM.
600
650
700
750
800
1
D
).
0.
01
920
0.
0.0
20.0.031 620
82
9
2
0
.3
0.
30
740
1.0
0.0
50.0.062 250
5
9
3
0
.D
0.
50
60
2.0
00.
70.0.093 708
83
8
4
0
.3
0.
70
580
2.0
1.0
01.0.124 31
01
7
5
0
.0
00.
91.
410
12.0
110.
21.0,156 913
48
7
6
0
.0
10.
1.
51.0.187 516
75
6
0
.0
10.
31.
3.0 53.0
130.
7
210 140
160.
81.0.218 029
03
5
8
0
.0
1.0
51.
02.0.249 62
30
5
0
.0
10.
.0
10.
2700
25.0
32.0.280I 24 52.0.311~ 827
4
0
200. 220.
68
1
61. 82. 0
47,0 04.0
280.
9
0610 9280
95
3
1
0
.0
20,
.0
20.
45.0 6.0
83.0 030.
340. 93.
23 315
34
0
620 2540
250.
1
02. 1 2. 2
72
1
0
.0
20.
42. 3
86.0
390.
1
0
.0
20.
62. 4
2460 3280
17.0
310.
3.0 630 .
53. 18.
84 4 64
10 13
1
0
.0
20.
83. s
3100
370.
34.0
48.0
174.
34
06
1
0
.0
30.
03. 6
580.
46.0
0
.0
30.
13. 7
780.
48.0
41.0 43.0
42. 684.
164 895
9
1
3020 3940
1
0
.0
30.
3. 8
090.
40.0
46.0
945.
625
86
1 2
0 0
.0 .0
30. 30.
53. 9 74.00
4760 4680 4510,
290. 404.
43.0 58.0
59.0 5100 S
205. 5.
35 16 8 0.694
79 72
2
0
.
9.01
5700
.
85.
5920
44.0 68.0
16. 76.
0.729 16
0
40. 420.
65.
2
30 40
46
65 58
2
0
.0
40.
34.03
15.
5250
.0
40.
54.04
2
0
0.
40.
56.05
5190.
325. 526.
6470 600
36. 97.
51
0
92.0 16.0
7
2
5170. 5090.
40.0
57.
07 37
4 37
2
0
.0
40.
85.06
5730.
736.
6820
74.0
07.
68
30
2
0
.0
50.
05.07
98.0
67.
98
24
0
.0
50.
25.08
036. 246.
6140
2
650. 6570.
28
17
0
.0
50.
45.09
6490.
464
22.0 46.0
28.
2
7370 5790
78.
15 9
10
3
0
.0
50.
6.00
6210.
675.
720
C 70.
38.
98
30
1.02
850
900
37.0 I
950
1
550
92
3
151 REQUIREDPIPEWALLTHICKNESS FOR INTERNALPRESSURE(cont.) PRESSURE PSIG.
1.s. )IAM.
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
0.0 70.0
400. 7080.
240. 940.
50.90
035.0
6070.
160.
0
.0 00.
0604.
2
0 .0
1109.
01.09
161.0
2140.
21,
3
0
2039.
12.80
107.0 232.0
8110. 4280.
292. 352.
0
.0
5210, 3610. 210.
631.0 861.0
5
1.0 51.0 92.0
61.80
0
1.0 1.0 10.
1074.
4
.0 .0
20.
2094.
62.70
368.0
0350.
423.
6
0
0520.
27.0
3049.
13.70
394.0
6320.
584.
0
2.0 20.
32.0
7
.0 .0
304.
73.60
429.0
2490.
654.
0
4069.
24.50
465.0
8560.
615.
0
30. 30.
63.0
9
.0 .0
3890. 370.
243.0
8
62.0 03.0 43.0
184.0
4104.
75.50
591.0
4530.
786.
1
0
.0
30.
84.00
4570. 420.
504.0
5079.
35.40
627.0
0600.
846.
1
0
24.01 65.02
2650. 500.
205.0 45.0
86.40
652.0
6770,
917.
0
4.0 40.
5034.
1
.0 .0
690.
078.
0
4.0
4590. 6870.
69.0 486.0
1
0
0.
67.05
3650.
087.0
7604.
47.20 98.20
859.0 985.1
9810 8 598.1
04.
0
59.03 53.04
604.
1
0. 0.
78.0 714.0
3740.
1
36.30 97.30
1951.
270.
1
0
740. 7120.
237.0 748.0
59.11 090.1
91.1 046.1
7201.
330.
0
61.06 75.07
8209.
1
0. 0.
3901.
491.
1 1
0 0
462. 523.
0481.
50.1 190.1 691.1
9161. 5231.
7.0
628.1 869.1 019.1
082.1 118.1
0
5800. 981. 4891.
9391. 0831.
2
79.08 72.09 86.00
24.1
1201.
693.
2
0
80.11 94.12
8951. 2401.
260.1 40.1
1.81
279.1
7371.
754.
0
8.0 8.1
1013.
2
0. 0.
1168.
72.81
305.1
3441.
825.
2
0
0.
8.1
6201
23.1. 7
331.1
9411.
885.
0
.1
9.1
01.
65.1 891.1
321.
2
98.13! 20.14
2178.
73.61
476.1
5581.
956.
2
0
.1
9.1
501.5
951.
024.1
313.
34.61
502.1
2651.
017.
2
0
1.
9.1
091.6
971.
318.
861.
187.
1
0.1
3261. 7241.
663.1
4781.
248.
1
131.7 171.8
4134.
2
1. 1.
84.61 35.41
538.1
2
28.1 43.1 638.1
4180.
95.41
789.1
0852.
219.
2
1
824.1 047.1
46.41 97.31
735.1 8602.
682. 292.
379.
1
1321. 631.
5163.
3
21.19 251.0
1
0. 0. 0.
1. 1.
50. 5.0 6.0 60. 6.0 7.0
0.1 1.1 1.1
.
709.
9741.
518.
109.
I404.
9
152 4
REQUIRED PIPE WALL THICKNESS FOR INTERNAL PRESSURE (cont.) PRESSURE PSIG.
1.s. ‘lM”
2100 2200
2300
2400
2500
2600
2700
2800
2900
3000
1
1.
0.1
161.
141.
205.
1 2 3 4 5 6 7 8 9
911, 2 90.13
6701. 3401.
5011. 5911.
163. 2851.
12.1
261.
121.
316.
20.1
3514.
426.
171. 4 241. 5
2011. 0621.
6281. 6361.
231. 3271.
39.1 487.1
4516.
1371, 141,
5519.
151.
21. 6 391. 7
8331. 6941.
7451. 7531.
41. 501.
586.1
641.
674.1
741.
1681. 147.1
858.
471. 8 51. 9 621. 0
4651. 26.1 086.1
7521. 8601. 8781.
6901. 8741.
763.1 815.1
8147. 9239.
128.1 1.289
96.9 07.9
2789.
9.052
0232.
12.15
18.0
857.1 6182.
9872. 9952.
5293.
08.42
1234.
1.12
290.
6.1
601. 1 781. 2
137.2
27.
2.832
401.
1.
7.1
852. 3
489.2
9042.
0428. 312.
263.2
320.
2.524
511.
1
1.
2.152
622.
022.
262. 132.]
42.
2.
340.2 10.2.
342.2
1
932. 4 012 5
0122.
2
8.2 9.~ 1]
421.2
5125.
28.26
722.
2
1
2.
9.2
6217.
2.527
833.
2
0.2 1.2
242. 8
503.2
1462.
8420. 7524.
695.2 789.2
7120.
2
2. 2.
0392. 1382.
510.2
2
917.2 732.2
0425.
2
082. 6 162. 7
8303.
22.38 2.839
94.3 05.4
2
2
2.
2.2 2.2
629, 573.
868.3 957.3
16.4
2.
2542. 2632,
2.530
2
364.2 135,2
9305.
3
312. 9 492. 0
0038.
22.31
275.
1
0
0.
9.1
1
0
.1
1
1
1.
9.1 0.1
1
1
1.
1.1
1
1
1.
2.1
1
1
1.
2.1
1 1
1 1
1. 1.
3.1 4.1
2
1
1.
5,1
2
1
1.
6.1
2
1
1.
2
1
2
537. 637. 748.
153
N
E
F
M
C
V
P bi t ap d i j n ohn o ie gnz l ixzsy n eo l igtet evc r rs eT ea msth s esl below,to steh hndetermine l e o. de thenozzleloadsisbased inpartontheBulletin107of WeldingResearchCouncilandrepresents a simplificationof it. The vesselsare not intendedto serveas anchorpoints for the piping.To avoid excessiveloading in the vessel,the pipingshall be adequatelysupported.
r{,
FRJW
I 4
A R. *
-—. ———— — - - — — .
, E x t F e or & M nr ao c l m e e s n t s T calculate the maximum forceoand moment, first evaluate ~and y. Then determine
CL2, and A from Figures 1, 2 and 3, for the specified~ and ~ substitute into the
aquationsbelow, and calculateFRRF, fl=.875 ($)
Y=+
Determine CL~and A from Figures 1,2 and 3.
CalculatePressure Stress (~. 0= (q(R.-;) [f a is greaterthan S0,then use S. as the stress due to designpressure. FM= — R; (ST—O)
A4RCM = R~2roSy
Mm =&
S Y –0)
x
Plot the value of FN a FWand the smaller of .~~c~ands MM as A4w.The allowable nozzle loads are bounded by the area of FRF,O,A41w, ~R\f
EXAMPLE: Determine Resultant Force and Moment T= .7511 SY= 31,500 psi@ 460° Rm= 37.5 P = 150 psi S. = 17,500 psi rO= 15“ b= .875(%)= .875 (&)= .35 From Figure2,2= 1,070 From Figure 1, a = 440
y= + = ~= 50 () From Figure3, A = 340
,
154 NOZZLE EXTERNAL FORCES AND MOMENTS IN CYLINDRICAL VESSELS (continued)
;alculatePressureStress 2(150)375 ~ = 14,850psic&=17,500 ‘=%m-3= 75( ~ - 2) Jse o= 24,850in the equationsfor calculatingFRRF and MkM ~alculateAllowableForces and Moments Fw= ~
(~y. @ =(#2(3
psi
1,500—14,850)= 53,214 lb.
~RcM= Rm2~o~y =37.52 (15) (31,500) = ~zo 984 in-lb 9 1,070 z (37.5)2 (15)= (31,500—14,850—l,032,97~ in-lb. M-m= y (sy — ‘-= ~
IL
P f t vl o a oo ah FRF l a t t u sr e meo n afh k fa ~, aQ A 1 ~nT 7 a&f l fLl n odW h Mwol as z.ob a b o b ut r a n o dF’RF, r 0, eh eMm. d e y e a T k n b 6
i
=
h e a rn e rof oe zroa F e =zc2, t l 0l i ae o, nb 0 0f 1 0 i l0? w, b0b oan 0=l ul0s( o lA w p. .a od b l ie l ro eub z o a F. =zc5 t ll t ,i a e oJ 0bn a- n 0 nf s 4 0 2 i0 l , w 0 n0b onb 0 a *ul s l (o ol . w B p. da o b t l ie
* S
O
P
= DesignPressure,poundsper sq. in.
‘ R
=N =M
R
T
= S
T hh
S
=Y S T e m
o
= S p
s
= S p
s
s
T
A
T
oO
Dt Vt
I
O
N
l s l el z ea f
N U
a ob
v ts s oiae t l gl : u
rute
ehae
ps
hn
:
Z
= DimensionlessNumbers
uz R
t za i s odl ni ie d c Au e =hs D i , em e ns N s i ou n lme s bs e e ao S d iah i . n e un c l FRRF s h= l Maximum f e, s Resultant Radial Forc(
r
i ice k n n l e c s l sh , e pounds* s k f M x c t eni , s mC ui@ur l c tum ma f ne r t i t or eM e a nlaytD g e d te r h is a fi R la g R M o , i e n ce hh n- p t o um n d s * p pe r aop t su u r qie n, eu d n a s r cr m Dr ue s ie g e n P sp r te sso s I uo ur e M, n a WdRx e is s Lm uo Mnul g t miMat un d t i ne c h n- p o t u n d, s * qi eu n a r cr e hm o r a f Me Sl a s. pth u e seo r FRF eliu= aM l nl a , dRx e is sF m u poul t omr a u nc nt qi eu n a c r r h eF = .M ’ a xR R ei s mMuMu lo tm i m a en n p o u n d s * e n N s i ou n lm e s bs e r s
~
=D i m
Y a
= D i m e n N s i ou n lm e s bs
e*
ar
bs Uv s
=D i m e n N s i ou n lm e s bs
e
r
s
ao s l l u
u et
ee
REFERENCES: Local Stresses in Spherical and Cylindrical Shells due to External Loadings, K. R. Wichman, A. G. Hopper and J. L. Mershon — Welding Research Council. Bulletin 107/August 1965 — Revised Printing — December 1968.
Standardsfor ClosedFeedwaterHeaters, Heat Exchange Institute, Inc., 1969.
s
155
NOZZLE LOADS Fig. 1 1OJ
9 8 7 6 5 4 3 2
1
,,, , , f,
I 1 !, I
i::: i
,
1
,
I
I I [ WI
,
[ I
, ,
I
,
,
I I I I I
t
I
1 1 I 1
I I I 1 t I I ! I I [ ! ,: I
1 i
I
I 1 1
I I I
I
I
1I I
I
I 1I I I I I ( ,
I
I I I [’1 I I
I
9 ; 6 5 4 3 ,
t
2 a
I :-+-!r i
! { I--+--L
l-l++
-
+--l-%-l-~
-: . .: I
-
,
\. I I :
i I
~i i ~
9 8 7 6 5 4 3 2
,, ; I,
I, ;,I ]02
;
I
1
:
I
I! !;,1
I
,
?
I
,-,4 ----:: : 4-%-4
II
~•••ì´„• i
!
.’ .!””
i!
!:”m!!!-
9 8 7 6 5 4 3 2
1
. .
1,
10
.
,
1 !
1[ I I
.
—
!.
I 1
r
,
t
1
5
6
NOZZLE LOADS Fig 2
!
1 1.11
NOZZLE LOADS, Fig. 3 1OJ 9 8 7 6 5 4 3 2
6 5 4
3 2
A lo] 9 8 7 6 5 4
3 2
]02
9 8 7 6 5 4 3 2
10 0
.05
.1
.15
.2
.25
.3
.35
.4
.45
.5
1
.“,
R T
J
C
U
C
I
P
A the junction of cone or conical section to cylinder (Fig. C and D) due to bending and shear, discontinuity stresses are induced which are with reinforcement to be compensated. DESIGN PROCEDURE (The half apex angle cz<30 deg.) 1. Determine P/S,EI and read the value of~
from tables A and B“
2. Determine factor y, For reinforcing ring on shell, y = s~~~ For reinforcing ring on cone, y/S’~E~ TABLE A - VALUESOF A FOR JUNCTIONS AT THE LARGE END P/S,, EI 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009* 28.5 30 15 18 21 23 25 27 A, deg. 11 TABLE B - VALUES OF A FOR JUNCTIONS AT THE LARGE END 0.002 0.005 0.010 0.020 0.040 0.080 0.100 0.125* P/S,, EI 30 17.5 12.5 24 27 4 6 9 A, deg. aa 0t l . e r u r e f * A = 3 d f g e r v e oogP/S~EI
W 3
D
t
v f
o Ai l
t
c r
s
b p
=y/S, E, (Use minimum 1.0 for k in formula).
e e
4. Design size and location of reinforcing ring (see next page). NOTATION E = with subscriptss,c or r modulusof
elasticityofshell,coneorreint20rcing ringmaterialrespectively,psi. Seechartsbeginningonpage43 for modulusof elasticity. E= with subscriptslor 2 efllciencyof weldedjoints in shellor cone respectively. For compression E=l.O for butt welds. fi= axialload at largeend due to wind, deadload,etc.excludingpressure, lbfin. j= axialloadat smallenddueto wind, deadload,etc.excludingpressure, lblin. P= Designpressure,psi Q~=algebraics~ofPR~/2 andfi 1b/in. Q,= algebraicsumof PIL/2 andfi lb/in.
R~=insideradiusof largecylinderat large endof cone,in. R=inside radiusof smallcylinderat small endof cone,in. S= withsubscriptss,corrallowable stress of shell,cone or reinforcingmaterial, psi. t= minimum required thickness of cylin-
der at thejunction,in. t,= actualthicknessofcylinderatthejunction,in. t,= requiredthicknessof cone at thejunction,in. t.= actualthicknessofconeatthejunction, in. U= halfapexangleof coneor conicalsection,deg. A= anglefi-omtableA or B, deg. ~ = factor:SSE, orSCEC
160
T
R
J
C
C
FORMULAS M
JUNCTION AT THE LARGE END x . Required area of reinforcement, A sq. in. when tension governs (see notes) ;
~ r~ .
E!l
kQLRL 1 .L S,EI () a
tan a
Area of excess metal for reinforcement, sq. in.
FIG. C
A.L = (t,—t) G+
(t.—t~ {h./
cos CZ
The distance from the junction within which the additionalreinforcementshallbe situated, in. G M;x. 30”
P
FIG. D
The distancefromthejunction withinwhichthe centroidof the reinforcementshallbe situated, in. 0.25 X~
JUNCTION AT THE SMALL END Requiredarea of reinforcementA sq. in. whentension governs(see notes) kQsR, A ‘,, = — S,E1 ()la tan a Area of excess metal available for reinforcement A., sq. in. A,, = (t, /zj cos (a—A) (t.+ m+ (tC/t,) x
(a—A) {Rst. / cos a
The distance from the junction within which the centroid of the reinforcement shall be situated, in. K The distance from the junction within which the centroid of the reinforcement shall be situated, in. 0.25 X &
N O W Ta t t h eE hj u n c St i o ne c:o m pl r ens s ioovref i eax c e edd t h est el n s ~ido noea l t bea r ymd 2o P r eR s p e,t c d t i/ sve erb 2lhsi hya , ci ca gw o erUl nd( a(i l ns e cgan tt“e ap h) r ha bo2fo :v t r o tu C h S l o e hVe dcDe Ist i e l fvi eI io, s. In i o, ” n ) W t r h e md hoeu o ca o enm f r ceud ts oos w ne o citrf o tdc ai ir afe aof l enw pn r sei kg n et nt l hu a w t h h an a a he apni g d gl nr t e l3e df aehxt det , em ae gs r hbs a .n oi as0y , gp a es b nne aece ( 1 C( ( o - d~g e ) 5 & .
161
R T
J
C
E
C
DESIGN DATA: = 30 deg. half apex angle of cone.
;.ECE,=30x 1 m o e p = 1.0,joint efficiencyin shell and cone = 0.55,joint efficiencyin reinforcingring = 800 lb/in, axial load at largeend = 952 lb/in, axial load at smallend = 50 psi., internaldesignpressure = 100 in., insideradius of largecylinder = 84 in., insideradius of smallcylinder = 13,800psi., allowablestressof shell material = 13,800psi., allowablestressof cone material = 14,500psi., allowablestressof ring material = 0.429 in., requiredmin.thicknessfor large cylinder = 0.360 in., requiredmin. thicknessfor smallcylinder = 0.500 in. actualthicknessof cone. = 0.4375 in., actualthicknessof large cylinder = 0.375 in., actualthicknessof smallcylinder
a
dL
t,L
= 0.41 in., required thickness of cone at small cylinder = 0.49 in., requiredthicknessof cone at large cylinder
Jsing the same material for shell and cone. = 0.0036 f t 50 .. P/SsEI = 13,800 X 1
S
Ai l
! U r ~ SsE.= 1
t
~ r r
A A= 1
i r
o t
s
e e
1063 0 X 1. Factor k=y/SrE~= 13,800 x30x 106/ 14,500x30x 106= 0.95 Use k = 1 =5 + 800= 3,300 lb/in. 1. QL=PRL12fI , l X
j. The required cross-sectional area of compression ring: kQLRL~ - + t a = 1 X 3,300x 100 1- 19.8 ~ tan 30°= 4.69 sq in. ArL= SE ( 13,800 X 1 () The are: o’fexcess in shell available for reinforcement: AeL= (ts- ~ ~+ (tc- tr) @t~ /COS~ = (0.4375 - 0.429)X ~100 X 0.4375 + (0.5 - 0.49) x{1OO X 0.5/cos 30° = 0.132 sq. in. A,L - AeL= 4.69-0.132 = 4.55 in. the required cross sectional area of compression ring Using 1 in. thick bar, the width of ring: 4.55/1 = 4.55 in. Location of compression ring: Maximum distance from the junction = ~= ~100 x 0.4375 = 6.60 in. Maximum distance of centroid from the junction= 0.25 ~~ = 0.25 {100 x 0.4375= 1.65 in.
162
R T
J
C E
C
(continuea)
JUNCTION AT SMALL CYLINDER 1. PAS,El = 0.0036; fromtable B A = 5° SinceA is less than et,reinforcementis required. 2. Factor~= S, E,=13,800x30x10s 3. Factork=l 4. QS=PR, /2+~lb./in =50~84+ 952= 3,0521b”/in” 5. Therequired cross-sectionalarea of compressionring: ~r, = kQsRS ~-~ tan ~= 1 ~~>~~~~ 184l~o tan 300= 8.94 sq. in. S,E, () u () ? The area of excess in shell available for reinforcement: A,. = (t, / t,)
–A) (t, - ~ %+
(LI t,)
x cos (a – A) (tc- t,) * StC/cos a (0.395/0.36) X COS(30-5) X (0.375 - 0.36)X 484X .0375 + (0.5/0.41) cos (30-5) x (0.5-0.41) x ~84 x 0.5/cos 30°= 0.77 sq. in. A,. - A,, = 8.94-0.77 = 8.17 sq. in., the required cross sectional area of compression ring. Using lfi thick bar, the required width of the bar: 8.17/ 1.5 = 5.45 in. Location of the compression ring: Maximum distance from the junction: a
= 484 x 0.375 = 5.6 in.
Maximum distance of centroid from the junction: 0.25 fi= 484 x 0.4375 = 1.5 in. Insulation ring may be utilized as compression ring provided it is continuous and the ends of it are joined together. Since the-moment of intertia of the ring is not factor, the use of flat bar rolled easy-way is more economical than the use of structural shapes. To eliminate the necessity of additional reinforcement by using thicker plate for the cylinders at the junction in some cases maybe more advantageous than the application of compression rings.
1
R T
J U
D, t-l
L. I
dr
3
!$! ;L w I
I T FIG. F
C E
C P
Reinforcement shall be provided at the junction of cone e o c to cylinder, or at the junction o t l section to cylinder when cone, or conical section doesn’t have knuckles and the value of A, obtained from table E, is less than ct. TABLE E - VALUES OF A P/SE o 0.002 0.005 0.010 0.02 0.04 0.08 0.10 15 21 29 33 A,deg. o 5 7 10 P/SE 0.125 0.15 0.20 0.25 0.30 0.35 57 60 40 47 52 A, deg , 37 6 d f g e r v e ooag Pa l 0t . u/e r re S s f E CX= N
I no t e rt mp ob el ma t f i: iao ann t e rvodm y ae de lei a urt e e
The required moment of inertia and cross-sectional area of reinforcing (stiffening) ring — when the half apex ‘angle a is equal to or less than 60 degrees — shall be determined by the following formulas and procedure.
1. Determine P/SE, and read the value of A from table E. 2.
Determine the equivalent area of cylinder, cone and stiffening ring, ATI,, sq. in. $3:: pa~~ 46 for construction of stiffening ring) 3 FIDI. A~lJ= ~ + ; + A., Calculate factor B B = ~ (~ ,) where F[.= PM+ J tan a
M = -RL tan a + L[ + R{?-R.?
2 2 3RI,tan a 3. From the applicable chart (pages 43 thru 47) read the value of A entering at the value of B, moving to the left to the material/temperature line and from the intersecting point moving vertically to the bottom of the chart. For values of 1?falling below the left end of the material/temperature
line
for the design temperature, the value of A=2WE. If the value of B is falling above the material/temperature line for the design temperature: the cone or cylinder configuration shall,be changed, and/or the stiffening ring relocated, the axial compression stress reduced. 4.
Compute the value of the required moment of inertia
For the ring-shell-cone section: ADI,ZA 71, I’,Y= 10.9 5. Select the type of stiffening ring and determine the available moment of inertia (see page 87) of the ring only 1, or the shell-cone or the ring-shellcone section 1’. For the stiffening ring only: AD[.2A 1[. Is = ~400
164
T
J
R
C
C
(continue~ If 1 or 1’ is less than I, or 1[, respectively, select stiffening ring with larger
moment of inertia. 6. Determine the required cross-sectional area of reinforcement, A,~,sq. in. (when compression governs): A,~ = @fi;;an~
[,@&):]
NOTE: Whenatthejunctionthe compressiveloads determined byPR~2 orPRJ2 are exceeded by~l or~J tensional loads respectively, the design shall be in accordance with U-2 (g) (“as safe as those provided by the Code Section VIII, Division 1.“) Area of excess metal available for reinforcement:
A,~ sq. in.:
A.~ = 0.55 ~D~t, (t, + t. /COS @ The distance from the junction within which the additional reinforcement shall be situated, in. a The distance from the junction within which the centroid of the reinforcement shall be situated, in. 0.25 ~ R,
Reinforcing shall be provided at the iunction of small end of conical section without flare to cylinder.
.~ L~ LL = =I
~
The required moment of inertia and cross-sectional area of reinforcing (stiffening) ring shall be determined by the following formulas and procedure. 1. Determine theequivalentareaofcylinder,cone and stiffening ring, Am
L, L,
“
L,t, An= ~+
I 2.
t L
I R1 A
FIG. G
Calculate factor 1? B . ; ( :~’
Let, ~+A,
)
where Fs = PN +jjtan a RL2- R~2 N=~ + Z+ 6R. tan a
165
R T
J
C
C
(continued) 3. F
t a c ( t r e a p v o B m t t l t t m l a f at i p m v t t b o t nc F v o t l e f n l f t d d t t v o =2 e of B is falling above the materialhemperature line for the design I t v
e
temperature: the cone or cylinder configuration shall be changed, and/or the stiffening ring relocated, the axial compression stress reduced. 4. Compute the value of the required moment of inertia: For the ring-shell-cone section: ~; = AD,2ATS 5.
For the st~~e~~~ ring only:
~.= 1:.0 10.9 Selectthe type ofstiffeningring anddeterminethe available moment of inertia (see page 89) of the ring only, land of the ring-shell-cone section, I! Iflorl’ is
Iessthanl..orli respectively,selectstiffeningringwith largermomentofinertia. 6. Determine the required cross-sectional area ofreinforcement. A,,, sq. in: A~s= kQSR~tan~ SE
metal available for reinforcement Ac,sq. i A.s = 0.55 %
n
[(t,-~ + (tc-tr)/cos ix]
The distance from thejunction within which the additional reinforcement shall be situated, in.G The distance from thejunction within which the centroid of the reinforcement shall be situated, in. 025 G NOTE:Whenthereducersmadeoutoftwoormoreconicalsectionsofdifferentapexangles withoutknuckle,andwhenthehalfapexangleisgreaterthan60degrees,thedesignmaybe basedon specialanalysis.(Code1-8(d)and(e).) NOTATION
A,
a ev = area of excess m reinforcement, sq. in.
af t i
arear of the stiffenlA.a a = bcross-sectional ol l e
ing ring, sq. in. A,,L = requiredareaofreinforcementwhen AT = equivalent area of cylinder, cone and stiffening ring, sq. in. QLis in compression, sq. in. B = factor At.’ = requiredareaofretiorcementwhen D~ = outside diameter of cone or large QLis sq. in. end of conical section, in.
.
66
T
J
R
C
C
(continued) D,, . outsidediameterofcylindricalshell, in.
shelljunctionandone-thirdthedepth ofhead o theotherendofthelarge
D., — outside diameter at small end of conical section, in.
shell.
E
L,
— . lowest efllciency of the 1ongitudi-
naljoint inthe shell,head or cone;E = 1 for butt welds in compression. E
— with subscriptsc, r ors modulus of
design lengthofavessel section, in. forstl~enedvesse[section: distance between the cone-to-small-shell junction and an adjacent stiffening ring on the small shell. unstlflenedvessel o section: disr tance betweenthe cone-to-small-
f
elasticityof cone, reinforcementor shell material respectively,psi. k
— S&L5’RERbut not less than 1.0.
shelljunctionandonethirdthedepth ofheadontheotherend of the small
A
.
shell.
fi
axial load at large end due to wind etc., Ib./in.The value offi shall be taken as positivein all calculations.
— axial load at smallend due to wind,
P
Q~
etc. lb./in. The value of~2 shall be taken as positivein all calculations. I
= available moment of inertia of the
T
— availablemomentofinertia ofcom-
stiffeningring, in4 bined ring-shell cross-section, in4. Thewidthoftheshell whichistaken as contributing to the moment of inertia of the combined section: 1.IO~D,,t IS
.
I,’
= r
L
.
L,
.
required moment of inertia of the stiffeningring, in4.
external design pressure, psi. PRL PRs — +fi Q,= ~ +fz 2 axialcompressiveforce duetopressure and axial load.
RL
outside radius of large cylinder, in.
R,
outside radius of small cylinder, in.
s
allowable working stress, psi. of cone material.
sR
allowable stress of reinforcing material, psi.
s.
allowable stress of shell material, psi.
t
minimumrequired thicknessofcyl-
i wn i da t l hel oof rw u a m q u o oi i mr n o e et ed n r t t c i of ar i o s i o n n , c mr i nb g i- s nh c e el l rd- c oo n e s s t. a ct h t i o cuc k w an oei l s t s ic t ni o n4 , . c o r a r l ol osi wi ao nn c n e a l x eo c i n i o ag nt l n t, he f , . m i r ne q ui i r me d t uoh i cmfk n e I e n g t a h os fl cu oo onr f e f cn a o w cg n ei ce t o , hr a r lo ol uosi w i t oa o d i bs et s at t niw r f c efr e ie e n nin n g g s a ct h t i o cus k w an h ei l s et t, o c i o n n e f , . a l l f o c wo ar rni oo c s e i o e o e
el seo a vin esgg e snt c as ht i he f oa l na a , pdn LL . d l g ee l f in~or stifle-nedvessel section: the — A valueto indicateneed for reinforcedistancebetween the cone-to-large ment, from table E, deg. shelljunction and an adjacent stiffening ring on the large shell.
for umtl@enedvessel section: the distancebetweenthecone-to-large-
ex g
167
R T
J
C
C
E DESIGN DATA DL = 96 in., o Ds = 48
t,
T
~
c fl
o l
c
=
E,, Ec, E
a
d
m a
r
m
o e p
o s
= 100 lb./in., axial load due to wind
A = 30 lb./in., axial load due to wind. LL = 120 in., design length of large vessel section. L, = 244 in., design length of small vessel section. Lc = 48 in. ~ = 15psi, external design pressure F = 48.00 in. outside radius oflarge cylinder LL R “ = 24.00 in. outside rad;us ofsmall cylinder Designtemperature=6500F SS = 13,800 psi. maximum allowableworking stress of shell and cone material. SR = 12,700 psi. maximum allowable working stress of reinforcement material. = 0.25 t t = 0.1875 in. minimum required thickness of small cylinder. t. = 0.25 in. actual thickness of cone. t, = 0.25 in. minimum required thickness of cone. t. =
0
i a
t
o c
JUNCTION AT THE LARGE END 1. P/SE= 15/13,800= 0.0016; from table E A = 4 since A is less than U, reinforcement is required. 2. Assuming As=O, A~~= h/.2+LJd%A. = 120X0.125 +48 X0.125+ O=21 in2. LL RL2-&2 48X 0.5774+ ~0+ 482–242 ~.— RL tan ~ a+— =66.9 2 +3RLtana=— 2 2 3 x48X 0.5774 =
FL=Pk?+fi
tan a = 15 x 66.9+ 100’x 0.5774 = 1061
168
T
J
R CONE TO CYLINDER EXAMPLE
~ = :(~L)
(continue~
= 0.75 x 1061 X96/21 = 3636 TL
3. A = 0.0003 from chart page 43 4. Required moment ofinertiaofthe
combined ring-shell-cone cross section:
ADLATL 0.00035 x 962x 21 = 5.32 ‘L= 10.9 = 10.9 5. Using two 2% x $4flat bars as shown, and the effective width of the shell: 1.10 x ~=
1.1 ~96 x .025 = 5.389 in.,
The available moment of inertia: 5.365 in. (see page 96)
It is larger than the required moment of inertia. The stiffening is satisfactory. 6. T
r
c
a
o r
r
S,E, = 13,800 X k= ~12,700 X
106= 3 ~ 09 0 1063 “ 0
~L= ~ ‘fi ’15 j48+ kQ~RLtan a A,L = I SE
100 ’460
X X
L
s
= 1.09 X 460X48X 0.5774 ~-025( 13,800 X 0.7
15 x48 -460 4 460 )33]=
1.412 in?
The cross-sectional area of the stiffening ring is 2.5 in2.It is larger than the area required. The reinforcing shall be situated within a distance from the junction: m,,
= 448x 0.25= 3.46 in.
The centroid of the ring shall be within a distance from the junction: 0.25 ~
= 0.25~48 x 0.25 = 0.86 in.
JUNCTION AT THE SMALL END 1. The conical section having no flare, reinforcement shall be provided. 2. Asuming A,,= O, ATS= LJJ2 + L~tJ2 + A., A,.,= L.,tl2 + L&J 2 + A.,= 244 x 0.25/2 + 48 x 0.25/2 + O= 36.5 i ~
=
R
8
t +~ ; n ~~
+
+a2 ; ~ ;
“+ +;4 5 : ( X =7
~ 74 x 4 =4 149.72 in. : +
j
169
I
R T
J
F,= PN +fJ t
a
C
E =1
C
(continue~ X 149.7+30X 0.5774= 2263
3 F$.DS = 3/4~22;; :48) = 2232 B ‘? x 3. Since value of B falls below the left end of material/temperature line: A= 2 B/E = 2 X 2232/30X 106= ().()()()14 4. Required moment ofinertiaofthe combined ring-shell-cone cross section: AD.?An = 0.00014X 482X 36.5 = ~ 08 in ~ 1’,,= 10.9 10.9 5. Using 2% x % flat bar, and the effective shell width: 1.1448 x 0.25 = 3.81 in. The available moment of inertia 1.67 in.4 (see page 96) It is larger than the required moment of inertia; the stiffening is satisfactory. 6. The required area of reinforcing: k = 1.09 A,., =-
Q,= ~
+j=
15 zX24 + 30 = 21O lb./in.
kQ,~. tan a = 1.09X 210X24X 0 13,800X 0.7
. ~ 05
inT z3
T
24
Area of excess metal available for reinforcement: A. =~~a ==
.
(tc - t,)+ ~,
(t., -Z)
(0.25 - 0.25) + d24 x 0.25 (0.25 - 0.1875)= 0.153 i
Ar,,-A, = 0.328-0.153 = 0.175 in.2
T
a
of ring used for stiffening 1.25 in.2. It is Iargerthan the required area for reinforcement.
The reinforcing shall be situated within a distance from the junction: G,=d24
x 0.25 = 2.44 i
n
.
and the centroid of the ring shall be within a distance from the junction: 0.25 ~R,,t,,= 0.25424 x o
= O . i
. z
nb s
l
.
8
170
O
P
WELDING V
R
There are several methods to make welded joints. In a .particular case the choice of a type from the numerous alternatives depend on: 1. The circumstances of welding 2. The requirements of the Code 3. The aspect of economy
1. THE CIRCUMSTANCESOF WELDING. In many cases the accessibility of the joint determines the type of welding. In a small diameter vessel (under 18 - 24 inches) from the inside, no manual welding can be applied. Using backing strip it must remain in place. In larger diameter vessels if a manway is not used, the last (closing) joint can be welded from outside only. The type of welding may be determined also by the equipment of the manufacturer. 2. CODE REQUIREMENTS. Regarding the type of joint the Code establishes requirements based on service, material and location of the welding. The welding processes that may be used in the construction of vesselsare also restricted by the Code as described in
paragraphUW-27. The Code-regulations are tabulated on the followin~ the titles: -. DaEesunder a. Types o W eJ l o d i e nf d t s ( J permitted o i byn the Code, t s their efficiency and limitations of their applications.) Table UW-12 b. D
(
eo W s
o J
e Ji
l go
t b u
d ni
f
e nf d t
v
i v
s
s
a
u
c
tain design conditions.) UW-2, UW-3 c. E x a m io nW a t e iJ o l no
d i
e nf d t
s
The efficiency of joints depends only on the type of joint and on the degree of examination and does not depend on the degree of examination of any other joint. (Except as required by UW-ll(a)(5) This rule of the 1989 edition of the Code eliminates the concept of collective qualification of butt joints, the requirement of stress reduction. 3. THE ECONOMY OF WELDING, If the two preceding factors allow free choice, then the aspect of economy must be the deciding factor. Some considerations concerning the economy of weldings: V-edge preparation, which can be made by torch cutting, is always more ec~ nornical than the use of J or U preparation.
[
171 Double V V a
Lower quality weldingmakes necessarythe use of thicker plate for the vessel. Whether using stronger welding and thinner plate or the opposite is more economical,depends on the size of vessel,weldingequipment, etc. This must be decidedin eachparticularcase.
172
T
J
W
JOINTEFFICIENCY,E -
TYPES CODEUW-12
F R g
w an s B as s b rh c o m t
i w
a r
m oe e tl o hs u i t n 1.00 ds e i ue r f la c ci u t k i rs n ig e a am of l v t l e op w l e et i o l n
c ; pN ~ o ia E mo x i a- n m h e r
b us E d x a p
a e de e e
d l d0d e . p fd de r d f .
S i n g l be - j w e ulo d e di t n t t w b a is c tk t i r nh ig 0 p w r h e i m i ac i hn s n p a l w f ea lt c d e i e nr g
c
n .
8
.0
8.
0
.
j
3 S i n g l be - j w e ulo d e di t w i u ot b h a o sc u k t i s t r i
D f
o u l ij
b
l e - f u l o la i e
n t en f g p
l
l nt
—
p
t
t
5 S
i
w
n fg l ie - lf u ll l e t l j o a i n p t p w i l e t lu hd g s
;
S
if
u n l l ; gj i p
w
l e
~ l ol lu
$ea ; i ~ d
n
—
g
s
p
t
173
T
I A
W
L I M I T A T I O N S P PV L A Y R I IN N OG U
C oa
tA Bie
O g ,no
r Cty
N : ,
F
NOTES
S
WELDTYPES
FORTYPE1:N J
J
E ,D
T 2 N YO O P R N E1 C oa tA ie , g 1 no 3 r , ty C: E bx w cw uo e ep ipo t l lft n t fat d— f c i r c u mjo f e oor e n itn i ra nl l t
I t: E t ah a s tbhi t r . lon ys hew p ,o w D ej low d ia h pe n f i d t e r c s thms e beie t t Ct i t a oahe g d d r y n e w y s e p . lr od c i e sn s g e s .
F T J C oa C i r c u mjf e 5 i t a nh 1o d i a m e
E T j sa te tpi re
J
3 YO tA ie g, no rooe nn t i oni a l n n2 i i onv co u8 t e r .
P R2 rB ty : , l vto y . t ken sd
s: oh t h e a t d pb. h e g e Cob b i u t ns t b-e sh w d e a ul y d t ec r o r m p, f m pua li s soe t t i d4n .e et r a t i o n .
3 B j uos bi h ft n f a . t rt lrs e P R Eu n : d oe r v c ae u art sl b , a n rp ol t 1 e nsr t ai r v 8d a. Tgl an l e tse s ys dsh u . g no r t ty w : e l d -h ag cr oo o mv eper sl e e e eb b dlt u u,a a d i lnv o t / ef s iwt rlm 8 l m g. no r. aty r : e i n fC o rT c et mh e ni st hc. k n o t r e i n f h o s r c ne hmf ee n a t e x t f c o l et lh eoi c wkd in ene s g F T 5 YO P R E ( Circumferential ajoints f a t ) t o a P c t l hh r i i- a cM k at n rxe n e isie sm i u ment of heads n o 2 i ov o u te n s ut i rt 4d i . e n 3 c p l/ o . 3 d i t as mn h o e 1 eti t ev l o rh l / eoin s o ct ‘ r t k21v i . . nYe 1 c r lz o / . 3 e / r 1 1 s v o J a o t hti ea mn ci shhtp iht esen r gi c a a l od s a h e xe c l l r u l d se de . J o n t B i w e t ls d es i o hc n i o g owr eu eb bj l luotd eei t dn ( C i r c u mb fj e r eof n [ t i ) a l n o hl a d s s fld a t t t a s c ohhj m a ene onc l t k l v eoo s t i fems p otu tr r f i st i w eh si r e b r e b m c o h v e e i s h n a l g l 5 i i n ot/ m hn iwi c t n kh8 an. n eel s h psr e r oei n mn g i e d g o i l t , n t g i u p l go s u es cm fu euc r o tn m e o pa d l w t t e e o t pd lhi n l l ghd a o ee oe t fp e see n s e ta t s fr a u t F i ssno ni ou o n t 1 t h - t i d 1a i moa 1t hm n e 2e ts h em e r ea wf r e e gc l rhde oi i dpn pgc i h f t po l ol h u e g r e . a g ri t o c o ir r vha e e t c ne J C oa t e i g o n r y t: C m e n d e d . F T 4 YO ( L o n gj i a t nou o d 3i in a)vn t h Ji C oca tA kie ( C i r c u mjb f e nro eo n 5ti i )a i t h J in C oca tBk ie .
F T 6 ( F t a t ta oao h hc t p r t es s nh so r e t q h ui o ci w kr f w i o i l e on sl JointCategory:A
YO P R E ax xha l i l mj o . uw e o am b ch e m o) e r anen t 5dv T fems e f f i cg i e i in t c it v e sh a e b u5e i r vol oe l /oe sn a tt br u 8 i . rf so r w m e eu o lhe ad nu en eo dis s l . st t y j h omade e fh iby arcn or gas t e s s ehl i te dd l n e l weldingprocesses. f : , B
( F a t t bao ohc h h m e ae) p r o e e s s i s t u[si r nhh de o 2 i i v d n i aesna n m oi re 1 r e t q h 1u iw icf rkw iien 4 o o uo h t f s oel i adn na J C oa tA ie g no
nar vt di ee ne rl6 oJ d 4 tnv. oee ir edl es t ls ne l gf d y r. ty :
f ns g . l e oof s f iEt i=c I fi ben jn .c toyu o , i c e o dm tp r r e s s i o n . el h t d e . B
1 . -.
7
4
W
D
WELDED
LOCATIONS
T t j ou hic n enc d roo t ent se sd a p i r r i et e f ja od e moi s ib nig edn t aerl t sne e t dt i t c T s h p r e e q uc si rwi e emaa eh bnl t sio ,a s d t ec oh sn d aei i t t gair ob bnn ur s el , a l t
s o
D C
JOINT
J
O
E N
S D
qin uc o i arni e am pw e l npa ht t s l i y e ay rI s . r ce s mr have tt ei ehdc ri aenic ,ak l n eeo d w .
P W O E N E JI TO G N I Y R AN D PI OT G RE JA P H OI C IH C T Y M R I YNE AF TF I IO CNT I RE EN A I AT C I OA NT N E EG X OA D
a i A ta gD t dl t 1 T d ie A hsc .le eb gn F o snu r l yu w os i ve ei s e l end s c nd tts i s e o n ln s b o ja e f f 1 i ca ih e n.e c n y a 0d d s o 0 . r 9 A c a B to C elb g o u r l y t T r( Tt y( ( d Se w s ( eeni i bgnl e c n dls o uu ds p i t n t g o 1.0 0.9 c o n d t i ti nih o oon o zs zs l ee n s r l bi sec o m t l m eu c no hi d c aaw tmi nb g e r s ) w f h w u i ehn tlt ei n r slc e hc h t s e r a d i o c g ar Aatw p e hi vyge oe l r s y d s se n l i nr s e o ch t o eis o Na n sd o r s m a n) d c a to s o ner vyan . mee l cs e t ss se 0 l 0 . Uw-11 s e o ch t ei o a n sd r s U 1 2 W ( d ) r Joints Band C butt welds C a Ata eB b g o nur y t din t w i ve s e l e s c d cn ts i s ec no n len s se a h s e b onhT a a dy d l s p l1 ein f ee wall UHT-57 (1) or T ( y 2p thickness do not e require ) 2 F r a d e x a i n m a U l
u T ( ol Ty ( . b l 1yp s u 2pe p ) t r Te (o) T t (y 0 0 . i o wg r jae p hol i cdi en dt s m i n a t i o n o s t n d a t o r y ‘ W ( b 1 )
l
2p e t y 1p P C o e U C S e
.
8
8
5
e r i
f p t
Pt yC1 p U . C8
2 p o ee 8S 5
175 I
DESIGN OF WELDED JOINTS (CONT.) D C
O
E N
S D
P W N O ET JI T N DP I O T G REJ A P HO I C IH GO N IY R A E N A C Y M R I YNE AF TF I I O CNTI RE E I AT CI OA NT N E EG X OA D T M
( 1p ) r y e l l 6e 2.p ) ol pione id ne fr dt ( s 0y gmy rT a op w h yi j ec 0y P3.pC 6e o e ) r ( i n a t i o n U4.p C 0y 5eS ) r ( o s t 0 . 5e T y p ( 5 ) a t o r y . 4e T ( ’ 0 y 6. p ) hs s e e l s i g no e d r e r n a l s ns u rl e y ( c ) o A s i b hn at ls l e I. F e . )u l l ~ N ( p o 1 J W( ( 2 ( 1 aa ) ) ) o B a i C s nb h n t a s l d l e / ef sa s b ec s r soN e( yo l n . s op 1, V e . ) 1r T ( ya . o c 1pt a 0r t al i e n Nt i ( hn ga o 2l . ) 0 ( . 2 9 j l a s l o s u b s Jt a Wn( (c- e 2 s ( 1 ba ) ) ) h b p a o U W 2 ( a ) v h t e re ]intsB andC butt J Dos bi f h n aiut b wls l eu l l el l t d eJl t W d 2 n p e n w e t r e a t o c Di l oi sn id h ns et ls n l e x tt e h tn r d io, hn u hgs ge hnh a e a d n dl s l x e t n h ito t c i k }nr f e rhe s u s a l f de l iey 1 v oe n swo s z }ae z g el lr l rax e p cl h ee t dp t U W( ( 2 d( 1: a x )c)t h )ua . n gb e re c r s o e x r J oo c ai C tf n e mgt e oxs o cr fh y a n gr e rd s ) ) d e s t f a b l r j h i c o aJ at Wie(e da - n 2 p (t2 na p 3 a p n e ) d r s e U t W n- 2 (u a d) ( l b ) (s c ) n J l ( W ( - 4a 1 ) ) r U F u r a d i o e x a m i n m a n d T v ie d e fs e x t p r oe Uw-1 l
$ V a – i r t o U
J Aos b iT h Nn ay t ls p l e e o ( ( e f a x u1 cs t eoe pn ) i t f i T r c ( Type(y c h nr os i m t cai i uk n m le e l s s s t e e l ) . . l B o s b i t h N n a y t l s op l e e . eo s ps e e l .r s ) b te le( o d w 2 U 0 W( ”a - ( 2 F ( 1 r nb 2 ) ) d ) o2 F s m t i pJ e Caof p ci se nutn e t t t r sl a st i ol i n spot e fq uwelds iextending ro ethrough d r No m a tthehentire e r i of the ae l section w m ejoint e tl ar d l W 2 ( b ) J Dof p i e nun e t t r l a s t i ol n w e ex tt le h n rdd oi sn u g g h t e s n ea htt c i t ri eh oe n t e j U o W( ai- ( 2 n ( 2 nbt 3 ) ) d )
nstean f J i ( with d pe sr s e xu c J n i 5 p S n a o(be o i t c oh U l a d e s c o 4n d i
6 U
Aosr
boilers
i
e er Bos s N o(t W iu i t i
1p
e
2
0
PhC
o e
UCS-56
le t d b ei t h. dNn aA yt b w ls op eul l el e t d. j i o s) i h n e t slV nef l s a 1 a a- h s e nh a 1 a d dcl s o . cal g sn o l a s l r u a l d l ie y e de - b f s b p h o g e r a x p c h e e r p t bit h N n a y t l s o p l e e . g 0 i t )np r . r d) 1 hoT e ( v ryw i. he -t 1pe r 1ve e o eu2 y o ~ T n ( 0 sU fW. 2p- mn2 s (n s C o )i U l ( W ( 4 a I ) ) g t n o n :
s b t r o ao e 0e 29
A
176 DESIGN OF WELDED JOINTS (CONT.) D C
O
E N
S D
P W NO E GO N I Y R AN D PI OT G REJA P HOI C IH JI T E T N A C Y I AT C I OA NT N E EG X OA D R I YNE AF TF I IO CNTI RE E M T
l :
Aos
b i t h Nn 1
J Bos b i t h Nn [1) o N ( 7 P r ve s se u wr s. t e t h e i s s ut e b j l ec x 5kc isc n d fi i r N wr e j ei c oolnt t ( a p e rf 3emr A o Bj ioa i t h i c k n U W 2 8 E l e c tA r b ow s U l ae .l g u w e l ( d i n 6 g
1
S v s h U ( U J c b u
ls op )
l
e e
.
ay t ls op l e e . o h 2- F he r . uT ) n ( Te l(y spI. 8 .0o t ee os es / s nd D 0. N di g y ne o dt p 0s f e 0. i i t to ) e e h d e r r n n t r s n y e s s ( d ) W l ( Fd l - t as u 1 I T ) ( l 0 T ( ) F u l
w t t h h l a w e e l o o ci a n ; (t P 1) e - e : y 1xp5 i c2 p ee m a .l t h 90 i n s 85 s .8tf e l a s.7o l t 60l e , to P t h h ~ 1 p w oo I t r eei a t n a n d a o0 e y . P l C 1p S9 y . U 2C p l
U l t e r a xs o na i cm o0 e Aon w s a ue n. r l l e i d nwy ats t h 1 iT (ohe ny . P nC 1pe S9 2C p sU sl ( eW (l f s - c7 a o n 1 s t ) r )u0 c T t i( o ny . U d n p o e roe m si t t r a d i o g r a p h s e a 0m l e s. s s p o t e s s e l Pe C o e e o c Jt ci o oo ni nv n nse e c t rt s Ni s ns g oe l n o w A o B h e r n r C5 U S e s a e a c hd t ies on an s d d s 0 . 8 w a te 3 l y r d p s e e , l W ( a 1 ) 4 5 6 , , ( 5 b ) ) W 1 2 ( d ) o 1i n t . s N g rt e o ah t ea t o m pA lW e t e e n d l d y s , 8 0 u r e s s u r y e w 1 2 ( f )
9 F c o v
1
ay t
i l e
E F F I C (I E T NB CU YE I SC A L C )EU O L EA D T I O NN S O S E A M H L TE EHSF I S C A A K N Code D E S S UW-12(d) S M E
TYPE OF HEAD H s
p O
h t
T
e e
r h
OFY JOINT
N m i cN a e
Ar
P
o1 00
i l s
E
N
* c a F l ic un l vo a ot il rov n i n g c i r c u ms f e ort , e n rt i aa el s @ s t h io s c ek h an m e sel s e s af s
1
r r d
.0
l
0.0
08 .
.0
2
9 .0
08.
Y .
0
0
.
0
177
EXAMINATION
OF WELDED JOINTS
RADIOGRAPHICEXAMINATION FuUradiographyis mandatory of joints: (Code UW-11) chambersofunjired 1. All butt welds in shells, heads, nozzles,communicating steam boikrs having lethalsubstances. 2 All . 1
1
Exemption: B and C butt welds in nozzlesand communicating chambers that neither exceed 10 in pipe size nor 1 1/8in. wall thickness do not require radiographicexamination in any of the above cases. 3 All categoryA and D butt welds . in vessel sectionsand heads where the design of the joint or part is based on joint efficiency 1.0,or 0.9. (see preceding pages: Design of Welding Joints). 4 All butt weldsjoined by electroslagweldingand , all electrogasweldingwith any
greaterthan 1 radiography,as a minimum,ismandatoryof
B or Cweldswhichintersectthe . CategoryA buttweldsinvessel sections(includingnozzlesand communicating chambersabove10 in. pipe size and 1in.wallthickness)or mmect seamlessvesselsectionsor headswhen the designof Catego~ A and D buttweldsinvesselsectionsand headsbasedon ajointefficiencyof 1.0or 0.9. 2 S . t weldedjoints(~ radiography p isoptionalofbutt o 1 2 w a hn i 1
r c o
) h
required to ~ filly ~diographed. If spot radiographyspeciiled for the entire vessel, radiographicexaminationis not required of CategoV B and C butt welds in nozzlesand communicatingchambers. No Radiography.No radiographicexaminationofweldedjoints is required when the vessel or vessel part is designed for external pressure only,or when the design of joints based on no radiographicexamination.
ULTRASONICEXAMINATION
I f e m r a r te i le etr c wi tn arca ole e ss l l lea wcgn dt w r e ao s sg li da i s d nnt sg h l y p g rat e 1 1 asih s t b esuha /l rtn r aa ns e o lnx2 i .cat al hm l elr yi ot nu ge h hd o eu t i e ln e t n i g r t eh . d t d t ir e t q iu ih.oornr en a md e i onoet gxs r a a m p ia h nwifa c tm ie ob lnt l,a d d lh 2 I a e l be cp ter or bo to aci n en a msce h os r n tdnr iy if ne r rua oi i du c s tv i eo n w e p l r sd o b i uhc ln t er aga ss e o slnx i caf al tm l el eyi h n lno e e td n i g r r rt eh 3 U l t er xa as mo mi n nb i .sa c tu ib oas f n t r i a t d u i yt foo eetg d fr a c p i ohlr hy on s a ru e s i t ec o n sa tho rt uv cm t dei f oen hsn p o s ei n eftoeree rl m rp ars edi tt i a ot b gl er a p
178
B
W C L
P
J U
T
I
B T A IP T E D RI F E FE H E D I TR H E N FI ECI M EK N T E O S 1N S H R O O N E N - FO O T UT R. HT R H PIH NL C N AF U EEOW T RU - E 9D W . ( - C E 1) , 3
T O E
L E OH NT TG ATE T H P HR E A RNF SSEE I D TH B I M O AIN N 3L T I TM LI UM E F B FE STT W A E DET J H ES A U N C R E F TENA WTC EM SH E B. p LAA OE R D N T I IT R T E A L SP HY E OC R N AT EE D D I J TOA I C N E NR T O
x2 3 & 1 T
L &3 e ai t ~ p oe o{ evu $
jt r ~ s ~
i
& r
‘
L e
g
i e
s
L
nn
t
&
y
@
e
H
$
‘
~
% Y
a
nL
Y
g~
e
n
/ 2 ( t @ T s p h c h le en mat el er t l l i a e b o e si o t hi h eeed hn r p c le n t a e r tl i n e e z
- t
~
a
-.
n
g
“ e- n
ti L
— @
~ ;
~ z
i-
$ n
/e
—7 e
~ l
’ %
Y S 1
TE S AH E D LS L A T T A C H M E N T
:
th
H
TE S AH ED LS L A ~ A C H M E N T ~ 3 Z z l / 2 ( t h - ty
~ —t c m e e i le n nhdoe is h ~ m tn r u g ea ~W t e h~ t,., f il 3 ba n tnn e ge u 1xh e i coee- s , e xt 1 d e w n e h ct p e rser s oe al qvnr oeuyit i nd a ro e ge f W l t i e h t oql et u1 e .tnh a l 2k ssoel 5a o nhrr s t f r sla bi ash gu n fhf a fatg i r lc ee i qoel nnue t Ta s pp hc eelh nemr tab oe .le r te sl i lai ent ei o t h p c e ehl n t aae r f lte id n e e . -
1
APPLICATIONOF WELDINGSYMBOLS WELD
SYMBOL
MEANINGOF SYMBOL
n m
+rt
P
v m
=
v K
m
6
8 &
&
~
‘
~
&
w
APPLICATIONOF WELDINGSYMBOLS WELD
SYMBOL
MEANINGOF SYMBOL
b
G
‘i’’’g%N:i;E’”E
~,
~q
g~g2g9D
SYMBOL INDICATES L
d
D
m
SYMBOL INDICATES 1/4 IN. INTERMITTENT FILLET WELD. EACH 2 P
*
E
8
-
P s
181
C
R
RELATED
Service i
VARIOUS
SERVICES Code paragraph
Brief extracts of Code requirements
A ip r ve lse rf s us uw s r cl e oe i m sl pas r et e r sxiea s hUec -d r e( p , 4t p e r o m t i h ti et t r pe wad h ir ssa ebg i hp r ra n aops hv l i dl ee d w s u i i i n t s t apo ebp chl e t e in o i n n g . V e w s a r s ei e m q l uit si tn rh ih ei omcld kut n m f s 2n ? e e Uh s - s s a C i t an t hb u c i rac so h m tpa e res eo eess ds r bei n hvd i a c r le l p r ow vc io i dr a r e l ot dl sno il who ta n n1e o coh e s a/ t s n 6 -2 t c a l cp h u t l lh a i t caM e k d t nt he i is 3e cs i .kn n1 Ue 1. s 3n s( 6
~ l a mE mx a p c b oa l nne n m o n o x d o g a u s e s m l i q u i dd L s u
To
e b
B t s st W w T
dse cen t hdbi uo r s s
wh ueja loil vt ab hnf c r eaua ds i f a h b or ci e h te r e e l j oo v hi a c
na ss o l
e
l
dUt
-e
.(
4
d i e t ecnts odst l ne ses tlu ntbas s ih U to an- a n( c l e s ol g r al p eh ye d . c a oa l t nr ae dbs l soo t fbl nph e o rUaw oe- y ( l l s l e a a t de td . nra t it see ogsc ohu orf sti nape fas lr o a r lg mr a p o h
Uw -2.
S
t
S s
p t cl oe an f t et os pr ee m l c i s f nSi cg aASt i o-A no s U 3n hb u a s o l e l dt e .
V i e
e w s a r s ei e m q l uit sitn rh ih ie omcld kut m c na h
i
i W
( a
V ew sar s t 2ane t hb i t w a c oi r a c u p l t alh M t h i i 3 c
s
&
n
&h h
ne
- 62 (
( ,8 C 3
nm ss %e e ucs h s -25
a
I s
( G
f s
n
.
~l
l
.d s
J
ei e m q l uit sitn rh ih ie omcld kut n m ss a ? e e ucs h s -25 ru c i )raw s hs a te se e tr bo hepv ed r i nao rc v le i dl r l t o l soo ni hw lo a tn n 1ec o ohe t c s af/ t ash n i t ca ek ndt e s e s . u s ( G( i kns n/ &he h . s 3en s e l 2a l . ds
-
f s n ee d 6l f -
N O T E S : 1 U ns f b t i om r eai eb l .ca dole an mrsi at ss rc uc y c o ot r eed d a n c n e w t i ht h e 2 V ei w s s s a e e xt w l f.c s etil j unruc r rd ie oes hot dd i c m t i ohe n c a l o ii srd t ee e d n
. 1 Q?
1
C V n a
T
p
N
v t n i a
ha e 9
i T m i \
N
i
s
R T
V
c k n3 s < 3 , .A x 6 24 1 2 3 4 5 2 4, 5, 65 5 a6 a b9 6l 8 e9 1 8 9 , 1, , I1 1 e11 21 1 s 1 21 1, ,2 ic k l n5 s ~ 1, .
? 5 2 4 6 ,8 ,95 , 1 1, ,1 , 441 , ,2 4
31 6
1 4A
3 6 4 4, 6,, 8,, 9, ‘, 7 ,11 ,1 , 11, 121 41 , , 5
7
A % 6 4 8, 9, 11, ,27 8, 9, 1, 1 ,1 , I , 1 1, 1, 2 4 4 , 5 , 4 5
1 4A
% 36,
516
4
p 7 l1 i1 c 7 a1 1b 0l7 11e 1 07 11, 1, , 0 7 31, 1, ,0 7 31, 1, ,0 7 31, 1, , 07 31, 1, ,0 3 , , o1 1 1 t 1 1 1e2 41 2 s 2 41 2, , 6 5 1 2, ,6 5 1 2, 0 6 1 2, 0 6 1 2, 0 6
p
N
W
h i e 1 s 241 p 5 l6 8i 9 c 1o 1 1 t
i
R
ha
s1
i
lc n 1s1
k 1l - 1 l 3 6 ,< .
7 1 p 7 l 1 i1 c 7 a1 1b 3l 7 61e 1 3 1 62, o t e s 1 2 7 1 2 7 1 2 2 ,
p
( 1 T l T s
m i t 1e m i e sr
B E
c
o t
7 1 1 , 1 , 3 1 6 1, 0 7 1 2,
N o t e s x r ot Ci r Rae e oqc fu t i r s de m e fn et s )
tn h h i i omcp .ku fe nl w m e easc os oln t s dtsf r e ube cnhr t dui oa ( n G ol h / s 1a s6 n . tnh h i i omcs ku e ahn m he e s u esl ni cl a sof m s d pa de r se s ds ien d 1. vs t i e a ce rw e vas , a i en smc tr b eh3v e i id a /rc le 3nU l G e ( 2-
2 M a n u f a m c t u a r s e rr b.s k’ho 3 I l
1 1X XAv 15 6 % 3 &7 o6 — 1 3 7 61 1 3 7 61, ,1 ,37 61, 1, , 3 6 , ,27 , 01 91, , 7 , 818 ,1 2, 7 ,,1 1, 1, 721 8 , 02 1 2, 029 01 22 29 02 2, , 9 2 0 ,
1
i t ta nd
ghdl
s e t el aa e meri
pUn i ( pnG ge
io- r
m i tnh h i i omcs .ku eahn mh e e so eusl n nlas f f s bdti d o r use i e ( fG l ad b e -m)r n hb l ta o1 e il h l s at ne s n % .
6 D 7 S f
.-
m pa r s e sai t s .wen ed sr a ne ac tro, mrv ae r ldi o l rcsno i eU wo aC n n o cS e 1 e o h t c s a a/ l pc hs u t n ll h a6 i tsfacee bkd ph t n r e oae s v s il d el de .
4 S i w n e og pl l eued .nt , e3i i ndp g s s di n n i p r po e zU. qo e ( u(C e r e i n f o r c e m e n t . 5 T s
6
of
f u l iu bj
l f l oll. loea n i eg l iw o ttn u ejpd ti liona ra cdil c ,een T p dUtt aa sbW lb s
i w n eo g p l l ue dte n2. i ,ei p n ds g d i nsn ir o r c e m e n t .
8 S o 9 M 1
M
1
S a c
ep r o zqe o . i-ue Un ei f( o (G ro t r e -c
fi f n l iu jg l wl o l p.l ae wiie l fl tna ett p t ut a oolhch h g nmetd eT nr aU t a 2 i vo u d et in sat s m ri h4aed .c et ec eel pr l t as ob ,l e . a
tx h i i omcr e ku i .nnmf eo f rs bc se wm e3ufno ti e
/t
a
tx 0 h i i omcr eku i . n mf eo f rs bc se wm e1ufno i t e
t
if c
f 1n l ui gj l lw ol. l pea e p t a b l e .
w iei l
dW b f
l U r 3n t ( dW
2
/l rUW n t
8-
‘d
l ft ne ct pi r utlc u hmo df j ge rt esTn ot Uir aa l
-
Wi b .
(.
183 C
R O
U R
ED L LT
(
B E
V A EE A T S E R W D I T OHA I UC O KSL NO EV S LS E E S S ( C o n t i n u e d ) N x r ot Ci r
o t e s Rae e oqc fu ti r s ed m e fn et s )
f 2n l iu gj l low l. l aeii p et nlw ht lta ope c s cu ulef t pa dt t ga Tbt so U l a ea o h e c e ont ap n r dt tve s fs es h s xeu rl o e l s o .
1
S m
1
W Bs
ej 3l o p d i r b th ( oa y(
1
S
w i
fi
4neb
jgl
S
c W bh r
even . sed st s s u sut s dbr f e ejfi l e iir sc c rea t t iU c eo (nt g Wog P l w1p2 l ho et ee) r es)e rr al .e t atq m du e i tn r (2) t e d . wudl o . i eu itt o d bh n aot s s ctu a ktct
ci erfe n p f tgi a
b po l
r n dy
e
P-1 shall be fully radio- UCS-57 graphed. 19. Post weld heat treatment of P-1 materials is mandatory for all welded TableUCS-56 connections and attachments. 20. Double welded butt joint or single welded butt joint with backing Tableuw-lz strip shall be used for circumferential or longitudinaljoints. 21. Pull radiographic examination of butt welded joints of P-1 Grade 1, 2, 3 materialsis mandatory.
22. Post weld heat treatment of P-1 materialsis not mandatory provialedthat material is pre-heated. See page 179 f N P b p
l
t
e
m o p ooe pr ae t r ru awr t e i
Note(2)(a)(b) o
n
.
O T E : w h o t e r ees i nal t ea trm ide e nqttn p tuh r ioe fhrs ojr ie b od i t io er dn t r s e a tu w s s t et e asne ii ont nt t i P l e c e 8 ges- sh r(l N T os a oob fu eu .l p a t . e d 1 ) a 8g e 5 .
1- .
8
4-
T C
F
A
V A
C
L
Excerpt from the Departmentof Labor OccupationalSafety and Health Standards(OSHA),ChapterXVII, Part 1910.106, (FederalRegister,July 1, 1985) REGULATION
CLASSIFICATION ATMOSPHERIC TANKS Storagetank whichhas been designedto operateat pressuresfrom atmospheric through0.5 psig.
LOWPRESSURETANKS Storagetank whichhas been designedto operate at pressuresabove0.5 psig. but not more than 15 psig.
P
V
Stora e tank or vessel which i?asbeen designed to operateat pressures above15 psig.
Atmospherictanks shall be built in accordance with acceptable good standards of design. Atmospherictanks may be built in accordance with: 1. Underwriters’ Laboratories, Inc. Standards 2. American Petroleum Institute Standards No. 12A, No. 650, No. 12B, No. 12D, & No. 12F. Low-Pressuretanks shallbe built in accordancewith acceptablestandardsof design. Low-Pressuretanks may be built in accordancewith 1. American Petroleum Institute Standard No. 620. 2. ASMECode for PressureVessels,Section VIII. (These tanks are not within the jurisdiction of the ASMECode SectionVIII (U-id) but may be stamped with the Code U Symbol U-lg)
P
V
s
b b
i a
with the ASMECode for PressureVessels, SectionVIII.
In addition to the regulationsof the above mentioned standards and code, the occupationalsafety and health standardscontainrulesconcerningtanks and vessels as follows: 1. Definitionof combustibleand flammableliquids 2. Materialof storagetanks 3. Locationof tanks 4. Ventingfor tanks 5. Emergencyreliefventing 6. Drainage 7. Installationof tanks
185 LOW TEMPERATURE I am i d n me i t m es e m uipaf tem t gr a ahtn n e s s - c o omc b i naaa lt i aro n s b l ni t oo b t ce i uFl Urh o Cfvi Swtm e -Geei sp 6 s r e q u i r e d . .
I
I I I
~ I
-
I
1
0
I I I
8 6
0
1Y / {
I
; 20
0
/
I
: 40
‘‘ .
/{
A
/0
-
/
-
.~
OPERATION u nir l e -c k d l ef n oe d w l y s s n a6. t , ci nt g s N I tO H aT t n mhE d c b o. oouh mno e m k ss m a a t l e iFr o is rsa t t Al heosC dSe ee o . r A c aa p a an S A G S A G S
a s &-6 & -7
o r M
rsl l l bt ni itl oe f l soneo l t d l hy oe s gb h n eeo 4o l s wod t wn 5 8 , A Sr 5G1_A5&02B5 i nr 5 n o 1 r6 m6 oa l 5 i z 0e f
A G 5 &-6 i n 5 n
o1 r
6 o a rl 5 i m
0z f
I I
I
j
4i
: :-
I
I 0.394 1
F
U
tm 8 N
2
ot
ICI
en p xs a pt cid 1 0 3 4 5 hm ii ci k n n ae
M S T G -PC
t ntrt
a e
t m i n dn n h mei ms .e du i e tm g m pi ce r t oa 1t ul ihr2 de m0 ea p°s r aF a d aS e l-l 6 dl6 egme da s t b tueh rUe s iC
N sl i s , tm i rm p e e f aqm uac s oit t ero ret si d a S G A B a -t e 1m -p 9Fa e r w3 a ta Ru4 7rr nt e m 6CR S STV A GEB T a t- S e m 3 -p 0Fe a r w7a t a u2r rr n te m
6E AU.
F s t a v t eoi w os t n cs aho e r ri r yl n hsec a i, d i F U C1i i l S t - go e 6t h nF6 ,n s ,ih a g es s p r f o ubv rti uadtm e has w s et siie r t r s hi i tm e Up s G ta - i 6 c n6 t(g b . ) . R E D OU MC IT IN O I N M U FM M TE E M TP E RA A T LU R E E X A M P L E : > 3 : 0 ; . ~ @ o.4; ~ Z <
“ “
o
V .
3 Z g W A a
6 \
c
-
S 0
F d
~
J ”
2
; * .
”
’
1
t ee
O R ms ip f ei F r U ag r tC uISn r - eo6 6G 5 stm
I t a sc i thtt er uf nie af ens r s l t i se oo p r a e o s l st i 1uon hpr 2 ae te s @d r i Ons m a a zl sli oomtt hwe umra a tm be en la l ei as 1 5 ,s p t r s a i ht .i o, e : 1 ~ 0 0 =00 / 1 5 , 0 .0 0 a f r n t r o e di d2 m uh c 0 t i T m i d n the ei m smip 5 eui er 30m ag t - us n 0r 2 e (
A
p j p el fio fc isa cib ii l he enn i cc ai tle sul
T
s 1t n 2t a
w aa o t f i o sl l l t ho j w J i nl t h oi m c h a kl t ni ic ee A.rsdeu si e 1x i eo e 1 ne t d t h oi m c h a kl t ni ic ee rs ~eu si D n1 d
3 ht v ii he y d cshr o t ss ht ae te i .sce al tl l sye d 4f gt e d: t e e msh ip n eli r t ag o-t. eFu no rhw e 2e a 5dea t r n 0 t aa r onf el h v td i e 6n eFgo h s h 5 t 2 h. m e e rcs hml a ha ono cli a.oc,y ad c lc i l ni k g e t lan f eol i n wacd o dn ns d ti ror enoe lq gslu ii sirn t eg m
P
M CARBON& LOWALLOYSTEEL*
Form
~ 2
a&: C“S ~z ‘u c1 e E z M .-G 3 m
Specification Nominal Composltlon Number Grade
APPLICATION
c
SA-283
c
Structural uality. For pressurevessel maybeusea withlimitationsseenote: 1
c
SA-285
c
Boilersfor stationaryserviceand other pressurevessels
C - Si
SA-515
55 *
C - Si
SA-515
60 *
Primarilyfor intermediateand high temperatureservice 99 ——
C - Si
SA-515
65
– “ –
C - Si
SA-515
70
– “ –
C - Si
SA-516
55 *
C - Si
SA-516
60 *
C - Mn - Si
SA-516
65 *
C - Mn - Si
SA-516
70 *
C - Mn - Si
SA-105
C - Si C - Mn C - Mn - Si C - Mn
SA-181
C - Mn
For moderateand lowertemperature service 99 —— 99 —— 99 —— For hightemperatureservice For generalservice
SA-53
I LF1 LF2 B
SA-106
B
For hightemperatureservice
B7 *
For hi temperatureservice Bolt2* in. dam. or less
SA-194
2H
For hightemperatureservicenut
SA-307
B*
Machinebolt for generaluse
SA-350
ICr-1/5Mo. SA-193
For low temperatureservice For generalservice
*Forlowtemperature operation seepage185
* Dataof the most frequen~yused materialsfrom ASMECodeSectionII and ~11”
PROPERTIES OF MATERIAL (cont.)
Form
Specification Number
w b e 2
Grade
P Number
Yield Tensile Point Strength 1,000 psi. 1,000 psi.
See Notes
SA-283
c
1
55.0
30.0
1
SA-285
c
1
55.0
30.0
2,6
SA-515
55
1
55.0
30.0
3
SA-515
60
1
60.0
32.0
3’
SA-515
65
1
65.0
35.0
3
SA-515
70
1
70.0
38.0
3
SA-516
55
1
55.0
30.0
3,8
SA-516
60
1
60.0
32.0
3,8
SA-516
65
1
65.0
35.0
3,8
SA-516
70
1
70.0
38.0
3,8
1
70.0
36.0
2,3
1
60.0
2,3
1
60.0 70.0
1
60.0
30.0 30.0 36.0 35.0
.a JZQHz
SA-I05
~ 2W E% 3A m
SA-53
I LF1 LF2 B
SA-106
B
1
60.0
35.0
SA-193
B7
–
125.0
105.0
SA-194
2H
55.0
–
—
SA-307
B
55.0
–
5
u z G :
SA-181 SA-350
— 2,3,4,7 3 DIAM> 2k’2in and<4 in
—
188 PROPERTIES OF MATERIAL (continued)
NOTES: 1.
SA-36and SA-283ABCDplatemaybe usedfor pressureparts inpressure vesselsprovidedall of the followingrequirementsare met: (1)
The vessels arenotusedto contain lethal substances, either liquid or gaseous;
(2)
Tmaterial isnotusedintheconstmctionofunfiredsteamboilers(see Code U-1 (g) ~;
(3)
Withtheexception of flanges, flatboltedcovers, andstiffeningrings on which strength welding is applies does not exceed 5/8 in.
2.
For service temperatures above 850° Fit is recommended that killed steels containing not less than O.IOOA residual silicon be used. Killed steels which have been deoxidized with large amounts of aluminum and rimmed steels may have creep and stress-rupture properties in the temperature range above 850° F, which are somewhat less than those on which the values in the table are based.
3.
Upon prolonged exposure to temperatures above 800°F, the carbide phase of carbon steel maybe converted to graphite.
4.
Only killed steel shall be used above 850° F.
5.
Not permitted above 450° F, allowable stress value 7000 psi.
6.
The material shall not be used in thicknesses above 2 in.
7.
For welded pipe maximum allowable stress values are 15Y0less. No increase in these stress values shall be allowed for the performance of radiography.
8.
The stress values to be used for temperatures below -20° F when steels are made to conform with supplement (5) SA-20 shall be those that are given in the column for -20 to 650° F.
I
MODULI OF ELASTICITY FOR FERROUS MATERIALS Material 70 C C H
as as a
w rt Cbe 0 i oe .2 w rt Cbe 0 i oe 2. 7-. si l t lg e oe T
v
ia t
hEl
Millionp f T es m p Foeoi r a t .u r e 200 300 400 500 600 700 800 900 1000 1100
n l 32t s920 h82 C <2.8 k 2.7 n l 2t 3 s92 I 8h20 >2. % I 2.78 3h -. 7 l y6 2 s 2 27 26
572. 32 852.
826. 626.7 725.
32.5 25. 02.4
742, 542, 542.
32.1 2.1 832.
7.0 5.0 3.2
x u P t hree eCe r s sanh nis ae anu l ftrr e ree tx n p t sd roe e e r d s n s c a l c ou l a nt i o l n s y .
1
8
PROPERTIES OF MATERIALS CARBON& LOWALLOY STEEL Maximum Allowable Stress Values in Tension 1000 psi.* Specification Number
For Metal Temperature Not Exceeding Deg. F.
G
:r
, a 5,
d~
:0 e
5
0o
0
0
o
900
950
-
-
-
-
-
-
-
c
13.8
SA-285
c
13.8 13.3 12.1 10.2
8.4
6.5
-
-
-
-
-
SA-515
55
13.8 13.3 12.1 10.2
8.4
6.5
4.5
2.5
-
-
-
SA-515
60
15.0 14.4 13.0 10.8
8.7
6.5
4.5
2.5
-
-
-
SA-515
65
16.3 15.5 13.9 11.4
9.0
6.5 4.5
2.5 -
-
-
SA-515
70
17.5 16.6 14.8 12.0
9.3
6.5
4.5
2.5
-
-
-
SA-516
55
13.8 13.3 12.1 10.2
8.4
6.5
4.5
2.5
-
-
-
SA-516
60
15.0 14.4 13.0 10.8
8.7
6.5
4.5
2.5
-
-
-
SA-516
65
16.3 15.5 13.9 11.4
9.0
6.5
4.5
2.5
-
“
-
SA-516
70
17.5 16.6 14.8 12.0
9.3
6.5
4.5
2.5
-
-
-
17.5 16.6 14.8 12.0
9.3
6.5
4.5
2.5
-
-
-
-
-
-
SA-105
-
-
-
SA-181
I
SA-350
LF1
15.0 14.4 13.0 10.8 8.7 6.5 4.5 2.5 1 41 3 7 . 0 5.0. 3.0 4 . . 1.5 0 15.0 1
SA-53
LF2 B
]7.5 lfj.b 14.&l12.(.) 7.8 5.() 3.0 15.0 14.4 13.0 10.8 8.7 6:5 -
!.$ -
SA-106
B
15.0 14.4 13.0 10.8 8.7 6.5 4.5
2.5 -
-
-
SA-193 B7~2%’‘ 25.0 25.0 23.6 21.0 17.0 12.5 8.5 4.5 -
-
-
SA-194
2H
-
-
SA-307
B
-
-
-
-
-
-
-
-
-
-
8
-
8
Seepage177forlowtemperatureope;ationo
* The StressValuesin this table may be interpolatedto determinevaluesfor intermediatetemperatures.
I
-
190
PROPERTIES OF MATERIALS STAINLESS STEEL P No.8 GroupNo.1.
-
TABLE 1 P
r
S o N dp G u
3
y
+@
~
q
~
“gg
y::
;’:
H::
;;:
. . C
z
Q * a g
SA-213 SA-312 SA.312
a SA-452 s
Pp.
:
SA-182 SA-182 SA-479
.
TABLE 2
a d
Product
<
~ ;
;?
~ ‘ 5 s z
& 33 =-~ “Z g“ “? ijg
~ z
Plate Smls. Tb. Smls. Pp. Bar
O*
:
~
~~
SA-240 SA-213 SA.312
304L TP304L TP304L
SA-479
304L
M
F b
A
gao u
Nr
G
XA
~
— — — 5
LI
=jS ~’g j’ ~ >*
aA 316-t
SA-240 SA-213 SA-213 SA-312
317 TP316 TP316H
SA.312
TL~?l~\
e
ot 6oa
2 23 e 2 3
4
2 — :
2 2 — —
2 — 235
. r
s
TABLE 4
Product
s g
eNcr
317 SA-312 TP316 SA-376 SA-376 TP316H SA-452 TP316H F316 SA-182 SA-182 r F316Hg 316 SA-479a
o
dt
A :
sNd pG u
l S
%: ;;: Smls. Pp. Smls. pp. Smls. Pp. Smls. Pp. Smls. Pp. Cast Pp. Forg.
g
Spec. No.
So
Plate
[
g
ree
P
. g
2 — 2 —
‘p304 2 TP304H — TP304Ht — F304 2 F304H — 304 235
W;:
Forg. Forg. Bar
SE
TP304H TP304 TP304H
. dt P .
.
2 3
m SA-213 l TP304s
Tb. Smls. Tb.
00
z
eN rc o t c ao
304
Plate
S
——
TAklLE3
;:::
Tb . . Smls. Pp.
SA-240 SA-213 SA-312
B
S
LM O SUW M A T V B RA L
G
Spec. No.
E 1E L
Nr
316L TP316L TP316L
aA 316L -
P US.
E S0 S
oa
— — —
54 r
7
d, 0
0
MATERIALS
1
2
3
1 1 1 1
18.8
18.8
A
T
71 51 61 41
18.4
E
. 61 . 41 . 51 . 21
18.1
. 61 . 21 . 41 . 11
18.0
8 . 51 8 . 21 7 . 41 3 . 01
16.7
17.0
16.3
16.1
15.9
15.7
71 . 51 . 41 8 . 31 7 . 2] 6 . 21 3 .2 1 3 . 11 6‘ . 61 1 . 1 7 5. 41 7 41. 0 . 31 6 . 31 8 . 31 41 . 21 . 11 7 . 01 1 . 01 7 . 0 9 7 . 0 9 9 . 9 L TESEO M TP E R AA RT UL R E S
1 81 1 61 1 61 RF I MA
1 1 1
4 M
81 81 61 61
1 1 1 1
N O 8 . 51 6 . 51 2 . 51 9 . 51 9 . 51 9 . 4 19 . 4 6 . 7 . 111.11 . 110.fj9 . 10.61 . 10.44 Io.z2 7 . . 15 ( 3 5 . 41 3 . 31 7 . 3] 4 . 3 30 . 3. . 1 . 0 3 . 01 8 . 0 9 7 . 0 9 9 . 8 15,6
1
6 . 11 3 . 1 1 . 1 0 . 3 8 . 2 15 . 4. . 2 . 0 .
9. 2. 8
TAyLE
1
1 1 1
3
51 11
1 1
5] 11
1 1 . 2 7 4 . 5 3 . . 4 5 . 3 I4 . 2 8 . 1 4 1 5 . . 17 4 . 5 3 . . 4 2 . 3 0 , 2 8 . 1 4 . 1 5 .
. 49 . 19
. 11 . 1 .
. . . 1 .
N T d w
h s
s c a
t
v
a a
F 1 S
q e
[ p
e p d I 1
e s c t t
w 6 c
T l
s s r m
v v c
y s
v m
a b o
s r
t
c m
0
t f
p
v
r o
a
h t
h
am
m b
s
g
s
r
o
t
o
191 -
THERMAL EXPANS1ON LinearThermalExpansionbetween70F andXndicatedTemperature,Inches/100Feet THE DATAOF THISTABLEARE TAKENFROMTH~:AM~KIcANsTANllAItll ~Ol)E: O T S T FOR PRESSUREH~lNC. I 1 N MATERIAL ~mp. g::;.;toy; 5 Cr Mo ;“:::;:C 120 17 Cr )gF Low-Chrome thru 9~ 18s!W8’\i 27 Cr -2.04 300 -2.24 -2.10 –3.63 -1.92 275 –2.11 –1.98 -3.41 -1.80 2s0 -1.98 -1.86 -3.19 -1.68 -1;85 -1.74 22s -2.96 -1.s7 -1.71 -1.62 -1.46 200 -2.73 17s -1.S8 - I.50 –1.3s -2.s0 -1.37 1so -1.45 -2.27 -1.24 12s -1.30 -1.23 –2.01 –1.11 -1;15 -1.08 -1 .7s -0.98 100 –f,oo -0.94 -1.s0 -0.8S 7s -0.84 -0.79 -1.24 -0.72 so –0.63 –0.98 –O.s7 –0.68 25 -0.46 -0.49 –0.72 –0.42 –0.27 -0.30 -0.46 -0.32 2: -0.13 –0.21 -0.12 so -0.14 0 0 o 0 0.22 0.34 1:: 0.23 0.20 0.40 0.42 0.62 0.36 125 0.53 0.61 0.S8 0.90 150 0.76 1.18 0.69 17s 0.80 0.94 1.46 0.86 0.99 200 1.13 1.7s 1.03 22s 1.21 1.33 1,21 1.40 2.03 2s0 1.s2 1.38 1.61 2.32 275 1,S6 1.71 2.61 300 1.82 1.74 1.90 2.90 32S 2.04 2.10 3.20 1.93 350 2.26 2.30 3.s0 2.11 2.48 37s 400 3.80 2.30 2.70 2.s0 2.72 4.10 2.50 42S 2.93 2.93 4.41 2.69 3.16 4s0 3.14 4.71 2.89 47s 3.39 3.3s 3.08 3.62 Sol Soo 3.28 3.58 5.31 3.86 S25 3.49 4.11 3.80 5.62 S50 4.02 3.69 4.3s 5.93 S7S 4.24 3.90 4.60 :.;; ::; 4.47 4.86 4.10 4.69 4.31 6:87 5.11 650 4.92 4.S2 7.18 5.37 675 4.73 5.14 7.s0 5.63 700 4.94 S.38 7.82 5.90 72S 5.62 8.15 S.16 6.16 7s0 5.86 8.47 5.38 6.43 775
8
82S 8S0 87s 900 92S 9s0 97s 1000 102s 10s0 107s 1100 112s 1150 117s 1200 122s 1250 1275 1300 132S 13so 137s 1400 142s 14so 147s 1s00
6.70
6.97 7.2S 7.53 7.81 8.08 8.3S 8.62 8.89 9.17 9.46 9.7s 10.04 10.31 10.s7 10.83 11.10 11.38 11.66 11.94 12.22 12.s0 12.78 13.06 13.34
25 Cr 20
0 0.32 0.S8 0.84 1.10 1.37 1.64 1.91 2.18 2.4S 2.72 2.99 3.26 3.s3 3.80 4.07 4.34 4.61 4.88 5.1s 5.42 S.69 5.96 6.23 6.S0 6.77 7.04 7.31 7.s0
0 6.10 8.80 0S.60 7.8S 6.34 6.S9 6.83 7.07 7.31 7.S6 7.81 8.06 8.30 8.ss 8.80 9.0s 9.28 9.S2 9.76 10.00 10.26 10.s3 10.79 11.06 11.30 11.ss 11.80 12.0s
9.13 9.46 9.79 10.12 10.46 10.80 11.14 11.48 11.82 12.16 12.50 12.84 13.18 13.S2 13.86 14.20 14.s4 14.88 1s.22 1S.S6 15.90 16.24 16.s8 16.92 17.30 17.69 18.08 18.47
S.82 6.0S 6.27 6.49 6.71 6.94 7.17 7.40 7.62 7.9s 8.18 8.31 8.S3 8.76 8.98 9.20 9.42 9.65 9.8& 10.11 10.33 10.s6 10.78 11.01
8.1S 8.4S 8.7s 9.0s 9,3s 9.6S 9.9s 10.2s 10.5s 10.8S 11.1S 11.4s 11.78 12.11 12.44 12.77 13.10 13.43 13.76 14.09 14.39 14.69 14.99 I S.29
&l ~:n~’cu –2.62 -2.50 -2.38 -2.26 –2.14 -2.02 -1.90 -1.79 -1.s9 –1.38 -1.18 -0.98 -0.77 –0.s7 –0.37 -0.20 0 0.28 0.s2 0.7s 0.99 1.22 1.46 1.71 1.96 2.21 2.44 2.68 2.91 3.25 3.52 3.79 4.06 4.33 4.61 4.90 5.18 5,46 S.7S 6.05 6.34 6.64 6.94 7.25 7.ss 7.8s 8.16 8.48 8.80 9.12 9.44 9.77 10.09 10.42 10.7s 11.09 11.43 11.77 12.11 12.47 12.81 13,15 13.s0 13.86 14.22 14.S8 14.94 1s.30 1s.66 16.02
3%Nickel Aluminum &q:on -2.25 -2.17 -2.07 -1.96 –1.86 –1.76 -1.62 -1.48 -1.33 -1.17 -1.01 -0.84 -0.67 -0.50 -0.32 -0,1s o 0.23 0.42 0.61 0.81 1.01 1.21 1.42 1.63 1.84 2.0s 2.26 2.47 2,69 2.91 3.13 3.3s 3.S8 3.81 4.04 4.27 4.50 4.74 4.98 S.22 5.46 S.70 S.94 6.18 6.43 6.68 6.93 7.18 7.43 7.68 7.93 8.17 8.41
-4.68 -4.46 -4.2I -3.97 -3.71 -3.44 -3.16 -2.88 –2.s7 –2.27 -1.97 –1.67 –1.32 –0.97 –0.63 -0.28 0 0.46 0.8S 1.23 1.62 2.00 2.41 2.83 3.24 3.67 4.09 4.S2 4.95 S.39 S.83 6.28 6.72 7.17 7.63 8.10 8.s6 9.03
0 0.21 0.38 0.52 0.73 0.90 1.08 1.27 1.4s 1.64 1.83 2.03 2.22 2.42 2.62 2.83 3.03 3.24 3.46 3.67 3.89 4.1I 4.34 4.57 4.80 5.03 S.26 5.s0 S.74 5.98 6.22 6.47 6.72 6.97 7.23 7.s0 7.76 8.02
-3.98 -3.74 -3..50 -3.26 “ -3.o2 -2.78 -2.S4 –2.31 –2.06 –1.81 -1.56 -1.32 -1.25 -0.77 -0.49 -0.22 0 0.36 0.66 0.96 1.26 1.S6 1.86 2.17 2.48 2.79 3.11 3.42 3.74 4.05 4.37 ;.:; S:33 S.65 5.98 6.31 6.64 6.96 7.29 7.62 7.95 8.28 8.62 8.96 9.30 9.64 9.99 10.33 10.6S 11.02 11.37 11.71 12.0s 12.40 12.76 13.11 13.47
192 DESCRIPTIONOF MATERIALS Whendescribingvarious vesselcomponents and parts on drawingsand in bill of materials,it is advisablethat a standard method be followed. For this purpose it is recommendedthe use of the widelyacceptedabbreviationsin the sequences exemplified below. For ordering material the requirements of manufacturers should be observed. PART
DESCRIPTION
MATERIAL SPECIFICATION
BAR
Bar2 x 1/4x 3’-6 Bar3/4 @x 2’- O Bar 1 @ x 3’- O
=
BOLT
3/4 @x 2-1/2 H. Hd.M.B. WI(1) sq. nut SA-193B7bolt 1 @x 5-1/2 stud w/ (2) h. nuts SA-1942Hnut
~
CAP
D
Screwed COUPLING
h
Welding ELBOW
6“- Std. 900 L. R. En. 4“- X Stg.450 S. R. En. 6“ x 4“ Std. L. R. Red. Eli
SA-234WPB
FLANGE
4“ - 300# RF. So. Fig. 6“- 150# RF. Wn.Fig. Std. Bore 6“ - 600# RTJ.Wn.Fig. X Stg. Bore 3“ - 150# FF. So. Fig. 8“ -150 # R.F. Bid.Fig.
SA-1811
1“ - 6000# 900 Scr’d.En. 1“ -3000 # 900 Scr’d.Street En. 2“ -3000 # S.w.Cplg. 1“ - 3000# Sq. Hd.Plug 2“ -6000 # Scr’d.Tee 2“ -3000 # 450 S. W.En.
SA-105
ASB.
9 9
B. g ,,
b ~
~’:kw:d
8“ Std. Cap $, 1“ – 6000# Cplg. 2“– 3000# Cplg. 1“ -6000 # HalfCplg. 1“ -6000 # 4-1/2 Lg.Cplg.
Q
Welding FORGED FITTING
30
GASKET
18-150 # 1/16” Serv. Sht. Gasket 18-300 # Spiral Wound ASB. Filled
HEAD
48 “ID x 0.375 min. 2:1 ellip. head 2“ S.F. 48” OD x 0.500” min. ASME F & D Head 2 S.F. L = 48” r = 3“ 54” ID x 0.375” min. Hemis. Head
9
SA-7
SA-105
SA-285 C SA-515-70 SA-516-70
1
I
DESCRIPTIONOF MATERIALS(cont.) L W
0
o eN l
n 1 d e i
g RF.3 8LWN n c g k
0
”
0
SA-1811
PIPE
6“ - Std. Pipex 2’-1 8“ -X Stg.Pipex 1’- 6-1/2 4“ - S. 160Pipex 2’ 4 24” - 0.438” WallPipex 1’-0
SA-53B
PLATE
FL96” X 3/8 X 12’ -6 ~ 24”OD X 1/2 X 18” ID ~ 18” OD X 1-1/2
SA-285C
Welding REDUCER
6“ x 4“ Std. Cone. Reducer 8’”x 6“ X Stg. Ecc. Reducer
SA-234 WPB
Welding RETURN
6“ - Std. 1800 L. R. Return 4“ - X Stg. 1800 S. R. Return
SA-234 WPB
Welding TEE
4“ - Std. Tee 6“ x 6“ x 4“ X Stg. Red. Tee
SA-234 WPB
—
—
I
EQUIVALENT
AND COMPARABLE G
U
.
F.
S
SA -204 B SA - 283A SA -283 C SA -284 B SA -284 B SA -285 C SA -299 SA -455 SA -440 &
-
rA
a.
Wn
( c
eR Fe
e e se
y
F o eS Ds oUp
r v t n.
m e i. J i) e a o t
St 38-3 Mb 13
= 12 K
— —
1.7335/13 CrMor
17 Mn 4 13 CrMor 4.4
K47 12X M
—
1.0050/St50-2
St 50
1.0425 / H 11
Mb 16 I Mb 19 Mb 16 Mb 19
Ct 5 Cn 3 ~.. 16 k 18 k 16 k 18 k Ct 5 Cn 3
Ss 50 — — — — SM53 C
1.6415/15MO3 =1.0035 I = St 33
TSE 24 a = E24–2 E -24-3
=1.0036 I Ust 37-2
= 1,0038/= Rst 37-2 1.0116/St 37-3 1.0345111
A 52 15 CD 2.05
r m a n p d t E . .( R)a
— CT O-2 CT 3 kn 2 BCt 3 cn 2 =181 cn
15 D 3 = A 33
A 37
MATERIALS OF FOREIGN COUNTRIES
1.0844/ 17 Mn 4
15Mo 3 = St 33 St 381[-2 St 38 b -2
— — — —
A
A 50-2 A -42
SA- 572-55 SA -51560
I SA -51570
I
SA -51660 SA -516-70 SA -572-55
–
I
A -42
1.0435/HIIi 1.0425 / H II 1.0435/ H 111 1.0050 /St 50-2
— A 50-2
St 50
I
I
SA -240-304
SA -240 -316~
— =22 CNDIT-1$
1.4301 / X 5 Cr Ni 189 =1.44041X 2 CRN]MO1810
X5 CrNi 189 08X 18 H 10 X8 CRN1T11810 03X17 H14M2
SA453 c 316L
r pn
a
n
195
S FOR THE DESIGN AND FABRICATION OF PRESSURE VESSELS N
O
T
E
S
P
r ve sue sa s sm u a sr n e ue efnha r c ld t ue sar vecdre s e[sv ort ppat eer n adawd ic ha tnh ri dc ia ra d ov a nvi t ade g e aeno cu hoss n si otn pr g nu re c vn et i e sdoT sns s spu e herc filei f isni c .ac t li p h r awo c h t h s bi c iaeete mscc w v o h oaih mce dc e ase e fp eot l tal byln l o e w e d .
p t
T p C
a t
s h t a a e np d rsa a e rfr e tde t trss e el n aelcly hte es cpr net a roebt e tm idA viM e t sC t he o d da e nrs d c t aer cli sdo b ny esi m tnd rg ue nc n ttc i hdo bn otv oC de Ts ro r he tgd d uo hl e ay et a n o hq ui dtr ooS pe eteh c i eef it ci d a t i n o s n .
A G
E
N
E
R
A . L
1
T S p eh c i t f ioi c wag .t t ei s po t ni u h or eh tca rr dh rahd acs e n weeot ir evnr q gude i hs r re f t d ae o f hsa b i ro nip grc rea vnet i es do ssn su er f le s .
2
I c
3
P r ve es s ssb duh s e r. esfae ial bg ls rin i necl s da e pts, ee t dci ,a t n c em c d ow p r t edd adi n l ea d ot t i Ae t Bsi S haot P niMr Velf en sE Cee s Ssruo e rsdV dce De It i el 1iv aI oi, s nI i s u b as t e d q d u ee nns t d a .
4
V S
e a sv aa H f
5
V m
M e a ns u f s aa ci et .un trl eqv rr s pi u tor a oe iel dt mtc e ao reeta n ec saor nt ni se ant rl u e i et c h o oono od a mts s i m chp fi sr e eae ac rts rtd ok s sn a eb l t oe o o
6
A d e w ra
7
V d D
o c
r
oa
n t fp ls u i . orc n htcea rsdfh , r a d ta s enpwee r iae ncro
s ae pe pn s ul . r sts e nce adh n olw c eatm s r ielp g A e e ( na O t l Sy c t Hd hA )t .
egtd kd Ss evp enh ceci fee i ci
ul olhltt ya O t c i ch o u enhp sa t
v f i l at t Sr ip oe. h c nl i o fst i pci a um t i oros hnc or, t h dd a r see as e h w rh h it , n aar g e ip otp t rt~ oue r v nc ha h la s ef er .
fe a bs ra si r c i eae .ot p lcol ur e , ore i csr prh f dtha u t sepfrae u rn r cl i,c h hssl ea h s c eh af a w p i p n ro g o sv a lr .
E
S
I
G
N
1
PressureVesselsshallbe designedto withstandthe loadingsexertedby internalor external . pressure,weightof the vessel,wind,earthquake,reactionof supports,impact,and temperature.
2
. pressure shall be limited by the shell or head, not by The maximumallowableworking minor parts.
3
Wind load and earthquake. All . vesselsshallbedesignedto be free-standing.To determine the magnitudeof wind pressure,the probabilityof earthquakesand seismiccoefficientsin variousareas of the United States StandardANSI/ASCE7-93 (MinimumDesign Loads in Buildingsand Other Structures)shall be applied. It is assumedthat wind and earthquakeloads d n s
hb d
4
H o P Z
5
T i
d np
oe
fsu e i l w gi
dno ot e e iae hdr
o s ic m ou l c t a t n eutoo vut hs r l ey , tl e hn or q w r a u h da i kiircge nhr ge e v, a e t r
e
r (
vi z e so nus tp s b.a p s le o a lrs dt sb edhd d e l aas ec iy csl gt to n mrl e de eodi L nht g i S ti cLr e H kas o s.r ,rPei zsr goVe n nseteo asTs l uS s r eaS e uwl d p s p d o n rl o t
e
f ol hv e ce vt r .i et euo 1 cf oh l e ee0 ns
isn n cns oaoef dlp r l e c esm ro an arstd e g r 0t th f .
ii nl tnhe i g o x6a n
osc
1
9
6
S p e c i ff i t c Da t i eaoo nFh s a 6 S t
t m
b i r noirgPce arn t Ve i dose (n scs ou sn r tf e ei nl u s
i r s e ks s ai s odreo . dst s lt s u ne ,aphs tp , eao ht r nt r t aewcs hmi emde e r lnx t a cd a axh l i l m s o uwvt e am raob m l el ae tusg e in esr iPart i s UCS a v loff the s e ASMEn
Code by 33-1/3 percent. 7. Vessel manufacturers shall submit designs for approval when does not eo d s n is o pg t e reon ce r qpi s h uft t l hi y i r ca eek dnt e s e s furnish a d
.
C F A B R I C A T l u. N 1 M s w
a t s e b r hs i p a ae lb. csp li u f r lia c e et h d ad hse nsey i er ig n i ad dot i itr co na d r h a Mw oai tns eg np r sh b i . s a ua l b oss fl t t i t l suh ptt oeee wod c i i ps ft r i her e r a i p top p tr u oer cv n h a a l s e rf .
2 T t h i o chp k u nl f e. s esas as h ht oe fseee bn dh1/l a r 4 almd - di li sn ni l mc e u h c t u e r pe l rr .’ dos a c i qe nu da glu in rrf i e ce as tc ibdoohs n u r ba df m sli 3 M a n u f a w a p pu r r o pe vo cpa ouel roi cnpr W h t da e ss fel en dhrb ip . aen ro g plf o lrr t p u r c a h pa s op ew rr ’oeo ps vl r aod a cl i qe un daf l gui nfr i ec a t i od n . A w
w e s l l b dh d i ba n lt o gml e n ls t h hea eial e p l r d o i c ne sg s .
oely t lei s dc ur e b dhm a
e
cr
P e r m ia nn e s bn t t a la sy lc lst k e n ri dh b nui agwp o sil sw t lr hea it po e topdu tr t p u r c W h au s hbe s ra .s eec st k d nbri ht n,si agcp o a hlms p sol ms aei t et i e oe w t h a a ih t tct era hc hy o e e d .
4 L o n g i s t u ide ci yn al. li o n m c d ro sis nc h an i sl e c il e sa rl pl l a hs s e , m ahr il esc b u hi l s e t b -hl a u o tapd c aol s l p t le te ne rdi hea n i ogn epr fs o a, ira sc i ardn gdn w p el C ai r cat u me f sers r e n.oe t si a las h b m hl e o ast lcc f la ol l pt l eee en d t r he i n e pf o t ir a ca i r idnr ng s s usna l u, a r tpy i ai pdo s nno awrg npdt s le d , a W t ch o ov ehc ei r cr unim fnsee r g eb n r te ie fa i l n paf oi ur ncm ai vany o tg i d a s s e b hg ara f o alm l ue lxu n ae pn dsm t irwh n e idet l dr oed i inr hpf n oo gr i p l a c e n . N l o n g ij t u os d i bi nhaoa nll aw lt oitl s dwt ol ew h e hand i co aon ar m o e r e t p w l p h a rv e coii n r pess po eeut e w cr a t i i l m oeh pn o sl s f i e b d l e s . T 1 5 S d t
m
6 B
i h
sk o i
oi c
f mi h
wi ue 4
sm lz .
e la rs e e tvl f rwti e fdn ni eg ng
t t s s eol h br h n d
kV ei vr r te s it s b. c hp.s a re la owl vasl s i i wdl k e se htd i h h i a rho aac ut lth v ae m t qet to u e u dr ath i s aol tim os deeu tep vehp ro.e Tr st mf ee si d nhe i i f c a sk ns ke ob sh1 is i a r nr l/ t c l he 4 . b i hp r aowt va lm s i i di l 1s d s ei a bg8 pl rs e ae
4k f as
rings
7 A n v he o 4 am 8
nsh /
n
S a p S d
i
i
oen e t tdi 2 m -hv u whim er0 s t .
el n o o fca olcnh
ha e
ii d er i aat m le s se thetnh e on r aaas co d l pvn sc el l ne aet ’ s i4er n sh -g ; m sk e h ith t e r 1aar t 8 Ol sw -v a i l .co ne p cco reD he n i i snw. nf ss og lr is c e e
sa
b dh c ese i
se
afs . aie a l g l
nl lob oe e w ed p aa r b rroe lnc ise o sn on u6g c rp r e e
h o . r b u w sr h e xsi 6 c gef e lhT ee n t d e u so ha m t 0n bb . on 8 i i p m r ef u ;f em r r ef d s .
aqee iu a eric d r wne ae dl h s cs e eo bh rhi lmo fua tr l tl
.
S a s d b dh w l ea te t l s l v d e le e she x w ds c se op helee c , pio fe irt ct dabnl el y s h l i opS poa t edbs s dd e h l l .i e s po s b p fh o oe tie atds vt l eate mlhes ea ds n m af fr i k in soet ea dlT l las t r i d do nhrh . s a bowh d ei eaepn it ng al s a ti rl l u c o n ct e r h n i in g s .
197 Specificationfor the Designand Fabricationof PressureVessels(continued) Whentemperature expansionwill c b s t c s 9 O c
ma t u 3o i h s c r neha/i t ead c nin s8 ghht t t s w a e ad sh e d bnll ee p iesa s, rl d bi h ua ne aW gst tl eeh v l de ei e h r.s u p b p c o o r snt eca d1 r d i e dt t y lnehc/ eo i rs cp rc o24 ilksh inw,a o ct n i t h dhe e c o ns h c a s r dbe hwet d e eat l t l esl d w lh eah ce edoi n tol w tie n lTeu ho ul o r p r os l s b ihp ao r na otw v al e1i i i dl ve e tdnh / pe hlco w un4 p ghl li gt a ee e a a t fl v a het nb h s et p s re ar tee e se el s s su t nr e e d . e
p eo n2 i i n a g c.s s mh s na efb hl 6 s l l a def0 o u p l i n g .
O
p
e2
F
l s a c nh o gt naS e f t sl oaA
F
lf
n i -i
nan 1l gc
sas / h bnr fhe2
sa a b n ah cf g o a eel
rl o s
lg s aa e nd l rg
el
nr lB d6mN .a 5 r o- Sd 1 ll s o
lw
0 rlf t oeg h0 eu e b de
9
eda
.
I7
31 .
es s :
Raised face. . . . . . . . b
re
Raised face. . . . . . . . r
a6
l tA
i p N0 sn
3Si g
i naI0 psbc ,z m h e an ee l
. . . . . r
a6
l tA
i p N0 sn
4Siig
i naI0 plbc ,z a h e nr e
Ring type joint. R
t
ji
F l a n g e s b hf t wh b r o p w ti
a6 l l t A o i
yo. . .n .i . pa n gr b t e a6 .ol tA
0 Nw n
vi
g
N0 ne
S 0
Sg
- b o sl t - sh ho tl e srt a pa rdl i dc hn ell cn eti o e pt r wal i ul ino v lss tw ee i h us dhha s d e s e roe f wl b o ie n tu re r wfl ee v r de ien n ce ste teI s r n n etha t u a mn i d rn e ei aod 1m di uo oi tm na ru/ aes c h a i w pc ik li lnh e te ls 1 eesi h nsn a/ t cs s
0I
b I
g
b .
eavl il en Oe sh sp s e en f ae l n i ho ds nct s eas thr elol dosr . pn g sea nle h i tdf qo8 ihn uoeru t o - as h nh 4 .
W w t
t ih nd ehi s a o i tm n nde e t oen e h zar et z wf l e ecn ne lh f dk e loi d nae c e f l i dd t ibi t 1/n fi i g nf o mgne 1 t or p c yo r s 6 ah m he d ra i r, las e m lb t h e f t r a a pa r e 1 : a r e t d 4i t o .
O
p
T f
es
p t
n b hri
en i ag nf sfn l o a r lcc oeeae dow n a fl
rec w do d rcl o, or
nso ld d i s et
u l fh r as e i nt poeef os e r bcd ht i asnr gac o a m hl dp so lms a ei tt te ui e oe hn o hho h t w e e i hilr c ea o li n rn dc e co ht e td s .
s
R e i n pf o s r cba ihp n rg da ow va l 1 si i d l t e e tnda /t ep hhlc pl l 4- eooht a 9 o t l o 0 n gf iha t ou v°d xi fen e a s l i s e s l f . T m i onh iu d mt i useao m tim r de e tie n ehpf ros r bc h4fi i aen ganp tc l o u d t i sao t m i o de p t e n ehn ri e n g fc ’e s k . W c h oa t vb e p e r r nrof ov s pi eeda oocne e cid t o nt r pg rdu s ir cn rh hg ea t m i a n uo f s a cnf t h uu r,t erar r ne l qgi h uasl a i hs s r k etet edn us th n ds hb e u f t s e t sv oe te i shd ns r ge le . M C
a c o
n os
tu
wbv hp a er
yaow r vd l s i ai d l v e e ti d
ph ml r bi ec n u aag l fd
sf es
t
hs
cad
se l al
dl h l s q e our sd a s
.
dr n at re a e feni onfe ds tce at mlt l aes t i or n
10. I
n t e T r ns r a bl h afs u. ary b n t l is sf lah r bee rad i ai c n a ys tbyntov ar el l s m a n u f a Tc t su r ure rr p. a api d oo n w yr nnb tg c o ob s lms det bar hif u n rar g n il a i n s b nt v a em l al ns de u fds a Tc et t yu r lf e ar r h.b sr i sa ch aue c t ya oob rm m l p s d he i t n a oc i i l n lus pt ds ai i,ln lns at g tr aiu ocp nt ia ol cn t s pki u i rs fndc ght a a p pa tr r o a vn nt s av m l i fe t a t bds a r l is c ae ot ol r . T s
e
s r b hda e a ysf ai ul s g n nl l oi e el fd o i o1 o p r o v m t aw es eo dwh i f 0ag f wt l t t ii g bn rh gaee ,vf a ae c t r o enn cro es l ,n lt r doai 2t roel d v a 5 eb d
A t
d
el
ohs t a mi
u t
1
0 d -i
l
at
1r
d a gt iedx h nen i f gmol t e u ec s m rt ni hoea n xa y oc fl s e fa- 1 m oi
peo o t tn /e
h0 gd - i e afa- 3 rm o6 i
neo
r t t n/e
c
8 r
c
h 1
h
l e
198 Specificationfor the Designand Fabricationof PressureVessels(continued) T t
m 1
i ih
I
n
ct
e as r pr nt
I
n
ft
le s ra b nhA n a g1 al N e 5s
C m
1
tnh h i i omc i kuen nm pt el e as rtsa en s w a fou lrr pnk s spi n oh bn lrd a tg o e n a/ c nh 4 . bias
elbpo sh
etin
aawn l n e lgd i a l g r e hd
t
ls l 0t S i l o- fpe yalI - b bfro pi pnc
. ra l et
e ar od
t
as r i t nb tfeo el nser a nb nhlfa gal a esw t slc e i anl s e res tdq b u ae ohr e ne a bc ah o s i lnq n ne ut a uca s k -rt d wt ee f l dls et adha n l v go oo eoes se
R t
e m
m a
io nv ta s eb brl h m en n h w a y se
a ia ls a s e l .
w c d lt c hi e b eo r i n ne sactm
R c
e o
m i o n v t as eb n r l h bne p a ar l ows l vc oi li rd at r el eotl d so F w i ohoa pn ec oen n t n p e sc utu eacv d tm ob i ror sp ne t b , ahp e r k oax e v ril d el de .
A p p u r 1t e nV a n e cp e. ssr . sow ev m il ai d s n l e w tdil a v a1 f l a v egb e rs oes ba he 2v dqt a ueew i cl , p i lpla L r r
h oh r v n
qcy eh os u ,onv r i t red o ae e a gtdd p dl e ah e t n dfr o
aa pd l d al n tes f bur hos h rd o agm p -t twl sve l l ed Wee shd v hs e ev re o leet r.is e i qn s u u f l i a a brt sir e oi f nc h ,au at ra oi nr n ls i snu sl rt p h ai Rp eldnoi ln rgf ot mi a bn u l at g i i s lsus pi y piz ono e sre udt l i an nt g i o n .
I n s us l u a r tp i s poi nbo h 1n r i atg l inl /s w e l tci e t s2 dthh h sti oahcn hk i n s ua ls a pt 1 i fn ao o n cio tce d - ns d l1 t /aa2 ect 2 r t tat hi a rnhl nog T gi te en t r s bi o hc o n na t i w np l u g oet ult sl hel y d a e o eh ra dt m li d ohb ea n ; te at lg ar b a l -l fi owni o lcy 1n e lh 2 c e-gle i tnT n dtb ce no hrh h ts o i. te n os e ua m l v e vr tse i b s hce qsa a ul we i 1/l lp i2p ls -e e qntdi wun huceaw htlr t eideh ed s et t t o u o tt h h s o i a eophd ep r e o ax 1i f me2 asd t -e nqlc iy eun n ca t h er re s 1 D I
F a o p
b
N
P
I
S
r t2i oc al a T E
C
T
tes i r on. a hnen c xate g On e . I
lsoc l i e n lhmed it i tid ct ta eb ta seeh gdb i
n
O. N
1 P u r r c e h ts a r es etr . ii rv h n egt ssv hp ae e ae ht st c o ds t i nufe ea rbl mr t iit yc na e a st t s v h u em r ahas tea es t tr we ieo arnl kl hmsa a i na sdc h cei r opw r td a i ne h s p e c i f i c a t i o n . 2 T v p
a
p
se r o
po h a r wo vb . teaon pl u r r cf hr hye ap k rs ee ys rae e ’n hst ar t i e von e al i e n s h r s e at el m o ali l n eu lhf ova ta c etr ue sr epe orn n f s ic b ai lf oiry t ot yr y i ov t i ss p i e hoc in f si ci a t if os n .
E
.
1, Radiographicexamination shall be performedwhen required by the ASMECode
or whendeterminedby the economicsof design. 2. The completedvesselshall be providedwith a nameplate securelyattachedto the vesselby welding. 3. If the vesselis post-weldheat-treated,no weldingis permittedafter stressrelieving, 4. Removableinternalsshallbe installedafter stressrelieving. 5. The location of all vesselcomponentsopenings,seams,internals,etc., of the vessel shall be indicated on the shop drawingsby the distance to a commonreference b i hp e r anm m a nl eao n tl tr sle yk h e h e d l nl e line. The referencel s 6 T hydrostatichtest pressure. s e b hm a ia nf t al aa i dln oete dq t pu i a er t n mr a t 7 V
h es
oi
nr s o p i ue a cg ct hi n o l nan t,
3e osmhn iy s ne a ut
ts
s n hsb p e a a luo. i sl sn n p lelt c t seie ef dito s co aa sl r l t y d e
ne e d
s0
.
r n
.
,
.
199 Specification
for the Design and Fabrication
F P R E P A R F A TS I HO . NI O P 1 A o
M
V
Pressure
E
RN
e(
cs o sn
tei
T
f f h i y t d rn t eo sv .a ter ase t l sbi s hdc sta ra c e , l il lt ehn eloa rei nod u t rt se g i mr l d eo se o a vrc os oae aed u s ,l i een s r , tt d
2 A f i sn lui w sr fh a .haenl cdp i er r p r eu v e n ts a t i v t e . 3 A s
f u
4 T
h
5 F s
i h
6 B
l si
ep
n i
p
a on
ase
dnb hpei . dln aug
gs l g
pt o e sa r u rn s.i ar tut l apss m e n t . s l
bun hc t
unae d g dsh .
orsc b ot b e h fc l etl set ai db hcn n gow ya de a
o a lp n ew g n a. eih l n nd pi g r s r cow o v c h i iosde pt t al bae l t ee e sl .
ro
nl u s e
el
bp b , holp
o.wats wa d al i stt
ebtv hptd er
l ls i t
ao rhb te les
c
de . err a tot
asv l
i d v dl a edeo m d u i a ro
ell e ru tepbd r r o i h oc f a
n
t
.
7 V e s s b hsc e l ai l ed. sel a nb r tpl i la ef tyii oen d t a r i ih n y dn g t nu e i eam er c o n s lp i o c ocu t o a vu t s e i soh ns e n le . 8 S w
t
9 V b
ef a sb sr s i t c eh a. ntl aa oe r c lp ekl r se l cs iaea l u r l t oyi b oa b n dls oai r t av c ae i f hsun r sgnan ni e se hcl mi e ldnas gt ts p ae r r rld ye i a vam le a
G F
p m w a a a h rt l b i.st l hr c ls i hspo bpe hb ooe ea oads b g l eaog m l ex ea d ner o i a r i ht nd t un hoe t m e ve r be d semh sr e f le .
R I
1 B c
EN P
O A
R. L T
et vf ieo r h s r f e . se ha e ei t oldpm m a s ny eu hfnrs a tc f t h uu rpe eraur nr oo r ep p r i o t dre ua cn s i s bep lra oe r t e a fn oc y l cr lh eo pwh oi f ner g t
b S
H G M S S t
d
c P
h
d P h
h
rh o o
t
tco
as
ot
r
at
ci. ci c o
lc i h s :
.
wh o ti o vn. wpgae i sd hsni m gs en“ neb es s oo t r a pe t
c n nk g ng o et
S
a M a n u f a dc t ru r eea r .’ ps
e R
b
uil o i dan
sl
t
”s
resh d hsai p on frr gw de t i s uh snsy rdug r rti o es n te a g
t co s oot ar pte i. c ic c o er hs d s hai t no fer gmw tp i de sr n aup tg our rs eit r ee a t am e n t t .
u o bn
bp
ia l n . a gm
.
t
f e
-
.
U A R A N T E. E a n u f ga cu t a u rrt ea rtn tvh e eef s hau s a l c s f ot ine e dlal l i sl t si t i o t nal s t h p e c i fa i ct a ti ii ohfn n f raf r di adet oe tuws soe r lm i k mga t a nm n n s a, h t i n pe r ha do edu nefl d v ed ute cf ylr y t oi o hop nerp eg trs aame ta t ni uro hf nafa ,c gt u rr m a n a e c a ekll ts e so r eaa etral i ypro en aps l , i an fc r e o msc er hn d t as e r g e e
200
V T p
d r
F
T
i m e h tn os il oei ntre a a t l n h-c ua e sno bi t l h nl n ees r e- osaw b i s t s o ae er wa c if t o di lb c eul e ola s wmy ae en du nf ar o c pyt usr r eved r se ss us re f e
A t
o
l
T
l
en r l a
o
ea l ri a n n u cc r elno h s t l eh i ees ne r d, swi
ics sa
ni tc oset s tsh a be hht bi dw a lne ia sp l etr
Q b & a : R : : : : ; e ’
c D
i
et
e
d
.
l a llh c ei ti d i mn c
ai
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ : ’ : : ts t t r a e nf l ceh . . re. ei. n o ce ne
d D e v c ii r ca u m t f i e r om e. nnte i a al l ys u at the joint of structure . . . . . . . t 1 D i bs te at t an w dc ecje w ea l~ cn1 i e @
~
d
.
.
. ,
*
~~
7
r
nop
a n ~ w a y e D i fs t t af r no f c a.oh elo a cm n e e c e n ot me r a lt ri n ne ew f l e a r if ey n n v se u s l p bs p uoe oo s tl r ag t t d o d, m c e n ot v e re wl shi ni si ec e h el f v , e applicable . . . . . . . . . . . . . . i 1
f
. .
l
D e v c ii r ca u m t f i e rome. nn te i a al l o t o s u uh o vtr f e. en. a. e .s trc . f g P r o j s e hc tdo i ior fns. t ; t e a rs o u s t u os vr i fte dt a fse c s e of manway . . . . . . . . . . . . . t
ys u r e 1s e nt a he 1/2
c o f l
h D e v f i ha o tr r i i voz. onoe n r t tm a li , c o t i n tp he o ni s a d i r ete di on n direction . . . . . . . . . . . . . . . ~ 1° i
e e Q
! -
! -
D e v o ib a h t ioi oa o . n l l enf t s direction . . . . . . . . . . . . . . . t 1 N o C z o zw u lp a hlen i t, ibn gr c o h e c o n t n p e i c pt e i d n g o . ! l T t - o l ef h rm a an scn oeeb wsh a ay r s a p p l i e d . N o C z o zw u lp a hlet bi , i n gr c h e c o n t n p e i c pt e i d n g o . D i fs t t af r no f c aoh elo a cm n e eg c e n ot o e rp lt eri nen ef li e nr i f eg n n v se u s l p bs p uoe oo s tl r ag t t d o d, ml c e n ot v e re wl shi ni s i ec e h el f v , e applicable . . . . . . . . . . . . . . f 1 f D e v c ii r ca u m t f i e r ome. nnte i a al l ys u r o t o s u uh o tvr f e.en. a. e .s ?rc 1s e e g P r o j s e hc tdo i ior fns. t ; t e a rs n t o u s t u os vr i fte dt a fse c s e a he of opening . . . . . . . . . . . . . . ~ 1/4
c o f l
201 VESSEL FABRICATION TOLERANCES (continued) N
o
(z c zo
nl
tei
ns
u, e
d
)
h D e v f i ha o tr r i i voz. onoe on r t tm a li , c t i n tp he o ni s a d i ete di on n direction. . . . . . . . . . . . . . . t 1/ i
D e v o ib a h t iio oa o . n l l direction. . . . . . . . . . . . . . . i
N l
enf 1
t
s
o Cz o z u lu p e f l sl i s ,n8 eg oesa v g de c e o en v t ret o l l c , . D i bs t e ac t en wn c ot e ee er l n i n openings . . . . . . . . . . . . . . . i 1
S
a
d
d
l
a n
n
re i e /
e
k D i cs et n a ot bne ocr . l et it nh e o reference line . . ., . . . . . . . . . ~ 1
l
ef s
k D i cs et n a ot bne ocr . l et it nh e o centerline of shell . . . . . . . . . . I 1
l
ef s
1 D i bs te ab t on w l ci . tbe e h e o na l e s s p o lb e ab t o w t l o tes e h oe olr n l eo s t two saddles. . . . . . . . . . . . . . k 1 m T r a nt so bv eip r sa. . .l e.l . . aks 1 t tf e / e p F e n L o n g i t t ou bd iip n a. .a l.l . l . ~ as1
t
tf e
&hell o. Deviation from verticality for vessels of up to 30 ft overall length . . . . . ~ 1/2 for vessels of over 30 ft overall length ~ 1/8 per 10 ft. max. 1-1/2 P Vessels for internal pressure. The . difference between the maximum and minimum inside diameters at any cross section shall not exceed one percent of the nominal diameter at the cross section . . . . . . . . . . . . . t 170 Deviation from nominal inside diameter as determined by strapping . . . . . ~ 1/32 @
@
O
o r
E
x
F O
r +
-
-
I t
-
pt o H
installation r
T ‘
o
o l
T
u u Cn re
p F dU n o eG t s f sd-
e rS s nC s a U u l ro e G e
r eC m U a
e o d G d s d-
a i ae u d
y vi
. ,
e 0
8 e d8 e
r . . .nee.t . c .f ttl 1i n yo p F
e8 e 1 n/
e
Tray Support r. Out of level in any direction . . . . . ~ 1/32 p F
e
202 V
E F A S B S R I C ET AO T L L I EO RN A N C E S ( c o n t i n u e d ) T
B s E
ru
+
v D w T
w / I *
i yr n
ut
e
d
)
D i bs te a t nd w tcj . e ae ec r en supports . . . . . . . . . . . . . . . t 1 t. * Distance to reference line . . . . . . ? 1 s. Distance to seal pan . . . . . . . . . f 1
w x
( p c aop n ot
s
v }
S
W
P
i f
n a t
ts d t o a w n ns cc u. oe. . pm . ~ epo1 r o a
e l
iw
o oisl n u d .r pt . .tr p ~yi 1oh ai
t
r
r nf
e
x. Out of level . . , . . . . . . , . . . ~ 1 Y. Height . . . . . . . . . . . . . . . . I 1/8 * z D i ts i t nao v n s w ce . i e. s. . d at so1 e e l f
203 A
S p e c iP ff i c a t i I oo n
r
SHOP WELDED TANKS S S
u
om M m R aae q r uj iyor Aeo mS fe rtnP t aI s nT I d Z E ea f d .r1 nFid
C
O
P
t t9 i,
ho
E
specification covers material, design, and construction requirements for vertical,cylindrical,aboveground, shopwelded, steel productiontanks in nominal capacitiesof 90 to 500 bbl. (in standard sizesup to maximumdiameterof 15 ft., 6 in.) for oil field service. M
A
B
R D
E
H
A
T
E
I
A
L
Plates shall conform to the following ASTM Standards A36, A283 C or D, and A285 C. MINIMUMPLATETHICKNESS Shell and deck: 3/16 in., Bottom: 1/4 in. Sump: 3/8 in, CONSTRUCTION The bottom of the tank shall be flat or conical; the latter may be skirted or unskirted. Fig. A, B, C. The deckshall be conical. The slope of the bottom and deck cone= 1:12 WELDING Bottom, shell and deck plate joints shallbe double-welded butt joints with complete penetration. Fig. D. The bottom and the deck shall be attached to the shell by double-weldedbutt joint or 3/16 in. fillet welds, both insideand outside.Fig. E through K. OPENINGS Tanks shall be furnished with 24 in. x 36 in. extended neck cleanout. APIStd. 12F Fig.3.4 TESTING Tanks in diameters up to and including 10 ft. shall be tested to 3 psi. air pressure; tanks in diameterslargerthan 10 ft. shallbe tested to 1-1/2psi.air pressure. PAINTING Onecoat primer. N C
o a
p
b JQ9
R
9 1 1 2 2 2 3 4 5 5 7 T o
l
m W i o n r aO k l u i aC ca i p t aD y c i , i a b b l bf i . 7 0 7 9- 6 0 7 0 9- 26 0 1 5 1 60 0 1 0 1 00 0 2 1 1 20 0 2 5 1 60 0 2 0 1 60 0 3 0 4 0 1 6 0 4 0 1 7 0 1 4 0 7 5 e r— a n c* ie
tn s g i d e t mHy e , et e i r ,g f t n. t . l - 1 1 21 9 8 1 9 102 6 10 0 11 4 12 6 22 6 6 2 2 0 9 5 1 6 5 2 6 6 2 1i n 3 An /
204
WELDEDSTEEL TANKSFOR OIL STORAGE API. S
t
a 6 n E d 5 iaE
r gd d0 1i h t
ti , 9 oh
n
8,
APPENDIX A — OPTIONAL DESIGN BASIS FOR SMALL TANKS (Summav of major requirements) SCOPE This appendix provides rules for relatively small capacity field-erectedtanks in which the stressedcomponents are limited to a maximum of 1Ainch nominal thickness, including any corrosion allowance stated by the purchaser. MATERIALS p The most commonly used plate materials o t A 2 C A 2 C A 3 A 516-55, A 516-60 The plate materials shall be limited to !4 inch thickness
b t
s
WELDED JOINTS The type of joints at various locations shall be: Vertical Joints in Shell Butt joints with complete penetration and complete fusion as attained by double welding or by other means which will obtain the same quality of joint. Horizontal Joints in Shell Complete penetration and complete fusion butt weld. Bottom Plates Single-weldedfull-fillet lap joint or single-weldedbutt joint with backing strip. Roof Plates Single-weldedfull-fillet lap joint. Roof plates shall be welded to the top angle of the tank with continuous fillet weld on the top side only. Shell to Bottom Plate Joint Continuous fillet weld laid on each side of the shell plate. The sizeof each weld shall be the thickness of the thinner plate. The bottom plates shall project at least 1inch width beyond the outside edge of the weld attaching the bottom to shell plate. INSPECTION Butt Welds Inspection for quality of welds shall be made by the radiographic method. By agreement between purchaser and manufacturer, the spot radiography may be deleted. Fillet Welds Inspection of fillet welds shall be made by visual inspection. +
205
,..
W
S
T
S
API. Standard 650, Eighth Edition, 1988
TESTING
Bottom Welds 1, Air pressure or vacuum shall be appliedusing soapsuds,linseed oil, or other suitablematerialfor detectionof leaks,or 2. After attachment of at least the lowest shell course water shall be pumped. underneaththe bottomanda headof6 inchesof liquidshall be maintainedinsidea temporarydam. Tank Shell 1. The tank shall be filled with water, or 2. Painting all joints on the inside with highly penetrating oil, and examining outside for leakage 3, Applying vacuum
APPENDICES
OF API STANDARD 650
Appendix A — Optional Design Basis for Small Tanks Appendix B — Foundations Appendix C — Floating Roofs Appendix E — Seismic Design of Storage Tanks Appendix F — Design for Small Internal Pressure Appendix H — Internal Floating Roofs Appendix J — Shop-Assembled Storage Tanks Appendix K — Example of the application of variable design point procedure to Determine Shell-Plate Thicknesses Appendix M — Tanks Operating at Elevated Temperatures Appendix N — Use of Unidentified Materials Appendix O — Under-Bottom Connections
WELDED STEEL TANKS, API. Std. 650 — APPENDIx A FORMULAS G = specific
NOTATION =
H t
minimum required plate thickness, in. R = radius of curvature of roof, ft. 6 = angle of cone elements with the horizontal, deg.
D = ft. = joint efficiency, 0.85 when spot radiographed 0.70 when not radiographed
E
= =
(2.6) (D) (H– 1) (G ) + C.A. (E) (21,000) but in no case less than the following: Plate Mean diameter of thickness,in. tank, ft Smallerthan 50. .., ., . . . . . . . . . . . . % t =
@ ~.-l S
H
50 to 120, excl.. . . . . . . ... ., ... , ., 120 to 200, incl.. . . . . . . . . . . . . . . . .. . . . ., Over 200L . . . . . . . . . . . . . . . . .. . . . . . L
E
=
~ ;
*0 but0not less ~ than i n 3~6in,
4
~m:umt . ,,*in Maximum@ = 37 deg. 9:12 slope Minimum6 = 9 deg. 28 min. 2:12 slope
* SELF-SUPPORTING CONEROOF
r= R/200 but not less than ~lG in. Maximum t= 1Ain, ~, R= radius of curvature of roof, in feet. D SELF-SUPPORTING Minimum R = 0.8D (unless otherwise specifiedby the D
A
O
MN
E
M
R
D
1
T
o t t a hni sro g c a i n p c t h cl r eo s s hu- s , ae c t osi r ot ne sa el a r p ow l aia do tti os eh 1f t t si a t inn t chhm ei e m e af s s t u r mr h er , odeoe p m i mo so a or m t t et a n nsh ob g htm lio aen e pi l ,m F
S e l f - So u p p o r t i rFn gS e l f - So u p p o r t i r n C R oo o n fD sea oU: m Rm b n r o e e ol
~2
T T
R
BOTTOM
N3,000 P
IO All
n
q fl eu e h ah e s ce ek f 6n i t i tt t ena u l me :
b op o 1 ei
DR 1,500
d G
t sl
t ha h oa m t aam ie n l s v io t lmm ehui s / n s f 4 .
m in
207
WELDEDSTEEL TANKSFOR OIL STORAGE APL Standard 650, Eighth Edition, 1988 APPENDIX J – SHOP-ASSEMBLED STORAGE TANKS (Summary of major requirements) SCOPE This appendix provides design and fabrication specifications for vertical storage tanks of such size as to permit complete shop assembly and delivery to the installation site in one piece. Storage tanks designed on this basis are not to exceed 20 feet in diameter within the scope of API Standard 650. MATERIALS The most commonly used plate materials of those permitted by this standard: A 36, A 283 C, A 285 C, A 516-55, A 516-60 WELDED JOINTS As described in Appendix A (see preceding page) with the following modifications: Lap-welded joints in bottoms are not permissible All shell joints shall be full penetration butt-welded without the use of backup bars. Top angles shall not be required for flanged roof tanks. Joints in bottom plates shall be full penetration butt welded. Flat bottoms shall be attached to the shell by continuous fillet weld laid on each side of the shell plate. BOTTOM DESIGN All bottom plate shall have a minimum thickness of ?4 inch. Bottoms may be flat or flat-flanged. Flat bottoms shall project at least 1 inch beyond the outside diameter of the weld attaching the bottom to shell. SHELL DESIGN Shell plate thickness shall be designed with the formula: (for notations see Appendix A on preceding page) (2.6) (D) (H– 1) (G) + ~ ~ t = (E) (21,000) “ “ ,but in no case shall the nominal thickness less than: N
o T m D i ia na N am no Ple m tT klieh irn ac a k lt n e e s n) c h e s ) ( f e e ( ti up to 10.5, incl. . . . . . . . . . . . . . . . . . 3/16 Over 10.5.... . . . . . . . . . . . . . . . . . . . . ‘/4
ROOF DESIGN Roofs shall be self supporting cone or dome and umbrella roofs. See Appendix A for design formulas. TESTING Apply 2 to 3 pounds per square inch internal air pressure.
I
s
208 S
u
om M m R ae q r u j iy or eo m fe rn t s
P P
W
C
I T
I PC O I ND G E S p e r tt a i n i n g o IP C ALK EA N LEL LS NOS PW RA B E D LS ES U
A H
a SO
C
D
O
EP I
E
F
O
B
3N 1
.
1S-
1
R
M
U
n P t r e e r s n s a u l r PD. +
=
A
f
9I 9
●
/ . W+2
2
.
L
R
A
E
S
e
~
+
S
E
+@-
T m e
C p h r o e ms i ci d rr n i se bi eqe m su u i m r e - -2y(r. – A) f te d enm oas httf i ae bgsr r i irn ace la, st i , o n , 2 –SA r te ac iet n i s os pp nn e at, co t ,i wod nn e - A) + df – r2y(f” d
E
(
t
F M a At oe A 5r Ba Si A a 1 lT rB s n M 0 p la d a i hn s ents t aysr e st,i txicd e tnc Fm M g e s T , pee mo pt tne E r a ax t ucrD r leoFe es de a l i b h m 1 i 0 Tt 0 a se . hs yd1 s.ey– 3. t t s6. e m e 27 s 5 7 00 o 0 8 5 0 m n l i b pm o i l t a e t d n y t 1 41 .13 4 l u i t n a n sl ph eee cl i rseifs i i sm c a y il el t y e d n x R t e e sr na au t r e P 1 a 0 r 0 s. 1. . E 1 d e t w e rt mh iaai ns c i t % tn irlgmef nqef uetsl i nsr ei p r o cu i dRt uUt sr i 2G e arn s3 o-eaS d2 eV s n n8c . I D i 1o vt A i Bs aiS oPh o r iV n Me Cl nes fs e esE bs ouh r s f o l l o w e d . U
B
3S 1
.
2A -
1
I9S 6n P8 t r e e r s n s a u l r P -
=
t s m g c g
e
t
C c oto d v e fd esa h bir e rg s i n ec , a - D e 4e s , , i ni s t ao l t l ane ot ips on, n ti , i p( n di 1g3S on 5 6f 6g t ,e y f fs g t s ue aao n m usages t e rc u al sr h a s s l O S, 0 p F , s0 a n u fg a l c ti uaqpr eue d et s fr io Fe,l Med ua Am t eoA 5r Ba Si A a 1 lT rB s n ( - aL m a iP a x tiG t bu us )rop e hFr vspM T eeee meo p r tNe rE a axt urcDr leoeF se o m bl u sli t i i mqpb ule i e et frt – oi t, el 1 ed u 2 m 03 4 0 o 400 1 . ( i Lt ga P a p s G hoh mes a) o nsiu2e se 0 x ,1 . r 19- S0 . 8 0 16.80
,
M 0 de 00 0
tures of these gases.
A C
H
B 3N 1 . 3 S - 1 9 I 9 E P M A IL C A L NN
3 T 1, 7,
D
r=
- P(l - r)]
t =
+
S)
A
a
l
l
300.1.2 or 300.1.3. Only Category D and
M fluid
–
2 2
to 100
2 For determining
p r o c D i1 v
02
e i
A
3 . 20
F
4 0 0 50 020. 010.0
thickness and stiffening requirements the d UG-28, u r 29eands V
s
i
o
n
00 8.00
I
Summary of hiajor Requirements of COD ES PIPING (continuation from facing page) NOTATION
A=
NOTES
an additional thickness,in inchesto compcn sate for materialremovedin threading,grooving etc., and to provide for mechanical strength,corrosionand erosion, For cast iron pipe the following valuesof A shallapply:
Centrifugallycast . . . . . . . . . . 0.14in. Statically cast . . . . . , . . . . . . 0.18 in.
c=
the sum in inches of the mechanicaldlowancesithreador groove depth)plus corrosion anderosionallowance, :
d = inside diameter of the pipe in corrodedcondition, inches )&D.
=
~
outsidediametcfof pipe, inches
= efficiency factor of weldedjoint in pipe(see applicablecode)For seamlesspipe E = 1.0
~ = for cast iron pipe casting quality shallbe usedin placeof E
P=
factor F
internal designpressure,or maximum allowable workingpressure,psig
S = maximum allowable stressin materiistdue to internal pressureat the design temperature, psig. t = thicknessof pipe requiredfor pressure,inches tm = minimum thicknessof pipe in inchesrequired fer pressureand to compensatefor materitil removedfor threading,grooving,etc., Jnd tu providefor mechanicalstrength,corrosionist~d erosion.
V&Y =
coefficientsas tabulatedbelow
Values of y & Y
900‘
1. The minimum thicknessfw the pipe sclcctcd. cunsidcring manufacturer’s minus tolerance,shallnot be lessthan t,n, The minus tolerance fur seamlesssteel pipe is 12.5% of the nurninal pipe witl! thickness. 2. Wheresteelpipe is threadedand used for steam service at pressureabove 250 psi, or for water serviceabove 100 psi with watel temperatureabove 220 F the pipe shall be seamless llaving the minimum ultimate tensile strcngth of 4tt,0(XI psi and weight at least equrd to Sch 80 of ANSI B36.JO, (Code ANS1 B31.1, Paris. 104.1.2 Cl) 3. Piping systemsinstalledin open easements, which are accesible to the generalpublic o: to individualsother ‘than the owner of the piping system or his employee or agent, shall be designed in accordancewith USAS B31.8. (Code USAS B31.02, Para.
201.1)
4. When not specifically required by SI gas using processor equipment, the maximum working pressurefor piping systemsinstalled in buildingsintended for human useand occupancy shall not exceediO psig. (Code USAS B31.2, Para201.2.1) 5. Every pi~ing systcm,regardlessof anticipatcd smviccconditionsshalllurvc a designpressureof at least }0 psig between the temperaturesof minus 20 F and 250 F, (Ct,idcUSAS B31.2, Para.201.2. 2,b.)
I I so ‘wd
6. Where the minimum wall thicknessis in excessof 0.10 of the nominal dia9s0 1000 toso I boo above meter, the piping system shall meet 0.7 0.7 0,7 0.7 0.4 0.5 I:rrrilic Steels the rcquirem$nts of USAS B31.3. 0.4 0.4 0.4 0.4 0.5 Austsnitic Stmek 0.7 (Code USAS B31,2, Para.203) h Note: For intermediatetemperatures thevaluesmaybeintcr- 7. pip witht equaltoor,greaterthanIY6, or pcdated.Fornonferrous materialsandcastiron,y equals PISE greaterthan0.385, requiresspecial 0.4. consideration, trskinginto accountdesign and materialfactors such as theory of I For pipe with a f)o/ftn ratio lessthari 6, Ihe valueof y fur ferritic andaustcnilicsteelsdesignedfor temperatures failure, fatigue, and thermal stresrses. of ~900F d bCkrWdlti[] be tukcli iSS: (Code B31.3, Para.304.1.2,b.) Temperature
1:
and below
J’
“*
8. pi~ ~nds s]M]I meet the flattening limitations of Ihe applicableCode.
210 S
u
om M m R ae q r u j iy or eo m fe rn t s
P
I
PC
I
O N
DG
E
f
S
pertainingto PIPEW C A
T
A H
L
CA LK
A N LEL LS NOS PW RA
F O C D O EP E . 4 S- 1 9 I 9 2 Pressure R U O I L ED U Internal M
& SO B 3N 1 I P EQ T
TRANSPORTATION
I
PIPING SYSTEM
B E D LS E S R
M
U
U
L
R A
S
t“ =t+A
T C ph r o e msi c id r r nsi bi e e m s eu . m ~ h e r q u i rf e t m d e en m o t sahs t i e gr r i n ea t,l 2s s , ,w c o n s t a r us c s it ein osmn pa,b e l c yt i~, on n , d t . l a are b le t eo p s tit r aip n lns i p pgio n r qtf gi e nu g a i pt pd a l li- lc s oa vbw a c c w o r C d P ai o n , ac n dte p i s i r os al c ue o r cu oc um ni d edh n l ss ea t , e , 402.3.1 a, b, c, or d. For pipe n ag at ns u oag r ll t iai uln ql e riau , aiq dl u s s ,e At e A 5r SBia aA 1 lT s n f p e i t g r a o le la pie eudnq t sm r u o l, i dem dua m B, S G 25,200 psi. at –20 F to p r bo ed p ut r ocwl dt efu s ecea e ncra s i ’ s f ie 5 0 t t if anae arg s npt mr u,o skcr a e , a st =sl 2p i Fnrs dge sw e st shu ai iri c ekg nl p lr e a f sin nt teta rest i r i ae,mos i ,n n s a ,nl s , d c ( nh 1s o e t,e s e 2e o d t e a l rh i e vpce eeno irr i v y in nd t g s . A B 3N 1 . 5 S - 1 9 I 9 I 2 n P t r e e r s n s a u l r c R E F R I G E PR A TI I OPN I N tm =t+c G ThisCodeprescribes materiats, design, fabrication, assembly,erec-
t
i
o
n
; = z~)
S= a
r
a
g
r
a
p
-
,w
h
, p=
p
‘r t = 2(s +
e
h
s
.
-
m t
e
r
a ax l i l s m o i twum a rm b el de t ir n i p ut rae a e r l s n e
advised that
p t o p o
p m ai A t e A rp5 SB i a a el T i it r p eh sj i up er eni s c digti ci nt vr i oe n s A. 1 B S s 1 0p5 a 1, F s 0 6 T C s hn oa h t i p ad p sl oe l l w y t 4 : F 0 o 0 ( a s e l f -oa cun os n tysan i sutn) ye t bd i e jt =merp t src d e t sw o e st shu ai iri c ekg h e c ( n h 1S o e t,e se n at t i h o n e a l rl y E x P t r e e r s n s a u l r e ( w p a b t e ) r ( p d i e f pces xii gt n noe ) ger nd Ta rp l r d e h ste h s si ut cs irkeb nehg e c ci onw re C dd ai on r n ee xs 1c sp (e ou Ie rr d 1eei sg n at & g 0r d d e5l i t e3 ei s) ar s m s i z e f . P 5 a0 4r . 1a . .3 .
s
0
ln 2e
s cn
A B 3N 1 . 8 S - 1 9 I 9 2 G T R A N AS MA I S S I SO N D D I S T R IP B U I ST I PYO NSI TN E G M S T C c h oto d i v efd esa hs bir e rg sI i nn ecP t, ar e -e r s n s a u l r e t i ni s t iao nl l s anpt t ei e oca, nst , i t o i n n, g , d s t s aa s ohf o p pe eea t m rc e a yt ta sin o i f n 2n t xd F x- E x T, where t e o gn t ra a n as acmd i ie s ss ifnt os r n i b ud t s y i i s n t cgo e pl m iu pdngs e ia, l n i gSn =aes sp , em c i s i y nf s i i t e mr d eeu n s d i . c o m sp rt eag s tm s i eo oar t na e s r , i n pn s g t e A pr5 SBi ra el T r e g s u t l gaa mtt i a a nos gani e s nr ,n vs sF i , p c dm e a i oA l u ti t o n ou t e cht u ssl tp h oe em t e a r fA’e1 s B S = 3n ds 0 6 p50 , m s ae s st M e ei m e n b wcrl s l y t i u. Cd = t neo dho w m - t i h a in ic a k nl ln e c i t s o tc s h oeah g c sp nt tei ei ro aof rs n (a neg s 1Se2o 3 4 5te e e s e q u o it pc m pl e t nho f t i s y ef p e apd e e b n oc f a fo tp r o ref g ai d be o r r idp c ma t e e r d f p ar f i i oat gnt p si m nt eng o ads r , a d g s e l i n e s .
211 S
u
om M m R aae q r u j iy or eo m fe rn t s
P I PC I O N DG E C o n t i fn u f a tr api o nc o a i N
O
T
A
T
I
O
f
S nm g
g
e
N
m e c h ci i ol l r ~i rc ao l s, i n o rst i o rl l s u iw a o n nc e s o a l l uio w fn a nc m c he f o, ee t h ra eg a r da o r in o n vg i T en=d T g e m spD- e er Fa r t aua r t ec i nt q uu Ci n P r o 4d e da e d e 0rr f , S aP t . o ie ep r l e 4 c o . r a r r o2e s q i uo, in r T ee s md p e r a t u r e u C n P o d 4 a 0d e 2 r e .r 4a , D. .1e F , ag h r r F e nTae h sec i t a i n i cw ntr h e ai a c sdk l e n e n2 sl F os l . s 0 0 r s 5 e1 i u a p rs o m t eee c a t f ids v sue 3 r F e . 0 0 0 9 u C n P o 4d a d0 e r 2 e r a. , 1 3. F. . 5 0 0 9 f i n p t r oe te sr s ns= ua r hr l u e ,4 F e m 0 0 0 . 8 e Fn s o a l l o i w i a n c cfe s h t ha gr red n oae odp v dt Ne h , i on t eft ri p e on l a:ot t ee m a n u f amc t ut ir e or sn ’ l u e m sr e v - d a i l a ut ee s a p nc o lcra re eo u s r,in os n o d s a l li o w oa n c ne .Y= c o e ff fm i ac it eoe n r t i an c e a t e d : f e x pt or e etr s n s aru l rh e d , i s i i no uc co r h r moe sn si Fo fd n u n co o n t mf ie r l rr eo a u a e r a lo nl os p w i a on dl c ne s ut, e f r se s i r aat r a l ie s t eu, ni cl m a n u f amc t ut ir e or sn ’ l u e t sr es - nyt = 0i e t e i l.c s a n c e . I D i r { o a4 ) u n / - f g t s 6n = i nd i s ao i pm de i t e e p r e f , i n c h e s Y ‘ d +dD o u) d . t i sao pm i& =de i t e e p r f e d f u~, tc o e t r i i al r l e s i n c h e s F b r m i ao t u e t r l ir ae s l L o n g- ij t u f do i an= ia lc n t y ot= 0.0 r o b ft aC i r t no e ao dd b em l , e 8 4 F 1 s .e p1a o m2 i l . ep sr se , N 0 O T E S E= 1 . V oa D l Fe u Fas e ci s gt 1 If osn e r ol p e t c m tai ni u o.f nhapnc t u rf e m t i o l sn e b r thu a i naas c eknl F c o n s i d Te rma t ti ioo nh l. n e r u a f s e s a opm t i l 1i ee os 2pr se .e l t n o w mth h i ia Tnc tk a enl lhe os ls e m r b au an w a s c s l e hpe y s e ee
A= s
c
d f
D h
fication is not available.
2 Pipe b
s e m h tn
f eal d . a
t l hset
e l n el
n d t pee r r spe n s i a s slgu rl n i e i m , oi t t gaa tp i p Co l hn i s oc a bdf P &Pi = i as describedat the formulas, 3 C l a s s oi L f i oc ac tI ai Cot. n i o on and i a p p c l ip oc a bds ln Be 1e i P , 8 . a . 4 f 1rc8 .loa a30a , 1.s u
s tt=a d i t“=n f s l t T
tml = m i m
sf ,s e sa t c f r o i r b mhe s ud ld ae t sesa a, cb rf pi a rb e esst dco r i i sb s n c h e s t o cy o n sp t r ue c t i s o nf . o w mt hi ais n c ak l nl t 4e L ils i s ms oi Pt- a D t i V e o . nas p l i uf g r ye q u i if r p e n m er ng o t esC B s . oPr - 8 t 3d4 i8 1 r e. 1a1 , 4. a a ul l o b nwrn a n c e eu5dsL o , N e o t W tamT hi sai nCc . tka ln l o e s t t e nh o w s mha i sa n n B a e. l T l 8 a l34 8 1 b . 1l 1 4 , e1 . h i l c kii C n s e ost s e d d e n , o s ar rhm e g u l alne t aiexo ns t s - ra d l ae 4 a 0 i 4 b n. 1l c . he1 T , ef e f A rm Ne aro Sit tdci maao nnn da i r n e i t q mh u i u i c mr k Cen fde Ps o rs P e od swi st p pue i ir r e ne ht n h e hef rer i, i ns a ct r i les fqw y nu i smin gri o tes p - s u bi T l hoAi sm f de pe n r osu e t is ss g S unr noro Mec e ic d Eh e an ntg i i yc n f e lf el r
213
R
T U
NH Y D R OE SP T RR A TE I SC
S
U
R
E
F l a t t- w daa l t l t ne d muh ke c he s a dn i eis ac oda vrl a l n syt a g aeh o u u s af lsrp eeo h y d r po sr t eoa ts iTns c q u lu r oa ehm y n a t .r t i eete qfry uri e ia cf rlt otae n diga u l nr a h it fg c h hy l ie vaon dre o r t sin sc s ra c l e aa h lp H as m oc w fsi e ote e m y v t .e ea t r pi , mp h el s t o r i e c t tao n i ga p unr l neaf fbr ek e r o ac ts b a les heu f as eab er aii cst f a gr t i yno onh u t i l o i s z a p t i ao n c e f . M U f F
A
XS
I
MI
U
MZ
E
n s t ti f m f a e b n n ne l d a kat c a e p a ce i t ty . l at oart u gn o s ek rrh rsis t a
3or s c h fgy a eet at o,d
uw r a t snn t ni i0 f .f1ke. cdtn i s n u gh4 s
vafe i eed s cf ay o rbso nel s oea
ms
ior
cn
R O A S T I I D O E F S I a s a i e l dqt l r u e efo al o hsn s l e gB ,=i @tn e ;d hw eV f h=e v : e o c f lr P r e rf e aLr a tosb l in1ei Bog Sd :e h .ser o : ( r: i )tB5 e;. d r 6 e6 D T
E
f L =t
S o w
V
I
G
um t
r oh mt uf ol lea phl s o a aw bni gen oa g m r e sa s xa e li e l m d do euwnf m al eb c l t t dh # e te nt hro i, ot cseh iek d. ns e e- pse l s a t ef . ao ~ a l
un
e d
s
0.2$6 0.031 0.00046
Ratio,~ or? Constant,/3 Constant,a
1.5 0.26 0.043
h E
u e 7
.
N
Ratio,~ or; 0.25 (lmstant,~ - 0.024 Constant,cr 0.00027
W
s
LO
1.0 0.16 0.022
eo t
i
L =ga l
PD
IL E N
/
f
3
0.333 0.041 0.00083 2.0 0.34 0.060
0.4 0.056 0.0016 2.5 0.38 0.070
h eo nt t n I f =gka m A D G
T G
F
EE
t a
3.0 0.43 0.078 n hdx
0.5 0.080 0.0035 3.5 0.47 0.086
0.667 0.116 0.0083 4.0 0.49 0.091
ii f bskm te u sa t mun w pc e pe eo
S
Somepreferable welded joints of plate edges:
LL T s t i f w e a l m B I B L I O O d t me V o j 1t A a 3
K
m hf eb na i t n eatgt sta tc hwy eaehe d abi in nt o t leeh rk o mec li ot rnt et yn i t n d b pi n nli a g ano o cds u y eit e s dd i ed er . G R A P H Y h e sa ot ei hf i gt rof fr ndeo lsrp l h eao e dw p i en ne r g s : Ss z at a Dk. r e, f e oln Re.s e: c c ts t i a do n ng u l af r
u
214 RECTANGUI.AR TANKS UNDER HYDROSTATIC PRESSURE WITH TOP-EDGE STIFFENING NOTATION = factordependingon ratioof lengthand heightof tank,H/L (SeeTable) 2 = modulusof elasticity,psi.;30,000,000forcarbonsteel G = spectlcgravityof liquid H= I = 1 = L = R =
height of tank, in
maximumdistancebetweensupports,inches length of tank, riches
reactionwithsubscriptsindicatingthe location,lb./in. s = stressvalueof plate,psi.as tabulatedin Code,TablesUCS-23
t t. t~ t*
= required plate thickness, inches = = thicknessof bottom, inches =
w = load perunit of length lb./in. Y = deflection of plate, inches REQUIRED PLATE THICKNESS ‘=’-
/
B
,.Dl_
T h i t c m k bn u e as asf s , t l e y os b op ti i l et aosn um tti r i ef r fa s u p p o r t e d .
‘
T h i cf s k bn hi e n s cas i r, el a sl c o r s r e o r s vi vi ec e . M a dx e i f om l pe uc l m t i a o nt =
H
6
]
S
~
T
I
a 0 F
G. FF E
0H
NR I
3
N AG
L M
R, = 0.3w 0.036 Gl% Rz = 0.7W 2 Minimumrequiredmomentof inertia for top-edgestiffening: w=
~
w
H I =
W2Eta
-
~
B O P T LT S H U P P EBO BR
W
4
I 1
M T DA
“ = * a sx pi o m sa uuc fp m i ap n o g r t i h i ov cb k oe n t e n st s o m
M g I
OA TN E E
B 1
‘
1
G.
”
4
’
~
.
215 R E C T A N G U L TA R A E X A M P L E
D
E D S
IA
G
TN
N S
K
S
A
C C T P
a op t a t c 6ia gth ny a= 8 0c kl ff e al p: p o r 0uo txn i o nw t G a e= 1 nt t e : r ; s o a c i hu b e dt- s f he ta ae pd fe e d nocs h ai pg k~ a n r e p f r eo rpo sro er i td i d o n e s f : L = 4.31 x 1.5 = 6.47 ft. = 78 inches H = 4 x . . = 2 6 f 3 = . 3 6 i 1 8nt 7 c 7 h W o it t d 4 athf = .h5 n i f e3nt k c 1 h s = 1 3u 7S s 2 5 C im 0 a n ,8t eg r A i 5 a l C o r a r l ol so 1 w i 6 ioa n c /e : n 1 .
m a0 t . e l. y r c=ee4 i d tf . .
e e
y . :
3t
4 s 2 s
HIL = 34178 = 0.43; /3 = 0.063 R
E
Q PU
t=
I LT R H E A I DC
K T
N
E
S
10.063 X134x 10.036 x 1
78
S
= 0.18 in
+0.0625 corr. allow = 1/4in.
S
T
I
0.036
w.
F
FF E
NR I
1 X 342 =
X
2
N AG
M
E
= 0.3 x 20.808 = 6.24 lb/in Ri = 0.6 X 20.808 = 14.57 lb/in 2
R
20.808 lbiin
6.24 X 784
~min= 192 x 3Q000,000 x 0.l~T5
= 0.214 in4
1-3/4 x 1-3/4 x 3/16 (.18 in4)satisfactoryfor stiffeningat the top of the tank B
O P T L W T i n u o bm
OSA H UM PT P EBOE BR TN E E =eb4 1 =ea2 if r mn f cs
DA h ;
e
M Y 6 s
S
lb = L
2
5
4
k 0 4
i “=
1
O u t sp t i l h h inOa c r ka.g tc n 1ae e le s8ac su 7btl s p f as uc p i po n o gr t sr :
IB=
1=4x0 .187’m
“
n’
6
’
am5o t ae sv dx h
ei
m,
216 RECTANGULAR
TANKS
WITH VERTICAL STIFFENINGS N
O
T
= F
P
A
T
I
O
ad
e c p o et
N gheight,lf/1 t n i g on
nn o d lr i r aena
t
f h
d
(SeeTableon page 213)
E=
m
o o ed l ua ps l t ui
c ss i
t
y f i,
.
If = heightof tank inches I = momentof inertia,inq
?=
= specificgravityof liquid the maximumdistancebetweens[iffcnings i a n on the longeror shortersideof [hc t
L = l
eo t n i a g n nt c h kh fe, vt or ap epl l s a u s s t e e i f e pq ut lhi i r ica ek n dnt e=c sa e sh 9 . 9
s = r
s
=
t
“
;
’
~
l
”
nc s , pc,
h k e
,s
.
. e t t lh s iu ica aka n nt l e c s e sh -
:
:
S
S
l
l
!
!
!
!
A
1 L
R
E
Q PU
I LT R H E AI DC
K T
t
L
O l
A
b D
~
0
E
=
/S .
N
’
,i
0
3
r
n 6 =G0.3W =H R,
2
2
Rz = 007W
—... S
T
I
F
FF E
R
e
NR I qs
N AG
i
E
ue mi c ro t oe dvi d ue o s rl nt tui
rn
if s fc e a nf l i
0 . 0 6 4 2GH31 . 0 . 0 3 6
z= M
M
s ei
m q m u ou oi mmr
Iti~ =
‘1 ‘4 192 E t.
ee d
n
t
f
n
g
217 R E C T A N T G U LA A R N W
V
IE E
D
E D S
IA
G
K
S
R S TTT II FC F H AE NL I N G S X
A
TN
M
P
L
E
S
A
E = 30,000,000 psi Content:Water n G=l
L = 78 i H= 34 in B = 52 i
n
s = 13570psi
HI! = :
1 = 26 in
R
E
Q PU
t=
I LT R H E A I DC
T
I
F
z
FF E
=
N
E
S
S
0.22 X 34 X 0.036 X 1 = o ~15 in . 1 3 7 5
26 X
+0.0625 corr. a
S
K T
= 1.31: /3= 0.22
NR I
= l 3/16 i l
N AG
M
o
0
w
E
0.0642 X 0,036 X 1 X 343 x 26 13750
=
0,172 in3
2 x 2 x 3/16 (.19 in3)satisfactoryfor verticalstiffening 0.036x
w= I
1X342 2
=
6.24 X
X
=2081b,in . 784 X
~1 = 0.3 x 20.8 = 6.24
=
n
218 RECTANGULAR TANKS Under Hydrostatic Pressure WITH HORIZONTAL STIFFENINGS NOTATION E = G= H= I = L = P = R = s =
modulusof elasticity,psi.; 30,000,000tor carbon steel SpeCifiC gravityof liquid
heightof tank,in momentof inertia,in.4 l
eo t
an n
kg ,
it n
ch h
ef s
pressureof liquid,psi. r
e
wa
sc u t i b i s noc td rnt i i kcp hatx tsl it h bn i g . o
/ ne i , n
.
stressvalueof plate,psi. requiredplatethickness,inches
t = t. =
L
S P A O C I N G F S T I F F E N I N G SHI = 0.6H
T
H
I
L
C
K
}
Ob
N
E
S
. A /
1 =
S
i
H2 = 0.4H
0.036 GH
0.3
s—
w = 0.036 GH2 Dn .2
R1 = 0.06 w Rz = 0.3 W Rz = 0.64 w
M f t O I S T
N I
F
E F R F E N
r
m
o i
s 11=
RI L4 1R E ta
9 2 T O I F A I N G M i nr ei qm m u u o i om i rm en e de n r t t f i n t e ro m s et di i f a frt e n i n g
Rz 1 =—
L’ 192 E to
2
219
R W
T
I
E
H
S
N
E DESIGN DATA Designed Capacity= 1,000gallon = 134cu. ft. (approx.) Content: water s = 13750psi., using SA285 C material Corrosion allowance = 1/16in. The side ofacube-shaped tank forthe designed capacity: 3~~= 5.12 ft. Preferred proportion of sides: width = 0.667 x 5.12 = 3.41 ft; a p 4 ip rn oc x h . e 2 s L = 1.500 X 5.12 = 7.68 ft; approx. 92 inches H= 5.12 ft; approx. 60 inches
For h
6
i
i
s.
n
,
r
SPACING OF STIFFENINGS: H =36 i
H1 = 0
Hzn = 60.4H = 24 in. .
.
REQUIRED PLATE THICKNESS: t = 0.3 x 60
0.036 X 1 X 60 = o.2X ~ . 13,750
+ 0.0625 corr. allow = 5/16 in. LOADS: w=
0.036 X 1 X 602 = ~ .~ ~b,k 2
RI = 0.06 w = 3
l
.b
/ Rz8 =i 0.3 wn = 9
19.44 lb/in l
MINIMUM MOMENT OF INERTIA FOR STIFFENINGS: 11 = 12 =
1
3 X 9 .: x 30,000,000 9 x 0.25
8 2
9
= 0.4690 in4 2
19.44 x 924 192 X 30,000,000 X 0.25 = 0“967 ‘4
4
220 T F
R
IS
UOP
-E P
O D
R E C TO A N T G U LR AA R N U Hn y d d r Po ser t ea r ts i sc
R
T K
S
u
r
e
T a t v u o o h h is esto i df a f t e snve i ofn ilyg h s t d,a ma er b es n sug pa fk pe m e c o n o bms t i rc a tl ol y i d sy e . N O T A T I O N S a f A= R e qc us r ie rc ao et o id s or n s a e l t r s i o i qd n e , . . , . a = h o r ip z iio n t t a c l n h e pr tii i t c ca n l h , . b = v G s p g e rc o lia f vi = i i qc t u y i *f d P= p r oe l s i sl qu ru e i b d f , . ?‘ 4 . + + s s vt or ar em l a s= tp uoes r e si af dl4 i , = r e qp ut lhi i r cai e k dnt e s en s* , . vt o r ap em ll a sP pt ua es r et i fas e l , i ; = s R
E Q U I R E D P L A T when E a- b T H I C K N E S S L T R S
O O R
I
A O
D E
D L
X
G=
A
1
0.7
A
M .hl
=
P t
t= ,
L
%
E
l
.
n = 60 in 0 . hl n 0 . hz = 120 in
S = 20,000 psi. 0J , S = 2 Sp= 20,000 psi t =
P
P=ab 0.036 Gh
S A D
E D S IA G TN A e n f g wt hi t 2=fd 3h t 0 .e th 5i f =g ,
a = 6 i b = 6 i
V
N D
E Q CU I R R E O D S E C T A I O NR A L E O T R I O F E
E
t = 0.7~
x
s0
0
60
0
i 0
x. 1 x 0120
15’
.
3
6
20,000
= 0.625 = 5/8 in. plate P =a A = 1
b
0
. =0 6 03 x 66 0Gx *0h . 02 3 61 x 1 25l 0 = ,
5= 0
20,000
, s . 5i = 175Z r
q2 7 n o
8
PI = ab0.036Gh1 = 60x60x0.036x60= 7,776 lb. Al = 7,776 = om389Sq.in. = 3/4 # rods 20,000
.d .
5
b5 $ s
2
.
os
l I. —
C Vesselsor parts of vesselssubject to thinningby corrosion,erosionor mechanical abrasion shall have provisionmade for the desired life of the vesselby suitable increase in the thickness of the material over that determined by the design formulas,or by using some other suitablemethod for protection(code LJC-25bi). The tie does not prescribethe magnitudeof corrosionallowanceexceptfor vessels with a requiredminimumthicknessof less than 0.25in. that are to be used in steam, water or compressedair seMce, shallbe providedwith corrosionallowanceof not less than one-sixthof the required minimumthickness.The sum of the requiredminimum thicknessand corrosionallowanceneed not exceed1/4in. This requirementdoes not apply to vessel parts designed with no x-ray examinationor seamlessvessel parts designedwith0.85joint efficienq. (Code UCS-25). Forothervesselswhenthe rateof corrosionis predictable,thedesiredlifeof thevessel will determinethe corrosionallowanceand if the effectof the corrosionis indeterminate, thejudgmentof the designer.A corrosionrateof 5 roilsperyear(1/16in. = 12 years) is usually satisfactoryfor vessels and piping. The desired life time of a vessel is an economicalquestion. Majorvesselsare usually designedfor longer (15-20 years) operating life time, while minor vessels for shorter time (8-10 years). The corrosionallowanceneed not be the samethicknessfor all parts of the vessel if differentrates of attack are expectedfor the variousparts (Code UG-25c). Thereare severaldifferentmethodsfor measuringcorrosion.The simplestwayis the use of teltaleholes (Code UG-25 e) or corrosiongauges. Vesselssubjectto corrosionshall be suppliedwith drain-opening(Code UG-25 f). All pressurevessels subject to iintemal corrosion,erosion, or mechanicalabrasion shall be providedwith inspectionopening(CodeUG-46). To eliminatecorrosion,corrosionresistantmaterialsare usedas liningonly,or forthe entire thicknessof the vessel wall. The rules of liningare outlinedin the Codein Part UCL,ApendixF and Par. UG-26. The vessel can be protected against mechanicalabrasion by plate pads which are welded or fastenedby other meansto the exposedarea of the vessel. In vesselswherecorrosionoccurs, all gaps and narrowpockets shall be avoided by joining parts to the vessel wall with continuousweld. Internalheads may be subjectto corrosion,erosionor abrasionon both sides.
222 SELECTION OF CORROSION RESISTANT MATERIALS
T
t
a i bnh f uo
ro l mt aaef t or i lo pnlh
oi a w a in gt ne
tg e e
am s
ps n t
a
a
Footnotes have been generously used to explain and further clarify information contained in this table. It is most important that these notes be carefully read when using the table. In rating materials, the letter “A” has been used to indicate materials which are generally recognized as satisfactory for use under the conditions given. The letter “F” signifies materials which are somewhat less desirable but which may be used where a low rate of corrosion is permissible or where cost considerations justify the use of a less resistant material. Materials rated under the letter “C” may be satisfactory under certain conditions. Caution should be exercised in the use of materials in this classification unless specific information is available on the corroding medium and previous experience justifies their use for the service intended. The letter “X” has been used to indicate materials generally recognized as not acceptable for the service. Information on metals has been obtained from the International Nickel Company, the Dow Chemical Company, the Crane Company, the Haynes-Stellite Company, “Corrosion Resistance of Metals and Alloys” by McKay & Worthington, “Metals and Alloys Data Book” by Samuel L. White, “Chemical and Metallurgical Engineering” and “The Chemical Engineers’ Handbook,” Third Edition by McGraw-Hill. a
H
o
sw
ge
vo ar es uar m c , cd er s ees f s u l el
a a per
and
a
a
e
l
e c con nt dry ui c c t dai vl i t y
— )
.
c
223 by any
i c
h
e sm
i t c to a6a170F l lbut, bs y being l a plastic, e it is not recommended unless confined
* Sources of D
A -a A
r tm
E S-
s at &
C r -: o n J -
a
D-
g P .
U”
—
224
C
R
O M
A n Good; F G F d et o pi c oe n n d di = C a u a Du n t u i table o no s: o t ec = N r e c o mo m e n d et d . x i r t e fh ao o od a ut ti n t n o e gt n e x s t d . Resistance Ratings:
C w
C
h
e
m
i~ z w 5 c &
v : o c a& l : ~“ ~ ~ m E w ~ ~ 2 ‘ s
4
a c c ec ............................. r t i iu d c c dc , F ec P ..................................................... u r e x .c F c V ........................ a p ........... o .......... r x s c F c 1 l b @ / 4 s5C )q O.... *......... Fi .x n.0 .- . .x . .x . 4 ac n h ey d ..r............ t i d ........ ei . . c.c . F. . F A a c e t o................ n e . ............ . . ............. . . .A. A A A a c e t y .......................................... l e n e . . . . .A. x A 4 1 uc mh ........................ il no ur... xmi c d c e x .... ....................
x 4 1 u n .............................................. l s . . . . . . . .x .
4 i
t l I I
........................... F .................... c .............................. F .............. ............... A ... ....... ............. – .................................... h ..................................... ......................................................... c .............................. c
2.
~
2 ;:
:
z
2
z
$
3~
$
3
$
F F
A A
c F
c A
c A
c A
c c
F
c
c
c
- c
c F c
c
-
c
c
-
A A A A A A
A A -
A A A
F A A
A A A A
c c
c c
c c
c F
x A
c A
F
c
-
c
A
A c c A
c A
A A c A
c A :
A A c :
~
;
A A
A A A A A
.F F A c c
F
F
A
F
x x c c x x x A A
A c
x x A c
e 1n 2 ez n ........................... zc o nl . .c . A. , . A. . A. A A A e p n e z t e ir nont l ea heA , p uAe m A h A r t A h, A s I ul al ........................ i f cq a .... uAtk - eo F Fr x a o.............................................. c r i i d xc A . A c c A .......................................... x
c
c
-
c
x
c F A A A A
f
—
A
A
A
c
A
-
A A c ;
A A c A
A A A A & A A
:
:
A :
A c A A A A
A A c A A A A
A A – A A A
A A A A F A dA A A
A
A
A
A
A
A
A
A A A A A A c A A
A A
A A A
c
c
c
x
c
A A A
14.
Hasleiloy
18.
Sqo
x
x
Z
A2
A
70”.
a
A
x
A A -
5.
h
A A A A A A A
A
12S0 maximum.
122”.
:
A A c A c A A , A A A A A x A
A a A -
All Perrentj; TO
;
: i : & g g
A
A x A A xy A –
;
; ;
F
x x c c x A -
*
g
F
x x c c x –
+
3E “ $
gn d ~ ............................ sa r r i y sFa A . A , A . A ............................ ........... ........... F x x A x m mc oh ......................... nl i o u r F m i x d x eA x hydroxide ................. ...... A
+
v
b : G
~
immonium
7
~
B
-
C
R (
R
*
text
a S
er
f
e
O G
C HS E M O E OI CP APPEL O S A S I ai s iR s a t taS ni ac nf ea g ap s mc:
o e
n t
G TN E E e n gs g
) e
t —
48~0 —
—
U n s a t fi s f a c t o or y R c
200”F. 26. UPto 176”F. 27. 10~0
r
t
e o m p t e1o r e a s
;
— I
aC 5t o m u rri 8 re e s
r
o 9
226
C
R
O M A
w
i r
C
h
e
u 2 0 i zc aG l w G ~ ~ ~ ~ : m m E c ~ E z & 2 6 3
m
Butane......._..............-....---.--+---.o-.., A A B a u l bc ut to a nhy...o... A ol . lA .l . C a c l h c............ l ~o............ ur F imF d ~ a h y l p oc ................ c hm l oC mr c i = a a r pb c oh................ l i e i. A cdnc F ......... ............... .. ...... c ...... ... .. c
A A
h
% +
N
c oo
n to t o i epn
x x A
x x A
ppu s eo
A ercents;709. l T f
<
z
:
z
$
$
2
u
A A c c A
x A c A
i , A c Ao
: A c A
t c c ,c
i c F A
: c c c
; 2 A A c x A ,A
F
A
A
c
A
c
A
A A A
d sa
A c x
x x c
F
A A
A A
A A
A
A
x c
F
x x A
x x A
i
tn g e
x c A
x c
A A
A
x
x c
x c
A A
A A
A A
x
A A
A
c c
x x
x c
A A A A A A A A x x x c c x ,A A A tA c c F F A A A A A A
A A x A c c A
A A A A x I A ,A A A A A A A
A
A
A
A
x c A
A A A
A
A
A c A A A , A c F c A – A
A A
A
A
A
A A
A
A A A x x
A A A x x
A A A x x
A A A A F
A A A A A
x x x A
x
x x x A
F x c A
A
x A
e
DO
l o
1>.
H b 9
;
A A A A A A x x x x F c i.A . c A c x F A A A A A x A A A A A A , A A , c. . lx . c , x% ,x c. x x c
x x A
s
g
A A
c
g = :
$
A -
c
:
* K ~ .g g ;
: m g
A ., . A . . A . A F ex F tF e x c F o ,A llc A x
$ b o $
s
G
A A
* ( ~
~ t ‘ p
~
j
& d
x x A
E s
1 ~
c F F .o... ............... : r~ ........ n eAy , A A A . ........ ........... .... ..................... x x c F Z h a r ............... oc ................ m i i c cdx x .A ~ i t .-..-r._.-....-i----x c A A A acid..-..--.~.. Z t h e ... r ....... s . ......................... . . . . . . c. . A A A Z t ghl y c oy l - . .l. . . . .e. . . . .n. A . . . .e-A . . - . .A. . , A ‘erric chloride . ...................... .... x x x x ‘ se u................ r l r ............... f i a x ctx xe A f o r m a _ l - d e. ....... . .h . y F .d. eA - A . — ‘ oa .. .................. r c m ........... i i . x dc A A . : dr ........e .. ........o... ............. r n A ,A Ay A ‘ u ................................. r f u r .. ......a A lA c ;asoline, sour----------------------------c x x A R e .................... f i .... ...... n .. ....eA A d A A ; l yg c l ............ e y r c....i.. .... e nA r,A oA lA H y d r oa c ( hS cl Oo ”r xiFi c.c . dc. - c . $ y d r oa f cl cu ( o o r ixi6 c xl dx5 dF > 6 5 x % x x c Z
F G
c = C et o pi c ooe n nd i d a - du t e fh a o o od a ut ti nt n oe gt n e x s x G t N d r .e c o mo m e n d et d
i
f
.
—
1
A r
6o
o n
.
t m o
C
R (SEE
R
e
C s
O G
H E MO I O C PA PLP O S SA iR s a t atS ni ac nf ae g ap s mc:
A s b e s t— o Woven C o m p . R u b b e Rubber B o n d e 1U I
— u n ~ >
s
I T N G E E a i e n gs g
isce
l
e
l
, r d -
~
2 ~ z QJ .-
n
$
3
2
z :
r
PI PI F
DI C c
P
F A A
c c A A
: x 1 : A : A
x
:
A A A
c c c c $
c c c c $
c c c c :
k A A
c A c
c c A A c c
E
?
t
>
A A A -
A A A —
A A A — -
t A — . -
z A -
z
E x x x A iee tex
t
1
f
x F
1
p r
O
oh
: oa .
: A A A A A x x x x A F F x c c F t h n ge e t
es
f
e
alloyJ
— – — a
.
:
) e
o
a
-
-
-
C C w
R
O M
R e s iR s a a Du n t u i t o ano s: b o l t ec ce C x E N r i r t e fh a o o od a ut ti nt n o e gt n e x s t d
C
h
e
m
w z ~ i zg c a ml m ~ .z ~ ~ C m E c ~ E z 2 G 5 i
7 E 5 g Q 8
n ot t o i epn
ppu s eo
d sa
Pre$ence oj water
H h f
i tn g e IO.
A
A c A –
A A
A A
A A A –
A c A –
c
G 4;
A A A A A A ,c A A A A . A A A F
c A A A A A A A A A A A ,c A , A A – – A A A An A Am A A , A .A , c A
A
c A c
– A c
c A c
e
A
c F c 4 F c c F F A A A A A A A A
A. A,, A,, c
temperature.
I SVO
,
$
c A c c c c A A c c A A A c A A A A A A A A x A x A x ,A A lA , A c
A
g
$
c A c A c A A A A – A c c x A A
A c c 2c
:
; ; ;
z
A
: g
s
c 2c
; g
z
A
m
p L o >
g
-
c .c c A c A A A A A A x x x ,A F
+
g u b y
;
;
f
8.
~
‘
y dp e r or x i do e . . g- . . . .e. c. . .n- .c. . . .F. . . , c c c y c s i u ;d l: ( gf .......ei2A ndrx 0ex –, ) x y A x A x c x ----------------------------------------------L a (c s q o u................... l ev er c n s ct sc )A c A L aa ....................... cc t ............. i i x d c A A. – c F L u b r o i rc ai e ............. t i f l nA ig A s n A A e , Ad A M a g c n he .................... sl i o u Fr m Fi Fd x e F F x k f a gh n y e d .... s .......... r i ou A m x c i cd - e x M a g s n eu................ s l i ..... uf c maA –t - e A c x x A x x tiercury......-.......................-..-......., ~ a g t..........au..................... r s a A .l c c . A c x { a i c t c ................ rr i ....... iu . xd c xd x, xe x A D i ...................................... l u t e x dx x x x A C o n c e........................... n t r a t xe dx x x x A x c A 3 a 1 ................................... c e i i ... cd c A A . c c ) ax ..................................... ac l i i c d c A A. x ? a a l .............. m c i ............... t i i c cdc A2a. c CZ1A ? e t Or ( o S 1O l Oe ° luFA-mcc sr uc d A:e . c. A ‘ h o as p............ hc .............. o r e ic c c d C c . C x ‘ o t h a y s d ................. s r i o u cx m xi xd xe x x ‘ o t s a us......................... s l i f u c am A t e A A A P r ................ o p.............. a ........ n A eA A A A A S e( ............................ w g a a g.. c se x ; ) : : A ; a ( o s s c oad r d bh oAi an F ua , t me ) . . c S ob i sd u l ................... if a tu e .x .m .F . .F . A F c S oc hd ....l....... i o... ....... ur ... Fi m Fd F e A c c s oc dy . _ ai _ n .u....... . . iA m._xd . x_e . x _x. . x _ s o h yd d ...................... ir o u x A m i c d Fe F c x c x $ oh y pd o c i h.....l .......... ou r ix tm ec . .F . x c oo
*
g; T e ~ j
H H
N
at : Aa t= n( i c lenF n gO F s oa – du et o pi c ooe n nd i .e c o mo m e n d et d
c A c
c
– A c
A A
A A A A A A A , A – i c C – A A
A
A A – A A A
A A A A A A A
c
A
A
A c
; F
x A
A4 – A A A
-
C
R ( R
e
O G
C H S E MOE I O C PA EPLP O S s iR s a t atS ni ac nf ea g ap s
SA I T N G E E mc: a i e n gs g
) e
– —
8070.
3 R c
?3.
g a s e s 3 . t e or n tp 1eo r Ca Sto m~ rir 8 re o ” J r w e a i ~ e~ ~ b
; 320”. 19.
— I
230
C C w
R
O M
R e s iR s a t Ata D niG c n eF ogD Fs o : a Du n t u i t o na o :s b o l t Ce = eC a – du et o pi c oe n n d di i r t e fh a o o od a ut it nt n o e gt n e x xs c N t dr e. c o mo m e n d et d .
C
h
e
m
uN s i zc a ; l ‘ G w .% : ~ u 2 4 & c ~ ~ : & 2 2 5
wY
L : 2 v
; i ; ;
onitrate d...................... i uA A m A o p de ...................... ir ot xlc i cm dos t d e u . .i ............. . l. u. A. . A fm. .A . oS f d......................... ii U ud A cm e c iodium th iosulfate, “ h Ay c p c e itearic acicl...... ...................... F A A
A A ea.A . A . IA . c A ” Zc A c A A F ~ulfur.........................................., c ,ulfur dioxide, dry.................., A A A A A u d l i wo f ................ x e ui x d tFr e F ,. A A u l a f ( cu c 1 r ...... i xio0 cdc cl % A, dc , H ........................................ o t .x x . x A x 1 0 c - ........................ 7o 5 l x% x d, x A . x H ....................................... o t .x x . x A x 7 5 c - ....................... 9o 5 l A% c ,d c A . c H ........................................ o t .A – . x A F u................................. m i nA – g – A c u l af ........................ u cr o i X-u Fsd F A . F ‘ a a r ............................ t c a ri Xi cdc – A. – ‘ o l u e ............................ n e _ . . . .A . .A . A A A r i c h l o r o e dt h ......... y l reAn eA, y A F . A W ..................................... e t .X F . F – c u r p e n .......................... t i n e . . C . . .c . c A C J fa ( t r b et e o r a is , pl h e , f e e ................................ t e a d A ,A , A )A A ? sa w t .................... a e e trc A , e 4 aA r i h a i w s .................. ik n X e n c y ce -d s xdc xe A x i c h ............................ l no r X i inc sulfate ............................... C
N
c oo
n to t o i epn
All Percenls;7
0
c
~ a K z ‘ & #
A A A
A A A A tA
ppu s eo
d sa 8
. c . – A A A A A A . c x x .c x x x c x x x – x x A x F c A c A A . A – – r A x c c A -
i
–
tn g e . Gas;
b f
S
—
A A A
x
–
c
w ~ m 0 : : T z: g u Q E z 2 s 2 i
:
– 9 A ,A A A A A F x c F x c c c x F A x c E c A A i A A A – –
+
c ,A ,A ,A c , A A A ~ ; A Z 7z z 5 c A A A A A A A A . A A A ,A lA , l c c c A A c A c A A c A c A . c A x A A x x x A A c c c A A x x – A A F A c A A x c x A – , , c ; e ~ A* c A – A A A A A c A cA A c x i i A i
A - c A x A F
e
v t ~ w Q $
v $ u L o : g & : : ~ w w e$ : c &
A Ax cC A A AA xA c A A
A
, ~ ,
c c A A i A A C A
231
C
R ( R
A C R B
. n ca > ~ ; :3 ; l o s ~ g
2 & ~
g
: w & g
s :
I
z~ & ~ ~
. :~ . u ~ ~ $
u ~
w ~
e s t o Rs W m po . v , Rb ub be br F n r i dJ c te i do . ~ % . w g
u e e n e
b o u o
~
~
“
s
e
O G
C H S E MO E I O C PA EPLP O S SA I T N G E E s iR s a t taS ni ac nf ae g ap s mc: a i e n gs g
“ ~
c ~ ~
; m : ~
w z : ~
Q $ ~
~ ~ ~
~ Q : z
z A ~ *
g
7 & 0
7 ;
~
~~ u
u
– – – – – A -
c c A A . c F c
F F x
i A A
i A F
x
x ‘A A
1: A ~A ~A ~A x x *
x c x
2 : A c A x A A – – – A c
:
-
: x x A A c c
% x x A A c c
% x x A A c c
: : x x x x A A A A x x x x
-
-
–
A
c
c
c
x
x
-
-
A A c A A
A A c A A the e f
– A – A – A A c A A t aS
2
-
A A A A c x A A A A e p rx
0
i x x
& Q
*2
u P P P P P 1 u A u uc A A A A A A c A c A c - – - – - c F c A A A A A A A A A A A A A – – – – – – A A A A A A A A A A 4A A A A A A c c c x x x c A A c A - – - – – – F A F F – c c c – – – c c c c i c x
a $
* :
.
2
J A – – – –
i c x
u
~ ;
v
*J c A A A . A A A
i c x
> m
2
z m ; ~
=
x
~ L m
$
~
b M i e s c re l l a n e o u
b n r d
~ ~ Q : s
~
~ $ Q ~ o
: & +
:
+ 0
z g
~ g
’c c A A c A A A A A A A
A
A
P
A A x x A F x x A F
A A A A A
X3 1 Fa]
A
A
A
A F — A F ;
F x x ;
x — x x $
A — A A : A A A A A A A
i A c
z F c
x A c
i A A
: – -
x A :
D A – A A A – ~
;$ : x x x x A c A c x x x x
: x x F A x x
: x x c c A c
2 c x c c x x
: c - x - x - A – A A x x x
x – – x x
x F x x x F x x x x x x F A x x A A A F x c A A x x A A
?
i
2
t
t
~
t
5
~
A A A A A A A A A c A c A A A A A tt h nt a g ebt
c c x -
A A A
A A -
A A
c
-
i c x
–
.
x
c
A A A A x x A A A A o et oa
A A A
A
l es
) e
c
c A A ;
A A -
—
—
A
A
A A A
F A F F A A
A A A
A
A .
F
A
A
A A F x
e f es
4
F
A
. —
– b
a 330”. o
i
l 32. t
—
i
n
cw r o e
pha
as n re e t~ i[
a
; UJe
ij
i t i
232
F
C
THE TABLES BELOW ARE FOR DATA OF FABRICATING CA}) ACITIES OF THE SHOP WHICH HAVE TO BE KNOWN B T V E D HES S ST I Y GCE EN OLE L HH R U . BEEN M A LEFT OPEN AND ARE TO BE FILLED IN BY THE USER OF THIS HANDBOOK ACCORDING TO THE FACILITIES OF THE SHOP CONSIDERED. MAXIMUM WIDTH in.
ROLLINGPLATES TENSILE STRENGTH OFPLATE p
s
i
MAXIMUM THICKNESS i
NE
MINIMUM DIAMETE; Rni
.
NOTE: FOR MATERIAL OF HIGHER STRENGTH THE THICKNESS OR WIDTH OF THE PLATE MUST BE REDUCED IN DIRECT PROPORTION TO THE HIGHER STRENGTH {
LA
LN I G N
LG
MINIMUM SIZE
MINIMUM DIAMETER in.
MAXIMUM SIZE
MINIMUM DIAMETER in.
LEG OUT
Q
O
MINIMUM DIAMETER in.
LEG IN
3
R
MAXIMUM SIZE
E
4
S
LEG IN
.% Q
LEG OUT
ROLLING BEAMS
MAXIMUM SIZE
ROLLING CHANNELS
MINIMUM DIAMETER
i
FLANGES Q
IN
Q
FLANGES OUT MAXIMUM SIZE
ROLLING FLAT BAR Q
ON EDGE
MINIMUM
DIAMETEllin.
233
F
C NOMINAL PIPE S1z i?
MINIMUM RADIUS in.
SCHEDULE
BENDING PIPES
PLATE THiCK~ESSin.
MiNiMUM PLATE iNSiDE i THICKNESS RADIUS in.
MINiMUM iNSiDE RADiUS
n
BENDINGPLATES WITHPRESSBRAKE
MAXiMUM PLATE MAXiMUM PLATE DIAMETER in. ::AHMoELTEEi: THiCKNESS in. OFHOLE in “ri-ilCKNEss PUNCHINGHOLES
vliNiMUM iNSiDEDiAMETER 3E’VESSEL Accessible FOR iNSIDEWELDING
inches
TYPES OF WELDINGS AVAILABLE FURNACES FOR STRESS RELIEViNG
WIDTH ft. HEIGHT MAX. TEMPERATURE
ft. F.
A
I
LENGTH
ft
234 —
P I s o
b
e
a np
do t ii
A tnu n o gp
IT
B PN UE
bp u
N* EB D D I
oh eet t a br
e c co m t p ari e aos t s nre dn eo, o h s p
paud
EN
G
, ei s er e ht r r a et n t t f i ce
hd nn e sh
ous l esn t si en tt f qr et eup s ad s
l ieh
r tube tends to flatten or collapse. To prevent such distortion, the common
practice is to support the wall of the pipe or tube in some manner during the bending operation.
This support may be in the form of a filling material, or,
when a bending machine or fixture is used, an internal mandrel or ball-shaped member may support the inner wall when required.
MINIMUM R4DIUS:
The safe minimum radius for a given diameter, material,
and method of bending depends upon the thickness of the p
w
i ba
possible, for example, to bend extra heavy pipe to a smaller r
at
pd
pel ho i
i u
standard weight. As a generalrule, wrought iron or steel pipe of standard weight may readily be bent to a radius equal to five or six times the nominal pipe diameter. The minimum radius for standard weight pipe should, as a rule, be three and one-half to four times the diameter. It will be understood, however, that the minimumradius may vary considerably,dependingupon the method of bending. Extra heavy pipe may be bent to radii varyingfrom two and one-halftimes the diameterfor smallersizesto three and one-halfto four times the diameterfor largersizes.
d
d
R (
t 4 3 S
t
aP
f d n
I d i a
i r
R to 4d)
o )( Ee
pd
Hx
2 Pe t
% a ir
MINIMUMR4DIUS
*FromMachinery’sHandbook,
Industrial Press, Inc. - New York
va p
y
235 PIPE ENGAGEMENT LENGTH OF THREAD ON PIPE TO MAKE A TIGHT JOINT
I
Nominal Pipe Size
I I
1/8
I I
1/4
I I
3/8
I I
I Dimension [ Nominal I Dimension Pipe A A Size inches inches 1/4
I
3-1/2
3/8
I
4
3/8
I
5
1/2
I
6
3/4
I I I
9/16
I
8
1
I
11/16
I
I I I
1-1/4 1-1/2
I I
11/16
2
I
3/4
I I I
I
2-1/2
I
15/16
I
I I
I I
1-1/16 1-1/8
I I I
1-5/16
I
1-7/16
I
10
I
1
12
I
1-3/4
I
D I M E DN NS IA O NL F SO V L A R OOI T A WT I I T A OP T PH R I EN A N GD I NR G
R O
1/2
}
I
-
I
5
N
DRILLSIZESFORPIPETAPS Nominal Pipe Size 1
b
I
Tap Drill Sizein. / 1
Tap Drill Sizein.
Nominal Pipe Size 1
8 /
23
2
2
-
1/4
7/16
2-1/2
2-9/16
3/8
19/32
3
3-3/16
1/2
23/32
3-1/2
3-11/16
3/4
15/16
4
4-3/16
1
1-5/32
5
5-5/16
1-1/4
1-1/2
6
6-5/16
1-1/2
1-23/32
-
3
/
.
236 BEND ALLOWANCES For 900 Bends in Low-Carbon Steel Metal Thickness (t) in.
Bend Allowance Inches With Inside Radius (r) in. 1/32
1/16
3/32
1/8
1/4
1/2
0.059 0.087
0.066
0.079
0.093
0.146
0.254
0.050 0.062 0.078 0.090 0.125 0.188 0.250 0.313 0.375 0.437 0.500
0.105 0.128 0.146 0.198 0.289 0.382 0.474 0.566 0.658 0.750
0.101 0.118 0.142 0.160 0.211 0.302 0.395 0.488 0.580 0.672 0.764
0.114 0.132 0.155 0.173 0.224 0.316 0.409 0.501 0.593 ~ 0.685 0.777
0.129 0.145 0.169 0.187 0.243 0.329 0.424 0.515 0.607 0.699 0.791
0.168 0.183 0.202 0.217 0.260 0.383 0.476 0.569 0.661 0.752 0.845
0.276 0.290 0.310 0.324 0.367 0.443 0.519 0.676 0.768 0.860 0.952
0.032
r&I
‘1 4
ben~~l~o~~n~e
=a+b+c– w=a+b+c+d– w=a+b+c+d+e– (2 x!end allowance) (3x bend allowance) (4x bend allowance)
Note: w = developed width (length) of blank, t = metal thickness, r = inside radius of bend. EXAMPLE: Carbon steel bar bent at two places. The required length of a 1/4 in. thick bar bent to 90 degrees with 1/4 in inside radius as shown above when the sum of dimensions a, b and c equals 12 inches, is 12 -(2x 0.476)= 11.048 inches MINIMUMRADIUS FOR COLD BENDING: The minimum permissible inside radius of cold bending of metals when bend lines are transverse to direction of the final rolling, varies in terms of the thickness, t from 1-1/2 t up to 6 t depending on thickness and ductility of material. When bend lines are parallel to the direction of the final rolling the above values may have to be approximately doubled.
—
237 LENGTH OF STUD BOLTS FOR FLANGES *
1. Length of the stud bolts do not include the heights of the point. (1.5 times thread pitch) 2. Plus tolerance offlg. thk’s. Sizes 18in. &smaller 0.12in. Sizes 20 in. andlarger O.19 in. 3. Minus tolerance ofstud length Forlengths upto 12’’incl. O.O6in. For lengths over 12“ to 18” incl. 0.12 in. For lengths over 18” 0.25 in. 4. Rounding.offto the next larger 0.25 in. increment. 5. Gasket thickness for raised face, M & F and T & G flanges 0.12 in. For ring type joint see table page 346 and take half of the dimensions shown, since in dimension “A” only half of the gasket thickness is included. *Extracted from American National Standard : ANSI B 16.5 - 1973 Steel Pipe Flanges and Flanged Fittings.
1
238
P
V
D
IN THE PRACTICE THERE A S E RVD E I FRFW EAE RLO EAD N E T TY A I P R E VS S E . UB S RM S E EA TL K DS IR A NHYAWG L I W N WEG T A S S YT SH A M E CT O N H S O I D T E D R ,A C B I BL ES MAA A A VE T NE N Lp OE S DS SH DI L OI T I BO E R A R L O TE R R ESSC OHS ME MM E. N E DE I E T D FH O O L H PL D OR ~N OE N P R A C A T G I EC NAN E A L R CA CL D EL PY T E D .
A. Select the scale so that all HORIZONTALVESSELS 4
f 3nd View
Ref.line
1-
ELEVATION w Saddle MIS~~~~~SEOUS ~
B. Show right-end view if necessary only for clarity because of numerous connections, etc., on heads. In this case lt is not necessary to show on both views the connections etc., in shell.
C. Show the saddles separateGENERAL ly, If showing them on the SP~~EC~~CA-
BLOCK TITLE
1
openings, seams, etc., can be shown without makin the picture overcrowd f or confusing.
end view would overcrowd the picture. On elevatlon show only a simple icture of saddle and ! he centerlines.
D. Locate davit. E. Locate name plate.
L
F. Locate seams, after everyth.mg 1s m place on elevation. The seams have to clear nozzles, lugs and saddles. G. Show on the elevation and end view a simple lcture F etc., of opemngs, internas, lf a se arate detad has to be mat e for these. H. Dimensioning on the elevation drawing. All locatlons shall be. shown with taded chmenslons measured from the reference line. The distance from ref. line ~odbeshown for one saddle The other saddle shaY1. be located showing the dimension between the ;-w$~~ bolt holes of the
END VIEW
I. Two symbolic bolt holes $~aytdy tlgn%~le~~t~ straddling the parallel lines with the principal centerlines of vessel.
239 P
R
E
VS
SE D U SER TES A( EI cL L Io N n G
O
r
i
‘-E* e
n
t Ea
tl i e o vn
a
t Bi
M I S C E L L AD N E EO U TS
b
[
TIIle
G SA c
.
)
A. Select the scale so t a openings, trays, seams, etc., can be shown without making the picture overcrowded or confusing.
VERTICAL VESSELS
+
t
h
B. If the vessel diameter i unproportionally small to na s e the length, draw the width a of the vessel in a l
o
s t ch s a ae p n f e a dr ea ot l la eL c S i f i tc. T i o o r in e h sin nt t v b i ao s ec i n f o r a m at b t c ao n t o e iz
e pI a
Block
D. S
t
ho
r
ln i
r av eo l r s l
a a t i e o no h u we pm , l i oo n h z o lt ne
i oe h sn
t
aw t
E
.
F
.
3
mS
. @
: u
. ---
Em
G. ORIENTATION PLAN
degrees: 00, 900, 1800, 2700 and use it in the same position on all other orientations.
240 —
PRESSURE VESSEL DETAILING (cont.)
Nozzle on Top or ~ottom
00 ~—+ H. It is not necessary to show internals on vessel orientation if their position is clear from detail drawings or otherwise. J. Draw separate orientations for showing different internals, lugs, etc. if there is not space enough to show everything on one.
,
K. For vessels with conical sections, show 2 orientations if necessary, one for the upper section, one for the lower section. L. Two, symbolic bolt holes shown in flanges make clear that the holes are straddling the lines parallel with the principal centerlines of vessel.
~1
M. If there is a sloping tray, ,
1800
(
partition plate, coil, etc., in the vessel,show in the orientation the direction of slope. J
O
(JO
27oo
.
. ●
t
w 1
1800
8 Lowest 0
Point of Plate “D” ORIENTATIONS
2
PREFERRED LOCATIONS Of Vessel Components and Appurtenances
A. Anchor bolts straddle principal centerlines of vessel.
B. Skirt access openings above base minimum to clear anchor lugs, maximum 3’-0”.
c. Skirt vent holes as high as possible. I
I
D. Name plate above manway or liquid level control, or level gauge. If there is no manway, 5’-0” above base.
I
-.
r
H
I
E. Lifting lugs - if the weight of the vessel is uniform, “E” dimension is equal .207 times the overall length of vessel.
F. Manway 3’-0” above top of platform - floor plate.
G. Insulation ring must clear girth seam and shall
1
be cut out to clear nozzles, etc.
H. Insulation ring spacing 8 - 12 feet” (approx. length of metal jacket sheet).
J. Girth seams shall clear trays, nozzles, lugs.
.,
K. Long seams to clear nozzles, lugs, tray downcomers. Do not locate long seams behind downcomers. Seams shall be located so that visual inspection can be made with all internals in place. Longitudinal seams to be staggered
I & %’ +
1
i p 8o
s
s0 i
b
0l
ef .
L. Ladderand platformrelation.
3_u
v .
+
A
M. Davit and hinge to be located as the manway i most accessible, or right hand side. s
N. Ladder rung level with top of platform floor plate. The height of first rung above base varies, . minimum 6“, maximum 1’-6”.
242 COMMON ERRO RS in detailing pressure vessels
Interferences
A.
Openings, seams, lugs, etc. interfere with each other. This can occur: 1. When the location on the elevation and orientation is not checked. The
practiceof not showingopeningsetc. on the elevationin their true position, may increasethe probabilityofthis mistake. 2. The tail dimensionsor the distances between openingson the orientation
do not show interference, but it is disregarded,that the nozzles,lugs etc., havecertain extension. Thusit can take place that: Skirt access opening does not .clear the anchor lugs. Ladder luginterferes with nozzles. . . The reinforcing pads of two nozzles overlap each other. Reinforcing pad covers seam. . Vessel-davit interferes with nozzles. This can be overlooked especially if . the manufacturer does not furnish the vessel-davititself, but the lugs only. f Lugs, open%gs, etc. are on the. vessel seam. on perimeter of the skirt for the required number of ! There is no room 3 . anchor lugs.
a b c d e
Particular care should be taken when ladder, platform, vesseldavit etc., are shown on separate drawings, or more than one orientations are used. B.
Changes. Certain changes are necessary on the drawing which are earned out on the elevation. but not shown on the orientation or reversed. Making changes, it is
c.
advisableto ask the question: “Whatdoesit affect’?” For example: Billof material The changeof materialaffects: Scheduleof openings Generalspecification Legend Orientation The changeof locationaffects: Elevation Locationof internals Locationof other components. ShowingO.D. (outside diameter) instead of I.D.(insidediameter)or reversed.
D.
Dimensionsshownerroneously: l’4Yinsteadof 10” 2~0’insteadof 20’etc.
E.
Overlookingthe requirementof specialmaterial
)
2
1
PRESSURE VESSEL DETAILING (cont.) \
E
M S W
G
.
D P
R
T
E
E P S M
P
E
@ SS R O
U
A
T
R I U
R
E
A X A H A A M O I R G KN &INC N GT
EF
.Y X
. L
I
z o W z u ‘ c S 8 E W
BM P
R
O
I
T
I RL
E
W W W
C I
B E N F
E F
I R W
I
Y
/ D S S
T. QC
EC C N
R FE
H T I I P O P NI GS H ST
L A E
D
SS
F IS EO M
E ( CS E L I
P
E
G U T B
H
ETL
I I N
A
E
R
A x
RA .
O
LSI
W LP T . R E
LT /S R H
I L O
OH E A@ 1 T
ST
FL
H
A
N
K
N
O N
Z
.
G
D I ON A E N C SE M 1 E
Z E
L
CE
KB A
B
O
L
T
I
N
G
c
L
o
I
u
N
p
G
L N0
Y
TA T 0
P
A
S
K
I
E
N
.
A
S
BN
CO D
T
E H
D
. E
I
L
L E
. S
.
A
T 0
K
K
A
D
P
W F
G
N
H
R
S
.
LI Y
A
T
S
E
NW
.
T T
N O
D I O G R A P H I C I TM I N A T I O N A
G L )O N G I T JU E F F I C I .
N
G G B
O.
5
E * a z
T
T
.
T
t I
m
V R
.
.
a
~
. D E
.
E
S RE
S QE
E
L U
D
S I
:
A S W
P H
P I E L
R P I
P GB
O I
X N H
. G ST
. d
m
—
5 1
)
●
! I
OPENINGS
PRESSURE VESSEL DETAILING (cont.)
I
Detailingopenings as shownon the oppositepage with data exemplifiedin the scheduleof openings below, eliminatesthe necessity of detailing every single opening on the shop drawing.
Y
I
c-1 A/-f
/lvLET
M-l
/%llvw/ly
2 6 3 3 /8’ 3
c 0G w 0~ w0N
— “- ? -& ~– f- . – — ) 0 ) ( “ ’ I 5 ( 5343 H —. . Y. = 6&” S* 53-49 X 0 H . . 24*X~2“ S/l 5 M
SEnVICE
SIZE
RATING
TYPE
D
29Z” MIN. 8 A “ MlIv.
v // /~
-
yd” M//u..
~/
5 2
~-
M
BORE
yg- Nw.
j 0 7T a
# 0
%
b
c
”/ & “
O R
WE LO SIZE L
1
E
LE OF
GS
/~
r
246
TRANSPORTATION OF VESSELS
Shipping capabilities and limitations.
1.
TRANSPORTATION B TRUCK. The maximum size of loads which maybe carried without special permits a. weight approximately 40.000 Ibs. b. width of load 8 ft., Oin. c. height above road 13 ft., 6 in. (height of truck 4 ft., 6 in. to 5 ft., Oin.) d. length of load 40 ft., Oin. Truck shipments over 12 ft., Oin. width require escort. It increases considerably the costs of transportation.
2.
TRANSPORTATION BY R41LROAD. Maximum dimensions of load which may be carried without special routing. a. width of load 10 ft., Oin. b. height above bed of car 10 ft., Oin. With special routing, loads up to 14 ft., O in. width and 14 ft., O in. height may be handled.
247
P O
S
T S
U ER
F E A F CL
E
S
P U R P O S E T m p ahu o r p ipa eio t ns p t r e ei s nhe of r ga vs a ts sit euo nT r e fp ae r fac eh l e it . a t c o r 1 hr b op sr ei .vtoe ecn n o t o i nc,h nyo tg r aa r ocgfe s tte i vr v nf ese t ouhsa s r s m f ea 2 b r i n .uh ie lb e ics tt r ,io y-v cpt eh er , mo i cop at el pr t m ia ae h st i e r n fi e a t l . T a
p b
ar
am h ib s un u tie sr t s aet tbe s l ef oie fht aa s co i cn toh en i m oi d c na l sf .
s e on tcv i thre oh sn m i eef mne t ap,
a
S U RP RF E PA A CR AE T I O N T p r r ih e mq f uaa si reus yc i ocp t e ej s a is t f r iru loe n o mhm t os bvrci s aed a u l l li s f g r o ea fa os m i ren a e, M t i s lt gdi i ect n br lal .u i hsl t hl - l ehg r osa iei y o, y c r x e ki o w fh oo i s t r cr us mhc s t t uus b r esnat e tl qe h u r e l no hot lpo e l r Io i ate tnmt i go n ih . s i ic na a a t dl at hn ei c te gts tr mh ed tie sp hl tr yop a rv ool ie tt d,et ces tt s hit o hen o e e d v t t e r u or a lh d , l i e oi snpo n eh l cg i ao nmdt pig e l enm s ft s ,et l i i aycs ce al tl l e n c o ui np t r e a r ec dt i c en . I m s p r ot
i i nc b a l c a r ol f ald s ce p lks ht er wy dgi ,ol m i l i iepoml ir ev n nvil i fre o gnl m e e vt l i h dm o es had orci o atsug le l r eeis ea l rt a , lt e s ,m er c,o , v e . de .
E C O CN O N O SM I D E I R CA T I O N S T s e l o hep c a ta s i eoui p n rrn ne f p f baat r cead t t etyi oe noc a h n sn i dnip a p r o o e cb o l n eo mm i c sf . T c a d e x d i s a n o s S T a t t
clu
rt
o p oh i na os i r2 e m n5t oa lf - l t o l t3 s eyc 0 o p %soha ai sr snts rft etu i ct t n t f hgu r v o a u n ht s a q g i iue p an i galaf gpi i p ht Sa yn r p ie et n oxtrm s . c ot t e o t y n tor h o p a pe jn a l s i i et i os n fu p etrrh e fb p saa rnt cae ct e i o on p nohr e p tas d r ae t t f d f ee i rvg e ar ni erat p ye r osi p on o1s trg 1t i n0o F n ex 1 atf o 2mc o p.o l oh er d bi la a s 1bt i tn 0og h i - u it ms1tgt ohe h2t h h es a w r aabh nr i u t nTs f chre i d n oehg u p ~r e f p saa r hcab fbt eoi a o unla a gl t n ai dc n i e ce lndrh o set avit s e ee fsdh s ee
E L E O C P T I SA O YN I S TN FE T M S t ao t h b f ol l pelhe o ss aw a inegg ne gurt e s i v ste d p el e r pse shao c si op nt y te e s i r e s tt n ir me aqq h dtuu eiao pr n eetf a dvi t ai sy r o en ci fro otn v du rTii st dci o e n ash a b t u lh h a b t eaet de fr a v t eekSr e S e t nt o h r neuP c m a te Ciue onr l euts snpi cen ic g li f’ a i r e c oo m m n ne n d a st i o dn s .
C o a s S
ca e eat
n s P
s ti ds e er vi vnha g re o i pr a a aeb ip ll rne ots i b ii lan fed g mv t si r ,s e a t bq t l su e oi ps t ma a a n n cu i f e a c nt u fr et r s . C E O CN D I I A T IL O N S
A B R A S I O N W t ph a m i eh nr t uaen i b nser tsga ig s asit odoht nho t, e oc s oei i dpoah a ntr t i i cf n ue l i m p o F r mt a a n xaot d.i h mb e ucsr l m il oei at na b, ns a i a etnh p g i l ns ic ss ke s alt id t f a cP r t e to r er sa yt am . he u np t hs oc oos w p hph asa r att eei xs mc f re eeh l t l r ec o ne h
and rougheningthe surface. Urethane coatings,epoxies and vinyl paints have very good abrasion resistance. Z rich coating,and phenolicpaints are also good. Oleoresinouspaints may develop m greaterresistanceby incorporationof sand reinforcement.
i u
248
H T EI M P E GR A T H U R E B t e e m lp e o r o5a t0 uw0 r -et so6 0 ba 0g °t f s F aou f ir c o ofon ha optdc h i e o n os gr t r e i a s ta t mi se fAna ct 5t b o 0 r 0yso . a- blast 6v cleaned 0 0e °surface F is desirable.
Recommended Paints: u
to
2 2 3 3 7 8
C
O
R
2 3 4 5 8 0
0F 0F 0F 0F 0F
0 Oil base0 5ppaints limited period 0 0 or phenolic 0 An alkyd vehicle 0 0 modified- alkyds 0 Specially 0 Colored0 5silicones 0 0 zinc coatings 0 Inorganic above 550 F Black or Aluminum silicones 0 F - Aluminum 1 2 silicones 0 0 up to 1600-1800 F Silicone ceramic coatings
R C O H S E I MV IE C
A
L
S
See tables I and V for the selection of paint systems. THE REQUIRED QUANTITY OF PAINT Theoretically, one gallon of paint covers 1600 square feet surface with 1 mil (0.001 inch) thick coat when it is wet. The dry thickness is determined by the solid (non volatile) content of the paint, which can be found in the specification on the label, or in the supplier’s literature. If the content of solids by volume is, for example, 60%, then the maximum dry coverage (spreading rate) theoretically will be 1600x .60-= 960 square feet. THE CONTENT OF SOLIDS OF PAINTS BY VOLUME $% I
%
%
50
1 2 &
3 4
70
70
15 1
6
5 6 8 9
Varnish Paint Aluminum Vinyl Paint White
14
103 104
Black Alkyd Paint Black Phenolic Paint White or Tinted Alkyd Paint,
70
106
Black
37 57 47 - 50
In practice, especially with spray application, the paint never can be utilized at 100 percent. Losses due to overspray, complexity of surface (piping, etc.) may decrease the actual coverage to 40-60$Z0, or even more.
. )
- .
P T
A
I
A I P
s
T
B SA
@
E , TM
1St Coat
2nd Coat
3rd Coat
(:?7)
104 ( I .3) 14
104 (1 104
i Condensation, chemical fumes, brine drippings and Other extremely corrosive conditions are Q present
G S
Paint and Dry Thickness, Mi]s See Table IV
E;=
~ 0: WL+
N
YL I S E TN
~
C
Ps
I
z
c .-o :?=
System Number
N
2
Not
or
Req’d
::h,
&
:;::. ness
104
(1’.;)
5.0 104 (i .3)
(1‘7)
I
3
(1 I
(I I
I (
I
( 1?)
( IC5) 104 (1 .5)
104 (1
(
I ( I .5)
(1
( lc5)
Steel surfaces exposed to the weather, high humidity, infrequent immersion in fresh or salt water or to mild chemical
6
a
or
Not R E
8
5.0
I
(I
Steel s exposed to alternate immersion. high humidity and condensation or to the weather or moderately severe chemical atmospheres or immersed in fresh water Immersion in salt water or in many chemical s c severe weather exposure or chemical atmospheres 4.02
5, 6, 8, or
I , 2, 5, or 6 3, or ( 1.5)
5. or 6 ( I .5)
I 03 (I
5, 6
or 103 *
4
9
G
9
(1G5)
Fresh water immersion, condensation, very severe weather or chemical atmospheres
10
Complete or alternate immersion in salt water, high humidity, condensation, and exposure to the weather
Not Req’d
(lHs)
3 **
( 1!5)
5.5 H
H
H 6.0
6
or 8 6 or 8 6 or 8
404
Condensation, or very severe weather exposure, or chemical atmospheres 4,05 Condensation, severe weather, mild chem]cal atmospheres
9
Not Req’d 3 **
8 4,0
(192)
9
9
(1:5)
F
F
4.5
9
4,0 I
Steel vessels p
t
f
w
s f
w
Dry, non corrosive environment, inside of b t w t
Longtime protection in sheltered or in8.01 accessible places, short term or temporary in corrosive environments p
1
G
G
Corrosive or chemical atmospheres, but should not be used in contact with oils, solvents, or other agents Underground and underwater steeJ struc-
3
(1?)
G
G
G
G
3
n
o
c
ing 1 and 2 or 3
m Req’d
e p
7.0
(1
~
n
a
l
3
K 6.25
I
,/
M (
L
)
(wet)
12 63
63
Not (
)
)
)
d r
w
i
Not R
R u
(1.5)
Not Req‘d
6
tures U c
G (2.0)
G
8
6.03
10.01
(1%
6;r
w
9.0 I
3 6
or for high tempera-
ture *Four coats are recommended in severe exposures
6
0
Req’d (1!-18)
(25)
(8! 5)
35
**The dry film thickness of the wash coat 0.3-0.5 roils.
250 T
A I P
BS A
YL I S( Ec T No G
.-o Uz= Ob
{stem Imber sPcPs
;
Fresh or sea water immersion, tidal and splash zone exposure, condensation, burial in soil and exposure of brine, crude oil, sewageand alkalies, chemical fumes, mists High humidity or marine atmospheric exposures, fresh water immersion. With proper topcoating in brackish and seawater immersion and exposure to chemical acid and
I
I ~,oo
I
6 :;
P
R
e
f
e
r
A I e
n
T
I a 1
b W
l E
T O
d
)
n c nk h i iroils
n
te
;= gbl
1
,Zg Not Req’d
coat
2nd Coat
(’l:)
(’l:)
3rd Coat
&
::!t
;;:-
32
Zinc-rich coatings comprise a number of different commercial types such as: chlorinated rubber, styrene, epoxies, polyesters, vinyls, urethanes, silicones,
Epoxy Paint System
P RB E I T RL E AI T E S PME EC N ,I FT I C A T I C I N S c
t
a T
e
See Table IV
subject to chemical exposure such as acid and alkali.
T
a
E-
:
?J&~
nE , T t Mi n S u
e To e
a iP
TT R I E NA I
ut
G T
M
rn l p
E LN
oe
T
sdS p e e c i f i c N u m
S
S
P C 1-64
Saturation of the surface layer of rusty and scaled steel with wetting oil that is compatible with the priming paint, thus improving the adhesion and performance of the paint system to be applied. 2
C C
P O H o n vt
O S L SP U H AD RT T RF E E A A CT ME ES N ST 2 P es r ut of i rsteel hn gf to insoluble a c e salts e
of phosphoric acid for the purpose of inhibiting corrosion and improving the adhesion and performance of paints to be applied. 3
4
BASIC ZINC CHROMATE-VINYL BUTYRAL WASHCOAT(Wash Primer) Pretreatment which reacts with the metal and at the same time forms a protective vinyl film which contains an inhibitive pigment to help prevent rusting. HOT PHOSPHATE SURFACE TREATMENT Converting the surface of steel to a heavy crystallinelayex of insoluble salts of phosporic acid for the purpose of inhibiting corrosion and improving the adhesion and performance of paints to be applied.
SSPC-PT3-64
SSPC-PT4-64
C-
2— . P T %
e
f
e
A I , r
e
n
c
t T
I a 1
2
3
4
5
6
7
8
10
b S
SB U e T
l O
LC
A
I
N
T
I
N
G
PRL R FE E PA A CRSI A E~ T ~ lI FO I NC A T I O N S
oa
iP
EE
AN N T I
ut
rn l p
oe
e V L
5
N
G
Removalof oil, grease, dirt, soil, salts, and contaminantswith solvents,emulsions,cleaningcompounds,or steam. HANDTOOLCLEANING Removalof loose mill scale,loose rust, and loose paint by hand brushing,hand sanding,hand scraping,hand chippingor other hand impact tools, or by combinationof thesemethods. POWERTOOLCLEANING Removalof loose mill scale,loose rust, and loose paint with power wire brushes, power impact tools, power grinders,power sanders,or by combination of these methods. FLAMECLEANINGOF NEWSTEEL Removal of scale, rust and other detrimental foreign matter by high-velocity oxyacetylene flames,followedby wirebrushing. WHITEMETALBLASTCLEANING Removalof all mill scale,rust, rust-scale,paint or foreignmatter by the use of sand, grit or shot to obtaina gray-wh~te,uniformmetalliccolor surface. COMMERCIAL BLASTCLEANING Removalof mill scale, rust, rust-scale,paint or foreign matter completely except for slight shadows, streaks, or discolorationscaused by rust, stain, mill scale oxides or slight,tight residuesof paint or coating that may remain. BRUSH-OFFBLASTCLEANING Removalof all except tightly adheringresidues of mill scale, rust and paint by the impact of abrasives. (Sand, grit or shot) PICKLING Completeremovalof all mill scale,rust, and rustscale by chemical reaction, or by electrolysis,or by both. The surface shall be free of unreacted or harmfulacid, alkali, or smut. NEAR-WHITE BLASTCLEANING Removalof nearly all mill scale, rust, rust-scale, paint, or foreign matter by the use of abrasives (sand, grit, shot). Very light shadows,veryslight streaks, or slight discolorationscaused by rust stain, millscale oxides, or slight,tight residuesof paint or coatingmay remain.
sd
Se p e c i f i c a t i N u m b
S
1-63
SSPC-SP2-63
SSPC-SP3-63
SSPC-SP443
SSPC-SP5-63
SSPC-SP6-63
SSPC-SP7-63
SSPC-SP8-63
SSPC-SP10453T
I
252 ——
.
P
A
T :e t ~
r
e
1 a 1
2 3 4 5 6 8 9 1
12 13 14 15 16 102 103 104 106 107 .— A B c D E F G H I J K L M N o P
n b
c l
fe Mo e
I
A I
a
N P
t
T
B A
e
r
I W LI
i
Red Lead and Raw Linseed Oil Primer Red Lead, Iron Oxide, Raw Linseed Oil and Alkyd Primer Red Lead, Iron Oxide, and Fractionated Linseed Oil Primer E P Z R A W R
x
tR e L n R de aee Bad aoLd r i m e r D Z i u O nsi xa P it cnh d V e, n L I e Oe ar xa P di ohd dV e, n l u V m Pi i n a un m i y ( hC o i V l o ot P i r eea n dr I O r exZ Ci 1 oh i d r dRo en L nm
N
G NE
a
l
T ,
S
N
u
m
1-64TN0.
1
2-64
2
No.
344TN0.
3
nd di O, n i ws e d e di e d 4 6 44 neak P o r, l na id 5-64T i c i sNo. hn5 6 nean P o r, l na di i c i -s 6 hn 64 8-64 No. 8 n l t i) y n l t9-64 No. 9 , ai O t nca e s, e iw e d
11-64TN0. 11 and Alkyd Primer 12-64 No. 12 Cold Applied Asphalt Mastic (Extra Thick Film) 13-64 No. 13 Red or Brown One-Coat Shop Paint 14454TNo. 14 Red Lead, Iron Oxide & Linseed Oil Primer 15%8TN0. 15 Steel Joist Shop Paint Coal Tar Epoxy-Polyamide Black (or Dark Red) Paint 16-68TN0. 16 Black Alkyd Paint 102%4 No. 102 103-64TNO. 103 Black Phenolic Paint White or Tinted Alkyd Paint, Types I, II, III, IV 10444 No. 104 Black Vinyl Paint 106-64 No. 106 Red Lead, Iron Oxide and Alkyd Intermediate Paint 10744TNO. 107 Paint; Red-Lead Base, Ready-Mixed Type I red lead-raw and bodied linseed oil Type II red lead, iron oxide, mixed pigmentalkyd-linseed oil Type 111red lead alkyd Primer; Paint; Zinc Chromate, alkyd Type Paint; Zinc Yellow-Iron Oxide Base, Ready Mixed, Type II-yellow, alkyd Paint; Outside, White, Vinyl, Alkyd Type Primer; Vinyl-Red Lead Type Vinyl Resin Paint Paint; Antifouling, Vinyl Type Paints; Boottopping, Vinyl-Alkyd, Bright Red Undercoat and Indian Red Finish Coat Enamel, Outside, Gray No. 11 (Vinyl-Alkyd) Enamel, Outside, Gray No. 27 (Vinyl-Alkyd) Compounds; Rust Preventive Coal Tar Enamel and Primers Coal Tar Base Coating Coating, Bituminous Emulsion
TT-P-86C
b
m z l : T N + t < Tt N : ~ U l
: ~ m “ & ~
;Z z.~ TT-P-86C ~z TT-P-86C 32 z~ TT-P-645 ~k MIL-P-15929B ~ j MIL-P-16738B ~ 2 MIL-P-15929B ~ & a II VR-3 Lg MIL-P-15931A I > * !+; MAP44 X’2 MIL-E-1593513 .5 : MIL-E-15936B ~ ~ 52-MA602a ~ .5 MIL-P-15147C j z MIL-C-18480A ~ ~ MIL<-15203c
2 P T
A V C
H B
E
I N
IN
A
L RM E I SE CI SAO,T LCA N O C AME T A
Acetaldehyde . . . . . . . . 1 2 1 1 1 1 3 2 2 3 3 2 3 Acetic acid, 10% . . . . . . 1 2 1 1 1 1 4 3 3 4 4 3 4 A ac g e c l . t . . ai. . i 1 c2 dc1 i 1 1 a,1 4 l 3 3 4 4 3 4 Acetone . . . . . . . . . . . . 3 3 3 1 1 1 4 4 4 4 4 3 4 Alcohol, amyl . . . . . . . . 1 1 1 1 1 1 4 3 3 3 3 2 3 A l b c nu o o th . . r 1. oy 1ml1 l 1 a 1 , 1l 3 .2 2 2 2 1 Alcohol, ethyl . . . . . . . . 1 1 1 1 1 1 2 1 1 1 1 A l ic s o o h. .p . o. r. 1 lo 1 ,p1 y1 1l 1 2 1 1 1 1 A l m c o e . h. t. . o. .h 1 l 1y , 1 1l 1 . 1 2 1 1 1 11 A l u c m h i l . .no. . 1ur 1m i 1d 2e 2. 2 4 31 1 A l u s mu i l . .np. . 1uh 1 m a1 1t 1 e1 4. 1 1 2 2 1 2 Ammonia, liquid . . . . . . 1 1 1 3 2 2 3 1 3 A m m c o h n l . i. o. 1u r1 m1i 1 d1 1e 3 .1 1 3 3 1 2 Ammonium hydroxide . . 1 1 1 3 2 2 3 1 3 A m m n o i n . t. i. . r1u 1 am1 1t 1 1e 3 .1 1 3 3 1 2 A m m s o u n l . i.p. 1u h1 m1a 1 t1 1e 3 . 1 1 3 3 1 2 Mdline. . . . . . . . . . . . . 2 3 2 24 4 Benzene . . . . . . . . . . . . 4 4 4 1 1 1 3 3 3 4 4 3 4 Boric acid . , . . . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 Butyl acetate. . . . . . . . . 1 1 1 1 1 1 3 4 4 3 31 C a c l h c .l . .i .o . . u1r 1 m i 1 1d 1 e1 2 1 1 2 2 1 C a h l y cd r .i . o. . ux1 i1m d1 e 2 . 1 1 2 21 1 C a h l y pc o ci . .h . u1l o2 mr2 i 3 t 2e 2 4 1 1 2 21 C ad i r s ub. . l. . p.o4 h4 4ni 1 d 1 e1 4 4 4 4 4 3 4 C at e tr r a bc .h . .lo4o 4r 4ni 1d 1e 1. 4 4 4 4 4 4 4 Chlorine gas . . . . . . . . . 1 2 2 4 4 4 4 2 1 4 4 3 4 C h l o r o b . e. .n. .z . e. 4n 4e 4. 1 1 1 4 4 4 4 4 4 4 Chloroform. . . . . . . . . . 4 4 4 1 1 1 4 4 4 4 4 4 4 C h a r 1 o c . . m. . .i 2i 20 2c d 4 3 3 , 4 2% 2 4 4 2 4 C h a r 6 o c . . m. . .i 2i 20 2c d 4 3 3 , 4 2% 2 4 4 2 4 Citric acid. . ; . . . . . . . . 1 1 1 1 1 1 2 21 1 C os u p l . .p. . .h . e1 a 1 1tr 1e 1 .1 1 1 1 1 1 1 1 Diethyl ether. . . . . . . . . 4 4 4 1 1 1 4 4 4 4 4 4 4 Ethylene glycol . . . . . . . 1 1 1 1 1 1 2 1 1 1 11 Ferric chloride. . . . . . . . 1 1 1 1 1 1 3 1 1 3 3 1 3 Ferric sulphate. . . . . . . . 1 1 1 1 1 1 2 1 1 2 2 1 F o r m a l 4d e . h. .y. 1d 1e 0,1 1 1 1 3 % 1 1 2 2 1 F oa r2 c m . . . .0i , i 1 1 dc1 %1 1 , 1 3 . 1 1 2 2 1 F oa rc c m . .o. .i . i 1 n 1 dc 1 e 1 , 1 . 1 3 21 1 Gasoline . . . . . . . . . . . . 4 4 1 1 1 1 2 41 1 Glycerine . . . . . . . . . . . 1 1 1 1 1 1 2 1 1 1 1 H y d r o a c h1 lc o . 1r i01i c1 1 d1.%1 3 , 1 1. 3 3 1 H y d r o a c h3 lc o . 1r 2i0i c2 1 1d 1% 3 1, 1 3. 3 1 3 H y d r o a c hc lc o . 1ro 2ii c2 1n 1d 1 3e 1, 1 3. 3 1 3 H y d r oa f l 1 uc o. . r1 ii2 c 1 0 1 d 1 1 3, 2% 2 2 21 H y d r oa f l 4 uc o. . r1 i2i c1 01 d1 1 3 , 2 2% 2 2 1
T
C
TI
EN F R G I
A
L
3 1 1
2 2 2
3
1
3
3
1
3
3
1
3
44
2
4 3
2 2
1
2 3
2
1
2 2
2 3 3 2 4
1 2 1
3 4 2
3 2 3
P T
A V C
H B
A
I
N
T
I
N
G
E L RM E I SE CI SAO,T L CA N O C AME T A
(continued)
TI
EN F R G I
N
m
vc 8
3, 2 2 2 2 3 H y d r o a f l 7 u c o. . r1 i2i c 1 5 d % 4 1 .3 3 H y dp re or 3 og . x1e 1i n1 d:% ei ; , 3 2 .3 3 : 4 H y dp er ro 3i g o 2ex 2 0ni 1 d3 2e 2% , 3 1 2 2 1 2 H y ds ru o.l . .gp. . 1e h n1i d e 2 1 4 H y p o c h ao l .o. .r . oc1 u: s 1 : i ; : 4 d 1 3 1 4 : 2 4 Kerosene . . . . . . . . . . .4 4 1 1 1 1 2 1 4 44 2 4 L u b r o i c. . .a . .ti. .i n 4 g1l 1 1 1 .2 1 2 2 1 2 1 2 1 1 1 1 M a g s n ue sl. . .i p. 1u h m a t e 4 3 3 1 3 M ee kt t he. . h. .yt1 1 yol2 1 n1l 1 4e 1 4 4 2 4 1 1 2 Mineral oil . . . . . . . . . .4 4 1 3 3 1 3 1 : 2 2 4 Nitric acid, 5%. . . . . . . . 1 4 3 3 : 4 2 2 ; Nitric acid, 10% . . . . . . 2 2 4 24 : : 3, . 3 . 4 2d c;% N ai 4 t c . .r . 0.i . i 2 4 34 2 4 N ai c t c . .ro . .i . i n d c :e 3, . 3 . 4 3 3 4 44 3 . 4 1 : 1 1 : N i t r o b . e. . n. .z. .e . n e . 2 4 4 2 4 3 2 1 1 1 3 Oleic acid . . . . . . . .. ..3 1 1 1 2 1 1 2 2 1 2 Oxalic acid . . . . . . . . . . 1 1 4 ; 1 1 1 Phenol, 15-25% . . . . . . . 4 3 Phenol . . . . . . . . . . . . . P h o sa p 1h c o. . .r 1i i 1 c01 d1 1 1 , 3 1% 1 3 3 1 3 P h o sa p 6 h c o. . .r 1i i 1 c01 d1 1 1 , 3 1% 1 3 3 1 3 P h o sa p ch c o . .or 1 ii 1 c1n 1d 1 e1 ,3 1 . 1 3 3 1 3 1 1 2 1 1 2 2 1 2 Potassium alum . . . . . . . 1 1 1 2 2 1 3 P o t h a y s d s r2 i o u1 x2 mi1 :d 02e 2 , 4 1 1 % 3 2 2 P o t h a y s d s r9 i o u1 x2 mi1 d4 52e 2 , % P o t p a e sr m s ai .n 2u g 2 m a 1 n 3 a 2 t 2e 3 ; ; 3 3 ; 4 P o t s a u s l s . p. i. . h1u 1am 1 t 1 e1 1. 2 1 1 2 2 1 2 1 1 1 1 1 1 Sea water . . . . . . . . . . . 1 1 1 1 1 1 Silver nitrate . . . . . . . . . 1 1 1 1 1 1 ; 1 1 1 1 1 2 1 1 2 2 1 2 . S b o i sd u. .i .l . .pu1 h1 m1a 1t 1 e 1 1 1 2 2 1 4 : 4 1 1 2 2 S o c ad r bi. . .o . u. n1 am t e . 1 1 1 1 1 S o c hd l . i. o. . . ru. 1 i md1 e . ; ; 1 1. 1 1 1 ; S o h yd d ir1 o u. x1 ;i0m1d : e ; ,% 4 1 2 S o h yd d ir2 o u. x1 2i m d 0 e , 2 4 1 1% 2 2 1 3 1 2 2 1 3 S o h yd d ir4 o u. x1 2i m1d 04 e 2 , 2 4 1 % S o h y dp o ic .h . ul. 1o 2rm1i t4 e3 . 3 4 1 1 3 3 1 4 Sodium nitrate. . . . . . . . 1 1 1 1 1 1 2 1 1 2 2 1 2 S o s ud l . i.p. . .hu. 1a 1 mt 1 e1 1. 1 2 1 1 2 2 1 2 S o s ud l . i. p. . . hu. 1 i 1mt1 1e 1 . 1 2 1 1 2 2 1 2 S u d l i p o. . .hx. . . u1i 1 dr1 1e 1 . 1 2 1 1 2 2 1 2 S u l a p 1h c u. r- i1 i 1 0c1 d 1 . 1 1, 3 %1 1 .2 2 1 2 S u l a p 3h c u. . . r. i1 i 10c1 d 1 1 1, 3 %1 1 3 3 1 3 3 3 1 3 S u l a p 6h c u. . . r. i1 i 10c1 d 1 1 1, 3 % 3 1 23 S u l a p ch c u. . . r. oi2 i 2 c d 1n 1 1, 3 e; ; : 4 44 1 1 1 3 Toluene . . . . . . . . . . . . 4 4 1 1 1 4 : : 4 44 : 44 T r i c h l o r o e .t .h. y. .l e n4 e
2 1 2 1 1 1 1 1 4 1 1 2 2 2 3 2
m
.
A
255
CHECK L
F
I
1. Codes and Addenda.............................................................................. 2. Drawings:
detailsrequiredbyQCManual shownon drawing. . . . Headscorrectlyidentified..... . . . . . . . . . . . . . . . . . . . . . . . ..---. All metalcorrectlyidentified. . . . . . . . . . . . . . . . . . . . . . . . -----Nameplate facsimiliestampedcorrectly: MAWP,MDMTand RT.............................................. .................. Approvalby fabricator(on drawing) .............................................. Revisionsor metal substitutionshownand approved. . . . . . . . . . .
a)‘“ All info&
b) c) d) e) 9
3. Bill ofMaterial: a b c d e
All materialidentifiedas SAor ) SB ----------------....... RequirementsofUCS 79 (d))specifiedwere applicable. . . . . . . . . Requiredmaterialtest reports) specified ..ti.-....=. ----- . . . . . ) Shoporder, serial number,and/orjob numbershown. . . . . . . . . . ) approved Materialrevisionorsubstitu~on and shownwhenapplicable ... ... . ....... ... ....~..~--.-..”.””.....~.”-””
4. Calculations:
9
5.P
Dimensionsused match drawing .................................................... Correctstressvaluesandjoint efficiencies(S &E) used.. . . . . . . Correctformula&dimensions used for heads ---------------Do nozzleneckscomplywith UG-45? -..--..-..---.-.=. .... Requiredreinforcementcalculationsavailablefor all openings. . . Specialflangeorstructural loadingcalculationsavailable . . . . . . Identificationwith S/O or S/N andapprovedby fabricator. . . . . . Externaldesignpressurecorrect-template calculations&template available. .... ... .... . .. ... ... .. ... ... .... .. ... MAWP&MDMT matchesdrawingand specifications. MDMTcorrect formaterials used (UCS-66,UHA-51) . . . . . . . . .
O a Is job n
s
(
a
u p
.......................................
b) C~rrectspecification(SA or SB) used ............................................
c) USC 79(d) & UG 81 requirements specified as applicable ............ d) Material Test Reports requested ..........................................""."."".""" e) Immaterial ordered identical to Bill of Material or drawing requirements? ...............................................................
d=
6. Welding: al Are correct WPS(s) shown ondrawin~s? ................. ””””..”...””””.”.”””.” b> Are complete weld-details for all welds shown on drawing? ......... c) Are copies of WPS(s) available to shop s u p efor rinstruction? v i s .............................................................. o r E
256
CHECKLIST FOR INSPECTORS(corztinuec/) 1 I QC
7.
Al
d) Isa Welder’sLog and QualificationDirectory kept up-to-dateand available?. . . . . . . . . . . . . . . . . . . . . . . . . . . . e) Are WPS,PQR, & WPQforms correct and signed?...................... f) Are weldersproperlyqualifiedfor thickness,position,pipe diameterand weldingwith no backing(whenrequired)?............... g) Is sub-arcflux,electrodesand shieldinggas(es) used t same as specifiedon applicableWPS?. ........................................... h) Do weld sizes (fillet& butt weld reinforcement) . ............................... complywith drawingand Code requirements? i) Is welder identificationstampedor recordedper QC Manualand./orCode requirements?..........................................
I
Non-DestructiveExamination& Calibration: a) Are SNT-TC-lA cmalificationrecords with currentvisual examinationavail~blefor all RT techniciansused? ....................... . b) Do film reader sheets or checkoff recoid~sbo.wfilm. intemretationby a SNT’-~CLeve1 I or II examiner —. or interpreter?.................................................................................. c) Are the requirednumberof film shots in the proper locationsfor thejoint efficiencyand weldersused (UW-11, 12,& 52)? ........................................................................ d) Is an acceptablePT and/orMT procedureand personnel qualifiedand certifiedin accordancewith Sec. VIII, Appendix6 or 8 available?............................................................. e) Is the PT materialbeing used the sameas specifiedin the PT procedure?......................................................... Do all radiographscomplywith identification, o density,penetrameter,and acceptancerequirements of Sect.VIII and V? ........................................................................ !3) For 1331.1fabrication,is a visual examination procedureand certifiedpersonnelavailable? ................................. , h) Are tested gasesmarkedor identifiedand calibratedas stated in QC Manual? ................................................ i) Isa calibratedgage size per UG-102available for demovessel?.............................................................................. I
I
ABBREVIATIONS: Authorized Inspector AI Maximum Allowable Working Pressure MAWP Maximum Design Metal Temperature MDMT Quality Control $; Radiographic Examination Serial Number s/N Shop Order Slo Welding Procedure Specification Wl?s
257
PART II. GEOMETRY 1.
AND LAYOUT OF PRESSURE VESSELS
GeometricalFormulas........................................................................... 258
2. GeometricalProblemsand Constmction.......""".."""."""-""""".".""""""."..."""""-" 268 3. Solutionof Right Triangles .................................................................. 270 4. OptimumVessel Size ............................................................................ 272 5. Flat RingsMade of Sectors .................................................................. 274 6.
Fustrumof ConcentricCone ................................................................. 276
7.
Fustrumof EccentricCone ................................................................... 278
8.
Bent and Mitered Pipes ........................................................................ 280
9.
Intersections.......................................................................................... 281
10. Drop at the Intersection of Vessel and Nozzle ..................................... 291 11. Table for Locating pointS0n2:l
Ellipsodial Heads ............................ 293
12. Length of Arcs ...................................................................................... 297 13. Circumferences and Areas of Circles ................................................... 300
1
A p p u r4 t ............................................................................ e n a n c .e s
312
258 G E O M E T FR O I C RA M L (
e S
❑ l
’
b
xS Q
U
A% A A = a2 d = 1
b
b
o
R
.~
4
1
=
a
4
a
R E C A A a A d =
T
A N r
G
L e
x
7
1
E = =
a b
~
~
a =$
-
A or- b = — a
o
i
gn n e
eg
)
r
-
r
P A R A L L E L O G R A M A A r e = a A a x = b = A a T = J A b y
A
r a .
A
900
A ,6,
S
2
R I G H T - A TN G R L IE D A c
A
;
, d o 7 a =0
o
L
E e
a = 0
b =
b
A
=
a =
B
l ap ee h cs a
r
.
I
D
ao m t e fp
U
axb A=,
e
=~
N
G a
L
E
~
’
b ‘I/== ~= a2 +b2
A A
CA A
NU T G R T r
LI e
EA E N DG = a
L
E
b
.
h [
A
w
;s : O A
* *
A “
’
\
B A T N UT G RS LI E A E N DG A r e = a b x h = ~
A : ~ s (w : s ; ; ~ : x: s - ’b ’ s
s
L
-
E
c
)
259 E ( S
Q
U
A
Given: Side Area Find:
D
i Side Side
R
oS
ro
A
M
tm e Fu
P
L
E
S
l aP ea h c s a
i
gnn e
eg
)
E
a = 8 inches
A = D i a d g= Area A= Side a = Side a =
R E C T Given: Side F iArea
F
X
~2 =
82 = 1o n a. a= d = 12 0.7071 d = G
‘
6 s i q n 4 . . 1l 4 . 41= 11 4 41i x. 83 n1 1 . = 3/ 61 s 2 2 q2 / . 2 i n4 0 . x 1 7 1 =0 8 . i 7 3 1 1 n 2 = g
i *
N G L E a = 3 in., and b = 4 in. n A = ad x b = : 3 x 4 = 1 s
2 .
. .
n
A
a d g= -o n a = l_ a = A/b = 1 =3i2 b = A/a = 12/3 = 4 in.
q = /
P A R A L L E L O G R A M G i H v e a e= i 8 in g a : t h n s t b =n . 1i h i F iArea n A = adx b = :8 x 12 = 9 s q Height a = A/b = 96/12 = 8 in. Side b = A = 96/8 = /12 in.
R IA NG T G R H LI A T E N DG L E Given: Side a = 6 in., and side b = 8 in. F iArea n A = ad x b = : 6 x 8 = 2 s 2 S c i= d h ~ 6 e+z 8 m S i d e a ‘ ~– 8 = ~1 Side b ‘~c2 – az ‘*102 – 62 =4 1
. ~ n
.
-
i
= 4
,d d -
n 2 f5
.
i
=i
n
.
en e i n 6
2
.
.
a
q
.
= *= 2 – 0 1‘ – =
-
i
n4
.
=2f l 2 =06 6 0 =3 8
i= i2 i
i 0 0
A CA NU T G R T LI EA E N DG L E Given: Side a = 6 in. Side b = 8 in., and side c = 10 in. + 10)= 12 F iArea n A = sd z % (a : + b + c) = %(6+8
Ad s (s- a) x (s-b) x (s-c) =i12 (12-6) X( 12-8) X (12- 10)= 24 sq. in.
OBTUSE ANGLED TRIANGLE Given: Side a = 3 in., b = 4 in., and c = 5 in. Area A = s = % (a + b + c) = % (3 + 4 + 5) = 6 Find: A= # 6(6 -3) X(6-4)X (6-5) =fi = bsq.-in.
4 6
n n~ n~
260 G E O M E TF R O I C RA M L U L A S e xS a o m t e fp l ap ee h c s a i gn n e eg
(
R
IT
A
= A = a 2 =~ l = 0 = 1
A
h [
b h a
a
R GI
A WH N 2 G 4TI LA r
e
e .a .
4 7 4
A
e
A a ~
1 0 1
A m
r
4 7 4
T
u
R
D
A
:
A
@
G
L
E
a h
E
Z
O
b h
I
D
e
=
a
a +
)
O
N
E
A R
A r e = a R aRo c id r c i u mcu=s c irs i b r ef d c l R ao i dn s ic c uri i sr b e cf d l e 2 a0. = 2 5 R . = 93 = 5 r 8. 9 z 4 8 6 z a = 1.155 r 0 a .= 0 8 R. 6 8 6 6 6 R = 1,155 r E G O U C L T AA R G O N
R A a ,(3
N
a = 1.155 h
r
G H U E LX AA R G
A A R R r = R 4 A R 1 r = 1 a = 0
r
=
a 1 h
R
2 i R = r = a = R
@
Eo
2
=
f
HL
( ‘=
w
P
A (c
A
=
x
h = 0.866 a
&
e
5G
a — 2
E Q U I L A TT ER R I A AL 6
E N T
)
r e a = ao c id r c i u mcu=s c irs i b r ef ao i dn s ic c uri i s r b e cf a . = 2 8 R . = 23 = 8 r 8. 2 z 3 a .= 1 3r . 0 =0 7 8 a .= 0 2R. 0 9 7 2 R. = 0 7 r. 6 8 5 2
E
G P UO L L AY R G O = N u o r n e as m = ’ @ = ~go” – a “ =
A *
~
-
J
r
d c l d l e 8 1 z 2 4 8
e 4
e 4
N ib
ed
r
e
261 EXAMPLES (See Formulas on the Facing Page) RIGHT TRIANGLE WITH 2 45° ANGLES Given: Side a = 8 in. 64 Find: Area A=~ a2 =7 82 = ~= 32sq.-in. Side
b = 1.414a
h = 0
=
. a = 70
=
0. x 8 7= 5 01
.i7 6
1 5
n6
8
E Q U I L A TT E R R I A AL N G L E Given: Side a = 8 in. = 0d x .a: = 0 8 x .8 6= 6 8 6i . 6 9 6 n2 8 h F i n 5 95 = h2 . 2 7s4 8 .q 2 .7 4 - 1 = 8 X 6 x =. — Area A = ~a 2 2
T R A P Given: Side F
iArea
Z O I D a = 4 in., b = 8 in., and heidt h = 6 in. ( b h = ( a 4 6 =+ 3 s 8+.-i . ) ) nA = d z : 2
R = a = 1.155 r = 1.155x3.464=4 in.
REGULAR OCTAGON R= 6 in., radius of circumscribed circle Given: Find: Area A = 2.828 R2 = 2.828 x 62 = 101.81 sq.-in. Side a = 0.765 R = 0.765 x 6 = 4.59 in.
REGULAR POLYGON Given: Number of sides n = 5, side a = 9.125 in. Radius of circumscribed circle, R = 7.750
Area
. i 2 n
E
R E G H U E L X AA R G O N Given: Side a = 4k. 5 x .a: = 2.598 x 49 = 4 8 1 w 2 . F iArea n A = 2d r = 0 8 x 4 6= 3.4646in. x .a = 0.866
Find:
.
r=m=-v= 625ino nra 5 X6.25 X9.125 = 142.58 sq.-in. A = ~ = 2.
X
6 q
- 5
i 62
8n
n
.
262
(
d
G E O M E TFR O I C RA M L U e xS a o m t e fp l ap ee h cs a C
I
A
A
R
C
L
r
A S gn n e eg
)
E
C ie r c= u ma f e r e n c e
A= r2 x ~ = rz x 3.1416 z d
L i
n = d
3
x
.
x 4
1
1 x
6
@ L
eo a n f
C A
I
R
ag
S C
a tnr =
UE L CA ra = A e
A
A
< v
C
:
I
R
A
A
A
A
S C
.
1 8
. U E
2 LG
ra o s r
em
2
AM R E
7
c g
n
1 r
2
&
4 9
A e
0f d Icx0a r 8 e 7
R T O R = a=a r A =
‘ r X r x a x 3 a = 1 5 7a a=— r
a
o0h g.
6
0 2A Y
6. N
T
=n
a cg = C l = cea i =ot t nar or f iu r ae
oe sn
ga
l
c = 2r x sin a T
<
Q a —
* +
+
0 D D
0 0
A
A
A
z
E L a — b
.
L
x = u
Q
L
.
I
x
P S E rP = P ee =r i a m e t =a3 . x xa= x1 b 4b 1
a p p r of x oi m f r ap ntmee ut o il . 1 ( a4 + 1b ) 6 { 2 P = 3
x
—
L
A
w
~
E
L o
L pc
I P S E a oo t e ii l n n l g
= R o am . — az - ( 2C x y2 )
m4 Y = c
d
~
(
ti
at i =ct m i nx
ps
e
r 6
ea
t z
s n a oa o
er z
r
e i f j xr
—
w
N = the required number of holes (diam, d) of which total area equals area of circle diam. D.
os
i
2
EXAMPLES (See Formulas on the Facing Page) CIRCLE Radius r = 6 in. A = r2x ~ =
Given:
A =
=
= 12ZX0.7S5Q C = dx = x if a = 60° dx a =
=
CIRCULAR SECTOR Given: Radius T = 6 in., a
= rx
x
a = I
R
S C
xa =
U E
x
= 6x
LG AM R E
Radius r = 6 in., A a = r2 x ~ x —
.
x
x
=
Sq. h.
= =
N a
x
= 18.85
x 6
r
C
=
= = 62 x ~ x ~
= r2 ~ x ~
Area A
=
T = X~
=
A = Chord c = 2r x sin ~ = 2 x 6 x sin ~ = 2 x 6 x 0.7071 = 8.485 in.
E
L
L
I
P
S
E
Half axis, a = 8 in. and b = 3 in. Area A = ~ x a x b = 3.1416 x 8 x 3 = 75.398 in. P = + ) = @ =
E G
L
L i A
) =
I P S E va = 8 ein. x andn b = i 4: in., then s C = ~ = ~ = 2, x = 6 in.
~ = ~
-
~ 2
c -(
E H
+
)
2 (2
2 2x
.
)
. ‘ 6
X m
%i @holes have same areas as a 6 in. diam. pipe? N= (’/d)2 = (6/0.25)2 = 242= 576 holes= Area of 6 in. @pipe= 28,274 in.2 Area of 576 H in. #holes= 28,276 in.2
(
G E O M E TFR O I C RA M L U e xS a o m t e fp l ap ee h cs a
C
o
v=
i–
A S gn n e eg
)
E
l
u
m
e
RI
ES
u
m
~3 1
S I I
Q
P U
V = V
o
— I
B
V = V
b ~
U
L i
RA l
M e
— J
L
:
.;
P
R
;
:* ’
,:
I
S
-
’
:
=
C
&
M
T f : oh : c r ‘b; m ai Ay rpu efaa elpsoa f easl n d iso ho”nere nf=esa dca eu ‘ i h i p e r p e nt de i cs fu ul as r r n f a c o de
m
prrn y .
w C .
v
Y L I Volume . .
;
“‘
. —.
% +
C
q . (—. h
% L
d
3
v
~
-
R
P
I
: 0:
U O SC
’
i s ne du r ri a c f af la
82
x ’
h
E
S = A
o =c r o s
4 = 1
1 6 =. x r x0 h
n ue 4
i r 2
7
c fa a af l 2
d = 1.5708 dc T
UO
M
N
F
E
S = A o =c r o s n ue i r i 0.2618 h ( D2 + Dd + dz ) = a = R–r c.
s =% 1.5708 C( D + d )
I
l
” x: : 7 = d
N
i Volume
v v
h
:
. . x r x1 h
“ S = 3.1416 rc
.
0
;
Volume
F ‘
: O
v
.
;
N D E R o =c ry S = A
c fa a af l ~
265 E ( C Given: F
U Side iV Side
oS
ro
B E a = 8 in. on V =l ad =u 8 : =m 5
ce
a = G
F
X
A
M
tm e Fu
u
P
L
E
l aP ea h c s a
.1
8i
~-
3i
i
gnn e
n2
=
C G F A
R I S M ue A r=nn 1 f s : aq a c. d h -=e 8 iin. n i E vs iVolume n V = hd x A =: 8 x 12 = 96 cu.-in.
Y i
iV o C ry
C G F
A
F G F
L
O i iV
I vr
n
.2 ,
x7 0
2=6 44
; x
2
5
n —
. 72
- 2.
4
.
zc2 57
6 u5 i9
u 1x 22.
c = ~ ‘ 3 1 = 6 {41 ~3i =+ . 4 o C r o S n ue i r S =cf 3a aa f. crl x ce1 = : 4 1 6 = 3 . x 6 x11 43 = 2 1. 5 64s 2 q1 . . 86 - 8 R
9
d
N D E R = e 6 in., nand h : = 12 in. on V =l 3d u . x : rm x1 h =e 43 1. x 6 16x 1 =4 12 1 3c l i S ne du r rSi a=fc 3 afa l .cx d xe1h : = 4 1 6 = 3 . x 1 1x 1 =4 4 15 s 26 q . . 23 - 28
N E v r e= 6 in., n and: h = 12 in. on V =l 1d u . x: rm x0 h =e 4.
)
.
S Q P U RA RI ES M Given: Side a = 8 in., b =6in., and c ‘4 in. F iVolume n V = adx b x c : = 8 x 6 x 4 = 192 cu.-in. v 9b = = n = 1 2 . = 6 i — =1 = 8- i a ! 8 4 b 6 x x c = —1 9 ~ 2 = 4i n c . a 2 x x b 6 P G F
eg
n
.
h- .
i
4n
4= n 1 i7
i
n
UO C S T U O M N F E 32 , n 7 a e D m= n2 e i :t a e d n=r 1 i n h. = 1n 4 , 0i d . . i D vi V =d 0 1= 8 2 2 d ) iVolume n : . h ( 2 + D 6+ d D 0 . x 1 2 0( 6 +. 21 x231 8+ 17 4 =5 2 2 27 c 3u24 17 2= 0 = 8 42 . C ( D5+ d 7 1 0 . X 1 )8 5( Surface S = 1 6 7 s 8 q . .5 -8 i 6 n .
6 .
5
2.7 2 +
266 GEOMETRICAL FORMULAS (See examples on the facing page)
See tables for volume ical, elliptical on page
and
and surface of cylindrical shell, spherflanged and dished heads beginning
267 E (
F
oS
X ro
A
M
m t e Fu
P
L
E
S
l aP ea h c s a
i
gnn e
eg
)
SPHERE Given: Radius r = 6 in. Find: Volume V = 4.1888 r3 = 4.1888 X216 = 904.78 CU.-hi. v= 0.5236 d3 = 0.5236 x 1728= 904.78 cu.-in. or = 4 x 3.1416 x 62 = 452.4 sq.-in. Area A =4Tr2 or A= T d2 = 3.1416 x 122 = 452.4 sq. in. S G
P
F
S G
H ES R E I C G AM L E N T i R v a r e= d6 in.n iand: um = 3s in. iV
on V = l 3 d
= 3
. x 3 1(
A
Ar 2 r
u. x m : m1( 4 =6 1 1 x e
e4 = m @
1
r 6
-4c 6
1u;
2. . ) - 3
z
= r2 Xa 3.1416x=X 6 X 3 =m 1
-
i 7 n
.
1S
3q
..
-1
i 0
P
H E Z R I CO A L N E i R v a r e = d6 in., n i Cl : =u 8 in.,s C2 = 11.625 in., and h = 3 in. 3 X 82 + 3 X 11.6252 + 32 = 248.74 cu. in. Find: Volume V = O.5236X3X ~ 4 ( ) Area
T G F
A = 6
O R i Radius v Re = on V =l iV A A r=
. X 6 X23 = 18
13s
q32
..
- 1
i
0 n
U S 6 in. n and : r = 2 in. 1d u 9 R: m x r. = e 17 9 = 7473.7 3Cu.-in. z 93X 6 X .22 9 3 9eR = . 3 a 4 9 x 6 7x .2 = 844 s7r7 q 8 3 .
.
- .
i
7n
—
268
GEOMETRICAL PROBLEMS AND CONSTRUCTIONS x
AJ
LOCATINGPOINTSON A CIRCLE
z .
.
EXAMPLE = Sin. X= 3 in. ~ind Y == =~ = %= 4 in.
y =x =q~’
& q.
D
L
E
O N F G PF TL C
=
.+
L p
:
~ ~
t
,@ T
‘
e
o
T LO IE N
D
RE
E X A M P L E n I g ndt hi s = ao= i m f 2 ed 4t e e i r t n l T ah i o ct fk :enp1 i e l s as
d i a Lm 2 e t 1 1e5 r 8 FINDTHERAD;USO COF AI R
e ~
q
A HY
x A C
3 L
U
A
: ‘ ~ ~ ~ : ~~ ; ’ : : i n
TO FIND THE CENTER OF A CIRCULAR ARC When the Radius, R, and Chord, C are known, strike an arc from point A and from point B with the given length of the Radius. The intersecting point, O of the two arcs is the center of the circular arc. y .d~
I
o
q
T
P
I
w
y ‘b
p o t a #
FJ J
. A M
z~ D
T t
IC
E NOH NA C O TDI
Ch
REE A C RU
L FA
hC a eh oD i r m n endM ean ,ks i no, dn ro, p r Ao a f o i P rn nB moo t o i s o it a dtC or he t h n i ns nc t ef e erh sc. e tc t ow s i t i nl r atiT t ii snng t heh rhp t s s e co . t i s t l r h aOi i ti n cg f eheo t t hsnc i, t r hesc e r c . ~ C + 41W ; Y=R-A4 = 2
a a tf
r
i r
k
8A4
k
c
F
CONSTRUCTION OF A CIRCULAR ARC The Radius is known, but because of its extreme length it is impossible to draw the arc with a compass. Determine the length of Chord and Dimension M. Draw at the center of the Chord a perpendicular line. Measure on this line Dimension M. a B B lni D As i a e nd c . Connect points
B a m e M an d si mu Dp /e erd rn pe se ni d 4oi cn u l R e p t e p a r th o i t cnt e rgi de uq asr hu e ec s c t o a M w cb a e i yb i a l s 4, te ccll i t eTi te m ho n s e v o o r t t t ir ic a ahet nps g o l rtf ehe ic s n ieht c a u lr a c r .
- .
GEOMETRICAL PROBLEMS AND CONSTRUCTIONS
I
SOLUTION OF RIGHT TRIANGLES R
E
Q
U
NOWNSIDE OR ANGLE
I
R
E
D E
FORMULAS
X
A
M
P
L
E
S
( E N C I R C L E D ) t
@4
a b
b
Sidea s 6 in. b = 12.S67 in. a F A A i n‘n ng ‘ 0 l .d
A ‘ ~ ’ a
= Sidea
tan B = ~
F
b
b
c
A
= 6 in. b = 12.867 in.
A
B i n=
1
= s Side a = 6 in. c a
sin 0.S00
c
B =+
A
c
0
= 30°
a B =y
a
=
C
c
=
Side a = 6 in. c = 12 in.
B
c
= 12 in.
A =~
A =~
A
@
. 8 6 e1 2 l~ d.
= 3 in. b = 4 in. c -
b c
c
2
ng
= Sidea
b
e4
a
= 0
.
O
5 S
a = 3 in. c = 5 in. b =
‘
= 4
A, a
a
A
(
b = a x cot A
b
a
A
a A
AA
b
i
)
c
a
A = 250, side a = 6 in. b = 6 x = 6 x =
a = b x
A n=
?300,
side
g
c =-
A = a = =
A
a
=
=
l6
—6
b = x x
in.
e =
=6
A& @
A b A A
c
A
Angle A = 30°, side b = 12 in. = 12 c i— n
= F
= 13.856
@ AA c
A, C
b
b
c
C
,
a
= c x sin A
b = C X COSA
Angle A = 30°, side c = 12 in. a = x = 12 x 0.500 = 6 in. A = 3o0, side c = 12 in. 30° Find side b = 12 x 12 x 0.866
A
I
= 10.392 in.
d
6
971 A
F
r
uof Es C t C uE E Given:
X
A M
M d
Nm C T P
R OI L
C
N
E
i e ata the mlarge a eend, t D n=e 36 rin.
4.
C of Circles for
t
h A The Bottom
300 6Q0 ~oo 1200 1500
Factor c times mean radius = Chords, Cl C2. . . in. c1 = 9.317“ Cz = 18.000’ C3= 2S.4S2” C4= 31.176“ C5= 34.776* ‘6 =
“Segments
=1
e
At The Top Factor c times mean radius = Chords, Cl C2 etc. S 1,2... ft.-in. s:, 2. . . ft.-in. , in c1 = 6.212“ s; = 4’-0 % S1 = 6’-0 ~ s; = 4’-1 yz C2 = 12.000” Sz = 6’-2 Yle S; = 4’-2 IMG s3 = 6’-4 ~ C3= 16.968” S4 = 6’- 67/lG S: = 4’-4 ‘/fj C4= 20.784“ Ss = 6’-7 I946 S: = 4’-5 Yl(j C5= 23.184“
HZ + & G G’. sl~
t
‘*G=-
=
4’-511/lG
E
272
O
T l T (
et o p
E M F
S
P
a vu eofi a c s l e cso r ad e t w p laathe cminimum i i i n t material, ty theh correct r o a d n i ags mb t hde eh t t a ee o r r m l i n l e ed . p rt h oi al m eftu et nmd i ig aoc th m b f fhe tboa tee f ru o l npn lh r eo od wc iey rT ie l s hi st m1u eirp aet0 e e l s ld0s i hnp os a0eo a i i ds ad as l r ud m s e de
b
F=~
V
, where
CSE
P= c=
Design pressure, psi.
C S = S E = J
o
r a r l o l soi iw oa nn c n e vt or am ea l tp s e u rs si ea e of f i c i n e n t c y
,
. lf i ,
c n o hf t apa e ac tr ra li ht n gnse h g a t ei df nt ee c d tsha d i op t era v tce e e i d sth h o or i z t ovt n l t ar ele l pi hy r e t s nve no ote aE i enh g l u e e f t ir n t e orhms e v cmeto ir eoat n ir v c t a v leen l o yaf ha l d du ) e e f .
The length of vessel = ~
, where V = Volume of vessel, cu. ft. D D = Inside diameter of vessel, ft.
n
EXAMPLE D
Design
P= 100 p F
t
F =
oi
a t a : V = 1s c , fi S0 = 1t , u 0 6p .0 , E s= . 00 , i 0 C. = 0.0 8 p dt hn i i aa m dm l u e e mt nn e rg t d h
100 0
F
c
.X 1 0 6
60 ,
rD = h 5.6 ft., o as
= 0
02
05
i . .0
n1 X
5 ft.rm6 in. t a
Length = 4 x 1,000 3.14 x 5.52
.2 8
-5
. ,i
00
l
y
= 42.1, say 42 ft. 1 in.
* FROM: “ Gulf Publishing Company,
—
Houston.
permission.
273
100,000 80.000 50,000 1 I I I I I I 1 I 1II 40,000 6
I
,
\
20,000 ,
5.000
, ,
I
I0 8 . b.UUUk
1 I I
1
I
I I II
1
I I I I I
1
,
, ,
,
!
[ , , , ! I I I i
,
,
,
,
,
I
I
,000
1
i
I
,
,
,
,
,
, ,
I i 4.000 ..- I 1I1 1[I I I 3.000 2.000 I 1 I
,
f
1
1 I
I
I t.
[
[
1. +[
t
%~ fz~
i
I
w 1+ I 1 I M
i r
1
I
I
1 1 I
1 r , I I
400 300 200 100 80 60 50 40 30 20 10. 1
2
8
4
3
910
VESSELDIAMETER,D FT.
CHART FOR DETERMINING THE OPTIMUM VESSEL SIZE (
f
Sap
fc
e a xi p ln eago ng a t ei o rn )
274 FLAT RINGS MADE OF SECTORS
L
Making flat rings for base, stiffeners etc., by dividing the ring into a number of sectors, less plate will be required.
1
Since the sectors shall be welded to each other, the weMing will be increased by increasing the number of sectors.
ONE PIECE
d Q
The cost of the weMing must be balanced against the savingin plate cost.
o+
The chart on facing page shows the total plate area required when a ring is to be divided into sectors. This area is expressed as a percentage of the square that is needed to cut out the ring in one piece. The figures at the left of this page show the width of the required plate using different number of sectors.
2 SECTORS ER 0,866 D 3 SECTORS
~ u
D z Outsidediameterof riu. d = Insidediameterof ring.
0,707 D
DETERMINATK)N OF THE REQUIRED PLATE SIZE 4 SECTORS
~ m
n
1. Determine D/d and D2 (the area of square plate would be required for the ring made of one piece)
0,500 D
2. R
e n
0
D,
S 3
6 E
C 8
T 3
c r Os
f e d Re
e c r ( ha f o n t tr ae i i v t ni d n Sc t o
3. Determinethe requiredarea of plate 4. Divide the area by the r
* ~
D T R O P M
po aa d t ca rm p i g tn qag h uw e i r t r f h ee d e neg sht du io m ro r s
e qw u o i i r a ls aah t l ot o t ewe ph s t hn f a bt l t eo at hnp i gl n hta e ht S E C T8 O R S 5 A a l l d(o w 1mai n. df acn f e xc l c u b t e t s t i ewa n c ea gt t e e onn dr o t Tp t f e e E QH W U I I R EE D D H l h a LF RA I O T FN E G R S O A S E D C T EO RF S S E x Oa eF m aP p c l ea ei gn n p o
L 13
FLAT RINGS MADE OF SECTORS (cont.) 100 90 % LL 80 o @ ~ 70 u $ 60 & q 50 CA $ do & * 30 CIa + ~ 20 — & 10 ~ o
2
EXAMPLE
w
—
.L. ~
3
4 5 6 NUMBER OF SECTORS
7
l.1
a
Determine the required plate size for a 168 in. O.D., 120 in. I.D. ring made of 6 sectors 1. Did= 1.4; D2 = 28,224 sq. in. 2. From chart (above) the required area of plate is 50% of the area that would be required for the ring made of one piece. 3. Area required 28.224x 0.50= 14,112 sq. in. 4. Divide this area by the required width of plate (facing page). Width = 0.5 X 168 = 84 14,1 12/84 = 167.9 inches, the length of plate. 5. Add allowance for flame cut.
= m a
~
1 169 “
-
.
-
F
r
-
uof Cs O tN Cu E mNC T R I O C G
i
v M M H
D
t t e Rr
R
= D- DI
b—
o T n R i a c
:
m e
iqP hn u le i
ar
e
qP h u
r a ee
tan c1 = +
2 e -
n
E
d i e aa t m la = e e ta n eh rnr d ie aa t m sa e e tm n eh nra eo t if r g u= h s tt u
T
C
e
D DI = H e
N
s
.r 1
R
oa n l
o
a
li
e et d
d
D rl = —1 2’
, c
k
m f
/
P=
x3 T
R
e
qP h u
li
r
ae
+
277 F
r
of u C s O tN Cu E mN C T R IO C
N
E
Made from two or more Plates
t
-
%
G
i
v
e
n
D D, = H n =
M M H N
D
e
b
=
t t e Rr m e D - –
,
:
d i e aa t m la = e e ta n eh rnr d i e aa t m sa e e tm n eh nra eo t if rg =u h s t t uf e u o p m (l b s a ee t cr t e of iqP hn u el i D —
2
r a ee l
d t
tan W = *
-b
I
D
c rl
= ~ +H = D
e
.
Elevation
l’%
2 x Y
b
2
1
/ c
R s DXZ 2 Rxs Rxt exs exc
m X 5
t 7
> +% ~ + 1 2 ~
2 2 +
&
i
. 2 R = i = a = i o
9
6
n n n n s
W o it R d e qP t h u= Rlhi +r 1fa ee d -t L eo t n R eg qP th ui hl i r af ee d t t F r mu h f s at r u e odm me 2 P
Reauired
Plate
:l 2
Y a +Z t
Xe
s
+
:
F
Determination
r
of u Es C t C uE N Cm T R OI C
of the Required
Plate by Layout
N
E
and by Calculation
1. Draw the side view and half of the bottom view of the cone. Divide into equal parts the base and the top circle. Draw arcs from points z’, 3’, 4’, etc. with the center 1’.
c
F t p r 1o 2 oh3i e n m ° °t s at w r c r i Oei k nc t e t S t f a a pr rto aoi 1 no i g ( m 1 ma er t ska pes adu h o t b oc oht i t ct r o cf oe a i n at 2‘en r s er dc 2 # Side view of cone
4 O of the top circle.
A
o C A L C U L A T I O N T f
t
c iu
ro t vhnp a bt ocl uda hrle ace u l t a f O
the
B only (marked
S3)
If the bottom C3 .
circle divided into 12 equal spaces, 2 R x sin 45°
S3
W
=~H2
R hdenoted ethe mean r radius ofe the base
circle. See example. Fig. B
+ C;
970 L
F
r
uof Es C t C uE E
X
A
Nm C T
M
P
R OI L
C
N
E
E
at the large end,
D = 36
in.
C C
C
etc. using
=1
c
c
=
= . . =
S1 = 6’ -0 % = ~ = = =
= . = = =
C~
~ 1, 2 . . . ft.-in.
H2 + D2 = 6$- 8Y2
s;, 2. . .
= = = = =
,
s; = 4’ -0 % s; = 4’ -1 %. = = =
“ “ ‘
6
BENT AND MITERED PIPE
2
I &
C ,
/
k\
./ r [
.—.
\ \
\
‘F } : 17 - ---16 — ‘– ; :b
.
!
-w I
‘Y” h 1
= (
a
1
= (
- a
t i n t e rhp s e i cln t i ena g n p e r p e n t d t i c a u l oa tr xh i o c y l t i ni n d t e hr r is ,ae c t i e o r e l l i p s e . !Cl C O N S T R U O C T T I O N I N HT E IC2 \ \ \ S E C E T L IL NI G P S E D it cv i r ic uh dm of ete r e ne c e c y il ie n np qd a ea utd r r a orn t l a e l a e e m d eia pvn n i toc s i i t h T m a a oh t jxe loi et il h r i sp l o d n i gbs tee at st in w t cn e e h te s e p c oa t t i m nn a nig ti h nsx do t d i ao ht m c e y t l Teehi rn d ef p oo t i e nl c l tbh di s pe a f s et e m bi u nt s c e i h o dth on yr g d c y ls i p bn pad r eco rj a ee c d t i s oh b c o a l cw ua le an t ix or yn es h e t .t i h p l b i e f W l i t eomi d w m b l o as a l t o ui br yp aei a d ny t f l d o ew n - e c s oT m tte , r hs ch i n o t ep a l s t h r a es n qt f h eu ei c l e s a ra h a b nt al c i ea l s k nl c o n s i d e r a t i o n . D E V E L O P M E N T T l e H nih e g t qt t hec u , aih c u m f o et rc e y n l cD hi e n i d v e f e t l i h t i s n i nn a htu s o em m o b e e p q a at u c i rr a c u htmlo f e s r e sn e t c y l hD i n a d er e el r .ea m t h e r d o i a upv e gri cp hse ni d hoi c nu t t l hD i e t nit e l r oe mes i .hn e o e e la a es m c oh be cf ohn t w a c u l Ba c t o i n o n t n e e. c t i hny g p oo t i e ln ec th mb os e n fa et s t at s i t r en t hc le h eo dtd -i o e u t n i n t e r a s em c tb i u on nf a s d c u o t p t a f i t pu n t m g e i oi r t t n p i e n t g c , . E X A M P L E f c a l co uof l length a t i rofo n e l e m e n t s . T c i r c u h m of te r c e nye c el h i n i d i i v 1 ie n d p q e ats du r oa t T a o n ah s g e = c2l e t 2 e i - of d e g r e e s . T a o nt h i ng t e rlhp se e ecl t fi ean t t a o t xh c y i=l oh4 i e ns d f d e g r e e s . c = r x cos 22-1 /2° 1 , c, = r x cos 45° c%= r x sin 22-1 /2° a ,o ~ 0 ) s ° h l h a = l = e 2 2 o 0t a ) scs 4° a. si 40 in 0°t e
‘2== cq 4 c
-
4 a
P
1.~ *G1
When
282
I o e
I
C d q i
a uwm a e a toi nfie nl r t gtse r 9 s l e h c te i o0f n
1
I
—
I
.
I
1
1d
‘/4 O T L D it i e e d p oo o i n t D D c l a D p t o c t
F
O IH IN T E N R S EE C ET I FO N c v i r ci u h md of te er c e ny e c l e hi n np q a a ut d ra a eo rn t ll a e as m d ai vp ic o sT i i i h no nt ne h rt s e . c t ie ln ed th m e st e t e n lfr et m s i i h e r s e c t i o nf .
E V E L O OP M P EA N TT T E R NF s tr lr oa a e i i gl qw h ent tut n ea g i r c u m o f t e rc e yn cl eiDh n itd e v rf es i i t s nn n ea hut o esm m op qb e aee u t c i r c uh m of et r sec ne yc el hi n d a er l t ea hm e r we do n n ai u t v g i c e r p e n t d t i c ul hl a i rD e en t s ee o r es l e o e hn e g al bte ep m chr o e jf hen c c a l c u ( l ae t ixS o b arn . e m e B l p o el o n nt e e c pt i ohnot gn e i l e e nh md s t r o eh curve t c of the h uintersection ee d t
can be developed.
EXAMPLE for calculationof lengthof elements If the circumferenceof cylindersis divided into 16 equalparts a = 22-1/2° c1 = r sin a C’2= r sin 2 a C3 = r c a c4 = r
o
s
-
I o u
I
C n d ei
qa wmu a e a tofi nile n r t gtse r 9 s l e h c te i o0f n
inder into as many equal parts as necessary for the desired accuracy. Draw an element at each division point. Project distances c1, C2 etc. to the circumference of the larger cylinder and draw elements at each points. The intersecting points of the elements of the large and small cylinder determine the curve of intersection.
D E V E L O OP M P EA N TT T E R NF S D a s r t l r of aa e ii lgw q hetn tut n aeg ht c i r c u m o f te rc e yn cl eiDh n itd e v rf es i . h l f t i s c onm yh il a e it rnsl n e d l e a ht r n u o e m p qb a tae u c i r rr ac u fhtm l f e s r e sn o t s c m yh l aDi n afl deer e l r e a. m t h e r d o ia u pv eg ir cp hs e nti dt hoi c nu l a rh l D i e t nt e l r e meo it .hnne el g e ht me he b p r o oj ce a c l t c iu( oly ean t xSi o a nr . me b e Bl c oo nw nt )e e c. pt i ohnyo gn i t e l et h sm t e r on eh ctet sco ut h u ee r d vh i n t e r c s be dc te i v ao e n l o p ne de . T c u r ohv t a h t ui et r oh le al fh e r c y li d i e n t ed b r e t m r l i n e oes dh n g e l ec Cm e e s n p1 t t a s a cdch i,i 2 ns .e gt c a b c e e w t a h ct s l i , . e, or c h, n h g a o t rp a v c rho t t i ls i nc aae hyl r lw g 1
E f D i
c1
der.
X A M P L E c a l c o ou ll a te oi r eon nl ge m t ef hn i t v c i i rd c ui hm no f t eg rc e ny ec le h i1 =n 1 e n p q ata u= 3r oa t 2 sl 0 , = r sin 30° C2 = r cos 300 C3 = r 1 =
t sf . d @ f ee 1r ° 14= @ R
c,
, 2 , +
=
284
I
C w
n
i i n t e roat s e c hxt i nn g e a . b . I I
r —
— ; 1! -
-+
.
,
1’ I I
I
~
;
+
T L O IH IN T E N R S EE C ET I F O D it cv i r i c uh dm of ete r e ne c e b rc ya ol nb i vcn doi h i e r etn a m e a pq a na nu e sr cay e t sl f t i n o t a h ec nc Dud r r ee a dr c a e l a e e m d eia pvn n i toc s i i t T p oo ih in t en r o s t tee c s t i of c o r r e s ep o l n de d i m ne g te e n r t m t l o i ni h t e r sn e c e t ie o fn .
T m l i w m
L
d
.
D D t c n c t t o c B e t
k
f
- –‘
y*-*
-
, I
I
.
\
. -
C
s
E V E L O OP M P E AN TT T E a s r t l r oa e ii l gqw eh n ut n t c i r c u hm o f t e rb e o n rec e ha y al di n i i d nvt e s nri d ad ht e u o em p bq a eat u cr r a f ith l u m f e D r e an rc e e .l a e m h e r d o i a upv e gri cp hse ni d hoi c n t l Di eh t n t e l r eo me i . hn t e l ebh m p r e o n fjo ete cs t a l c u ( l ae t ixS o b an , e m e l p o e c o n nt ee c p t i o hnoty ng i l et sm t e r on eh ct t sco u h u ee r d i n t e rhc s eb cd t e i veoa en l o c u r ohv t a h t ‘u ter oh e c ya il d i e i nt e db r nt em ri n eo e n l egc C m te e s h n 1 t tpf s t a dh n i s a etb ca egn mc t e t ah t l i eo r ca hn o ht g r e t e c ya (l ei il n se vd an e te ri o
E X f c a D c c,
i y
A M P L E l c o ou l l a eo t e i n olr neg vt il
s
n
m t
ci i dr c iu h mn of tge r e n e c e 1i e nn pd q eaa =t 3ur r aot 2
= r sin 30°
C2= r cos 30°
/1 = {
R + C2
12 =~ R2-(r —
1
16 = R
il e
J
+ C1)2
4 R2- (r - C1)2
-
2
285
I
C
B
3 2 1
%
2
/
4
I
3
A
C
T D c m t e D r s b e c e o d o o c l e a o a (
L
O IH IN T E N R S EE C ET I F O N cv i r i c uh dm of eet r e ne c e h y l o i b n v d o ei i r a te n n w h e a p q a annu e rcayf e t sl s s a o d e a hs c ic urD r ee aa drc y . a l ae e m d e ai n vp t i c o s ti h o n c r i o r p a c v l l ww e i s a i en ar , r de Ti l t u2o i s i hc n l ,t n . e o ct tp ii d ol he tn e ar nm e i nn t p oo ih ni t en r ys o te e c ts i o nf l e a m t e c no rnt r esh s p o nd d ie i Pr cr t l o pe hj s ote .te ci st n hte l e vT a i t n i t oe hrnp s . e oc t ii e n gn t p r o aj h e e c l t eow f n erm s e i n e t te rl mo ii inhn t e r ns e ec t e t e l e vh T a st it n or e hne . t c c u r ouv t a h t ui tr oh e l fh i t o b d e n t e b r etm i s no e dh eo a n a ag r e tt r 2chta 3 n f s s cf , e f t pr v olohc i a dl amc e ue l n a w e x e m bp l ei T f lsi e s pod ahw c . a a a r e m 2bc t o3 bf sact , a , i . s ho m o b c wa las c n u l ra yt e Sx ba eem l p oel we ) .
D D t d n c t p t j of
E V E L O O P M P E AN TT T E R a s r t l r oaa l ii eegw hn nq t g u et t c i r c u h m of te r c eo n e yc e h l a d ei i in v t i sn r d d athe u o em pbq a e atu rc r a f tihl u m f e D r e an rc e e .l a e m w h er od aiu vp g i cph os i iheo nn e n dt ti cl u D l i a eh r t n e r eo m e l eo t hn e lg eb th pm e he nr f te e o cb c t a li c tou l l n a e t ir hnny g g 1~, 1 e t ec *.x b( a Se m e l, p e o l
it
w
E X f c a C6 =
r
I
N
A M P L E l c oou l l a eo t e i n olr neg
m t ef
r sin a a R d= h i t
‘,=w=
up
‘tc
s
,a
6
286
I
C
A
S
N
R
>
K
-—.
-
—.
I
A
I
-—.—. 1
.r a “
1
s .
1
-
-
al
.—
a
, I
a-3
\
%
B
R2
,
I
“ Iw
‘E f e
X c l
C a x i g
A a e
M P L E l co uof l length a t i rofo m e n t s .
THE LINE OF INTERSECTION Divide the diameter of the cylinder into equal spaces. The horizontal planes through the division points cut elements from the cylinder and circles from the sphere. The intersections of the elements with the corresponding circles are points on the curvature of intersection. D D c t T m D p l c
E V E L O OP M T E CN TY LH I N D F a s r t lr a ao e i i gwl q h ent t ut n ea g i r c u m o f te rc e ny c ale hdi n i i d nfv ee t s n a hu o p m m a obat e c e ry rl thi s p o aht dc i i pv neh i oag s d i i f eoen bi t ln e o e a hn o d t g r c y ty e l ch hi a e r l t e a h m e r ewd o nianu pvt g i cohs e r p e n td it c ul l a Dri eh t n et r oe me e o t n e gl e bt h m p hr e o n fjo eetb cs t a l c ou t l al t ei oo nh1n 1g e t f h e1 t s2
P i 2 iE l l ip H:p s o e ei nd 1a la T c e p h no o r t th e e i i ra oeh p n p a r m a a s t p he s e l er ityg c r m a aleo h nd w i he 0i q t c ut i d h. aim aso hl t m e 9e h W e t a ph i dw ieh ia. l tpno i 0 h e emi t ti d m i a o h etm he s tt eleh ro iah i n t e r a s ed ce tv i e on l on o t p c m ye d n l th i nc b f i oa t a u d b nenh seomdc rav n i en b
l t c d u i ls xat h X at ene c e l ets 2 , c xi = x ~v + r xesin a n, etc. l s, ; P 2i F i l S i wm t w it kt r ao w d d i
, , . a a Dp n iHg ne s e i c l eap a h on r ~ n h ui ha sci p k nh sl i hie ut i qt s r c s h .
n ehd e da rtt yht e ei r o e ee r ts gi c m u afo ht ahd s
287
T
P
connecting
cylindrical
and rectangular shapes
D E V E L O P M E N T D it c v ii i e hr d np qc e a al ut e d a er l aea e m d w e ai nvn p o i n t .
er a ti c s
F t li e o enhn e g al d b et e m ch e t r i a n go ub l c a at li oc nuT l a t i ro y e l ea m t he y n pr t oho st t e n eu es t r i oa n sideg ofl nwhich e s is e A A A --e a2- t t ’o1 3 n, ct h ’ h s i t i h eo d th i t r ge a snhhe s ti t p i e c e .
A ●
●
A A A-
B t e d e g v e h li o o t p n m l e e n ti h 1 a d t - r r n t i r ah liSg da - wnh S ge w b h S oi ae s t q hs e t u ea aA s s A ai w hdh yn p o oe A t D se dn ue f bo t r ui a n ng o u cl da a t i lyo cn u t Fi t o pi no1 2nh i3 . e n d tt e T l eo 1 h n 2 g3 - e -t em 2h t 3 f , a b t ea t qkt c ue o e t anoh l r o d i v o it st i c o iinht so ra hc f e l p
small enough for the desired accuracy. Strike an arc with 1 as center and the chord of divisions as radius. With A as center and A-2 as radius draw arc at 2. The intersection of these arcs give the point 2. The points 3, 4 etc. in the curve can be Found in”a similar manner. E f
X c c=
a
A M P L E l c oou l l a eot e i norl
r x cos a
n eg
m t ef
d = r x sin a
L E O NE L G E T M HE N TF S I t a db eh so mc r van ci e bn e e n d b f to d e u v e hnl f o et p d m re eno t a s pi tiw ie h oc e ne ns :
one end is square 2. one or both sides of the rectangle are equal to the diameter of the circle 3. the circular and rectangular planes are eccentric 4. the circular and rectangular planes are not parallel
288
T connecting
P cylindrical
1
3
3
4
:
- -
+ 3
3 @
D E V E L O P M E N T D it c v ii i e hr d np qc e a al ut e d a er l aea e m d w e ai nvn p o i n t .
2
2
2
2 1
- -
and rectangular shapes
A
er ti c
F t li e o enhn e g al d b te e m ch t r i a n go ub l c a at li oc nuT l a t i r e l ea m t he y n pr t oho st t e n eu e t r i one a n sideg ofl which e s is A A A--e a2- t t ’o1 3 n, ct h ’ s i t i h eo d th i t r ge a snhhe s ti p i e c e .
B t e d e g v e h li o o t p n m l e e n ti h 1 a d t - r r n t i r ah liSg da - wnh S ge w b h S oi a e s t q hs e t u ea aA s A ai w hd h yn p o oe A t D se dn ue f bo t r ui a n ng o u cl da a t i lyo nc t Fi no1 2nh i3 . e n d t o pi tt e T l eo 1 hn 2 g3 - e -t em 2h t 3 f b t ea t qkt c ue o e t anoh l d i v o it st i c o iinht so ra hc f e
small enough for the desired accuracy. Strike an arc with 1 as center and the chord of divisions as radius. With A as center and A-2 as radius draw arc at 2. The intersection of these arcs give the point 2. The points 3, 4 etc. in the curve can be found in a similar manner. E f
X c
A M P L E l c oou l l a eot e i norl
a
c = r x cos a e
=
~
-
n eg
m t
d = r x sin a +
-d(
a)(
In the above described manner can be found the development for transition pieces when: 1. one end is square 2. one or both sides of the rectangle are equal to the diameter of the circle 3. the circular and rectangular planes are eccentric 4. the circular and rectangular planes are not parallel
b
)2
289
D
C T p m f
c
+
I
o
C =D f
ax m 0 l i b
a
C = D
i
a~
E X I i r
A e
M tq d
C = 100 x sin
ix c
rw
c ch i
e.
No. of
1
0.00000 1.00000 0,86603 0.70711
26 27 28 29
0,12054 0,11609 0.11196 0,10812
51
; 8
0,58779 0.50000 0.43388 0.38268
30 31 32 33
9
0.34202
34
1 1
0 0 0
. . .
1 1
0 @
.
15 16
0.20791 0.19509
40 41
17 18 19 20
0.18375 0.17365 0.16460 0.15643 0,14904 0.14232 0.13617 0.13053 0.12533
:: 44 45 46 47 48 49 50
;; 23 24 25
l e o sa
3 2 2 .
5 c8
3h
lt r e o
ls
6e
.
s
eo c hnn hf go a od dt e r eh on dsn fu iso s mr r penyb sda e cihr t o e o f s w h l e : 1 8 0 m s e t e i r n n uo sm p b a e c r e f s P L E : u ai 1 r iv et ds i d i n 0 dac o meiic e 1 r0t e nhec p rq l 2t a ue ro a 0 t l s 1 8 0 — 1 x s 1 30 1 = i0 x 0 0 ’. 0= n2 0 ° i= 2 .n 0 6 c 26 h 1 2 0
c
5
i e ro r nncq l fut pht e ao h a r f e nd r hci idh r ehe c r u hi r ao f m d e e, t
la f e e at r a c , b eb ut
=t32 e x8 r0 2 . 6=37 8 8 . i 2 60n 6
No. of Spaces
2 3 4
P
M P L E : tq d u aii 2 ri v edt s i di n adc om ieic e 8 er t0 nhesc q r p l t ua e c ao e pf o ta t r c a0 e roh.b s 3 l m8 e 2e : 6 8
i t
E
b m ehe f dt s i h ove aoo ict sd i i ta f tr l i t eo t hnsn c s goo hda e t a l s he wu ntr ideig i ot svtht e Tr el n e o c th ne c . g hC =t hedo
c
E X A I i r e cf 8s T t
I
No.
c
c
c
% 54
0.06153 0.06038 0,05924 0.05814
;: 79
0,04132 0.04079 0,04027 0,03976
0“10453 0.10117 0.09802 0.09506
55 56 57 58
0.05709 0.05607 0.05509 0.05414
80 81 82 83
0.03926 0.03878 0,03830 0.03784
0.09227
59
30 38 35
90 1 01 8 02
0. 20 6 8 7 0 3 86 8 0 2 86
2 33 2 3 2
9 03 204
3. 5.
20 29
76
0,05322 9 05 6 . 7 06 1 . 4 07 8 .
84
0.03739
5 40 60 % 5 10 8 5
88 68
!8 2 08 5. 9 4 0 0.04907 7
0.07846 0.07655
65 66
0,04831 0.04758
0.07473 0.07300 0.07134 0.06976 0.06824 0,06679 0.06540 0.06407 0,06279
67 68 69 70 71 72 73 74 75
0.04687 0,04618 0.04551 0.04487 0.04423 0.04362 0.04302 0.04244 0.04188
)8
89 90 91 92 93 % 96 97 98
1::
20 0 3. 10 1 4. 00 2 6. 4
40 80 50
3 3 3
50 093 8, 0.03529 4
3
0.03490 0.03452 0.03414 0.03377 0.03341 0.03306 0.03272 0,03238 0.03205 0.03173 0
.
0
3
290
m I
SEGMENTSOF CIRCLESFOR R4DIUS= 1
P
Length of arc, height of segment,length of chord, and area of segmentfor anglesfrom 1 to 180 degrees = 1 For other radii, multiply the . values
/ l\
andradi”s
of 1, h and c in the table by the given radius r, and J the values for areas, by r2, the square of the radius.
W
e De[ T . i 4 5 6 -1 8 9 10 11 12 13 14 15 16 17 18 19
h
1
Deg
0 2 9 3 3 0 9 0 2 3 i 0 0 0 0 3 0 0 0 3 3 0 0 3 3 3 0 0 0 o 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 I
7A
0.000o m 0 . 0,ooo1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
0 0 0 0 0 I 0 0 0 0 0 0 I 0
1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.667
0.715 0.73?
—
0
c
1
0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
;
~ I
1
h
T
m7 62 1,082
63 1.100 64 1.117 65 1.134 66 1,152 67 1.169 68 1.187 69 1.X34 70 [~q~ 71 I.239 7? 1.257 73 1.274 74 1,291 75 I.309 76 1.3?6 77 1.344 78 1.361 79 1.379 80 1.396 81 I.414 82 1.431 83 1.449 84 1.466 85 1.483 86 1 87 1 88 1 89 1 90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1 98 1 99 1 100 1 1,763 102 1.780 103 1,798 104 1,815 105 1,833 106 1.850 107 1.867 108 1.885 109 1.902 110 1.920 111 1.937 1.955 1.972 I 1.990 I 2.007 2.025 2.042 2.059 2.077 2.094
3-F
I
c
2.11? 2.129 2.147 2.164 2.18? 2.199 2.217 ~,?34 2,:5 ] 2 2 2
I I
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
162 2.827 163 2.845 164 2.862 165 2.880 166 2.897 167 2.915 168 2.932 169 2.950 170 2.967 171 2.984 172 3.002 173 3.019 174 3.037 175 3.054 176 3.072 177 3.089 178 3.107 179 3.124 180 3.142
I
l
ment
A
I 121 122 123 124 I15 126 127 ]28 129
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
; , 1 1 1 1 1 1 1 1 1 1 1
h
Deg
A
1
Area
e
c
0 0 0 0 0 0 0 0 0 0 0 0 0 0 T0
&6~54
0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I
1
i
[
6
291
Ziii4 I
D
d
A R T I N OT E HR SP E C TT IE O N O S H A NE O L N ZF L Z LD ( D i m e In s ni o cn e hd e s
N M ~
1
1Y2
2
2
%3
NE
I 3
A 4
( %5
0.0625
0.4375
0.0625
0.3750
0.0625
0.3125
0.0625 —. 0.0625
0.3125
0.0625
0.2500 0.3750
0.0625
0.1875 0.3125
0.0625
0.1875
0.2500 0.3750
I
T 6
%8
1.0000
1.8125
0.8125
1.5000
0.6875
1.2.500
0.6250
1.1250
0.1875 0,1875 0.12SC o.1250
E )
+
0.I 25a O.
O.125C 0.12 SC O.125C O.125C 0.062S 0.062 ! 0.062:
0.1250 0.2500
0.062 :
0.1250 0.2500
0.062 !
0.12.50 0.2500
0.062!
0.1250 0.1875
96
0.062 ! 0.0625
0. 12s0
102
0.062 ! 0.0625
0.1875
108
0.062$
0.0625
0.12s0 0.1875
114
0.0625
0.1250 0.1875
120
0.0625 —. 0.062:
0.0625
0.0625 0.1250
126
0.062$
0.0625
0.0625 0.1250
132
0.062$
0.0625
0.0625 0.1250
138
0.0625
0.0625
0.0625 0.1250
144
0.062$
0.0625
0.0625 0.1250
0.1875
292 I
I
I i I
I
I
I
dl
D
A RT O S (
S
h
!
i
e
l
l
a
;
.1
—
D
I N OT E HR SP E C TT IE O N HA NE O LN ZF L Z L D i
N M
m d eI
P I
;
n ns
e
(P A
IN
20
1
ic o hn
s , ) E
82
6
30
!.5000
4.1250
7.000
!.0625
3.1875
4.1250
8.000
[.7500
2.6250
3.3750
9
[
2.3125
2.8750
4.8750 — 4.0000
[
2.0625
2 5000
3.4375
4.6875
[
1.8125
2.2500
3.0625
4.0625
4-
[
1.6875
2.0625
2.7500
3.6250
6.0625
8.0000
1.8750
2.5000
5.3125
6.8125
[.0000
2.3125
4.8125
6.0000
5.0000
).9375
2.1250’
4.3750
5.4375
0.4375
).8750
2.0000
4.0625
4.8125
9.0000
36
).81 25
1.8750
3.7500
4.5625
8.1250
38
).7500
1.7500
3.5000
4.2500
7.3125
40
).7500
1.6875
3.3125
4.0000
6.7500
42
).6875
1.5675 1 1.1875
3.1250
3.7500
6.3125
2.6875
3.1875
5.2500
1.0625
L.0625
+ 0.875
1.0625
5.6250
.
0 D.000o
0
0
0
.1.0000
7.1875 12.0000
I
3.0000
0.7500
0.9375
1.1875
2.3125
2.8125
4.5625
0.6875
0.8125
1.0625
2.1250
2.5000
4.0000
0.6250
0.7500
1.0000
1.8750
2.2500
3.6250
1.4375
1.7500 2.0625
2.4375
0.8125
1.3125
1.5625 1.8750
2.2500
0.7500
1.1875
1.4375 1.7500
2.0625
1.1250
1.3750 1.8750
1.937.5
0.875C
1.2500 1.5000
1.8125
2.375(
0.8750
1.
96
0.3 12! 0.4375
0.500(
0.6875 —— 0.6875
102
0.3 12! 0.37s0
0.500(
0.6250
0.812 :
1.0000
1.1875 1.4375
1.6875
2.250(
108
0.250(
0.3750
0.437$
0.6250
0.750C
0.9375
1.1250 1.3750
1.5625
2. 125C
114
0.250(
0.1875
0.437:
0.5625
0.6875
0.8750
1.0625 1.2500
1.5000
2.000C
120
0.250(
0.1875
0.4375
0.5625
0.6875
0.8125
1.0000 1.1875
1.4375
126
0.250(
0.3125
0.375(
0.5000
0.625C
0.8125
0.9375 1.1250
1.3750
1.8125
132
0.250(
0.3125
0.375C 0.5000
0.625C
0.7500
0.9375 1.1250
1.3125
1.750[
138
0.182! +0.3125
0.375C 0.4375
0.5625
0.7500
0.8750 1.0625
1.2500
1.625C
144
0.1 82!
0.312 :
0.4375
0.5625
0.6875
0.8750 1.0000
1.1875
1.5625
0.3125
E
I
,
293
I
TABLEFOR LOCATINGPOINTS ON2:1 ELLIPSOIDALHEADS t
From these tablesthe dimension y can be found if the diameter, D and dimensionx are known,
~
~Ient ‘ L
3 = 12 Y 2.9580 2 2.8284 3 2.5980 4 2.2360 5 1.6583 0 6 — — D = 14 x Y 1 3.4641
r
I
3.3541 2 3.1622 3 4 2.8722 5 2.4494 6 1.8027 70 D = 16 Y
T
2 3 4 5 6 7 8 —
3.9686 3.8729 3.7081 3.4641 3.1225 2.6457 1.9364 0 ) = 18
z 2 3 4 5 6 7 8 9 10 T T 2 3 4 i 5 6 7 8 9
x 7
T x
1
2 3 4 5 6 7 8 91
2 3 4 5 6 7 8 9 10
Y
4.4721 4.3878 4.2426 4.0311 3.7416 3.3541 2.8284 2.0615 0
I
!
2
i
R=t
n r
e ao h hd
7
=7 0 ?.2284
)
7.0710 Y D = 26 6.8738 4.9749 T Y 6.6332 4.8989 T 6.4807 6.3442 4.7697 6.4226 2 6 4.5825 6.3245 3 5.5901 4.3301 4 6.1846 5.0990 4 5 6 4.5 3.5707 6 5.7662 3.7416 3 7 5.4772 2.6925 2.1794 5.1234 8 0 0 4.6904 9 ~= 32 )= 22 4.1533 10 T Y 3.4641 11 Y 7.9843 2.5 12 7 5.4772 7.9372 0 13 2 5.4083 — 7.8581 3 5.2915 ) = 28 7.7459 4 5.1234 T Y 7.5993 5 4.8989 - Y 6.9821 7.4162 6 4.6097 6.9282 2 7.1937 7 4.2426 6.8374 3 6.9282 8 3.7749 6.7082 4 6.6143 9 3.1622 6.5383 5 2 . 9 1 2 6.245 6.3245 62 5.8094 11 0 6.0621 7 5 12 =24 5.7445 8 4 13 Y 9 5.3619 3.8729 14 5.9791 4.8989 10 2.7838 15 5.9160 4.3301 11 0 16 — 5.8094 3.6055 12 ) = 34 5.6568 13 2.5980 Y Y 5.4543 0 14 — 8.4852 7 5.1961 ) = 30 8.4409 2 4.8734 x Y 8.3666 3 4.4721 7 7.4833 8.2613 4 3.9686 2 7.4330 8.1240 5 3.3166 7.3484 7.9529 2.3979 l L’ l —(
i
5 6 7 8 9 0 ,1 ,2 ,3 ,4 is —
e i
7
7 8 9~ [0 ~ [1 [2 [3 ,4 .5 ,6 ,7 — T T 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 —
ua e
sd
f .
7.7459 7.5 7.2111 6.8738 6.4807 6.0208 5.4772 4.8218 4 2.8722 0 ‘=36 Y 8.9861 8.9442 8.8741 8.7749 8.6458 8.4852 8.2915 8.0622 7.7942 7.4833
-
7
.
6.7082 6.2249 5.6568 4.9749 4.1231 2.9580 0
D =38 x Y 9.4868 2 9.4472 9.3808 T3 41 9.2870 5 9.1651
-J
1
2
294
TABLEFOR LOCATINGPOINTS ON 2: 1 ELLIPSOIDALHEADS(Cont.)
T 7 8 9 10
11 12 13 14 15 16 17 18 19 x
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
=38 9.0138 8.8317 8.6168 8.3666 8.0777 7.7459 7.3654 6.9282 6.4226 5.8309 5.1234 4.2426 3.0413 0 =40 Y 9.9874 9.9498 9.8868 9.7979 9.6824 9.5393 9.3675 9.1651 8.9302 8.6602 8.3516 8 7.5993 7.1414 6.6143 6 5.2678 4.3589 3.1225 0
T =42 x , Y 1 10.4881
8 9 10 1 1 1 1 1 1 1 1 1
20 21 x
T 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24
9.7082 9.4868 9.2330 8.9442 8.6168 8.2462 7.8262 7.3484 6.8007 6.1644 5.4083 4.4721 3.2015 0 =48 Y 11.9896 11.9583 11.9059 11.8322 11.7367
11.619 11.4782 11.3137 11.1243 10.9087 10.6654 10.3923 10.0871 9.7467 9.3675 8.9442 8.4705 7.9372 7.3314 6.6332 5.8094 4.7958 3.4278 0 = 54 Y 13.4907 13.4629 13.4164 13.351 13.2665
-L 2 3 4 5 6 7
10.4523 10.3923 10.3078 10.198 10.0623 9.8994
T
1
2 3 4 5
6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
13.1624 13.0384 12.8939 12.72791 12.53992 12.32883 12.09344 11.83225 11.54346 11.225 7 10.87438 10.48819 10.0623 9.5916 9.0691 8.4852 7.8264 7.0710 6.1846 5.0990 3.6400 0 1 =60
x T 2 3 4 5 6 7 8 9 10
1 12 13 14 15 16 17 18 19 20 21 22 23
Y 14.9917 14.9666 14.9248 14.8661 14.7902 14.6969 14.586 14.4568 14.3091 14.1421 13.9553 13.7477 13.5185 13.2665 12.9904 12.6886 12.3592 12 11.1803
10.7121 10.198 9.6306
-7
17.9374 4 17.8885 5 17.8255 6 17.7482 7 17.6564 8 17.5499 9 17.4284 10 17.2916 1 ‘66 11 17.1391 x Y 12 16.9706 1 16.4924 13 16.7854 2 16.4697 14 16.5831 3 16.4317 15 16.3631 4 16.3783 16 16.1245 5 16.3095 17 15.8666 6 16.225 18 15.5885 7 16.1245 19 15.2889 8 16.0078 20 14.9666 9 15.8745 21 14.6202 10 15.7242 22 14.2478 11 15.5563 23 13.8474 12 15.3704 24 13.4164 13 15.1658 25 12.9518 14 14.9416 26 12.4499 15 14.6969 27 11.9059 16 14.4309 28 11.3137 17 14.1421 29 10.6654 9.9498 18 13.8293 30 19 13.4907 31 9.1515 32 8.2462 20 13.1244 7.1937 21 12.7279 33 5.9160 22 12.2984 34 23 1 1 . 35 8 4.2130 3 2 24 11.3248 36 0 10.7703 — =78 ;; 10.1612 Y 27 9.4868 Y 19.4936 28 8.7321 -i29 2 19.4743 7.8740 30 3 19.4422 6.8738 31 4 19.3972 5.6558 32 5 19.3391 4.0311 33 6 19.2678 0 7 19.1833 =7 8 19.0853 Y 9 18.9737 1 17.9931 10 18.8481 17.9722 ~ 2 18.7083
24 25 26 27 28 29 30
9 8.2915 7.4833 6.5383 5.3851 3.8405 0
295 I
TABLEFOR LOCATINGPOINTS ON2:1 ELLIPSOIDALHEADS(Cont.) D=78 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
19.2029 18 18.9737 19 18.7283 20 18.4662 21 18.1865 22 17.8885 23 17.5713 24 17.2337 25 16.8745 26 16.4924 27 16.0857 28 15.6525 29 15.1905 30 14.6969 31 14.1686 32 13.6015 33 12.9904 34 12.3288 35 11.6082 36 10.8167 9.9373 37 8.9442 38 7.7942 39 6.4031 40 4.5552 41 0 42 =90
F
18.554 18.3848 18.2003 18 17.7834 17.5499 17.2988 17.0294 16.7407 16.4317 16.1012 15.748 15.3704 14.9666 14.5344 14.0712 13.5739 13.0384 12.4599 11.8322 11.1467 10.3923 9.5524 8.6023 7.5 6.1644 4.3874 x 0 T 1 =84 2 x Y 3 4 20.994 -i2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
20.9762 20.9464
:
2
7
20.8507 20.7846 20.7063 20.6155 20.5122 20.3961 20.267 20.1246 19.9687 19.799 19.615 19.4165
8 9 10 11 12 13 14 15 16 17 18 19
v
22.4944 22.4778 22.4499 22.4109 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2
2 2
7
T
21.8174 21 21.5812 21 22 21.3307 22 23 21.0654 23 24 20.7846 24 25 20.4878 25 26 20.1742 26 19.8431 27 27 19.4936 28 28 19.1246 29 29 18.735 30 30 18.3235 31 31 17.8885 32 32 17.4284 33 33 16.9411 34 34 16.4241 35 35 15.8745 36 36 15,2889 37 37 14.6629 38 38 13.9911 39 39 13.2665 40 40 12.48 41 41 11.619 42 42 10.6654 43 43 9.5916 44 44 8.3516 45 45 6.8556 46 4.8734 47 x 0 48 7 7 = 108 2 Y Y 3 4 26.9954 -i. 5 3 2 6 3 0 . 72 8 26.9815 6 9 . 6 2 2 9 3 9 . 13 8 26.9583 1 1 7 23.7434 4 26.9258 8 23.6643 5 26.884 9 23.5744 6 26.8328 10 23.4734 7 26.7722 11 23.3613 8 26.7021 12 23.2379 9 26.6224 13 23.103 10 26.533 14 22.9565 11 26.4339 15 22.798 12 26.3249 16 22.6274 13 26.2059 17 22.4444 14 26.0768 18 22.2486 15 25.9374 19 22.0397 16 25.7876 20.1556 19.8997 19.6278 19.3391 19.0329 18.7083 18.3644 18 17.6139 17.2047 16.7705 16.3095 15.8193 15.2971 14.7394 14.1421 13.5 12.8062 12.052 11.225 10.3078 9.2736 8.0777 6.6332 4.7169 0 =96 Y 23.9948 23.9792 23.9531 23.9165
7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 4
4
50 8 51 52 53 54 -
x
7
2 3 4 5 6 7
25.6271 25.4558 25.2735 25.0799 24.8747 24.6577 24.4285 24.1868 23.9322 23.6643 23.3827 23.0868 22.7761 22.4499 22.1077 21.7486 21.3717 20.9762 20.5609 20.124F 19.666 19.1833 18.6748 18.1384 17.5713 16.9706 16.3325 15.6525 14.9248 14.1421 13.2947 12.3693 11.3468 10.198 8.8741 7.2801 5.1720 0 = 120 Y 29.9958 29.9833 29.9625 29.9333 29.8957 29.8496 29.7951
296 TABLE FOR LOCATING POINTS
r
ON 2:1 ELLIPSOIDALHEADS (Cont.)
T
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 &
❑120 29.7321 29.6606 29.5804 29.4915 29.3939 29.2874 29.1719 29.0474 28.9137 28.7706 28.6182 28.4561 28.2843 28.1025 27.9106 27.7083 27.4955 27.2718 27.037 26.7909 26.533 26.2631 25.9808 25.6856 25.3772 25.0549 24.7184 24.367 24 23.6167 23.2164 22,798 22.3607 21.9032 21.4243 20.9225 20.3961 19.8431 19.2614 18.6481 18 17.3133 16.5831 15.8035 14.9666 14.0624 13.0767
55 56 57 58
10.9896 10.7703 9.3675 7.6811
59
54543
60
0
— D = 132
x
T
2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ;; 29 30 31 32 33 34 35 36 37 38 39
Y 32.9962 32.9848 32.9659 32.9393 32.9052 32.8634 32.8139 32.7567 32.6917 32.619 32.5384 32.45 32.3535 32.249 32.1364 32.0156 31.8865 31.749 31.603 31.4484 31.285 31.1127 30.9314 30.7409 30.541 30.3315 30.1123 29.8831 29.6437 29.3939 29.1333 28.8617 28.5788 28.2843 27.9777 27.6586 27.3267 26.9815 26.6224
z 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 7 Y T 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
26.2488 25.8602 25.4558 25.035 24.5967 24.1402 23.6643 23.1679 22.6495 22.1077 21.5407 20.9464 20.3224 19.666 18.9737 18.2414 17.4642 16.6358 15.748 14.7902 13.7477 12.5996 11.3137
9.8361 8.0622 5.7227 0 = 144 Y35.9965 35.9861 35.9687 35.9444 35.9131 35.8748 35.8295 35.7771 35.7176 35.6511 35.5774 35.4965 35.4083 35.3129 35.2101 35.0999 34.9821 34.8569
Y
5
34.7239 34.5832 34.4347 34.2783 34.1138 33.9411 33.7602 33.5708 33.3729 33.1662 32.9507 32.7261 32.4923 32.249 31.9961 31.7333 31.4603 31.1769 30.8828 30.5778 30.2614 29.9333 29.5931 29.2404 28.8747 28.4956 28.1025 27.6948 27.2718 26.8328 26.3771 25.9037 25.4116 24.8998 24.367 23.8118
5
2
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 56 57 58 59 60 61 62 63 64 65 J@
22.6274 21.9943 21.3307 20:6337 19.8997 19.1246 18.303 17.4284 16.4924 15.4839 14.3875
L 67 68 69 70 71 72
13.1814
10.2835 8.4261 5.9791 0
N
O
T
T c u r hv a o a e l l i p s h e ei t a i no o s u it i at r e l l i p s T p a r h a l c o ut r o p sp o si i n e l l o i a t n h d o a t t t ha bi a n r o a p p l i c a t l o c a p o i n t g eh o ma r iu c a ln d e t e r m i c u r v ( e i t o h w
s c ha
p
e
c i a 4 ah e a le la
297 LENGTH OF ARCS 1. These tables are for locating points on pipes and shells by measuring the length of arcs. 2. The length of arcs are computed for the most commonly used pipesizes and vessel diameters. 3. The length of arcs for any diameters and any degrees, not shown in the table, can be obtained easily using the values given for diam. 1 or degree 1. 4. All dimensions are in inches. EXAMPLES w
A.
3P
O.D. = 3 N F
/ 2
7 9
4 6
1
Y @
s
3m’
.I =3 O = N ol FW t
) 2
7
d
9
d 4
1
8
p 22%0
D
7 { &
1
f
.
. e 0e eu r cr it n e0 e .r ti e
” d ° oe e ohd m e oh @ 0 ° m e 8i h c 4 f sn 3 : 8
. W t h D0ai c 3 k . lnt / e” s l8hs = ” a ?. 3D 4 . 0 ” oz @ 3c z a l t e e0 d ? ° r l a eo W o3b na f lgm 0t e r ho f ° c
1= 0 i . 0 . @
2 a 6 1 x 23 6 = 08 1
. 8 . 8i.
0 00 7 5
n5 0
. O.D. =3
0 ” N ol oz @ 2c z a 2l t e e? d 4 F t r l a eo o1b an o lgm te r h P’ .0( i )J .pD 2 ” e6 . 1 = 8 03 Y O 0 . x 22 125 i 8 . =6
! 2
? ° h 8
Y
.O = 3 P. V D0 N ol oz @ 6c z a l t T a t b m h e r af st c P 0l c oe n s t @ee r s l T n oi 3h z f z t s 9rl ~ T l eo t hn a 7gh & ’
7 9
I
P
c
(
6 .
2
t V @
8
C
B
ol
0 ” oz @ 3c z a l t e e0 d rt al oebo hn l m g e t e a =7 ’ . i r 8 4 n3 c
9 (
8
W
° f ° c 0 0. 8
n9
298 L
E D
D
i
00
0.
1
0
.
00
1 . 01 0 4.
2 3
w w ~ ~ A m x a 8 $ & a z ~ n
5 6 8
RT
R
E
1
.
800
G
G
.1
0
a ~ z 0 z
5m
E
1 1Y2
: z w & z
a
1
O NA
74.
.86
6801
2 .2
1730
C
E
32.
5015
F
S
S 02
2
033
H
0710
97.
.80 0 27
53 0420
51.
. 1S 20 8
0 382
16
8. 8
31
- ,
L
E D
D
i 1
w N G m & z d 4 g $?
m : u ~
.
30
.4 0.
3930
90.
72 1
E
S
S 52
87 .
F
8
5052.35619 47
03
8 003.14159
0.4688
0.5313
1.0313
2.0625
1.5000
3.0000
3.0938 4.4688
4.1250
0.7500 0.9375 1.1250
1.8750
3.7188 4.5313 5.5000
5.5938 6.7813 8.2500
6.2813 7.0625
9.4375 10.5938 13.0938 15.6250 20.3125 25.3438 30.0313 29.2813 33.0000
7.4688 9.0313 11.0000 12.5625
2 2%
0.7188 0.8750
3 3% 4
1.0625
38 ;:
5 * m +
78
E
:;
66
4
1.2188 1.3750 1.6875 2.0313 2.6250 3.2813 3.9063 3.6563 4.2813 4.8750 5.5000 6.0938 6.7188 7.3438 7.9375 8.5625 9.1563 9.7813
0.8438 1.0000 1.2188 1.4003 1.5625 1.9375 2.3125
1.5625 1.7813 2.1875 2.5938
3.0938 3.7500 4.4375 4.1875
3.3750 4.2188 5.0000 4.7188
4.8750 5.5938
5.5000 6.2813 7.0313 7.8438 8.6563 9.4375
6.2813 6.9688 7.6875 8.3750 9.0625 10.2188 9.7813 11.0000 10.4688 11.7813
10.3750 11.0000 11.5938 12.2188 12.8438 14.6563
11.1563 11.8750 12.5625 13.2500 13.9688 14.6563 16.7500
12.5625 13.3438 14.1250 14.9375 15.7188 16.5000 18.8438
16.5000 18.3125 20.1563 22.0000 23.8125
18.8438 20.9375 23.0313 25.1250 27.2188
21.2188 23.5625 25.9065 28.2813 30.6250
25.6563 2
7
29.3125 3 . 3
5 1
2
9
. 3
3 3
1
3
1
0.3
1
3
3
0.3
4
1.3
9
1.3750
3 3
6
2 .4
3 0 .
2.2500 2.7500 3.1563 3.5313 4.3750 5.2188 6.7813 8.4375 10.0000 9.4375 11.0000 12.5625 14.1250 15.7188 17.2813 18.8438 20.4063 22.0000 23.5625 25.1250 26.7188 28.2813 29.8438 31.4063 33.0000 37.6875 42.4063 47.1250 51.8438 56.5625 61.2500
8.7500 10.4063 13.5625 16.8750 20.0313 18.8438 22.0000 25.1250 28.2813 31.4063 34.5625 37.6875 40.8438
61.2500 65.9688 70.6875
81.6875 87.9688 94.2500 100.5313 106.8125
62.8438 65.9688 75.4063
75.4063 80.1250 84.8125 89.5313 94.2500 98.9688 113.0938
84.8125 94.2500 103.6875 113.0938 122.5313
127.2500 141.3750 155.5000 169.6S63 183.7813
56.5625 59.6875
69.1250 75.4063
113.0938 119.3750 125.6563 131.9375 150.7813 169.6563 188.5000 207.3458 —-..— 226.1875 245.0313
3
.6
05
0 .1
9 03
16 1 . 89 9 0
8 7 3 2 . 7 6 9 53 0
. 6
5 04
.070
2 06
4 .1 3
6 34
18 2 . 71 3 8
5 2 7 2 . 5 8 0 02 6
. 2
5 00 2 . 62 7
3 6 83 . 10 1 31 8
. 7
.570
6 50
8 .1 0
74 5
3 1 .
7 25 6
15
45 .
2065
.389
1 03
2 .1 8
1 56
002 2 . 54 2
0 1 3 . 8 2 3 80 4
. 3
07
40 .
8206
.088
4 47
0 .1 5
8 66
391 3 . 25 6
5 4 53 . 63 4 39 6
. 8
41 .
4927
.588
7 91
8 .1 3
5 17
393 2 . 16 0
3 8 63 . 25 5 58 9
. 3
0 2 0 3 . 0 7 7 07 5
. 0
8 6 0 3 . 6 9 8 35 7 7 5 3 . 6 1 3 3 1 44 . 31 0 84 3 8 5 6 7 3 . 5 2 7 0 5 84 . 13 1 33 5 6 9 3 . 3 3 1 8 9 8 4 . 7 5 2 52 8 5
. 1 . 6
89 61
45 .
0768
.397
1 45
1 2 .0
8 52
085 2 . 08 5
6 .1 8
89
876 2 . 89 9
1
3
8
2 .4
53
40 .
6909
.096
4 88
1
4
0
3.4
36
1. 5
21 20
56 .1
0 8 2 34 2 5 . 30 6
1
4
2
3.4
18
5 .
84 61
.1 35
0 1 6 88 2 3 . 71 3
3
4. 5
6 . 5
46 82
85 .1
1 5 0 36 20 . 22 0
4
0
14.1250 17.4688 20.8125 27.0938 33.7813 40.0625 37.0625 43.9688 50.2500 56.5625 62.8438
50.2500 53.4060
6
5.9688
37.6875 42.4063 47.1250 51.8438 56.5625
43.9688 47.1250
0
7
0.6563
30 32 34 36
1
C
0.4063
8 10 12 12 14 16 18 20 22 24 26 28
1
44.
E
01
59
350
R
H
0.5938
6
1
G
R T
1Y2
A ‘ 48 a LLl g 54 60
s
0
4m
E
G
1
5
z
3 a
O NA
9 0
. 5
. 1
300
C D
I
3A
.
—
A
i Circum.
I
. .
0 0
. . . . . . .
1 1 2 3 4
Area a . .
4 9
. . . . . 5 . 6 .
4 9 9 9 9
. c 0
9 8
0 0 0 0 0 80 8 0
7 6 4 2 0
Circum. 0 6.2832 o 9 1 6.4795 0 8
Q 0
A
0 2 0 3 0 3 1 7 1 8 2% 7 3 2
6.6759 1 6 6.8722 3 5 7.0686 6 2 7.2649 2 0 9 7 7.4613 7 5 7.6576 7.8540 7 2 8.0503 8.2467 9 0 8.4430 2 7 8.6394 6 5 8.8357 2 9 9.0321 0 1 9.2284 9 3
C
Area 1 3.1416 9 7 3.3410 7
7 0 9 2 1 6 5
3 3.5466 7 3.7583 0 3.9761 7 4.20Q0 7 4.4301 1 4.6664 4.9087 8 5.1572 5.4119 9 3 5.6727 5.9396 0 6.2126 1 6.4918 5 6.7771 2
. . . 1 1 1 1 1
7 8 9 . . . . .
. . . . . . . .
8 8 8 0 1 2 3 4
0 0 0 0 1 1 1 1
5 3 1 7 7 7 7 7
4 6 7 9 1 2 5 7
4 5 7 9 8 6 4 0 4 2 9.4248 2 6
1 1 1 1 1 2 2 2
. . . . . . . .
. . . . . . . .
5 6 7 8 9 0 1 2
1 2 2 2 3 3 3 4
7 6 6 6 6 6 5 5
9 2 4 7 0 3 7 0
0 9 7 5 3 1 9 8
3 6 5 8 8 2 2 7
5 6 0 8 0 4 2 4
2 2 2 2 2 2 2 3
. . . . . . . .
. . . . . . . .
3 4 5 6 7 8 9 0
4 4 5 5 6 6 6 7
5 5 5 5 4 4 4 4
4 7 1 5 0 4 9 3
3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6
. . . . . . . . . . . . . . . .
. . . 1 1 1 1 1 1 1 2 2 2 2 2 2
1 3 5 7 9 1 3 5 7 9 1 3 4 6 8 0
6 7 4 3 2 4 0 1 8 3 7 5 1 0 5 10 2 22 3 17 4 20 1— 2 18 1 6 53 78 1 9 63 49 1 3 43 0 10 6 37 7 12 0 37 3 15 3 43 9 18 7 44 6 12 0 43 2 16 4 47 8 11 7 47 5 71 1 35 1 31 4 65 7 01 8 55 4 815.708 1 0 0 6 5 1 415.$04 6 16.101 8 8
9 7 9 4 2 4 12.566 .9 12.962 .8 . 13.364 13.772 .4 14.186 .6 .0 14.607 15.033 .5 .2 15.466 .0 15.904 16.349 .9 16.800 .0 .1 17.257 17.728 .5 18.19u .9 18.665 5. 19.147 3. 2 2 3
. . . . . . . . . . . . .
74 83 93 3 2 2 1 1 1 0 0 0 9 9 9 8
1 2 3 4 6 7 9 0 2 4 5 7 % 9
%
9.6211 9.8175 6 8 10.014 1 0 10.210 8 1 10.407 6 3 10.603 6 5 10.799 8 7 10.996 1 8 11.192 5 0 11.388 11.585 1 2 11.781 9 4 11.977 8 5 12.174 9 7 12.370 1 9
0 1 7 8 4 6 3 5
3 7
I
Circum.
Area
16.297 16.493 16.690 16.886 17.082 17.279 17.475 17.671 17.868 18.064 18.261 18.457 18.653
21.135 21.648 22.166 22.691 23.221 23.758 24.301 24.850 25.406 25.967 26.535 27.109 27.688
18.850 19.242 19.635 20.028 20.420 20.813 21.206 21.598
28.274 29.465 30.680 31.919 33.183 34.472 35.785 37.122
21.991 22.384 22.776 23.169 23.562 23.955 24.347 24.740
5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5
6 6 5 5 S 4 4 4 3 3 3 2 2 1 1 1
?
x
25.133 25.525 6 25.918 3 26.311 9 26.704 5 27.096 2 27.489 8 27.882
4 1 28.274 7 28.667 4 29.060 0 29.452 6 29.845 3 30.238 9 30.631 5 31.023 —— 2 31,416 31.809 32.201
301
C
A
A r
D
C
o ; % % 3 %
3 3 3 3 3
2‘ 2 3 3 4
% % % % % 3 ~
3 3 3 3 3 3 3 3
41 4 5 5 6 6 6 7
9 9 9 1 1 1 1 1
. . . . . . . .
% % % % ~ % 7
3 3 3 3 3 3 4 4
72 8 8 8 9 9 0 0
1 1 1 1 1 1 1 1
. . . . . . . .
% % % s %
4 4 4 4 4 4 4 4
03 1 1 2 2 2 3 3
1 1 1 1 1 1 1 1
. . . . . . . .
~ x % % ~ ? %
4 4 4 4 4 4 4 4
34 4 4 5 5 5 6 6
1 1 1 1 1 1 1 1
. . . . . . . .
% % % ~ % % 7
4 4 4 4 4 4 4 4
75 7 7 8 8 9 9 9
1 1 1 1 1 1 1 1
. . . . . . . .
%
5 5
06 2 . 0 2 .
1
1
1 ;
1
1
1
i i
r . m C e.i i uD
ac
8 . 8 . 8 . W. 9 .
A
%.. 9~ %. 8 %. 7 77 %A ~. 6 % 55 .. 5 7 91 . 5 9 3 %. 4 0 7 K 1 3 0 1 33 2 0 5 % 6 2 0 9 % 8 A 1 1 3 % 0 08 ~ 1 6 3. 9 1 01 5 9 1 4 ;7 8 2 8 0 7 2 2 ~2 7 2 6 % 5 68 2 0 % 7 5 3 4 ?0 48 — % 3 8 2. 4 3 21 5 3 3 6 % 7 2 4 0 ~0 1 4 4 % 3 1 4 8 ;5 0 4 1 8 9~ 5 5 % 1 9 % 5 9 3. 8 5 32 6 7 5 7 % 9 6 6 1 ~2 6 6 5 ~5 5 6 9 % 7 4 7 3 ~0 34 7 7 x3 3 & 7 — 1 6. 2 7 52 9 1 8 9 g2 0 8 3 x5 0 8 6 % 8 9 9 0 Y 1 8 9 4 % 4 8 9 8 ‘7 78 ~ 0 2 1. 6 0 62 4 5 45 69 83 7. 21
55 55 56 5 58 5 0 52 54 5. 5. 5. 5, 5. 5 . 5. 5. 5. 5. 5. 5. 5. 5 . 5. 6. 6. 6. 6. 6. 6. 6 . 6. 6. 6. 6. 6. 6. 6. 6 . 6. 6. 6. 6. 6. 6. 6. 6 . 6.
C
rA aa c
4 14 2 7 19 2 9 16 2 2 62 2 5 28 2 3 2 8 3 0 307 2 3 30 2 6 64 2 8 84 2 1 14 2 4 45 2 6 75 2 6 2 1 9 2 468 2 5 86 2 7 27 2 0 7 2 3 18 2 5 68 2 8 18 2 9 2 1 7 3 939 2 6 08 2 9 50 2 2 01 2 4 18 2 7 14 3 0 2 3 2 3 2 9 5 270 3 8 34 3 0 3 3 3 41 3 6 49 3 8 48 3 1 57 3 S 3 4 7 7 561 3 9 6 3 2 6 3 5 67 3 7 7 3 0 87 3 3 93 3 8 3 5 0 8 292 3
.1 .0 .4 .3 .6 . 3 .5 .2 2. 7. 4. 3. 5. . 0 7. 6. 8. 2. 9. 8. 9. . 3 .0 .9 0. .4 .0 .9 .0 . 4 .0 .8 .0 .3 .9 .7 .8 . 1 .7 .5 6. 9. 5. 3. 3. . 6 2.
I(
uDr
. mC
~7 5 0 4 X $3 3 ~7 2 0 2 % 33 1 Y 2 4 6. 0 3 82 0 0 3 1 % 3 9 3 5 X7 A 8 4 9 90 7 4 3 % 3 7 4 7 % 7 6 5 1 30 58 % 5 5 4. 4 5 92 8 4 6 3 g1 3 6 7 ?5 2 6 1 98 1 7 5 ?2 1 7 9 % 6 04 7 2 ?9 9 ~ 8 6— 3. 9 8 02 7 8 9 4 ~1 7 9 8 4 6 9 2 ~8 6 0 6 % 2 5 0 0 ~6 4 1 4 % 0 3 ~ 1 8 4. 3 1 22 8 2 2 6 % 2 1 2 0 x6 1 3 4 % 0 0 3 7 Y4 98 3 1 % 8 8 4 5 ~2 8 % 4 9— 6. 7 5 32 0 6 5 7 4 % 5. 5 1 % 8 5 6 5 33 42 6 9 ;7 3 7 3 1 A 3 7 7 ?5 2 % 8 1 0. 1 0 1 1 1 2 2
0 4 8 2 6 0
6. 6. 7. 7. 7. 7. 7 . 7. 7. 7. 7. 7. 7. 7. 7 . 7. 7. 7. 7. 7. 7. 7. 7 . 7. 7. 7. 7. 8. 8. 8. 8 . 8. 8. 8. 8. 8. 8. 0, 8 . 8. 8 8. 8. 8. 8. 8. 8 .
e.i i 1 4 6 9 2 4 7 0 2 5 8 1 3 6 9 1 4 7 9 2 5 8 0 3 6 8 1 4 6 9 2 5 7 0 3 5 8 1 3 6 69 2 4 7 0 2 5
rA aa c
93 3 69 3 80 ’3 0 3 31 4 16 4 1 4 9 323 4 72 4 31 4 53 4 39 4 4 4 49 4 5 4 4 054 4 5 4 16 4 68 4 46 4 71 4 78 4 8 4 5 825 4 80 4 98 5 96 5 04 5 30 5 02 5 1 5 1 16 5 02 5 02 5 20 5 . 31 5 31 5 42 5 4 5 3 457 5 54 5 58 5 60 5/ 62 5 65 5 78 6 7 6 1
.9 0. 2. 8. S . .5 . 8 3. 1. .0 3. .8 .5 .5 . 7 2. .9 8. .0 5 .2 .1 . 3 .7 .4 .3 .5 .9 5 .4 . 6 0. 6. 5. 6 .0 .6 .5 . 6 .0 .5 .4 .5 .8 .4 .3 . 3
ur
.m
8 8 9 9 0 0 1
s 9 2 6 0 4 8
4 8 3 7 2 6 0
O 0 96 8 7 7 A 6E
1 2 2 2 3 3 4 4
2 6 0 4 8 2 6 0
5. 0 4 9 3 8 3 7
5 4 4 38 2 2 1 A 0
5 5 6 6 .7 7 8 8
3 7 1 5
2. 9 7 9 1 84 6 76 1% 4 6 6 1 54 5 48
9 9 0 0 1 51 2 2
s 9 3 7 1
3 3 4 84 5 5 6 6
6 0 4
7 7 8 8
3 7 1
8 2
2 6 0 4
8 2 6 0 93 9 7 0 1 1 5 4
0. 4 5 3 0 2 5 18 0 1 50 0 9 5 88 0. 6 1 66 1 6 2 7 2. 7 3 8
8 7 6
52 4 3 3
2 1 0 08 93 9 8 4 74 0 7
2
2
A
A
~ % % %
C
Area
C
i
615.75 621,26 626.80 632.36 637.94 643.55 649.18 654.84
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
R
rArea c
u
m
6 7 7 7 8 8 9 9
8 2 6 9 3 7 1 5
1 0 0 9 8 7 7 6
. . . . . . . .
. 4 125.664 7 126.0s6 0 126.449 126.842 2 127.23s 5 127.627 8 128.020 0 128.413 3 128.805 129.198 129.591 129.983 130.376 130,769 131.161 131.554
660.52 666.23 671.96 677.71 683.49 689.30 695.13 700.98
k
1320.3 1328.3 1336.4 1344.5 1352.7 1360.8 1369.0 1377,2
706.86 712.76 718.69 724.64 730.62 736.62 742.64 748.69 754.77 760.87 766.99 773.14 779.31 785.51 791.73 797.98
1075.2 1082.5 1089.8 1097.1 1104.5 1111.8 1119.2 1126.7
804.25 810.54 816.86 823.21
8
135.088 135.481 135.874 136.267 136.659 137.052 137.445 137.837
119.381 119.773 120.166 120.559
2
9
.
122.522 122.915 123.308 123.700 124.093 124.486 124.878 125.271
5
1 8
1
6
139.801 4 . 1 2 140.194 140.586 140.979 141.372 141.764 142.157 142.550 142.942 143.335 143.728 144.121
5
5
303
C
D
A
C 1 1 1 1 1 1 1 1
i i 4 4 4 4 4 4 4 4
147.655 148.048 148.440 148.833 149.226 149.618 150.011 150.404
1
5
r ac Area
u
4 . 1661.9 4 . 1670.9 5 , 1680.0 5 . 1689.1 6 . 1698.2 6 . 1707.4 6 . 1716.5 7 . 1725.7
5 9 2 6 0 4 8 2
1734.9 1744.2 1753.5 1762.7 1772.1 1781.4 1790.8 1800.1
8
.
6
A
. m Circum. . 1 0 9 9 8 J 6 6
2123.7 2133.9 2144.2 2154.5 2164.8 2175.1 2185.4 2195.8
166.504 166.897 167.290 167.683 168.075 168.468 168.861 169.253
2206.2 2216.6 2227.0 2237.5 2248.0 2258.5 2269.1 2279.6
169.646 170.039 170.431 170.824 171.217 171.609 172.002 172.395
2290.2 2300.8 2311.5 2322.1 2332.8 2343.5 23S4.3 236S.0
172.788 173.180 173.573 173.966 174.358 174.751 175.144 175.536
2375.8 2386.6 2397.5 2m8.3 2419.2 243J1.1 2441.1 2452.0
5 1 0 7
—
2042.8 2052.8 2062.9 2073.0 2083.1 2093.2 2103.3 2113.5
I
Area
3 163.363 6 163.756 9 164.148 1 164.541 4 164.934 7 165.326 9 165.719 2 166.112
177.893 178.285 178.678 160,221 160.614 161.007 161.399 161.792 162.185 162.577 162.970
C
2463.0 2474.0 2485.0 2496.1 2507.2 7 . 2518.3 2529.4 2540.6 2551.8 2563.0 2574.2 2585.4 2596.7 2608.0 2619.4 2630.7
Area 182.212 182.605 182.998 183.390 183.783 184.176 184.569 184.961
2642.1 2653,5 2664.9 2676.4 2687.8 2699.3 2710.9 2722.4 2734.0 2745.6 2757.2 2768.8 2780.5 2792.2 2803.9 2815.7 2827.4 2839.2 2851.0 2862.9 2874.8 2886.6 2898.6 2910.5
60.
?’4
? % % %
?4 %
2922.5 2934.5 2946.5 2958.5 2970.6 2982.7 2994.8 3(X)6.9
5
0 1 0 %
.
3
5
w14
H
A
A
C
Dia.
Area
‘
201.062 201.455 201.847 202.240 202.633 203.025 203.418 203.811
X i % % %
204.204 204.596 204.989 205.382 205.774 206.167 206.5&l 206.952
Circum. 238.761 239.154 239.546 239.939 240.332 240.725 241.117 241.510
% X % % % % 3421.2 3434.2 3447.2 3460.2 3473.2 3486.3 3499.4 3512.5
210.487 210.879 211.272 211.665 212.058 212.450 212.843 213.236
R
% x ~ % % % %
245.044 245.437 245.830 246.222 246.615 247.008 247.400 247.793
%
248.M6 248.579 248.971 249.364 249.757 250.149 250.542 250.935
% X % % % % %
251.327 251.720 252.113 252.506 252.898 253.291 253.684 254.076
; % ;
% X % ~ % %
254.469 254.862 255.254 255.647 256.040 256.433 256.825 257.218
305
C
A
Dia. 82. ;~
Circum. 257.611 258.003
Dia.
Area I—.—
2 .3 .3 .3 .3 .3 .3
Y % % % % % % % % % % % 3 Y
2 2 2 2 2 2 2 2
5808.8 5825.7 5842.6 5859.6 5876.5 5893.5 5910.6 5927.6
92.
% % % % 5A 3% %
270.177 270.570 270.962 271.355 271.748 272.140 272.533 272.926 273.319 273.711 274.104 274.497 274.889 275.282 275.675 276.067
5944.7 5961.8 5978.9 5996.0 6013.2 6030.4 6047.6 6064.9
93.
~8 % % % 5A 3% %
8 % x % % % % %
— 8
8
86.
87.
5 5 5 5 5 6 — ~ 6 I 3 50 .4 6 ~ 51 .4 6 .4 51 6 .4 51 6 .4 52 6 .4 52 6 .5 53 6 .5 53 — 6 4 53 .5 6 .5 54 6 .5 54 6 .5 55 6 .6 55 6 .6 55 6 .6 56 6 .6 56
3 ~1 7 2 1 $4 5 % 6 9 ~7 3 9 — 7 1. 89. 1 Y8 1 s % 4 9 5 3 ~7 7 % 9 1 3A 0 5 % 2
6 5 57 6 57 6 57 6 58 6 58 6 58 6 59 6 59 . —
91. 0 7. 4 % 9 8 ~0
.6 .6 .7 .7 .7 .7 .7 .7
9 8~ 8 7 6 5
276.460 276.853 7 277.246 36 277.638 99 278.031 51 278.424 14 278.816 87 279.209 49
5 4 3 3 2 1 0 0
279.602 02 279.994 65 280.387 38 280.780 90 281.173 63 281.565 26 281.958 88 282.351 51
$; 9
2 2 2 2 2 2 — 2 2 2 2 2 2 2 2 — 2 2 2 2 2 2 2 2
x ~ % % % %
9 8 7 7 6 8 % 2 5 2 4 5 6 % 5 4’ 3 2 2 2?’6 1 4 0 % 5 9 % 9 7 A 3A 9 8s % % ~ ?’4 ~ 5% % %
% % % % $% %
I
Dia.
Circum. 295.310 295.702 296.09s 296.488 296.881 297.273 297.666 298.059
6939,8 6958.2 6976.7 6995.3 7013.8 7032.4 7051.0 7069.6 ——.
298.451 298.844 299.237 299.629 300.022 300.415 300.807
7088.2 7106.9 7125.6 7144.3 7163.0 7181.8 7200.6
B
3
78
?
308.661 309.054 309.447 309.840 310.232 310.625
7581.5 7600.8 7620.1 7639.5 7658.9 7678.3
311.018 311.410 311.803 312.196 312.588 312.981 313.374 313.767
7697.7 7717.1 7736.6 7756.1 7775.6 7795.2 7814.8 7834.4
6082.1 6099.4 1 3 6116.7 6134.1 4 6151.4 6 6168.8 8 6186.2 1 6203.7 3
94.
. . , . . . . . . . . . . . .
6221.1 6 6238.6 9 6256.1 3 6273.7 6 6291.2 0 6308.8 4 6326.4 8 3 6344.1
95.
B % % ti 5A 3A %
—
8 4. 90. 2 % 5 6 % 7 0 % 9 4 ~0
2 6 9 3 7
C
Circum. ——
88.
5281.0
5 59 58 59 59 59 50
A
— 282.743 14 283.136 86 283.529 49 283.921 12 284.314 75 284.707 47 285.100 10 285.492 73
x $6 % %
—
285.885 45 286.278 18 286.670 71 287.063 43 287.456 16 287.848 89 288.241 52 288.634 14
6361.7 8 6379.4 3 6397.1 8 6414.9 4 6432.6 9 6450.4 5 6468.2 2 6486,0 8 ——— . 6503.9 5 . 6521.8 2 . 6539.7 9 . 6557.6 7 . 6575.5 5 . 6593.5 3 . 6611.5 1 . 6629.6 9
289.027 289.419 289.812 2?0.205 290.597 290.990 291.383 291.775
6647.6 6665.7 6683.8 6701.9 6720.1 6738.2 6756.4 6774.7
292.168 292.561 292.954 293.346 293.739 294.132 294.524 294.917
>,;
Arc
. . . . . . . .
% x % % % ~
~ % % % %
—
% % % % % 99. % % 3/8 % % ~ %
0
.5
2 6 6 4
29
306
C
A
A
C
If A
r
% x % % % 3 %
3 0 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1
7 7 7 7 7 7 7 7
40 4 4 5 5 6 6 6
.1 8 . 8 . 8 . 9 . 9 . 9 . 9 . 9
. 1 %5 ~ 9 3 %7 %1 ~ 5A 5 9
3 3 3 3 3 3 3 3
065 57 59 41 3 25 72 19
3 3 3 3 3 3 3 3
8 8 8 8 8 8 8 8
364 33 33 43 43 42 52 52
.1 8 . 0 . 8 %4 . 8 %8 . 8 %1 . 9~ 5 . 9%9 . 9s 3 . 9%7
3 3 3 3 3 3 3 3
112 04 06 98 80 72 75 67
5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 l
. . . . . . . .
8 . 8 8 9 9 9 9
3 0 3 3 3 3 3 3 3
1 1 1 1 1 1 1 2
8 8 8 8 8 8 8 8
71 7 8 8 8 9 9 0
.1 0 . 0 . 0 . 0 . 0 . 1 . 1 . 1
.3 ~ 6 ~ 0 ~ 4 %8 ~ 2 %6 ~ 0
3 3 3 3 3 3 3 3
001 93 95 87 79 71 63 5
3 3 3 3 3 3 3 3
8 9 9 9 9 9 9 9
762 62 62 71 71 81 81 81
.1 9 . 1 . 0 % 58 . 0X9 . 0 N 38 . 0g 7 . 0%1 . 1%5 . 1 % 98
3 3 3 3 3 3 3 3
1 59 41 43 35 72 29 1 04
5 1 352 0 . 5 1 54 0 . 5 1 55 0 . 5 1 66 0 . 5 1 67 0 . 51 860 5 1 79 0 . 5 1 70 0 .
.
% % % % % % ~
3 0 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2
8 8 8 8 8 8 8 8
02 0 1 1 2 2 2 3
.1 1 . 1 . 2 . 2 . 2 . 2 . 2 . 3
. 4 ~ 8 x 2 % 6A % 04 %4 ~ 8A Y 18
3 3 3 3 3 3 3 3
047 49 31 23 15 17 09 91
3 3 4 4 4 4 4 4
9 9 9 9 9 9 9 9
981 91 01 01 02 12 12 22
.1 1 . 2 . 1 6 . 22 0 . 2~ 4 . 2%8 . 2%2 . 2 x 6~ . 3 % 08
3 3 3 3 3 3 3 3
1 96 98 80 72 64 6 58 41
5 5 5 5 5
1 1 1 1 1 &1 6 1 6 1
481 0 . 83 0 . 84 0 . 95 0 . 96 0 . 8 l0 09 0 . 00 0 .
.
% X 3 ? % 3 ~
2 2 2 2 2 2 2 2
8 8 8 8 8 8 8 8
3 3 4 4 5 5 5 6
.1 3 . 5 . 3~ 9 . 3~ 3 . 3? 7 . 4 M1 . 45 5 . 4 3 9A . 4 7/ 3
3 3 3 3 3 3 3 3
093 85 7 69 61 53 45 37
4 4 4 4 4 4 4 4
9 9 9 9’ 9 9 9 9
922 22 32 33 43 44 44 54
.1 3 . 4 . 3g 8 . 3%2 . 3 %6i . 4%0 . 4 % 4A . 4 3 7A . 4 % 14
3 3 3 3 3 3 3 3
13 35 27 19 1 03 96 8
6 6 6 6 6 6 6 6
0. 0. 0. 0. 0. 0. 0. 0.
.
3 ~
3 0 3 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2
8 8 8 8 8 8 8 8
64 7 7 7 8 8 9 9
1 39 21 13 51 70 9 81 83
4 4 4 4 4 4 4 4
9 055 9 55 9 66 9 66 9 77 9 77 % 78 % 88
.1 5 . 5 3 . 5 %9 3 . 5 X 34 3 . 5 %7 3 . 5g 1 3 . 6 ~ 5~ 3 . % 9 33 . ~ 3 85 3
1 80 72 64 56 58 41 3 3
6 6 6 6 6 6
643 0 . 45 0 . 56 0 . 58 0 . 69 0 . 61 0 . 360 75 0 .
% % ~ x % % ~
3 0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
98 8 8 8 8 8 8 8
5 . 0 0 1 1 1 2 2
.1 4 . 7 3 . 5%1 3 . 5? 5 3 . 5~ 9 3 . 5 %3 3 . 5; 6 3 . 6 x 0A 3 . 6~ 4 3 — — 186 . 7 3 . 6B 2 3 . 7%6 3 . 7~ 0 3 . 7%4 3 . 7~ 8 3 . 7~ 2 3 . 8 ~ 68 3
.
% % % % % 3 %
1— 5 67 50 52 4 36 28 20
4 4 4 4 5 5 5 5
% 189 % 99 9 90 9 91 9 01 9 02 9 13 9 14
.1 . 7 7 3 . %1 93 . 7X 5 3 . 7%9 3 . 7% 2 3 . 7% 6 3 . 8~ 0 3 . 8 ~ 48 3
12 1 02 04 96 8 70 73
6 1 77 61 87 6 1 80 6 1 82 6 1 94 6 1 96 6 1 98 7 1 00
1
1
1
1 % % % ;
1
1
,
1 1 1 1 1 1 1 1
1 1 1 1 1 1 61 6 1
I
215 25 26 37 38 39 40 41
511 13 24 26 27 39 30 41
0. 0 0. 0. 0. 0. 0. 0.
.
-
C
A
A
C
I (continued)
—
1
;
%
3
3A % % 3A ~8
390.74 391.13 391.52 391.92 392.31
12125 0 12150 12174 12199 12223 12248
392.70 393.09 393.49 393.88 394.27 394.66 395.06 395.45
12272 12297 12321 12346 12370 12395 12419 12444
131.
395.84 3%.23 3%.63 397.02 397.41 397.81 398.20 398.59
12469 12494 12518 12543 12568 12593 12618 12643
132. % X % % ~
398.98 399.38 399.77 400.16 400.55 400.95 401.34 401.73
12668 12693 12718 12743 12768 12793 12818 12843
133.
12868 12893 12919 12944 12970 12995 13020 13045
134.
% % % % % %
402.13 402.52 402.91 403.30 403.70 404.09 404.48 404.87 405.27 405.66 406.05 406.44 -.~ 407.23 407.62 408.02
13070 130% 13121 13147 13172 13198 13223 13248
135.
% X Y8 S % 3A %
% % % 125.
% % g
% x
% ~
%
% ?’4
% 126.
% ~ M ~ ~ g
% % % % % % %
% 127.
g X % % % x %
~ % % % % % 128. g
~ x % % %
384.06
% 129.
% % % % %
%
I
9
.
3 , 409.19 4 409.59 409.98 410.37 410.76 411.16
13324 13350 13375 13401 13426 13452
411.55 411.94 412.34 412.73 413.12 413.51 413.91 414.30
13478 13504 13529 13555 13581 13607 13633 13659
x %
414.69 415.08 415.48 415.87 416.26 416.66 417.05 417.44
13685 13711 13737 13763 13789 13815 13841 13867
% X % % % x ?’4
417.83 418.23 418.62 419.01 419.40 419.80 420.19 420.58
13893 13919 13946 13972 13999 14025 14051 14077
420.97 421.37 421.76 422.15 422.55 422.94 423.33 423.72
14103 14130 14156 14183 14209 14236 14262 14288
424.12 424.51 424.90 423.29 425.69 426.08 426.47 426.87
14314 14341 14367 14394 14420 14447 14473 14500
% ?-’6 >~ 3A %
% X E % ~ %
~ X % % % % %
; % % % % %
3
2
308
C
A
A
C
I( .
1
Dia. ——
I Circurn.
136.
427.26 427.65 428.04 428.44 428.83 429.22 429.61 430.01
% x % % % % %
I
137.
I
Area
Area 14527 14553 14580 14607 14633 14660 14687 14714
142. ?~ x ?~ ?4 96 3A
143.
430.40
% %
% x
% % % %
E % % % 144. % x % % ~ ~ x 436.68 437.08 437.47 437.86 438.25 438.65 439.04 439.43
15175 15203 15230 15258 15285 15313 15340 15367
145.
15394 15422 15449 15477 15504 15532 15559 15587
146.
% % % %
439.82 440.22 440.61 441.00 441.40 441.79 442.18 442.57
15615 15642 15670 15697 15725 15753 15781 15809
147.
% g /8 % % % x
442.97 443.36 443.75 444.14 444.54 444.93 445.32 445.72
140. % % y;
41.
% % % % % %
% % %
x ~ 3A B
% % 3A N % % %
446.11 446.50 446.89 447.29 447.68 448.07 448.46 448.86
15837 15865 15893 15921 15949 15977 16005 16033
449.25 449.64 450.03 450.43 450.82 451.21 451.61 452.00
16061 16089 16117 16145 16173 16201 16229 16258
452.39 452.78 453.18 453.57 453.% 454.35 454.75 455.14 455.53 455.93 456.32 456.71 457.10 457.50 457.89 458.28
16286 16314 16342 16371 16399 16428 16456 16485 —— 16513 16542 16570 16599 16627 16656 16684 16713
458.67 459.07 459.46
.I % X % %
X % % % % % ; %
17790
% ~
% 474.38 474.77 475.17 475.56 475.95 476.35 476.74 477.13
17908 17938 17%7 17997 18026 18056 18086 18116
16742 16770 16799
477.52 477.92 478.31
18146 18175 18205
16856 16885 16914 16943
478.70 479.09 479.49 479.88 480.27
1
460.24 460.64 461.03 461.42 461.82 462.21 462.6Q 462.99 463.39 463.78 464.17 464.56
16972 17000 17029 17058 17087 17116 17145 17174
480.67 481.06 481.45. 481.84 482.24 482.63 4S3.02 483.41
18385 18415’ 18446 18476 18507 18537 18567 18597
459.85 16827
8
18265 18295 18325 18355
—
309
C
A
A
C
I(
? Dia. 1s4.
—— 155.
Circum.
% 96 3A Xl 156.
>~
x 3A ; % % 157. ~ 96 Y2
% % B
—— 158.
% % y~ % % % % 159. % x 3/8 % % 3A %
Dia.
Dia.
Circum.
Area
i8627 18658 18688 18719 18749 1&3779 18809 18839
16Q. >8
502.&5 503.05 503.44 503.83 504.23 504.62 505.01 505.41
20106 20138 20169 20201 20232 20264 20295 20327
166.
486.95 487.34 497.73 488.13 488.52 488.91 489.30 489.70
18869 18900 18930 18%1 18991 19022 19052 19083
161.
505.80 506.19 506.58 506.98 507.37 507.76 508.15 508.55
20358 20390 20421 20453 20484 20516 20548 20580
167.
4S0.09 490.48 490.88 491.27 491.66 492.05 492.45 492.84
19113 19144 19174 19205 19235 19266 19297 19328
162.
508.94 509.33 509.73 510.12 510.51 510.90 511.30 511.69
20612 20644 20675 20707 20739 20771 20803 20835
168.
493.23 493.62 494.02 494.41 494.80 495.20 495.59 495.98
19359 19390 19421 19452 19483 19514 19545 19576
163.
20867 20899 20931 20964 20996 21028 21060 21092
169.
% % % % Y8
512.08 512.47 512.87 513.26 513.65 514.04 514.44 514.83
4%.37 496.77 497.16 497.55 497.94 498.34 498.73 499.12
19607 1%38 19669 19701 19732 19763 19794 19825
164.
21124 21157 21189 21222 21254 21287 21319 21351
170.
% ~ ?$ % % % x
515.22 515.62 516.01 516.40 S16.79 517.19 517.58 517.97
499.51 499.91 500.9 500.69 501.09 501,48 M1.87 S2.26
19856 19887 19919 19950 19982 20013 20044 20075
165.
518.36 518.76 519.15 519.54 519.94 520.33 520.72 521.11
21383 21416 21448 21481 21513 21546 21578 21610
171.
483.81 ! s I 484.20 ;~ 484.59 484.99 38 485.38 % 485.77 % 4S6.16 % 486.56 %
% % $8
Area
X % Y2 % % ~8
% x % % % % % ~ x 3A % ~8 3A ~8
;
.
% % ?’6 % % 3A %
Circum.
Area
521.51 521.90 522.29 522.68 523.08 523.47 523.86 524.26
21642 21675 21707 21740 21772 21805 21838 21871
% 3A ~8
524.65 525.04 525.43 525.83 526.22 526.61 527.00 527.40
21904 21937 21969 22002 22035 22068 22101 22134
% x % % % 3A ~8
527.79 528.18 528.57 528.97 529.36 529.75 530.15 530.54
22167 22200 22233 22266 22299 22332 22366 22399
530.93 531.32 531.72 532.11 532.50 532.89 533.29 533.68
22432 22465 22499 22532 22566 22599 22632 22665
534.07 534.47 534.86 535.25 535.64 536.04 536.43 536.82
22698 22731 22765 22798 22832 22865 22899 22932
537.21 537.61 538.00 538.39 538.78 539.18 539.57 539.%
22966 22999 23033 23066 23100 23133 23167 23201
B % ?4 % % % %
~8 X pa ~
B x 3A ~ % x %
~ % % % % 78 g
xy~ % % % 5
I
C
A
A
Dia.
,
178.
~
% % % ~
~
% ~
% %
~8 179.
C
I(
Circum.
Area
Dia.
559.21 559.60 559.99 560.38 560.78 561.17 561.56 561.95
24885 24920 24955 24990 2%25 25060 25095 25130
184. g
25165 25200 25236 25271 25307 25342 25377 25412
185.
x 3A % % % %
% x % ;
% g
% %
% %
562.35 562.74 563.13 563.53 563.92 564.31 564.70 565.10
25447 25482 25518 25553 25589 25624 25660 25695
186.
E % Y2 % % ~8
565.49 565.88 566.27 S6.67 567.06 567.45 567.84 568.24 568.63 569.02 569.42 569.81 570.20 570.59 570.99 571.38
25730 25765 25801 25836 25872 25908 25944 25980
187.
571.77
26016 264351 3 26087 26122 26158 26194 26230 26266
188.
26302 26338 26374 26410 26446 26482 26518 26554
189.
~
180.
% % % % % % %
181.
g
% x % S
x % % ~
% % ~8
% %
—— 182.
5
5 2 3
4.
;
%
33 572.16 16
3A
% % % % %
% ~ % % 183.
% x
% x % ~
% % %
% % Y8
572.56 572.95 573.34 573.74 574.13 574.52 574.91 575.31 575.70 576.09 576.48 576.88 577.27 577.66
?’6 x % % % % ~8
B x % % ~ x ~8 ~ % 3A % % 3A %
; 3A % % % %
% % % % % x ~8
c
Circum.
o
n
Area
578.05 578.45 578.84 579.23 579.63 580.02 580.41 580.80
26590 26626 26663 26699 26736 26772 26808 26844
581.20 581.59 581.98 582.37 582.77 583.16 583.55 583.95
26880 26916 26953 26989 27026 27062 27099 27135
584.34 584.73 585.12 585.52 585.91 586.30 586.59 587.09
27172 27208 27245 27281 27318 27354 27391 27428
587.48 587.87 588.27 588.66 589.05 589.44 589.84 590.23
27465 27501 27538 27574 27611 27648 27685 27722
590.62 591.01 591.41 591.80 592.19 592.58 592.98 593.37
27759 27796 27833 27870 279Q7 27944 27981 28018
593.76 594.16 594.55 594.94 595.33 5U5.73 5%.12 5%.51
28055 28092 28130 28167 28205 28242 28279 28316
I I
l
i
n
311
C
A
A
C
I( ?
Dia. 190. 1,/ /8 Id 36 il ;:
Circum.
Area
Dia.
5%.90 597.29 597.68 598.08 598.47 598.86 599.25 599.64
26353 28390 28428 28465 28503 28540 28578 28615
196. % x % ~
600.04 600.44 600.83 601.22 601.62 602.01 602.40 602.79
28652 28689 28727 28764 28802 28839 28877 28915
197.
28953 28990 29028 29065 29103 29141 29179 29217
198.
% % % ~8
603.19 603.58 603.97 604.36 604.76 605.15 605.54 605.94 606.33 606.72 607.11 607.51 607.90 608.29 608.58 609.08
29255 29293 29331 29369 29407 29445 29483 29521
199.
% % 3A % % % %
29559 29597 2%36 2%74 29713 29751 29789 29827
2W.
% % 78
609.47 609.86 61026 610.65 611.05 611.43 611.83 612.29
195. % % % M % % 7/8
612.61 613.00 613.40 613.79 614.18 614.57 614.97 615.36
29865 29903 29942 29980 30019 30057 30096 30134
201.
% % 191. ~
% >4 % ~8 192. % x :.4
193.
194. % % 3A S
Circum.
Area
Dia.
615.75 616.15 616.54 616.93 617.32 617.72 618.11 618.50
30172 30210 30249 30287 30326 30364 30403 30442
202.
30481 30519 30558 305% 30635 30674 30713 30752
203.
Z? % x vu
618.89 619.29 619.68 620.08 620.47 620.86 621.25 621.64 622.04 622.44 622.83 623.22 623.62 624.Oi 624.40 624.79
30791 30830 30869 30908 30947 30986 31025 31064
2W.
% % 3/8 % % x %
625.18 625.58 625.97 626.36 626.76 627.15 627.54 627.94
31103 31142 31181 31220 31263 31299 31338 31377
205.
% % 3/8 >5 % 3A ~8
2 % % ~8
628.32 628.72 629.11 629.51 629.S(3 630.29 630.58 631.08
% x ?5 % % % ~8
631.46 631.86 632.26 632.65 633.05 633.43 633.83 634.29
% ~ ?’4
% g
g X
Circum.
Area
634.60 635.00 63S.40 635.79 636.18 636.S7 636.97 637.36
32047 32086 32126 32166 32206 32246 32286 32326
637.74 638.15 638.54 638.93 639.32 639.72 640.11 640.50
32366 32405 32445 32485 32525 32565 326435 32645
640.88 641.28 641.67 642.07 642.46 642.85 643.24 643.63
32685 32725 32766 32806 32846 32886 32926 32966
3/8 % % % %
644.03 644.43 644.82 645.21 645.61 ~.~ 646.39 646.78
33006 33046 33087 33127 33168 33208 33249 33289
31416 31455 31495 31534 31574 31613 31653 31692
2@5. % x >s ti % % ~8
647.17 647.57 647.96 648.35 648.75 649.14 649.53 649.93
33329 33369 33410 33450 33491 33531 33572 33613
31731 31770 31810 31849 31889 31928 31%8 32007
207.
650.31 650.71 651.10 651.50 651.89 652.28 652.57 653.07
33654 33694 33735 33775 33816 33857 33898 33939
~8 % >8 % % % B
?“6 % 58 % % % ~
% x ; % % %
;
z % % % % y8
312
D
3
..
C F
.—
II
I
.—.
t
\
Y s
I
H N
O
Z O O 1 2 3 4 5
STIFFENER
TA l El A w T d U d F f r
I
Of N P iT E mc Sa 3 ec h ba s l ar e uq
FIL
AN l
V N
EG
RO OT
PI
CE RAN L I
tsa : e rr t i ab. l e o en l ol /ln f t w id .8ni l u s oe l ”u s e l t d ht v ae a gei s. exae ttcd i ese nnfs ldss e i tc v t e i o i i rev noe t .qi sgw uo t t hiu sori hm e a s hdi t s nn h oou ep s dn e t.i nplrae yri etn vhinge f dg e ,i r r t e s d
l
I
>
n eg e o
N
f
313 FIXED STAIR AND HEALTH (OSHA) STANDARDS
F F b
s i
wt
bx pa
ir e i w o
rdvol h ip s ed nelr eeae cdtr eri s o eest n i gstbr a u et a l el t eva w vre e e el
l
s i t a s x i b rdh ewe at sa cd y i as llga o nf l reto e dt iri n a o oylm v l hrd a e inf meot si a cv e i al p a e l e t u t vec h a m ea s t oacrr o vns cr n eli on oytn 1 r oa gp t , e o d a 0u n 0d d f 0s .
n
M
i
wn
A
o ns
i2i i m d n u t m c h h t
gra
: e
2 s
t i t l rhi owe r ai sfhzy 5o dn ete ao gel
:r
e
e
s0
.
R p
a s i bl ph i r n aoo gt v osI i s d l op ehai e ed dxe s n pt eel a no Hi sra wnefs al d dby rh s a . i a l r oo a lv oi e ds oe nac d i sl s tcn oa td pti srre ew eof at fe ydr r s sa , i bd ehl sigy c e hnnd de i t n
E
t
S t
ht taa ar d e e
S
aa r n
f
fi
A b D
i K
oe r n
dun io m i r eemB ne
l e rh s(
A t n H o r i 3
bns rah he i a da sn l doi lpgn - ar elb s lie s y t a n t .
orvil tei r n ena si h n w gd e s s s-ai i hhf ns do noc r ha t u ipo sf a oir rd u sa st bot lse a e i i d r e s .
m eg i
a us m
oesc
sn d r ab rhl g ser
suY 0iro m oB n hl s am d e po l sv
. 7 o ot el
1sl l de
g R z (o i n
l i e T o Rsr tn a cl i { h i en
0
°
7
deepr t
rae
nset y
i e 6t
s
0
.
ia o t n s rs rR ( en t ue af s bb a) uTn del d a l st -
lhsgv
e e ua e cn i ~ h e
eo)
d w
d an
:
n )
i.
HINGE
+iii’’”k-w ICl
b N F w t T f
O
T
E L UW l a p u is t npg ii hl t s o dia n o o t s c h i ob oeuv Wl e nl t per e u s d l g. f l w a f n p i eg un e towt s r l a e ht i lol n u o d p h ar s et h vf ei e sir e npr f ete gc d i e a ol f r e u q ou pe s en tn l rie y n g ds , A = ~
– (
RR
B = ~ R – (
1R
/
a
+t / /
2)
2
2 2 1
+
GE
T L-B n s e d s d . , l y D .
D AF L E L ID A N
I
6
c = R + 2!4 – A D = R+ R
R s r =
D P
R
i d
A
2’/2 –
ao f d t di i ao hm =e i a+ 1I i m1 i
i a u n s g f e am o mh - e e ot s e r l to e r l f e e t en r n 6 . L U W
T
Kt ON LE
H
TI
I
DIAM.L
12
A
I
T
I
I
l
N
G 1 / 3
/ 3
G1
1
. ]
2
N
G
DLB
EA
DN
/ 3 4 / 3 4 / 3 4 / 3 4 / 3 4 / 3 4 /
14 /
4
I
5
3
1 /
f e GE T L-F
OF S AND S U, DIAMETER G F PINS S
3
3
3 R
C
I 3
F
B
1 / 1
2 14
# 300*
0
14
1 6
3 4
3
18 1 /
2 4
10
1 / 1
900*
I
I
2 2
4
1 14
4
-
.“
LADDER
S
S 2 3
in. min. in. max.
I
T
D
E
E
PT 7 0
H
RS O
2
in. min. 30 in. max.
UT G
HE 4
m
SIDE R [note
u 1
N 1 C l 2 H c a 3 A 4 I e i c 5 T t 6 A 7 P g
in
O T E S i n ar e gqw o u t .hi el r seeeot c dhnr i l 2g ef it o e l hema f eg b e r s o0s o t v e v e l . o r i z o o n fl t a a fl pl. n ysl d ase it b tfhnp o gr ar oa m l v l ei e dl 3 v ef ae od e s rt l il me W b n i sg hn tadg e hef a .rvue i ret s cp r yl e ee a s t dbf shepo ,rr am ot vs l i m a ix n i t m oe 2r u w f t ma le l5 s e tf 0 . m a t s el c r t o i n a . ef tl o A: r e m A i3Sl n g T o M 6 n o st ta e s b aph . edos c t irvf fuse ic e heta udoa r asp t lt n re hus sc o tet yu r re a q u si v t a rml eeb unn t gT as at h de v a yddom e usa. i h gro oi degi p as pn l i v g na s t nr ua c gnat uw g r , ai ul l r df e s s e sr al ieeov ya e dmrd n i et r oiemt c l b ad e l a g e . r e c o hm mm e i n .snd e e oi ds mi r u ui am z n n id o ae d t lrfm e eo mcss p raoh e l nr 2 1 ix 3 i f o / b a/ l nnl a t2 2x ah1 8bro . au t f ga,r / he qu r ru i ep 4 snr s t a el c ye t b a u s l re h ns rd .a bl hr sg r e d am e p o lsv el de . r o C t e o c aot its v i. ce n hpn g or:a ooi fae m cp ni eo tnp eor o ah dl d ae i d not a l v a n i z i n g .
316
M IST M e t
E XT R A CT OR
e
x i t rb as s ce tp om a t rr usa in t d i esnyl s gii trf qa vb, u l r aes i pdt lo iseo q m ar u i mt t p p rec r o f ho vo. r v m e aa pn rec r eei oq o u c i u pefT m s s ae nm sh t as . n er u fu m r r o e pe o l t m d a aams ae tlv ai i rsnia c l r a he b qsdln uae is i r nh ey nz ad
Q
e
4 - A
d
t
d
‘
C
-
B
T
Y O
M P E XE I T R S AS C FT OT R S
\
D
E– A
T
A
S
6I 1 than 6 ft.
m
I
U
PO
L
PM
I
D
E– C
T
A
OE X RI T TR AS C F T OT R S
s 2support in .center e beam of mist 5 extractor, when the diameter is greater
U
SPECIFICATION THICKNESS OF PAD THICKNESS OF WIRE MATERIAL OF WIRE DENSITY lb./Cu. ft. PRESSURE DROP MATERIAL CARBON STEEL BEARING BAR
WIRE MESH
G
R B C
IC E W
W
~>,
6 >! .011“ .01 1“ TYPE 304 S.S. TYPE 304 S.S. 9.0 5.0 0.5” TO 1“ WATER GAGE lx3/16°
1“x3/1 6“
R BD O A S S % R AB RS IP NA GC I 3N R -G 4 R B S O P A S C S I N R G E l I bf G . H / sTt q5 .
O I O DS
ET
N C HT
I F 1O E
N
Y4qi
9 .
3/ 1 4 .7 21
1 -
4 6 “ 7. “2
-’317
NAME PLATE Pressure vessels built in aemrdanee with the requirements of the Code maybe stamped withtheofficialsymbol ”U”todenoteTheAmerican SocietyofMechanieal Engineers’ standard. Pressurevessels stamped with the Code-symbolshall bemarkedwith the following: 1. manufacturer’sname;preeededwiththe words:“eertifledby”; maximumallowableworkingpressure,(MAWP)psiat temperature,°F; minimumdesignmetaltemperatureat pressure,psi;(MDMT) manufacturer’sserialnumbeq(S/N) “yearbuilt Abbreviationsmaybe usedasshownin parenthesis. 2. theappropriateabbreviationsindicatingthe typeofccmstruction,sexvice,etc. as tabulated: Wheninspectedbya user’sinspector USER Arcor gaswelded w LethalseMce L Unfiiedsteamboiler UB Directfting DF Fullyradiographedand UW-ll(a) (5)not applied RT 1 JointsA & D fullyradiographed;UW-1l(a) (5)(b) applied RT 2 Spotradiographed RT 3 WhenRT1,RT2or RT3are not applicable RT 4 Postweldheat treated HT Partof the vesselpostweldheat treated PHT Nonstationa~PressureVessels NPV
1.S “UM” y s m b u hb w to asv hl i el e x hs efl e iesm dn nrpse[ pet Ule eCo cs- d t oli mo( nd k )e ] 2 F v em os o 8sa fa 9e n 5 ld, sr iYs % ntt cuYe oe n, k ea 0 mhedil ms0e slap fln, sa d ett aeheh fti s bco ke r nsey e l s l sr Mi n p n a a[ p r a .oema tf r h e ;ie rec C kr s U lne ee 1dos Ls e5n slTd . ( - e c 1 ) — C
USER
ml W
R
1
H
E
R BT
I
F
OMEGA TANK CO. MAWP250 650°F MDMT 650°F at 250 psi
E ( s
L
D
N
v
E
MA P A L Y X A M P
E T
Tw e
i s n h s sb pau eee sc l t e es
L
E E dr
inspector,arc welded,usedin lethal
S/N-19560 b 1996
-
I
e
r
v
i
c
e
,
T T
[
used on skirts, supports, etc., it shall be marked: “Duplicate”. b nh l ta 5 e ol ih h / l s T aei Ct 3no s gd n e h -a2h s s y. m. ne b e onur l Letteringsizes
mi ba d at om l pd t emlh dbhea s , t e atee mr t c pac o eyih dm a e e p, rd se , s s te dr . Commonlyu m as f t n e e pr a0i o l dai s lma. t as r t i ne3o n1t e li ce2e s .as s)e rnt l b e r 8o e T n p ash l b sh ma w ae etet eu lln e i a dnl v s eeu oel l mda st o eoo sudb ner i t al e c r d k h e n v ie i n s s aus ll ea o ti lscen d sea , ot e dp md nl n a e ae c nl w m e lia a ; qye rs u v, i c o l n g t e ra a ov5 bf l ag ,e og be l r ue o, o t vtu t ne c d . s
b sh
t
318 PLATFO Conforms
RM
3 f!. 6 an. max.
.
30 an,min. t
jA%’&l/4
IF
7
tiANORAl L POST ANGLE 2x2x3/8
MI DRAIL BAR 2.1/4
P
l
a s t bf fh o a r b a mir s is l ce
i n
e
f
c s e u s fis sat
e ir
P
l
b
s
e ec
a c lt t e e id
hra f yiab o p l
t li
o dn
d
f
hi m t so
h
aota
i wpo
kre e p
n n s
i n nr
g
d
.
a f t a f b o ri r is mc e as sct f
pe
o
et
npkd
hdi on,e
in n
gr
o a nn s l l S E C A –T A I c d k ed d
c io
n l ne ae
ct l tb ibl o d onr
N
. 4
A f
O
s l
t
ee
I
od e
Clearance
.
$
M a n u f sa c f t hu u r 1e rar e n l ix 0 sl b A
o oe b
s l
af i st
a u s l
m
o
P
ao
n sr d a lb hsr g r
e
d
cn
hpn t
w
a s lu
M
s
pa o as
M
s
pa o a h
D
o
9r
6 # di
p
f le
B
1 o@
B
h
kr
l
9o o $
npi
/ t l/l
ge
xm ae s
aolh
o g r
l
tre
e
a s if
——-
-
oe0
2 s
t
$---+Fl
6
.
l tt
e i c1 l k ne
s
, p
t f s
oc e f q r rt l h
e 1t
—r——
.
les
pce
.
d.n 6 ofr g
nh rl/ i c
1a s a of t a
d ae p
-——.
1/4 BENT PLATE
or e: oi
p6i f p n.
xca
e r
.
fi a n c ucx
rCHECKERED % aPLATE -—
oa fe h r s
re h
v si
czp s
t h
s
re e CHANNEL n d
.
6x8.2
. o . a r f . A L T E R N S A UT I P V PE
O
SKIRT
OPENINGS
1/4 IN CONTINUOUS FI L LET WE LO / INSIOE ANO
VENT HOLES
I s e o h my d ri o occ oa n r e b to nf s h c o m b lu s i t oi q bg lu et ai ds s s sk b i hp rr a owt v m l s i i dli e e tnd m o t 2 ui v w nh mel o cf o nl c a ah a pt i o e1s dgs d ei sbgh8 l rs e a pT av hr ehst o c . h nl l e ae t e h i n e s u Fl aas t ilm od bone . e a v u c os ou p p e l i i dnp g e r
ACCESSOPENINGS PIPE OPENING
The shape of openings may be circular o any other shapes. Circular openings are used most frequently with pipe o bent plate sleeves. The projection of t thickness of h sleeve equals fireproofing minimum 2 inches. The projection of sleeves shall be increased when necessary for reinunder k certain i load- r forcing the s ing conditions. D
&u O Y S
P A K
a(
m = 1 e
it6 D e n -r
PIPE OPENiNGS The shape of pipe openings circular with a diameter of 1 inch larger than the diameter of flange. Sleeves should be provided a for a copenings. c e s s
D
T
i
E C
I C S E R S F ST E
S
c
r
t
2 )h
320 VORTEX T l
p
u
i
C n
BREAKER
o rh v p o b o rr se ei tet a e ek l f eix t m r u si n n d ae shvsto ioe r r ao t b eel u i d s .
q
a r f l o a btn s- a pa fslf ar f d te lequr ue we s nas wt eil o yiet od i z a m z e l t ee r .
F t s l
ex
t d dt i thw
mh
a h d oi eo e gf fg e r cr tu ei h v sene n es fsd wsv c i e oe r n lr dt iiwe tn oi gi o h n ds b sa hhfb f of t ul ote i nel moudd i hz ea rTm z hs e l teea ee h itr b o. g ou h e h tv t h b a o h bu t lno a dod u hi lze abt z m m f leb e s t e u e ia r v ni er tc er y qha e u le i ac l r e f ago r rea t ne or cah e s eo rn r s .
. . — . .
—. —— — — ——— 62!!3 . — — — . —. — — @
, -
.. — —
—
q
V
O
R
T OE LX
O = D
—
—
II N Q G U
2D
2D
#
I
I
A
DF
O MP
-
$
E
T
I E
R
tl
tl + +
GRATING’
F--i
1
3
M
R J
A a
I
I
>
u
-
% F
1
I
D
I
I
1
LC
t 1 ec r
R PAN
L O B T AA S DF
S TF
ai s a /pr l t :ob lg e or 4w a ean
G L E E
r
r i 1 I
R
AB
TA I
FN
FG
S
x t 1 li i b e - n tr ag1
e f e F r Me Pn ac te “ t: V e o r r cs t. boe. pnx r i ena vgT e On o A u r u4 n 1 ga l9u , s 6 t 9 , .
rh /
s8
at ne G dhe ” i
.
n
321
PART III. MEASURES
AND WEIGHTS
1. Table ofProperties ofPipes, Tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . 322 2. Dimensions............................................................................................ 334 of Heads, Flanges, Long Welding Necks, Welding Fittings, ScrewedCouplings. 3. Weight..----ti ----------------------------------------of Shells and Heads, Pipes and Fittings, Flanges, Openings, Packingand Insulation,Plates, CircularPlates, Bolts.
374
5, Area ofSurfaces ofShells and Heads. . . . . . . . . . . . . . . . . . . . . . . . . . 425 6. ConversionTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 DecimalsofanInch, Decimalsofa FooCMetricSystem,Inches to Millimeters,Millimetersto Inches, Square Feetto Square Meters, Square Meters to Square Feet, Pounds to Kilograms, Kilograms to Pounds, U.S. Gallon to Liters, Liters to U.S. Gallons,PoundsperSquareInches to KilogramperCentimeter, KilogramperCentimetertoPounds perSquareInch,Degreesto Radius,Minutesand Secondsto Decimalsofa Degree,Centi-
322
P S c
c
hn aa
Sched
eu
P
da m w u b l ed ee e n sir i gsga n i aha dt gi tor nr we s e A m iBe -e N 1-n-n.fortt 3 s bl pn to al A nei o B d e N 1npy f 3sl tSe as d6 io pI nt l . i ee9 s r p s e
ar e No.
o
Weigh[ Designation
& alloy s
‘ 80
4 8
... 40 80
4 8
S X
In- u side diam. in.
side diam. in.
Wall
tWeight
t
per foot lb. .186
t
,049 3 .068 2s g $ .095 S
.410 .364 s .30s!t
.065 .088s g .119S
.330 .424 . .535
.
0 .423 .567: .738
.405 . 0 . .405 - .405 0 s .
?.
w
ft.
3 ;
Inside $urfac( per ft. Sq. ft.
Transverse area sq. in.
7 .106 9 .106 5 .106
.0804
.0740 .0568 .0364
0 0 0
5 .1073 4 .0955 3 .0794
7 5 1
iq. ft.
lb. 0.03!20 6.0246 .0157 1
S h e l
-
S X
.545 .493 .423
d
Std:
0
.670 .622
.083 ,109s
X-stg.
0
.546 .466 .252
.147S .187 .294
.834 .824 .742
.083 .113 s .1545
.675 .614 .434
.188 .218 .308
X-stg.
“
4
80 160 ...
8 ... ...
80
“ 80
S
std.
4 8
160
-
0 0 t 0
1 4 8
“
0 0
0 0
.
“
1
std.
80
40s 80S
140 ...
. . .. ... ...
.... .
...
.220 .220
.1764 .1637
.3568 .3040
.1013 .0740 .0216
.2’20 .2!20 .220
.1433 .1220 .0660
.2340 .1706 .0499
.857 1.130 1.473
.2660 .2301 .1875
.275 <275 .275
, . .
6 5 4
1.727 1.940 2.440
.1514 .1280 .0633
.275 .275 .275
, 2 ,
3
, .
92 ,2
8 4 87
.3775 .3620
1.633 1.495
.344 .344 .344
1 1 1
. . .
3 3 3
2.561 1 2.850 1 3.659 1
5 5 5
.344 .344 .344
1,660 0 1.660 1.660
... 40
1 4 8 ... ...
0 1.900
1
.1550 ,1316
5 5 5
8 . .. ...
40s
.2333 .1910 .1405
1.404 1 1.678 1 2.171 1
80 160 ...
.40 ...
.1497 5 ,1295 .1106
3 s 3 3
1 1 1 t.
0 0
0 2.375 2.375 2.375
1.806 2.272
.7080 .6471
.434 .434
9 3 5
. . .. ..
5, 4.7 2,2
.9630 . .8820 . 0
.497 0 .497 7
.4403 8 .4213 1
2.221 5 2.036 7
.200 9 S .281 9 .400
2 20 30 40 60
.7648 . 0 .6082 . 0 .4117 . 0
.497 6 .497 8 .497 4
.3927 3 ,3519 6 .2903 0
1.767 1 1.405 2 .950 8
.109 . s .154 . .167 .
1 2.638 3.652 0 3.938 0
1.583 5 1.452 6 1.420 4
.622 7 .622 7 .622 1
,5647 .5401 .5360
3.654 3.355 3.280
.109 s .140 s
0
S
.109 s .145 9 s
. . . 9 2 2 2
0 1 0
.177 .177
. . .
1.660 0
80 160 ...
6 .177
1 0 1 1
1 4
40
s s S
, . .
W, 5 4 . 56 4 . 71 4
I
13 56 3 74 2 34
9 1
3 ,3 3 305 3 32
323 P R O P EO RP T ( I EIt Sc S
Nominal pipe size
; k a t
Stainless steels
“
2
!
‘ i
.
1
21
.
.
.., :
.
2.375 2.375 9.375 2.375 9,375 X2.375 -
s
t Weighi per foot “lb.
.188 .218 .250
. 4.380 5.022 5.673
1.363 1.279 1.196
.622 .622 .622
.5237 .5074 .4920
.312 .343 .436t
6.883 7.450 g 9.029
1.041 .767 .769
.622 .622 .622
.4581 .442$! ,3929
3 5 6 7
2 2 2 1 1 1
80 160 ...
8 ... ...
0 2.875 2.875 2.875
2.323
S ,276 .375 .552
13.69
... ... ...
...
.120 ,125 .148
4.33 4.52. 5.30
3.62 3.60 3.52
,188 .2) 6 .241
6.65 7.57 8.39
t
254 .289 .300g
t
.312 .406 .438 .600g
40 ,.
3.500 3.500 3.500 3.500
3.500
.
S ... ... ... ...
... ...
1
, ...
... ...
.
.... .., <
3.500 3.500 - 3.500 s
.... .... . .. X
3.500 3.500 3.500 -3.500 s
.... ... . .. . ....
0
4
4
0
8
8
0
... ... ...
... . ...
,
... ... ... . ...
.
3.760 3.744 3.732. 3.704 3.624 3.5480 3.438 3.3640 3.312 3.062 2128
.
s
s S
.
4
. ...
4
.
4 4
.
u Inside t Trans-s rsurfac f verse a e t per ft. area t Sq. ft. sq. in.
i c
. . .
.853 9 .851 9 .940 9
8.346 8.300 8.100
1 1 1
3.34 3.20 3.10
. . .
.819 9 .802 9 .790 9
7.700 7.393 7.155
1 1 1
8.80 9.91 0.25.
3.06 2.91 2.86
. . .
.785 9 .765 9 .761 9
7.050 6.700 6.605
1 1 1
0.64 3.42 4.32 8.58.
2.81 2.46 2.34 1.80
. . . .
.753 9 .704 9 .687 9 .601 9
6.492 5.673 5.407 4.155
1 1 1 1
4.971 5.38
4.81 4.78
21.047
I .047
.9840 .981
5.58 6.26 7,71 9.11 11.17 I 2.51
4.75 4.66 4.48 4.28 4.02 3.85
I.047 I .047 I.047 I.047 1.047 1,047
.978 .971 .950 .929 .900 .880
13.42
3.73 3,19 2.53
1.047 I .047 1,047
.867 .802 .716
I
. . , .
..753 ..753 ..753 ..753 ..753
.1 ?8 .134
5.61 5.99 6.26
6.18 6.14 6.1 i
1.115 1.111 :
,142 ,165 .188
6.61 7.64. 8.56
6.06 5.99 5.80
1.105 1.093 1.082
4
)
4.238 36 3.547 3 2.464 6
1
2 ..753
’
30 5.6900 7.6462 0 1.6381 0 6.6095 8 .5564 5 .4627 0
.203s .217
40s std.’ 3.500
..
s
) u ) f q f
.
.... , .
. Fn E
thickness in.
2.635 2:469 2,441
;60 ...
4
. X-stg. ...
diam. in.
0 2.875 0 2.875 2.875
...
1
diam. in.
1 4
“80
3F
eOutsidt i Insideg Wallh
iesigm ion
.40 ,..
...
3
80s ,, ,.. ... ...
V
Po
5.453 63 4.788 79 4.680 26
1
13.75 10.32 9.89 9.28 8,89 8.62 7.37 5.84
0 2 6 4 5 7
0
324 P R O P EO RP T I( E It S c Schedule Nominal pipe size
a
w
ll
tl
4.500 ~, :()()
.205 .’237 ,250
10.79
4.500
4.090 4026 4.000
11 35
5.71 5.51 5.45
,.,
4.500 4,500 4,500
3.958 3.938 3.900
,271 .281 .300
12.24 12.67 13.42
5.35 5.27 5.19
12.31 12,17 11.96
80S
4.500 4,500 4,500
3.876 3826 3750
.312 .337 .375
14.00 14,98
16.52
5.12 4.98 4,78
11.80 11.50 11.04
160 ...
... ... ... ...
4.500 4.500 4.500 4.500
3.624 3.500 3.438 3.152
.438 .500 .531 .674
19.30 21.36 2260 27.54
...
1
5.563 0 5.563 5.563 5.563
5.295 5.047 4.859 4,813
.134 s .258 .352 .375
7.770 14.62 19.59 20.78
9.54 8,66 8.06 7.87
1.456 1,456 1.456 1,456
1.386 1.321 1.272 1.260
22.02 20.01 18.60 18.19
5.563 5.563 5.563 5.563
4,688 4.563 4.313 4.063
.437 .500 .625 .750
23.95 27.10 32.96 38.55
7.47 7.08 6,32 5.62
1.456 1.456 1.456 1.456
1.227 1.195 1,129 1.064
17.26 16.35 14,61 12.97
6.625 0 6.625 6.625
6.357 6.287 . 6.265
.134 s .169 .180
9.29 11.56, 12.50
13.70 13.45 13.38
I .735 I .735 I .735
1.660 1.650 1.640
31.75 31.00 30.81
6.625 6.625 6.(525
6.24? 6.187 6.125
.188 .219 .250
12.93 15.02 17.02
13.31 13.05 12.80
I .735 I .735 I.735
1,639 1.620 1.606
30.70 30.10 29.50
6.011 6.065 5.875 5.761
.277 .280 s .375 .432 S
18.86 18.97 25.10 28.57
12.55 12.51 11.75 11.29
1.735 I .735 I .735 I .735
1.591 1.587 1.540 1.510
28.95 28.99 27.10 26.07
5.625
.500 .562 ,718 .864
32.79 36.40 45.30 53.16
10.85 10.30 9.15 8.14
I .735 I.735 I .135 1.735
1.475 1.470 1.359 1.!280
24.85 23.77 21.15 18.83
0 8,625 8.625 8.625
.148 s .158 .165
13.40 14.26 14.91
23.6 23.6 23.5
2.26 2.26 2.26
2.180 2.178 2.175
54.5 54.3 54.1
8.625 , 8.625 . 8.625
.188 .203. .219.
16.90 18.30 19.64
23.2 23.1 22.9
2.26 2.26 2.26
2.161 2.152 2.148
53.5 53.1 52.7
80
120
;tainess teels
40s
40
40s
80
80S
.
...
120 160 ... ... ... ... ... ... ... 40 ... 80 120 150
8
w
, l
.
6
’
No.
4
5
.F n E
)utsidt liamrt.
‘arbor alloj eels
40
I
Po
... ... ...
1 ... .
... .
. ...
4
std.
8
X-stg.
6.695 6.625 0 6.625 6.625 0
Xx-stg
6.625 6625 6.695 6.625
.. ...
... ... ..
1
... ... ...
...
... ...
. ,
.., . .... .... .... .... .,.
\
in.
939
~ater ]er ft.
Urliice
[ ;
)er
1
1
Transverse area sq. 13.15 12,73 12.57
10,32 9.62 9.28 7.80
)
P R O P EO RP T (I E It Sc
Po
.F n E
’
Inside surface )er ft. iq. ft.
Transverse mea $q.
Schedule No. Nom inal pipe size
Iarbon i alloy teels
;tain ess teels . . .,.
2
Weight designa tion
. .
8.625 8.625
Outs id iurface >er ft. ;q. ft.
22.7
2.26
52.2
22.5 22.2
2.26 2.26
51.8 51,2
21.6 21.4 21.3
2.26 2.26 2.26
50.0 49.5 49.3
...
8.625 8.625 8.625
.375 .406 .469
21.1 20.8 20.1
2.26 2.26 2.26
48.7 47.9 46.4
80S ..
8,625 8,625 8.625
.500 .593 ,6~5
19.8 18,8 18,5
2.26 2.26 2.26
45.6 43.5 42.7
,.. ... ... ...
8.625 8.625 8.625 8.625
.718 .812 .875 .906
17.6 16.7 16.1 15.8
2.26 2,26 2.26 2.26
40.6 38.5 37.1 36.4
.. .
10s .,. ..
.. . , .
.. . . ,..
, . .
,.. 40s
0 0 0 0
.
0 0
... ....
0 0 0 0
80S
0 0
...
1
.250 .277
. .
01 water per ft. pipe It
.322 .344 .352
. ...
.
.238
Weight per foot lb.
8.625 8.625 8.625
.
... ... ...
, , 0
thickness in.
....
... ,,.
...
:nsi de iiam. in.
8.625
40s ...
8
)utsid liam !l
0.420 . 0.374 .. 0.344 .
.165 7 .188 7 .203 7
18.65 5 21.12 5, 22.86 5
36.90 36.70 36.50
2.81 2.81 2.81
2.73 2.72 2.71
85.3 84.5 84.0
0.310 .. 0.250 .. 0,192 ..
.219 7 ,250 7 .279 7
24.60 5, 28.03 5, 31,20 5.
36.20 35.90 35.30
2.81 2.81 2.81
2.70 2.68 2.66
83.4 8?,6 81.6
0.136 . 0.054 . 0.020 .
.307 7 .348 7 .365 7
34,24 5 38.66 5 40.48 5
35.00 34.40 34.10
2.81 2.81 2.81
2.65 2.64 2.62
80.7 79.3 78.9
9.960 . 9.750 .
.395 7 .500 7 .531 7
43.68 5 54.74 5 57.98 5
33.70 32.30 31.90
2.8 I 2.81 2.81
2.61 2.55 2.54
77.9 74.7 73,7
9.
..
,
0
.
.593 7
64.40 5
31.10
2,81
2,50
71.8
.,. .,,
....
0
,
0
.
.718 7 .750 7
77,00 5 80,10 5
29.50 29.10
2.81 2.81
2.44 2.42
68.1 67.2
... ... ... ...
... .... .... ....
.843 7 I,000 7 1,063 1.125 7
89.20 5 04.20 5 509.90 i 6.00 5
27.90 26.10 25.30 24.60
2.81 2.81 2.81 2.81
2.37 2.29 2.26 2.22
64.5 60.1 58,4 56.7
.180 .203
24.16 27.2
52.9 52.0
3.34 3.34
3.24 3.23
120.6 119.9
.219 .238 .256
29.3 31.8 33.4
51.7 51,5 51.3
3.34 2 3.34
3.22 3,22 3.12
119.1 118.5 118.0
... ...
10s
... ...
,,. ...
.. .
0
.
0
.
0 0
7 .
3.34
)
326 P R O P EO RP T I[ E It S c S~hel Nom inal pipe size
~isrbOr allo) eels
Weight iesigne lion
t
)
Outsidt jiamn.
I ~
12.750
1
thi~ kness in.
~t’eighat per root lb:
.279
37,2
.
w
Mt.01 v
)l u
I u
l
50.7
3.34
3
40.0 3 . 50,5
03.34 1
C 3
0
, 116.1
rranserse Irea q. in.
. 116.9
1!2.750
1
12.750
12.090 .
43.8 3
49.7
33.34
3
0
. 114.8
12.750
12.062
3 45.5
49.7
43.34
3
4
114,5 .
73.34
3 5
113.1 .
S
2
.
I!2.750
I 2.000
.
49.6 3
48.9
.,.
12,750
11.938
.
4 53.6
48.5
03.34
3
6
. 111.9
12.750
11.874
.
4 57.5
48.2
33.34
3
8
111.0 .
12.750
11!750
.
5 65.4
46.9
03.34
108.4 .
I !2.750
11.626
.
73.2 5
46.0
2 63.34
3 0 3 2
106.2 .
12.750
11.500
.
6 80.9
44.9
23.34
3 5
103.8.
..
....
12.750
11.376
.
88.6 6
44.0
83.34
2 7
.
.
12.150
11.064
.
8 108.0
41.6
43.34
2 3
.
12.750
11.000
.
8 110.9
41.1
73.34
2 5
.
12.750
10.750 1
.125.5
39.3 0
3.34 0
20
.
.,, . ...
12.750
10.500 1
.140.0
1 37.5
2 3.34
25
.
.
....
12.750
10.313 1
. 150.1 !
36.32
3.341
29
.
...
....
12.750
10.126 1
.161.0
3 34.9
1 3.34
22
.
. .
. .. .
I4.000 t 3.624 . I4.000 I 3,560
.188
28
53.4
3.67
3
.
.220
32
53.0
3.67
3
.
I4.000 13.524
.238
35
52.5
3.67
3
.
I4.000 13.500 0
.250
37
52.1
3.67
3
.
I4.000 13.375 I 4.000 I 3.250
.312
46
50.8
3.67
3
.375
55
59.7
3.67
3
I
.
I4.000 I 3.188 .406 I4.000 1 3 .438 .
58 631
59.5 58.5 2
3.67 3.67 4
3
I
.
I .
1
3
. .
.
6 40
6
I I I
1
3
.
2
1
2
7 50 8 58 8 67
0
1
. . .
1
Std.
.
’
40s
CONT.]
,
.F n E
t No.
80S
1
Po
,
1
X-stg.
, ... ...
....
. .
I
1
2
1
41
.2
14,000 1
2
14.000 1 14.000 1
11
.
11
..
11
.
11
.
14.000 1 14.000 1
. . ,
. 0. .
96 1 057 1 19 .1 .1 .1 .I
.
3
.
63.67 2
3 9
.8
03.67 0 4 93.67 0 23.67
3 0 3 3 3 5
.2 .5 .9
50.0 2
8 53.67 53.67 00 33.67 53
3 6 3 0 3 7
.4 . 7 1.
33 30 94 26
1. 1. 2. W.
55.9 1 55.3 5 54.7 8 00 51.2
8
47.5 0 1
3.67 945
5
45.0 20
3.67 507
3
43.5 31
3.67 438
1
42.6 48
3.67 08
!
327 P R O P EO RP T (I E It Sc
Po
.F n E
’
)
S~hedule No. Nom iniil pipe size
;tain ess (eels
..
Weight designa
...
,
1
...
1 2
...
..
1
0
0
4.20
192.0
Jipe
II
l )utsid urface )er ft. q. ft.
[ ; q
l
5
.
0 .238
0
0
4.20
1W.o
5
.
0 .250
0
0
4.20
189.0
.281
4.20
187.0
1
.312
4.20
185.6
t
344
4.20
184,1
1
.375 .406 .438
4.90 4.20 4.20
182.6 181.0 180.0
1 1
.469 .500 .531
4.90 4.20 4.20
178.5 176.7 175.2
1
.656 .687 .750
4.90 4.20 4.%!0
169.4 168.0 165.1
4.20 4.20 4.20
160.9 152.6 144.5
6
.. ... .,.
. .... .
.843 1.031 1.218
...
....
1
.
4
4.90 3
8
1
.
5
.
5
4.20 0 4,90 9
0
1
...
.
1
...
....
1
... ...
.... ...
.. . . .. ... .,.
... ....
b 1
.
1
,.. ... . .. . ..
8.000 8.000 8.000 8.000 8.000 8.000
.. . ...
0
.2. . . . 4. . . .... . 6. . .
r ‘
ft.
.... , ...
.
1
0 .188
wt. o’
... ... .
6
1
tVe aI per foot lb;
w
.
.... .
.
4
thickness in.
5
... ..
, 3
Inside ~iam. in.
...
...
u
3
135.3 132.7 129.’0
04.6 102.5 01.2
4.58 4.55 4.51
241.0 237.1 233.7
0
99.5 98. ’2 97.2
4.48 4.45 4.42
229.5 927.0 924.0
0
96.1 95.8 99.5
4.40 4.39 4.32
92!?.0 220.5 213.8
91 .!2 88.5 83.7
4.29 4.!22 4.11
210.6 204.2 193.3
79.2 75.3 79.7 71.0
3.W 3.89 3.83 3.78
182.7
~ 0 0 . 0
8.000 8.000 8.000 8.000 ).000 $.000 1.000 1.000 1.000 I.000
o 0 0 0 0
8
1
7
328 P R O P EO RP T (I E It Sc Schedule
.F n E
’
)
No.
. alloy ‘less :eels s 1
Po
tion
in.
...
....
...
,
in.
per foot
ness
~utsidi, water surface per ft. per ft.
Inside surface per ft.
verse
0
. ...
...
...
. .. ...
...
... ... ... ... ... ... . ..
... .... .... .... .... .... ....
. . ....
....
.... ....
.... ...
.
.
... ... ...
. .... ....
.... .
....
....
.
....
... ...
2
.
I
42
.3 .
0.
7033
1 07
1686
66 2.
2
42
0 .3 .
0,
9023
1 05
7680
63 5.
4 3 . 4 . 9 . 239 4 . 5 . 22 8
, .3 . 0. t. 3 . g0 . .
1 014
1 02
36851
61 7.
4 .0 .
1 .005
00 181.0 00 2
0
6
2
.
. .
2
X
. .
..
... .... ....
.
.2
, ....
42 ,
s42
5
228
329 P R O P EO RP T (I E It Sc
Po
S tain!ss eels
a a
1
2
2
0 0 0
6 6 6
6.68. 6.64 . 6.61.
8 8 8
0.
0 0 C
6 6 6
6.58 . 6.54 . 6.51 .
8 8 8
6 6 6
6.48 . 6.45 . 6.41 . ——
8 8 8
6
.
0
... ...
.... .... , .
. . .
... ... ...
.. . . .... ....
.... .. .. .. ..
1
.... .... ....
.... . . ,
I
0 0. 0
!
! 2 2, 2 2 2.
. ..
2 2 2
0
.... # . .
...
5,33 2 5.20. 5.14. 5.06.
0
.... .... .
0
‘
6.28 1
.
... ... ...
l
6 6 6
4
0
n u
134.4 0 130.9 0 127.0 0
?
.
)lutside e . urfa~e er ft. q. ft.
141.4 80
k
4
.
0
tipe
ft. lb
1
)
0
4
2
0
wt. d of
mv
’
0
4
....
....
0 . 1 .
Veight i a )er ‘Oot b.
a
2
160
.. .
ws
t
2
. . .... ....
140 I
i
n i
Weight iesigna lion
.F n E
0
6 . 6
. .
.0
6 , 6 , 6 .
. . .
0 0 .0
2 2 2
6 6 6
. . .
0 0 0
0 169 1860 0
C 0 0
3 3 3
0)9.3760 . 0!9.250 . 019.125 . .
0 0 0
0 99 0 119 138.0
C C (
7 7 7
7.69 . 7.66 . 7.62 .
677.8 672.0 666.2
8 8 8
3 3 3
0 0 0
0 0 0
1580 1770 1960
( ( (
7 7 7
7.59 . 7.56 . 7.53 .
660.5 654.8 649.2
8 8 8
. . .
1360. 0. 153
?30
w
z
w
—
—
a ; i
X2 x:
, ,
, ,
, ,
, ,
, ,
I
A-* l-lmm
,
q
, ,
, ,
0
mq
,, ,,
, ,,
N
,, ,
,),
-
, ,
-
, ,
,, ,
,, ,,
,),
,, ,
,, ,,
, ,*
, ,
*, ,
,, ,,
, ,
, ,
, ,
-
O
, ,
, ,
,,,
, ,
I
!
I
, ,,!
q
* N.tl-l ,
0
, ,
u) q
, ,
, ,
332
PROPERTIES
Sq. Ft. K’all
O Do
T
Tubing
I
ness
OF STEEL TUBING
Sq. Ft.
E x I w r n a l hInlernal i S c u S k rf u Tf- rh a ef coI a r e ec [ ei Area
I
Per Ft.
Per Ft.
W
Tubing
L
L
Ft. L
I
Constant
c
\
c ODA
Metal Area (Transverse D Metal Area)
“
ID
.I
.1518
.604
I
I ]
.
.4477 0 .4596 .4717
.229 I .2291 .2291
.150
.3848
.135 .125 .110 .105 .095
.4185 .4418 .4778 .4902 .5153
.085 .075 .065 .060 .055 .050
.5411 .5675 .5945 .6082 .6221 .6362
7/8 7/8
.055 .050
1
1 1 1 1 1 I 1 1 1 1 1 ●
6
.1977 .2003 .2029
0.522 .482 .441
.755 .765 .775
698 717 736
I.159 1.144 1.129
.1536 .1417 .1296
.2618
.1833
.2618 .2618 .2618 .2618 .2618
.1911 .1964 .2042 .2068 .2121
1.362 1.247 1.168 1.046 1.004 .918
.700 .730 .750 .780 .790 .810
600 653 689 745 764 804
1.429 1.370 1.333 1.282 1.266 1.235
.4006 .3669 .3436 .3076 .2952 .2701
.2618 .2618 .2618 .2618 .2618 .2618
.2: 73 .2225 .2278 .23(M .2330 .2356
.831 .741 .649 .602 .555 .507
.830 .850 .870 .880 .890 .900
844 885 927 949 970 992
1.205 1.176 1.149 r. 136 1.124 1.1[ 1
.2443 .2179 .1909 .1772 .1633 .1492
Liquid velocityin feet/second : pounds per tube per hour Cxs g l S
F=
gravity w
I
C
o cu H r
Et
X Ee ! Cs I HyN A AS N !T TGI
I
TE
333
PROPERTIES
OF TUBING
W T BWG
E S
l ness
,Area
/8 /8 /8 /8 1 /8 i8 /8 !8 !3 /4 /4 /4 /4 /4 /4
[ [2 13 14 1 [ [7 18 19 20 ~ 1 1 12 13 [4 15
/4
16
/4
17
‘;:
19
L
I
I
i2 I0
I1 . . . . , , . . . . . , , . , .
, . , . . , . . . .
I~
. . , .
W
L C
L
per
I i8
w
M (
I S
L S
v T C Inches C“
L
I
I 0 0 0 0 0 I0 0 0 0 1 1 0 0 0
I6 . 6 , 1 .1 9.14 1. 816[~ 1. 718[ .1 6.189 .1 2. ( 5.1 3 4.1 . 2 2 4. 2 .I6 3.14 .2 21[5 .2 3118 .1 2. ( .1 3 0.1~ .~ 2 9.14 . 81[6 .2 7.[ 2 . 18
1 ,1 3 0 3 .16 9 .168 5 . 65 3 f 5 . 61 ~2 6 .162 5 .16 38 1 .16 9 ,1 932 ,161 5 ~ . 64 84 0 . 92 4~ 1 .19 4 o .192 9 .196 5 . 97 35 . 98 ~5
. 0 74 . 0 76 .0 68 5 6 . 0306 .601 666 ,4o7 . 1365 . 366 ,8 59 , 355 . 3 65 ,2 4 2 , 374 ,5 64 .6 49 . 2344 . 964 .2 36 . 3353 . 364 8. 3 . 5383 . 863 .2 30 . 4 92 . 1 26 .8 26 . 439~ . 562 .4 23 . 331 .9 62 9. 10 1 659 .6. 3 6. 0 82 . 3638 . 339 8. 85 . 3638[ . 93 1. 873 , 4637 . 637 2. 6 . 696 .2 [36 4. 9 , 645 —.8 35 —6. 57
V
— ID
,
l 3 35 1 4 8, .8 g 7 [ 6 5 5 7 28 5 [ 5 1. 0 ~1 46 1 3 3 [ .3 3 8 4 5 5 24 44 1 8 8 1.5 5 0 3 49 1 28 44 . I. 2 5 18 3[ 2 5 8 3 I144 90 9 5 34 44 1.263 30 53 1 5 0. .0 1 1 1 2 9 34 59 1 0 4, .2 4 1 0 1 7 39 55 [ 16 8. 4 5 2 0 5 1 35 50 1 2 1. .5 7 1 0 1 5 1 7 4. .6 9 9 0 0 9 30 55 — 2 041 1 8 5 . .8 8 2 2 5 2 32 50 [ 0 0. .1 1 7 2 4 0 3 53 1 4 5. 3. 4 6 2 4 2 0 35 54 I.6 8, 6 835 1 4 [ 8. 1 9 2 7 4 47 5 54 1 . . 53 1 1 2 — 6 469 —8 [ 2 4 4— .
I I
l/4
20
1/4
22
/8 8 ~/8 )/8 7/8 7/8 7/8 7/8 7/8 7/8 7’/8 7/8
10
I .
12 13 14 15 16 17 [8 19 20 22
I — I
L 1 [ i I I 1
.777
, . . .
,
. 1 . 16 .065 [ . [ . [ . 20 .035 ~ .
. 0 0 . .5945 . 0 . 0 . 0 . . 0
. , , .
. . . .
.5 .5 . .6 .6 .6 .6 .6
1 1 1
.284 .277 .2 .251 .243 ,245 ,27 ,229 [
I
.266 3 5.265 2 .26 7.263 8 8.269 9 9.269 2 .269 1! 692 8
1 1 1 1
1 1 1
.1138 . 889 8. 83 .~[57 —, 488 7. 17 . 217 . 787 0. 68 . 3186 . 186 3. 54 . 3105 . 685 4. 41 . 3104 . 984 6. 48 . 4133I . 38 9. 435 . 193 —4. 83 1. 27 W
‘
v
f
S
g
w
C
.
740
1
1 1 I [ [
—
o ou H r
=
p
s
Cxs
g
l
F z
Et
X Ee
Cs I Hy N A AS N f T TG I
o
28 1 8 — 49 69 69 19 1 13
. .
1 1 1 14 81 91 31 61 9I.
. . . 3. 53 . 5.—94 .[7. 29 . 8. 54 . 0. 98 [I. 0 . 3. I 1 . 4 10 —
I
7 4 0 5 7 00 01 01
— .
m
w
86 8 8 86 92 98 93 97
1 1 1
22 21 4 21 6 1 90 11 4 11 2 2 0 26 5 01 0 09 4
c
f
9
A
7 7
A A
1 7 1
T S P t Sa 3- i 1 t n 0 l . ee 4 s 0 es TE U T E
I
334
H F c f
v e o so s a m em l ra e ds n dli af i elm l ueld it m hpe s raoe s iu d ama l s r d o se se o m w m o l hn dl a yi , avr l me a ge esu t sse eb eur r w lua h sel m ii l i e s ylpo th e tr i ch a l l a a d n ih g n s ee hda e dd ds .
H S
me T
b oa s
R
FA
ea d ao wms
IL G A H
N T
lecy oe lne ssf tds r u e c rt di o n . G
E
F o h r b e um t at e -t wtdd es l dns he ndh hee s lot aeoefr l a lwvd i at gt henh t g eh e h i n et h t a i ot c s h d k a hsce tha c rteo t r nC ld ePi lnoU h g a &G3d oE re- e 3 3. 2 i p r ha ce e t xh i ea m cc ni eds e p a h psue r w i t c sas rl t i fr e l a ta ie ndg ghh et s . T u l s he o us n t afgr e la tl ai2 i hng ngfh f eetc l sl hi : pIo 1se oi i s dnf a r l /c , h o e 2 f l a a d n ia g nOs ie hdnf n hec ed m dhi s o phde h e esr i ca ra l d s . F f
o h l
a
r t e mh . t aei t cddsh k a she bah ur et — t nn-t l wi e se l hd hdes d t aa n g e .
r
al ov i t l g
On the following pages the data of the most commonlyused heads are listed. Thedimensionsof flangedand dishedheadsmeetthe requirementsof ASMECode. W
E O IH
G ES Ht A Tab
V
O
U ES M p A E 4
O LH
eDeb gF o iSlp n e3n e ia s n
SURFACE OF HEADS See page 425
De Fa! S
1e
w
g g7 6
n e
4
335
DIIU EN SIONS
n
OF
S
D=
D
Y
i h d
nd eo ih
H E M I S P H E R I C A= Li h
MU
os ed
L(R) = i
nr ih x
d o e au
r = ~
B I OTS
k
LT
SEA
H B D L N EE
i s ao hi m e med i ts epae h eer lr il c i afnpl s au d t d i s aso i A m , de f etS l e &ar M n se ha ed ds .
nd
E L L I P S O I M= D A L f
HEADS
i o pF & di D ht e
s eh
fa h
o
fd
sa o d i d o d iA i eu f S sl &a fM nh s a e u h i af e s o ddrf im e s n u ts l doe a n pt re e r s n s a ur l r e . ci
f sto
~n m u
od cA l
rof em i r nu
pdtl orea n e sr s n s
k fi ~ lS l & eu da
Mnsi
g sf E e
.
t = w
t
h
ai
cn
k o ln o m em s i l s nn,
i a m l u
mr
D A
F
SL
A
NM D G I E E SD
&H
AE D D 1 M EL I N I S 1N O LN C S H
E N
WALLTHICKNESS D
14
16
18
20
22
24
3 L( r h M L( r h M L( ;
M L (R) r h M L (R) r h M L (R) r h M
1 1 2 1 1 1 2 1 1 1 2 1 1 1 3 1 2 1 3 1 2 1 3 1
3A
1 / 8 2 1R 1 2 2 ) .1 1. 1 25 . 508 07 5 . 2.750 6 2 2 . 59 3 8 . 1 5 . 6 3 9 5 15 4 R )1 14 . 1.500 1 1.875 2 2 5 . 2 5 0 . 2.875 7 3.188 5 3 0 . 3 7 5 . 6 5 1 . 3 6 1.44 1.54 8 )1 1 5 5 1R 6 1 8 .1 1. 1 25 . 2 50 8 . 2 556 5 02 0 72 . . 8 3 7 .3 5 5.3 67 . 356 02 5 . 7 5 1. .4 36 9 1 1.56 1.41 1 8 1 8 1 1 8 8 18 .1 2. 1 55 . 2 00 8 . 2.6,25 0 00 0 72 3 55 . .3 5. 3 05 . 3 06 7 . 4.063 5 52 3 58 4 07 . 1 42 . 6 3 1 .6 9 . 52 1. 1. 6 1.41 1 2 2 2 0 2 0 2 0 2 0 .1 3. 1 75 . 2 50 8 . 2 0 72 . 3 556 . 3 020 . 50 3 .3 6. 4 88 . 4 810 . 4 815 . 083 . 4 301 . 4 306 1.4 0 .34 1. 56 1. 7 1. 1 .6 2 1 . 55 4 24 24 2 4 2 4 2 4 2 2 4 .1 5. 1 05 . 2 00 8 . 2 556 . 3 0 72 . 3 020 .3 503. .3 8. 4 78 . 4 510 . 4 083 . 4 301 . 4 875 .5 56 8. 1.5 8 1 .40 1. 1. 7 1 .7 5 1 . 65 1. 5 5 %
T
8 0 0 6 0 0 0 39 4 0 3 . 46
336 D I M E N S I OO NHEADS S A D I M EL I N I S IN O LN C S H W ~
D
L (R) 26
28
30
32
34
36
38
40
42
48
54
6
; M L (R) r h M L (R) : M L( r h M L( ; M L( r h M E r h M E r h M L( r h M L( r h M L( r h M L( r h M
m1 4 1 2 1 4 1 3 1 4 1 3 2 5 1 3 2 5 1 7 2 5 1 3 2 6 1 4 2 6 1 z 2 7 1 4 3 8 1 5 3 8 1 6 3 i0 1
Y T .1 .4 1 , 2 .1 .4 1 .
3A % 5/8 24 2 2 6.1.875 262 52.2 5.4.50C 044 03.4 . 7 1 7 21 . 1.65 6 24 2 2 7.1 572. 058.2.625 8.4 174. 357.5.375 1 . 7
30 30 1.875 . 8 .4.813 84 .
1
7
30R 30 2.000 . 02.000 5.500 . 55.375 1.72 1.72 7 . 3R .2 .5 1 . FR .2 .5 1 . 3 .2 .6 1 . 4 .2 .6 1 . 4 R? .2 .7 1 . 4R .3 .8 1 . 4R .3 .9 1 . 6R .3 .9 1 .
T A H
3 1.2 5.6 1 . 7 3 2.2 9.5 . 7 1.75 3 3.2 5.6 1 . 7 3 5.2 6.6 1 . 6 i 6.2.625 1.7.063 . 7 1.72 4 0,3 0,8 1 . 6 4 2.3 9.9 1 . 7 5 6.3 0.0 1 . 7
I
C LK
N
F E N S EL S
l% 2 1 l;~ 2 2 42 52.3 56,3 020.3 86.5 88.5 870.5 21 . 5 1 . 5 61 . 62 62 62 3 . 3 0 7 5 2 5 00.3 095 5 0 . 5 3 85.5 1 . 7 2 1 . 6 9 1 . 5 2 . 1 6 01 . 0 30 30 3 03 3 2.625 72 5. 2 3.000 5 3 0 .3 75, 58.5.125 01 5.375 03 5 0 .5 . 51 . 7 1 . 6 51 . 6 5 1 . 1 3 03 3) 03 3 02 0.2 2.3 56.3 020.3 65 3.5 5.5 066. 028.6 21 . 1 1 . 6 1 . 6 51 . 43 3) 03 03 43 56.3 020.3 52.3 212. 521.2 601.6 383.6 0.6 656. 30.6 1 . 7 51 . 6 5 1 . 6 9 1 . 6 5 1 . 3 3 63 3) 63 052.3 52.2 052.2 056.3 020.3 571.6 385. 878.5 539.6 031.6 7 51 . 51 . 7 1 . 6 5 1 . 1 63 63 63 3 63 732. 573.2 756.3 520.3 537.3 046. 033.6 837.6 7546. 535.6 1 . 7 21 . 7 2 1 . 7 2 1 . 6 2 1 . 03 03 63 3 63 05.2 05.2 005,3 020.3 06.3 25.7 569.7 330.7 01.7 80 .7 1 . 6 91 . 6 9 1 . 6 9 1 . 6 9 1 . ) - 4 0 3 3 262,625 522 6 3.375 2 3 5.; 817.000 827 5,7 0.7.125 018 21 . 1.727 2 1 . 7 1 1.56 24 24 4) 2 42 24 0.3 00.3 00.3 00.3.375 0003 086.8 07.8 056.8 825.8.625 5658 . 6 91 1 . 6 9 1 . 6 9 1 . 6 9 1.62 84 4) 84 44 8 48 52.3 052.3 052.3 052.3.375 0523 025.9.438 5039 37.9 857.9 056.9 . 7 21 1 . 7 7 1 . 7 2 1 . 7 2 1.69 4 54 05 05 5) 45 26.3 526.3 526.3.625 5263 526.3 08.0 0716. 0 5861 . 0 82 0.438 5 . 56, 5 1 . 7 7 1 . 7 7 1 . 7 2 1.72 . 7 21
S i
4 503.4 501.5 4 01 . 4 2 034. 66. 4 01 . 4
4 07. 083. 6 4 07. 388. 6
3 34. 2 77 55. 07. 5 01 . 5 4 03 0 5034. 077. 5016. 031. 5 01 . 5 4 030 0 5034.125 . 077 8146.813 . 36 5 01 . 5 4 63 6 5034. 07. 823.6 515. 6 91 . 5 2 63 6 503.4 07. 539. 876.7 6 91 . 6 2 63 6 503.4 07. 023.7 514. 6 91 . 5 2 0 5 .::125 7 02.8.125 50 . 6 2 1.48 5 24 2 00.4 07. 30.9 08. 6 91 . 9 84 8 054. 07. 07.9 56. 7 21 . 2 45 4 524. 57. 03 00 . 0 . 7 21 . 2
. 3
. 3
. 4
. 5
. 4
. 5
. 5
. 5
5
. 5
. 6
4 . 6
337 ENS IONS I
D
OF HEADS M D I M EL IN I S 1N O LNC S H
A D E D
26
28
I T
A E
30
30 4.500 6.125 1.39
32
L (R) r h M
4.500 6.563
36
38
40
42
48
5
6
l%
WALLTHICKNESS 2 21A 17%
3
L (R) r h M L (R) r h M L( r h M
34
M R
E N S
30 R 4.875 6.375 1.36 30
3
4 6 1 .
1 3 4 7 1 3 4 6 1 3 4 7 1 3 4 7 1 3 4
5 4 1 1
0
3 .5 8. .6 7. 1 . 3
-
0 72 59 . 3 9
5 03 3 6
1
0 0 8 4
3 0 0 0 0 5.5 08. 072 5 78 5 07. 01. 038 1 . 3 . 3 9 3 6 4 . 3 3 6 6 6 5.5 08.5 072. 56 02 30 8.7 70.7 563. 315 3 1 . 1 . 4 1 . 4 6 . 4 4 3 3 6 6+3 6 5.5 08.5 072.6 56. 020 3.7 15.7 308.8 018. 370 . 1 . 4 1 . 4 61 . 4 4 . 3 1 63 6 3 3 6 5.5 08.5 072.6 56. 020 88. 10.8 310.8 203. 515 . 1 . 4 1 . 4 6+1 . 4 4 . 3 1 63 6 3 3 6 5.5 08.5 072.6 56. 02 .8 6.8 28, 519 8.438 8 1 . 1 . 4 . 3 1 1.44 1 4 4 4 24 4 42 4.875 5 .5 2.6 56. 6 02 .7 .9 4.9 351. 0 8671 9.250 9 1 . 1 . 4 1 . 4 61 1.48 1 4 4 4 84 4 48 4.875 5 .5 2.6 56. 6 02 .7 01 . 0 [ 1 . 0 18 3 . 08 71 5 10.063 1 1 . 5 1. 4 01 1 . 1.54 1 5 5 45 5 45 45 556. 6 .4 5.5 08.5 072.6 02 .7 . 0 1 6 . 1 18 8 . 18 [1 10 381 1 7 0 . 5 10. 1 1 . 6 1 . 5 21 . 5 8 1 . 5 4 1 1 . 3 .4 .7 1 3 .4 .7 1 3 .4 .7 1 3 .4 .8 1 3 .4
8.313 1.46 42 4.500 9.188 1.52 48 4.500 9.875 1.56
)
6 5 0 9 6 6 50 0 3 56 3 9 6 6 6 50 0 0 30 3 9 6 6 6 0 50 8 3 3 9 6 2 2 055 507. . 035 1 . 02 5 . 3 1 . 4 4 8 84 055. 5078. . 51 16 8 . 13 7 2 . . 4 81 . 4 6 . 45 45 0559. 5078. . 82 1 6 . 2 382 0 . . 5 21 . 4 01 .
2 00 5 0 3 6 8 020 5 56 3 1 4 020. 8 .0 3 4 6 .
338 D I M E N S I OO NH S I N DIAM ETER D
66
72
78
84
90
96
102
108
9“6 6 L( 4 r h 1 M 1 7 L( 4 1 ; M 1 L (R) 7 4 : 1 M 1 8 L( 5 r h 1 M 1 9 L( 5 : 1 M 1 9 5 . 1 9 6 1 1 1 6 8 1
114
1
L r h M
126
L (R) r h M L(
132
; M
%
6R .4 1 1 . 1 . 7R .4 2 1 . 1 . 7 .4 3 1 . 1 . 8R .5 4 1 . 1 . 8R .5 51 . 1 . 9 .5 6 1 . 1 . 9 .6 7 1 . 1 . 1 .6 1. 1. 1 6 1 1 1 7 2 1 1 7 2 1 R
W
T A H
3A
%
E C
I
A H
C LK
1
1
N
DF E EL S
11A
S S
S
I
66 6 60 0 6 06 6] 06 6 . 0 0 ( 4 . 0 0 C 0 04 0.4.000 0 4 0.4 0 .4 C0.4 00. 0 1 0. . 10 .9 7 0 1 3 6 15[1 . 112 1C5 . 11 16 : 5 . 13 10 4 . 10 3 3 1 . 7 1 . 7 7 1 . 7 71 . 7 2 1 . 7 2 1 . 7 2 1 , 7 2 . 26 7) 26 7 26 66 6 26 573.4 573.4 573.4 573. 573.4 3.4 73.4 573.4 1 1 0 . 1 10 9 . 10 13 8 . 28 17 8 . 25 17 6 . 25 12 5 . 25 10 4 . 20 3 3 1 . 7 1 . 7 7 1 . 7 7 1 . 7 71 . 7 71 . 7 2 1 . 7 2 . 87 7 27 27 7 27 27 2 74. 57.4 075.4 057.4 0574. 075. 507.4 057.4 3 1 0 . 3 10 8 . 30 11 7 . 33 15 6 . 30 18 5 . 38 16 5 . 33 10 4 . 30 3 3 1 . 7 1 . 7 71 . 7 2 1 . 7 2 1 . 7 2 1 . 7 2 1 . 7 2 . 48 48 4 8 47 8) 47 47 1.5 21.5 521.5 521. 521.5 521.5 521.5 521.5 3 1 0 . 3 10 9 . 30 13 8 . 38 17 8 . 35 1 7 . 34 51 6 . 04 18 4 . 48 3 3 1 . 7 1 . 7 7 1 . 7 71 . 7 7 1 . 7 7 1 . 7 7 1 . 7 7 . 08 4 48 48 8 48 8) 48 5 5 . 5.5 05.5 005.5 5 . 5 05. 05.5 00 05. 05 5 1 1 . 5 12 8 . 55 11 7 . 53 15 6 . 50 18 6 . 58 12 5 . 5 16 5 . 53 0 4 1 . 7 1 . 7 71 . 7 21 . 7 2 1 . 7 2 1 . 7 21 . 7 2 . 09 69 0 9 09 08 9 09 5 578.5 8 .5 78.5 578.5 5 . . 8 7 587. 7 5 5 . 8 8 7 5 5 6 1 1 . 6 12 8 . 65 17 8 . 65 1 7 . 63 15 6 . 60 12 5 . 65 16 5 . 73 0 4 1 . 7 1 . 7 7 1 . 7 2 1 . 7 2 1 . 7 21 . 7 2 1 . 7 2 . 69 9 69 9 69 6 69 69 6 6 . 1 21. . 1 2 5 6 . 2 5 6 . 1 2 5 1.6 21.6 521.6 1 2 5 5 7 1 9 . 7 13 8 . 78 17 7 . 75 15 6 . 70 18 6 . 8 12 5 . 85 16 5 . 83 0 3 1 . 7 1 . 7 5 1 . 7 5 1 . 7 51 . 7 5 1 . 7 5 1 . 7 5 . 01 2 01 2 29 01 201 209 209 5 .6 05.6 005.6 05. 005.6 05.6 05.6 005.6 8 91 . 8 31 8 . 8 817 7 . 85 15 7 . 80 15 6 . 90 18 5 . 98 16 4 . 93 3 3 1 . 7 1 . 7 5 1 . 7 51 . 7 51 . 7 5 1 . 7 51 . 7 5 . T0 - 01 1 01m 81 80 8 1 r r80 578.6 578.6 578.6 578. .6 8.6 78.6 578.6 91 . 9 1 8 . 9 17 8 . 95 11 7 . 93 15 6 . 90 81 6 . 59 12 5 . 95 6 5 1 . 1 . 7 1 . 7 51 . 7 51 . 7 5 1 . 7 5 1 . 7 5 . 1 11 411 401 11 40 1 41 2. 0 .7 ,7 2.7.250 527 05. 7.250 02 7.250 5 7 . 3 21.500 6 82 81 2 . 1 4 02 . 0 20.750 8 . 27 8 05 120.625 . 1.75 1 . . 7 1 7 5 1.75 5 1.727 1 . 51 . 1 1 2 1 2 0 120 120 2 0 1 2 0 1 2 0 6. 5.7 .7 6.7 26.7 526.7.625 5267.625 527 18 2 . 2 5 . 12 . 1 2 8 . 1 27 8 . 15 21.625 56 0 28 1 7 . 3 21.563 . . 7 5 1.75 7 5 1 51 . 1 . 7 1 . 7 5 1.75 1 . 1 21 62120 - 1 2 - ) m 120 01 8 .8 0.8 00.8.000 i00 8.000 0 8 0. 0.8 38 2 . 3 4 . 2 22 . 2 2 8 . 3 23.563 7 8 . 5 23.500 16 3 28 1 1 . 7 1.72 . 7 5 1.727 5 1 21 . . 1 .
339
DIMENSIONS A
l%
1
OF
HEADS
D I M EL IN I S 1N O LN C S H
mI
E N S
WALLTHICKNESS
2 21A 2% 6’0 60 6 .5 26.000 . 566.750 027 1 106 . 20*12.125 10 3 10 8 8 . 812.438
23A ] 3 60 Tir L (R) . 5 8.250 59 r 66 h 20 13.125 . 1 18 M 1 5 1.41 , . 41 1 . . 6 1.586 5 1 2 1.50 1 1.58 6 6 6 66 6 66 66 66 66 66 L( R ) .8.250 5 9 4 .4.875 55.250 0 5.625 0 6.000 6.750 7 7 rh 1 5 3 13.938 . 1 2 12.500 . 12.625 3 1 3t12.938 13.250 1 12.750 1 . 1 M 1.46 1 . 7 2 1.69 7 7 72 7 2 72 * L( R ) 4.875 5 .8.250 59 5 7 .5 4 . 52.6.000 566.750 02 7 r 78 h 43 14.750 . 1 3 1 3 [3.250 . 12 3 15 . 30 13.750 4 . 14.063 35 8 16 1 . 1 . 5 1 M 1.48 1 . 6 5 1.72 1 . 2 1 7 . 6 9 ~ 7 8 7 8 7 7 87 78 78 7 8 L( R ) 5 .8.250 59 5 .5.125 1 5 2 5. 52.6.000 656.750 20 7 r 84 h 1 2 4 15 . 40 14.500 2 . 14.875 53 0 17 5 15.500 . 1 1 1 4 14.188 . M 1 7 1 . . 6 1 . 7 1 6 21 . 9 1.52 1.72 1 . 2 1.65 8 8 48 r 8 48 8 4 84 84 E . 0559 60.6 20.7 5078.250 5 .5.500 55 05, 05.6 r 90 h 1 6 . 3 12 0 1 5 15.188 . 1 2 5 15 . 50 1 1 . 5 12 1 . 55 81 3 . 86 16.313 M 1 . 6 9] 1 1 . . 6 1.72 1 . 2 . 7 1 7 1 . 7 2 2 1.54 8 8 48 84 48 8 48 8) 4 84 L( R . 5 .5,875 85 7.5 586. 0578.250 0559 78.6 507.7 96 : 1 7 17.125 . 1 2 7 15 . 70 1 0 . 7 16 0 . 73 10 0 . 70 617.875 3 . 3 1 6 M 1 . 1 . 6 91 1 . 6 1.54 . 6 91 1.69 9 09 9 90 9 09 F m * 6 .6.125 1 6 2 .6 51.6 . r 55 9 21.6 521. 7 5278.250 102 h 1 8 18.125 . 3 1 . 8 12 3 11 8 12 . 85 1 0 . 7 16 0 . 83 01 9 . 08 18.688 M 1 . 2 1 . 7 1 . 7 2 1 . 7 2 1.58 1.72 . 6 21 1 7 1 . 96 9 69 69 96 96 96 9 96 L( R ) r 6 .6.500 5 6 0 .6 05.6 0559 . 05.6 05.7 078.250 108 h 1 9 19.125 . t1 2 9 15 . 90 1 0 . 8 16 0 . 83 10 9 . 90 19.500 3 9 . 8 13 1 M 1 . 2 1 . 7 1 . 7 2 1 . 7 2 1.60 1 7 1 . 1.72 , 6 21 1 0 201 1 0 8 1 1 0 102 1 1 0 0 2 2 102 m 6 .6.875 8 6 7 6. 58.6 r 87.6 785.7 578.8.250 5759 114 h 1 9 20.125 . 3 8 . 8 21 0 23 0 21 . 03 1 0 . 9 16 0 . 93 20 9 . 0 20.312 M 1 1 . 7 5 1 . 1.62 1.72 1 ~ 8 1 108 01 108 R * 0 L ) 7 .7.250 2 7 5 .7 C2.7 25.7 502.7 C52.8.250 059 r 120 h 2 1 21.250 . 3 1 3 3 8 . 8 21 8 2 12 . 1 2 1 . 0 28 0 . 08 26 9 . 03 21.125 M 1 1 . 2 . 7 . 1.72 1 7 1 . 7 21 2 1.65 11 1 11 41 1 1 4 114 114 41 E 26.7 526.7 526.8.250 5269 7 .7.625 67 2.7 :6.7 1 rh 3 8 . 8 21 6 2 2 22.188 . 2 2 2 25 . 2( 2 1 . 1 22 0 . 15 26 9 . 13 21.938 M 1 . 7 21 1 1 . . 7 1.69 1.72 1 . 7 2 1 ( 01 120 R * 2 L ) 2120 021 21 I 1 r 8 .8.000 0 8 0 8. C0.8 . 009 0.8 0.8 008.250 132 h 2 2 3 23.250 . 3 1 3 08 . 07 7 2 32 . 2 1 . 3 22 0 . 25 26 0 . 32 22.750 M 1 . 2 1 . 7 1 . 7 2 1 . 7 2 1.72 1.72 . 7 21 1 7 1 . D
60 4.500
1
60 4.875 5 1 [ 1 . 1. 5
T
I
+--l’+
I
T I I -L1 + 1
0. 31
.
4
.
0. 4 6 5
.
0. 5 7 5 6 8 0. 5 8 5 0 4 00. 65 0 5 2 4 00. 83 2 5 2 0 5 0. 95 7 6 5
.
. .
. .
. .
. .
. .
00. 98 8 . 6 9 . 2 50. 03 0 . . 6 0. 13 1 7
. .
52. 23 2 . 7 2 . 0 00. 35 5 . 7 2 .
340
DIM EN S1ONS
OF
DIMENSIONS
IN
HEADS I
N
C
H
E
S
WALL THICKNESS
11AM tTER D
5/8 1 8
L(
1
;
31 31) 3.8 73.8 32 . 3 2 9 . 3 23 8 1 . 1 . 7 1 31 1R 31) .8 7.8 57.8 5 2 . 5 2 8 . 5 27 8 1 . 7 1 1 .
1 1 8
144 ;
2
M
1
:
,E
p ~ ‘ 1 $ E : R ]3~ 5 lx L(
1R .8 3 2 . 3 1 .
31 31) 3 .8 73.8 2 4 . 3 32 3 1 . 7 1 1R 31 31) .8 7.8 57.8 52 . 5 2 2 . 5 25 1 1 . 1 . 7 1
1 8
[38 ;
2
M
1
L(
1 8
144 ;
2
M
2
1
T A
13A
l;~
231 573.8 . 38 27 8 . . 7 51 . 2 31 0578. . 5 21 7 . . 7 21 .
W
SEE
)IAM
l%
1
1R .8
2
M L(
%
%
l%
231 231 231 573.8 5738. 573.8 35 21 7 . 3 25 6 . 30 28 6 . 7 5 1 . 7 51 . 7 5 1 . 231 231 231 7058. 507.8 057.8 53 25 6 , 5022 5 . 55 26 5 .i 7 2 1 . 7 21 . 7 21 .
A H
I
‘
C LK
21
231 231 5738. 573.8 . 83 27 3 . 35 21 5 . . 7 5 1 . 7 51 . 231 231 057.8 057.8 . 50 28 1 . 48 22 0 . . 7 21 . 7 2 1 .
23 23 537. 753 38 2 5 . 5 6 5 7 5 . 7 5 23 23 075. 507 3 o 45 o3 7 2 . 7 2 4 EL S S
N
23A 231 537.8 33 2o 3 7 51 231 057.8 45 26 9 7 21
3—
031 7539. . 3o27 2 . . 7 21 . 231 0579. . 43 23 8 . . 7 21 .
03 573. 35 5 1 . 7 2 . 23 057. 48 1 6 . 7 2 .
03 0 57 022 7 2 23 05 326 7 2
TOLERANCES WALL THICKNESS (APPROXIMATION) * OTHER TYPES MINIMUM HEMISPHERICAL .EQ’D.THICKNESS UP TO 150” I.D. incl. OVER 150” I.D. excl. “ “ “ “ “
To 1“ 1“ To 2“ 2“ To 3“ 3“ To 3.5” 3.5” To 4“ 4“ To 4.5”
0.1875 0.3750 0.6250 0.7500 1.1250 1.5000
4.5” To 5“
“ 5>>T. 5 5>> >> 5 & .
*S I
5
. .
7 0
N D
S
O
a
O
4
Ov
O
O
R ti
O E ID u ,8
PD (
IET
p n 0nD
dml ”
t 9 .8eO O UU
l t
N
5 0
0 0 0 0 1
” 2.0000
p m e i c tn ih i i f (mc r y kue
4
W
1 2
i D
.O . ei
Drp.6 n 0” NTE
0.1250 0.1250 0.2500 0.3750 0.5000 0.6250
0.0625 0.1250 0.2500 0.3750 0.500 0.6250
FS
nqmweu i soi
sr h de
HSh
H
ud
F r5n
5 0 0 . 7 0 5 . 0 1 0 .
. 0 7 . 0 8 . 0 de f er)
i
s
“
5 7 0
.
)
su ”
. lD .cm o 7”Ol i uO. 5 9.n ”Osv up, S
pi h e hm ri b mit n i C tt e t os e h d d
n n g
0 7 0 8 0 0
ey
e
.
1.6es m l
“ ODir
“u”
341
FLANGES FLANGE FACING FINISH In pressure vessel construction only gasket seats of flanges, studded openings, etc. require special finish beyond that afforded by turning, grinding or milling.
The surface finish for flange facing shall have certain roughness regulated by Standard ANSI B16.5. The roughness is repetitive deviationfrom the nominal surfacehavirigspecifieddepth and width. Raised faced flange shall have serrated finish having 24 to 40 groovesper inch. The
cutting tool shall have an approximate0.06 in. or larger radius resulting 500 microinchapproximateroughness/ANSI B16.5, 6.3.4. 1./ The side wall surface of gasket groove of ring joint flange shall not exceed 63 microinchroughness. /ANSI B16.5-6.3.4.3./ Other finishes may be furnished by agreement between user and manufacturer. The finish of contact faces shall be judged by visual comparison with Standard ANSI B46-1 . The center part of blind flanges need not to be finished within a diameter which equals or less than the bore minus one inch of the joining flange. /ANSI B 16.5-6.3.3/ Surface symbol used to designate roughness ~ is placed either on the line indicating the surface or on a leader pointing to the surface as shown below. The numbers: 500 and 63 indicate the height of roughness; letter “c” the direction of surface pattern: “concentric-serrated”.
&“’cED
1 J CONCENTRIC SERRATED FINISH
SYMBOL USED IN PAST PRACTICE
342
r
1 l F S 1 A 2. M s s 3. T d 4. T t 5. B d 6. F l 7. F a S
T
A
NA
D B A N R1 D
d
S6
. I
’ 5
m ea l ni is i n o . rncl s h e es n . a m t e c r oo i m au m sl fo s n ot le ry dg e, d S t 1 A e v8 ea a i i 1l s alA t ba . l i se n l eo s n s WELDING at se l a et ln ol e no ,- n m fe ye re lr ot d u sa l . 1 6 i rh a/f nii i ea sn 1 cie cl. du de e s d n i m eC nD a s Ji o n sn , d . l e o nsh gb td on he i usl n cft o d l s u o d t e h eo c hi r g o h ew t n f . h oa o 1 i ll l r e at t/ nrbs h ge 8o e a. r l n t i a m e t e r s . l b a tno d gi rme e s sen s uh id o ono s w n SLIP-nON o t e h s e p r se w c i i sf ie e d . l f a p n s g i2o i e2 2s zp a 32r e 6e sn , , 8 d 0 n c o rb v oA e B 6r Ne e t d. S y 5I 1 .
d
i
1
F A
A P E C F IA D NIE MGGO E K N ES D O NAB O L T T D IA N
I RO N BLIND N G .
E
G
H
J
3
1
1
156 1Y2 11%6 .
86 ‘/2 9h6 2
2
1 1 2
2%6 . 2%6 . 3?46 .
2 3 4
3%6 . 4% . 41%6 .
4 5 6 2
. 5%6 , bg6 . 7%6
5 5 6 6
A
B
3/4
3 4
5 6 8 10 12 14 16 18 20 22 24 26 28 30
5.05 6.07 7.98
T b
5,66 6
.
7
8 1 1
0 2
. .
8 8
8 2 1 8 1 8
. 91%6 0 12 . 2 14% .
1 1 1
4 6 8
. . .
1 1 1
1 4 1 6 1 8
2 2 2
0 2 4
. . .
2 2 2
2 2 3
6 8 0
. . .
o 2e 2 2
.
7
3 6
s%6 I1~6 0
59 63
‘!
78
8
Y88 0 1%6
5 0
0 0
1%6 6 1
3
7 7
1!/’s3 5 1%6 1%5
4 15% . 6 18 . 8 19% .
0 0 0
1%0 136 0 1Y60
2 0 2 2 2 5
0 22 . 2 24% . 4 Z6~8 .
0 0 0
11!46 0 11%6 0 1%0
2 5 2 5 3 5
6 Z8Y2 . 8 3 . 0 3 .
0 0 0 2 0 38%
2
0 ?0 ?0
343
344
3 S 1 A 2 M s s 3 T d 4 T t 5 B d 6 F l 7 F a S
I--’l
l F T
A
NA
D B A N R1 D
S6
. I
5
i m ea l ni is i n o . rncl s h e es n . a m t e c r oo i m au ,m sl fo s n ot le ry dg e, d S t 1 A e v8 ea a i i 1l s al tA ba . l i se n l eo s n s WELDING at se l a et ln ol e no ,- n m fe ye re lr ot d u sa l . 1 6 i rh a/f nii ,i ea sn 1 cie cl. du de e s d n i m eC nD a s Ji o n sn , d I . l e o nsh gb td o,n he i usl n cft o d l s u o d t e h eo c hi r g o h ew t n f . h oa o 1 i il l r e, at t/ nrbs h ge 8o e a. r l n t i a m e t e r s . l b a tno d gi rme e, s sen s uh id o ono s w n -n o t e h s e p r se w c i i ssf ie e d . l f a p n s g i2o i e2 , 2s zpa 32r e 6e sn , , 8 d 0 ~ c o rb v oA e B 6r Ne e t d. S y 5I 1 .
d
I--’l
F A
A P E C F IA D NIE MGGO E K N ES D O NAB O L T T D IA N L e T h H
A
B
c
r
n
I RO N BLIND N G .
to
D
u
g u
E
t g
h h
‘
b H
G
J
1 !/2
1~8 2~8
1.09 1
2
2
2Y2 2% . 3%6
2Y2 3 3112
2 3 4
315A6 . 4Y8 . . 51A
4 5 6
4 5 6
5% . 7. 8V8 .
8 10 12
8 1 1
10M . 0 12% 2 14%
14 16 18
1 1 1
4 163L 6 19 8 21
20 22 24
2 2 2
1.90
26 28
3
To be
0
2 2 3
JA 3
8
8 5 90
1 8 1%0 1%0
5 5 6
1!4 0 1%6 1 3
. .
156 17~27 20Y27
3 5 25
. . .
23 0 25% 0 28 0
0 0 20
0 23?48 . 2 25% . 4 27% .
30~z0 33 0 36 0
21/2 0 0 2% 0 2%
38% 40% 43!
3% % 3% % 3% A
28~8 30M 0 32Y6
6 8
345
L
W
A
N l
l
2
.
3
. J
4
.
5
.
M . b oa rd s o m a e ema dat jn n u a o f we o er n l s nwde. ni c gni e gk ct u Lr ot ln h iag a sev a ator ris eln p a d eb lec r d e r .
6
I
a t l o
I S
F
A
PE C O
F I A DNEI u
Diameter
Bolt
K
t
,ength
s
i
d
e
Bore
M 4 4 4
G GO E J N E S M
N
3 1
4 4 8
1y
%
5
8 8 8
9 5
8 8
2 Z 3 3I 4 5 6
% %
8 7
1
1
1
1 1 1
1
9 ly2
93A 101A
2 2 2
11 11Y2 12M
2 2 3
IR
346
4
F
l
A d ‘i
m ea ni is i n o rnc s h e es n . a m t e c r oo i m au msl of s n ot le ry dg e, d 2. M 4 s S t 1 A e v0 ea a i i 5l s alA t ba . l i se~n l eo s n s WELDING s at se l a et ln ol e no .- n m fe ye re lr otd u sa l . i r af ini n a si n e c. odl u e d s et d 3. i d i m e C n D sa i J o nn s n , d . 4. T l e o nsh gb td on he i usl n cft o d l s u o d t e t h eo c hi r g o h ew t n f . h oa o 1 i ll l r e at t/ nrbs h ge 8o e a. r l n t 5. B d i a m e t e r s . l b a tno d gi rme e s sen s uh id o ono s w n n 6. F l o t e h s e p r se w c i i sf ie e d .
7. F a S
l n F A
f a p n s g i2o i e2 2s zp a c o rb v oA e B 6r Ne e t
1!A 2
3 3 4 5 6 8
sn
,
,
,y 5 I
1
8
d
H
0
.
A P E C F IA D NIE MGGO E K N ES I RO N BLIND D O NAB O L T T D IA N N G . ae m e D i a) mi t ee r t Outside f b L e no H g to huDiameter t t T h r a oP u oHg h i of nu a ou f H bFlange W e l d i n g
J
A
1
32r e 6e d. S
T
c
B
1 1 1 2 2 3 Y 4 4 5 6 8 1 1 1 1 1 2 2 2 2 2 3
H
4 1%9 11%6 5 11%6 0
1 1 1 2 2 3 4
6 0 5 4 4 7 7
. . . . . . .
3 6 9 3 8 5 90
2 6 0 8 8 0 0
4 7 5 6 6 2 8 2 1 8 1 8 1 4 1 6 1 8 2 0 2 2 2 5
. . . .
5 % 5 % 6 15 6
0 6 3 3 5 5 0 0 0 0 0 0
2 5 5 28%6 5 30~6
% 1 1H6 3
. . . . . . . z
1!4 7 1%9 1
. . . .
8 0 2 4
. . . .
2 s 26 27 Z1H6 7 2% 8 3Y8 8 3%61 131H6 . 3% 1 4 2 4% 2 A?/22
6 8 0
. . .
7% 2 2 8?/8 8% 2
0 2 4 6
. . . .
J
G
D
E
0 2 4 6 8 0 2 4
. . . . . . . . 6
1T~z7 20!/27 23 0 25~2 0 28 0 30% 0 33 0 36 0
3 38% 40% 43
A
347
348
6
l F
l-El +5 A
S
T
A
NA
D B A N R1 D
S6
. I
t
J
1 A d i m ea l ni is i n o . rncl s h e es n . — M 4 ? M a m t e c r oo i m au m . sl of s n ot le ry +d g e, . d L ’ s S t 1 A e v0 ea a i i 5l s alA t ba . l i sde n l eo s *n s W s at se l a et ln ol e no ,- n m fe ye re lr ot d u sa l . 1 i r af / ini n a si n4 e c. odl u ,e d s e_t d : _ , i d i m e C n D sa i J o nn s n , d . t $ T l e o nsh gb td on. he i usl n cft o d l s u o d t e t h eo c hi r g o h ew t n f . 5 B h oa o 1 i ll l r e. at t/ nrbs h ge p8o e a. k r l ; n + t ~ + d i a m e t e r s . 5 F l b a tno d gi rme e. s sen s uh id o ono s w n SLIP.nON l o t e h s e p r se w c i i sf ie e d . ‘ 7 F l f a p n s g i2o i e2 . 2s zp a 32 r e 6e sn , , 8 d 0 a n c o rb v oA e B 6r Ne e t d. S y 5I 1 . y E y : 3 9 y % S F A P E C F IA D NIE MGGO E K N ES I RO N B L I N A D O NAB O LT T D IA N N G . D
m ‘ ;
i
on B i i A
‘
i
a p z B
/
.
1
11A
3 4 : 8 o 2 4 6 8
a
o
ae m e r D i aD mi t . ee r t u ~ ~T ~fh bs i ~ c to hD e L t e r no H g ot t h r afoP u oHg h i o nu lT a o F H u b r e e Fia l a f l n B s W e l d n g e G J H D E c 2 2
1.70
; G v $ Q h m m g u ;
8
Y
~
. 8
IY26
8
z~8
4V8
.%
% 6
8
‘%64
1
1.09
3/4
2
m
z~6
1%6
1.32
2
1
1
6 1
1
1 4
11h6
9 6
3 6
2 2 3
7 5
4
8 %
349
350
351
352
1 S 1 A M s s T i T t B d F l
S
r’1
l F T
A
NA
D B A N R1 D
S6
. I
5
d
i m ea l ni is i n o . rncl s h e es n . a m t e c r oo i m au m sl fo s n ot le ry dg e, d S t 1 A e v0 ea a i i 5l s alA t ba . l i s~e n l WELDING eo s nH s at se l a et ln ol e no ,- n m fe ye re lr ot d u sa l . 1 i r h af / ini n a esi n4 e c. odl u e d s et d d i m e C n D sa i J o nn s n , I d . l e o nsh gb td on he i usl n cft o d l s u o d t e h eo c hi r g o h ew t n f . h oa o 1 i ll l r e at t/ nrbs h ge 8o e a. r l n t i a m e t e r s . l b a tno d gi rme e s sen s unh id o ono s w -n o t e h s e p r se w c i i sf ie e d .
F A
A P E C F IA D NI E MGGO E K N ES I RO N BLIND D O NAB O L T T D IA N N G . l i a m e t o H u a P o i o W e l d i
A
B
c
D
1A
H
G
E
z~6
1
IM 1!42 2
1 1 2
. . .4
7 1% 19 4
0 5 4
2Y2 2% 4%
. . .
9 21/2 2% 5
4 7 7
4%
3 4
2 3 4
5% 6%
1OY2
5 6 8
5 6 8
. . .
4% 6
6 2 2
73?
1
0 2 . . . . . . .
. .
6%8 7~88 --. -. . . -.
J
6
.
1 1
n
‘/8
1
7 5~8
n
r f b t t f g
1
1
41H6 7
e
1Y2 1%
1!4 1% 3 1%
5 3%6
~
8 8 -
21% 23% 25%
3
1!4 1% 1Y2 15% 1% 2% 2Y8 31%
9 11 !/2 14!/2 17% 1g%
-
7 %
3Y8 4% 4~8 51A Y2
5% 6Ys 7 8
—
353
1 L
W
N
d
i m ea ni is i n o rnc s h e es a m t e c r oo i m au .m sl fo s n ot le ry S t1 e 0v ea a i i5 l s alA A t ba. l i s en at se l a et ln ol e no ,- n m fe ye re lr ot d 1 i r h af / i ni n a. i se n 4e c c . o ld u J b i i n cui l l ueM d nt e s 4 T l e o bh n d ogn .i t el n h t tc o f l s h eo c i r g o h w t n f . 5 B h oa o 1 i ll l r e. at t/ nbrs h ge o8 e d i a m e t e r s . n ( s i l oo enw s. n,e n gl etd hci 6 D i m e M a b oa rd s o m a e ema dat jn n u a o we o er n l s nwde. ni c gni e gk t u Lr l ot ln h aig a sev a ator rsi eln p a d eb o r d e r . 2 M s s 3 T
S
— No.
i
r
c
l
G M GO E J N E S
Bore
M
N
4
1
1 4
2
4
!
4
b
%
1
4 4 8
5
F I A DNEI
e L
K 1?4
A PE C
%
Bolt
C
F
9
1!4? 2
8 8
21/2
8
4
3
12
1
8 12 12 12 16 16 16 16 16 16
5 6
9
8
1 %
I
?54 -
.
355
356
R
o
m
i
1i i
P S % x
I
F
A P P R O X DI MI AS T BTE
4 N
J
n
a
I
5
p3 z
e4 e
%
% ?
P
r
0
I0 6 D i
l
$
R e
A E
s al s
0I 0 9 s i t an
% %
% ,
X2
5/ /
%6
3/ ~15 3/ ~, /16
N T F CWL E EA
tu
ri
0I
01
n cc
eb n
g
0
0I 5 2 e s
eh
“
,
IZ
:{2
2
5/ /32 5/ .32
2%
;{2 s/ (32 5/ .32 5/ /32 ?/ $31 5/ 132
14 16 18
% 1/ .a %
20 22 24
x – %
005
J
;
%
5/ /:2
3 4 5 6 8 10 12
.
%
5/
1%
NG
2
J
1
EN
%
%
%
%
x
%
% x
!<2 X2
%6
RI !<2 7/ /32 X2 7[ ~42 7/ /32
7/ .32 %* %2 ;<2 ?42 %2
7/ /12 %2
:{6 %6 ;{6 ?{6 X6 ?’(6
%2 3<2 X2 5/ 42 g? 3<2
YE % ~S 5/ /32 %2 $’6
%2 X2
%2 X2
%2 X6
J(2 X2 % %
%2 %2 X x
X6 ?{6
X6 :’(6 X2 X2
X6 %6 — %2
X6 Y8
x
%
5/ /12 %2 5’2 X5 % z
– — –
z
RING NUMBERS NominalPipeSize
‘/2 3A 1 ... R R
150 3
2 z~ z & —
d)” t
~ . E
0 9 1 2
N
o 3
06
,
I
R,
R
iii
0 Rj6 0 R0
0 5 5
Pm S i 1 i4 9 3 1 2
0 %0 0
4
60
iii0 - 0
i n i a p l — 5 R40 0 s 0 R 00 ; 0 R : 5 R0 z 5 8 R0
R z
e
R0
2 2!4
R R
&
R22 R25 R29IRU ~R36
]R ~R I R R . . . ] R37 Rio iii iii R . . . IR39 13 R 1 3R R 6 .8. . ! R38
e
R
1R
1
1
1
0 “R52 Ri9 R64 R68 R7~m rii55_ R43 R48 R , R , R4 0 i R4 R 0 R4 I R4 R R4 R0 R R 4 R I R0 R4 I R60 4
R4 R51 R4 R51 R5 R4 ....... 5 52
R55 R69 ‘ R63 R55 R69 R63 R564 R60 R6] 7 ....1... 1 5 ...
67 77 78
357 A
S’1’UDDING OUTLETS All
1
. SIZE ~lCK (BORE) TAR B lt2 1.50 3/4 1.50 1 1.50 1 1/4 1.50 1 li2 1.50 2 1.75 2 ID 1.75 3 1.75 3 1/2 1.75 4 1,75 5 2.00 6 2.00 8 2.00 10 2.25 12 2.25 14 2.56 2.56 16 18 2.75 20 2.75 3.00
OD 3.50 3.88 4.25 4.62 5.00 6.00 7.00 7.50 8.50 9.00 10.00 11.00 13.50 16.00 19.00 21.00 23.50 25.00 27.50 32.00
STUD ‘F OD CIRCLE CJMI 2.38 1.38 1.69 2.75 2.00 3.12 2.50 3.50 2.88 3.88 4.75 3.62 4.12 5.50 6.00 5.00 7.00 5.50 7.50 6.19 8.50 7.31 8.50 9.50 10.62 11.75 12.75 14.25 15,00 17.00 16.25 18.75 18.50 21.25 21.00 22.75 23.00 25.00 27.25 29.50
STUDS NO. SIZE TPI 13 13 13 13 13 11 11 11 11 11 10 10 10 9 9 8 8 8 8 8
TAP HOLE DEPTH DEPTH E F 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 0.94 1.50 0.94 1.50 0.94 1.50 0.94 1.50 0.94 1.50 1.12 1.75 1.12 1.75 1.12 1.75 1.31 2.00 1.31 2.00 1.50 2.31 1.50 2.31 1.69 2.50 2.50 1.69 1.88 2.75
OD CIRCLE NO. SIZE TPI CJMI 2.62 4 1.38 12 13 3.25 4 5/8 1.69 11 2.00 3.50 4 5111 11 2.50 3.88 4 5j8 11 4.50 4 3/4 10 2.88 3.62 5.00 8 5i8 11 4.12 5.88 8 3/4 10 3/4 5.00 6.62 8 10 7.25 8 314 5.50 10 3/4 6.19 7.88 8 10 7.31 9.25 8 3/4 10 3/4 8.50 10.62 12 10 10.62 13.00 12 7/8 9 12.75 15.25 16 1 8 15.00 17.75 16 1 1/8 8 16.25 20.25 20 1 V8 8 18.50 22.50 20 1 1/4 8 21.00 24.75 24 1 1/4 8 23.00 27.00 24 1 1/4 8 27.25 32.00 24 1 In 8
TAP HOLE DEPTH DEPTH E F 0.75 1.25 0.94 1.50 1.50 0.94 0.94 1.50 1.75 1.12 0.94 1.50 1.12 1.75 1.75 1.12 1.12 1.75 1.12 1.75 1.75 1.12 1.12 1.75 1.31 2.00 1.50 2.31 1.69 2.50 1.69 2.50 2.75 1.88 1.88 2.75 1.88 2.75 2.25 3.19
4 4 4 4 4 4 4 4 8 8 8 8 8 12 12 12 16 16 20 20
1/2 1/2 1/2 1/2 1/2 5/?3 518 5J!3 518 5/’8 3/4 3/4 3/4 7/8 718 1 1 1 1/8 1 1/8 1 1/4
3 SIZE ~lCK (BORE) B 1/-2 3/4 1 11/4 11/2 2 2 1/2 3 3 In 4 5 6 8 10 12 14 16 18 20 24
TAR 1.50 1.75 1.75 1.75 2.00 1.75 2.00 2.00 2.00 2.00 2.00 2.00 2.25 2.56 2.75 2.75 3.00 3.00 3.00 3.44
OD 3.75 4.62 4.88 5.25 6.12 6.50 7.50 8.25 9.00 10.00 11.00 12.50 15.00 17.50 20.50 23.00 25.50 28.00 30.50 36.00
‘F
STUD
STUDS
358
SIZE ~lCK (BORE) B l
3/4 1 1 1/4 1V
2 2l 3 31 4 5 6 8 12 14 16 18 20
T
1.69 1.94 1.94 1.94 2.19 1.94 2.19 2.19 2.44 2.44 2.75 2.75 2.94 3.19 3.19 3.44 3.62 3.88 3.88 4.31
OD A r3.75
4.62 4.88 5.25 6.12 6.50 7.50 r 8.25 9.00 / 10.75 13.00 14.00 16.50 20.00 22.00 23.75 27.00 29.25 32.00 37.00
‘F
S
CIRCLE CJMI 1.38 22.62 1.69 3.25 2.00 3.50 3.88 2.50 4.50 2 2.88 3.62 5.00 4.121 5.88 2 5.00 6.62 7.25 2 5.50 6.19 8.50 7.31 10.50 8.50 11.50 10.62 13.75 12.75 17.00 15.00 19.25 16.25 20.75 18.50 23.75 21.00 25.75 23.00 28.50 27.25 33.00 O R
T S
D HOLE S A DEPTH P DEPTH
T U
NO. SIZE
U DT TD
E
4 4 4 4 4 8 8 8 8 8 8 12 12 16 20 20 20 20 24 24
13
1/2 5/8 5B 5/8 3/4 5/8 3/4 3/4 7/8 7/8
1
11 11 10 9 9 8 8 8 8 8 8 8 8 58 8
1
1 1 1/8 1 1/4 1 1/4 1318 11 1518 1
1718
F
0.75 0.94 0.94 0.94 1.12 0.94 1.12 1.12 1.31 1.31 1.50 1.50 1.69 1.88 1.88 2.06 / 2.25 2.44 2.44 1 2.81
1.25 1.50 1.50 1.50 1.75 1.50 1.75 1.75 2.00 2.00 2.31 2.31 2.50 2.75 2.75 3.00 3.19 2 3.44 3.44 8 3.88
9 SIZE ~ICK (BORE)
B 1/2 3/4 1 11/4 11/2 2 2 1/2 3 4 5 6 8 10 12 14
TAR 2.19 2.19 2.44 2.44 2.75 2.44 2.75 2.44 2.94 3.19 2.94 3.44 3.44 3.44 3.62
OD
‘F O
4.75 5.12 5.88 6.25 7.00 8.50 9.62 9.50 11.50 13.75 15.00 18.50 21.50 24.00 25.25
1.38 1.69 2.00 2.50 2.88 3.62 4.12 5.00 6.19 7.31 8.50 10.62 12.75 15.00 16.25
S
T S
CJMI 3.25 4 3.50 4 4.00 4 4.38 4 4.88 4 6.50 8 7.50 8 7.50 8 9.25 8 11.00 8 12.50 12 15.50 12 18.50 16 21.00 20 22.00 20
3/4 3/4 7/8 7f8 1 7/8 1 7/8 11/?3 11/4 11/8 13t8 1318 13/8 1 u2
24.25 27.00 29.50 35.50
2
20 20 20 20
U DT
U T
CIRCLE NO. SIZE
2
m
TPI D 10 10 9 9 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8
D
DEPTH E 1.12 1.12 1.31 1.31 1.50 1.31 1.50 1.31 1.69 1.88 1.69 2.06 2.06 2.06
HOLE S A
DEPTH F 1.75 1.75 2.00 2.00 2.31 2.00 2.31 2.00 2.50 2.75 2.50 3.00 3.00 3.00
I
359
4.75 5.12 5.88 6.25 7.00 8.50 9.62 10.50 12.25 14.75 15.50 19.00 23.00 26.50 29.50 32.50 36.00 38.75 46.00
STUDS STUD ‘F OD CIRCLENO. SIZE TPI CJMI 10 3/4 1.38 3.25 4 10 3!4 1.69 3.50 4 9 2.00 4.00 4 7E 9 2.50 4.38 4 7B 8 1 2.88 4.M 4 9 3.62 6.50 8 7/8 8 1 4.12 7.50 8 8 1Us 5.00 8.00 8 8 11/4 6.19 9.50 8 8 7.31 11.50 8 1V-2 8 8.50 12.50 12 1318 8 10.62 15.50 12 1518 8 12.75 19.00 12 1718 8 15.00 22.50 16 2 8 16.25 25.00 16 21/4 8 18.50 27.75 16 21/2 8 21.00 30.50 16 23/4 8 23.00 32.75 16 3 8 27.25 39.00 16 31/2
SIZE ~IcK OD (BORE) TAR B
STUDS STUD ‘F OD CIRCLENO. SIZE TPI CJMI
SIZE ~lcK (BORE) TAR B 2.19 1/2 2.19 3/4 2.44 1 11/4 2.44 11/2! 2.75 2.44 2 2lr2 2.75 2.94 3 3.19 4 5 3.62 3.44 6 8 3.88 4.31 10 4.56 12 5.00 14 5.50 16 5.94 18 6.38 20 7.31
OD
TAP DEPTH E 1.12 1.12 1.31 1.31 1.50 1.31 1.50 1.69 1.88 2.25 2.06 2.44 2.81 3.00 3.38 3.75 4.12 4.50 5.25
HOLE DEPTH F 1.75 1.75 2.00 2.00 2.31 2.00 2.31 2.50 2.75 3.19 3.00 3.44 3.88 4.12 4.56 5.06 5.50 5.94 6.88
~ m
3 1 11 1l 2 2 3 4
2 2 2 2 2 2 2 1 3 3
5.25.
1 5/ . 6 . 4 7 7 /. 9 8.00 f. 3 7 9 . 9 1 . L 04 12.oo . 5.00 1 6 1 . 46
4 5
1 2 2
5 6
8 1
1.38 1
1 . 2 . 2 . 2.88
T
. .
98 1 16
3.50 94 . 5 94 43.75 4.25 . 2 44 5.12 4 . 2 54 5.75 44 2 6.75 58 . .27.75 548 9.00 98 10.75 . . 028 12.75
8
14.50 . . 5 017.25 . 2. 0 5 21.25
08 6 7.12 5.12 0
24.38
12
3 6 30 0 75 5 51 11 1 1101 11 110
1 19 09 08 8 8 28 8 98
5 02 65 2 270m
08 28 58
TAP HOLE DEPTH DEPTH F E /1 /1 11 1 /1 1 F1 /1
1 1 2 2 2 2 2 2
. . . . . . . .
4 4 8 8 3 4
. . . . . . . .
10 10 3 5 6 5 6 8
8
2
8
3 3
4 . 4 .
. 0 . 0
361
63 ,// / ./’
[
‘
/
90°L
1.
ANSI B 16.9 All dimensions areA in inches.
2,
Welding fitting material conforms to SA 234 grade WPB.
3.
Sizes 22,26 and 30 in. are not covered by ANSI B 16.9.
oElbow a d n i 4. F
R
(n
uz w t
D
i
Nominal Pipe
-1
90°LongRadius Reducin2Elbow–
A
size
D
,/ a 180°Long RadiusElbow
/
r
-
E
1
i Cap
1 .
1.315
g
2e
e
.
518
ct 1
0
5
5e
,.. 7. , ... 0. . . .
1Y2 718 23/]6 72%6 %
E
r
1
1
~
1/ %
,
lfi
...
8
.
1% 5 1
1
8 f l 1%
/02
l
7 F;
1
. 1
61
IY2
1
. 2%
19
3 0 11
1!4/ l 8
4
2
2
. 3
13
/ 1% 4 76 3 2 35 33116 / 18
1
2
. 3
8174 %5 7
2!/2 % 12 3 53‘5/16 / 1%
6
0’z7h6/
3.500
4%
2
6%
3
4%
2
2%
3%
4,000
5%
2%
7%
3%
5%
2%
3
4
4.500
6
2%
8%
4
6X
2%
3
5
5.563
7%
05
s 7%
/3
6
6
8
8.625
3
%
A
1
. 9
12
31t8 1
6 5 93/16 3yz 3Y4 6 2 12’5/1( 5
68
1
I 10.750 I 15 I 6fi I 203k 0
1
1
12.750
18
7!4 243/8 12
14
14.000
21
8%
1
I 16.000
18
180°ShortRadiusRetun
s2
1
m\,
90°ShortRadiusElbow
a A m Be
i
0.840
A-
-
npl e 3sr s al e
Dimensions
2
~
ks
I
1
‘“\
ai o c
m
3/4
45°LongRadiusElbow
s h
e n s toi standard o. n and X-STG. caps. DiF1applies mension Fz applies to heavier weight caps.
5
/
—
WELDING FITTINGS
18.000 ~().()~
20
22
I
z~.()()()
3% 1 4
125/16 5 /4
5I
153/8
5
6
1
86
7 3
28
14
21
] 24 I 10 \ 632
16
24
7
8
36
18
27
8
9
30
12% 40
20
30
9
1
33
13YZ 44
... ,
.,. .
1
1
I 27 I
IIK
6
6% 7%
24
~40000
36
15
@
24
36
1
26
26.()()()
39
16
52
... ,
.., .
10!4 ,., .
30
30.000
45
18’A 60
30
45
10K ,., .
12 0
t
1
.
.
-
1
WELDING FITTINGS 1. 2. 3. 4,
ANSI B 16.9 Alldimensionsareininches Weldingfittingmaterial conformstoSA234gradeWPB. Sizes22,26and30 in.arenotcoveredbyANSIB 16.9. Forwallthicknesses seepage322.
Nominal Pipe Size I
Dimensions Outlet %
3/8 3/4 ‘/2
1
1 ? ‘/2
1!4
Outside Diameter y
,840 ,675 1.050
.840 1.315 1,050 ,840 1.660 1.315 1.050
~
H
1z 1
1 1
1
11
1
1
1% 1% 1% 1718 1718 17/8
1?4 1?4 4 1%
1
1%
2%
2 1
1% 1 %
2%
2% 2 1!4
3%
1.900 1.660 1.315 1,050 2.875 2.375 1
1Y2
1.660 1,315 3,500 2.875 2.375 1.900
1.
1
3%
4.000 3.500
2 2 1
2 2 1
1 1
3
7
2ti 2!4 2% 2!4 2%
3 2% 2
,
.
2% 2% 2% 2% 2% 2% 2% 2% 2!4 3 3 3 9 3
2Y2 2% z
2
2 I
2 2 1
. , .
.
‘i
11
18
.
.
.
/
,
8
Reducing Tee
“ii “ 2?4 2Y2
2!4
I .... I 33 3 3
L— J,
/ ~
3 2?4
7
“3% 3
kk 54 54 54 04
4
4
. . . . 4
4
3 3 ;7 31 7 31 i0
0 2%
2
, 8 8
%
3 3 ;7 3 7 3%0
41 8 4 3 4 9
”
2 7
....
8 3 9
8 i
3%
3 3 3
.
-
3i 33 3 2 37 36 2%
3 3 3 3 3 3 6
.
1
4
3.500
,
30 3 3 3/ ‘ /“ 3/ 3 / 30 /
3?4 3% . . .
I
Tee
J
7 / 5: 54/ 0431
~h’
.
18
–
% % %
8
Concentric Reducer i % 8 3
/
!
8 8 8
4 % 4
8 !
1 % % % —
J
% 8 % % . . —
h /
8 % % 8 Eccentric Reducer /8 8 8
.
363
WELDING FITTINGS G —. ~
1. 2 3. 4.
.—.
* – (= -1- F — u T u
ANSI B 16.9 Alldimensionsareininches Weldingfittingmaterial conformstoSA234gradeWPB. Sizes22,26 and30in.arenotcoveredbyANSIB 16.9. Forwallthicknessesseepage322.
I
-
-
Nominal Pipe Size 5
1
Tee
Outlet 5
, H –
6
“
+ ?
GJ R
e
+
G
~
8 en
J‘7 dT u
c
i
g
1
r
.—.—.
12
D
4 3 3 2 ~ 2 6 5 4 3 3 2 8 6 5 4
3% 1
: : 12 10 8 6 5
J r‘1
Concentric Reducer
.—.—
14
8 6 1
—.—.
c
Eccentric Reducer
14 I 1
18 1
1 1 } 1
8 6 18 16 14
Dimensions Outside ~ Diameter 4 5.563 4.500 4.000 3,500 2 2 6 5
. . . .
4.500 4.000 3.500 e
2 8 6 5
. . . .
4.500 4,000
7 7 7
8 6 6 5
4 2 0
12.750 10.750 8.625 6.625 18.000 16.000 14.000
. . 7./ . 5/ 5/ 53/ 515 51/5 s /5 “ 313‘ 51 5 / 57/ 5 /5 5 . “6 5 5. 36 3
7 7 2 6
7 2 2 6
10
8% 0 8 75/8 7?4 7% 10 9% 9
.... 7 7 7 7 .... 8 8
1
8
58
10 5
8Y26
83
1. 1. 1.
11 11 6 4
47 47 47 % 47 4% T 47 55 55 55‘ %5 4s 4%5 7 6 6
6 6
1 1 .
J
61/8 6
8% 0 8% 8% 8Y2 8!/2
8.625 6.625 1 1
8 3 6 5
7 7
10,750 8.625 6.625 5.563 4.500 12.750 10.750 8.625 6,625 5 1 1 1
4 4 4 4 4 5 5 5 5 5 5
H
61, 1.
12 12 12 12 13% 13X 13X
0 1 0 7 1Q 5 710 5
9?4 9 0 16 0 0 14 0 2 ] 1518 111/s 0
10% 101/8 13!4 13 13
0 0 “i0 0 10
/
/8 /8 8 /8 8 /8 18 /8 5 8 8 /8 8 1 /
0 0 10
1 1/ 3 1/
s 1
13 13 0 “ i0
14 14 14 14 “ ii” 15
/ 2 2
364
WELDING FITTINGS
I
ANSI B 16.9 Alldimensionsareininches Weldingfittingmaterialconformsto SA234gradeWPB. Sizes22,26and30in.arenotcoveredbyANSIB 16.9. Forwallthicknesses seepage322. )minal Pipe Size 18
20
22
24
30
!~~
Dimensions G
12 10
12.750 10.750
8
H
J
13% 13%
125/8 1’21/8
15 15
8,625
13M
11%
15
20 18 16 14 12
20.000 18.000 16.000 14.000 12,750
15 15 15 15 15
1 8
1 8
.—.
L:
:1 G,
22 20 18 16 14 12 10
14%
.1 7 1 6
05 1 2
0 25
22.000 20.000 18.000 16.000 14.000 12.750 10.750
16!4 16?4 16)4 16% 16% 16?4 16%
16!A 16 15% 15 15 145/8 14[/8
... , 20 20 20 20 .,. . ....
24 22 20
24.000 22,000 20.000
17 17
17 17
,.. , 20
1
1
16 14 12 10
16,000 14.000 12.750 10.750
17 17 17 17
16 16 153/8 15]/8
20 20 20 20
30 24 22 20 18 16
30.000 24.000 22.000 20.000 18.000 16.000
22 22 22 22 22 22
22 21 20% 20 19!A 19
.... 24 24 24 .... ....
0 .
8
+!
Tee
Outside Diameter
Outlet
G
1 ,1
0
1 1 80
2 026
5 5
2
Reducing% Tee
0
J r
‘1 -—.—.
7 !D7
7 4
0 0
Concentric Reducer
r-l J
.—.—
..—,
b Eccentric Reducer
365
FACE-TO-FACED1MENS1ONSOF FLANGEDSTEEL
GATE VALVES (WEDGEANDDOUBLEDISC)
300
I
D 1
– -
i
I 400
A m
– .
. 9
+. & 1-
[ 600
n
s
i
o
n
,
9
– 2
7
2 ;
$ ~ g s x
3 3 4 5 6 8 1 1 1 O 1 O 1 O 2 O 2 O
1 1 1 1 1 1 1 1 3 3 3 3 4
8 8 9 1 1 1 1 1 1 1 1 1 2
1 – 1 1 0 1 12 2 3 3 3 3— 4 4
1 1 3 % 1 – 5 4 1 5 0 2 6 %9 8 52 %3 1 62 0 3 36 1 29 3 4 1 4 D3 52 1 6 D3 65 1 8 D4 78— 2 0 D4 81 2 4 D5 08
p
15 4 1 2 6 2 8 2 % 3 % 3 % 4 0 4 % 4 % 52— %. 6 % %
e
1
150
X ‘ % 2 5 % 5 8 X 0 3 6 , 9 5
s
9
14 2 27 20 32 36 41 43 55 69 63 77 5
2 2 2 3 “ 4 50 —5 2 0 4– 4 6– 08– . 0– 4– p
8 1 6 7 2
8 2 4 9 3 8 K % f8
4 9 4 5 6
1
S
i 5D . ..——.-—.
e
0
0
q
-0
b 1
1 — 1x 2
,s 0 a a t m c a
i
6 7
5 6 8 1 1 1 1 —1 2 2
9
9 1
8 2
8
3 4
–
8 9 1 1 1 1 1 1 1 1 . i 2
1 1“ 1 1 1 1 1 i 4 3 3 —3 _7 3 4 ;
101 I 1i 1 21 0=1 2i 62 2, 72 32 0 83 3 !2, i 4 03 53 6 33 63 –3 —x 8-64 84 9 0 4 0 Y 4 ~5
3 i% 3 6% 4 5 %8 05 91 6. — 32 8 % 6 1 — 04 1 —— Z 2 — X — 5 19 8 1 — ‘1 7 % 4 5 82
2 — % — X — 1% 8 4% %1— 5 22 1 8 1 %7 X %2 > 3—v 6 % !2% 424 . —.3 % 2 — 2%. . . —%2 4 - 3— 3 2 — %– k— 9 %6 . 3% 3- –- 05 .-— %1 . . - 9 . - . x3 5 25 — _ X 3% . 338% % 4_ 4% 0 – 5 _— o %5. % 1 . + 4 6 – 5 ?4% 45 % 4% 5 %6..1.. 8 8 – — , %3 . — 5% 2 X62 ?– 6 0 7“ 6 1 4 – 7 %5 %7
% % 5 % 0X X — ! % % X 2 %
GLOBE AND ANGLE VALVES
— < &
A
Raised Face 300
900
% %
– — —
1
–
– –
2x –
x
–
9
% 1
— – –
1
2
3 1
9
9
9
8
–
3 4
–
4
3 ? 3 7 4 2 05 — 4 25 4 – 9
5
5 6 8
1 1 1
1 1 2
52 72 2
1 1 92
R P
N
4 69 %3
T
6% 8% 1 2 1 1
iJ
y
02 23 63 4 4
82 % 2 %3 3 4
n
p
—l 2 2 3 4 5 6 8 1 1 1 ’
!
—
+
: .. 7 8 ‘ — 1 l 1 2 2 2 3 3
1
9 1l 1 1 1 1 i 1 2 2 2 – –
8%
— 8%
‘- — 1
l 9 9 1 %-9 — x 91 1 1X 2 1i 13 1 — 3 2 %% %2 9 1 — ! 4 —4 3 4 1 3 1 41 — 62 7 4 % f 1 –6 2 8i 2 5 % ~ 61 8 2 ; % 9 6 2~ 2 30 22 8 G6 0 53 1 2 6s 1 % 2 83 0 3 3 8 1) % 1 – 4 x – 1 6 –6 < –
—
—
Y2
6%6
—
87!
e ... .
—
1
4 09 3 8 %
2x 6%6
3A
g
400 2x
Y2
0
—
N
3A-
-
2500
15w—
Dimension2 x A,
Inshes
2
6
400
9
1 1 1 % %1 %1 ! %1 ~ %1 %42 %2 %2 %3 43 4
I
—. 9 1 % —1 — % 14% 4 6 —1 4 1 —5 . A—28 ? 2 - 32 % 2 4 % 39 %— 3 3 % 48 0 5
10%
_— 12% 1x. . 1% 1-..-.— 2X 6 2 8 i—...– ! 3 6 3 — 4) 3 9 05 5 25? 4 – 0
0 1 52 % ? % % 64 % 6% 4 0% 64 %
367 -
m ‘.’, .&.1-
FACE.TO-FACE DIMENSIONS OFFLANGEDSTEEL
:;;:
SWING CHECK VALVES
N
R aF i P r l e p qs i s u b r e e n , 1mu I i 300ne I 5a400 l I, 600 0 S
o
s
as e c d . r . . 9 z
i
e 0 ,5
1e
00
&
—
8
2
9
9
1
3
11% 13 14
4 5
6 8
13% 14 15% 17%
-
–
lx
11
11
13%
– 19%
-
2 2%
14X 16%
14%
17%
2 2
2 4 3
–
1 1
22 2 0 3 2 3
1 %1 02 2 2 3 3 4
3 4i 58 6 8 1 1 1
t 6
R
i
165
n
6 1 1 2 3 2 2 3 3 4 4
0
5 8 2 ?4 9 3 8 %
2 8 2 1 3 6 37 . 4 2 05 4 25 4 —9
g
per
I 4
% 3
‘ y
f
6.
’
-
9
6
.
7 8
, 1 1 1 1 ; 2 “ 3 e
1 1‘ , 1. 1 1 1i I 2‘ 2 2“ . — –
%
%—
9
9
n
c
1
1
9
1 2 2 3 4 5 6 ‘ — 1 1 1
%— -
A
–
1
R
6
—
9
9 — X 9. — - 1~ “ 1 11 1 - . 5 21 —9 . 3 1 40 4 31 1 2 41 6. 31 2 % 8 41 %9— 2i 2 .—– .8 12 30 2 s 0 3 – ’ 65 -80 Y— —3 i 2 2 33”% . 1 – 4 – %
1 1 0 % “ 2 X1 %1 2 3i k1 3% f %1 4t % 7 i1 5 0k %2 6 2i Z2 8% %2 , 6” 1 %1 %3 1 k. — —%3 4 1
1 %— % 1 % 1 i 1 % 2% 2 % 2 % . 3 % 3– 4 5
4 6 5 8 2 4_ 9 3 8 0
1 1 % 1 4 2X 6 2 8 2 1 3 6 — 3 4— 3 05 9 5 25 — 0 4
f Fe a r c e e n-a tc Eo e -n :Fd a -D nc t ei om - oe EFn dn s ed V i or na r s lo uv f s e A m Ne ar Sit tci A aao nnnB d1aN 6al . r1 S0d - 1 9I 7 3
52 % o% % X % %_ k % % % s
.‘
l.
(.
w-
?69 -
S A
B
u
s
F
i
A a S n c
R S
t
C
E T
d
Sr
r
o u
o
a
ii
s
s
+
“
-
p
+
-
+
“
)
s
‘
,.
++ ‘
/
l 9
i
o
e
*
e
+
+
+
w .
c
[
(
[
r r
e -
e r
P
r
c
T
uD
r
on
Re
w d
& n
~
M
~
T
uU
r
n
we
d
H p
w
w
~
L
L
B
a
s
e L
D
L R
oB
o
ur
n
e
g d
ba
R
a
u
c
T
ln
df i i
O iu O D u
S O ( O u
iu t l
ot
n
t d l l rw e t d l e t rU
ec
u
P S (
+
w
e +
r
.(
0g
-
g
h z t +
o .
D
n
v
b D
edng l S l o o dl tl d de
g
s
g
d w e We p i
n
s c
g r B e ea S
;
l
$ r e
Z
F
a
C
F
S
h
C
I
s
T
h
~
g P ee t nt T ee t p ) r
e
)
r
r
<
$
@
-
,
=
S
Y
MF
F
S
t
J
o o n
C P E
r
x
e
a
t
e
O
rP
i
lf
dF
P
l p
B P
P
R C E
S
c
l
l
i a c -
te
u
wl u p
e
t
e
r
e
EG
S
e We
+
+
+
+
~
~
~
~
nc
e
g
l
u
e
c e n t -r
n
T P I RN
gr
i
nl de S l o g o
:
l
-
e D
-
g
o
-
-C
g t
a
r i Kc
i +
+=
c
=
~
v +-t e
-t-l-
*t
-
m
-
+
&
-
-
+---+
-++---* +--e
~
Sr
a
ii
gL
S
t
(
O U u
t
l *p e
t
(
O D u
ot
l w e
nt
h z t
‘ o u b ’ e s wY e e p R
e
d
u
c
l d dl t d
s
li l
TS
L
i
nn g i g
t
LO II
t
a
ai
d u n c e
o c
r
u l c
i
e
e
OF
B a e e dw S p
aS
n t n e c t +i n g i p e a n s i o n ~
p
e
l
i
L
R
BP
i L
n
L
e
L
L
L
*
)
*
-
e
L
“
“
-
L
L
A
L
)
g
+
S
Y
MF
BP
Flanged
S
S i
nw
S (
O iu O D u
S (
O iu O U u
U
n
V A
a Vn C A
C
tl ga a t ll
tl ga a
b a
R
e
v
e
n
nl deg ; l oo
l d dl t d e
o k
o e
r
a
t
e
d
u
c
i
n
g
o
lc ia g c
Wei
e
e
o
e
S
)
, ce
d
Vh ae S tWr a
pw
EG
)
t li c v a s s
r
B a Se
T P I RN
e )
n
t Vo m a a y P o p
r
TS
e s , o l t e e i o n ) v l e e s , o l t e e n )
o l
G O
(
e
un s ve k s
l b e s , l g o l be v a t i o n )
P
C
t
o
l
B
ee t
ag l l e lc hg e l
G la A Gn ( E l e
u
t d l t l p e
&
c
LIOI
p
t
v
v
ee
ee nt
o
l
G a a A Gn ( E l e B V aa G a a A Gn ( P l
A
e l
S
t d l l w e
ot
i
ha Cn
G (
T
g
OF
r
vk h yt k
e
e )
r
+
i
pg
372
S
Y
MF
BP
Flanged
S
OF
c
LIOI
r
TS
B a Se
T P I RN
pw
e
Wei
EG
S
nl l d deg S l o o d tl d
~ ~-
-
&
--#3●
G L P
o
c
V
l
o
kV s
ha i
l a
Q O u p o B u Vt S
aV
b e ll
Iu ie
v
t
ea
n c i r fl
f a
e
l t
e d g
-e
v
-mQ-
e
kn g l r yv vy
e
e
G
374
WEIGHTS
1.
The tables on the following pages show the weights of different vessel components made of steel.
2.
All weights are calculated with the theoretical steel: 1 cubic inch= 0.28333 pounds.
3.
To obtain the actual weight of a vessel, add 6’ZOto the total weight. This wilI cover the overweights of material which corn-es from the manufacturing tolerances and the weight of the weldings.
4
The weights of shells shown in the tables refer to one lineal The weights tabulated in columns foot of shell-length. “0. S.” are the weights of shell when headed by “1.S.” the given diameter signifies inside or outside diameter.
5
The weights of the heads include: A. For ellipsodial heads: 2 inch straight flange or the wall thickness, whichever is greater. B. For ASME flanged and dished heads: 1?4 inch straight flange. For hemispherical heads: O inch straight flange. c.
T s m s C 7.
A
w i
o p c d
m i
t
f
m c
t
weight of
r
b d m d w r T w oa p f t t p o L
o i
375
WEIGHT OF SHELLS & HEADS W D
I
‘
E
SS
1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 5 6 6 7 7 8 9 9 1 1 1 1~ 1 1 1 1
SH 3
1 1‘2 ~
1/ M
A
.
L .
L
s‘
I
CLK
N
”
5
6
H
D
E H
4
.
E E H L
T AH
EL
L s[. .
SA IE&1.
L E
; I.
M DP .
S
S /
.
L
sL‘S
EL
A
s[.L .
E&I .
3 3 4 4 5
3 3 4 4 5
2 2 3 4 4
1 41 26 82 30
23 28 34 49 54
41 46 52 69 62
32 48 53 51 67
24 39 43 58 55
10 28 26 36 46
21 38 44 51 78
9 6 2 9 6
6 6 7 7 8
5 6 6 7 7
5 6 7 7 8
24 44 65 68 07
60 85 90 1 6 1 1
78 783 88 94 19
75 72 80 198 299
61 785 12 100
58 51 65 70 86
84 1 1 1 8 10 4 111
2 9 6 2 9
8 9 9 1 1
8 9 9 1 1
1 1 1 10 10
82 48 96 810 10 0
10 6 1 2 12 7 23 2 25 8
14 10 15 10 216
140 163 18 109 126
100 119 128 102 103
103 111 110 121 132
128 244 261 278 294
06 12 29 36 53
1 1 1 1 1
1 1 1 1 1
11 22 24 36 37
211 12 8 424 25 0 637
26 3 31 9 47 5 43 1 69 7
311 617 113 529 025
145 125 100 190 208
214 286 308 470 592
135 250 274 398 312
311 481 55 2 632 722
69 19 69 29 89
1 2 2 2 2
1 2 2 2 2
49 50 62 74 85
39 2 840 42 4 053 65 6
75 3 84 9 92 5 1 21 1 27
621 227 923 5391 3352
213 243 274 23 30
554 616 828 1 960 7 1 72
437 550 674 879 721 0
2 2 3 3 3
02 20 13 3 23
97 1 8 1 0 1 2 1 3
277 8880 480 1 912o 16 34
1 23 1 9 1 5 1 1 2 70
1314 3 0376 5 8337 5 8499 4 451 7
32 13 03 53 54
3 0 9 8 8
1 04 1 16 1 38 1 40 15 2
853 1 185 3 127 4 159 6 181 8
1 2 2 2 2
8 2 6 2 2
97 96 92 94 97
3 3 3
33 33 34
15 I76 I8 8
I 1525 81 6 1 84
40 2 3 9 4814 476 8 40 2 392 438 0 40 2 8 54
0 2 5
1 46 266 26 8
113 9 145 1 168 3
3 64 9 3 66 6 3 67 5
90 92 05
893 1 93 1 03 1 23 1 4 5 49 40 51 52 53
59 390 192 093 995
376
W
O
S
& H
W D
I
/
E
SS 1
1 1 1 1 2 ’ 1 2 2 3 3 3 3 3 4 4
3 M
A SH
/
.
E E H L
. E
0
.
T AH
EL H s.L .
E &I 1.
26 74 6 08 198 011
1 0 1 8 106 124 132
17 15 13 11 109
10 2 12 4 145 161 197
091 110 1~ 22 134 145
703 812 193 126 130
I5 104 13 143 262
1 0 9 09 28
1 1 1 1 1
1 1 1 1 1
13 13 14 25 26
12 2 413 14 6 815 15 0
250 278 296 31 4 33 2
127 135 143 611 189
14 413 712 013 314
151 164 27 257 280
164 135 126 137 268
281 291 320 349 379
48 57 76 96 15
1 1 2
27 39 41 54 66
216 29 8 431 33 0 646
35 0 43 4 618 702 91 6
917 521 125 829 633
717 281 205 258 300
369 32 465 568 731
209 22 359 471 507
408 586 784 892 1 10
24 92 60 58 460
79 81 93 1 6 1 8
58 2 861 73 4 8 05 1 98 26
1 10 1 34 1 68 1 2 1 1 6 6
3470 312 354 4 496 4539
38 36 35 04 04
7 6 6 8 1
837 986 1 79 1 22 15
693 576 8691 2912 1244
1 48 342 1 86 424 1 4 3 617 1 2 9 899 2 01 7 72
00 42 83 24 6
471 514 556 599 532
94 25 05 05 05
5 1 9 8 8
157 120 25 3 26 6 24 9
1876 1808 1430 1452 1885
2 2 3 3 3
5 5 6 4 3
55 38 11 94 78
0 291 ; ; ;;
2817 ; ; ;;
4 90 9 : : ;
52 ;
5 5 5
53 35 4
2 3 ; 5 7
1 242 8; 57: 4
3 07 9 ; 4; ; 9
1 1 1
E &I .
8 9 10 11 12
2 2 2 2 3
1
s.L . H
2 8 9 1 1 1
21 0 4 1 385 41 5 7 1 709 61 01
1
s L FS
A
9 9 1 1 1
1 3 5 8 0
1
.
EL
42 48 65 72 82
1 1 1 1 2
1
. EI.
L
53 62 70 8] 90
04 40 1 4 42 2 5
1
E H
57 65 73 81 99
4 4 4 4 5
9
D
/
30 48 56 74 82
2 3 3 3 3
9
M P D 0
6
22 42 36 84 50
2 3 3 3 3
8
H
S
3 4 5 6 7
7 7
7
S
4 5 6 7 7
2 2
6
”
L E
5 5 6 7 8
6
4
N
SA
1 1 2 ? 2
5
CLK
8
L
FLs
I
1 8 6 5 7
7 0 3 7 2
676 7 06 : 16; ; ;:
22 33 45 50 65
38 57 67 86 1 5
82 64 45 27 18
4 3 3 2 1
377
WEIGHT OF SHELLS 8C HEADS W D
I
V
E
S S
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 5 6 6 7 7 8 9 9 1 1 1 1 1 1 1 1
1 M
A SH
0
T AH
/
.
F L
CLK
N
”
9
2
E E L HEAD L E
I
L H .
S
L E
S
6
H
/
E
L E1 & M H 0
S
EDI
L
L
S L F.&D
L
I
6 7 8 9 1
6 7 8 9 1
4 5 7 8 19
3 2 43 4 6 85 07 0
47 58 78 99 10
71 82 1 2 1 3 14
67 86 90 1 1 11 7
50 68 077 199 12 0
1 1 1 1 1
1 1 1 1 1
12 13 14 15 16
218 29 4 1 63 14 8 015
110 121 142 262 283
14 15 16 126 147
130 165 190 121 152
13 1 14 4 160 175 280
299 145 153 163 175
126 148 260 282 204
9 01 23 45 57
1 1 1 2 2
1 1 1 2 2
27 28 29 20 31
16 2 417 18 6 820 21 0
204 334 355 486 417
168 278 299 20 241
196 220 266 203 253
291 208 226 330 340
180 207 216 227 230
336 358 480 412 554
89 01 23 45 77
2 2 2 3 3
2 2 2 3 3
32 45 59 62 85
22 35 8 48 51 0 64
447 649 851 1 73 1 15
261 233 325 3170 4192
293 351 242 497 313 621 3 7 0 764 3 3 1 907
246 386 425 555 649
586 792 928 1 64 1 10
99 75 71 771 933
3 4 4 4 5
3 4 4 4 5
98 11 15 18 7 1 1
78 2 1 67 81 1 1 9 94 24 1 1 10 4 2’ 31 1 0 66 2 52
5 5 6 6 6
05 50 16 62 26
1 2 2 2 2
21 1 14 1 26
7 7 7
73 37 74
3 0 3 4 3 7
4 7 1 4 7
33 48 55 06 4 175
46 68 80 12 104
9 1 3 5 7
2 9 8 8
4314 42 44 4536 58 5859 572 2 54 595 7 53
4 9 6 4 5
1 30 1 72 1 03 144 148
832 0 926 2 , 00 4 . 83 6 . 77 8
1 1 2 2 2
6 2 81 42 04
8 296 6 559 6 12 0 6 75 6 9 38 3
9 1 5 7 9
618 632 65 789 703
3 0 8 6 6
8 3 9 8 9
2 31 2 25 208 282 356
. 41 1 . 24 3 !98 6 !61 84 !35 2
3 3 4 4 4
76 38 90 5 14
3 02 8 66 5 20 9 2 84 3 49
2 329 6 383 3 436
!09 6 !62 8 ~216 2
5 76 6 04 6 5 39 9 69 1 9 4 62 3
48 718 03 350 78
2 3 3 3 4
74 96 17 79 61
2 032 28 34 2 674
4 5 5
38 4 728 7 70 50 6 842 8 80 87 6 867 1 80
64 69 65 71 70
1 0 0
3
378
W
O
S
& H
W D
I
Y
5 M
A
E
SS
SH
1
/
.
E E L H
0
CLK
EL
” SA
H
E &I1
3.L
N
L E
S
S
E H
L
1
D
MD 0P
~1.
‘LS
EL
-4 I.L
A E &I
1 1 1
5 7 18 12 1y 3
4 2 45 60 6 817 28 0
54 77 91 104 17
96 19 1~ 3 16 19
8 1 83 90 17 111 14
1 1 1 1 Q
1 1 1 1 1
15 16 17 29 2
214 15 4 616 18 8 3 019
131 ’64 287 201 324
013 216 2 319 253 276
116 178 0 118 11 189 140 ~16 1 ~81 1 125 228
2 2 2 2 2
2 2 2 2 2
21 23 34 35 37
21 2 242 23 6 285 36 0
358 481 424 558 591
020 23 426 720 023
267 218 266 215 261
214 335 356 358 409
2 3 3 4 4
2 3 3 3 4
48 52 66 80 14
327 41 8 545 69 0 763 0
624 854 1 94 1 44 1 4
236 236 2460 462 1 7465
328 312 31 46 74
4 5 5 6 6
4 5 5 5 6
18 1 2 1 6 10 2 4
97 22 1 814 1 564 1 09 8 1 31 6
1 2 2 2 3
4 04 24 4 45
0 1568 0 561 6 ~ 664 2 5 668 0 0 762 9
35 5 ~6 56 47
6 7 7 8 8
06 70 17 72 28
2 2 2 3 3
12 73 2 168 24 59 2 920 26 35
3 4 4 4 5
57 05 25 45 78
6 4 4 1 7
776 770 875 879 975
87 87 48 38 89
1
8 9
I4
9
83 3 8 39 - 4 4 6 9
6 6 7
6 42 1 46 366 3 95 8 970 6 09 3 45 7 2 5 5 2 1 75 3 1 0 9 4 0 1 35 7 0 7 8 5 0 8 2 ~ 5 1 71 1 1o 0 7 56 0 6 38 1 5 7 2 8 8 2 9
1 1 1 1 2 2 1 2 2 3 3 3 3 3 4 4 4 5 6 6 7 7 8 9 9 1 1 1 1 1
1
8 9 1 1 1
7 8
I
8
L
?L
I
T AH
I
(
8 2 6 0 4
2 3)8 3
792 13 57 4
9 0 2 6 0
60 070 91 134 156
5 3 5 165 298 496
63 88 1 ~ 117 132
8 2 7 2
156 178 183 11 112
156 271 296 31 355
16 31 56 7o 95
235 241 250 372 386
480 415 559 594 639
20 45 79 04 39
471 615 2 760 6 934 2 1 28
303 441 459 173 387 1
673 807 1 61 1 35 1 9
1 2 5 1 0
1 23 15 7 19 2 25 6 22 1
102 3 116 5 181 7 185 0 140 3
1 2 2 3 3
30 71 13 55 07
2 4 8 4 1
39 73 17 51 05
1 4 0 9 0
21 5 23 9 35 4 30 8 36 3
1644 298 9 293 2 237 5 222 9
3. 4 4 5 6
49 82 24 67 09
1 3 3 1
0 49 84 29 64 00
63 57 711 053 1 496
—
379
W
O
S
& H
W D
I
~
E
S S
1 1 1 1 1 2 ~
I (JZ
1 1 1 1 1
2 2 2 3 3 3 3 3 4 4 4 5 6 6 7 7 8 9 9 1 1 1 11 1 1 1
3 M
A
1 2 2 2
SH
0
/
.
E E H L
I
4 E L
L
CLK
N
L E
”
1
6
D
E H
SA E&I1
i.L
?L
;
T AH
H M 0DP
40 26 83 15 0
6 98 104 120 146
10 16 12 18 014
90 1 8 114 146
18 19 21 23 24
~17 18 4 610 11 8 023
272 298 214 340 376
25 2 426 28 6 839 31 0
402 448 594 620 666
9 1 1 1 1
7 18 13 15 16
1 1 2 2 2 2
2
3I.
S
S 3
/ L
FLS
EL 3.L
A &I E
175
17 29 14 16 18
57 160 386 145 167
71 98 16 1? 133 I590
7 4 2 09 16
210 426 622 828 124
11 253 296 241 284
169 251 253 275 36
183 102 115 430 259
288 205 333 360 407
34 61 89 16 33
420 636 932 338 634
249 295 353 315 389
318 370 441 403 515
272 287 306 328 34
435 572 629 677 704
61 88 25 53 90
354 472 49 55 05
537 752 3 917 2 1 22 3 1 67
453 509 646 8011 1 563
861 1 23 1 15 1 7 0 1 90 3
4 601 9 36 7 8 685 7 5669 5 4 769 7 7721 5 2 743 8 6774 9 ~ 838 1 5826 5
15 3 17 8 25 3 25 8 21 4
1915 14 8 18 1 11 4 25 7
2 2 3 3 4
5 2878 4 0 8930 7 7 3982 2 5 1034 6 0 0 3 1 1 4 1086
30 9 33 4 31 9 42 48
2 2 2 3 3
2 2 2 3
36 37 39 41 42
3 3 4 4 5
3 3 4 4 5
54 69 83 18 13
233 57 8 462 77 00 6922
712 960 1 28 1 6 1 4
5 6 6 7 7
5 6 6 7 7
18 13 17 22 ~7
1 742 181 6 1 6 94 10 12 1 656
2 2 2 3 3
8 8 9 9 1
0 8 80 1 9 9) 21 0
2 3 3 3 4
1 1 1
1 30 31 1 1 41
4 0 63 62 5 7 35 5 11 2 5 15 1 5 58 1 53 7 0 3 7 28 5 8 8 5 5 0 138 0 9 7 18 8 19 9 8 12 2 2 51 1 04 8 5 9 8 42 2 0 5 0 5 1 54 46 4 8 92 5 17 6 1 10 2 2 69 2 54 8 0 4 9 65 6 2 3 7
2 7 1 6
2 2 24 2 0 136
20 02 84 66 59
4 31 18 4 14 581 5 96 05 580 6 79 2 0 6 52
930 048 3462 1 7545 2 2528
4 813 7 998 3 974 5 1 50 4 13 6
28 ~0 22 43 4 03 6
1 4 8 2 6
27 490 813 336 59 0
1 33 5 8 0
6 3 2 3 5
73 7 2 6 1
32 46 5 68 6 81 7 05
0 5 5 0 1
7 2 ~ 0
4 5
8 8 9 2 7
8 9 5 9 1 1
380 WEIGHT OF SHELLS & HEADS W D
I
J
E
S S
SH
1 12
7 M
A
0
/
.
E E H L
L
I
CLK
8
N
” SA
E L
L E
S
S
1 H
M 0DP
E&I1
I.L
?L
I
T AH
5 E H
D .
L
SS
I.
EL ,
[
A E
1 1 1 1 1
1 1 1 1 1
82 13 15 17 19
50 472 94 6 18 6 17 0
80 10 9 12 7 14 6 27 5
14 13 11 01 0 29
12 103 132 177 100
399 154 170 179 117
16 0 ~ 386 157 171 199
80 110 130 150 280
1 1 01 21 41
2 2 2 2 2
1 2 2 2 2
11 23 25 27 38
21 9 11 4 613 25 8 027
293 2z 2 35 1 48 0 42 8
42 7 726 925 24 532
259 295 242 208 257
273 25 297 359 321
111 137 257 271 298
210 340 370 410 450
61 91 21 41 81
3 3 3 3 3
2 3 3 3 3
30 42 44 56 58
29 2 431 32 6 834 46 0
56 7 51 6 65 4 70 3 85 2
831 130 538 837 246
316 382 358 326 308
313 425 427 559 511
319 334 353 476 493
590 640 790 740 890
11 41 81 21 61
4 4 5 5 6
3 4 4 5 6
60 75 91 1 6 1 2
248 54 8 479 95 20 160 4
81 0 1 86 182 1 8 0 2 04 4
544 8401 3564 0627 681 8
481 49 52 05 06
683 4 899 4 1 65 8 1 01 4 10 7
513 687 873 0 909 2 1 95 5
01 950 412 1 31 1 1 5 015 1 1 8 719 2 1 4 13
8
6 7 7
9
8 9
6 7 7 8 8
1 1 2 2 2
1 6 72 18 2 9 1 724 10 36 2 896
2 2 3 3 4
20 46 72 99 25
0 8 9 2 7
745 709 864 939 995
7 9 2 6 2
27 67 38 08 09
5 18 3 8 21 9 6 20 5 6 ~6 1 0 39 7
1 11 8 1 971 1 134 2 89 8 2 951
2 3 3 4 4
5 51 5 0 78 5 6 31 1 7 94 67 7
4 3 5 2 8
1 50 11 6 17 3 13 0 19 7
0 0 1 4 8
11 15 10 18 15
8 38 9 44 4 4s 1 44 3 592
32 5 5 93 5 0 53 0 4 13 9 8 74 4. 3
1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 5 6 6 7 7 9
1 1 1 1 }2 1 1 1
8 3 9 4 0
9 1 1 1
0 9 100 11 0 121 1 I 85 1
3 6 3 0 4 0 4 1 4 1
2 43 12 87 734 1 23 05 36 9
1 I }23 1: 31 143 1
52 5 92 6 3
4 48 54
I
:~4 9 4
0 0 1 2 2
0 0 1 1
13 16 18 1 41
2 2 5 0 8
17 12 27 22 2 28
1 5 17 7 6 10 3 6 13 9 7 27 8520
8 0 4 5 4
24 21 28 25 22 9
8 41 6 1 54 5 13 3 8 50 3 34 2 8 1 9 24 5 2 0 8 9 57 6 11 2 2 13 3 6 68 3 94 6 3 7 9 28 8 2 9 31 39 8 0 17 2 015 4 863 4 554 9 3, 23 40 2
381 WEIGHT
OF SHELLS
k HEADS
WALL THICKNESS DIAM. /ESSEL
1*8
12
0.s.
SHELL
HEAD
SHELL 1.s.
1-1/16“
ELLIP F.&D. HEMIS
1.s.
0.s.
HEAD ELLIP F.&D. HEMIS
139 160 182 203 224
117 138 160 181 202
98 118 144 168 200
76 93 113 139 162
93 124 159 198 242
148 171 193 216 239
124 147 169 192 215
104 125 153 178 212
83 102 122 150 175
100 132 170 212 259
246 267 289 310 331
223 245 266 287 308
228 257 288 330 374
187 214 242 273 313
290 343 400 462 528
262 284 307 330 352
238 260 283 306 328
242 277 311 350 397
202 231 261 294 338
310 366 427 493 563
353 374 396 417 438
330 351 372 393 415
421 471 523 579 , 637
347 383 421 460 502
598 673 752 835 923
375 398 420 443 466
351 374 396 419 442
448 500 562 614 677
373 412 452 495 539
638 7! 7 801 890 984
459 523 587 651 715
436 500 564 628 692
698 897 1121 1371 1646
556 698 869 1059 1“268
1015 1318 1661 2043 2465
489 557 625 693 761
465 533 601 669 737
741 953 1191 1457 1749
597 749 931 1134 1357
1082 1404 1769 2175 2624
779 844 908 972 1036
756 821 885 949 1013
1945 2270 2620 2994 3394
1496 i 743 2008 2292 2596
2926 3427 3967 4547 5166
829 897 965 1033 1101
805 874 942 1010 1078
2067 2412 2783 3181 3606
1590 1851 2134 2435 2758
3114 3647 4221 4838 5496
102 108 114 120 126
1100 1077 3819 1164 1141 4268 1228 1205 4743 1292 1269 5175 1356 1333 5697
2917 3258 3617 3996 4393
5825 6523 7261 8039 8856
1169 1237 1306 1374 1442
1146 1214 1282 1350 1418
4057 3099 4535 ‘3462 5038 3843 5498 4246 6053 4667
6197 6939 7724 8550 9419
132 138 144
1420 1397 6243 1484 1461 6815 1549 1526 7411
4809 9712 5243 10609 5697 1I 544
1510 1578 1646
1486 6633 1554 7241 1623 7874
14 16 18 ~o -)? 24 26 28 30 32 34 36 38 40 42 48 54 60 66 72 78 84 90 96
5108 10329 5571 11282 6053 12276
382
W
O
S W
D
I
/
E
SS 1
1
1 1
1 Z
2 2 2
2
2 3
1 1
~ 2 2 3 3 3 3 3 4 4 4 5 6 6 7 7 % 9 9 1 1 1 1 1 1 1 1
1 / M
A SH
.
T AH
I
CLK
- 8
.
E E H L
. E
0
& H
L
FS L
H s.L .
E &I 1.
L E 6 -
H
E H
M P D 0
D . EI.
.
1 1 1 2 2 (
15 18 10 13 25
93 2 14 5 17 6 180 12 )
118 132 166 280 224
11 115 32 9 623 827
100 143 183 229 275
160 109 121 ~24 296
3 3 3
2 2 2 3 3
27 20 32 35 47
~ 25 27 4 62 9 32 8 03 4
358 39~ 436 570 524
121 435 839 133 637
236 298 353 321 391
279 381 314 357 429
3 4 4 4 4
3 3 4 4 4
49 52 64 67 79
47 2 49 41 6 854 56 0
67 8 732 806 950 1 14
041 445 849 343 7570
374 460 451 441 47
502 526 647 609 4 762
5 5 6 7 8
4 5 6 7 7
71 1 9 1 6 1 3 1 0
26 9 8 608 49 32 1 050 16 78
1 88 1 1 1 3 2 25 2 47
0 6 4 5
55 3511 0634 95 7 8 95 16 773 0 37 897 4 28
8 9 1 1 1
8 9 9 0 1 0 1 1
8 5 4 6 1
1 1 1 1 1
01 2 1 03 11 3 1 24 21 5
4 2 323 4 2 13 5 3 84 5 4 54 6 5 264
9 0 3 2 0
1 1 1
1 36 31 6 147
7 5 05 20 71 04 2 0 13 7 6 785 6 41 28 6 1 15 8 7 46 43 11 44 3 3 17
1 512 3 69 2 7 3 91 18 25 2 5 22260 3 4476 2 994 3 0 920 3 6 5 55 3 1 62 86 4 5 79 2 1 6 92 8 8 7 26 3 5 8 40 08 2 9 64 4 0 9 89
S
1 ” 1 SA
E L
N
S 3 L
L s FS
/ EL
s.L . H
A E &I .
236
117 142 178 203 238
7 2 48 73 08
260 280 314 5 344 368
374 419 45 590 645
34 69 ’ 05 30 85
396 1~ 61 181 116
498 412 541 566 659
701 686 931 1 87 1 52
21 66 11 670 121
894 1 02 1 40 19 7 16 5
691 189 0 177 3 184 6 132 9
1 28 1 4 1 00 2 62 2 25
6 3 2 5
782 545 09 4 64 7 29 2
923 8 98 1 48 6 49 0 1081 1051 6 7 18 1 7 18 1 10 8 2 18 2
0 24 2 6 20
139 3 0 2 77 6
3 97 1 4 50 9
94 8 50 8
12 5 14 3 16 1 18 0 10 9
6 5 8 6 8
8 6 7 9 4
16 12 16 12 19
4 9 7 0 8
3 3 4 5 6
1 914 6 9 917 7 0 018 8
3108
2398
4732
2 39 1 5 2 9 5 2 5 7 7 5 7 4 3 2 40 2 3 3 7 0 0 6 3 0 3 3 1 9 42 56 50 66 62
2 3 4 5 5
0 39 8 76 64 7 34 2 1 52
5 0 6 1 7
7 6 94 5 757 3 8 13 0 9 77 81 3 2
3 99 6 57 3 16 4 75 60 3
470 6 9 57 4 61 0 7 1 1 0 589 7 6 66 0 31 6 2 9 2 6 188 8 4 60 8 11 2 7 0 3 2
8 7 1 6 3
3 4 8
383 WEIGHT OF SHELLS & HEADS W D
I
J
E
S S
1 1
1 1 1 2 2 2 2 2 3 ~ 3 3 3 4 4 4 5 6 6 7 7 8 9 9 1 1 1 1 1 1 1 1
1 M
A SH
-
.
E E H L
0
1
/
L
E L
I
CLK
4
N
L E
1-
” SA
E &1
[.
: ] z?7
T AH
H
0D M
S
S
5
/
E H
D ]I,
L
1
6
EL
‘LS
.;L
A EI &
0 3 5 8
14 2 14 1 6 18 J 0
17 14 20 27 34
104 2 5 8 l
12 16 20 25 21
185 9 4 1 o
150 170 10 4 13 4 260
3 3 3 3 4
1 3 36 49 41
22 2 4 36 3 8 40
31 47 75 4 15 1 67
4 8 2 6 0
~7 33 31 328 47
2 4 2 0 2
291 318 340 377 400
50 08 46 84 22
4 4 4 5 5
5
54 57 69 72 75
2 4 44 5 6 68 61 0
72 4 81 69 7 12 4 19 1
4 9 5 0 0 581
456 459 475 54 56
6 0 1 5 1 6 4
439 553 582 671 684
70 28 860 351 932
5 6 7 8 8
5 6 7 7 8
87 1 5 1 3 1 1 2 9
724 92 1 8 1 40 4 1 87 0 1 660
17 8 1 8 2 18 2 38 3 i 608
2 0 1 5
52 152 16 056 50 0 17 55 4 48 5 0 79
8 0 61 4 9 14 7 13 26
747 95 1 1 53 4 1 52 8 3 01 4
9 1 1 1 1
9 1 1 1 1
0 1 2 2
2 2 3 3 4
1 44 2 52 8 8 2 32 2 4 0 12 0 7 8 93 2 6 6
3 89 4 92 4 95 5 $8 6 92
3 3 7 4 4
56 9 53 0 1197 59 3 1281 5 7 9 15 4 7
1 1 1 1 1
01 3 1 04 11 5 1 26 21 7
4 5 5 6 7
1 18 19
1 37 31 1 4
7 7 86 82 41 1(0 0 16 5 1~ 88 81 8 762 2( 31 03 ~ 2 2 16 3 9 11 9 086 9 56 / 9 11 49 7 3 6 8 68S 68 2I 35 5( 9 49 7 24 01 1( 6 426 6 24~ 0 985 0 37 ( 7 01 85 5 5 0
1 2 Q 2 2
1
~
7 0 1 1 2
3 732 4 54 5 344 5 15 6 056
7 38 9 40 1
4 7 s6 2 8 51 0 9 55 81 !0 61 C51
29 17 1159 5 12 12 3
7 16 3 7 14 3 16 1 0 16 2 16 1 5 15 6 016 3 015 2 16 3 11
8 23 1 24 0 8 37 1 34 2 9 44 3
4 1 58 4 5 9 56 4 6 168 5 7 692 6 7 70 7
127
1 1 1
10 38 66 94 22
1 513 1 8 557 2 1 8 92 2 4 1 37 3 3 7 72
3 9 6 18 1 395 2 19 7 4 3 9 5 5 5 6 5 2 2 84 3 59 4 6 0 4 3 0 63 1 4 2 6 54 7 8 8 43 7 0 34 2 6 14 ( 2 05( 8 851 5
1 7 98 9 8 33 8 9 77 61 12 : 41 68
3 86 2 66 4 05 10 4 01 8
384
WEIGHT OF SHELLS & HEADS W D
I
J
E
SS 1
1 1 1 1 Z ?.
1M
A
1 ~ 2 2 3
SH
E E H L .
0
3 .
.
:
/ L
‘sL
373 322 462
49 8 402
890 969 1 38 1 18 1 97
4
93 12 11 10 28
729 1 8 28 1 47 5 1 6 90 1 64 2
6 7 7 8 9 9 1 1 1 1~ 1 1 1 1
8 9 9
72 62 8 2 52 3 43 0 3 33
1 1 1 1 1
1 0 ] ] 21 1 2 1 3 1 4
2 3 3 4 4
0
1 1 1 1 1
01 1 11 1 21
5 5 6 7 7
4 5 6 7 8
1 2 2
1 39 ~ 3 0 2 41
5 06 6 7 8
142 04 954 85 766
1 1 2 2 3
77 50 5 32 6 15 1 97 8
8 9 56 26 1I3 96 9 0 478 4 01 72 1 0 307 4 9I5 2 58
S /
E H
1
L
sS
6
EL sI
.
A E .
245
109 138 z66 296 329
165 98 28 53 85
56 87 ~7 58 09
22 3 3 4 5
401 451
312 384 368 456 447
365 393 424 458 584
12 46 76 01 33
40 80 31 92 52
6 6 7 8 8
500 559 5280 6781 6372
443 S42 54 5 52 7 52 9
612 43 699 775 70 857 06 941 34
561 5o5 643 706 379
23 4 5 5 1 6
39 8o 41 01 623
802 0 111 3 15 0 6 14 90 3 17 94
17 1 90 2 13 2 35 35 8
6974 758 833 918 1 94
67 1 37 3 38 0 08 6 99 0
2 4 1 4 2
1 66 125 145 204 28
13 12 15 12 14
6 5 0 0 5
23 34 31 44 42
72 3 4 80 0 18 0 8 4 64 5 1 76 2 1 64 1 5 47 3 14 5 9 1 0 6 21 5 12 3 8 76 9 7 06 0 10 1 0 2 7 8 80 I897 6 9 6 5 5. 40 1o 4! 1 35 8 3~2 10
S 7
I. .
.
423 462 502 661 720
5 6 7 8 9
6
M 0P D
2?033 4 366
6 7
5
EI1. &
L E
D
H
3 3 3
4 4
SA
132 179 226 289
55 2 547 60 6 683 76 0
3
E L
216 245 275 204 333
59 61 74 87 80
3
1-
146 165 205 234 383
4 4 5 5 5
3
”
15 2 148 11 6 ~84 27 )
4 5 5 5 6
3
N
19 1~ 25 28 21
3 4
2 3
CLK
1 1 2 2 2 (
34 37 40 43 56
2
I 8
s.[L .
3 3 4 4 4
2
T AH
9 18 0 1 16 0 60 14 6 13 1 8 11 2
1 2 3 4 4
4 11 5 11 6 j 1 0 77 7 3 12 8 8 12 9
0 1 2 3 4
6 56 5 3 65 6 564 2 75 8 4 84 9
3 434 2 59 4 74 6 99 0 15
8 3 8 3 9
8 48 1 7 40 5 6 52 9 6 64 3 5 76 7
4 1 1 6 3
8 48 5 8 42 ~ 7 50 ~8 6 52 5 5 69 ~
4 88 ~ 3 90 7 1 22 2115 7 11 7 3
5 44 0 64 90 ~ 1 C6 62 2
2 25 2 27 1 23 0 33 9 39
32 59 77 05 24
3 ~9 4 5 26 0 3 96 0 4 60 1 01 9 9 1 4 4 : 427 696 0 4 76 8 91 1 5 8 5 i 5 624 1 ~45 9 8 2f ~ 5 1 2 1 3 085 817 3 2 645
385
WEIGHT OF SHELLS tk HEADS W D
I
‘
E
SS 1
1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 5 6 6 7 7 8 9 9 1 1 1 1 1 1 1 1
1 / M
A SH 0
.
T AH
CLK
- 2
.
E E HL
L
L .
L s[.
S‘
I
L E
S
S
D
E H
L
1 ”
E L .
N
SA
H
IE&1.
M 0DP .
II. .
sL ‘S
EL sI.L .
A E&I .
2 2 2 3 3
1 2 2 2 2
11 14 28 21 34
162 410 13 6 826 29 0
166 198 230 372 324
328 620 922 334 736
152 292 254 211 381
142 26 29 42 16
170 08 42 73 01
177 20 24 37 31
44 7 1 4 8
3 4 4 4 5
3 3 3 4 4
37 40 44 57 50
232 36 4 639 42 8 055
466 508 65 0 722 884
138 540 942 444 056
353 339 427 411 419
09 2 76 49 82
45 76 03 47 77
44 57 61 74 87
1 4 8 1 4
5 5 6 6 6
4 5 5 5 6
63 76 80 93 96
58 2 46 2 6 56 87 8 81 0
96 6 1 38 1 10 1 03 1 95
658 1500 7621 3652 0674
521 58 57 63 61
26 89 62 86 29
04 84 87 50 84
91 1 4 1 8 1 1 1 4
8 10 52 83 14
87 52 32 87 82 77 2 157 6 4 0 22 3
1 8 2 8 2 8 387 7 3 90
56 51 56 52 59 4
7 4 93 7 5 97 6 01 8 7 7 96 8 7 8 90 1
56 54 62 61 61
6 7 8 9 1
6 7 8 9 1 0
1 1 1 2 2
1 1 1 1 1
11 1 1 1 1
2 3 4 4 5
1 1 1 19 2 2 2 2
1 2 3 4 5
01 6 170 7 11 8 12 21 0
9 9 8 8 3 0
2 3 4 5
3 5 8 1
2840 1 7 1 438 2 13 14 47 2 39 1 10 ’3 65 816 5 3 3 29
8 8 2 1 2
8795 850 915 1 71 14 7
0 6 3 5
5 46 1 87 98 3 19 0 1 16 1 5
4 82 2 5 46 2 6 C0 1 6 64 1 7 ;9
8 7 0 6 7
1 C4 16 2 12 0 18 8 14 8
7 4 4 7 3
10 12 i33 19 13
72 392 728 4 73 04 630 5 63 16
5 6 524 6 54 7 8? 545 7 48 6 8 9 46
8 1 8 ?4 9 49 084 01 2 14 08 91 0; 6 91 ;6
37 0 25 2 3 1~ 9 1 2 1 087 ( ! 32 2 4 3 1 2 2 38 4
1 {2 813 3 817 135
2 3 4 5 6
4 0 2 9 2
2 1 3635 4 2 44 42 4 5C 5
2 29 22 5 23 171 23 5 7 24 9 4
1 1C 8 1 15 7 2 64 6 24 3 0 7 9 S5 8 9 1 {8 2 16 8 7 68 7 2 5 5 7 71 5 1 90 0 19 878 38 57 5 71 6( 4 1 2 6 911 2 71 2 (2 6 22< 3 114 0 58E 9S 368 2 0 7 1 3 6 9 ( 4 896 3 9 0 5 32 1: 3 3 2 378 70 1 7; 9429 6 6~ (1 z 10 717 6392 ’ 025 3 121 2 308; 2 3 717 2 : 4 9 1 { 4 31 S 318 (
(5 (2 (9
62 6 6 6 6
25 6 636 84 6
386
I
WEIGHT OF SHELLS tic HEADS W D
I
‘
E
SS
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4
1 1 1 1 1
1 M
A SH
0
-
T AH 5
.
E E HL
L
L
L
/
I 8
E L [
CLK
H MD P .
IE 1
L E
1
”
SA
N
S
/1 D
S
-
16
E H
II
L
sL ‘S
1
EL [.L .
A E&I
2 2 3 3 3
1 2 2 2 3
13 27 20 34 37
18 2 411 24 6 828 31 0
186 211 265 300 455
250 285 329 634 039
164 217 273 244 319
143 286 210 35 349
186 128 257 294 337
97 33 79 25 71
66 92 38 84 10
4 4 4 5 5
3 3 4 4 4
41 44 57 51 64
235 38 4 642 45 8 059
400 54 609 774 858
44 948 43 958 652
395 485 489 488 593
428 436 539 653 647
368 406 431 573 572
27 83 39 0s 81
66 12 68 24 80
5 6 6 6 7
5 5 5 6 6
78 81 95 98 1 2
62 2 466 79 6 883 86 00
2670 8621 6472 1714 8765
52 55 63 67 46
730 854 98 1 71 1 65
694 728 731 815 0 969 1
78 54 40 6 2
47 13 89 4 55 4 31
7 8 9 1 1
7 8 9 1 0 1 1
1 1 1 1 1
1 1 1 1 1
2 3 4 5 6
1 1 2 2 2
1 7 1 09 11 0 2 21 22 2
2 2 2
2 33 2 4 2 5
1 1 1 2 2
5 6 6 0 1
3 2 3 3799 4 4 4 5 5 6 6 7 7 8 9
90 1 1 7 1 05 2 21 1 09 2 5 61 3 1 3 97 72 7 1 4 41 72 82 83 93 94
7 94 8 05 9 045 0 16 1 176
I0 2 1 3 4
1 33 1 18 1 03 1 97 1 2 9
2 2 2 3 3 9 3 6 3 3 80 8 05 4
4 84 5 28 6 62 7 07 8 42
4 9 87 41 33 51 79 5 1 15 5 1 51
9 2 0 1 6
0 3 6 0 4
716 851 1 97 13 3 17 0
1 0 9 4
9 18 1 82 2 80 5 7 57 6 9 7 19 62 9 5 1 35 78 0 1 14 9 45 8 3 09 0 6 15 14 1 8 27 0 1 1 8 4 5 2 8 1 1 18 2 8 24 1 2 2 0 8 5 1 2 9 9
8 6 5 4 5
9 9 9 6 5
14 1 15 14 10
6 11 15 7 10 9 14 5 18
3 4 5 6 7
3 2 2 5 3965 7 3 8 4 4 4565 9 5207 2 5 7 7 0 5892
22 6 7 3 3008 2 43 53 0 64 4
6 7 8 9 0
96 5884 7 65 4 73 9 8 14
1 7 6 8 2
0 7 6 4 8 4 2 7 2 08 4
2 8 64 1 0 99 9 89 6 4 12 5 8 18 8 8 6618 1 1 0 7 2 3 3 8 18 9 9 75 1 85 6 6 ‘7388 8 16 24 28198 2 927 0 4 0 8 68 7 21 6 1 6 120 981 1 9 68 9 31 4 8 3 3 3 4 125 1 1 7 324 390 2 0 73 8 4 1 2 4 2 5 1 9 521 3 9 3 429
17 24 6 1 98 5 523 28 1 6 1 35 3 727 821 29 7 1 73
6 7 1
92C 4 328 5 92 6
65 9 137 3 1081 418 0 1 867 196 4 1 184 516 8 9 1 9 !226 5 2 91 7 6 6 7 4 5
9 3 0
387
WEIGHT OF SHELLS & HEADS W D
I
J
E
S S SHELL
1 1 1 1 1
20 22 24 26 28 30 32 34 36 38 40 42 48 54 60 66 72 78 84 90 96 1 1 1 1 1 1 1 1
1 M
A
0
-
3
.
E
L H
L
?
T AH /
CLK
N
L E
”
1 3
6
4
E L
I
SA
H
I& E1
[.
0DP M
D
S
S -
E ‘ H
I.
/
L
‘S
EL [.
A E&
2 2 3 3 4
1 2 2 3 3
25 29 23 36 30
19 2 242 26 6 280 34
107 244 392 339 497
27 2 139 437 934 242
186 233 204 378 359
262 210 394 368 472
192 238 273 315 355
117 256 314 353 422
87 26 64 13 42
4 4 5 5 5
3 4 4 4 5
44 58 51 65 79
37 41 45 59 62
554 601 769 836 913
749 346 954 451 068
340 434 442 559 569
446 579 503 67 771
392 427 560 500 649
571 639 798 877 1 55
91 69 18 77 350
6 6 7 7 7
5 6 6 6 7
83 86 90 1 4 1 8
57 68 63 47 07
9 815 2 979 613 11 7 7 1 30
748 782 8960 9801 1 532
66 70 84 87 0 912
1 01 7660 1 98 3632 1 96 2713 1 3 9 9785 1 0 0 7856
1 08 53 2 30 66 2 26 70 5 8 3 49 0 0 4 73
1 7 7 2 1
838 953 1 79 19 6 11 4
5 3 2 6 0
3 13 4 1 81 17 1 973 7 126 08 2 43 1 897 14 0 8 20 0 8 1 6 1 1 3 0 6 13 1 6 23 1 9 2 4 6 2 3 6 0 15 3 1 38 2 1 2 0 1 4 4 3 4
1 5 97 2 6 11 3 7 25 5 8 50 6 9 76
5 3 5 2 3
13 2 16 1 18 0 10 0 12 1
1 1 8 9 2
12 11 16 11 14
0 2
1 1 41 51 62
3 4 4 5 6
3 4 5 6 7
72 93 03 14 24
6 7 8 9 0
8 425 1 8 71 C 9 55 86 81 :7 0 646 5 91 44 2 77 02 11 (0 3 867 2 21 87
8 9 1 1 1
7 8 9 0 1 1 1 2
1 1 2 2 3
1 1 1 1 1
1 1 1 1 1
3 4 6 7 8
1 2 2 2 2
01 1 12 2 2 2
9 00 1 22 3
2 2 2
2 35 32 6 2 47
1 3
5 1 7 4 1
4 5 6 7 8
8 0245 c 31E 8 126 9 528 1 2 229 3 825 2 9 223! 9421 9 62C 4 2 523
1 4 0 8 22 31 C5 5725 2 5 189 2 41 22 0 827 3 6 1J 42 502 5 50 29
,
1 44 041 1 43 732 1 2 4 624 1 0 4 305 1 90 5 97
2 35 1 49 6 48 8 51 8 66
3 4 5 7 8
22 6 7 43 1 3 63 5 9 74 9 6 94 1 3
4701C9 53 76 0 2 64 9 78C 1 4 64 8 49$5 2 73 t 6 [87 1[ 4 7 81
3 12 ; 5 I816 C 5 989 02966 9 721 7? 166 21317 942 ( 8I 141
5 5 98 7 6 52 9 7 17 0 8 72 2 9 37
7 89 4 44 6 01 3 68 4 35 0 0 4 3 7
94 53 13 73 35
41 163 0 0 51 6 0 92 6 71 2 6 63 2 81 i 3 5 4 Z 010 4 0 6 4 21 (55 166 1 207 2
7 [ 97’3 1465
388
W
O
S
& H
W D
I
4
A
E
M
S S
SH
1
.
0
2 ~ 2
3 3 3
4 4 5 6 6 7 7 8 9 9 1 1 I1 1 \2 1 1 I4
SA
EL si.L .
H
E&I1.
I3~)g 7 2 32
.
MD P
E H
D
Z1
20 9 9
549 523
7 9 0 9
143 853 453 063 63 0
8 9 1 1 1
70 2 484 98 06 892 1 1 6 30
374 1 3 ( 8 96 18 074 3 1 2 1 84 18 8 074 4 6 1 7 1 28 9 84 6 4 1 3 1 12 0 6 0 9 1 0 13 6 84 8
8 9 1 1 1
1 1 2 0 2 1 3 2
12 0 4 1 1 2 4 1 28 14 2 4 3 7 2 70 6 3 1 26 2 8 4 5
1 1
3 4 4 5 5 6 5 7 6 8
2
1 1840 1 1 0~ 1 ~10 2 ~2 ~ 23 32 ~
I
82 0 5 38 4 2 6 3 14 4 7 40 8 6 8 64 6 ’8 9
(7 ) 25 4( 6 282( 8 9 2 ] 64 30 f 7 00 j 4 86g 0 1
[
87 86 09 21 9
94 9 1 45 14 2 14 9 14 7
5 5 6 3 0
4 15 6 3 7 15 5 8 4 15 5 3 5 15 6 ~5?8 9.
4
2 1 5 3 6
9
1 35 3 125 1 9 22 6 4 1~ 8 326 1 6( 2 52j 1 ( 3 1 62 j
9 20 0 1 1 5 826 9 4 16 89 1 2 2 I4 ~0 4 4 . 2 ( 8 J 13j (
2 6 3 7 48
05 91
9 7 3 7 8
0 1 2 4
8 10 0 6 12 1 12 4 22 4 36
6 5 1 34 8 0 6 6 40 8 1698 1 7 9 56 8 18 9 9 63 5 1947 4 0 6 68 1 12071 6 1 2 425I95 3 o 9 82319
078 281
0 22443 4 5 5 82567 76
290 904 315
8 7 42692 28 8 6 I6 ) 0 9~940
5~0 30 4 06
4 6 1
7 3
607 721 4 886
EL .
218 232 387 371 435
59 65 81 90 18
51 6: 1
1
L
s‘S
I.
40 44 4 ~58 62 8 066
] 7qo
1
L
?sL
2 2 3
S -
4 5 6 7 7
7
4
E E H L .
S
1
.
i
L E
47 44
6 6 6 7
3
N
3 4
5
3
CLK
923 33 733 423 643
4 4 4 5
?1 . .
I
10 24 i 28 32 36
2 2 2 3 3
12
T AH
6
.
A & 08
~ob 48
89 41 9: 64 25 86 48 39 21
3 1 50 71 72 53
2Z
14 18 43 18 33
9 3 7 2 6
4 9
3 89 5 86 7 4015 23 0 4552 00 2 5123 28
0 4 8 2 7
9 4 5 8 7
3 5 8 0
5 58 ) 7 69 9 73
3 5 6 7
2 3 4 6 8 9 4
7 6 ~5 2 72 3 4 84 4
17 1 54 0 9 4 i 38 5 7 63 2
2 1
7 91 4 9 0 62 2 71 7
24 6 6 22 2 01 5
4 9 7
5 3
389
I
WEIGHT OF SHELLS & HEADS W D
I
‘
E
1 1 1 1 J 2 2 2 2 3 3 3 3 3 4 4 4 5 6 6 7 7 8 9 9 1 1 1 1 1 1 1 1
2 M
A SS
2
SH
T AH
I
C LK
.
E E HL
L
L
L
[
IE
E L
“
2 1
H
D
SA
E L
N
MP
S
S 4
E H
;I
L
J ‘LS
3 3 4 4
2 2 2 3 2 3
29 34 38 4 47
21 2 425 39 6 ’ 834 48 O
259 202 364 417 580
3 14 3 57 4 09 4 52 505
2 16 2 80 3 51 3 34 4 34
34 0 39 9 37 48 8 430
5 5 5 6 6
4 4 5 5 5
51 65 69 74 88
242 57 4 651 65 8 079
643 715 878 961 1 63
558 6 10 6 73 746 7381
4 36 5 40 5 68 6 87 6 2
7 7 8 8 8
6 6 7 7 8
92 16 11 15 19
84 2 488 0 92 16 10 862 1 1 40
1 66 1 9 1 2 1 4 1 71
8012 6 8844 8 9567 9 9 497 2 [ 259 3
9 1 1 1 1
8 9 1 1 1
14 1 2 1 2 2 3 3
1 1 1 1 2
1 5 4 4 8 3 1 12 9 6 1 4 1 640 1 5 7 1 4 6( 8 3 3 5 79 6 1 1 0 4 1 4 9 2 5 : 8 2 4 : 2 7 4 0 38 8 1624 8 3 4 1 54 8 7 5 7 2 41 1 3 0 2 6 9! 7 4 7 0 1752 4 7 9 5 0 2 2 22 2 2 9 6 ; 1 1 5 Z 9 9 6 6 0 3 1880 7 825 2 3 0 9 5 16 1 4 2 2 02 2008 74 [ 2 6 66 8
0 1 3 4
12 5 5 2 02 6 158 98 28 9 14 4 1 3 6 9 2 2 90 3 4 5 2 5 26 5 6 5 3 7
2 2 2 2 2
7 2 02137 8 2265 03 9 4 12393 2521 26 1 7 1 22645
2 25 56 7 47 008 3168
2 2 3
2777 38 1 9 1 32906 3034 41 1
629 2 9148 115 5 4
9 89 8 0:
5 1 51 6 1 537 3 11 4 5 19 2 2 17 0
EL [. L
A E&I
21 5 28 1 36 47 9 42 1
202 351 469 527 695
46 92 40 09 67
586 63 4 77 6 822 2 970
57 3 62 2 67 1 71 8 864
773 841 929 1 07 1 05
35 03 71 591 472
7 3 78 8.1 88 91
6 1 24 2 1 72 1 812 5 16 ; 3 104
919 0 1 63 1 1 16 2 1 57 3 1 07 5
13 1 10 1 91 2 72 21 3
1 25 4 3 36 7 18 8 90 1 72
5 90 0 1 82 01 6 3 7164 01 6 6
21( 4 2 1( 4 252 2 3~ 3 73/5
6 1 56 6 0 1 51 52 46 9212 4368
23 4 38 8 32 1 46 6 50 0
5 1 3 0 3
0 4 8 3
7 64 6 1 6 8 2 89 1 6 1 0 6 93 7 5 5 1 0 1 7 3 10 9 51 1 0 21 3
0 61 ?7 9 1 5 7 93 7 4 150 5 2 0 5 7? 1 6 96 8 84 3 9 08( 3 18 8 1 870 3 195 500 4 81 2 0 720 2
1 28 9 9 2 1 0 6 132 1 8 3 8 42 16 6 6291 18 4 7329
3 2 275 22 1 6 4 27C 7 322 9 924 0
18 3 7[ 36 9 63 201 1 1O 22 $ 33 3
1213 6 4 3; 2 7 1 : 1 2141 3 2 1 2 3 15 5C 2: 7 1 5 622 1 0239 4 431 5 [01 4( 116$
8 ’3 98 ’ 5I [ 7! 6 14 1 8 [39 1 9
54 0 1 4 9 8 8 2 7
2008 940 3 6057
390
WEIGHT OF PIPES AND FITTINGS
I
I N P S
. D IW I
O I
N O MP A GP W N A ~E 1f O T H Z E
S XS 1/2
0.9 1
.T . T . .
SCH. 160 XX STG
E L B R OE W T U R M . T E10 9 P 40 ° 8 0 ” 9 I 15° 8 0 NL L St . LL . R L . . R S . . R . . R . R K .
0.2 0 D 0.3G 4 8 9
11 11 12
. . .
r
S XS S 1 X S
C
I
0. 0. 0
.
2
1
.T 11 . T 11 . H 6 12 T 23 .
D0.2 1 0G5 . 10 X G0
. . . .
30 40. 8 8
01 05 9 4
. 3.
0. 0. 0
1 2
.T . T . H 6 . T
D0 3 0 0G 7 0. 5 0 0 X0 G5 0
30. 90. 00. 80.
0. 1 1. 1.
04. 5. 06. 18.
03. 0. 14. 15.
.3 3 .3 4.
1
I
S XS S 1 X S
1
0 01 3 7
9 70 7 4
C
1 1 2 3
I
S XS S 1 X S
1?4
C
S XS S 1 X S
I
C
XS S 1 X S
I 2
D0 4 0G 9 1. 5 0 X1 G8
0. . 0. 0.
00. 10. 00. 20.
13. 01 28. 2.
06. 9. 10. 14.
14. 1. 27. 29.
.4 5 5. 8.
.T 21 . T 32 . H 6 42 . T 64
D0 4 1G 0 1. 8 0 X1 G0
0. 0. 1. 1.
50. 06. 11. 01.
71. 26. 93. 4.
19. 12. 24. 29.
2.0 6. 2.3 8. 3.0 2. 3.4 .0
4. 7. .0 .1
1 2G 1 3. 4 0 X3 G3
1. 1. 2. 2.
0. 81. 3 1. 62.
37. 40. 65. 07.
26. 3.0 2. 4.0 3. 5.0 5.
30. 45. 5.C 2. 6.3 3.
.8 2 6 0
I .154
I STD
2
21 .T 31 . T . H 6 32 . T 53
C
3 . T 52 . H 6 73 . T 94
I
S XS S 1 X S
C
.T 52 . T 72 . H 6L 3 T 1 5 . I
L 3
I
I
I
I
S XS S 1 X S
C
I
.T 72 . T 1 3 . H 61 4 . T 1 6
I
D3 0 4G 7 5. O 7 0 X7 3 G5 I
2. 2. 3 5
3.1 62. . 53. . 23.
D5 1 6G 0 0 8. 4 3 0 1X 8 G0
3. 62. 4 . 03. 6 . 84, 7 1 . 05
I
I
I
16. 31 . 31 . . 26 .
61. 78. 84 10
43. 50. 61. 2 90. 4
86. 87. O1 . 71 .
. .
.8 .1 .0 .8 0
70 . . 83 1 02 . 1 34 .
.6 .5 40 83
I
60. 85. 1 5. 10 .
0 3 8 2
391 —
N P S
.
WEIGHT OF PIPES AND FITTINGs
1
O EI N G I
3
S XS X S
4
S XS S C S 1 X S
5
S XS S C S 1 X S
6
S XS S 1 S 1 X S
10 (
c
4 N NA P Z r
1 H C
H C
C C
M 0 T EIF AO E H
I
R OE
TW U R T° 8 0 10 1 8 . R L . S . R , . R .
1
. LL . . 4
I
T
ml n
1
R
2
6 83 1 5 01 8 1 0
. 4. . 6 . 70 . 82 . 1 3
. . . .
0. 8 18. . .5 0 5 2 . 6. 1 30 . 0. 0 45 45 0 . 0 0 .
13 15 24 20 20
. 52 . 15 . 83 . 85 . 8 5
1 2 .T 2 3 . T . . 1 2 52 . H 63 6 . T 3 7
1D 4 5 2 0G 7 20 7 0 3 .3 2 3X 8 G5
95 1 2 1 7 2 0 2 2 6
. . . . .
8 5 0 5 0
4 8 2 4
. . . . .
36. 48 50 60 67
269 20 8 46 7 50 4 40 8
. . . . .
1 2 .T 2 4 . T . H 23 5 . H 64 7 5 8G , T
2D 9 8 3 8G 3 4 .6 6 5 .5 1 6X 3 6.
1 2 03 03 4
4 5 5 7 5
. . . . .
10 12 22 38 34
8 3 0 8 4
. 50 . 76 . 94 . 13 . 12
2 7 2 0 2
. 35 0 . 30 . 40 0 . 40 . 26 0 . 60 . 060 . 207 . 060 . 380
5 . 40 6 . 5 0 0 . 6 4 6 .0 2 7 ,0 8
3 2 5 02 6 4 . 4 7 02 0 5D 8 2 3 0 5 . 5 0 03 8 7 . 3 . 47.51 8 .0 05 4 1 . 0 06 1 . 7 107 1 . 4 208 1 X2 . 1 7
. . . . . . . . . .
10 27 22 26 3 4 05 15 06 86
4 7 4 9
. 47 . 87 . 96 . 16 . 14 . 19 2.6 2.8 2.7 2.4
8 0 3 9 5 2 0 5 2 0
. . . .
, 54 . 50 . 50 . 771 . 27 . 890 230 . 11 . 1240 . 1060 . 165
8 . 2 4 4 . 4 7 8 . 0 5 8 .4 C .0 5 .0 7 .34 5 3.90 ( .00 5 .80 4 9[
. , . .
r .
H2 H3 D4 5 )
1 .1 15. .39 .
N
90 D 1 5G 10 9 1.2 2X 7 G
C C T ’ t
I
B
.237 ’ 1 1 T .337 .438 . 11 .531 H62 .674 T 2
S S S x s o
n
L
D 6 2 4. 63. 8G 2 1 6 . 84. 1X 2 G3 I 1 6 . 68
S 3 S S 6 X S S 1 S 1 S 1 S 1 X S 2 3
N
E M 9 L St K %
92 .T 1 3 . T 2 T . 6
2 2 . C . H2 2 2 3 .T C . H3 4 4G T.500 C .593 H 05 C .718 H 26 C .812 H 46 C .906 H 67 7 G T.875
SCH. 2
8
?lPE
6 6 4 0
5 . 8 5 03 6 . 20 8 2 7 . 4 0 04 1 . 37 6 3 8 . 0 6 5 8 . 45 8C 3 . 75C 0C 5G 1 4 . 0 07
95 . 5. 1 0 2 . 52 .1 0 2 0 5 8
98. 3 14. 6 2 0 2 .
. . . .
51 02 38 40 40
0 4 5 5 2
45 3 59 1 60 5 107 4100.0 0 . 6112.0 0 . 018 . 210 . 310 301
.1 0 8 . 18 . 454 . 1 .2 3 . 7C . 15 2 .7 . 1(3
. 472 388. 1 78C 15C (
1 6 4 5 0
.4 3 .7 .. 5 . .0
392
WEIGHT OF PIPES AND FITTINGS NOM. P S
E L B R OE W T U R N O M . P 9 I P 40 E10 9 15° 8 T ° 8 0 ° 0 N A L L ) IE S G N A ” I ’ I O N P E1 f L St . L . R L . . RS . . R . . R . R “E H K . I Z [
●
\ (
c
10
o S S S S S
C C T C
1
S 2 S 3 S S 4 XS S 6 S 8 S 1 S 1 S 1 S 1
S 1 S 2 S S 4 XS S 6
C C T C
1
C C C C C
t
C C C C C C
C
SCH. 80 S S S S
S I ; S I
1 (
n 8 1 1 1 1
c
1
C 120 C 1 C 1 C
1 C 2 C 3 SC C SH 6 C o n t
. . . 1 1
.
) H6 5 H 07 7 H 28 8 H 41. H 61.
. H3 2 . H4 3 . D4 3 . H5 4 6 5 . T H7 5 . . H8 6 H 01 8 . 1 H 21. 1 H 41. 1 .H ! 61
H3 3 H4 . D5 . H6 7 . T . H8 .750 1 . H 01 1 H1. 1 H 41. 1 H 61. .
. . . . .
2 3 4 5 5 9
H 4 2 H 5 3 H T 6 3 4 8T 05 H1 6 . )
4
m
n
.1 4 1. 7 1. 9 0 2. 11 2.
90 8 10 1 40 1 004 1 026 1
. 236 . 857 . 389 0. 11 5. 16
42 030 232 2 44 057
13 29 25 204 330
16 8 116 273 223 234
77 19 42 87 40
. 83 1. 3 1. 9 1. 3 5 1G .1 3 2. 8 0 2. 02 3. 14 3. 6 4.3
50 5 30 7 7 8 00 8 0 1 60 1 80 1 4 08 1 005 2 020 2 01 13
. . . . . . .
04 005 526 636 068 289 711 . 316 0. 1 5. 14 2. 25
41 82 62 62 430 232 644 0 57 5 60 0 63 0 90
12 18 15 12 20 22 209 338 451 477 620
165 11 2 13 0 16 8 124 261 236 337 327 491 410
01 44 52 76 14 41 99 54 15 64 0 05
50 7 0 8 7 1 30 1 0 1 90 1 0 310 72 3. 301 05 4. 91 27 . 051 49 5. 003
. , . . . .
005 236 568 889 010 314
20 02 300 302 404 406 . 154 060 .7 0 08 3. 22 0 0. 108 6. 27
16 12 20 23 205 325 4
11 0 26 7 125 262 200 393 369 15
43 76 10 41 70 23 1
15
5
3
7820
2
036 278 510 017 . 615
19 22 206 336 475
2 2 25 12 24 46
.1 7 .1 6 1. 5 1. 3 2 G2 2. 5
.1 .1 .2 X2 0.3
2 2 3 3
05 01 07 0 05
9 1 D1 C 1 82
. . . .
0 01 03 07 03
9
66
89 36 60 45 78
393
W
A
F L
● ●
c
o
1
n
t
.
C H H C C
. 1. 1. 1 1
S 1 S 2 S S 3 XS S 4 S 6 S 8 S 1 S 1 S 1 S 1
C C
. H 42 . H 53 73 T. . 8 4 H . T 95 . H 15 . H 17 . H 0 19 1 H 0. 2 1 H 2. 2 1 H 4. 2 1 H 6. 3
C C C C C C C C
52 H H T 73 X S1 5T H 15 H 18
. S 1 C . S 2 SC S C H . 3 .0 . S 4 C . S 6 C
20
1.031
SCH.80 S S S S
1 1 1 1
1 1. 1 1
C C C C
22 c
) H 18 1 . 1O 1 . 12 H 4. 2 H 6. 2
8 C C 1 1
S S S S S
1
{
P
E N O M O M . D 1M I G pN‘ A T !EIA O N: l L :O K I ZT EH -
N P S (
O
o
n
t
. . . . .
H 0 H 2 H 4 H 6
.
209 . 2 52 . 3 . 3
2 5 73 83 14 15 )
B R
.
OE
: L: ; O E ;. 5 . f 4
W T o T
;; . 8
:
U .8
R :
.
-
-
.4 0O 20 4. 5 8.
40 33 3 6 1 9 03 2 0 9 54
352 1 8 8 3 40
907 5 3 4 1 45
.1 .2 D2 3. 3G 3. 4. 6. 1. 3. 5. 7.
50 1 10 1 7 1 30 2 0 2 60 20 50 33 3’ 47 05 0 07 4 06 7 08 0
078 21 516 801 041 291 092 37 6 5 2 1
31 7 44 9 56 1 60 2 61 3 755 948 1 21 8 4 5 9
26 219 320 485 406 509 64 8142
258 336 217 315 399 589 680 72
28 ~ 90 36 14 37 15 87 6 47
.2 .3 G4 .5 .6
50 07 0 09 01
1 2 D 20 32 46
01 521 02 302 293
44 3 61 9 875 1 33 157
270 406 50 665 0 904 3
434 340 435 78 87
89 10 56 1 73 8 15
573
431 1722 1146 1021
861 2. . 7. 9.
08 5 0 O9 054 067
1 C 0 8
51
016 2 519 7 02
.2 3 5
1 7 3 0
0 1
602
1 096
500
05
00 1
5
6 7 2 9
57 8 2 7 7 3 1 5
332
424
41
94
48
7
600
5
4
0
394
WEIGHT OF PIPES AND FITTINGS m
J O O M .P V A ) IE S I GP N A ’ EI1 FI O I Z [ E’
N P S
~
)c
o
n
22
2
26
30
S S XS S S S S S S S S
1 C 2 SC 3 4 6 8 1 1 1 1
C C C C C C C C
. . . .
t
.
●
15 16 16 17
. H 62 H T 93 . 15 . T . H 15 H 16 . . H 29 1 H. 2 H 0. 3 1 H2 . 4 1 H 4. 4 2 H 6. 5 2
. . . . . . . .
62 83 13 14 15 15 16 16
. . .
99 3 119 3 158 5
r
,.
-..!
L1. DU w R E ’ 1 ’ U M , I P E I ’ 15° 8 10 ’ L 9 L40 ” 8 0 ” 9 ’ 1 N L S . HL K . . R L . R S. . R . . R .
% 6 2 8 5
.3 .4 6G .7 .8 1. 21. 5. 8. 0. 3.
5 7
6 7 9
2 4 5 7
4
n
n
2 5 8 0
9 3 7 0
50 2 70 D2 0 32 60 4 80 57 60 37 1 01 9 4 03 6 01 2 06 8 04 4
011 562 003 203 74 85 87 1 2 2 3
603 89 5 1 95 1 71 1 61 8 28 7 27 7 9 4 2
5 1 7 0 3 1 0 3 6 5 2 6 8 8
0 2 55j 7 023 2 5 8
7 4 13 J 9 16 3 9 6
1 7 4 0 6
21306 53367 074881
1 16 1
628 598 62 90 1 41 1 35 1 79
0 0 9 7 4
17 98 80 41 32 4 65
01
77
0
5
964
8
5
5
2 6 5
0 0 2
445 503 70 2 9254 1 626 18 93 10 39
22
1
930 44 1 4 . 1235 59 1 8
395
W
O
F
150 Ibs, S O
1%
8 10
1 14
P L N
S E
10
1. 0
2.
0.
2.0
5
.0
1
2
.
2.
15
2. 0
3.
0.
3.0
25
.0
2
2
8.
2.
1. 0
3. 5
40.
0.
4. 0
20
.0
2
2
1 .
3.0
15
.
4. 5
05 .
1 0.
6. 04
25
.
.0
4
1
3. 2
1
.
6.0
07.
1 0.
7.07
35
.
.0
6
1 .
4.6
10
.
7. 0
08 .
1 0.
8. 59
40
.
.0
1
2 .0
71
.
10
. 10.
10 . 0
2 02
. 1 58 . 70 2 . 0
9
1
2 .1
94
.
10
. 15.
10 . 3
3 06
. 1 56 . 70 6 . 0
1
3
2
1 1
. 3 3 . 10
. 20 . 6
40 0
. 2 55 .
1
1 2
4
6 .1 7
. 40 7 . 2 0
. 20 . 1
50 5
. 2 04 . 70 7 . 0
1
2 3
5
0 .2 7
. 60 0 . 20
. 30 . 6
80 4
. 3 06 . 80 5 . 0
1
2
8
7
4
.2
2
4
8 1
2
3
5
7 1
5
6
8
0 2
5 1.
1
7
93,0 1
.05 0
. 81 0 0
10 0 . 8 5
. 51 0 1
. 40 . 5 1 0 5
. 60 6
. 30
.4
. 0 06 5
50
.7
. 510 0
70 5 . 09
7
. 37 . 4
70 1 . 0
..0
08
7 .2 0 9
.1 0
. 13 0
20 8
. 11 0
1 0 5 15
.210
14 0
840
82 9
1.1
22 0
134 2 11
.361
28 0
464
36 2
254
14
3
220 72 1 2
.40
34 0
28
06 3
7 2
18 120
1
278
25
4
0280 5 1
3
.49
30 0
19
95
155
1
324
27
5
325 70 2 3
.52
47 0
17
98
159
2
32
6
34 9 4 433
.3
52 0
1
9
2
260
439 1
4
70
14
1 5
.198
47 0
1 02
5
2
270
470 4
4
98
95
3 6
.85
19 6
2 27
5
3
375
600 1
6
19
871
117.
150 1
3 94 3
8
20 22 24 26 30
I
V D
2.
3
6
L
U
8
3
5
S TO
.
5
2%
4
S PN
2
1Y2 2
I
1 %
1
L
300 lbs.
I
I
82
396
W
I
4 S O
O
F
l
600 lbs.
L
I
1
S O
P N
L
J
h
2.
10
2. 0
3.
0.
.0 2.0
10
0
3
3
.
3.
2.0 0
3. 5
3
0.
. 3.0
20
5
3
4
1 .
4. 1
2.0 5 .
3-0
04
1 0.
.1 4.0
25
.
0
4
5
1 .
6 .4
2.0 5 .
4. 5
05
1 0.
.4 6.0
25
.
5
6
8
1 .
8 .7
35
6- 0
08.
1 0.
8.57
35
.
.0
1 1
. 4 00 .
2
3 4 5 6 8
10
1 14
1 1 2 2 24 26 30
G T
.
l%
3
N P S N
3
1
V/i
O I
2
%
l%
.
.
. 10 .
20 . 0
1 51 . 4 00 . 0
. 07 5 . 10
. 10 . 2
20 4
. 1 59 . 80 5 . 0
8 .2 8
. 07 0 . 10
. 10 . 5
30 8
. 2 78 . 80 0 . 0
4
8 6 . 29.0
. 10
. 20 1
20 1 . 4 6
6 8 . 10 . 29.0
. 01
3 4
6
0 . 33.07
. 10
. 30 2
30 3 . 8 7
0 0 . 10 . 41.0
. 02
3
3 1
9
9 . 44.00
. 10
. 60 2
60 3 .1
8 . 68.0 . 21 0 5
09
3
4
.161.0 . 510
.80 9
07 0 .1
3 . 86.0 0
00
6
7 3 1
. 43 0
090 0
10
7 .210
139 . 20
1. 0
0
1
2 .0
1
1 2
2
4 .1 9
1
1 5
3
2
2 1
2
8
9 1
9
8 1.
08
. 53 0
1
1 21
.10
35. 0
150 2
10
.375
231 80
277
9 2
1
1
32
26
069
20 9
21
.516
295 20
095
6 1
1
2
39
33
381
213 8
36
.450
378 40
19
7
2
294!
416
5 398
114 3
366
481
564
527
152
3
3
41
56
180
400
31 555
672
69
156
6
3
4
57
64
168
625
83 690
811
80
242
5
4
4
6
6
24
685
07
45
951
23
60
5
73
9
299
83
799
1 76
147 1
3 6
0 77
6
91
1
3761
8
1 090
119
, 762
3 84 5
8
15
1 2
4 95 3 1
9 150 1
16 2 5 , 3 5 3 5 8 9 2 0
9
1
J
0
9
7
397
W N P S
O I I
9
l
M P . Z
1
W N
E E
1500 l
. E O 3E
N
SG D TIKO
L $ CL
. V L Ui N
6
7
.
4.
30
6. 0
6
7
.
6.
30
6. 0
7
8
1 .
1
0
1
z
FLANGES
1
9 .5 0
7. 5
5 .
.1 8
.
E D E
L P ~N CL
D IK T
7.
0.
4 .2
30
.0
7.
0.
6 .3
30
.0
08
1 0.
9 .5
65
. 10 0
0 0 . 10
I 3S
.5
.
10 0 . 1 8
. 60 0 .
0
:
1?4 2 2%? 3
1
1
4
2
4
.1 3
.
0 4 . 10
. 10 4
20 4 . 1 3
. 90 4 .
0
2
2
5
4
4
.2 4
.
0 5 . 20
. 20 5
40 4 . 2 4
.10 5 .
02
3
3
6
6
6
.3 5
. 1 0 5 . 30 9 . 30 6 . 70 6 . 3 0 2
.1 0 5 .
09
3
2 1
7
9 .3 2
. 10 2 . 40 2 . 40 8 . 80 8 . 4 5 4
.2 0 8 .
05
. 13 0 3
0}
3
I
4
5
5 3
8
8
5
9
3 1
1 . 5 8 ~ . 25.0 0 4 . 70 I 6 .8 .433.0 07 1 0
. 60 3 1 0 9 . 7 3. 13
2 130 .
12 (
69.)
40 0
374
54 6
I
6 8 10 12 14 16 18 20
1
10
118
10.
.0 940.0
10
19
263
16
1
1
37
18
162
97 9
20
.37
37 0
16
03
2
2
34
26
895
98 5
45
.60
55 0
11
04
3
3
62
47
166
12
627
13
7940
3
58
4
150
9
958
4
3
-
2
949 —
4
1300
570
70 70
4
6
670 5
68
199 9
15
.250 1335 9
6
9
949 4
82
299 7
84
.
1 06
1 7 2 7 7 5
5
12 6 361
4
0 ~
27 0
2 1
5.
2 3
00
0
00
7
9 3
39 3
3 1
21 6 8
55
6 52 1650
5
02
0
0 1
0 5
2
7
2
5
2200 2 93
9
00
0
2 2
5 1
3
5
0
0
.040 91
1
7
1
1
2
4
1775 1 82
1
1
4
1
2
9
22 24 26
30
398
WEIGHT —
OF
FLANGES
-
2
NOM.
-
SIZE
:S
E L E
O
4 3/4
l
7
8
9
9
I L C
1
rP N
;D OKu
E L D E 3
.
.
30
0
.
1 .
3 00
0
I .L Cs
LP I N
. .
4
.
0
6
1
1 2
2
3 .1 0
. 60 2 .
0
. 0.
0
0
1
2 8
3
0 .1 0
. 90 8 .
0
. 0.
0
0
25.C
28.0
3
2 8
1 5 .
2 . 0
. C
0
38.(
42.C
5
3 5
2 9 .
1 .
0
. C
0
55.(
52.C
8
5 5
2 6 .
7 . 0
. (
0
3
83.(
94.(
2
8 5
3 6 .
7 . 0
.
0
4
.27
1
,
14
‘ 86
36
5
3
1
!10
2
1
24
09
24
0
3
8
\23
3
k
37
15
48
40
5
5
185
5
5
57
20
36
30
3
2
925
0
1
06
45
28
40
5
5
300
6
5
40
66
68
20
4
2
1
1 1?4 2 2?4
(
3
5 6 8 IC
1 1
1 20 2:
24 2( 30
D K
N
399
Manufacturers”Standard Gage for
S
S
This gage system replaces U.S. Standard Gage for Steel Sheets. It is based on Weight 41.82 pounds per square foot per inch of thickness. In ordering steel sheets, it is advisable to
g
a
g
M
M E
S
I
3 4 5 6 7 8 9
. . . . . . . . . . . . . . , . . .
, . . . . I . . . . . . . . , . .
E
S
. . . . . . . , . . . . . . . . . ,
I0 9 8
I
7 6 6 5 5 4 3 3 2 2 2 2 1 1
T
O
8
9 1 1 12 13 14 1.5 16 17 18 19 20
Lb. per
S
S
Equivalent
1 9 8 72.5 62.5 52.5 47.5 42.5 38.5 34.5 30.5 26.5
7 60 5 5
I. 1 1 I, . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . 2. 2.
4.53125 3.90625 3.28125 2.96875 2.65625 2.40625 2.15625 1.90625 1.65625
Galv. G
Lbs. Per
.1084 .0934 .0785 .0710 .0635 .0575 .0516 .0456 .0396
Lb.
25 26 27 28 29 30 31 32
T E G S
;
0 0 . 3( 0? 1 4 , 2 8 2 158 2. 4 0 0 . 4. 6 54 2 1 24 5 . 7 0. 8 0 4. 1 052 1 21 5 . 1 0.5 1 3. 6 S52 1 24 85 .031467 .027127 .022786 .020616 .018446 .016710 .014974 .013238 .011502
O
G S
1
S
S
G G S
S
2 26 8 85 2 8 43 2 8 02 18.5 7 16.5 14.5 13.5 12.5 11.5 10.5 9.5 9.0
18 4. 1 . 5 0 .3 1. 1 0 520 6 5 13 2. 2. 4 0 .0 0 2. 69 5270 65 18 0. 2. 2 0 .8 0 3. 18 5280 95 .0276 1.15625 3 3.0080295 1.03125 .90625 .84375 .78125 .71875 .65625 .59375 .56250
.0071615 .0062934 .0058594 .0054253 .0049913 .0045573 .0041233 .0039062
.0247 .0217 .0202 .0187 .0172 .0157 .0142 .0134
400
WEIGHT OF PLATES Pounds
Per Linear Thickness,
‘idth In.
? . . . .
1 1 1 2
. . 1 1
1 1 1 1
1 Y1 . 1 .2
.1 8. 1 9. 1 .2 .2 1 .2 .2 2 .2
2 2 2 3
1 1 1 1
1 2 2 2
.? 2 .? 2 . 2 . 3
.2 .3 .3 .3
4 5 7 9
3 . 3 4
2 2 2 2
2 2 3 3
. 3. . .
3 3 3 4
.4 .4 .4 .5
4 4 4 5
2 2 3 3
3 3 4 4
. 4 . 4 .3 5 . 5
5 5 5 6
3 3 3 3
4 4 4 5
. . . .
6 6 6 7
3 4 4 4
5 ?5 5 5
7 7 7 8
4 4 4 5
8 8 8 9 9 9 9
‘ % 1
. /.
. 1
Inches
2 . 4 . 61 8. 1
1 . 3 . 4 . 61
2 . . 81 .1
25
63 . 26 . 8 9. 1 40 . 1
13 . 3 71 4 .1 52 . 2
7 4 . 2 4 7 ~5 . 3 5 . 3 81 4 9. 4 . 1 50 1 01 . 1 62 . 2 4 .2 85 2 64 . 2 8 7 . 9 9 . 2 01 2 3 4 5 5
99 . 3 75 . 4 50 . 5 36 . 6
6 9 2 5
.4 .5 .5 .6
24 . 11 . 98 . 85 .
7 4 2 9
93 67 20 94
. 5 78 . . 5 92 . . 6 16 . . 7 31 .
53 . 6 27 . 6 92 . 7 67 . 8
37 53 88 03
6 7 8 8
02 . 7 88 . 7 64 . 8 40 . 9
8 1 4 8
.7 .8 .9 .1
62 . 49 . 36 . 12 .
6 4 1 90
.6 .7 .7 .8
5. 8 22 85 59
7 4 52. , 8 69 . .8 8 3 . . 9 08 .
3 . 82 16 . 9 8 1 .1 5 6 .1
39 9 54 1 89 1 05 1
16 .: 91 .1 770 [ 531 1
1 4 7 0
.1 01 11 11
090 8 61 7. 2 5. 2
61 .1 .2 .3
.9 .9 .1 .1
23 . 9 2 2 . 8 6 .1 4 6 . 5 0 .1 6 00 1 4 .1 8 50
2 1 .1 9 601 7011 451 1
30 55 8. 0.
1 1 1 1
391 1 1. 2 1 8. 3 1 6. 3 1
3 6 1 6
21 31 41 41
3. 5. 1. 7.
3 4 5 5
.4 .5 .6 .7
38 . 2 92 . 3 66 . 4 39 . 4
.3 .3 .4 .4
49 . 41 . %3 . 5.
3 33 . 4 96. 4 59 . 5 11 .
4 18 4 31 5 45 5 58
.4 .5 .5 .6
0 2 3 5
;4 .5 .5 .5
%7 . %9 . %1 . 4.
574. 537. 699. 652 .
6 61 6 84 7 97 7 01
.5 .5 .6 .6
7 8 0 1
. 6 %6 . . 6 %8 . . 7 h0 . .7 2.
71 5 . 8 14 7 7 7 . 8 37 8 3 0 . 9 40 8 9 3 . 9 53
5 5 6 6
.6 . 7 . 7 .7
3 5 6 8
. 7 %4 . 8 5 5 .1 . 8 %6 . 9 1 8 .1 8 . 9 7 1 .1 .8 % . 8 1 .1 3 3 .1
. . . .
6 6 7 7
.7 J. 8 .8 .8
9 1 3 4
.9 .9 .1 .1
6 6 6 6
. . . .
7 7 8 8
.9 .9 .9 ..
6 7 9 1
1 .1 2 70 [ .1 % .1 %3 .1 8 91 1 .1 %5 .1 4 21 1 .1 80 1 0 51 1
5 5 5 5
7 7 7 7
. . 3. .
8 9 9 9
., 2 .1 %00 1 6 .1 4 .1 %201 2 .1 5 .1 A411 8 .1 7 -1 611 4
5 6 6 6
7 8 8 8
. 9 .1 .1 .1
I
.1 9 .1 %811 C 83 1 .1 0 01 %021 6 . 4 1 .1 2 01 %221 2 . 4 1 .1 3 01 52 1 8 . 4 1
I
9
4
36 51 87 02
.2 .3 .3 .4
72 1 02 1 33 1 53 1
8 . 3 67 . 8 61 . 1 6. 1 7 34 . 37. 2 9. 2 50 2. 13 . 3 3 . 3 4 7 .
63 . 3 38 . 4 03 . 4 88 . 5
2 03 . 2 65 2 65 . 2 89 2 2 8 . 3 92 3 8 1 . 3 05
8 6 .1 4 9 .1 0 10 1 6 40 1
1
91 . 15 . 39. 54 .
%0 . 22 . %4 . 7.
%3 .1 25 .1 %7 .1 9 .1
15<6
%
%
%
. . . .
%
Foot
6 6 .1 8 0 .1 9 3 .1 0 601
8 801 4 101 1511 8911
9 91 1 31 3 72 5. 2
1. 21 8. 21 5. 31 3. 41
3. 5. 8. 2.
1 1 1 1
0 . 41 5 . 51 0 . 51 5 . 61
2 7 2 8
51 61 71 72
3.6 9.7 4.8 0.9
.7 .8 .9 .0
1 901 3 211 4 611 5 911
4321 1 621 1. 21 4. 31
7. 3 0. 41 9. 3 7. 5 1 1. 4 0 . 51 3. 4 4 . 61
6. 1. 5. 9.
1 1 2 2
0 . 71 4 . 82 9 . 82 4 . 92
3 8 3 9
82 92 02 02
6.9 2.0 8.1 4.2
.1 .2 .3 .3
8 2 5 9
.7 2 .7 2 .8 2 .82
3. 8. 2. 6.
2 2 2 2
9. 0 ~ 4 3. 0 2 9 8. 1 2 5 3- 2 2 0
12 22 32 32
0. 5. 1. 7.
3 3 4 5
.4 .5 .6 .7
6 7 7 8
.8 .8 .9 .0
6 221 (. 31 4. 5 8 521 1. 41 6. 5 9 931 2. 41 8. 6 0 . 31 (. 51 2 . 7 51 61 62 72
5.7 8.8 2.8 5.9
3 6 0 4
.9 2 . 92 .0 2 .1 2
0. 5. 9. 3.
2 2 2 2
8. 2 2 3. 3 2 7. 4 2 2. 4 2
5 1 6 1
42 52 62 63
3 9 5 0
. . . .
6. 51 :. 72 8. 62 1 . 82 $. 62 4 . 82 (. 72 6 . 92
8.9 1 .0 4 .0 8 .1
8 1 5 9
.1 .2 2 .2 2 . 32
7. 2. 6. 0,
2 2 2 2
7. 2 7 2. : 3 2 7. 6 3 7 1. 7 3 3
73 83 93 93
6 2 8 4
9 :0 .1 .1
1. 41 3. 41 4. 41 5. 51
;. :. (. (.
. . . .
401
WEIGHT OF PLATES Pounds
‘idth In.
5/6
5
11J6
3%
1
511. 5 ~ 31. 6 ~ 4. 6 ~ 5.
72 9 . 72 2 . 8~ 4 . 8 2 7.
9~ 1 ~4 o2 7 12 0
. 1 3 , 42 . o2 6 42 . 2~ 0 . 52 . 3Z 4J . 53
3 3 3 3
6 .8 ..9 6 . .9 o . 80
8 3 8 4
03 13 2 34 23
o. 5. 1. 7.
. . ,. ..
4 5 6 7
7. 6 ~ 6. 3 . 7 ~ 8. 9 . 7 2 9. 5 . 7 22 .
92 0 . 92 2 . 02 5 . 0 2 83.
12 3 z2 7 22 0 23
. . . .
3~ 7 42 1 53 5 .53 9
. 63 18 . 3 . 63 6 . 93 . 73 0 . 03 83( 4 . 03
5 . .1 o.1 5.2 ).3
9 3 3’ 4 . 43 0 . 54 5 . 54
3. 9. 5. 1.
7. 3. 0. 6.
8 9 0 0
7 . 8 26 9 . 9 ~1 1 . 0 25 3 . 0 ~9
. . . .
12 3 . 22 8 . 32 3 . 32 9 .
32 9 43 6 53 2 &3 9
. . . .
63 6 73 3 83 1 93 8
. 93 . 03 . 23 t 23
3 1 0 8
9.4 9.5 8.7 3.8
6 . 74 6 . 84 7 . 04 8 . 14
2. 4. 6. 7.
9. 2. 4. 7.
2 4 5 7
8 2 4 . 1 23 9 2 6 . 2 28 9 2 8 . 3 22 0 2 2 . 3 36
. . . .
43 4 . 53 9 . 63 5 . 73 0 .
73 5 83 1 93 8 03 4
. . . .
03 6 13 3 23 1 44 8
. 34 . 54 . 64 . 74
7 . 74 5 . 84 4 . 94 2 . 04
7 . 0 8 . 34 7 . 1 9 . 45 6 . 2 9 . 65 6.4 C.75
9. 1. 2. 4.
0. 3. 5. 8.
9 1 2 4
125 128 22 2 33 5
. 4 30 . 5 35 . 6 39 . 6 33
. . . .
83 5 . 83 1 . 93 6 . 03 1 .
13 0 23 7 34 3 44 0
. . . .
54 64 74 84
5 3 0 8
. 84 . 94 . 04 . 24
1 9 8 6
. 24 . 35 . 45 . 55
6.5 5.7 5.8 4.9
1.95 1.05 2.25 3.36
6. 7. 9. 1.
1. 4. 6. 9.
6 7 9 1
33 8 43 1 43 4 53 8
. 7 37 . 8 32 . 9 36 . 9 30
. 13 7 . . 24 2 . . 34 7 . . 44 3 .
54 64 74 84
6. 2. 9. 5.
94 04 14 25
5 3 0 8
. 35 . 45 . 55 . 65
5 3 2 0
. 75 . 85 . 95 . 15
4.1 3.2 3.3 3.5
3.56 4.66 4.86 5.96
2. 4. 6. 8.
2. 5. 7. 0.
2 4 6 8
. 1. . 2.
63 1 63 4 73 7 83 0
. 0 34 . 1 49 . 2 43 . 2 47
. 44 8 . . 54 3 . . 6 4 8 ;. . 74 4 .
94 04 15 25
1. 8. 4. 1.
35 5 52 5C 65 7
. 75 4. 95 .505 . 16
9 7 6 4
. 26 36 46 . 66
2. 6 6. 16 5 . 2. 8 X,2 7 1 . 1 .9 .. 4 7 : . 1.0 $.5 7 4.
3. 9 6. 8. 1. 4
. . . .
33 %. 43 3. 53 z. 53 4.
83 3 93 7 04 0 04 3
. 3 41 . 4 46 . 5 ~0 . 5 44
. 84 9 . . 94 4 . . 04 0. . 05 5 .
35 45 5 55
7 . 75 5 3. 51 0 . .95 C 6 . 16 7
. 26 .836 46 . 66
3 1 0 8
. 76 86 . 96 . 17
( .2 $ . 6 7 ( . (. 3 $.8 7 $ . $ .4 { . 9 7 : . : . 6 (. 18 1 .
4. 7. 9. 2.
13 23 33 33
. . . .
63 73 84 94
5. 6. 7. 8.
14 9 34 6 44 2 54 9
. 7 43 . 8 41 . 0 50 . 1 58
. 25 . 45 . 55 . 75
6. 6. 7. 8.
75 96 16 36
9. 2. 4. 7.
36 2 56 7 76 2 97 7
. 86 . 07 . 37 . 57
5 2 9 6
. 37 . 67 . 88 . 18
8 . 9 1 . 48 4 . 7 . 1 : . 78 8 . 6. 4 4.09 1 . 6 . 7 ! .3 9 5 .
8. 3. 8 9. 4.
43 53 63 74
. . . .
04 14 24 44
9. 0. 1. 2.
74 5 85 1 95 8 05 4
. 3 57 . 4 55 . 6 54 . 76 2
. 96 . 16 . 26 . 46
8 . 56 C . $ . 77 33. $ . 97 5 . ( . 17 8 .
17 1 7 t 57 1 88 (
. 78 . .08 . 28 . 48
3 0 7 4
. 48 68. . 99 . 19
5. 0 4 .2 :.5 :.8
. 1 5 0 1 7 31 . 1 6 1 1 9 31 . 1 81 1 1 31 . 1 0 1 13 4. 1
1
8 8 9 9
1 1 1 1
7 7 7 7
9 19 9 1
1 1 1 1
7 2 1 1 8 1 8 1 8
?. 1 .[ 3. 1 .1
0 1” 11 11 11
1 1 1 1
3 9 9 1
1 1 1 1
4. 1 .1 5. 1 01
2 1 2 52 %. 2 1 5 52 5. 3 1 8 62 %. 3 2 . 72 6.
1 1 1 1
1 1 1 1
61 1 1 1
0 1 Y4 2 . 72 2. 0 1 4 2 . 82 7. 71 1 4 2 . 82 %. 1 1 5 2 . 92 8.
1 1 1
1 1 1 1
81 1 1 1
1 1 Y5 2 . 92 2. 2 2 6 2 . 02 9. 92 2 6 2 . 02 %. 2 2 7 2 . 12 .
2 2
1 1 1 1
1 1 1 1
32 32 32 42
72 72 82 82
. . . .
13 23 23 33
2 2 2 2
1 1 1 1 1 3 2 2 1
24 2 42 5? 2 52
92 92 0 3/ 03
2 2 2 2
1 1 1 1
2 2 2 2
5 6 7 7
2 2 2 2
2 3 3 3
1 1 1 2
2 2 2 2
8 9 9 0
3 3 3 3
.1 1. [ . 1 Y. 1 1. 1 .1 .1 0 1
1
Foot
%
6 6 6 7
.. .. ., . !1
Per Linear
1 2 1 %5 4 1 3 21 27 4 1 4 21 %9 5 2 6 21 2. 5 2 9 31 2. 2 3 1 3. 6 42 %. 9 42 4.
52 62 72 72
3. 9. 5. 1
4. 9. 37 . 7.
. 13 . 33 . 44 . 54
(.69$ . ! . 91 1 . : . 21 5 . ( . 51 8 .
C. 5. 1. 6.
402
WEIGHT OF PLATES Pounds Per Linear Poot Inches
T
{idth In.
)
7
‘
%
4
11/6
%’
6
?
1
%
3 3 3 3
2 2 2 2
2 2 2 3
13 13 23 33
84 84 94 04
.54 .65 . 75 .8 5
3. 2 5 4. 3 5 5. 4 5 6. 5 6
0. 7. 3. 0.
96 1 . 06 9 . 26 8 . 36 6 .
6 1 77 1 97 2 17 3
. . . .
37 57 68 88
1 4 6 9
. 8 . 28 . 48 . 69
1 6 1 6
.7 .9 .1 .4
1 49 8 . 61 5 . 91 2 . 1[
1. 0. 9. 9.
1 . 81 1 3. 1 1 4. 1 1 5. 1
1 50 80 20
3 3 3 4
2 2 2 2
3 3 3 3
33 44 44 54
14 24 34 45
.95 .0 5 .1 5 .2 5
7. 7 6 8. 8 6 9. 9 6 0. 1 6
6. 2. 9. 5.
575 . 673 . 87 2 . 97 0 .
27 3 48 4 68 4 88 5
. . . .
08 28 49 69
2 5 7 0
. 89 . 09 . 29 . 51
0 5 0 5
.6 .8 .1 .3
9 . 41 6 . 61 3 . 91 0. 1
8. 7. 6. 50.
1 1 1 1
6. 8. 5. C
1 1 1 1
51 81 21 51
4 4 4 4
2 2 2 2
3 3 3 3
64 64 74 84
45 55 65 75
.3 6 .4 6 .5 6 .6 6
1. 2 6 1. 2. 3 7 8 . 3. 4 7 4. 4. 6 7 1 .
17 9 . 28 7 . 48 6 . 58 4 .
98 6 18 6 39 7 49 8
. . . .
89 09 21 41
3 6 8 1
. 71 . 91 .1 . 31
0 5 0 5
.5 .8 . .
7. 4. 10. 80.
1 1 1 1
40. 30. 21 21
1 1 1 1
1 $ 4 5
1 82 1 22 11 2 13 3
5 7 0 2
4 4 4 4
2 2 3 3
3 3 4 4
84 94 04 05
85 95 05 06
.7 6 .8 6 .96 .1 7
5. 7 7 7. 6. 8 7 3 . 7. 9 7 C . 8. 1 8 6 .
68 3 . 88 1 . 98 0 . 19 8 .
69 8 89 9 99 9 1. 0
. 61 . 81 . 91 .1
4 7 9 2
. 51 . 71 . 91 .1
9. 4. 9, 40.
50. 20. 91. 61
1 1 1 1
11 01 92 82
1 1 1 1
6 8 5 2
15 18 10 12
3 3 4 4
5 7 0 2
4 5 5 5
3 2 3 3
4 4 4 4
15 15 25 35
16 26 36 46
.2 7 .3 7 .4 7 .5 7
9. 0. 1. 2.
28 38 58 68
2. 9. 5. 2.
29 73 . 49 5 . 59 46 . 7 9 28 .
, 5, 1 I
1 1 2 3
. .31 . 15 . .71 . .19
5 8 0 3
1 3 90. . 1 40. 17 9. 1 4 4 1.
,1 01 ’1 ’2
1 1 1 1
72 62 53 53
14 16 1~ 11
15 17 19 12
4 4 5 5
5 8 0 3
5 5 5 5
3 3 3 3
4 4 4 4
35 45 55 55
56 56 67 77
.6 7 .7 8 .8 8 .9 8
3. 4. 5. 6.
79 89 09 19
8. 4. 1. 7.
81 01 11 31
. 01 . 11 . 31 . 51
3 4 4 5
. 1 6 0. 1 8 1 . 1 9 0. 1 3 1 . 1 1 0. 1 8 1 . 1 4 0. 1 3 1
12 82 52 23
1 1 1 1
13 33 54 74
13 15 17 19
14 16 19 11
5 6 6 6
5 8 0 3
5 5 5 6
3 3 3 3
4 4 5 5
66 76 76 g6
8 7 - 0 8 7. 2 9 Z . 9 7 .1 8 8. 4 9 ( . 0 7 . 2 8 9. 51 6 . 1 7 - 3 89.3 0. 6102~ .
13 7 16 7 28 7
5 3 1
6 6 6 6
3 3 4 2
5 5 5 5
~6 96 06 06
17 27 38 48
. 4 90.7 9 . 1. 71 5 . 117 .5 9 2. 91 f. 2119 7 . . 6 9 3. 01 2 . 3121 6. 4. .8 9 4. 11 t. 5122
% 6 6
4 4 4 4
5 5 5 5
16 27 27 37
58 68 78 78
. 9 9 . 21 . 0 9 . 41 . 1 9 7. 51 . 21 8. 61
6 7 7 7
4 4 4 4
5 5 6 6
47 47 57 57
88 98 09 19
. 31 . 41 . 5l . 61
I
9. 0. 1. 2.
81 91 01 11
1 9 8 6
41 5 . 61 6 . 1 7 0. 1 8 2 93 61 3 . 81 6 . 1 C 1. 1 3 2 63 71 2 . 1 7 0. 1 2 1 1 8 2 0 3 8 1405 153 166 1150 . 128
1 94 1 1 1 14 1 3 1 35 1 5
179
8 0 1 8 156 3 1 S 0. 1 1 1582 3 1 9 0. 1 3 1617 3 1 C 0. 1 6 1632 3 1
44 54 74 95
182 194 06 27 185 198 187 201 47 67 190 204
207 3 211 5 214 7 218 0
< . 61243 . 1 1 . 81261 . 1 ; . 91280 . 1 <. 8 0. 1
1 1. 1 $ 1667 3 1 1 1. 1 2 1682 4 1 2 1. 1 4 1717 4 1 1 41 2 1 1 ; 173
15 25 45 65
193 196 199 202
88 207 08 210 28 214 217 58
221 2 224 4 228 7 231 9
211 ( 1 3 411 2 1 4 4 21 4 1 K !21 $ 1 7
76 96 16 26
2057 208 7 211 8 214 8
79 220 99 223 226 19 230 39
235 1 238 4 241 6 245 8
7 0. 1 5 0. 1 4c . 1 2 0. 1
41 41 51 51
4 9 5 2
191 204
1 1 1 1
(. (. 2. !.
2. 7 3 8
6 9 1 4
403”
WEIGHTS OF PLATES Pounds Per Linear Foot T
?
7
546
%
1
%6
7 7 7 7
4 4 4 4
6 6 6 6
67 77 77 88
29 29 39 49
. . . .
71 81 91 01
3. 3 15 4. 4 12 5. 5 18 6. 6 15
. . . .
1 1 .0 1 9 .1 1 8 .1 1 6 .1
16 16 17 18
21 21 21 21
1 4 6 9
41 41 41 41
9 0 2 3
52 52 52 62
472 67 2 872 972
08 28 39 59
50 233 70 236 90 239 21 242
2 2 2 2
11 32 52 82
6 9 1 4
7 7 7 8
4 4 5 5
6 6 6 6
98 98 08 18
59 69 71 81
. . . .
11 21 31 51
7. 8 11 . 8. 9 17 . 9. 14 0. 0. 10 0.
1 5 .1 1 3 .1 12 1 10 1
18 19 19 10
312 315 3 11 3 12
41 41 52 52
5 6 8 9
62 62 62 72
182 382 482 682
79 99 10 30
41 245 61 249 81 252 02 255
2 2 2 2
02 23 53 73
6 9 2 4
8 8 8 8
5 5 5 5
6 6 7 7
18 28 28 38
81 91 01 1
. . . .
61 71 81 91
1. 2. 3. 4.
16 0. 13 0. 19 0. 16 0.
19 17 16 14
2 2 2 2
11 11 12 13
3 3 4 4
13 15 16 17
52 52 52 62
1 2 4 5
72 72 72 72
8 9 1 3
82 92 92 92
50 70 91 11
22 258 42 261 62 265 93 268
2 2 2 2
94 24 44 65
7 9 2 4
8 8 8 8
5 5 5 5
7 7 7 7
49 49 59 69
21 31 41 41
. . . .
01 11 21 31
5. 6. 7. 8.
12 0. 18 1. 15 1. 11 1.
1 1 1 1
3 1 0 8
2 2 2 3
1 1 1 1
3 4 4 5
4 18 4 20 4 21 5 22
62 62 62 62
6 8 9 1
82 82 82 82
592 60 2 80 2 00 2
31 51 62 82
13 271 33 274 54 277 74 281
2 2 2 2
95 15 35 66
7 9 2 4
8
5 5
7 7 7 7
69 79 9 9
51 61 71 81
. 41 9. . 51 . 61 :. 71 2.
17 1. 14 1. 1 1. 1 1.
1 1 1 1
7 5 4 2
3 3 3 3
1 1 1 1
6 6 7 8
5 24 5 25 5 26 5 27
7 7 7 7
2 2 2 2
2 4 5 7
82 92 92 92
10 31 51 61
2 2 2 2
0 2 4 6
2 3 3 3
94 284 14 287 35 290 65 293
3 3 3 3
8 0 3 5
6 6 7 7
7 0 2 5
; 9
7 7 8 8
9 9 1 1
91 91 01 11
81 3. 91 . 1 0;. 1 60.
1 1 1 1
1. 2. 2 2
1 1 1 1
1 9 8 6
31 8 42 9 4 21 4 22
5 29 6 20 6 21 6 22
7 8 8 8
2 2 2 2
892 002 10 2 302
81 02 22 32
2 2 2 2
8 0 2 4
3 4 4 4
2%8 0 300 303 2 306 4
5 6 6 6
3 3 3 3
7 0 2 4
7 8 8 8
7 0 2 5
9 1 1 1
8 8 8 8
1 0 0; 01
31 51 61 81
1 80. 10 . 12 . 1 4 1.
1 1 1 1
2 2 3 3
1 1 1 1
3 0 7 4
4 24 42 5 2E 5 21
6 25 7 28 7 20 7 23
8 9 9 9
2 2 2 2
60 91 21 52
2 2 2 2
722 032 333 743
7 1 5 9
5 5 6 6
87 312 37 319 78 325 18 332
3 3 3 3
99 49 80 30
0 5 0 5
1 1 1 1
9 9 9 9
01 01 11 11
01 1 31 51
1 6 1. 1 8 1. 1 0 1. 1 2 1.
1 1 1 1
3 3 4 4
2 2 2 2
1 8 5 2
5 23 6 25 6 27 6 29
8 25 8 28 8 20 9 23
0 0 1 1
2 2 2 2
82 13 43 73
2 2 3 3
043 453 753 063
3 7 0 4
7 7 8 8
59 338 09 344 40 351 80 357
3 3 3 3
81 32 72 23
0 5 1 6
1 1 1 1
9 9 [ 1
11 11 11 21
61 81 1 1
1 4 2. 1 6 2. 0 1 82 0 1 02
1 1 2 2
4 4 5 5
2 9 2 6 20 22
7 21 7 23 725 728
9 25 9 28 0 21 0 23
1 2 2 3
2 2 3 3
04 34 65 95
3 3 3 3
463 773 1 73 4 83
8 2 6 0
9 9 0 0
21 363 72 370 12 376 53 383
3 3 4 4
73 14 65 15
1 6 1 6
1 1 1 1
1 1 1 1
21 21 21 21
1 1 1 1
( 0 0 0
1 23 1 43 1 63 1 83
2 2 2 2
5 5 6 6
2M 25 27 29
820 822 824 926
0 1 1 1
26 28 21 23
3 3 4 4
3 3 3 3
25 56 76 07
3 3 3 3
7 1 4 8
83 93 93 93
3 7 1 5
1 1 2 2
93 389 44 395 84 402 25 408
4 4 4 4
56 06 57 98
1 6 1 6
; 9 9
I
I
404
W
C
P
ALL DIMENSIONS IN INCHES CIIA
3/16 -
.261 .315 .375 .441 .511 .587 4.00 4,25 4.50 4,75
!m 5
.056 .087 .125 .170
1.00
:
1T
‘
.08: .130 .188 .256
. . . .
.223 .282 .348 ,421
1%
0 .097 1 1 2
-
-
.139 0 .217 9 .313 6 .426 3
.125 .196 .282 .383
7 0 5 1
m
A ?486 ‘1/16
1 %6
T .223 .348 .501 .681
.153 .239 .344 .468
.556 .612 .668 .704 .774 .845 .869 .956 1.043 1.052 1.157 1.262
,723 .915 1.130 1 1,367 1
1 1 1
.8W 1.126 1.391 1.683
. 1 1
1 1 . 1 .
1 1 81 . 1 1 . 01 1 . 11
. 1.252 . 01 . 081.469 . 11 2 . 1 1.704 2. 3 1 9 . 3 1.956 7 . 52 6
1.627 11 0 2 1 311 7 8 1.910 2 5 252 6 2 2.215 3 3 6 4 372 6 9 2.542
1 2 2 2
6 2 3 0
1 2 2 2
z 2.350 2.726 3.129
1 1 1 1
1 1 1 1
1 1 1 2
1 2 2 2
. , . .
52.225 3. 7 2 5 72.512 0. 0 2 5 92.816 9. 2 3 7 1 3.138 8. 5 3 9
50 2.670 8 8 72 3.014 0 8 05 3.379 5 1 38 3.765 1 6
2.893 0 0 3.265 6 9 3.661 3 3 4.079 2 0
3 3 3 4
3 3 1 3 4 4 4.
3.560 4.019 4.506 5.020
61 4.172 8 4 34 4.600 6 3 47 5.048 6 5 91 5.517 7 8
4,520 2 1 4,983 5 6 5.469 8 5 5.977 3 8
4 5 5 6
9 0 6 8
5.563 6.133 6.731 7.356
.626 .734 .852 .978
.668 .890 .754 ! .005 .845 1.126 .941 1.255
/7116
318
. . . .
. . . .
32 52 62 82
5.00 5.25 5.50 5.75
1 1 1 1
1 1 1 1
1.738 1.916 2.103 2.299
2 2 2 2
2 . 2. 2 . 3 .
2 . 03 . 4 3.477 8. 7 3 3 33 . 3 0. 6 3.833 .+ 0 4 8 3 . 53 . 9 4,207 2. 3 4 4 3 . 74 . 2 4.598 5. 6 5 1
6.00 6.50 700 7.50
1 1 2 2
2 2 2 3
2.503 2.938 3.407 3.911
3 3 4 4
3 4 4 5
4 4 5 6
8.00 8.50 9.00 9.50
2 3 3 3
3 4 4 5
4 5 5 6
5.340 6.028 6.758 7.530
6.230 7.033 7.885 8.785
10.00 10.50 i 1.00 11.50
4 4 ;
5 6 6 7
7 $ 9
8,344 9.199 10.o9 11.03
9.734 10.73 11.77 12.87
12.00 12.50
8 8
1 1
6.00: 6.51 7.05 3 7.60 3
9 1
24.03 26.03 20.02 1 0 1 10 1 .1 1 !2.02 26.07 28.24 21.72 1 0 1 18 1 .1 6 ~3.q3 ?5,85 1 0 . 1 . 10 1 41 40 , 1 06 .2 7 8 1,211 50 430. ;;::8 5. 30.55 7 50. 2 4 . 32.94 8 7 . 1 0 15 2 . 1 50 .2 1 7 .2 60 3 . 222 7. !7.87
1 ; 1
8.17 4 8.71 ; 9.38 10.02 5
1 1 1 1
.; : 1 .1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 2 2
2 2 2 2
2 2 2 2
1 1 1 1
1 1 1 1
1 1 2 2
22.52 23.79 25.10 26.43
27.03 28.55 30.12 31,72
3 3 3 ‘
0 1 2 3
16.35 0; 17.54 ; 18.77 5 20.04 56
33.37 35.06 36.79 38.56
11.12 12.26 13.46 14.71
I
5.507 ; 6.463 7.496 8 8.605 9
1 1 1 1
1 1 1 1
1 1 1 1
.5.29 16!68 .6.86 18.39 18.5U 20.19 ~13,23 22.06
6.508 7.638 8.858 10.16
8.010 9<401 ~;.:
[1.57 13.06 14.64 16.31
14.24 16.07 18.02 20.08
18.07 19.93 21.87 23.93
22.25 24.53 26.92 29.42 —— 30.03 32.04 30.42 32.59 34.76 32,90 5 5 35.25 0 37,60 35.48 3 1 38.01 4 40.55
I
24.53 ; 0 26.319 28.16 6 1 30.06 7 6
27.25$ ~ 29.23 3 31.284 3 33.410 1
32.70 35.08 37.54 40.09
2 3 3 3
3 3 3 3
35.60 37.86 40.18 42.58
39.16 $1.64 14.20 46.84
42.72 46.28 49.8453.40 5 45.43 49.21 53.0056.79 6 48.22 52.24 56.2660<28 6 51.10 55.36 59.6263.88 6
3 3 4 4
4 4 4 4
45,05 47.59 50.20 52.87
49.56 52.35 55.22 58.16
54,06 58.57 57.11 61.87 60.24 65.26 63.45 68.74
44.50 46.75 49.06 51.42
50.06 52.59 55.19 57.85
5 5 6 6
6 6 t
6 7 7 7
. 19.070 . 21.80 9 .20.46; 23.39 6 . 21.90 :25.03 5 .23.380 .26.72 3
38.93 40.90 42.92 44.99
5.006 5.875 6.814 7.822
7.120 8.010 8.900 ;.;? 8.038 9.043 10.04 9.011 10.13 11.26 i2,39 12.55 [3.80 1 1
II 1
16.6E 22.25 2 17.5: 23.37 2 18.3! ;;:5; 3 19.2[ 3
4 5 6 7
5 5 6 6
35.43 38.00 40.67 43.43
72.31 75.97 79.72 83.56
38.1540.88 40.9343.85 43.8046.93 46.77 50.11
63.0767.58 66.63 71.39 70.2875.30 74.0379.31
4 4 5 5
7 7 8 8
77.8783.43 8 81.8187.66 9 85.8591.99 9 89,9996.42 1
405
W
C
P WEIGHTS IN POUNDS
iLL DIMENSIONS IN INCHES ,
DIA
& 2 2 2 2 2 2 & 2 2 2 2
%
2 2 2 2 2 2 ; 3; 3 3 3
: 4 4 4 4 4 4 5 5 5 5
7 8
: 4
: 3 3
: : : 4 6 4 6 3
34
48
: : 3 3 — 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
; f 7 7
: 8 8 8 9 9
84
96
113
: 4 ; 5 5 5
0 1
64
5 4 6 6 ; 7 : 7 ; : ; 5 5 7 7. —. 6 8 8 8 ! 8 6 9 8 8 : 0 9 7 9 7 1 9 7 9 7 2 1 7 1 7 1 3 8 1 8 4 1 8 1 8 1 5 8 1 9 1 6 9 1 9 1 7 9 1 9 8 1 1 1 1 9 1
: 6
4 4 4 4 4 5 5 5 : 6 6 6 6 7 7 7
8 f 9 8 1 8 1 9 1 9 1 9 1 . ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 ! 1 1 ! 1 1 ? 1 1 ! 1 1 Y 1 1 1 1 ! 1 1 1 1 1 1 1 1 t ! 0; 1 ! 02
1 i 1 1% 1 1% 1 7 --1—4 18 14 19 14 10 14 11 14 12 01 z 01 3 01% 01 4 11 4 11 5 12 % 12 6 22 % 22 7 22 % 22 8 3 i 3; 9 32 4
‘
.
h
0 1 2 3 ‘4 5
6
7
! 7 8 0 2
0 8 2 8 4 8 6 9 8 9 01 21 41 1 ;1 11 31 51 801 001 301 511 11 2: 1 321 521 831 131 441
78 99 19 41 61 1 !1 31 61 81 101 401 01 1:1 211 521 821 121 431 731 041 341 651 952
49 69 91 11L 1 71 01 21 01 0;1 11 411 721 021 421 731 031 341 741 051 451 862 162 572
‘
11 1 : : ;1 6 91 8 7 8 21 9 7 501 9 01 0;1 ; 9 ! ; 8 71 511 811 ;1 0: 8 1 9 121 2 9 31 521 381 3 9 51 41 231 61 1 1 541 1 :1 941 35; 81 301 1 01 65 0; 1 062 :1 11 462 911 1 11 872 :1 1; 1 272 51 621 682 71 082 821 129 145 161 177 193 209 225 2 1 0 1 611 941 662 282 992 331 1 01 811 531 252 972 682 302 1 0; 1 021 841 552 372 092 812 221 041 862 682 492 212 1 01 1 1: 1 31 342 16 08 802 7 2 1 711 3: 1 552 47 39 20267 1 286 1 9911. — 79 —~1.274— 6 2j3 8351 8 2— . 767 — 01 021 042 062 082 102 122 143 01 21 242 362 482 402 522 643 01 2: 1 542 662 792 ~812 932 053 0i ? 531 752 8 2 092 212 343 563 11 952 172 402 622 843 063 32 11 3; 2 162 482 702 022 253 573 042 11 462 782 012 433 753 083 242 21 62 092 412 843 263 683 42 21 872 392 722 243 673 193 52 072 602 123 653 173 603 22 752 382 902 433 053 683 103 22 952 582 212 833 463 183 713 32 162 882 512 243 863 593 224 32 32 362 092 823 543 373 003 834 42 462 392 123 953 783 513 334 672 502 433 353 283 014 944 42 82 8702 733 763 693 524 554 4.2 52 082 013 043 013 003 134 164 52 282 313 443 473 503 634 664 52 482 623 753 883 014 144 274 692 823 053 283 424 654 884 62 2 63 93 24 264 494 82 1 3 :2 0; 3 4; 3 ;63 :04 :34 764 105 72 203 633 073 404 944 374 705
4 5 4 5 53 5 5% 6 54 64 % 6 :5 7 6% 7 6 ; 6 77 8 7% 8 8 8 ;% 9 8 9 8+ 9 80 1 9% 1 91 1 9% 1 1 1 1 i 1 1 3 1 1% 1
1 3 3 4 4
2 6
% 3 3 3 3
3
% 3
2 2 2 3 3 3 3 4 3 3 5
4— 7 6 8 9 ; 1 7 2 w 3 8 5 6 z 9 : 9 11 21 41 51 71 81 01 21 31 51 01 0: 1 101 201
1 71 4 1 :1 0; 0I 701 01 18 21 301 11 62 11 92 1 42 33 821 73 131 24 531 64 941 05 341 45 751 96 151 36 56; 87 96 28 472 78 872 29 282 79 792 20 192 71 60250 21 2 612 23 022 73 522 34 032 85 5 2 45 03 9 63 — 5 163 ;1 t 663 78 273 39 783 90 383 51 893 11 403 ?2 013 33 513 04 124 65 J34 36 344 96 954 67 554 38 264 09 874 70 484 41 194 12 794 83 405 53 015 24 72 05 43: ?6 145 57
10 40 81 21 62 02 43 93 34 74 25 65 16 66 07 58 0: 5 00 60 11 62 22 73 4 94 45 06 67 1
10 70 41 02 73 44 15 15 46 17 98 69 30 01 82 53 34 15 96 77 48 39 10 91
406
W
C
P .
ALL DIMENSIONS IN INCHES ‘/16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
‘/4 =
1 1 1 1 1 1 1 1 1 1 1 1
&
m
& 69 69?A 70 ?Oti 71 71% ;:!4 73 73!4 74 74?4 75 15% 76 76% 77 77% ——
193 1 199 2 2 207 210 2 2 2 2 2 2 2 2 2 2 2 2 2
, 2 2 !2 2 E I2 ~2 2 % 2 2 3 K 3 3 3 m 3 3 3
5/16
E
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 % 3 3 3
3
0~ 02 02 12 1K 12 12 1~ 22 22 22 22 32 32 32 32 2 2 2 2 3 3 3 3
EIE 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 33 33 43 43 54 54 54 64 6 380 J435 386 7442 8 399 8456 8 9 9 +
32 42 42 42 52 5? 52 52 62 62 62 73 3 3 3 3 3 3 3 3 3 3 3 3
%
/9/16
4o 61 91 12 33 533 733 933 243 443 653 953 163 364 674 874 8 8 9 9 0 0 1 1
943 243 553 853 06 36 67 97 28 58 89 10 0 1 1 2 2 3 3 4 55 55 65 65 5 5 5 5
G
%
E
0 1 1 9 0 0
1 %
WEIGHTS IN POUNDS
14 14 24 24 2w 34 34 34 4z 44 44 55
5 6 6 6 477 7484
8491 83498 505 9:512 9519 0526 5 0540 1548 1555 5 2570 35 31585
6 2
7 1 5 9
6 6 6 561 6310 7 569 . 6404 7 7 577 63 2 7 585 93 6 7 593 24 1 7 601 55 6 8 39 7 617 26 3 7 626 56 7 7 634 87 6 1 68 6 8 651 48 078 6 ?9 4 8 668 10 545 4 553
8 ‘3/16 1 ~ = g 4 344 88 1 855 2 13 565 0 2 83 3 4 854 49 3 275 8 83 7 4 364 9g 4 975 6 94 1 4 864 50 3 8 0 1 ~ 3 0 7 5 04 8 45 3 2 1 3 6 95 8 1 9 8 6 36 2 4 5 4 6 2 87 3 9 0 6 3 7 9 27 4 6 6 78 4 0 3 6 29 4 5 9 2 G 0 60 5 1 5 7 7 10 6 6 1 + 76 61 6 8 544 4 6 7 2 41ii55 67 5 475 1 5 7 4 12;66 77 885 6 5 3 1 73678 2 87 285 0 5 9 44689 97 2 695 5 5 5 15701 7 1 8 1 Q0 005 0 7 98 0 76713 60 505 5 d 46724 7 7 8 9 21 915 0 17736 ~ 7 6 8 9 82 325 6 36 8748 ~ 8 598 8 75 8 308 8 47 9 25 57 0773 ~6l8 218 7 66 8 128 7 67 1 06 9 7 2 6 8 56 9 6 6 3 9 96 9 6 7 4 0 46 9 6 5 7 1 86 9 E x 7 6 7 39 7 6 7 49 2 6 8 7 7 69 7 6 9 7 7 0 7 7 79 7 1 8 7 89 7 2 8 7 99 7 3 9 8 01008 8 8 1 1 9 1 8 2 0911 981 410521 112; 771 8 1924 995 5 1 8 — 29 13 3 8 6 9 8 39 15 7 49 16 5 8 8 1 9 5! 1 7 03 9 3 9 9 1 % 9 0 3 9 71 2 02 0 81 2 9 9 03 1 91 3 6—9 05 3 06 4 3 4 9 201 3 8 9 11 4 07 5 5 9 721 0 5 6 08 7 31 11 0 8 0 05 [ ‘/16
4422
!
7 6 4 3
? 9 10 11 12 13 5 6 7 8 0 1 2 4 4 4 5 6
8 9 0 2 3 5 6 8 9 1 .3 5 ? 9 2 4 6 9 .1 4 7 9 2
407
W
C
P
iLL DIMENSIONS IN INCHES DIA 18
7 7 7
I 3/lfJ
%6
‘/4
4 4 t 4 43
2 ; 2 8 3 2 2 ! 3
%
5. 5 55 65 65
&
WEIGHTS IN POUNDS 7%6
592 i 600 4608 9 % 5615 6 6 639 ++6
‘/16
‘A
I
?8
‘%
‘‘\16
3267? 40761 : 846 3 ?686 717 8 8 3694 027 7 8 4 3703 427 2 8 9 712 801 28 7 8 2 39 9 730 8 7 8 3 49
8 47 18 79 1 2 3
i3/16
5 6 7 39 10 11 72
~8
‘5/16
1 1 1 1 9
1 1 1
1
7 8 9 0 1 2 4
+ - l 785
8
.
.
305 I .-.
I
I 309 I 411 I 537
3 3 3 3
703 712
883 894 993 804 - 904 1005 813 823 926 1029 832 936 1041 842 947 1053
5 5 6 6
I
3 7 1 5 1
373 377 ‘-1
3
5
2
497 502 w
;
3 ; 5
6 ? 97
29 $ 61
791
1 9021
1 111
31570 417010 1832319638 2094 9 5331586954171982 1851051 2 2 49 1 8 1 8 1 9 1 9 T 1 1 82 92 00 1 1 82 92 21 1 92 1 82 41 2 02 1 82 61
1 7 8 0 2 42 62 82 02
2026 2170 2045 2192 2065 2213 2086 2235
2 2 2 2
2
2 2 3 3
4
408
W
C
P
.LL DIMENSIONS IN INCHES ~lA
3/16
i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 4 4 4 4 5 5 5 5 l5 5 15 5 5 5 5 5 15 5 15 5 5 5 15 5 5 6 62
‘/4
0 0 0 0 1
1 1
1
1
I
5/16
I
6 0 7 76 6 6 0 7 6 87 6 0 8 6 88 6 0 8 6 89 6 1 8 6 80 6 1 8 6l 8 6 1 8 7 2 8 7 1 8 7 83 7 1 9 7 94 7 1 9 7 5 9 7 1 9 7 6 9 7 1 9 7 97 7 1 9 7 8 9 7 1 9 7 99 8 2 1 8 0I
‘/8
69 79 19 89 89 99 99 01 01 01 1 Y1 21 ?21 31 31 41 41 51 ?51 61 Y 61 71 71 81 81! 91 91 01 0!
WEIGHTS IN POUNDS 7/16
21 6 31M 31 7 41 % 41 8 51 H 61 9 61 M 71 0 71 % 81 1 91 Z 91 2 01 4 1 3 1X 21 4 21 M 31 5 41 4 41 6 51 z 61 7 61 X 71 8 81 4 81 9 91 % 001 0 0 4
1/2
81 81 91 01 11 1 21 031 041 041 051 061 071 081 081 091 001 01 121 121 131 141 151 161 161 171 181 191 21
I
‘/16
9031 3141 8151 2161 7171 1181 6191 011 511 911 411 921 321 821 321 721 221 721 221 721 131 631 131 631 131 631 131 631 0141 6
?8
521 121 721 321 921 531 131 0731 1331 1931 2531 3231 4831 5441 6041 741 8341 9941 0641 1241 2941 3551 4151 5851 6551 7151 8851 9451 0162 8
1‘/16
9141 0941 1641 2441 3141 4941 5641 6451 7151 8951 9751 1451 251 3051 4851 5661 6461 7262 8062 9862 1662 2462 3272 4072 5872 672 7572 9372 1082
9 2035
—
9
2 3 4 5 6 1487
1671 1683 1696 1709 1722 1735
7 1 6 0 5 9 4 8 3 8 3
2067 2083 2099 2115 2131 2148 2164 2181 2197 2214 2231
2332 2350 2368 2386 2405 2423 2441 2460 2478
3/4
5851 651 7551 8461 9361 1261 2161 0362 0462 9562 8772 7872 7972 6072 5272 5372 4482 4582 3782 3882 3982 2182 2292 2392 2492 2692 2792 2892 2002
9 9 8 7 7 6 6 6 2565 2585 2605 2625 2645 2665 2686 2706 2726
‘3/16
4072 4272 5372 5472 5672 6782 7882 7082 8182 9282 9482 0592 1792 2892 3992 4192 5292 6402 7502 9702 0802 1902 3102 4212 5412 7512 9712 0812 2022
2628 2649 2670 2692 2713 2734 2756 2777 2799 2820 2842 2864 2886 2908 2930 2952 2974
%
0682 2782 4992 6092 8232 0392 2592 4602 6802 8902 1102 3202 6402 8612 1712 3912 6012 9212 1322 4522 7722 0822 3022 6232 9332 2532 5632 9832 2042
9 2 2985 8 3032 3055 3079 3102 3126 3150 3174 3198 3222
‘5/16
1
6102 3712 0302 7922 3502 2122 6602 7222 0812 2422 3012 7622 7112 2832 1312 7032 4512 ’ 31 2 8622 8332 2822 3532 6022 9742 0122 4942 4322 0142 8532 6342 2732 1552 7832 7652 1032 3852 5232 9052 0442 5252 4542 1462 9742 7663 3942 4863 8142 0063 3352 6273 8452 3473 2652 9673 7852 6873 2063 3083
5 0 3165 31!30 3215 3240 3265 3290 3316 3341 3367 3392 3418 3444 3470
933 553 173 884 404 124 744 465 1835 805 525 245 966 686 306 126 847 577 397 117 838 658 478 298 019 839 669 489 300
3338 3364 3391 3444 3471 3498 3525 3552 3580 3607 3635 3662 3690 3718
3702 3731 376[ 378! 381[ 384t 387: 390( 393( 396(
585 305 125 855 675 596 316 136 96 877 697 527 347 268 188 008 93 85 77 69 62 540 460 480 410 33 35 38 30
409
W DIA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3/16
I
7 7 3 7 7 3 7 7 3 7 7 3 7 38 8 38 8 48 8 48 8 48 8 8 4 8 8 4 8 8 4 8 8 4 9 9 4 9 4S ’ 9 4 9 9 5 9 59 9 59
153 153ti 154 154% 155 155!4 156 156% 157 157% 158 158!4 159 159!4 160 160H 161 161%
‘A
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C 5/16
3 1 14 3 1 1 5 3 1 1 6 3 1 1 7 3 1 8 1 3 1 9 1 4 1 0 1 4 1 1Y 1 1! 4 1 1 3 4 1 1 4 4 1 1 5 4 1 1 6 4 1 1 7 4 1 8 1 4 91 1 9 5 1 1 0 5 1 1 1 5 1 2 1
I
~8
‘/16
41 051 061 061 071 071 081 081 091 0?01 001 3 01f 01 0Y 21 121 131 ’ 141 141 ’ 151 151 161 171 171 181 181 191 201 201 21 2Y 21 21 231 231 241 251 2?51 261 271!
291 4 21M 21 5 21 X 21 6 21 X 31 7 31 X 31 8 31 + 19 31 i 31 0 31 j 31 1 31 z 41 41 j 41 3 42 % 42 4 42 % 42 5 42 % 42 6 42 ~ 52 7 52 % 52 8 52 j 252 9 52 X 52 0 52 % 52 1 52 4 62 2 62 4
‘/2
41 052 152 252 252 352 452 552 552 662 7462 862 962 962 062 162 262 362 372 472 572 672 772 772 872 972 082 182 182 282 382 482 582 682 692 792 892 992
P ‘/16
4972 572 6072 1672 8282 9782 0382 198, 2582 3082 682 3 5282 6892 7492 8992 9592 0192 1792 2392 3902 4502 5102 6702 7302 8902 9502 0212 1812 2412 3012 6412 5212 6912 7522 8122 9822 0422 1022
5/8
‘ 1/16
Y4
13/16
~8
15/16
1
992 9422 8942 8473 8993 7423 4 793 74!7 6002 8622 9153 1673 3103 4623 6154 777 4202 7722 1253 4873 8303 1823 4454 898 1302 7822 2453 7983 3503 8033 3654 918 9402 6032 5 353 01.83 803 7 5233 2864 948 650Z 6132 !57 38 43j3 ! 3 13 gj 233 I l064 )68 4602 5232 6683 74813 813 ( 9733 I364 199 2712 2 54 2 80363 0 83 6 3213 6943 9564 219 9812 4532 9163 4893 9413 4143 8774 349 7012 4642 1363 7093 4623 1344 8074 460 5112 ,842 2463 11Y3 9823 8j44 7274 690 2212 3942 4673 4393 5023 6754 6474 710 0312 3042 5873 8593 1223 3954 6784 840 8412 3243 7973 2703 6423 1254 5384 061 6522 2343 9173 5803 2633 8454 5184 191 4722 2453 1273 1 903 88)33 664 68 444 32!1 2822 2653 2483 3203 3033 4864 4694 542 0922 2753 4583 7413 9233 1064 4894 672 7022 2953 6783 1513 4 543 92614 494 . 892 5122 2053 8983 5713 1644 7574 4304 022 3332 2153 0083 9913 7844 5774 4604 243 1432 23f3 2293 3113 3044 3974 4804 473 0532 2463 4393 7323 9254 1184 4004 603 8632 2663 6593 1523 5454 0384 4314 824 6732 2763 9793 5623 1654 8684 4514 154 4932 2863 1893 9823 8854 6884 5814 384 2043 3073 3003 4033 4064 5094 5024 605 0143 3173 5203 8233 0264 3294 6324 835 8243 3373 8303 2433 7464 1594 6524 165 7443 3473 0503 7633 3664 0794 7824 386 5543 4673 2703 1734 0874 9904 7034 616 3643 7 47 3 58!13 6 44 3 7074 7104 8334 I946 266 2753 4983 7013 0144 3274 6404 953EIO06 0953 5083 0213 5344 0574 5604 0845 597 8053 5283 2313 0544 7784 4814 1045 827 7153 6383 5513 4754 3984 3114 2345 147 5253 6483 872i 9954 ’ 01 4 28314 3 45 5 478 4453 7693 0823 4154 7384 1524 4855 808
977 1302 1628 19532279 2604 2930 3255 3581 3906 4232 4558 4883 szog 983 1311 1638 1966 2294 2621 2949 3277 3604 3932 4260 458J 4915 5243 989 1319 1649 1979 2309 2638 2968 3298 3628 3958 4287 4617 4947 5277 996 1328 1660 19922324 2656 2988 3320 3651 3983 4315 4647 4979 5311 1002 1336 1671 2005 2339 2673 3007 3341 3675 4009 4343 4671 5012 5346 1009 1345 1681 2018 2354 2690 3026 3363 3699 4035 4371 4708 5044 5380 1015 1354 16922031 2369 2707 3046 3384 3723 4061 4400 4738 5076 5415 1022 1362 17032044 2384 2725 3065 3406 3747 4087 4428 !768 51095450 1028 1371 1714 20577399 2742 3085 3428 3771 4113 4456 4799 5142 5184 1035 1380 1725 2070 2415 2760 3105 3450 3795 4140 4485 4830 51755519 1041 1389 1736 2083 2430 2777 3124 3472 3819 4166 4513 4860‘52075555 1048 1397 17472096 2446 2795 3144 3494 3843 41924542 4891 52405590 1055 1406 1758 2109 2461 2813 3164 3516 3867 4219 4570 4922 52745625 1061 1415 17692123 2476 2830 3184 3538 3892 42454599 4953 53075661 1068 1424 1780 2136 2492 2848 3204 3560 3916 42J2 46284984 53405696 ~ 1075 1433 1791 2149 2508 2866 3224 3582 3941 42994657 5015 5374 5732 1081 1442 18022163 2523 2884 3244 3605 3965 4326 46865047 5407 5768 1088 1451 1814 2176 2539 2902 3264 3627 3990 4353 4715 5078 54415803
69 3 920 140 470 701 921 251 582 802 132 462 783 113 443 874 14 3 524 955 285 605 036 466 996 327 757 277 608 138 568 9 09 529 059 58 010 530 061 691 121
410
W
C
P WEIGHTS IN POUNDS
.LL DIMENSIONS IN INCHES DIA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
181
J/4
ZE
‘ / ~ 82 2532859 365055 4 1095 1460 1 2 12!320 1102 1469 1 82 2 229383533050 367267 4 1108 1478 1 2 229564533251 369578 4 82 1 182---- 2297455633463 371890 4 1487 11 2 4 9 2992 4 1 61 4 1 2 2618 2 33666 4 0 3010 1 41 5! 53 16 2 2634 9 3387 4 1 61 5 5 1 30296 34074 3 1 3 2650 4 i 2 30473 34284 3 1 51 5t 16 4 2666 4 6 3 3066! 34493 3 1 6 5 p G 2682 4 6 1 6 5 M 43084 34702 3 2699 4 1 6 1 5 1 6T2715 7 531034 34911 3 1 6 1 1 1 17 11 1 51 72% 91 62 031 53 171 43 311 39 1 1 11 52 792 733 7673 0513 2454 1 6 1 11 8 52 892 % 733 5773 9613 4654 1 1 6 11 52 992 9 833 2873 9813 6854 16 1 9 11 52f 992 i 933 9973 8913 8~5 1 1 7 22 62 002 0 043 608 8124 91 4 1 7 1 22 0 62 102 % 143 328 7224 13 4 1 1 7 22 62 202 1 243 038 7424 34 4 1 7 1 22 1 62 202 % 343 748 6524 56 4 1 1 7 22 62 302 2 443 458 66G 2 78 4 1 7 1 22 2 62 402 % 543 168 5834 994 1 1 7 22 62 402 3 643 989 5934 11 4 17 1 3 22 6!2 502 A 753 699 4134 33 4 1 1 7 22 62 612 4 853 309m 42z3 544 1 7 1 22 4 62 712 G 953 019 4434 76 4 4 4 12787 1704 2129 5 2555 2981 - 3407 3t 1 7 1 22 5 72 812 % 153 5493 3748 8 2954 6 1221 1 5 4” 1 2795 8 -5 1 23 0 1215 1 33 44436 4 i 17 ] 4 B 4 17 1 7 32 72” 013 - 463 7703 3144 8594 17 1 7 32 7?2 113 4 563 4903 3254 1694 1 1 7 32 72 622 84 6 34 2013 32 54 0 3198
I
5/16
I
TT
II
%
‘3/16
0 4380 5 04 3 1 04 7 6 04 1 2 04 14 14 7 14 7 14 8 8 4 25 8 25 8 + 1501 2 241 116 5494 7335 9594 4535 3794 0735 7994 i9 5 1104 3 45 6304 0 45 0504 6 45 4704 3 45 89 4 0 55 3114 755 7314 3 55 2415 0 65 66= 7*6 1825 4 6: 25 6 0255 8175 1m7 8 35 75 359 4835 0275 9035 7485 424 4 6
I
2
I 15/16 I
1
5 175 15 544 0 5 15 975 4 375 685 5 15 405 7 8855 25 935 0 18 46 5 3 x2 385 326 996 65 6 695 636 526 85 0 995 936 057 05 3 35 E 9 2m 8 3 6 405 536 117 55 9 605 846 648 75 3 1481 25214 916 25 1 05 8 75 2 0275 2115 5146 708 09 9475 4415 8356 339 a2 7775 5615 2656 969 66 99 94 6957 6 15 559 6 226 92 6 120 3 51~8 426 3566 750 16 4485 726 6686 381 90 3658 936 006 911 8 299 ~ 3 7 19 236 541 536 867 272 69 0395 746 289 812 24 0659 046 628 542 9805 36 36 6 13 8= 5:6 5896 8;3 8305 12 515 16 8 6 9196 5 3 4963 264 09 7415 2156 9 0a1 7 3 6 86= 8 4 6966 2906 534 96 316 8 552: 1966 72 6 26;5 8 582 3266 15 7 095 % 850 4 7 G 6 6 7 6 6
G
m m p
I
5792 6238 6684 7129
] 1367I 1822 i 2278I 2734 I 3189 I 3645 I 4100 I 4556 I 5011
*
186 186Y? 187 187X
1443 1451 1459 1467
188 188X 189 189fi
1 1 1 1
1924 1935 1945 1956 1966 1977 1987 +1998
2406 2418 2431 2444 42458 42471 42484 42497
2887 3368 2902 3386 2918 3404 2933 3422 2949 7 3441 2965 8 3459 2981 9 3477 2996 9 3496
5 2 0 8
+
$
5 9 9 3 1 6 4i 9 2 1 6 9 9 -
411
W
C
P
ILL DIMENSIONS IN INCHES DIA K
3/16
‘A
5/16
WEIGHTS IN POUNOS ~%
7/16
‘/2
‘/16
5/8
‘ ‘/16
3A
‘3/16
~8
‘5/16
1
4
1
2
W W
s
B
iqh
Length U
%
Inches
u gs o p o d1u t n
n
D
ao Bm i eI
to n e
h f te
i
9
2 2 3 3
6 6 7 8
. . . .
. 3 1 . 7 1 . 0 1 . 3
3 4 4 4
8 9 1 1
. . . .
1 . 1 . 20 21
7 0 4 7
5 5 5 6
1 1 1 1
. . . .
; 2 2 23 24 2 2 3 3
3 : . 4 . 4 5. 4 7. 4 4 8 7 59 1 .5 1 4 .5 2
6 6 7 7
. 2 . 6 .
7 8 8 8
. ; . 9 . 2 .
9 ; 0
2 2 2 2
0 0 1 1
2 2 2 2
1
2 2 3 3
7 .
2 2 3 3 4 4 5 5
. .
6 6 6 6
3
79 7 7 7
R
79 97 0. 1.
S
B
to
8 1 4 6
4 5 5 5
7 1 5 9
6 6 6 7
9 1 4 6
1 4 7 0
2 6 0 3
7 7 7 8
8 0 2 4
.0 9 8 9 :5 9 .3 1 . 1 . 1 . 61 . 31
3 6 9 2
9 5 5 . 0 . 3 9 . 5 . 8 . 10 44 . 4 1 . 01 9: .5 ~ . 1 206 0 . 6 . 12 213 16 .7 1 . 2 221 26 . ;1 0 . 8 1 . 2 229 47 . 1 4 .9 1 . 32 237 58 , 91 8 . 0 1 42 246 3 8 . 21 . 10 1 43 254 7 9 , 61 . 20 1 53 262 1 : . 31 ; . 91 53 271 5 . 31 . 31 91 63 2 . 61 . 41 2
7 1 4 8
8 8 9 9
6 8 0 2
5 8 1 4
. . . .
91 31 61 01
. . . .
2 9 :1 1 11
4 6 8 0
. 1 . ;1 . 61 .4 1 .1 ; .7 .5 1 3 1
7 . . . .
31 401 ;01 02
. 9~ 2 72 74 2 9 85 2
41 71 01 41 71 1 1 1
2 5 7 9
. . , .
402 812 112 512 822 ;22 32 932 642 352 052 763
95 2 0: 2 12 26 2
90 21 52 82
37 3 58 3 78 3 93
1 5 9 3
1 8 1 1 1
9 2 5 8
.0 1 .8 ; .5 .3 1 .0 1 .6 1 1 1 :6 1 . 2 . ; . . 12
. . 0 . 1 9 7 . 5 9 0 . 81 4 , 11 7 . 51 2 . 81 6
. . . . .
4
3 3 3 3
67 :8 8 89
9 4 0 5
13 3 74 : 35 96 4 57 ; 18 79 : 30
20 01 93 74
1 1 2 3
55 ;7 8 09
4 4 5 6
5 5 5 5
81 62 43 35
6 7 8 9
45 5 0; 6 6 6 29 6 80 6 80 5 42 6 . 4 2 1 , 1 3
16 97 7 ; 6
61 2
2
. 43
A
B 8 a
n Si f
5 1 6 2
8 3
.93 80: 50 213 914
0. 1 2
4 9 5 0
:4 5 8 76 16
32 . 32 . 42 . 42
52 2 62 2 73 2 83 2
4 9 4 9
7 2 8 3
21 2 2 2 3 .1
1 8 6 3
32 72 13 64
1 %1 4 1 7 %1 0
;
. . . .
63 2 74 2 74 ; 84 84 3 09 3 3 ; 60
1 1
.8
n s
4 1 5 . 1 7 . 7 6 9 . 3 7 1 . 9 7 3 . 5 7 5 .5 8 7 .3 8
3;3 03 783 483
1. 4 6 9
rc l
es d 0 n s
1
%
. 212 . 12 . 22 . 22
1 %1 1 %1
.5
3
This table conforms
3 6 0 4
3 3 3 3
0 4 7 0
I
9 1
3 4 4 4
90 \: 3 6 1 8
8 8 8 9
%
2 1 8 2 47 1 2 54 5 2 62 9
3 7 53 3 1 :5 5 3 4 .6 6 30 7 6 8. 31 1 6 9. 41 ; 6 0. 6; . : 2 7 . : 3 74. 4. 4 75. 4. 4 77. 4. 5 78. 4. 6 89. 4. 7 8; . ; 8 8 . 0 9 7. 51
33.1
1
N
ea rhn xn die ap
Y2
34.6 36.2 37.7
Per Inch \dditional
ua e t h a
10 3 2; 3 3 03 3 53 4 94 4 35 4 76 4 17 4 57 4 08 ; 49
:1 2 23 84
0
9
2
42 2 7. 5 3
.i nHn u Aei N Isx 2 hda B1ute8.2. gsd o
t n
413
W
O
NOZZLES W
A
Wi (
Ne N lt F dS ael ihR aenI ic nngP nf go k r ce ia nd g fT Q a R ue b of iel r ec n r c k e )
CLASS
S
150 1 2 3 4 6 8 1 1 1 1 1 2 2
11 2 12 25
6Y 9 1 2 4 6 9 1 1 2 3 4 5
900
600
300
13 15
4 7 1 1 0 2 32 264 316 63 8 72 0 1 84
4 6 6 5 1 5 11 5 24 5 32 5 58 5 67 5 91 1 108 1 9 3
1
1500
1 2 4 7 0 120 2 70 3 85 5 60 7 15 9 90 1 30 3 8 2 1 4 6 8 3 1 1 0
18 3 7 0 0 1 250 365 675 955 75 65 5 7 5 9 5 4
NOZZLES for Quick Reference)
C
S 3 4 6 8
150
300
6
900
2 4 7 1 1 2 2 4 5 7 1
4 6 1 11 26 44 59 84 1 4 1 0 1
6 5 1 2 22 1 39 0 57 5 60 5 82 6 100 1 0 0 2 0 0 2 0 8
771 1 07 2 00 4 11 6 12 9 64 1 91 1 0 2 0 2 0 5 5
0 S
C
l l
00 00
0 0. 0 1.
R C EO
U W P E L DI
0 2. 0 0 5.2
0 0 0 9
N
G
2 6 2 8 1
b b
45.2 0.4
46.3 01.7
0 1 6 4 6 0 3 6 0 0 0 5 0 0 0 4
1 12 36 65 1 6 1 6
1 6
3 4 5 9
5 4 7 3
S 3
2
1
%
3 6
0
0 2 8
3 6 1 9
1500
31.4 31.
961. 0 187
. 3
.30 57
414
WEIGHTS OF PACKING P S
I C
%
E
%
1
4 3
6
9
5
7
%
2
1
~ x
Cu
Fnu
e d bo s
0
3 4
5
5
6
5
5
4
8
6
3
2
0
3
4
6
4
4
2
2 x %
3
3
6
3
3
3
3
2
3
3
9
7
.
72 4
4 5
7
2
.
4
05
1
2
9
4
4
.
4
67
2
1
2
7
4
7
.
4
45
2
7
5
3
3
3 4
% 4
4
6
%
4
7
1
4
2
5 5
2
7
l
t
4
3
1 l
c
2
9
l
or
6
1 3
5
x 1
i
R Z A SR E C HI I G N P RG A I I L N N TL A A R AM R N R C LB AO S N I CI E CB A EO RC B S E L T S A T L T OP E N
6 %
oP
.
2
6
T
d
c
o ah n f d
T S
w e o hi c 1t C0 e
et
nt r e se aec l odhi
nt
oei m t rc Ua aeS t Sl u t rh o e Cn
e
w f ea
g a s h r i et t p bse er o c fo eneo n tmlt a egn hSe t t aae ilf nr s l o 15 e p A2% l pl 0u,e 3 m r%M i n7 o, ou N m%ni 1 ce , 1k l e 5r
WEIGHTS OF INSULATION P C
A
LS
O CI
PU C N LI
IU C M A
U FDE
SB O
T
E
I
NW E
G F F w
m
e
LF O
A
c hod a eo s i j eag
RO A
LO
B S
SE
AI M
1
T
2
.
9.0
FOAMGLASS M
I R OC
G
L
A
S
S
L R
8
.
4
-
8
neo i v cs r aea il 8 s g t st n d ew0h f el we i d cg% hs c ahak t et a lt b i f n snm , h ogo ri sb d t e e u d r e
-
1 hoot i e t v .
sc e
.
SPECIFIC GRAVITIES METALS 62°F. N-octane ............................0,70fjrl Sulphordioxide ............................ z.z50 Aluminum .............................. 2.70 Cyclopentane .....................0.7501 Water vapor ................................. ().fjz3 Antimony ............................. 6.618 Methylcyclopentane ..........0 .7536 SOLIDS Barium ...,,.,,..,,..,,.,,,,,,,,,,.,.,..,,. 3,78 Cyclohexane .........,...........,0,7834 MISCELL~NENJS Bismuth ..... .......................... 9,781 Methylcyclohexane ...........0 .7740 “ 2 Boron...................................2.535 Benzene..............................0.8844 Asbestos..................................
A s p............................... h a l t , u m . . s. .0 . . s . . Toulene..........,......,,.,.,,.......O.87l8 . .:Z. . . 0. 8, ,. 6 0 ......................,..!, B o r ............. aH x . . . . . . . .Z . . . . . 0. 8, , .4 4 L I 6 Q F U I 2 D S B c r o .......................... i m° c . m.k o, . . . . . . . Z. . . . 0. 3., . .. 8 6 i0i Brick, c fire................................. d H . . . . . . . Z.A . . A.c 0. ........................... 2., e. .. c 8 t 1.06 h. . e.o. .r8 .l cB . .,i . ha.r ................................ l 8. i. .a 0 c , 2.ok3r B . n. . .z0. . .. e. . A. : .T .l c. 0.c7o., . om , . .8 m A l p c o u h o l r , e ......................... 0 B . p r r i 7 e c s 9 k s e , ....................... 2,2 Cadmium............................... S,648 C a .................................. l c i 1 u ~m . “ . ~” ” 50 ” 0 ~” ~” 4” . . ~” a. jo . ~. ~~o~~ ~ ~ ~ ~~ t[1~”~ . ~. .3 C h ............................... r o m i6 u m . .................................. 9 Bromine . ................................. 2 C . eP ; r m t l a 9n de ( s e nt )j :7: lt : : j ;, j j Cobalt.................................... 8.71 a a c ri d , ,b. . . . o. . . . .0l. , , . i. . C, . c. . .,. . . ...h.. . , . . . , 9. . a. . . . . . . . . .2l, 6, . . . , . . .k, , . . Copper................................... 8.89 C da i s u l rp h i d be , . .1. .o. . . .Charcoal,,....,,...,.......,........,...,,. . .n. ,. . . . . 2 06 Gold....................................... 19.3 C C o t t o o n s e i e d l ...................... 0 C . a n o t 9 h a r a ....................... 1l3c i , t Iridium................................. 22.42 ur rCoal,bituminous ,i c ..................... 1.3 I - c a s tr, . . . , ,7. .o. . . . .0, . .E3. n, . -.s .t 7u .hl.................... 7p e3 h 0.72 I -w rr . , o .7 ,ou . , 8g. .Fluoricacid 0 nh, - , t 7. ........................... . , , 9 0 1.50 Concrete................................... 2.2 G a s o l i0.70n Earth,dry................................. e ................................ 1.2 Lead................................... 11.342 K. e ................................ o 4s e0 1 n E e . w ae t , . . , , r. .8. , . . . t. . . . . .1.0h. . , , . . . .,. . , Magnesium,.,,..,...,..............., 1 7r n, s e 0.94 i 3e Emery d ....................................... l 4.0 M a n............................... g a n e7 s L e i o ............................ M i o i l , n . . , , , , e , . . . . r . . 0 . . . a . . . G . . . l . . ........................................ . . . , l 9 a 2 s2 s M e( Fr . . c. 6. . u. . . .r, 8. . y. .5 . . .° . 1) 34 6 , . c. , ,. .r..................................... .., a 2n i 2 0t e M o l .......................... y b d e 1n u Mm 0u a c ird , . i. .. . . .a. . . .t1. .2, . i. , G a ................................. p h t 0.76h Gypsum a .................................... 2.4 Nickel...................................... 8.8 N NitricAcid ............................ 1.50 Ice ............................................ 0.9 P l .............................. a t i n2 u 1m , 3 7 i7 i 0v0 I e s.l a gl, , . r. , . . . ,9, . . . . . , .o. , , .2. 2, . . . . . . . .n, . . . P o t............................ a s s 0i u O.m o ................................ 8l 0,97 Limestone................................ 2,6 S ....................... i l 1 v0 . e4 2Palmoil r- 1 ................................. 0 . 5 3 P e t o r o l e ......................... 0 S ...............................0 o d i u , m9 7 1 2 i u Mm . . . a. , , . .l. . .r.8, . , . . .b, . . . , .2.2.l. . . . , . .e, . . . p h c o 1 r i Mi c . a ................................... sd 7 o n 28r y Steel ....... .............. ... ........... 7.85 P h o a s .................... Rapeoil ................................. 0.92 Mica......................................... 2.8 T a ................................. n t a l1 u m 6 . 6 1,84 Mortar...................................... 1.5 T e ................................ l l u r i6 u Sulphuric m . acid ....................... 2 5 Tin,.........,,..............,...,..,,....... 7 ‘ . “. ” : ” + < ”2. ; ” ” . ” 1” 9” . ” po w . .ho o 0“ sc :p. . h” . o. ”1r0” ”u ” ”s ” . t. 0, i ,5 .n P . e, ,. l,o .P . a, ........................ 8 sa t 1r 7 e ri T i ................................... t a n i 4 u Tm u r o .pd de . n,......... Quartz...................................... 2,6 T u ....n................ g 1s - t e 8Vinegar 1 n ................................... 9. . 6 1,08 1 Uranium................................. 18.7 W . . . . . a. . , , . . . . . ,t, . . , , . . ,1,e. . . 4 . .S. . .r. ...d,r. ya. . . . . . . .0. .n. . , , . . . , . d1. .0, . . . , . . ,,, , , t e e 1 r S , .w a.a, . . . , , 0, .n. . , , .e. , ,2d. 3. , , . . , , ,. . , V a ................................. n a d i 5.6u Wm s a............................... Z ............................. i 7 n . 0 Whaleoil 4 c - ............................... 7 . 1 6 0,92 Sandstone................................ 2.3 Slate......................................... 2.8 B
8r 7 6 5 r9
C 2a C 3O C 4O C 5O C o1
GASSES32°F, HYDROCARBONS 60/60°F. ..................... .........2.7 .............................................. 1.ON Soapstone Ethane ................................0.3564 Air.. Sulphur ....................................2.0 Propane .,,...,,,,..,,..,,,.,,0 .5077,, O.5O77‘cetY’ene ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~„ 0920 ~~~bituminous ........................ ~.~ N-butane ............................0.5844 ........................................... . I s o ..........................0 - b u t a N - p..........................0 e n t a [ s o -............. p e..........0 n t a N - ............................0 h e x a
.n e n. e . nC e n. e
5 , 6 6 ma 6 ,
6 3 3 1 2o .r . n, ,4 . b,o , 6 4
, . 3 - m e t h .y .1 . p. e. .n. t. a. .n6.e . . . 6. . . 0 8
2 2 - d i m e t h y l b u t a n, e
a
9
,
.
.
,
.,
2 3 - d i m e t .h y. l ..b u. t .a6 n., e . 6. . . 6 0 .......................... 0 . 6 8 8 2 - m e t h. .y . l. h. . e. . x. .a . n6. e. . . ., 8. . , 0 3 .
, 1 Taprock................................... 3.0 0 . 07,x,o, , i, . ,nd,, , , e, . , , . % . 7 . 0
N
4 2 0
. i
. o
l - d i m e t h y l c y c 0l o p e n. tOa n e7 . .x, , . .5, . ,y, , . . .9. , ,g, , . . 2, , , e, , . , , . . ,n, , , . . . , ,
. xa
.
416
V I.D. of Vessel
t
S
A
H
Cylindrical S1-iELL/LIN.FT. w
2:1 ELLIP. HEAD* o
t
.
in.
Cu.Ft.
Gal.
Bbl.
Water lb.
Cu.Ft.
Gal.
Bbl.
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144
0.8 1.1 1.4 1.8 2.2 2.6 3.1 3.7 4.3 4.9 5.6 6.3 7.1 7.9 8.7 9.6 12.6 15.9 19.6 23.8 28.3 33.2 38.5 44.2 50.3 56.7 63.6 70.9 78.5 86.6 95.0 103.9 113.1
5.9 8.0 10.4 13.2 16.3 19.7 23.5 27.6 32.0 36.7 41.8 47.2 52.9 58.9 65.3 72.0 94.0 119.0 146.9 177.7 211.5 248.2 287.9 330.5 376.0 424.4 475.9 530.2 587.5 647.7 710.9 777.0 846.0
0.14 0.19 0.25 0.31 0.39 0.47 0.56 0.66 0.76 0.87 0.99 1.12 1.26 1.40 1.55 1.71 2.24 2.83 3.50 4.23 5.04 5.91 6.85 7.87 8.95 1o.11 11.33 12.62 13.99 15.42 16.93 18.50 20.14
49 67 87 110 136 165 196 230 267 306 349 394 441 492 545 601 784 993 1226 1483 1765 2071 2402 2758 3138 3542 3971 4425 4903 5405 5932 6484 7060
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.3 1.7 2.0 2.5 3.0 3.5 4.2 4.8 5.6 8.4 11.9 16.3 21.8 28.3 35.9 44.9 55,2 67.0 80.3 95.4 112.2 130,9 151.5 174.2 190.1 226.2
0.98 1.55 2.32 3.30 4.53 6.03 7.83 9.96 12.44 15.30 18.57 22.27 26.47 31.09 36.27 41.98 62.67 89.23 122.4 162.9 211.5 268.9 335.9 413.1 501.3 601.4 713.8 839.5 979.2 1134 1303 1489 1692
0.02 0.04 0.06 0.08 0.11 0.14 0.19 0.24 0.30 0.36 0.44 0.53 0.63 0.74 0.86 1.00 1.49 2.12 2.91 3.88 5.04 6.40 8.00 9.84 11.94 14.32 17.00 20.00 23.31 27.00 31.03 35.46 40.29
*vo]ume within the straightflangeis not included
f
w
o
Water lb. 8.17 12.98 19.37 27.58 37.83 50.35 65.37 83.11 103.8 127.7 155.0 185.9 220.1 259.5 302.6 350.4 523.0 744.6 1021 1360 1765 2244 2802 3447 4184 5018 5957 7006 8171 9459 10876 12428 14120
71
V I
.
of Vessel !, i Cu.Ft. i
12 ~
~~
16 18 20 22 24 26 28 30 3’2 34 36 38 40 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144
0.08 0.12 0.19 ~ 0.27 I 0.37 0.50 0.65 0.82 1.10 1.30 1.64 1.88 2.15 2.75 3.07 3.68 5.12 7.30 10.08 13.54 ] 17.65 22.32 28.47 35.56 42.51 52.14 60.96 73.66 84.35 97.32 108.7 127.0 147.9 i
S
A
DF &D. . M S HEAD*
A
n
Gal. 0.58 0.94 1.45 2.04 2.80 3.78 4.86 6.14 8.21 9.70 12.30 14.10 16.10 20.60 23.00 27.50 38.30 54.60 75.40 101 132 167 213 266 318 390 456 551 631 728 813 950 1106
Bbl. .
lb.
*VO1umewithin the
Cu.Ft.
G-d.
13bl.
0.26 0
1.96 1
0.05
7.83 12.08 17.00 28.33 31.49 40.49 51.15 68.40 80.81 102.5 117.5 134.1 171.6 191.6 229.1 319.1 454.9 628.2 843.9 1100 1391 1775 2216 2649 3249 3799 4590 5257 6065 6773 7915 9214
0.42 0.62 0.88 1.21 1.61 2.09 2.66 3.33 4.09 4.96 5.95 7.07 8.31 9.70 11.22 16.76 23.86 32.73 43.56 56.55 71.90 89.80 110.4 134.0 160.8 190.9 224.5 261.8 303.1 348.5 398.2 452.4
3.11 4,64 6.61 9.07 12.07 15.67 19.92 24.88 30.60 37.14 44.54 52.88 62.19 72.53 83.97 125.3 178.5 244.8 325.8 423.0 537.8 671.7 826.2 1003 1203 1428 1679 1958 2267 2607 2978
0.07 0.11 0.16 0.22 0.29 0.37 0.47 0.59 0.73 0.88 1.06 1.26 1.48 1.73 2.00 2.98 4.25 5.83 7.76 10.07 12.80 16.00 19.67 23.87 28.63 34.00 39.98 46.63 53.98 62.06 70.91 80.57
s
wt. of Water lb.
4.83 .
0
0.02 0.03 0.05 0.07 0.09 0.12 0.15 0.20 0.23 0.29 0.34 0.38 0.49 0.55 0.65 0.91 1.30 1.80 2.41 3.14 3.98 5.07 6.33 7.57 9.29 10.86 13.12 15.02 17.33 19.36 22.62 26.33
H HEMIS.HEAD*
E
wt. of Water
7I
3384
flange k not included
16.34 25.95 38.74 55.16 75.66 100.7 130.7 166.2 207.6 255.4 309.9 371.7 441.2 519.0 605.3 700.7 1046 1489 2043 2719 3530 4488 5606 6895 8368 10037 11914 14012 16343 18919 21752 24856 28241
418
PARTIALVOLUMESIN HORIZONTALCYLINDERS t
o
Partialvolumesof horizontalcylinder equalstotal volumex coefficient (found from tablebelow)
t
3“ EXAMPLE ‘E HORIZONTALCYLINDERD = 10 ft., Oin. H = 2.75 ft. L =60 ft., Oin. TOTALVOLUME:0.7854 x D2 x L Find the partialvolumeof the cylindricalshell Totalvolume: 0.7854 x 102x60= 4712.4 cu. ft. Coefficientfrom table: H/D= 2.75/10= .275 Refer to the first two figures (.27) in the column headed (HID) in the table below. Proceed to the right until the coefficient is found under the column headed (5) which is the third digit. The coefficient of 0.275 is found to be .223507 Total volumex coefficient= partial volume 4712.4 X .223507 = 1053.25CU.ft. cu. ft. multipliedby 7.480519 = U. S. Gallon cu. ft. multipliedby 28.317016 = Liter COEFFICIENTS H/D
O
.00
.04
.000ooo .001692 .004773 .00s742 .013417
.000151 .oo~223 .005503 .009625 .014427
.000429 .000600 .002800 .006267 .010534 .015459
.05 .06 .07 .08 .09
.018692 .o~4496 .030772 .037478 .044579
.019813 .0203g2 ,025715 .026331 .032081 .032740 .038867 .039569 .046043 .046782
.02095.5 .026952 .033405 .040273 .047523
.10
.052044 .0598!50 .067972 .076393 .085094
.053579 .061449 .069633 .078112 .086866
,054351 .062253 .070469 .078975 .087756
.055126 .063062 .071307 .079841 .088650
.15 .16 .17 .18 .19
.094061 .103275 ,112728 .122403 .132290
.104211 .113686 .123382 .133291
.095884 .105147 .114646 .124364 .134292
.096799 .1060.s7 .115607 .12.5347 .135296
.’21 ,,22 .23 .24
.20
,lh~~ig .152659 .163120 .173753 .1845.50
.143398 .153697 .164176 .174825 .l&5639
.144419 .154737 .165233 .175900 .186729
.145443 .155779 .166292 .176976 .187820
.146468 .147494 .148524 .149554 .156822 .157867 .1.58915 .159963 .167353 .168416 ,169480 .170546 .178053 179131 .180212 .181294 .188912 190007 .191102 .192200
.25
.19.5501 .196604 .197709
.198814
.199922 .’201031 .202141 .203253
.30
.2.5’2315 .253483 .254652 .264039 .265218 .266397
.255822 ,267578
,256992 ,25fj165 .259338 ,260512 .z68760 ,269942 .271126 .272310
.31
1
2
3
4
5
6
.022115 .028208 .034747 .041694 .049017
7
.022703 .028842 .035423 .O4241O .049768
.055905 .063872 .072147 .080709 .089545 .098638 .107973 .1.17538 .127321 .137310
.099560 .108920 .118506 .12831O .138320
.100486 .109869 .119477 .129302 .139332
8
9
.001212 .004077 .007886 .012432 .017593
.001445 .004421 .008310 .012920 .018141
.023296 .029481 .036104 .043129 .050524
.023894 .030124 .036789 .043852 .051283
.058262 .066323 .074686 .083332 .092246
.059054 .067147 .075539 .084212 .093153
.101414 .110820 .120450 .130296 .140345
.102343 .111773 .121425 .131292 .141361
.261687 .262863 .273495 .274682
419 PARTIAL VOLUMES IN HORIZONTAL CYLINDERS COEFFICIENTS (Cont.) H/’D
O
4
1
.2~()&?7 .2S1820
.50 .51
..55 .56 57 .58 .59
.311918 .3YI104 .336363 .348690 .:16108’2
8
9
.285401 .28659/3 .297403 .2!3M5(i5 .309492 .310705
,319219 .3314.51 .343751 .3.56119 .308545
.320439 .332678 .3449%5 .357359 .3697!)0
3~1660 .333905 .346220 .358599 .371036
.3~~8~l .33.5134 .347455 .359840 .372282
.:{74778 .3872X? .399834 ,41~42fj ,4~,5(j5~
,:]8102+ .393.553 .406125 .418736 .43137s
.382274 .394S08 .407:384 .+19998 .4:12645
.383526 .396063 .MM645 .421261 .433911
,384778 ,397320 .409904 .42’2.52.5 .435178
.437712 .450394 .463096 .475814 .488542
.444050 .%)6741 .469453 .482176 .494906
.445318 .458012 .470725 .483449 .496179
.446587 .459283 .4719!97 .484722 .497452
.447S57 .460554 .473269 .4S5995 .498726
,507640 ,5~o~69 ..533090 ,345799 ,558486
..508913 .,521642 .534362 .547068 .559754
.,510186 ..522914 .53.5633 .548337 .561021
.5114.58 .524186 .536904 .549606 .562288
.571154 .583789 .596392 .608956 ,~~147(-j
.572418 .585051 .597650 .610210 ,622725
.313134 ,:3~532~ .349926 .362325
.
.mOOOo .501274 . . . .
7
.5635.55 .576212 .588835 .601423 .61397(I
.(WI ,61 .638918 .(351310 .:: .Iii
7
6
.283013 .284207 .’294995 .’296198 .307068 .3082S0
.277058 .WvW2 .301O2I .35 .36 .37 .38 .39
5
.63.518!) .647598 .659946 .672226 .684434
.630210 ,64264] .6!5501.5 .667322 .679561
6.
.696562 .708610
.691720 . -. . .706207 .702.597 .703802 .714599 .71.5793 .716987 .718180 .727690 .728874 .730058 .739488 .740662 .7418 :)5
.66 .fii .(;s .(icl
.70
.7.511s 1 .7627X+ .~74’21i .~%547 J9674?
.71 ,;~ .i94,jl i
;,~j:]$; ,763909 .77.5:35.5 .7! Ui(ii4 .797859
.753.506 ,76.50.59 ,776493 ,7S779,S ,708969
.74417X .7.5.%+27
.767356 77876.5 1 li900-K\ .8011x6
.’W7X(XI .S08XW4 .
.805600 yoml .X16537 .817622 .X18706 .x~731~ ,s~~387 .8:17934 .S38987 .7X ,79 .847341 .84X37R .84941:1
.X11(-M .812180 .819788 .R20N;9 .821947 .%23024 .S:30.520 .831584 .832647 .8:~~i08 .841(R5 .842133 .X43178 .844221 ,%51476 .8.52506 .%5:{532 .%54557
.768.502
.813271 .814361 .825175 .835824 .846303 .856602
.Tii .76 .77
.
.80 .81 .82 .x3 .x4
,S57622 .867710 .877.597 .887272 .896725
.858639 .X5965.5 .868708 .869704 .87857.5 .888227 .X8918(I .897657 .8985S6
.861680 .871690 .881494 .891080 .900440
.H62690 .872679 ,882462 .892027 .901362
.863698 .873667 .883428 .892971 .!302283
.86470’4 .874653 .884393 .893913 .903201
.866709 .876618 .886314 .895789 .90502!3
.905939 .914906 .923607 ,93~0~8 .940150
.906847 .!)07754 .!-)15788 .916668 .9~4~(jl .925314 ,Q~~~$~ .933677 .940946 .!)41738
.9095.57 .918419 .927089 .935313 .943312
.910455 ,919291 .927853 .936128 .944095
.91135o .920159 .928693 .936938 .944874
.912244 .921025 .929531 .937747 .945649
.914021 .922749 .931198 .939352 .947190
.952477 .953218 .959727 .960431 .966.595 .967260
.954690 .961829 .968576
.90 .91 .92
.947956 .948717 .9.5.5421 .95614S .962522 .963211
.949476 .956871 ,!-363896
.950983 .951732 .958306 .959019 .!%5253 .965927
420 PARTIAL VOLUMES IN HORIZONTAL CYLINDERS COEFFICIENTS (cont.) H ,!13 .!-)4
(
/1
2
D3
4)
5
.96922S .!l(}!)Kifi .!)70.51!) .97 11,5X .971792 ,972422 .97.5.504 .976106 .!)76704 .977’297 .9778%5 .978467
6
7
.973048 .973669 .979045 .979618
.95 .!)s1:{0s .wlw!) .!)82407 ,982!)48 ,9S:34S.5 .98401.5 .984541 .985060 .9(; ,9s6.7%3 .r)xiotu) .Wii.ww ,!)XS().YI.WM530 .Wmol .989466.989924 .!)7 .99I‘2.5X.!)!)1(}90 .9!)’2114 .!)w2,5:{().992939 .!3!)3340 .993733.994119 .98 .{}!).5~~~.!)!)5,579 .995923 .9!)6257 .!)96581 .996896 .997?00 .997493 .99 .!)98:30s.!)!W.5.5.5.!)98788 .!KX)O(M.!?99212.9!39400 .999571.999721 1.00 I . 0 0 0 0 ( M )
8
9
.974285 .980187
.974897 .980750
.985573 .990375 .994497 .997777 .999849
.986081 .990%21 .994966 .998048 .999947
421
P
A R V T O IL I A H U O LMR IE Z C SO YN L T A N I N L D E R S ( p e r R c e e n olt Daa gi t e at i Vmo oen tl eu f r m e . )
L
*
4
2
2
PARTIALVOLUMESIN ELLIPSOIDALHEADSANDSPHERES D I Partial volumesof ellipsoidalheads and spheres = total volume x coefficient (in the table below) EXAMPLE: D = 10ft., Oin. H = 2.75 ft. Find the partial volume of (2) 2:1 ellipsoidal heads of a horizontalvessel. The total volume of the two heads: O2618 XD3 = O2618 X 103 = 261.8 CU.ft. ,Oe;ficientfromtable
0.0 Two 2:1 Ellipsoidal Headson Horizontal Vessel Total Volume: 0.2618 D3
QAQ Two 2:1 Ellipsoidal Headson Vertical Vessel Total Volume= 2.0944 D3
HID= 2.75/10= .275 Refer to the first two figures (.27) in the column headed (H/D) in the table below. Proceed to the right until the coefficientis found under the column headed (5) which is the third digit. The coefficient of .275 is found to be .185281 Total volumex coefficient= partialvolume 261.8X .185281= 48.506 CU.ft. cu. ft. multipliedby 7.480519= U.S.Gallon cu. ft. multipliedby 28.317016= Liter
O.u Sphere Total Volume= 0.5236 D3
COEFFICIENTS 1/D .00 .01 .02 .03 .04 .05 .06
2 3 4 7 s 1 9 5 6 O .0000oO.000003.~~lz .ooO02i.ooOOM.000075.000108.000146.000191.000242 .000298.oao360.0004Z9.~503 .000583.00066S.000760.00085T .0009~ .001069 .001184.001304.001431.m15G~.0017m .001844.001993.00’2143 .002308.002474 .002646.~~szs .003006.0031%.0033R9.003589.00379.5.m~~ .004zzz.004444 .004672.WMN15 .00514~.ms:~~~.00.5638.005893.006153.006-i19 .006691.006968 .007250.00753S.OM’831.008129.008433.008742.009057.009377.009702.010032 . . . . .010368.010709.01105.5.01lM7 .011764, .
.
.09
.018176 .022842
.01!3620 .019069 .023336 .023835
.0195~:3 .019983 .0243:]S .024847
.020447 .020916 .025360” .025879
.021390 .021869 .022353 .026402 .026930 .027462
.10
.028000
.028542
.029642
.030760
.031326
.031897 .032473
.141883 .142969 .144059
.146Z18 .147347
1:18042 1:;9719 14!)554 .150663
,140799
.145152
.08
.
.029090
.
.
.
.030198
.
.
.
.
.033053
, .24
.137.56S .148449
423 P
A
R V
ILIN ELLIPSOIDAL A U L M E HEADS S A
T O
SPHERESN
D
COEFFICIENTS (Cont.) H/D
O
1
3
2
4
5
6
7
8
9
,17~~~9 .184086 .19615,5 .2084s4
.161912 .1734.56 .18.5281 .197377 .2097:30
.163054 .174626 .186479 .198601 .210979
.164198 .17.5799 .187679 .199827 .’212231
.165345 .176974 .188S82 .201056 .21348.5
.166495 .1781.53 .190088 .20228S .214741
. 0 . . .
. . . . .
. . . . .
. . . .
. , . . .
.26 .27 .28 .29
.15625(3 .157376 .167648 .168804 .179334 .191’296 .203<522
1.5X5(X3 . 16!I!W3 . 1s1705 J937Z() ,~0599~
.
.31 .32 .33 ,:{4
.228718 .2416CA .254826 .~fj~lgz
. . . . .
.218526 .~:]1289 .244280 .257483 .270889
.258815 .272240
.35 .36 .37 <38 .39
.281750 .295488 .309394 .323456 .337662
.283116 .296871 .310793 .324870 .339090
.284484 .298256 .312194 .326286 .340519
.285853 .299643 .313597 .327703 .341950
.287224 .201031 .31504)1 .329122 .343382
.288597 .302421 .316406 .330542 .344815
.289972 .303812 .317813 .331963 .346250
.291348 .305205 .319222 .333386 .347685
.292727 .306600 .320632 .334810 .349122
.294106 .307996 .322043 .336235 .350561
.40 .41 .42 .43 .44
.352000 .366458 .381024 .395686 .410432
.353441 .36791O .382486 .397157 .411911
.354882 .369363 .383949 .398629 .413390
.356325 .370817 .395413 .400102 .414870
.357769 .372272 .386878 .401575 .416351
.359215 .373728 .388344 .403049 .417833
.3fXM61 .375185 .389810 .404524 .419315
.362109 .376644 .391278 .40f3000 .420798
:363557 .378103 .392746 .407477 .422281
.365007 .379563 .394216 .408954 .423765
. . . . .
.426735 .441619 .456.549 .471514 .486501
.428221 .443110 .458044 .473012 .488001
.429708 .444601 .459539 .474510 .489501
.431195 .446093 .461035 .476008 .491000
.432682 .447586 .462531 .477507 .492500
.434170 .449079 .464028 .479005 .494000
,435659 .450572 .465524 .480504 .495500
.437148 .438638 .452066 .453560 .467021 .468519 .482003 .483503 .4970W3 .498500
.50 .51 .52 .53 .54
.500000 .514998 .529984 .544946 .559872
.501500 .516497 .531481 .546440 .561362
.503000 .517997 .532979 .547934 .562852
.504500 .519496 .534476 .549428 .564341
.506000 .520995 .535972 .550921 .565830
.507500 .522493 .537469 .552414 .567318
.509000 .523992 .538965 .553907 .568805
.510499 .525490 .540461 .555399 .570292
.511999 .526988 .541956 .556890 .571779
.513499 .528486 .543451 .558381 .573265
.55 .56 .57 .58 .59
.574750 .58956S .604314 .618976 .633542
.576235 .591046 .605784 .620437 .634993
.577719 .592523 .607254 .621897 .636443
.579202 .594000 .608722 .623356 .637891
.580685 .595476 .610190 .624815 .639339
.582167 .596951 .611656 .626272 .640785
.583649 .598425 .613122 .627728 .642231
.5S5130 .599898 .614587 .629183 .643675
..586610 .601371 .616051 .630637 .645118
.588089 .602843 .617514 .632090 .646559
.60 .61 .62 .63 .64
.648000 .662338 .676544 .690606 .704512
.649439 .66376.5 .677957 .692~4 .705894
.650878 .665190 .679368 .693400 .707273
.652315 .666614 .680778 .694795 .708652
.653750 .668037 .682187 .696188 .710028
.655185 .669458 .683594 .697579 .711403
.656618 .670878 .684999 .698969 .712776
.658050 .672297 .686403 .700357 .714147
.659481 .673714 .687806 .701744 .715,516
.660910 .675130 .689207 .703129 .716884
.723695 .737178 .750464 .763541 .776396
.725052 .738516 .751781 .764837 .777669
.726407 .739851 .753096 .766130 778940
.727760 .741185 ,754410 ,767422 .780208
,729111 .742517 .755720 .768711 .781474
.730461 .743846 .757029 ,769997
,
.
19792 .232578 .
.720976 .734497 .747823 .760943 .773843
. . . .
f
.70 .71 .72 .73 .74
.784000 796478 .808704 .820666 .83235’2
.78.5259 .797712 .809912 .821847 .833505
.786515 .798944 .811118 .823026 .834655
.787769 .800173 ,812321 .824201 .835802
.75 .76 .77 .78 .79
.843750 .854848 .865634 .876096 .886222
.844873 .85.594r .866695 .877124 .887216
.845994 .857031 .867753 .878148 .88S206
. . . . .
.848226 .859201 .869858 .880187 .890176
.849337 .860281 .870906 .881202 .891155
.850446 .861358 .871951 .882213 .892131
.851551 .862432 .872992 .883220 .893104
.852653 .863502 .874030 .884224 .894073
.853752 .864570 .875065 ,885225 .895038
.80 .81 .8z .83 .84
.896000 .905418 .914464 .923126 .931392
.896958 .906340 .915348 .923971 .93~19f3
.897913 .907257
.898864 .908171 .917103 .925648 .933793
.899811 .909082 .917976 .926481 .934585
.900755 .909988 .918844 .927309 .935373
.901695 .910891 .919708 .928134 .936157
.902631 .911790 .920568 ,928954 .9369:36
.903564 .912685 .921425 .929771 .93771’2
.90449:1 .913576 .922277 .930584 .938483
424
PARTIALVOLUMESIN ELLIPSOIDALHEADSANDSPHERES COEFFICIENTS(Cont.) H/D .S(}
.{\ i
O
1
. . . .
. . . ,
,!)(j(j:](j~
.!)(jtj%li
,
9 .
. ,
3
2
1.
. . . . .
. . . .
. 1
,q~ ,!)~I$J24 ,OS~~(}~\ ,9~yyj7 ,!):; .!)S5986 .9X6374 .986757 ,94 ,!)H96:{2 .98996S .q~om)~ ,gj .{)6 .{)7 .q~ .99 1,001
,J)9~750 .9!)3032 .9!).5:VZ3 .~q.5.5.56 .9973.54 .997.526 .!-)9s816 .998931 .999702 .!J9W’5S ,()()(XM)O
.!)93:;09 .!)9.5778 .99769z .!)99040 .!)99809
4
6
5
, . . . S
. .
, .
.993.581 ,<)~.50{)4 .997SS2 .9{19143 .WXW54
.!)!):;s47 ,~)f)(j~ofi .9!)S007 .!)!)9240 .!NW89’2
. . . , .
,!kl:]i(j-!
. , , . +
,
7
.!)-ll,-)O1
.!l.l;f)(j:l
, , .
. . . .
. . .
,
.
1 1ti,j
.!J7!J,53J .!)S()()17 .!)S0477 .!)S0!):11 .9%{126 .!)s35.70 .9S:N69 ,WLHw .!)s47!)1 .9S3L94 .9s71 ;\.; .9s7507 .!)S7S74 ,f)SS2:3[i.{)8,WJ9:1.9%S94.j .99062!3 .9!W943 .9!)1’2.5S.091.567 .!XI1871 .992169 ,~\)4107 ,!)!)ti~11 .!)!)S1.56 .9w:J32 .999925
9
.!)4 .-,j:j.l
i(
1
8
.
.!)X1:{S() .!)%359:; .9S920 I .992462
,f)~~~(j~ .994(jlj .!194S,56 .9!).50!).5 .9!)(X311.!IWLX(),5.!)96994 .997177 .998:300 .!)!)S4:17 .WXWIX).Wl!lfi!)ti .999417 .999497 .9!W.J71 .999(L!O .999952 ,!10!)!)73 .WW9N3 .999997
425
A *
S
( S qF o straight mr e isnot e i an flanges
a
Iu e a e r n et f ci t l f u i do tgeh t ud
) ar
nhbe e
sl
S M 1 eE H m W s l t C ys l i i nd d 2er i c a lA : F i dc S i a m eperht eE e rl l il p F s l ol ia ad a n pl gh n ee rd H i e a ehH* e ea d a d d Lineal Foot H e D a iH ds of Vessel 92 8 X0 D 2) 7 ( 1 0 x D ( c n- x D) Di n h e . s D 0( ( . . x 59 D .)28 71 X O D
u
1
3
.
1 21
.
04
0
.
19
9
.
02
5
.
1
3
.
.
.
28
2
.
15
1
.
4
.
16 19
4
1
1 46 1 61
9
.
24
6
.
14
7
.
1
.
4
.
.
17
5
.
0
.
35 42
0
2
4 5
5
.
26
3
.
2
5
1
20
6
38
2 2
.
2
. .
.
2 87 13 0
. .
21 23
.
3 27
.
36
6
.
6
.
4
42
.
38
3
.
56 66
2
6
.
5 68
.
41
1
.
72
3
.
32
0
.
2
7
.
.
52
9
.
.
.
.
.
55
8
.
7
.
40 46
5
7
82 91
0
3
5 83 6 08
8
.
3
8
.
.
67
7
.
16
3
8
. .
7 8
.
9
. .
70
3
7 23 8 49 9 64
15 12
3
9
.
83
.
5 1 3 2
5.3 6.9
1 .
7.9 7.1 08.
1 .
13 1. 1
2 4 2 5 27
1. 5 2. 7
29 75
59. 10.
21
61 69
10.
58 92 35 85
1 1.
89 0 0 42
9.4 17.
1. 1.
2
03 57
10. 17.
13
4
14. 2 1.
80
0
12 7
33
3.9 3. 0
9 .
.
1 . 7 . 4 .
4
1
0
4
1
1
4
1
2
5
1
4
6
1
5
2. 2.
6 7
1 1
7 8
3. 3.
6 2
23 89
2 8. 3 5.
71 32
4. 0 5. 0
87 06
10. 20. 20.
7
2
0
2
1
8 46 4 93
32. 49.
80
8
4. 5.
6. 0 7. 0
86 06
35. 30.
33 89
9
2
3
88
8. 0 1. 0
40. 0 50 .
43
5
56. 50.
68
2
0 51 6 29
12
9
6. 6.
60. 77.
68 42
1. 0 1. 5
64
2 3
3 55 . 7 65 .
1. 5 10. 11 .
4 0 5 0
1 70 . 7 70 .
07
7 8
.
62
10 . 20 .
9 5
3 58 0 09
.
50
0 5
. 0
7 2
0 2 20 .
2 2
7 10 6 10
. 1
2 3
1
2
0
6
1
2
0
8
1
2
1
9
1
3
2
1
1
3
2
1
3
1 1
8
01 44
54
7. 8.
2 4
2
9. 1. 1.
3
4
1.
3
3
6
1.
88 85. 32 0 0 5 9 90 . 20 ~ ( ) . 10 6 9 1 9 0 23 5 21 6 . 1 0 1 84 2 41 0 . 2 0 1
3
4
7
1.
4 5 7
8
78 28
71 0 . 3
0 9 1 2
2 .
05 32 80
e ‘ c
D
i
meter
g
9A
: ;
1 2
;
D
I
W
M II L L ITEMQ EU THI V E A R L E N T S Milli-
Dm ” ea
m
.
7
. .
7 8 9
. .
3 4
. .
.
5 6
.
cli
i
l
I9
1
1 1
Decimal
m
. . .
1
~
Milli-
- mDecimala
M
1 1 1 1
. . .
.
1
.
2
. ;
1 1 1
. .
2 2 2
D
i 2 I 2
1
AF INCHES
In.
o
0 .0000
~ ~
1
2
3
4
5
6
7
8
9
10
. . . .
. . . .
. . . .
. . . .
. . . .
. . , .
. . , .
. . . .
. . . .
. ;
. . . .
. . .
. , . .
. . . .
. . . .
. . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . ,
. . . .
. . . .
. . .
. . . .
. , , .
. . . .
. . . .
. . . .
. . . ,
. . . .
. . . .
. . . .
. . . .
. , . .
. . . .
. . . .
. . . .
. . . ,
. . . .
. . . X
I
. . . .
.
11
427
METRIC SYSTEM OF MEASUREMENT This systemhas the advantagethatit is a coherentsystem.Eachquantityhasonlyone
unitandall baseunitsare relatedto eachother.Thefractionsandmultiplesoftheunits are made in the decimal system.
U
O M
M symbol m
unit
Length Area Volume Weight/massl Time Temperature
meter meter2 meter 3 gram second degree Celsius
equivalent of 39.37 in 1.196 sq.yard 1.310 cu.yard 0.035 Oz second O“C = 32°F 100”C = + 212°F
MUL~PLES AND FRACTIONSOF UNITS S
y
prefix b o
m
m m c d d h k m
m c d D h k M
I l Unit Multiplied by i
k i
e
n n
e e e
k i e
]r 1 1t 1
c k 1 1 t l 1 g 1
i i i a o o a
) 0 0 0
EXAMPLE:Unit of weightis gram; 1000 gram is one kilogram,1 kg
1,000m= 1 kilometer,km
MEASURESOF LENGTH UNIT: METER, m
z
I
*1 decimeter, dm = O.lm
Z ~ 1 centimeter, cm = 0.01 m gs ~ ~ 1 millimeter, mm = 0.001 m *not used in practice
N
I
o(
0 0 0
a i.
l6 3s
m l t .h o u h . u n d2 1 t e t 0 h u n 2 t h o 3u m i l 6
i
o a
r n e d
n e r
s l
a i
428
METRIC SYSTEM OF MEASUREMENT
T LLJ
1,()()0,000m2 = I = I
< ~
= 1
a*
MEASURESOF AREA UNIT: SQUARE METER, m2
2 o+
r ~
~ -J ~ L L o
*I sq. decimeter, dm2 = 0.01 m2 1 sq. centimeter, cm2 = 0.0001m2 1 sq. millimeter, mm2 = 0.000,001m2 i p
r
a
c
t
i
c n e
MEASURES OF VOLUME UNIT: CUBIC METER. m3 1 hectoliter, hl = 1 liter, 1 = cu. centimeter = cu. millimeter =
1
O.lm~ 0.001m3 0.000,001m3 0.000,000,001m3
g= 1t
t
100,000 g = 1 quintal, q 1,000 g = 1 kilogram, kg 10 g = 1 dekagram, dg
$I ~
G
~~
~ ~ 1
L E
o~ G ~ ~ -J
&L
MEASURES OF WEIGHT UNIT: GRAM, g centigram, cg = 0.01 g milligram, mg = 0.001 g
429 4
M
S
O M ,
M k
m
1 km l ~
1c 1m I 1m
E
A OS LU
d
c
R E
EN S
mm
p
G
T F H mm
m
m
1 m & 1
1 0
1 1
1 0 1 p 0
1 0 . - 2 104 1 107 m1 0 - 5 1 1 0 - 6 10 - 3 1 - 21 10 1 0 - m 1 0 - . 1 0 - 9 1 0 - 6 10 - 5 1 - 4 1 10 p
1
0 0 30 -
MEASURES OF AREA k
h
ma
1k 1 ha l
1
1m 10
1
0 10-’
1 m
1
1 0
1 1 1
1m0 01m 010-10 m
1d 1c 1m
1
M m 1m 1 hl 1 1 d 1c 1m
1 10-1
It lq 1 kg 1 dg lg 1 Cg 1 mg
1 1
1
1 1 1
m10 m10 m1 0
1 10-1 10-3 10-5 10-6 10-8 10-9
01’ -
1
-
1
a
01 201
201
4 1 . 6 1
01 01
m 40 0
6
201010 01
40 20
1 a 21 0 1 0 1 0 - 1z 0 - 8 1 0 -1 0 1 ]z 0 - 0 (1 1 1 12 0 2 1 0
- 41 201 0 - 6 102 -. 4 1 2 . 8) 1 0 6- 1 - 4 - 1 0 - 8 10 - 6
E
EL S
A OS VU 1 1
h
10
t
1 1
2
d 3 3
1 0 1- 1
R O
01- s 10- s 10 - J
U
M F
6 40 4 20
0 20 - 4 E 3 m 3 0
3
1
m l m m 1 33 0 0 1( 0
1
0
2
5 3
1- 3 1 -3 1 0-6 1 0- 9
c
m 1 8
1( 1 2
1
1 2 10 .5 1 0 -8
1( 1 -3 10 - 6
MEASURESOF WEIGHT dg kg g ~ 105 106 103 10 105 102 104 1 102 103 10-2 1 10.4 10-2 10 1 10-5 10-3 10-1 1 10-7 10-5 10-3 10-’2 10-8 10-6 10-4 10-3
Cg 108 107 105 103 102 1 10-1
1 32
0 0
0 0
3
0 3 0 -6
mg 109 108 106 104 103 10 1
EXAMPLE CALCULATION Weight of the water in a cylindrical vessel of 2,000 mm inside diameter and 10,000 mm length: 3.1416 x 1,0002 x 10,000 = 31,416,000,000 mm3 31,416 liter, 1 31.416 cu. meter, m 31416 kilogram, kg (The weight of one liter of pure water at the maximum density (4”C) equals one kilogram.)
6 3 3
430 METRIC SYSTEM OF MEASUREMENT RECOMMENDED PRESSUREVESSELDIAMETERS Diameter in millimeters
Diameter in inches
630 800
24-30 36 42-48 54-60
1,000
1,250
Diameter in inches
Diameter in millimeters
66-72 78-90 96-120 126-156
1,600 2,000 2,500 3,150
RECOMMENDED TANKDIAMETERS
, Diameters in API feet
Diameters in meters
Diameters in API feet
Diameters in meters
10 15 20 25 30 35-40 45-50 60
3.15 4.00 5.00 6.30 8.00 10.00 12.50 16.00
70-80 90-100 120 140-163 180-200 220-240 260-300
20.00 25.00 31.50 40.00 50.00 63.00 80.00
The recommendeddiameters are based on a geometricprogression,called Renard Series(R1O)of PreferredNumbers.* Dimensionson drawingsshall be expressedin millimeters.The symbolfor millimee n r n ib e s o odh eot )d o r da w Hw ht oei n tw n f gen o esv l . r el h ro ters, mm (no p s
b hs
D
i
m
oah t ea n
s5 bd i
d ol a
,wm r w l aA h w e D ni In M ng LE es N : A S II OM L NI LSR L I M E T EE
o ii onm s ig lv l i mi em t ea txs e pyrin rsm eeb ts ese1r e s 1dm ( e 0.
Scales @Metric Drawings: enlarging the object, 2, 5, 10, 20 times reducing the object in proportion of 1:2.5, 1:5, 1:10, 1:20, 1:50, 1:100, 1:200, 1:500, 1:1000
a i with k Metric, i The n National g Board t of Boiler and Pressure * Reference: M Vessel Inspectors.
g
0
2 v
1
i
I
I 1
431
’32
433
434
I t
I II
II
I
I I
t
I I
I
I
435
436
.
I
I
2
II
I
II
II
I
t
II
I
I 00
-
r
4 m ‘]“ T ‘“
*
A
G
I
-
-
0 r-l
Oulclcnm
0
-
w)
0
0 e
-me
c
437
-F
i
0 0 0 0 w, @ r- m m
0
0
438 —
1
I
h —
—
— * —
m — N — .
t
5
i
439
440
I
1
.
1
r
:
I
t
1
I
1
I
441 CONVERSION TABLE – DEGREE D
E
GT
1 DEGREE = + —
1 1
0.0174533 0.0349066 0.0523599 0,06981 32
i2 ;3 ;4
5 6 7 8 9
0.0872665 0.10471 98 0.1221730 0.1396263
;5 ;6 57 58 59
0 0 0
. , .
e
w
2 2 2
70 71 072 9 273 6 474 4
4 8 3
3 9 4
135 9 136 S 6 137 0 138 139
0 0 0
20 21 22 23 24
0.3490659 0.366S1 91 0.3839724 0.4014257 0.4188790
78 79 80 81 82 83 84
25 26 27 28 29
0.4363323 0.4537856 0.47123 89 0.4886922 0.50614 S5
85 86 87 88 89
30 31 32 33 34
0.5235988 0.5410521 0.5585054 0.5759587 0.5934119
90 91 92 93 94
140 141 142 143 144 145 146 147 148 149 150 151 152 1s3 154
35 36 37 38 39
0.6108652 0,62831 85 0.6457718 0,6632251 0.6806784 0.6981317 0.715S850 0,73303 83 0.7504916 0,7679449
95 96 97 98 99 00 01 02 03 04
155 156 157 158 159 160 161 162 163 164
0,7853982 0.8028515 0.8203047 0,8377580 0.8552113 0.8726646 0.89011 79 0.9075712 0.9250245 0,9424778
05 06 07 08 ’09 ‘lo
165 166 167 168 169 170 171 172 173 174
40 41 42 43 44 45 46 47 48 49 50
.
2 75 6 2 76 7 2 977 6
0,3141593 0,3316126
1 9 7
7 2 0
A E e
E D s— M o
1
125 [26 127 128 129 130 131 9 132 5 2 133 8 134 6 1
15 16 17 18 19
.9 .2
e
120° 121 122 [23 [24
0
2 3 4
[0 11 12 13 14
D
R
SI
A
NO
i
n
uS 1
2 3 4
2 3 4
5 6 7 8 9
5 6 7 8 9
—
—
4 7
180 —
—
—
te
ec
so
~
175 176 177 178 179
0.95993 .09773844 0.9948377 1.01229
S
= 0.01745 RADIANS
0 0
0
,
0
0
442
C
T R
1 R R
a
d
A
3 4 5 6 7 8 9
n
’
’29“.6 171053 ’14“.4 229010’39“.2
DT
= ~D
i Tenths a
1 2
A
DI
=I 5
A E A7
G N
’
5
E
EO R7
o ~’
6
S 8E
E
S
Ten-
Thousandths
t
j
I 0 8’41”.3 1043‘Q7“.9
00 6‘52”, 5 O010‘!8
6 2
1
O0 0
“.6
00 0’41“.3 1 f
5 1
I1
3 1I
R S
.N D 2 E 9 G5
siiundrcdths
11027‘33“. O 1701I ‘19“. 4
114035
– D
O 2
8
1 O
E 1
2
X
A C S
M
o
P
L
E
S
h 8 a 2 3n t 7gr. 6 ea 4 d ° i ’ ”a o n l Fu t t i r oo a o n po: b p ol m s a ei tn ge 8 26’ 3 3
= = = =7
1 0 0
. 75 . 0 . 40
14 6 .
1 r 8 a 4 03d 0 r 7 a5 6d 0 r 0 a1 ”6d 27 r0 6 sa 1 ’ 6d
~
2
C S
h 1 a . r n 5a t g. dd2 eie 6 o l Fu t t i r ao a n bo: b
1 0 0 0 0
a = . = = . . 0 = =0 . 0
1
.
r
5
5
5d 1 i 4 2 3 5 01 8 4 00 2 3 0 0o 4
=2 8 = 8
86 2
5i 4 a 3i 1 a 4i 8 a
n n n
s s s
4i 3 a
n
s
ag 2 nr o lm
5 2 6 2
a 47 n782 8 5 7 0 1
2 2 4
26 31 71 6
se v e 8 . . . .
e o s e 0 t > °4 30 6° 30
. .
’
’
” ’ ” ’ ” ’ ”
°4 ’ 04 ’
° ”
443 CONVERSION TABLE – DEGREE MINUTESANDSECONDSTO DECIMALSOF A DEGREE ,
0333 0500 0667 0
6 7 8
13
5 6 7 8
0
1;
0
0
26 27 28 29
30 31 32 33 34 35 36 37 38 :: 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 % ,
001 002 003 004
o’ 4“ o’ 7“ o’ 11” o’ 14” O’ 18”
0.;}
o’
o“
O.:\
3’
o“
0.005 250
0.1667
4333 4500 4667 4833 0.5000 5167 5333 5500 5667 0.5833 6000 6167 6333 6500 0.6667 6833 7000 7167 7333 0.7500 7667 7833 8000 8167 0.8333 8500 8667 8833 9000 0.9167 9333 9500 9667 9833 1.000 0
26 27 28 29
30
31 32 33 34 35 36 37 38 :; 41 42 43 44 45 46 47 48 49 50 51 52 53 :: 56 57 58 ;?) ,9
722 750 778 806 0.00833 861 889 917 944 0.00972 01000 028 056 083 0.01111 139 167 194 222 0.01250 278 306 333 361 0.01389 417 444 472 500 0.01528 556 583 611 639 0.01667 0
o
‘
o’ 028 056 083 111
1 2 3 4
“
0
0
2 3 4
5
o
0
o 1
DECIMALSOF A DECREETO MINUTESANDSECONDS o“
009
0.00
51 52 53
o%
6’ 0“
0.%
0.i:
9’
0“
9’ 10’ 10’ 11’ 12’ 12’ 13’ 13’ 14’ 15’ 15’ 16’ 16’ 17’
36” 12” 48” 24” 0“ 36” 12” 48” 24” 0“ 36” 12” 48” 24”
0.%
18’
O“
16 17 18 o.% 21 22 23 o% 26 27 28
o% 31 32 33 0.:: 36 37 38 0.;: 41 42 43 0.1: 46 47 48 o% 0
18’ 36” 19’ 12” 19’ 48” 20’ 24” 21’ o“ 21’ 36” 22’ 12” 22’ 48” 23’ 24” 24’ O“ 24’ 36” 25’ 12” 25’ 48” 26’ 24” 27’ O“ 27’ 36” 28’ 12” 28’ 48” 29’ 24” 30’ 0“ ‘ and “
76 77 78 O.;’b 81 82 83 0.;: 86 87 88
0.% 91 92 93 0.32 96 97 98 1.% 10 20 30 1.% 60 70 80 2.;: o
‘
“
30’
0“
30’ 31’ 31’ 32’
36” 12” 48” 24”
33’
0“
36’ 0“
39’
0“
45’ 45’ 46’ 46’ 47’ 4.8’ 48’ 49’ 49’ 50’ 51’ 51’ 52’ 52’
0“ 36” 12” 48” 24” O“ 36” 12” 48” 24” o“ 36” 12” 48”
54’ o“ 54’ 36” 55’ 12” 55’ 48” 56’ 24” 57’ o“ 57’ 36” 58’ 12” 58’ 48” 59’ 24” 60’ O“ 66’ O“ 72’ O“ 78’ O“ 84’ O“ 90’ o“ 96’ O“ 102’ o“ 108’ O“ 114’ o“ 120’ o“ ‘ and “
444
+
‘mIwl o &
o d-
.
445
446
C ( c c
c e e
F
o Fn fv ea mor cs e t i t seor ton t a or itnh Ss ndm a g s er hdyert s st rAe t f ieEe f1S3cm 8e , 0T M U L T I P L Y B Y B T A T O 3 . x 2 8 fl 0 8 e& 3 e2 n t ........................................ i m e t e r s . 3 9 3 7 n t ........................................ i m e t e r s
............................... :ubic feet ........................................... :ubic feet ........................................... :ubic feet ........................................... ....................................... ...................................... ...................................... ......................................... . ... . .... . . .. . .... . . .. ........................................ ..................................................... ..................... ..................... ..................... ................... ................... ......... . . . .. . . .. . .... .. ... . . ... ........................... .............................. ................................................. d ....... ..................... .............
l
iters ................................................... meters
............................ ...................
meters
................................................
meters
................................................ statute
.....................................
.......................................... .......................................... ............................ ........... ........... radians ............................................... ............................ .................................... .................................... ...................................... ...................................... ....... ........................................... .. . .. . . ... . .... . ... . . ... . . .. . . .. . . ... .. ... . ... .. . .. . .. . . . .. . . .. .. .... .. .. .. .... .......................................... .......................................... y ......
a
447
PART IV. DESIGN OF STEEL STRUCTURES
3. CenterofGravity .................................................................................. 452 4.
Beam Formulas..................................................................................... 455
5. DesignofWelded Joints ....................................................................... 458 6.
ExampleofCalculations ....................................................................... 461
7. Bolted Connections............................................................................... 463
448
S
A
S
F
T
DEFINITION OF SYMBOLS s~ = Bendingstress,psi A =Cross s e c a t i i r o n en a s l a 2= Shearstress,psi , . ~ AR = RequiredcrosssectionalArea, in2 S~ = Allowabletensileor compressive
I =Moment of inertia, in4 M =Moment, in-lb M* = Allowablemoment,in-lb
P =F olb r c e , PA = Allowable force. lb =Tensile or compressive stress, psi s TYPE OF LOADING
p-p
;:i;;;, J
A, = $:in21
TENSION .
s = + (psi) P
A+ COMPRESSION P
p (in2) AR = —
s~
mA
p
.
p (
PA = AS~~ (lb)
-
s~ = ~A(psi) ~P
P/2+— Q Double SHEAR P[
Z
= Distance from neutral axis to extreme fiber, in = Section modulus, in3 EXAMPLES
The stress in a 2 x % in. bar made from SA 285-C steel due to 5,000 lb. tensional load is: Area, A = 2 x V4= 0.5 in2; S = $ = 5~~0 = 10,000 p
To support a load of 11,000 Ibs. in compression, the required area of steel bar m f aS 2r sd 8io t e 5em p s ) ~i > P AR = — = E = 0.5 inz s~ ,
AR =$~~n2)
Single
>J2~
Y
PA = AS4 (lb)
s
.L.
stress, si S~* = AlIowat le bendingstress,psi. s~~ = Allowableshear stress,psi.
P
= 2AS~~ (lb)
The required area of bolt made from SA-307 B steel to support a load of 15,000lbs. in double shear: AR =~
A= 2s,4 .*~51’~~o~=0.75 in’
A – p (in2) 2ss~ M = P/ (in-lb)
The maximumbendingmomentat the
MA = ZS~ (in-lb)
sup ort of a cantilever beam due to a loaJ of 1,000 Ibs. acting at a distance of
M (in3) zjQ= sr--
60inchesfrom the support:
M =Pl = 1,000 X 60 = 60,000 in-lb. Q
s = ; (psi) BENDING
S* = ~, (psi) mm
d
-Y
z=~ b u SECTION MODULU s
y
Section modulus
If dimensionb =2 in. and d=4 axisof moment on the base. 1=42.67. Z= I/y = 42.67/4 = 10.67 in3 axis of moment throu h center, 1= 10.67, Z=Ily = 10.67I2 = ! .335 in3
s
449
STRESSES
A
FOR NONPRESSUREPARTSOF VESSELSANDOTHERSTRUCTURES TYPE OF STRESS & JOINT
SOURCE
ALLOWABLESTRESS
;TEEL
CODE
0.60x 0.60 x 0.66 x 0.40 x
Compression rension (except pin eonneetion) Bending ~hear Bearing (on projected area of bolts i s W
oh c E
UCS-23 Notes
1.60x The values of 0.80x 1 tables UCS-23
Bearing Shear
o en
J L
n
ea c
OD S EI
tn ir o TD N
E
Full penetration groove weld tension, compression, shear Partial penetration groove weld 1. tension transverse to axis of weld, shear on throat 2. tension parallel to axis of weld or compression on throat
1
x
T
E
n )
Specified minimum yield stress Min. tensile .
}
s
F
t
r
American Institute of Steel C o n s t r 5 e n g t h
L
same as for the steel welded American Welding Society
13,600psi same as for the steel welded
Fdlet weld, shear on throat
13,600psi (using throat dimension) 9,600 psi (using leg dimension)
Plug or slot weld
same as fillet weld
i 1,
.-
-
P D
E
F
A
=
1
=
O
ON S I i zr
I
A
Y T
SR
I MO
BN O I JF j r Radius of gyration, ~~ = e n a Y =, D . i s t a a n [ ec i ’ . z =n i ’
xxe f
t i i ir n
b
A = bd I=
f =
. : , ::, .,. , ,, :: . :,: . E& Z =
Z =
r = 0.577d
r = 0.289a
y
1
A =
d
1----1
r = 0.S77a
a
.
—’:”
,
.
,,
: y = .
,
u
k b
y = Yzd I
.
a
.
d
–
‘= A = ‘~ bd
,: .
I=
2
a
~~ :’ “i Y
A = az
, ,..
\@
“~~ .
Z
a
L
h
I=
Z = 0.118 a~
Z =
r = 0.289a
r =
d
A =
I = Z =~’–
a—
r = 0.289 U2+ b2
K
b
a
/
\ /“
—
a
:“,,.:.”’
\
~
Y
-r = 0.408d A = Y= ~=
A = y = 0.707a I
12
~ -
Z =(0.118a’ –
r = 0,289
E!h ‘ ‘ I -
Z =
w
+
A = bd
A =
y = Y2d
Y=
I=
I =
Z=
r = 0,289d
1
-
Z =
r = .. -
+ +
( b ( +4 a +b 1 ( 2
Q
a a
a
451
P F
O SR
D
E
A
=
I ON S I
TY I MO
1
= Moment of inertia, in.4
NB r
O.
z
=
O
LF S c
z
A = ~ =: ~ –
A = ,. y = ?
w
,,,.,,,. . .,., :,:,.-- ,.,.:,. .:::.:. Y , .
F
I= Z = 0.098(D4-d4 )/D
L
➤
[
S c
R
-(a z =I
u
r =
e o t c w t hai ol‘ i n l y wl Ri 1 nh d e e r0 ~ ;
ef n n
A =
IGi
[
1 = R’( r z = R’[ r r = O.
I
i
~ L
!
3
r
d E s
d =
/ f
A = bd - h (b – t) Y =
Z= r
,
-
b—t) dA = 4 ~ . b – ((l?d+ a)+ dz > 1 , ~ + 7 5z =
a
A = Y=
0.132
6
d
A = Y= I Z r A = y = i = [bd’–h’(b–O] /12
Z
A =
/4 = bs + h(
i ~
?..... ... :~,: fj
y =
2
+
!= ...............
Y z = r
be
+
1=
.:: ::::— Y
{ ii r
i =
,.,, :,:.,.:,:,:.:.: ,.,.;.:.:.:. .......,
d r
x f
,
Section modulus,
1
:
452
G
C
E
‘ center of gravity h of an area ore body is the point through which about any axis the loment of the area or body is zero. If a body of homogeneousmaterial at the center of ravity were suspended it would be balanced in all directions. ‘he center of gravityof symmetricalareas ass uare, rectangle,circle,etc. coincideswith h geometrical center of the area.e For arqas w1 i c n hsymmetrical . a oor whichare r e t
Ymmetricalabout one axn only, the center of gravitymaybe determinedby calculation.
-+ . 25
The center of gravity is located on the centerline of symmetry. (Axis y –y) To determine the exact location of it: 1 Divide the area into 3 rectangles . and calculate the area of each. (A, B, C) 2. Determine the center of gravity of the rectangles and determine the distances a b and c to a selected axis (x – x) per endicular to axis y – y. 3. Calculate distance y to rocate the center of -gravity o r m u l a : by the f y = Aa+ Bb + A +B+ C A s s f ua mo rr i eon c e tg Aa= 16, an B= gr l14 s e sf : and C= 12 square inches and for the distances of center of gravities: a = 1, b = 5 and c = 9 inches.
Y
I
c
C.g”
I
Y
x
b
~-
x
a
Y
EXAMPLE #1
y = 16X 1+ 14X5+12X 9 = 4462in. 16+ 14+ 12 The area is not symmetrical about an axi:s. The center of gravity may be determined gy calculating the moments with reference to two selected axes. To determine the distances of center of gravity to these -
Y h
( c
-
a x e s : 1 Divide the area into 3 rectangles . and calculate the
c1
areas of each. (A, B, C) 2 D a d
t t e c r meo ig hn .r oe t a r ev e eli r d i sn at hb aa n c t c ad e xes na, x t%e s al,t bl, ac, t n a c y –e sx iy 3. Calculatedistancesx and y by the formulas:
,
... 4cj-
x -+A.
\
a
E
A+B+C
Y x
y = Aa+Bb + Cc A+B+C
—al Y X
hct f , -i o s
x = AuI +Bbl + Ccl
ccl+ 1 - ‘A
b x 1’ t
e t i
A# M
P
A aL c
s s f ua mo rr i eon c e gt A a= 1an Bgr=14 l s e sf 6 CE 1 s n qi2 una f ac dd =rih 2sn oeeto a s n eo g nr a at = v 1 ibe=t c= i r 9: e sf 4, : b,=1 5
and c,=3 ~ = 16x 4+ 14x 1+12x 3 = 2.71 in. y = 16X 1+ 14x5+12x8 16+ 14+ 12 16+ 14+ 12
= 4.62 in.
4
C A
rh
\
L
\
E
‘
A
a
c
B
.
I
B-
R c
I
A N G L E eo g h n r i at a t evi e n itr e t rhof sly e AD c itsa it eoBE, nn e bh the i isides s BC c eand Ahc Thet p e r Cp e nd d ii c .s u l t a t cr eo\ g ohn r t any ta mone ve ofe the i r sides t is f yequal too t hh pei e hr i pr e gnt dt ih side. ce u tHence, hl a ra = ha+ 3 o t
T T p
R A P E Z O I D D 7 c eo g h n r i ot a t vel e ji r a l r AB a i l DE. ln e el
e
h
c m
1
‘D
IEd
f!J--
1---
T /< 4
@
=
~
ot i thf iym s
n n isp ni hedon e dgi
~ = h (2 a + b) 3 (a+ b)
(a + 2 b)
3 (a+ b) a + e =
2
3(
b
a
+
)
SECTOR OF CIRCLE Distance b from center of gravity to center of circle is: 2 rc = r2c = 38 ~g, r sin a b o! ‘T E an ih e x p i rd e e s g s r e sed of i w A h= i sector,c For the area of a half-circle: b = A r + 3 T = 0.4244r For the area of a quarter circle: b = 4 & X r + 3 T = o.6o02r
rA a
E
T T w f t ”
r
r
O G
b
F
t
a
o a os r h o ai c e irx
er a t c f
lh
ef
:
b = 2 r + T = 0.6366 r r
1
SEGMENT OF CIRCLE The distance of the center of gravity from the center of the circle ~3 r3 s a i n is: b = — A 12A = 3 in which A ==area of segment.
C
b
l=$kl
PART OF CIRCULAR RING b from center of gravity to center of circle is:
R r
b = 38.197 ‘$~$a
&
A
h
x g p i rdegrees. l e s e s
•i-r
T o
h
l
frustum
o
oc th a c
d
t
eoi g ohen r no tta
of a cone is determined
I *
e sd
n
FRUSTUM OF CONE For a solid frustum of a circular cone the formula: a = h (R2 + 2 R + 3 rz) 4 (R2 -i- Rr r2)
}
3
a in e
–
P
a –
r
c vef eo isr nhtu foi yar
c f f
by:
h(
2r
3 (R+ r)
R
+
)
4
C
O G
E
EXAMPLES A
1
1 2r-o”-
-o
0
=
0
’
I
“
I
80 Ibs 75000 Ibs ’600
b lb lb
Ibs
x
1800
2’-6”
I
lb 600 lb 78880 lb
75000 x 50’ + 80
x=
X
2’ + 1800 X iO’ + 800
102’ + 600
X
X
2’-6” + 600
X
97’-6”
=
Ibs 4,017,760 =
78,880
= 50,935’ = 50” – I 1.1/4”
108’-0”
B
t’ 6’-0”– 5’-0”
2400
I
b
1900 lbs s &
= 1000 Ibk
I
,
t
9 2’ *
56’4’)” (17000 Ibs)
2’-0”
42’-0” (24000 Ibs) ~
+
A[ weight:
x
17000 lb 1400 lb
1
-
.
l
9
●
x
2400 x ~’+ 24000x 27’+ 100ox 49’ + 1 = 4
2200,900 =—= 47.700
46.14’ = 46’-1] ’16”
77
Ibs. 7
1 0 ,
7
14 8 0 1 ( 0 0 1’ J 9. x7 o O
O 0+ ’ X1 0 +
4
B D
E
E r I
= = = =
P=
F
I ON S I
F TY I M O
NB
O O W’L F = Sload, lb.
!
M F
= = =
e
=
u n i d f i os trl r mi bl ouy t e oo f m io l e r n c nt x b e= fD , i .p s . at t ara Xan i lcx l e e i ln o co o n r c le ncl t or aeA t ae=f dD b de f il , e c. t i on n ,
=
R
V v w
Cantilever fixed at one end – Concentrated load at free end K
A s
R ~
R V p = Po M X
p
P r
= tt =
= 1
, P
X
x
a
Ax t = ~6EI ‘2’3 – 312X+ X3)
A free end, Arnu = $&
1
Cantilever fixed at one end - Concentrated load at any point R= V=P b A support, = P t When x>a = – a) Y Pb3 R (31 - b) At free end, Amu = ~
P
-II p
u
,
b
Whenx>a Whenx
-j
x
6
3I
E
E
Cantilever fixed at one end – Uniform load over entire span R = V = Vx
R
A support,
At freeend,
=
=
Wi
Wx
W12
l14max = ~
W14 A = -
—
2 E
8
Mx=
t
( !– 4 4
+
+ ! 3 1 _X I E
1
Cantilever fixed at one end – Load increasing uniformly from free end to support
R
R
V=w
w=
-+-
At free end, A
Vx=WA
M
=
12
A support,
=
x
WI
—
=
t
3
W13
= ~m
W12
free end, O = + — Z2EI
A a=
& &
x () –
1 E5 4
x 1xr
456
B
O
Supported at both ends Concentrated load at mid-span R] = R2 = v = P/2 1/2 P Pl A load, = — W xt < h M1 e ~ 4 R2
5
P
12
F
RI x
l
P = —a m 4
Ao
1
B
W S
6
u
x < h1
‘e ‘
‘
1 , e =nx– ~ E 1
Ad e a 8 /(
n– 4~ 3
1 n x
3 = dI 6
1 P
a
R2 = V2 = — W x h 1 i 1– b~)s ~ when a > b A rnti = — A l 2 &> 3 ~bx W x
RI x 1
m
91=– & (2al
A ends,
= + —
7
S
u
a
p a pb o e r
P,
P2
e nu d tn
W
R
x
x
t
nt
—a 1
d
MX = — e<
A o.
a
)
-
(3f’–t 4a2)
A center, Arnax =~
a
–3a’
d
cw deo t nhq c seul n ota oer al qat s e uddpf a sea l r , cl = x
V=P
R
RI B
T ot
+ $
i
h
= —e
:1
I ’31a
– n3a2 – X2}
When X>u AX (3h - 3X2– az) but x <(1– Q) = ~ At ends, 6 = Pa 2EI(1 – a)
1
8 Supported at both ends Two equal concentrated loads, unequally spaced from ends + P2b ~2 = + P2(1- b) RI = V1 = PP I 1 a b Whenx when RIQ1 Ml = RI a = – PI – v but X h M2 = R2eb Max w RI R1 W x but x < (1 - b) MX = RI x – (X – a)
a both ends Uniformload overentirespan
)
R = ~
1
‘
c
=
WI
e ‘
-
n ‘
l V=W —-j ( 2
W t
center,Arnu= ~ 1
*
At ends,
V
)
P
M ~ ( - xx) -e m r t- ’ j a
Ax
–
‘
E
’
Pbx
Max when a >b
b
,
2 X X/ 1 x ’
to C e no dn tc e ld n t tah ra aospt e d oa n Pb An l a < b h R~ = V/ e= — o =
p a pb o e r Max w
t
=
+
’
O= — 24EI
m
457
B o
F ends Uniform load partially distributed over span’ (2cn + b) c a< h = e= ~ Max w
,l~lR
lvlaxwhena~:V W 2 x
X
I
F 12
p
a ib
1/2
<,
e x
\
–t
a
oC oen n ct de l nd ta hrm ao sti e dd a-
$tte;e~;er and
~
M... . ~ V
‘ M.1 =e ~. (4x/ –n 1)
xx < h A
=
s
–
pd a t n
8 P
2
A =
&
X
-
4
Fixed at both ends Uni~orm load over entire span
~
V
R = V =
\ / II[i ;IIII1] ‘
\ /
R
x
3
–a
a+
/
A
e>+ b) u n= (
x<
=;
W
$
i \
hb
RI
=
R=
$
=~(2.,~)
At x = a + ~ 2W w =RIX When x a but Mx = R W x h b) > =e( –a n +
Mmax
‘b
‘
O
M
1
‘ ‘
A e
I m
n =
x+
=
-7 w
x(
JA s center, t , M = (61x– i2 – 6XZ) .
W/2
Wd
=
W14
At center,
=
) t
(1 - X)2
= —
3
Both ends are overhanging Uniform load over entire beam R = V{ + V2 = w(a + l\2) VXI = WXI V. = W(X– 112)
x
u
I!!
x
a
a
R,
RI
For overhang,
= ~
B
e s t u wp
A
~
Whena M
=
.
A support,
M
= $
M. pe =o e ~ r n(lx t –s X2– , a’) – 4
t
x total length or A = .3541 WP
== — 1
M
C
6
t
458
D
W
J
FOR STRUCTURALMEMBERS GROOVE-AWELD a u Groove w
s
ac a f t m
i a
t
o t b m t j
F g
W
t
s
o
t
FILLET WELD
of w
S
u e
l
e
The size of an equal-leg fillet weld is the leg dimension of the largest 45° ri ht triangle inscribed in the cross section of the wel8 .
throat / ,.‘... b
d
I-1---J%’
The size of an unequal-legfilletweldis the shortestdistancefrom the root to the face of the filletweld.
face ,,
Throat dimension= 0.707 x leg dimension
K
root
MinimumWeldsize* \ Thicknessof the thickerplate, in. Minimum fillet weld size, in.
over 1/2 3/16
3/4 ‘/4
‘/2 %6
ZY4 %
6
6
‘/2
5/8
* Weld size need not to exceed the thickness of the thinner part joined
Economyof filletwelding 1. Use the minimumsizeof filletweldrequiredfor the desiredstrength.
Increasing the size of a fillet weld in di~ectproportion, the volume (and costs) of it will increase with the square of its size.
2. L
p 3. A
o
ow s f p
tc a e a e vc t c l e oen t t b r diri c oei dat acy ,c d ea s i i s doli oebwy l n e- ,w e l d i t i o n . wi pt lr ae l nl s t vyet l e f r t s t edoa l hyc rg h r csi o ete e rea ve ot ne eg tr h
/
)#
,
AllowableLoad
The strength of the welds is a function of the welding procedure and the electrode used. For carbon steeI joints commonly used maximum allowable static load 9,600 (9.6 kips) lbs f W er 1 square inch of the fillet weld leg-area, or 600 Ibson a %6” le x 1“ I
Fo
e
x
at
am l p l l oh eowr a: % ao xb 1 ell ae f
C o mL b oi n ae S s h at eb r e aoe ntn v e c t Io i r b i a ola tl ye m e t h o d
w oi d 4 xln% 0 ne =“l 2
4 0“eIlg
t
db
d d s sord r sis s t niddr og t e ne sac r slcul e o nsm a t bd r ec ii oo cn am g b s. l t ea hhat ss pde t r noiaoesn vcir mi ya pd cl edoi nsf s i ne e r dv .
-rd7
D
W
J
FOR STRUCTURALMEMBERS subjectedto bendingmoment,in2
~ = Length of weld, in. W f = A l l l o ow w$o b9 elk ae p m .l e eg a rr = B e m n o d k mi en i ng
A
V e sr thk i e c i aa l r p , = F wi l l d e i l m eiel n ts i d o l ~i .=ddL n op , f o 6 wi s k al e p l li d e nd e a l ii o nw n e ea c l l h t ps , = Avera se vertical shear on fillet V =
weld, Eips per lin. inch of weld w~ = Bending force on weld, kips per
P = Allowable concentrated axial ? w
“
“
BENDING
VERTICAL SHE,AR
COMPRESSION
RESULTANT FORCE: W = ~W,2 + W22+ W32 EXAMPLE #1 Determine the required size of fillet weld. The length of the weld is all around 8.5 inches and the tensional load 20 kips. 20,000 Ibs. ~ . -P- .’ 20 —= 8.5 A,,,
2.35 kips per lin. in.
o w
w = =—
0.24; use X“ fillet weld
f
$
.
EXAMPLE #2 Determine the required size of fillet weld. The length of the weld 12 inches (6” each side) and the load 9 kips. & 62 Section modulus, (from table) SW= ~= ~= 12 in’ 9,000 lbs 3’ M 3x9 = 2.25 kips per lin. inch Bending Force, ~ = — 12 w
v
Shear ForceW, = ~W= ~ = 0.75kips per lin. inch Resultantforce, W =
~
2
+ 0
=
kips per lin. inch.
W 2.37 Fillet weld size, w = — =— = .247”; use K“ fillet weld f 9.6
460
DESIG~
x—.
W
OF’
J
PROPERTIES OF WELD OUTLINES 1 I d2 s. = —6
-- x t
s ‘ ~d
z
I S
L
= b
W
d
— — b iY —
i r
+ I
d ( =t~
S ( S— (
+ d o
dl ( + d o= —tx t o 6 (2b + d)
b x r at bottom) (max.stress Y
+
I
--b Y 1-l
s
. b
4 p
b w 4 )
mW
+ :
)
) 3 b
W
)
d
x
,v
I d ( = t~
S (
b
+ o
p
2
w
d
b
)
1 Y I
d
A‘
x
~ I Y
;W = (
b
(
– fm
-
SW.
d (2b + d) 2 o~ t t o m ) ) + a ob a o r x t ct . o e m t )
b t d
x
-
1
dx 1
hi
l
x +
–
x
S 0
. ~
d
w
2
)
461
E
C
AX
E
C
AX EXAMPLE #2
I ._===------=--- _-.---= =---- .- .
A vertical vessel is supported by two beams. The weight of the vessel is 20,000 lbs 1 = 120 in Assume pin joint The load on one beam: Moment:
I d
10,000x 120
P M =—= 4
4
l
= 300,000 in-lb
Required section modulus:
10’-0”
z=!! S* Assuming for allowable stress, SA: 20,000 psi, I b:
I
:
I
Section modulus: z= 300,000 = 15 in3
20,000
The section modulus of a wide flange 8WF 20 is 17 in3 Moment of inertia: 69.2 Stress at the center of wide flange: M Sz=—=
10,000 lbs
A
I
300,000 17
= 17,647psi
Deflection: A A
48EI
=
10,000x 1203 ~
=
48 x 29,000,000 X 69.~=
.1794 in -
%6
h.
463
B
C
FOR STRUCTURAL MEMBERS REQUIRED LENGTH OF BOLTS REQUIRED BOLTLENGTH= GRIP+ D1MENS1ONS BELOW,i
NOMINAL BOLT D
I
: A T S1EW HR AE 2 W SRO
* Ny W”
1
I1
%
7
/
1
1
A ,
7
1f
I
/
1
1y16
1~
1%6
f ?46
1E
1 I1
1Y
s S
8
5
/
1
6
1
1 l
e R
8
1~
1i
1
h SE H R E
6
/
1
1
c
A SH
1~
1 7
n
1l 1
7
2
2/
‘
8
z ~
1 ~
6
1
6
MINIMUM EDGE DISTANCE AND SPACE The minimumdistancefrom the center of bolt hole to any edge MINIMUM EDGEDISTANCE
BOLT DIAMETER
A S
H 7
7
AA R R
E
1~
5
3
1/8
1y2
1 1% 1
1
E T D m
—
m
/ .
4
~ ~2
2
4
3 g
8
m
.y
45 4
l
y
z
4
1? l y1
R
o
m
1~
2
~16°
/
1
4
‘
BOLT HOLES shall be
8
7
1y
/
L
3
/
2
EOTO D L
L /E D
8-
I
y
4 z D S8 T B
larger than bolt diameter.
ALLOWABLE LOADS in kips SA 307 unfinished bolts and connected material: SA 283C, SA 285C, SA 36 NominalDiameter o B
o
T A
eS n t i r
A l i T A L S
l
l s r i el e a
lL o wo a e n s l i o h
o
w a e
ba i
a Sb d Da
vi
es 0 ,
s .0 n
l e4d o n n l i e3 s o 6r
2 .0
6 n u
n
s ,
4 g. 8 b.
9
1y /
1/
7
3
f t
23 .0 .
6 l . 1 l .
51
11
4
l
8
1E /
634. 0 0466 . 0 5107 . 1 7569 . 1 7361 . .
07e . 12e
y
3954
125. 9 2 9.1 3 23 .21
8. 37
182 1
194. 5
7.2 4
185. 4 2 9.0 4 24 .73
39, 81
5.5 8
162 2 49
7.
10
2.
PARTV. .MISCELLANEOUS 1. Abbreviations........................................................................................ 466 2.
Codes, Standards,Specifications.......................................................... 470
3. Boiler and Pressure VesselLaws.......................................................... 474 4.
5.
List ofOrganizations Sponsoring or Publishing Codes, Standards or Specifications Dealing with Pressure Vessels . . .. . . . . .
476
Literature............................................................................................... 479
6. Definitions ............................................................................................ 483 7. Index ti_~.___~~_~~~fi~ti.~.ti.~~~.~~~mu~~tiomofiu.ti.ti. m.o.ti.~. 494
466
A COMPILED:From 1 ASAZ32.13-1950ABBREVIATIONS . FOR USE ON DRAWINGS 2. ASAZIO.I-I941 ABBREVIATIONS FOR SCIENTIFIC& ENGINEERINGTERMS ABBREVIATIONS GENERALLYUSEDON VESSEL& PIPINGDRAWINGS
ADDED:
Ccw cfm
AnchorBolt AmericanInstitute of SteelConstruction Allowance Allowable AmericanNational StandardsInstitute AmericanStandard Association AmericanPetroleum Institute Approximately Asbestos AmericanSocietyof MechanicalEngineers AmericanSociety for TestingMat’ls.
AB AISC
ALLOW ANSI ASA API APPROX ASB ASME
ASTM AVG
A
bbl
Barrel
B B
B BE
B B B B b
BL BO BO B Bt U
R
v
e
CFW CG CG cm % %to% co CONC CPLG CORR ALLOW COUP CRS
r
a
g Cse
CounterClockwise CubicFoot per Minute ContinuousFillet Weld CommercialGrade Centerof Gravity Centimeter Centerline Centerlineto Centerline Company Concentric Coupling CorrosionAllowance Coupling ColdRolled Steel Carbon Steel
c
C
oi e
l oo P t o t rK a rT i h n
C et C n to c e CT e n Cl t C u C l iD n Cu t F u c df f eC l o c Pt i o C mp o Tt HW u Wn Cm cT k e D t D o w n t ue i r s mD h a l DE oE u i t H e D e t E ve e l D l d W Cr vV
l c e
B B
B We BW i r m Wire i Gn
c CA
Gauge Degree Centigrade Corrosion Allowance
g
h
a DIA m
DIAM DIM DP
Diameter Diameter Dimension Design Pressure
e t R t bu bo. kw deT cc xH a T
n e e i
o s ri e g o m e b t l v a i . w
i i
t
467
ABBREVIATIONS (cont.) DT’L DWG
Detail Drawing
HLA HLL
HighLevelAlarm HighLiquidLevel
EA EH EL ELEV ELL ELLIP
Each Extra Heavy Elevation Elevation Elbow Ellipse, Elliptical, Ellipsoid Equal, Equally Et Cetera External Fahrenheit Face to Face Flanged & Dished Flat Face Figure Finish Flange Far Side, Forged Steel Foot, Feet Cubic Foot Fillet Weld Gram Gage Galvanized Gallon Gage Glass Gage of Outstanding Leg Gallon per Day Gallon per Minute Grade Heavy Head Hemispherical Hexagonal Handhole Hole
HLSD
High Level Shut Down Hot Rolled Heat Treatment Inside Diameter inches Including, Included Inspection Internal Joint Efficiency Kilogram Liter Pound Pound Force Pounds Level Control Liquid Control Valve Long Level Gage Lineal Foot (Feet) Low Level Alarm Liquid Level Control Low Level Shut Down Long Radius Low Stage Long WeldingNeck Meter Machine Bolt Mark Material Maximum Allowable Working Pressure Maximum Manhole Minimum Marked
EQ ETC EXT F F-F F&D FF FIG FIN FLG FS ft FT3 FW 13 GA GALV gal GG GOL gpd gpm GR HVY HD HEMIS HEX HH HL
HR HT ID in INCL INS INT JE kg 1 lb lbf lbs LC LCV LG LG Lin. ft. LLA LLC LLSD LR Ls LWN m MB MK MAT’L MAWP MAX MH MIN MK’D
468 7
ABBREVIATIONS (cont.)
mm MMSCF MSCF MW N N&C NLL NO NOM NPS
NS NTS OA
OD OR OSHA Oz Ozs P PBE Pc Pcs Pcv PI —. k PROJ PSE psi psia psig
Millimeter MillionStandard CubicFeet ThousandStandard CubicFeet Manway North New& Cold NormalLiquidLevel Number Nominal NationalPipe Size AmericanNational Taper PipeThread NearSide Not to Scale Overall OutsideDiameter OutsideRadius OccupationalSafety and HealthAdministration Ounce Ounces Pressure PlainBoth Ends PressureControl Pieces PressureControl Valve PressureIndicator Plate Projection PlainSmallEnd Pound per Square Inch Pound per Square Inch Absolute Pound per Square Inch Gage
RAD REF REINF REPAD REQ’D RF RJ RTJ RV s s/c SCF SCH SCR SCR’D SDV SERV Sht. SF SHT SM SMLS so SPA SPEC SPGR SQ SR Ss s-s s/s STD STL STR SUPT SYM T&B TC TBE
Radial Reference Reinforcing ReinforcingPad Required RaisedFace RingJoint RingType Joint ReliefValve Schedule ShopCoat StandardCubicFoot Schedule Screw Screwed ShutdownValve ServiceSheet StraightFlange Sheet Seam Seamless SlipOn Spacing Specification SpecificGravity Square Short Radius StainlessSteel Seamto Seam Standard Steel Straddle Support Symmetrical Top & Bottom TemperatureControl ThreadedBoth Ends
-
ABBREVIATIONS (cont.)
Psv R TEMA
THD THK TI TLE TOC TOS TS TSE T-T TW TW
Pressure Safety Valve Radius Tubular Exchanger Manufacturers Association Threaded, Thread Thick Temperature Indicator Threaded Large End Top of Concrete Top of Steel Tube Sheet Threaded Small End Tangent to Tangent Tack Weld Thermowell
TYP USAS VA VOL v WG ~ OUT WP WT XH
XX STG
Typical United States of America Standards Institute Valve Volume With Water Gallon WeldingNeck Without Working Pressure Weight Extra Heavy Double Extra Heavy Double Extra Strong
470
STANDARDS,SPECIFICATIONS
C
PRESSURE VESSELS, BOILERS ASME Boiler and Pressure Vessel Code,
I I I Iv v
V V V I x
X
P M N H N R B R P R W F R
1995
B S P B
p P
C
E R
V a f
o f
C
a
R f —D
C
o P 1 D
B I
Q P I
O
o H e B 2—A
e u
i
P o N
V
b P
P
Components British Standards Institution (BSI) 1500 —Fusion Welded Pressure Vessels for Use in the Chemical, Petroleum and Allied Industries 1515 —Fusion Welded Pressure Vessels for Use in the Chemical, Petroleum and Allied Industries (advanced design and con struction) Canadian Standards Association (CSA) B-51 -h41991 - Code for the Construction and Inspection of Boiler! and Pressure Vessels TANKS American Petroleum Institute (API) Spec 12B Specification for Bolted Tanks for Storage of Production Liquids, 1990 Spec 12D Specification for Field Welded Tanks for Storage of Production Liquids, 1982
CODES,S
S
1
Std 620 Std 650
U N
1
N
5
f
Shop Welded Tanks for Storage of Prop duction Liquids, 1988 Recommended Rules for Design and Construction of Large Welded, Low-Pressure Storage Tanks, 1990 Welded Steel Tanks for Oil Storage, 1988
L
A D N N N N
S
S
S t S t W
I A L U L W
(
n
a
T
f
F
a
C
b
T
f
F
a
C
n
A
(
AWWA Standard for Welded Steel Tanks for Water Storage
F P F L L
3 5 5
A &C P P
( L S a U
G G
r C a H G P
l
PIPING
A B B B B B B
N —1 —1 — 1 — 1989 —1 —1
S P F C L R
I
(
m
P G
P P
a
P
P
R
T P
P w
Gas Transmission
P S
1
A
and Distribution
r e
Piping Systems
HEAT EXCHANGERS
E S s
J M 5 E
w
1
A A
a
I P
G
a tt E
x
J
PIPES American National Standards Institute (ANSI) ANSI B36.19-1976 Stainless Steel Pipe ANSVASME B36.1OM-1985 Welded and Seamless Wrought Steel Pipe
CODES,STANDARDS,SPECIFICATIONS
FLANGES, AND VALVES
F
I
American National Standards Institute (ANSI) ANSI B16.25-1992 B ANSI B16. 10-1992 F ANSI B 16.9-1993 ANSI B 16.14-1991 ANSI B 16.11-1991 ANSI B16.5 1988 ANSI B 16.20-1993
E a
F F F F w F T P A R F
u E
D
o
a
V W P P
S
P
B
B
a
a
L
T S
F a
F a O G
S F S a
a F A G
S f
N S
P
M
A
(ASTM) 1989 Annual Book of ASTM Standards, Section 1 Iron and Steel Products Volume01.O1/SteelPiping, Tubing and Fittings, 131 Standards Volume 01.03/Steel Plate, Sheet, Strip, and Wire, 95 Standards Volume 01.04/Structural Steel, Concrete Reinforcing Steel, Pressure Vessel Plate and Forgings, Steel Rails, Wheels, and Tires — 135 S The American S
f
T
a
M
M
I
I U S
C B S
C P
o B — 1 C
O
n (
o
(
t
Steel Structures Painting Manual Volume 1, Good Painting Practice Volume 2, Systems and Specifications U S b S —
B a P V L S o B a P V L C C a P (
R
a S
R a C
473 CODES,STANDARDS,SPECIFICATIONS Environment P C o Federal Regulations, Protection of Environment, 198840- Parts 53 to 60 (Obtainable from any Government Printing Office)
A
S o C E (ASCE) Minimum Design Loads for Buildings and Other Structures ASCE 7-88 (Formerly ANSI A58.1)
r
TABULATION OF THE BOILER AND PRESSURE VESSEL LAWS OF THE UNITED STATES AND CANADA JURISDICTION Alabama
I II NNNN
Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida
YYYY YNYN YYYY YYYY YYYY YYYN YYYY YNYY
YN NN YY YY YY NN YY NN
Georgia
YYYY
YY
Hawaii Idaho Illinois Indiana
YYYY YYYY YNYY YYYY
Y Y YY YN
I
o
wY
Y a
XV VIII(1)VIII(2) XI NN
Y
Y
Y
YYYNNY YYYYNN YNYN YNYY YYYY YYYYN Y Y Y YNYY YNYY YYYY YNYN YNYN
Nevada New Hampshire
YNYY
Y
YNYY YYYY YNYN YNYY YYYY YNYY YYYY YNYY YYYY YYYY YYYY YYYY NNNN YNYN YYYY YYYNNY YYYY YNYY YYYY
N YY NN N Y YN YY YN YY YY YY YY NN NN YY
New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pemsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia
I P 1 (
y N
NN YN Y N YY N Y N N
B o o 1 1
wi )
VIII(l)- PressureVessels e s VIII(2)-PressureV XI-I n Is n e s r p ve N
Y
Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska
Y*
KEY:ASMECode SEC
u
c
l
e
Y
N- Lawdoesnotcover *-Onlyportionsof Codeorcall jurisdiction Y y Y N y N N
SOl.JRCE: T
c
o h nt
da
be io un
::;;:t$;n ;::5:::0;::5;; Law5RulesandRegu,ation~ CoP~right 1994 uniform Boilerand PressureVessel LawsSociety. [t doesnotlistalltheexemp-
N
tionandvari~cesinthem
N
laws and regulations.More detailedinformation is avail:::5u;::;:;:n:::;:;:n:;; beobtainedfromthejurisdictiomlauthority ortheSociety.
N Y
ls
YY YN YY
.
475 TABULATION OF THE BOILER OF T
A
P
V
U
S
A
L C
(continued) JURISDICTION Washington West Virginia Wisconsin Wyoming Alberta British Columbia Manitoba New Brunswick New Foundland &
1 11 YYYY YNNY YYYY YNNY YYYY Y Y YYYY YYYY Y N
IV VIII(1) VIII(2) XI YY NN YY NN YY Y Y Y Y YY YY Y Y Y N
SEC I P
Labrador Northwest Territories Nova Scotia Ontario Prince Edward Island Quebec Saskatchewan Yukon Territory Albuquerque Buffalo Chicago Denver Des Moines
Y N Y YNNY YYYY Y Y Y YYYY YYYY Y Y Y YNYN YYYYNN YYYY YYYY YNYN
Detroit Los Angeles Memphis Miami Milwaukee New Orleans New York City Omaha
St. Joseph St. Louis Seattle Spokane Tacoma Tucson Tulsa UniversityCity Dade County JeffersonParish St. Louis County District of Columbia
Y Y
Y
Y YN YY Y YN YY N NN
N N
B o
o
wi
l
IV-HeatingBoilers VIII(l)- PressureVessels VIII(2)-PressureVessels XI-1nservice Inspection, N
u
c
l
e
Y-RequiredbyLaw N- Lawdoesnotcover *- Onlyportionsof Codeorcall jurisdiction
N
YY YY N
N
YYYY
Y
Y
YYYY
YN
B L
SOURCE: Thiscondensedtabulationof o dataistakenfromSynopsis ao P R a a
i r Vel n s ee s R u we g l u s nl ae
Y Y YYYY YYYY
Y
Y
Y Y YN
Y N
:::::i;;:
Y Y Y N YNYY
Y Y
Y y
Y N N
Y N N
::O;O:::;;::;C:; ;::;’;::; lawsandregulations. Moredev aa t i i tai]~di n f oi ar m
YYYY Y N Y Y YNYY YYYY YNYY YNYY YNYY YNYY YYYY Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
N Y Y N y y YN YN YN YN YN YN YN Y Y
N Y
u
t
;;e;:urJn;:;::
nS
o
Sdc
yhi
ene
‘Urther‘nformation.may be obtained fromthejurlsdlctlonalauthorl~orthe socie~
ot
476
L S
O O P D
S
C P
W
A PA
S P
OP V
~AME& ADDRESS 4MERICAN BUREAU OF SHIPPING 15Eisenhower Drive ~mmm, NJ 07652 (201) 368-9100 ENGINEERING & SAFETY SERVICE hMERICAN INSURAN CE SERVICES GROUP, INC. \5 John Street, New York, NY 10038
AISG, INC.
AMERICAN NATIONAL STANDARDS INSTITUTE** ANSI 11West42nd Street, New York, NY 10036 (212) 642-4900 U Sn oti A at m S etet a rIde n ni ds(s c a tfUarai d tS s u At ne S K*F p
t 1r
A
i m9 Se o t r 6a Ai rns c osd 6ao(a cn r i A da
ts i S o
n A
)
AMERICAN PETROLEUM INSTITUTE 1220L Street, Northwest Washington,D.C. 20005 (202) 682-8375
API
AMERICANSOCIETYOF MECHANICALENGINEERS 345East47thStreet NewYork,N.Y. 10017 (212)705-7722
ASME
AMERICANSOCIETYFOR TESTINGANDMATERIALS 1916RaceStreet l?hiladelphia, PA 19103 (215)299-5585
ASTM
AMERICANWATER WORKS ASSOCIATION 6666WestQuincyAvenue Denver,CO 80235 (303)794-7711
AWWA
AMERICAN WELDING SOCIETY P.O. Box 351040 Miami, FL 33135 For Orders Only 800-334-9353
AWS
BRITISHSTANDARDSINSTITUTION* 389ChiswickHighRoad LondonW44AL *BfitishStmdwdPublications areavailablefrom
BSI
The American
N
a StandardsInstitute t i o n
a
l
CANADIANSTANDARDSASSOCIATION 178RexdaleBlvd. Rexdale,ONCanadaM9W 1R3 COMMERCIALUNIONINSURANCE COMPANY OF AMERICA 1 Beacon Street Boston, MA 02108 (617) 725-7304
CSA
)
d
L
O
SPONSORING OR PUBLISHING CODES AND STANDARDSOR SPECIFICATIONS DEALING WITH PIPING ANDPRESSURE VESSELS N
& AA
D
DM
R
EE
S
A B B R E V I A T
S
COMPRESSED GAS ASSOCIATION, INC. 1725 Jefferson Davis Highway, Suite 1004 Arlington, Va22202 (703) 412-0900
CGA
EXPANSION JOINT MANUFACTURERS ASSOCIATION 25 North Broadway, Tarrytown, NY 10591
EJMA
HEAT EXCHANGE INSTITUTE, INC. 1300 Summer Ave., Cleveland, OH 44115 (216) 241-7333 I N T E R N A T IC OON N A LF E R O E N C E B U I O L FD F I I N C GI A L S 5 S Workman 3 0 . Mill6 Rd.
F
ICBO
Whittier, CA 90601 (310) 699-0541 THE NATIONALBOARDOF BOILER AND
PRESSUREVESSELINSPECTORS 1055CrupperAve.,ColumbusOH43229 (614)888-8320
NBBI
NATIONAL FIRE PROTECTION ASSOCIATION P.O. Box 9101, Batteryrnarch Park @incy, MA 02269 (617) 770-3000 (800) 344-3555 O C C U P A T IS O NA A ALF E TN H E AAD M L I N IT S T RHA T I O N 2 Constitution 0Avenue,N.W. 0
NGPA
Y
D
O
Washington,D.C.20210 (800)344-3555 S 5
TT
E I AN S E T N IL T UK T E 7 0 OakwoodRd.,LakeZurich,IL60047 (708)438-TANK
STEEL STRUCTURES PAINTING COUNCIL 40 24th Street, 6th Floor, Pittsburgh, PA 15222 Telephone: (412) 687-1113 Fax: (412) 687-1153
SSPC
TUBULAR EXCHANGER MANUFACTURERS 25 North Broadway, Tarrytown, NY 10591 (914) 332-0040 U N D E R W R L I T A E B R O SR A T OI R I E SN, 3 PfmgstenRoad,Northbrook, 3 3IL60062 (708)272-8800
C
.
UL
UNITED STATES COAST GUARD 2100 Second St. S.W., Washington, D.C. 20593 (202) 267-2967 U V 3
N I B F OO A IR P M LR E L S S SA O E C W LI N Evergreen 0 Rd., Suite 240 8
E EN S R S U DR E ST Y .
Louisville,KY40243 (502)244-6029
E
UBPVLS
L S S
O O P D
W
C P
A P A
S P
OP V
NAME& ADDRESS
ABBREVIATION
UNITED STATES ENVIRONMENT PROTECTION AGENCY 401 M Street, S.W., Washington, D.C. 20460
USEPA
WELDING RESEARCH COUNCIL 345 East 47th St. New York, NY 10017 (212) 705-7956
WRc
AMERICAN SOCIETY OF CIVIL ENGINEERS 345 E. 47th Street New York, NY 10017 (800) 548-2723
ASCE
LITERATURE
1. S. Timoshenko, Strength of AZateria/s, 1955, D. Van Nostrand Co., New York. 2. S.P. Timoshenko, Theory of P[ates and Shells, 1959, A4cGraw-lYiii Book Co., New York. 3. R.J. Roark and W Y F f S 1975, McGraw-Hill Book Co., New York.
a
S
5th Ed.
4. K.K. Mahajan, Design of Process Equipment-2nd Ed. 1985, Pressure
Vessel Handbook Publishing, Inc., Tulsa, OK. 5. L.E. Brownell and R.H. Young, Process E
D .
1
D
V
John Wiley and Sons, New York. (Out of Print)
6. M.B. Bickel and C. Ruiz, Pressure VesselDesign and Analysis, 1967, Macmillan Publishing Co. Inc., New York. 7. H.H. Bednar, Pressure Vessel Design Handbook, 2nd Edition, 1986, Van
Nostrand Reinhold Co., New York 8. S.S. Gill, The Stress Anaiysis of Pressure Vesselsand Pressure Vessel Components, 1970, 9. J.F. Harvey, Theory and Design of Modern Pressure Vessels 2nd Ed. 1974, Van Nostrand Reinhold Co., New York. 10. Pressure Vessels and Piping: Design and Analysis (Collected Papers)
Volume I. Analysis, 1972, ASME. 11. Pressure Vessels and Piping: Design and Analysis (Collected Papers) Volume II. Components and Structural Dynamics, 1972, ASME. 12. Pressure Vessels and Piping: Design and Analysis (Collected Papers) Volume III. Materials and Fabrication, 1976, ASME.
13. W. Soedel, Vibrations of Shells and Plates, 1981, Marcel Dekker, Inc., New York.
14. W. Flfigge, Stresses in Shells, 2nd Ed. 1973, Springer - Verlag, New York.
15. R. Szilard, Theory and Analysis ofPlates, 1974, P r e n t i cI e - Hn a l l c , E
n
g
C l e lN w
io
of
d f J
s
,
.
16. M. Hetdnyi, BeamsonElasticFoundation,1974,TheUniversityof Michigan
Press, Ann Arbor. 1
Foundation Design 7 Handbook . (Collected
1968,Hydrocarbon
Processing,Houston,TX. 18. Design of Flarzgesfor Full Face Gaskets, Bulletin No. 45, Taylor Forge& Pipe Works, Chicago,IL. 19. M. L. Betterley,Sheet Metal Drafting, 1961,McGraw-HillBook Co., Inc., New York 20, B. F. Forman:PressureVesselComputerPrograms,1995,PressureVessel HandbookPublishing,Inc., Tulsa, OK. 21. M. H. Jawad & J. R. Farr, Structural Analysis and Design of Process Equipment, 1984, John Wiley & Sons,New York.
22. Kohan, AnthonyLawrence,Pressure VesselSystems, 1987,McGraw-Hill Book Company,New York,NY. Do eR s Pressure n s n Vessel . ,i Design s Manual, , 1987, Gulf Publishing 23. M Co., Houston,TX.
481
S COVERED BY THE WORK(S) LISTED UNDER LITERATURE ( B B
n
uT r m t theb w e fo der
r hse wk at r( s l oi su ei b) n hj t eg
c
ht
e O C n y d l iSi n h nd e r gl i l c s af , l — Flange 1 4Design&Analysis,—8 A e n n o aSmooth,—6 dl ys s , i s fFlangedandFluedExpansion Joints,—4
BoltedJoints,— 9 BrittleFracture,LowStress,—6 Buckling, —6 ofFlatandCurvedPlates- Formulas, —3 BucklingofShells,—6 CastIronPressureVessels,—9 CodesofVariousCountries,—24 Collapse,FatigueandIncremental, —6 Composite Materials, —12 ComputerAnalysisofPressureVessels,—8 ConcreteforPressureVessels,—12 Cone,ConicalSectionwhenHalfApex AngleisGreaterthan30°,—7 ConicalHeadsandReducers,—6 Corrosion,— 6 CorrosionResistantMaterials,—12 Cracks,Development of,—6 CreepEffects,— 8 Cylindrical Shells,Analysisof,—6 DeadLoads,— 7 Deformations inPressureVessels,—3 DesignofFlanges,—4 Rectangular Tanks,—4 TallStacks,— 4 TallTowers,—7 Discontinuity Stresses,—7, 9 Division2 ofASMECodeComparison to Division1,—4 DynamicStability,—11 DynamicandTemperature Stress, Formulas,—3 EarthquakeLoads,—7, 24 EconomicsofDesignandConstruction,—9 ElasticStability,—8 PlatesandShells- Formulas,—3 ElasticStressAnalysis,— 6 ElevatedTemperature Effects,—10 EllipticalOpening,StressConcentration, —9 ExpansionJoints,FlangedandFlued,—4 PipeSegment,—4 ExternalLoads,—10,24 ExternalPressure;StressAnalysis,—8 Fatigue,—9, 10,12 Fatigueandincremental Collapse,—6 Filament-Wound PressureVessels,—9 FlangeDesign,— 4
FlangesandClosures,—11,24 FlangeswithFullFaceGasket—21 FlatClosurePlate,—6, 24 FlatPlates- Formulas,—3 Stressesin.,—9 FloatingHeads,StressAnalysisof,—4 Foundation Design,—20 Fracture,—6 FractureMechanics,— 10 FracturePropertiesofMaterials,—12 Heads,StressAnalysisof—8, 11,24 HeatExchangers, ShellandTube,—4, 24 HighTemperature Materials,—12 HubFlanges,Rotationof,—4 HydrogenEmbrittlement,—12 LegSupportforVerticalVessels,—4 LigamentStresses,Analysisof,—8 LimitAnalysisandPlasticity,— 10 LobedPressureVessels,— 9 LocalLoading,StressAnalysiso~—8, 11 LocalStressesinVessels,—7,23 LowStressBrittleFracture,— 6 LowTemperature Materials,—12 LugSupportforVerticalVessels,— 4 MaterialsforVessels,—6, 7,9,24 MembraneStresses,— 7,9 MitredBends,Analysisof,—6, 8 ModularConstruction, —9 Non-BoltedClosures,—9 Nozzles,—11,24 Nozzles,Intersection StressAnalysis,— 8 Nozzles,StressesinVesselsExertedby,— 15, 16,17 NozzleThermalSleeves,—9 ObliqueNozzles,— 6 PerforatedPlatesandShells,—11 PipeBends,StressAnalysiso~—8 PipeSegmentExpansionJoints,— 4 PipeSupportsat Intervals- Formulas,—3 PipeLoads,— 7 PipingSystems,StressAnalysisof,—6, 11 Plasticity,—10 PlasticCollapse,— 6 Plates,TheoryandAnalysisof,—18 Prestressed ConcreteVessels,—9 Rectangular Tanks,Designofi—4
.e
S
U
B
(J c E a Cz
T f hS u
R e i n f oo rO c p e em n e i n2n t g R S u i p p on ~ — g2 R o o t H a F tl ai n uo g ne S a D d oe d s ~2l ie — ,g S e A i n as l11my s i i sc
e
d
)
s , — 7f S, u o Vp 4epb Lso sur4 6 S u Lugs,Stresses p p Eoxerted r s , f— b 4 inVesselsby,— 24 7n , TallStacks, 4 Designof,—4, 24 , — TallTowers,Vibrationof,—4
SelectionofMaterials,—6 ShallowShells,—14 SheetMetalDrafting,—22 ShellandTubeHeatExchangers,— 4 ShellsofRevolution, Analysisof,—6, 24 SlidingSupportsforHorizontaland VerticalVessels,— 7 SphericalShells,Analysisof,—6 StressandStrainDueto Pressureonor BetweenElasticBodies- Formulas,—3 StressConcentration, —9 StressesinHorizontalVessels SupportedbyTwoSaddles(Zick),—7 StressesinFlatPlates,—9 StressesInVessels,—8,14,24 Formul~—3 Stacks,DesignsofTall,—4 StructuralDynamics, —11 SupportofVesselsbyLegs,—4, 7
etg t
l sf s , ,
Tanks,DesignofRectangular,—4 Temperature, EffectsofElevated,—10 Temperature Stresses- Formulas,—3 ThermalStresses,—7, 9 ThickCylinder,— 9 ThickShells,Anslysisof—6 TubeSheetDesign,Fixed,— 4 VerticalVesselsSupportedbyLugs,—4 1 Vibration,— AnalysisofTallTowers,—4 InducedbyFlow,—11 WeldDesign,— 7 WeldedJoints,Designof,—6,9 Welding,—12 Wind-Induced DeflectionofTowers,—7 Wind-Induced VibrationofTowers,—7 WindLoads,—7, 24
3
DEFINITIONS
f a t
—T r e o m s h uo m rv a fate ael a s r t o h otn rf l r o imai uc hy tocgdi oht nm n s o a ol t i ol ha gq ieo cu rod im ,bad i n, a h e r e o f . e l Pressure— The pressureabovethe
absolutezerovalueof pressurethattheoretically obtainsin emptyspaceor at the absolute zeroof temperate, as distinguishedfromgage pressure.
rc f i e a l — W i aew l o pe h en t r inef f tr i s o r n q u mi o a aL
e w l e d iq i onc t r ht hm i s
T po m m en a np t e a t r o y f I d n o il tn ow n a gd o i hdn rg
— Material backing up the joint
duringweldingto facilitate obtaininga sound w a
e t r h o o t —A o al n na uo s r m u b ygbs f t e ea a n r c e f s B a S c i atkb i a r nc h am ev p t r i ao anpl cel gor i nt ocisn ei s t i dn g i a f f o a s o t rr t o m e lw o ew mf er xino c tr ete sept ;t i o h nh ws , e c o m ap uo n s me un er et at sl ale lml e le y in ct s . t e f nha w s i i — T n e g p l i l g a i b s l t e i c d e f o o r a m o a r t i d o —A el . i i n t e pr s bel c eta zi t n(nn gw ee ed seumr n c e t o t ia al b j aou 9 di ( t cn n e jot t o(r) g i dnC n0 e. to a r ) d . e — M a at se tr b i ba ar rl s U A 6 0 ) w t hs hp r eh a cen t pnoi e c yra m w l d i s b t o fe r a t f i ool n u r r e e ua s ol t u gv a e ll h ,l o y b f e e —Av t i w y t hpi a ieno h acu,l a rn t h e il e r B t e gd u —t sh e h t t i Ap f f i c nt o gtnp a npi o e nce a n g l e s . w a f i ef im t l t a sat hl Ii ri i ean g h po w l i l ln ia t oe ue xwt tr t hnng e rah r —
— A w
j o et i m nle i m w l a yp p r oi ix ti m n a s p a lB wa m uen j oi p i r vne s et c o n s t s r u hc h t i c o m p e p n le a t e r t f u s i o n T o by w p jeu oel S oi D n oB g ue l So qBi J un ou at o rw e po lr oud c i ep ns f sg e sJ —Ag w h c oe a r l i epe s rci eob n nhd c eu ca e t s d i n y Fg P e un e tP r l aa t w a e i l a e wt c ort w rhi i i ntc tc t h , o hh u r t P e e n eB t J r a o ut i i wou o w i it in a p p ol pi c r aa et w i s oo w s n iuni t r t f e t h od h h u r t B Je b a s c t kr i i n u o f m i s el tl a ee f l r .
S?3
CD m=
m
m d p ih to p iao lt ahn at t rt nh n ue f a b a t o h xw n ru t ohmi t u oyio g s hmch e h a i z ri hc e o iewr nt ec o aii oesd ; ehntt ts pt r o t a a vm a i rt he t a r a iyi ea nl fif ez i ae n de i t t f h o m h o ag uei n ne p o i nnu l fs ao r td m e —T
a t g t
m I db I
e t c to r uc ar o o m wls bfi e oi oi lnn eea a s f t et air i e n g s g us e e s . n e t f — A threaded sleeve u t c so n hTei e hwrp i h f en a t t s eho ea bv. rr yne eoa eens l nx yt t dhieu prr sne i oaa t r l pd . — i d e f o r m —T l o i w n e o s f u c n o o ndd es c tes r a etT rna t r st i ie nersh i n t e fr mw i i te i tl el nl dt ei nt g n u s u uw ra s e l i ft tl ee b ryt ee odhn hhca at o l j ioe w ai h n e i tr p c, n h m ue t tn e a a e nd ll st eee simv p orae r nt a t i n c or whe me i e l n dTte ss i n l l ad ua et i crenn r g iod i ny f migh o eia m o l a a pi np r o r xn i m e a te e el y p r s e i st u s rs c i uepva aelsf l l ao s l l sl s ye i ht o sh e n e opposite to t f l o w . other line.
—T l u es h tona a r se g k i a f v i a g m e n n i a o n t v d e d e r r a c o ni d e t s a i a fgl tn l l e d uo o iw d o 1 I 1 t o s i e t r w v o r h i a e m i c n n e a e u f , l d m n t e p t h a i or d o s - u-i gn s r h en e c f se e b r toe ev fo ii noc hr olner I rte i m tion o A cn o t l m y ym .o p n h a p s ls a u as p te s n ed eo d m d t b p a hr o e d x i u csy c oeo bi ss neys g i t t r h e f v ah a e l r i t s oe e d wc >a c u t or s a i aec en x ceg cr eoup sa os r gravity in forcing the plate b c a f u a c s tr i aie ncxgy kcgs ui e nt es gs against a seat, shutting o f f r od r e un ip n t g u , r h a e r . r ef v l e ro s we . —C hi t fa o n o hg —O m eo r nt e m sh ou o evr dii ft n d fa gi cmo aeehb n p s r oi nbooes nd dt u r cf d e s fa s e u f cm i ot cs s a s s f euhl r s arle s m o i ro s u mf f t st es ntec oe sr s n iao p a wr t omi arI e nl eklt l y ie a mt doi l n a. t ehf or td , f e c o m ps or et s r s d e m f c ie t ac gh tt rrt hs fo ri ut n gyh i a hsd he o tee rn d u s i od n m a It t e d r e ai raf h le e b. mmc r oft ee vs ea e isd s n d y e s uf o a r d mc i a s t oa i hpo np o ag t t ot “a dr ee h s coef “ asr m hs i ecn mrg a ” e ro m s f rtop - erv r ead m e ls af ons i rf e m ; na i “ i u sn e dg s . s d e uf o ar r mc ea ot m i no ri h o ean o m s t r e s s . —A — A
m
a
—T p r u e ih sd s e u m ti m n i pi n he nir mt mgih suioes cm i bk p h c yh a sr a ico ttce dr ai is lt pf i cfhos ea r h C- s A eo - l e d 6. 0e h o c act v u e( r ssU — r o t e ve bn a hets se di -u rmer e f te aa l c x e s — T m m he e p fo w s e el od s i dn gr . t e m p ( e t r ath t t ru h ro i e euc h xkg nph e e ui — Penetration w e h xo cn p echd ro -an ef dt t i prtn ic g o o anh so s i (d U e C r G eo -d d.2 0e ) tended completely through the joint. a
—Aw
je a lt o j d u i en hcn d t ti ot e n — As oo u l a owa pcr p ra ot f xat oir mes a itd e s l yg o t s hir t n tt eetr n swsia f ai schi afa rt ni fi o n e og atl eh c se or h . r e l l a p t a i oo va sre t l t aryg ihu a coe t n nu — e r b m o o s t ii o osn i ln ge en sy i os fft i o fc vas en oe ths c r r t ta ern urh c E nh t x uro na r e m le o m oa gvG e i r d n ane srt d gt o srau u . ac tp l i aoo on t s t t f ear a w o g s r t r d u i o s c c o t s n a u t h i r f n s e a u i l a t i r d e m o ae d lt c hla peu orl m os ri cy c e e uas o sl e c s h a o x io t d a a toc a ic hto hs na ie mgo r ei esn c a naf fh ll at n eg . ejn - utl on n- cs l ho t ead ilz l o z n j u nb c e st t io hdw o i needf s ifel aeo n l m r ee t h i c k n e s s e s . — Damageto or failureof a
Corner
o t a
p tn e
oo u m r t fe c a c te oo n f at ic rn ilu o oaunm s l fs eo Ua h eii cp s nr ne v e e ssete s ots ir t n t e r n swsia f ai scih afa rt ni fio n e t c c t wjht c o n s w t e l s a v t mi oo vm eal al a uytdl enm lr o eni a f oel dr bus c otht t i awo n ee i ncl h nd a c c A e b s ssw i jrb u ell obe e . l lti e cdnl t t r a s i a g en i o vfft i o fc vase en eo tth c r r ta enl e sl w e s l b e h d pt ao ro t as t t iear a w urnh c nh t ur on r e le e s . x i raa a ndmi olgig r nfa lp eh ei d t f h l ( t o( r -h l d 1. a x aa s m f pmr il r s aea l s m d ll ei ea l i t l , l e (ue n U C gi l W t t a ac hp m ape en r nt sw et , t ire a a tdl i l od n s . — B — As
s r h s E a
e n d l u o rai ma anmi uct eesi m r u it ea af t mi t a sn x ht wti t m c r hb ur ee im e as va c es w fe bl i ddtn dm eel fh ni n.a iuo t t re mlw yi gbi p m te e h d f u r c a c i t n u r g e . — A w t ho v ei er h l c ad p h p g ee d e — As ot a mt s ae c o t m e t bmhj b o e fi fr e r ns e a sef o ue t d lcc r t o i m A ? een oh bgf o i f m n a w ae trl l e d o d e ehe n dgr a ocg e o se r s ir n o o s ni o dn . o b m eo m b t e r f hs . w o p h ri p io n m — Aj — T a bo a m i h lt se i t t te r yp ea i fn t otl cj o ph s boo t ia e i bts upt so n a b e p enc r mod a nem ed fwn eot i l r yt ml ho e n odg ei u tx u tp id tai pnn a l s l di i tho i n b r oe c a r kaD ci u kni c mi gt en i bgalr .si htu y r ee s d a yt . t p e r rc h ee nd i tau a ca ge tp er i e o rnne c ne a nd T r o t a l ht t t f y o hi F o a S c — a t f o e r t e l ao on t g bga t e i aeo n s r f t . w c o f a uao a m ui l l eos sdu mt rer bue c rte o s —Al o c oo m o pa la o n eotd t n rl t ta i oi fh hm d u pa i i aoos ep sde n ot a g r c ims r eavo a m col e t eoi s in m os b n — Te f e r on m ds a e tt nf e cr r yai a e c w c er n e ti t t s r s ip t echi ei dc ch t a t iuo oomt n nre e dapf toes a tse ni ctt ori norys n i sed n a t h to r cc oe nuT ht pg rt eho irh l ed pt . te eu nhe l -s t s hsiat t m ars ane t t ne egi d i d ci f su t t l l ra oa an r i cohc t e t n m i e hoe f n f e i l t e o p i r tci a n eha c i ndtie epot x r a cr l aFhci Sl ei — st An tsber u- ef e c oss r n r vs t oee n m ds o t et . l on n go t ih t teou cd neoi m ns eap lir e t rw ri ecti t si a ptt h xey ch i a t s i t a b r o oe e m st eass h m unt mbeb a WeldedJoint —Theefficiency b e I n i s d o i m un e tg t d . is m et te sne s of a weldedjoint is expressedas a numerical s a t t p r o peo hmos i r is neof tn e mt t rs oe a j ehs a ao i s d t gi nn e nena fub h tx t t s r i auee hs l quantityand i u i t ds r, m u l o tt i a pp lp ir a heo l rp l rs oi afw t et aer b pel re es f f tse pr a uhA bo pl f e loi s v (a lC u o e d . e c o n v et n Li oe n cg heei t, l u deo i mn e a f i lo w a ma b he mn i te i as mc aaay f hg —C a o sp u a s s tb a t l i ner i ne f g s s c o m a c p foa is rl eb ld e e r e ds u s e d t d ce o nn t f t oo l r ot m s ot ie r ht e ays s - s ot e r wa—ifAnw o a pe p r o txl i m a p r o p o r t A i o en a l l si t ya o.t es r lt eai n cs t s i a r c n c g s r u e j l oc ao t s it a s r ot sa r wti e trin es ats l s hi a h r ins nt i ie tc s u na r w pf pa l i m i t . m a r t a i e nt gl g t h e ro oat ah c t e T l s e t th wa r c h es iae s at u ls ts l e T e f sf t erh e cs s t - ci a p e r s m a ne e n t t . area of a fillet weld is a s t sb t u p m r eo h — A w e process l ind i n g hd ih r m oe w c ho n ise ul m ce aac fbth ilr eoa d r nee s tl e do to t e g a s t el oe tn whn ge j c oo n fit a t ilnc n ui um t n r hgt xer e ; l% n eh tt F wi al e s l p l e e rc d a t n h d e b t l dh i me e e n i s — A b
j uo sr d o i e o
T w F f t a p l t j a n ( m
t dh i hrm o aeo e n als eq i eft o ungi gla f n le l ed t i 0 et . t i l l7d im m 0 dh e es n7 s s i oe ng , w i m leb e l m l aepa s d l t owrs y ey e ne d g l it s cdh a r ( sr c be omfi e dg n etnr i s ta e d -, skt i lt le e ed e p r p e os va s ewu r s rt ir lset t ie shml hFf isii n etn - agal eru am - i i nn ues m b p a r t s i uc su ctl gae r rpa lept yhi i bt il z ea g i i Ti o U va no Wt eb Cs - T nl o n1h e d 2 h e f e . e l l l o o wf oa w i b s l lea e hl tl qd e a dn ut l hs a l l e —A w m be d ae pl o d s r o to w d a u( e hc bor m t la i ef sen d ie a m d u n m f m i i aleg l rbt eo a d i m et en a s l i lo s noh g)vw t , ai r a b ele l e s u s e n e o tn m s a ib t howe e nre a i ilaf ae d nl e n gd , d j o i n e d e of f oii 5 c i( 5n e U n0C t c W 7yT o -0 fd 1. h e8 ) e S t sa noh g d ar a o pr o d l l s o v tw fa r f b lwel i eau s loet et s l la s ce dhr t i sn g V Ua n o a tz r z eh i lnn f eo t r vcs ei m ea de snr t ss er l o s e s 4h o ies9 vat 9 f rr atn ’ v)e l 0es o uf hss se re e l S vt raf g el r us oo se a (t e ( Cr U i oaW l - .d 1 e5 ) w i t e e 7 l na i sd4 i s s 6 h o 0t e s 0 a t 7hrr — v oa v lem asu t s ee aw e l d . j ob t iw (n e heC l d FullFillet —Af w i w l se h li eoil t s dz e UW-15) e s e t tq t hu io tcha t k hnl m e ioh se n s mn feb e r e r — T e ( e n h co nal c o y s l u ei r nde d ) j o i n e d . s T h m ec o loh mu l m t s .o s hy ne tl epey mb wh o t hu naie h the c m iy s hr pe h l ee l r ii fpc aes ll o ,a ia d an l — T a t a o b p s t r o e e l a xstu asc tl um ee a r eb h e ddi es (i t t on ers i t s phc h -e oera i fcn da l i ) l, c n a m o sp pr he e s r s i u c r e . t r e oe p a ea t r i a — H G a l v —aA n pi zapci ln o goy z a i t tn igi p en rngef o fit rc p m to r e hc od h ed i a ur n c f e a rr At r pi po c lm uli b cebs ahs t d .i a o n m oe i c yph era y on to pipt ec m ar tla oi t t eh e s r r e i sm t a ocx t o ri r rm e r e ous s is ms i t p r o e o l e c c t e r o s l y s s i sr . T a ht p eh r rit r r n o yche e it ep erea le e t aia nlp; i g oz , is n nt g -, G W e — Al ag d o rwi ne spo glr oud c imep nsa f esng en nnes o a r lm a e n tt . w h c oe a r l i epe s rci eob n nhd c eu ca h e t ts dr i e na y t g m w a g f i w l o wta a i i a phtm p t hslo ie o c hau tr ti o n f p r a e w s o sw uin i t r ut e ot hf do hi h us rl t l e ee — f S r c to n let a iae n p e r co e n l t oea gtm et ces anhh tr f se ba m e t a l . G
—a A
te
t
a
S v
ha
l
a ve
,
— Low ductility o a et i a t b us aoo ht r ylp tgde i or o s ona ho d i c aua ec cl r e hc pui t yr r nor ol yg hcu l r eA aik n nlai n arn g bgos . c r w e n e s s .
(f!!b u
ev
m d w m co d t l
ss
e
s
H y d T r o— sT t ce a o t m i v cs hp f el ei ts t l w w s i a b s h u t t b t a a e jt hep l rc r et le e es d — O w a in t e h w i h e t i q 1 t c u t 1 i m ha m a s / l x h eoi o mg e s lw hbh o a t obp ee d d y a l l w o o w p a r r b t k e b l m i s e s n ao u g rr a m i a rn t u ao a i lh l s y e d r is s o d ww ew i h cr ehils d oc e c s h et n v d oe 1 ths t si d 1 epeme rl hs b e r % o ae s s as t ep t r ae s vn te o nas o g t r b e ee t mtu eaw nt esm t h e a nnne h u a o a sf s l a u g ie d f . t (u U rC Ge o - r d 9 . 9e )
&
s w l r p t c a
l
II
f
— P r e c o g o r h a ag prb i c u as i ri tr s b 7b 7a o C 5 sv °
e r tc p i eoe i o p c i t aai t i r o n b o —f F n p oun a ri n m roh ue i m naa otd f ae i r m i ten acs b ,ta s e u r sad- i pd fa epl o n l lyr i y ce e le os re fenvon i l o csn nu e gg h -an tF e 8 b M, e 7 od 5e Q v ” l —eFD e .t e r om t i dn a toe i o hgn
r e s o ia ms t a ta bt n erc bre i ia makf pli v na oweg c ( s ta yU C,s lA eo -l l d 6 . 0e u b n e t nd eda eitn nos lr g rin to, sl a ie od dh ns ; e A e na b e is m ro e rgba bb sy er u tde r a e sk d i h n y g e p r o m a b ta s e bir i nl a gl o l yw e . f t d e too dehi sc c to nio tr io et n tnu ip t i fn eua nr t sr e —Aw w ce h o n olt i s ns udu i ifer t efy a ran orc n oem w a h n o in T p r co y dr i ophs cu oi es n .ct i i b rb u o n sw k pe e l a s nd c e y e d s . d e t be t c mt a heab cl t e r is h a reyo c s l c a s poha l usa l m t i, nn( sda t C i, o — U A 6 0 ) —L
v af i d e i a d i r e cl t i o n n psl .r ei s u p e — A n u mv e e ra x i pc l alr leul o s e a t r o ta sh t or adhires ein o vg fe( t e thU Ce w e o bl djr te a to ds z t,i oer t hrne d n t g oh t e p m a re et na tl .
o ( a lda tio r n a ego d r ss r o T i lr ooc t ua be h cds so i n. n s s a vi g e i n sni ontsn e ge e x r l t s ml s u w op r oaee t , cvdi egts r l i m ow p o aas e ei dda r st nnh e eos cof- t a efa m dpe gl e r rc, aa tdt Gfd o , d2 2e ) h f e
h gie n
,q u
—A 1
— T
g e K ( s a T c o
s l L
m i dn h ai e m pu e m t o oh m o nt o f o l r elh rw e o x efo t i vf e lr i en a j a ddot n o s cai m t l ns c el o tomo p , y< o (n e e t ndl t s h :e x co r l e iu n sf o i r cv e em e n ft . m a n
s specified ss it bos l n L Se u t b — s hPt ao a ni g csl eo asl n o s ui s eui sm s ptn er ur-r mf i iea m m b u i t a s d fe e hsy materialthat q o su a n i u ta adv t cs h su a e mf rhma ear o t ul y n l t m g u i i l v a e s n - e n2 e t C ( o U h d G o t g o o t h v a o a t hfl e p si r ohqf e ur fi e d s d a n t lg we ir i on h Iuhi t s f ar e l e o ee s nhd p . o t ns e —T s i o bt u i o l t ivs h t t e dy e hes f t e se r r ef me li n o e m a g x p i r amp e e u sr gmas t i uts sre i t t g ho l iih la a qe( ttuU Ceh is Waro d l - sd . 2e ) o a c o mv p i el i oe s tp efesp dr to ea s t L i — g T a s m e oe s c hn m t to a ii ta lo ee n rif ai df dae sl t io e g nm n p aTe rt prae tr dhui e r es t s ou sh b hebe a t eed w eh j lt ae o rce l l e nb ne o tat s w .s e e aehl o kte dv em nues e t hs i n o tr hn mi ci e k nxn acego asll s u el s s L Vi — e An s es l a ed
s t t
wt t h
—T c o mo i ruh n e i id f is os c tasr a v v eh o ar s a atlo io tc s k enu ec ch sno t ns —
hpn o o n er en mt a f l r emhi bl squy tn e u d a d l g e crt ue re e os hf ss s e si id d of e e rena t i r— o An t . u p bf uiui tls t tauph ir ar e o b e a o u n 1 ni t ndidn dln h ce se nhd P o 1 i v ln ip r c eoe hagec paer n 2r s i d — A groupof welding
e es hw c ai n l ht h’hhshls M o — d u pl r u oi s wc ) e t hsw s i im p r e s s u r e . T r o c a h ho u a tt neeno ceng f s ei o i f l t me r p r s e wst rs r ie it evus et spt e ones n ch s i t i o l— t He e tr a t 1 b i F no0 g c o m ps r fet ts csr i o v anoeo u dh i ni nti i aa r o ex t n b ci ar otf lie hmt v p ai e cecr a oaett ulon r s wt t ir p rte o phsloh r i Fsti imno mn eao il ro stt e om . t pi r se ,ora aPt t r umioiri o ev i l rf s b n a m a u t t o e ml r oi o atedhltl sula , sl tmu ie i csn ioa tr f m yf acd l o i n zc eti o ron an oga o l ll i t s f t a h e a nc m o o s ms epi nFre eo rs ns s i o dorln . b o w a w t rtc he uo i epr o hre ,lo tli no n o n i sm o at rts o e pa riw cui ai oi l c s o t t hd u s i ea, h ns tn sr e ea el mi nd g s . n e ct d e i s s stb ia en rt g tymu w i ooso eh hd e un l e i f e l a i ds ti ifd cif ir e et r cy et in no t n s . e o ta r s e u hd — A m t i s i t or a eom n c eg n abt ntt hu as p r oe a n s eo n t c ce h f . — T r o c a h ho u a ts n en h eg f e ie af t r s wt r r e ti ue s s sp t s nhes t f cht re i t a a o i ot h nr , — T r r e o ma ha tt x ii e c o no p d s i twu hi t io p enr t o p ah fohe r i trs i no li n ear ol eo ntq f ua ra i aal nr c deo t dt u s p et , c oi rmt mi e gin h cin nior eam l i m i t . s e ac t ir o ne a al . M oo m e n t f eo c n t sro a mi e l e e —At — T m o o ih m n o e e n tre d tt e ti t f ee a r ofmfa s i hf un no ee r o fc e t a a a w r r e it as e pt n e a ch t o n axis is the sum of the —T p r a et h ts s u + p r oo bd b t um a c ui t n osl ae p t d r i ve y -s ae ws s u i hfnrs oe ei r l m p el e y la oi et n mc oge phnh eI st r an fhtee e xtas m.oc l a e t x hl e Q i a b t r square of eitsh aa l y l ew o ow p ar r bake l i isie u sn sugn ru r distance from the axis. k a a s e u l i b pt e t a es bvt eol t t eteh o t The Moment of Inertia (I) p r r e e s dl s i e tue p vvr r ieit ne cf ghv e e for thin walled cylinder q o u p ( ee U n C in A n o t-g d. 6 0e
u
about its transverse axis; 1 = n r’t where r = mean radius of cylinder t = wall thickness
N d t
V e
—e A a
z
l
l
ve a
e
T it a spp h pe ko re f i. rig ne mr i gn ai o t oi p e oh n i nn f g e .
— T ie a in tlt a t i c lrhseo fn es is t i ivar eet (edi ohs A03 o -)d d. 6
or s c o ma ole iact h n ca g l o z if h s e i int b rre t e eee fm o ps are ras a tonc ua r S nce s c oei c a s dl r g s i e on a m cv t ese i uymt onb b b n je e feb rn sc f ttd a ooeo -sr e i nt olie n geus lt mi a g cs F r i c r.eu eaa ms sl i es i i t nl f ogib ht ri n n; m t et sorehe s e e d c 1 t iy0 C oe n0h 0ri on”f m r t D bee ceo rof le xn a si s d.i n es uuha t tr sr f e aaenc l ch t ei o do nec . a s r e s mi s a at u a s snkt tc e ase en i iu t nts ile — T l o n g s ih t uuo d r i nf es a alu f ci o t e p a eftb ore lma pet ea i r nar bt g u F . f s e i i t a mb rr es ee um ot sb rb b s j e e n e 1 rn c 5 t d0 o0 - ”
—T
a i t
d
t e m pt e w r a b ht mu iar m o t e p o tt v a ha b e f t s p eoo chp ieo ftr U 2 C2 tdn sua G Ua e G-- ( -n U
— T n u o whm e pb l ede rc ri o nno of u dg ni a t- iu i fno l nioo nna r g xfi m t i c e d u r Te - c g l ra os us hopi f.m i ca a tt i e o s nr iwt a t irl fp s rte o phsloh r i sti i nom n ea il b o ah a r s d e c nhe aa br iad alc it tnte yr i s t n i ch d e o fo vca ik om e eits p u o g r r p iot or u s pte nei d nuo f ug hm c sbo e —e Ge rp ( U C A o d6 0e ) w p r oe c( e dSl Cu erI eodc s .t d i X eo n ) A c as mrl t a bl t e oiei tl renCs i tla ohl e dd n e e — H eav a et ( t w e x cio Seh tpA a t c- hi l 6oea a ns1 r s 2 it f fa) si uee fd t f e i msc p it e er ro nae tt ul r i P 1 N o . . r e ss t i wrd eua h s ta srli e eor sc h s m e c t h r a ena ai w ct eam ll en d n it n —T w m deh ee pb tloo ps ea i d t rPl ne rd veo esya e sps - u s ar beneph lr o sas t t a at e dt : g r a e t s l a s o iao w ox h nn e i g l e hsd tf r. e e W t hv e a esht cs noe rl nle e st s u b s( t aU Cn c Weo s , - d 2e — T p r oo sh pu es a t r a te i U yn i pn Sn f fg B t i o( r- e i Ue l a dW e m-r s2 p r e( cv t i ti a e s bp i l e bye rh dl m e aee n oP f ee r)no v et resa pss- us s a ruetn de brl f i js t er d m w a i tr t ui Thp ot to i nauu eurh t e l .rsi w se t me t hshno iod wc he k je ng eonle xsedi s c t d et p n r ooo y h p it oeoe fe r l l t ed oy i 5 wn i f (gi nU r / g W n 82 . ) u s n lt d eo ea a d r d y . W t ch a( ehrP 1 s b- nm otN ea ntoe t h ie c x 1M k icn a we s ece s o nd nl ns de c a a t t a (nc C h mTse nU o dat seCf db S Plug Valve— One with a short sectionof a coneor taperedplug throughwhicha holeis e x c e p t i o n s ) .
cut so that fluid can flow through when the hubt l w t n p elh holelinesu w t i ia no
t
p
i r
l oh9
tf
uia b0
tl el geo ° s cdo
heeu t t d e—, H k t , ew w d eso . pl
ta n pet b p t la pna i e d r a i t ni o gn s
ert .
—Av w a r h el l i i e a c a i hl r d c doup elr banel rsea s s eyp u el or ca eiinr f e dim c e n i m e o an ml b un e e ra r pte n f t ooop up r ec r nom r nan dat ioi tl j To h i m o nomh t al . ae e y r y n b p a oro c t i oa l t ml e y p — rA m c eo ng t te an a i e I po ii a td r bh, p l f e iw t wl e il eyc e yt l d ilo ns h dp rdhci ec a aro lw d v a i l o r a i n d o i u n g gs s . m e t a l . I F p r ve o s ce s su o rs e e n l ep l d s t rp uw c ml t eb i o lu n a d g s — yA e o w c w e h t s w e s i r c e o e h m s b i u p n l o l e e u i l sj io r e ai e n d i nt p sn n f o r ca e m r o e o n p t u ps ern e dns s -u r e . i i nn p rg s e osst s Pr, u nr urns i e c—mA n - a so r o tray s rm h ea a ut t a r(c h Um C a e Wan lo tf -s a d 1 n se7 o tt) r d er - s s a co h h m w e ce naei r te r sd t tt rf isa c t ih i on n s . T C U a o W b dl 1e 2e ) —Aw
m o
E313 I
=!== t t (
a c o mv hp mel e s t e s da e l y b t be a p s r ti e l iseo h es ydi ud yrr ro ee s t an ut if c t w t ev h c e s ashse bna sft nnfwei e eoll i lt l yet e d h w o ta t tor t haee l cs cri t erabq ei s nun f ngi od t e a t o l( ce r e s a er ti r Tte v pdai nc i een hnus )m . a t A ei c p r s i t P m r r m a e i e r m s s m y i s a b t r.r r a y t p r es e b s 1h ss t u at . irmt el am2 x lh eie 5 m s u e m d i i v “ g i n e a d n “ e e t l r d o a n o l ce ”g a o c a t A a l l w o owp ra r btke bl sis e stn o uag r m e p oe e d n ep nr m ei e rmsm aiabto lrw r r a yi neh en t v e( sUh C s G eol1e d .O eO )g s d i s it t r s i bt utr tnuhe oc dh t u n r ea Ratio— Theratioof lateralunh r e d i s ot l r i o b u aoct ai r o cno ea u s rf d strainto longitudinal unitstrain,underthe y i E e lx doa p i m rn s p gi al t. m ge r sea r enr —T
a a t e o a sr e i css o i t t n ii idrs cea hl erff -y ls i a m d th i n ep t u r eol et r s ln s e L a uo ly r o i ea e mc ir do dia sin ct nnlso gr at ot i td ao r i i s lt rl i bboi u e sta en vi dtdt d r si e en;c hogs n wds ic nth e ti aso i n t tuso c hra sch e ec ep noo a ftr h rt ali e lo an a ff t afd oi a rlp pu ol t noirs c eia tn t m t bi rh oe n e e x E p ex ocas t m e e csp d o la. t nge drse ra enr f – A n na ae ua si ti t en nhgs i e ttb irn recs men a t aa sgd rl ssi rt en; r ugos c e a rb hl r e fo l ao u blot qs l iu oyen w yn dg cie s hcd oi n n ty ig n u i t y . s or t l e mu op te Lr i a imtou u qnrf e us s . i d oe s d r d t ou p l ee uht rt s t r a u e a n o c f h sii ur on wg sa i ia ee t l , n de M t r tor —, T t T es sectionmodulus i oas nh m f . a mh a i ipt el c ur ni h ag le dc s . s r e o a cob w r e ti e s pipt r et ic nchhe ac t inei opt xr a —T p r o po h a ce s e l st s emi se noo if cghm nw -ere enrti et stt a pi t fh ea x rr a od t i nha a t ori i oabc no u sj b g e tdhn aci b n itvt d ni d i -df s htet aard t nht y cxoe e a ar oe i ns c o uo u n t ra gds epnd ne sf s smio s t r i zeonp e om d to ss o ei Tt ct s hnet e i t coh ( i UC l A o m d6 . 0e ) m o l d a ud r e l t g uet er s f ml l i yne he x s t e i oa d — iT r u oa s g hdyf r i a u t eo r ias b eo fonng eg m ti a ha t v e f r m S e M c o ( t d o i a u o l nZ a a w r r e it a sge patf ini e ta cvhx t e iho n s s e t w h c a y i ( l i r l i ~ n e nl qr ou t o aq ur ooa he bn bttt ai f ite ny e d y a i b t r a o a n t s u x v e i t v m i odo i ihm non t eega w nr e ttr h i f ae tf e a h z = Pnt 4-+4 e t t s a pb ht e ax c ar t i h oe t s a y e . re eoa r d ae w r =h m L e — nA t g i t n e h d ni s c r at t i m n g o c y il i n d p em c i i o nfm ii a e ml xd u eiw mm n ui gr m r t t h l th = w t h ia c k n e f n aw g i t i t rl thi anhsn hd ngi c nag t e e e d . i n
s
d c
f f q w t i f R o s d r s l R p s
wu
e
f — r A am c a t o otv reh y rm e i ei a iSrl tg— S hfi yt nhr e e ug cl l mt e u t l m re aa ne l nc d w o p r io t p mne t ri hs t t aiu hfe i a s tk s a st bo e oM pi t oe at m s o rc a h g e esehe .nb l ert r l f u a uh i gs h - ct e m el p eihr a snt u sr i e t n r eg v o. o ahpl uc tl iu oea nr nv f e I t t e r m ohi t n bo l s hon egio t yh i oe R e s — i S d remaining ut a r inl a struce s c s y l pi no da v r a io e ca s a sprl hv s e te er f i s ture or member as a result of thermal or i c aa a s l pl lhs e ehs r s ide c o al l l mechanicaltreatment, or both.
c o m oh p s o nt e re — T R e s Wi s e — t Alap ndr cwei e esnp slg udt r r ia te the nn op gg o rie - e nf a e t r n eo n ec c w he t eh rsi p e ehr is ob nt da u e c t e hs d y e — A a r e s t it sf t o aa enl h ci ce e ou c ro te r wr e fi nn c t . w e l d i n wg p hr c o oce ea srl is pe e s r ci eo nn R o o — T b o oo t hw f t e oh e e lb mh tt de fw e aa. e t i l ia e bdn cty e g at t r h wi c o mv ee e l r e at ec td a r o ln d e S —A i o fr x oo t ior s m dun n r ehe f d a nc e e o h s s t o oem i et e ft iflo tm l o, eh as r r n e m g f e lt d s l. e electrode. r the s wh f e ho we ai t t s hc fis lr h h ohe el i f f lnmetalis e i ee obtainedfrom S t
— Ec p ra de p pra rr g a eftt pic oea n r; Soi hi nn g gl neB - JWe e— - luAodb e jd i tw uo n et i i on ldd m ye e . o t oe o a m du h ef wgm r en bel eo d ee f if r no sg r o.
S W —eS w e u ae p i e r s ilta odmi t i g h t n e s s . S
e
cSo
— nt Ad r a a
re y
as
S i n g i eL - W J e — i d oA ela d j i i on p a aeb l r dti dl a y i o n w t ho v ei er h l co atd pm h p ge eet dmhe b b j oa w i ea n rti lee de odo o e d eh nd m e m b e r . s
Size Weld—GrooveWeld:Thedepthof p e n e t r a t i o n .
E L qF Wui t el ea l l e hg d t :w ee i lo dl ai ni n l l eo t en l ga rth g g h e f se s t t a w g r g ei t r s e pt i s o r si gc h et - l t re i asL n g l 1e t i th o ol t his h L w c h b ii n asc c hr i nb ee d w t i f t wi hc hl ie r l n eol e t—s T d p s r o e l h s i t s qi u u hre \\ o a v ogt iv a nwei gi ntdhs a ,s s s lt o e s e c t i o n n. m \\ lll l e g d t y U n L e F q W i u e l a e : \\ T p r h s e b s h i s i a u a r s nkn els i d e le t r c o T l l o e t h l n e a g r h e t g g h e f s e t k s . r t i r wi g ac h bn h g i i tl da ce e sv h i e gn s ne s i en n gl i n sw c t ir f i t wbi che hl ds ei r el n c oel te ti s do sn . S — t A fr coa h nri at d ncn ig m ee y e ”hdn i oe t a s oc au f ht o l n i l t o fooe uan b nf A xos n t -id a r —A r ye f t . a c h m e c to na s olt a ipl t r ui oeoc nc ot oes sr s s ef h ed o i r a t , e r nn i n ag a n s g t o x mi h de c it o zna s elett dil at iu hec nd t i s ras i ta o t rs te t Ti ow r n sa ioit hs nr u n d e Us i sr c a ubo ol acen o. l ms bl i yn sa c t tio o m nuf s m t c o s o n nl eyn o d t o o a o axc b i o ia d wxn nesf id eois di u d e tct rsx ah l i a td da f ud es i eib si ld i to dy . —I n f t e e o xrb e ner oairt c l tt ee a d p j oa aab c u e r t on o tp a td s cho fh r — Theratio of the lengthof a i m pa go ls i e n pa eaW n r dnat t hi e o a uniformcolumnto the least radiusof gyraf ao p ra t trc pr a et l s ls hai tec e nl rh a eo tion of the crosssection. e s s h t w ret f e h a aos nd srhre ot ; c r n t p t l s h iat c hr na ee ols e s trl e rs m e —Aw e l d w t n h os m ihert d ir t nr ea oeet lsc w t s a p o w a i ah i ir ci c compressive nlt h l t s a ct w i i d h i a r efe tw c p ntr e ta s da 1 b t t p eoh o t r t a ri o ho t n f e 4 o w i ah i i c i c tensile a c stress. lnt h l t s e t s u o t r o f m at hc he e e f me r b w ih e ix p c ro hs e s d — L o n g i t u t h t rh oT ohu h g l ohh e e l . e( me e r Si s d i to n ra l + m o m n ab f a i o yl r ly et eC di r c u m f( e r heS n t oi a c o m wp wl em i t eee l tyt l a h l d s . t r e s S a S c ma n e l m l b —T r o t a d h eto a n h i s e oi tf e y ( df i a sp h f t r v a r g m e m a t t t e d r e io nsha lss oti oa t e n ym d af e r d s h eaa f v ilo i g n m a t s e a r wui a a al a c ,s t p eh e c s i rS f i t e dr e v o l u t i o t e m p fe er a x t 4ua roome6 , po (0l° e r ° , f R F+ C or . B r r e s n t d r i ne g aa a s s t eca i o ns n dod) p ai rrt r it e do s n ss u r f eS er ae s h t s a t e m p ne r a t u r d e . D i s c o s n t ia rna u e i t s a bc hri t uah i pn c i n g o s n o hthe vessel. W e — El l e cd t r ii c - rnwe s iges it a ln c ed a p w f h iu l i si t am csi ai ohmdt ni era rs d e l e oc lt al y b e t te lw et e ch eti r n op de es . —At h fr ae wsa itda hete ndh e e w t h i o ro eet o a b dnhe ns o n n – ( E S l t aa T bs i t l i t i chth yf r )l e e a(ue nd U Ceg l Ad t o -h l d 6. s t o r a v e t enr gbs e t u s ohs cw eki fr l l si i o nnt gk l r — A a w e lr i d t a c nox um psi r teTg as ser s oti el v a esh b s i . l ie p r w o h c e e r s e s i n c o a l i e p s r c e o b n d c eu t o a v ie s es a v s f e byf erof e oe l c l st y eu d y t f h e w a a a t i o i a b n t r e g r a t h w c n b a r o u n d n e s s . m e el eo e tc l t e aar c to t wldr oTe odn he r w e i s l h d b i a ibe n l o gdga re n sa d kn — T f w u m s a o it t o ew b r lP oi re hai enr l s skn l o ii n t n e rf mewi t etisl ea tl nf l td ei u net a ~f s m in ie onlee b l f t dt ae eda ir r n l l o l j oi w ai t hin n rcti por h,ec m n eht n eat r s s o o mff ne d at s uir epm p dle eo sm e
m
u
(
U G S 2C 5 )C . 3 T “ n to h m i ici t knt .nhae e i l s chs —Aw m t eh ap lo o aad dsrl ee a tolc d oe ms cm faet rvec aai d aai ls lls yb nl w e il p d m ra l e o i nu g ptt n nf em n e rit n ph t nit tl mla a i en ul fhei amc ted u r oxt e e r a;c w a em l a r dd se e . d te h si ( c i k Cn g e osn s . d je a lt o j d u i oen hnc d t ti — to e u n F n fWi d l e —Aw el l er t partslocatedapproximately w o at rightangles — F p t l m oa a pt x h ie r to eachotherin the form of a T. m i u sn d s e ri t i otb l sel r m ae v n caohe a l 0 i o . t d n 0 t e h 1 hsi ( c. i kr Cn g — T m a sxh ait m r ue e m s s U G 1 6 ) m a s t u e bt r aj si e t ac r tle etc cd oh i on aag d n T m a n u h f u a n c d t u e r t i e o on lw ge r a n w i tw h i st t e a ha n ro d i u n t g . t h io hc k pe n a aeip si dpsp e s sfn ife t, h t — d e vb ae m l ao tp be t dr ii a aay lckn a c t e not e hun n eenoh at b e t a el r n oi s n ia g l d e . c o m wm t e hr acim ic t a k bll un hea ssl s —T
f t d S H y
t p r t r it v ohai es vuhls a io es t pe or hs e s i s gru e r n e . r d rt eo P s ent ae t t su ei mce t a t s ,it — T
tae e b — l U l s en iM vP e o ri pl s a al l l to w l b iv l e rde r a twdot ia ot chl e a y ch t ib hc . ok r nr i e z o so snl t aly l s
(UT)—a nondestruc-
r e q u ihf r d e m e e n eott s e r r tivemeansfor locatingand identifyinginternal m ti t np r i ebhe n os ac sgs a lus ce rut lee discontinuitis a t id o nnby sdetectingthe reflectionsthey a o u i t U r l G i f - nt 9 he e9y d d( o r Chno )sproduceof t a r t aeibeam c of ultrasonicvibrations t a i U e G -nf s 1t 0p 0n t (edot buhn )me (CodeUA-60) a t rs ie c t . T b f ca ah l s t c opu i rl eiaees t s eri ssd ut r th e e n r o t p ha r iae t g h r s ai p pf ege h r shm i e s ss ei tb l e oie t o l b n vt eea i n p t r e a e dr se n ts aeb utrl drm ei e n ehss d i — Agy g e n rm m a e d t j t t t a o c a a w e a h l n l o e u t e o n f o r f me ue l l a oao te s v ,mc ue e r hssnh ts i ef en l g f bi w m l ele et l da y ld . n o t hm i ci w k nc n oea i sra l srl e lo ts o s wi aoh n n c e s i n ac u l tu sa d nl eil s doh vntw daar gb lele e u s — U e s t s esn ni t t se i r il a lot h f t t e m opo het rt a ( t eur U reCh e sA o -tt f dpe 6 u. i l0e e )un eonc o gm ni npst rr hietti s ; s r t s h o p r hu t l e ne uni e snne gsg nih t r eh — T d e v e ohl c o p y m ei cetn ct l hi i a fha c( n rn ab gsd e it e lt a nw t h g e r arp drm io haed c nlu ttciy s i chn gl g l oe iri h i ra gcrn i a- n ie atn e l gslog y ahtl teh m s t a r s aeu bs ls sn ec e qlo r su ao e c dcn t k a i nl g f m a t e r i a l . —T a mo s ho p t u u or n een a r e a . n eg — As o s — A s e l f - bs a l pta n cr i rVessel d bu a n c o n eu d ni dis tf roy i r b mu t i o n f t e m p o e b r d a it uft r f he ec er o i r r neym g f a f l i c io e e x pn aT nt hs si e o trifn .mr ae l s s s d e v i ae s l b o o w p ehol daev ni done dvl ye u r m e o m a i pt r e e fr v ai e sarnf tsl t s ue os m d ii h m n gz e e a s t h i n n aho sr p madhu ae oa ln t lu t yd l ed r c hi t e a m pn e r g a t eu r en . — A t e c o hd en pi woq s u i e m i we t hte l iaei o ch s clt c fr ni ho l dl er s t s i i dd ee o . 1 T “ r e t hqh ui ici t kr . cen edh s o s ’ a m s t p b ut f ot ir t ehmD ui dh vbl y ia ee s si i f o n—onsA l , ro cc e oa a l l oi em zs pce ee d n c o ra rl ol i sao iw ( odaU nn G dsc e- e 2ed s 2d b uf )e .w uc o swe i ii u d too ft yh n i o s ,t d h 2 T “ d t he h i si ct kis n.og eet ns h s u m’ hae s we t mo af ein l r e t q h u ia i ct rck oen raden rhls ols os iwd oae nn c e
—T
r ee hfs tut fl r at ei f lnho ugu o i t m rgs ew - me e h l a, d d i n e n s aao het f tsm n i nf aeehl e t ll t adea hewl r eop. lr r sodw c iheet neesc sgr le e sh t d r n f oo u t ddr oee n pem i oh s es t i ht t —T m j e o hp i t r u n oia i ec s nl e g s e s d n m aw ke il nd gs . — I r W r I o u r g ert h aopf t ilso nna t esn I t c o n s oth vr u etc tws in oeespn leh dl ri fai ps nu oe f dg u d I -ri l c nhi a anrn abcg ct te e .r i c ae r es s bs t t r r Ce i (c s t Uo heea W d d- p y 2re oe7a s) 3 peb c ns o ocs iee eru rl fe nt g u m w i p ix i a u ae r t 0 bdrp noc h o e . enu f o l l o w s : b , os n . 1 S h mi ea e ls ud rt be a .mdag ec r r l gc e, aa dc r m a eg t rut a n paagc lasr l at a , e tsrcs n o m c,m a i , c so a htww rs e h et s e i rs —T l h y m d ra eo gx rgt e wy n aef ce l u la d le ,i i l nne gcws rc, i ei tan- ishcs e ro tFs e usr a t e s o seo t r a o e s l lb e an c e g t , r a od m n p . u i r i i p m o pt s do ei r s stbt ai e nnt sgt t u 2 P r we se p srl ou df c r i.ei l e s n nsa ge dtss upper : uh y c , ph i - w o e i i th esln i at td chr , t r ei s pi o s r t t ean hns ace s, pe r u, r mre nies w t s t, uhs trd r iee sdh s c -i sf at hbr agi ei nr c r a g a s . h o r ia z t o l n yt oan p lhi , wo ei i hed eln s
o t
bi
m
m
hclw aeo nmst en ost r t sr m a t d eh e r it a a t l sies ol, m el hdea o aw u w n t h m d c i e e o h nct rt dt ihe a n fe u l ai o ncn d it v t is po c l red v so he d d u nc e O a f m n a e t l e e x a r hyi y api r w li b os ie u t ol di n en f dt . f s m ao ott t e m ir s i eo rah meul e sr t is mi o i el w otl r daei lra sr o, y n n oew n yr yd smi ito ru s eset n l g h t
—T
m t
e a tp hr o awi je R
—F
IN: E Abbreviations ...........................:. ........466 Checklist for inspectors...................255 Abrasion .............................................483 Checkvalves..................................... 367 Absolutepressure..............................483 Definition..................................... 484 Accessopening,ticknessof.....,........, 140 Chemicalplant piping....................... Allowableloadonsaddle..................110 Chemicalresistance Allowablepressure ........................ 18-25 of gaskets..................................... 224 Allowablepressure, flanges................28 Metals........................................... 224 Allowablestressesfor paints........................................... 253 non-pressureparts ........................ 4
A A A
l
4 9 Chipping............................................ 484 l oo pw ab nl e c . .ena. s. .d . t . i.Circles,circumferences . f .ne. . g. 2 3 6 .................................................. l l o y 4 8 of, ................................ 3 and areas 300 nb d c e........................ oh s o l i r7 g t7C n i -divisionof.. 8 4 r c l.......................... e s ,
Anglejoint .........................................483 Anglevalves ......................................366 definition ......................................483 Annealing...........................................483 API 650 tanks ....................................204 API 12Ftanks....................................203 Appurtenances, Preferredlocations.......................241 Arc welding .......................................483 Area of circles....................................300 Planes............................................ 258 Area of surface, Cylindricalshell head...................425 ASMEflangedand dished head, allowablepressure.......... 20-24 Dimensionof m....., ......................... 335 Externalpressure............................34 Internalpressure....................... 20-24 Automaticwelding ...........,.,...........,..483 Backing..............................................483 Base ring design ............................ 79-83 Beamformulas...................................455 Bend allowances of Steelphltc .................................236 Bendingof pipe and tube ..................234 Ilcnt pipe ............................................ 280 B v
ao p le
Codes ................................................. 470
Combinationof stresses...................... 69 Combustibleliquids.......................... 184 Commonerrors Detailingvessels.......................... Completefusion................................ 484 Cone,allowablepressure, Internal.................................... 20,24 Externalpressure........................... 36 Frustrumof...,.......................,......276 To cylinderreinforcement........... 159 Wallthicknessfor internalpressure.................20, Conicalsection, Allowablepressure..................20, 2
C ir el n s e s ru rd e .................................... s a s e w 4l s C
Boltedconnections............................463 Bolts,weightof ................................. 4 B B B B
Segments of ................................ 290 Circularplate, weightof... ................ 404 Circumferencesand areas i ...................................... r c l e 300 s of c Circumferentialstress ......................... 14 Clad vessel........................................ 484 Coderules relatedto Services......................................, 181 Thicknesses.................................
rf ri ................................... a t c t t l u e r4 e r i t.......................................... t l e n e s s 4 u ............................................ s h i n g . u t t Weld...........................................483
Capacitiesof fabrication....................232 Carbonsteel, propertiesof ................186 Centerof gravity................................452 Centigrade,conversion to Fahrenheit..................................444 Ccntroidof an area ............................484 Chain intermittent IiIlcl Weld ...................................... 484
C
E x p t r e .................... e r s n s....... a u3l r e W t h a i ......................... c k l n 2e 2l s s 0 o n s to rV u Cc t S i oS n C I S f , ,‘ p a c i ................................ f i c a t i o 13n 9 7 4 o n to r a c t i o n f H o r vi z e ......................... o sn t s a e9l l s 1 2 o n ,vd e e r cs i i o mn a l s 8 3 o a degree................................... 443 f 8 3 Degreesto radains....................... 441 . 4 8 3
Factors......................................... 446 Gallonsto liters ........................... 439 Inchesto millimeters...................431 Kilogramsto pounds...................438 Litersto gallons........................... 439 Millimetersto inches...................433 Poundsper sq. in, to kilogramsper sq. centimeter......,. 440 Poundsto kilograms.................... 438 Radiansto degrees ...................... 442
Sq. feet tosq. meters ..1................437 Sq. meterstosq. feet ..............,....437 Cornerjoint ....................................... 484 Corrosion...................................215,484 Fatigue ......................................... 484 Corrosionresistantmatcrinls........,....2 Creep.................................................. 484 Couplings.......................................... 468 Definition..;.................................. 484 Lengthof............................,,138, 139 Weightof ..................................... 413 Wchling........................................ 361 Cylinders,. partialvolumeof..............,...418,421 Cylindricalshell allowable Pressure.................................... 18,22 Area of surface............................. 425 Externalpressure........................... 32 Thicknessfor internal pressure............................... 18,22 W
.......................................... e i g h 3t
D a m s a ................................ t g ri ne g 4s Davit .................................................. 312 D e oc a degree, i m a l s
conversion.................................... 443 Decimalsof an inch........................... 426 Decimalsof a foot ............................. 426 Definitions......................................... 483 Deflection............................................ 68 Deformation,strain ........................... 484 Degreesto radians,conversion.........441 Descriptionof materials.................... 192 Designpressure,definition...............484 internal........................................... 15 external .......................................... 31 Designspecification.......................... 195 steel structures............................. 447 tcmpcraturc.................................. 484 tall towers ....................................... 52 weldedjoints ........................ 1 448 e tofpressure a i vessels l i ............. n g 240 Dimensionsofheads......................... 335
D
pipe............................................... 330 Discontinuity.............................484,485 Divisionof circles ............................. 289 Doubleweldedbuttjoint ...................485 lapjoint ........................................ 485 Drop at intersectionof nozzle and shell ....................................... 291 Ductility.............................................485 Earthquake........................................... 61 map,of seismiczones.................... 64 ...................... Eccentric Eccentricload...................................... 66
Eccentricity........................................485 Efficiencyof weldedjoint .................485 Elastic ................................................485 Elasticlimit........................................485 Elasticstability ....................................67 Illcctroslagwelding...........................485 2 2 Ellipsoidalhead allowable pressure .................................... 18, 22 area of surface..............................425 dimensionsof ...............................335 externalpressure ............................34 locatingpoint on ..........................293 partialvolumeof... ....................... wall thicknesst’or internalpressure..................18$22 Endurancelimit,..................................485 Engagementof pipe...........................235 Erosion...............................................485 Examinationof weldedjoints ............177 Expansionjoint ..................................485 7 5 of horizontalvessels ......................99 of metals....................................... 191 s 8 openings....................... 4 Extensionof 128 Externalpressure .................................31 f charts ........................................ 42-47 stiffeningring .................................40 Fabricatingcapacities........................232 Fabricationtolerances........................200 Factors,conversion............................446 Factorof safety ..................................485 Fahrenheit,conversionto centigrade.....................................444 Fatigue...............................................485 Fiber stress.........................................485 Filler metal.........................................486 Fillet weld ..........................................486 Fittings....................................... 126-127 welding.........................................361 dimensions...................................361 7 weight...........................................390 4 , Flammableliquids............................. 184 Flangedand dished head, allowablepressure....................20, 24 area of surface..............................425 dimensionsof ...............................335 externalpressure ............................34 thicknessfor internal pressure............................... Flangedfittings,prcssuretemperaturerating ..........................28 Flrmgc dimensions,...................,..,......,....341 pressure-temperaturerating ...........28 weightof ......................................395
F F
h r
w l t e h aia ...................... ca k l t n 2d e ls o scylinderand plane................... 6 2S1 f ou c s o tn crc e.u . n. m .o t. . r . .i f. ncof . .cylinderand . . . 2e 7 sphere................. 6 2S6 e c cc e .............................. n ot r i n2c e nozzleand 7 of shell,drop 9............. 291 F g p u i.................................. ape i l n2 s gIsotropic..................................,.......4. 0 8 487 F f wiu ................................... l el l el l 4 t Joint d !efllciencies....................... 3 6 172, 174
Gage Gallonsto
.....................................
........................................ ....................
definition..................................... 487 Joint penetration............................... 487 Junctionof cone to cylinder............. 159 Killedsteel ........................................ 487 Kilogramto pounds,conversion...... 438
welding .......................................486 Gaskets,chemicalresistanceof......... Gate valve ..........................................486 dimensions...................................365 Generalspecifications.......................243 Geometricalconstructions.................268
Ladder .............................................. 315 Laminatedvessel............................... 487 Lapjoint ............................................ 487 Laws,boilerand pressurevessel ...... 474 Layeror laminatedvessel ................. 4S7 Leg support 102 f o ....................................... r m u l a 2s 5 ....................................... 8 dimensions................................... 108 p r ....................................... o b l e m 2s 6 8 arcs ................................... 297 G s i f oer .............................. r t m a hu 1 ml Lengthof a 6 Lengthof pipeand coupling G v l ........................................ ao l b v e 4 e 8 6 for openings......................... 13S, 139 d i m e................................... n s i o n 366 s of stud bolts................................. 237 G i r t i.................................... a z a p t i h o4 n s 6 Lethalsubstances.............................. 487 G rw ....................................... o eo v l e 4 d s 6 Liflingattachments........................... 119 Ileads .................................................334 Liflinglug ......................................... 118 definition.....................................,486 Ligament........................................... 487 volumeof .....................................416 Linedvessel ...................................... 487 weightof ......................................375 Liquidpenetrantexamination........... 487 Heat treatment....................................486 Liquidpetroleumpiping...................210 1Hemispherical head, allowable Literature ........................................... 479 pressure.................................... 18,22 Liters to gallons, conversion ............ 439 area of surface.............................. 425 Loadings ...................................... 1 3 dimensionsof ...............................335 L o pointson c a t i n g externalpressure ............................34 ellipsoidalheads.......................... 293 o r vesselcomponents....... 241 wall thicknessf Locationsof i n p t r e . e. r . .s n. . s1. a .2 u. l. Longweldingneck............................ .r . . e. 8. . . . , 2 34I I { i gs h .................................. - t a l l e o y 4e l 8 stress.............................. 6 Longitudinal 14 1Iingc,......+........,..........,.......,.....,....4 ,..314 [,OW-dk)y S(CC] .................................. 487 flydrogenbrittleness..........................486 properties of ................................ 187 I[ydroslatictest ..................................486 L temperature operations o ............. w 185 Hydrostatictest presssure.................... 1S Lug,lifting ...,,,.,,.,..,,,.,...................,,, 118 1hydrostatictest pressure Lugsuppport..................................... 109 for flanges ......................................28 Magneticparticleexamination......... 487 Impact stress ...................................... 486 Malleableiron ................................... 487 test ................................................ 486 Materials,descriptionof..................,.192 Inchesto millimeters, propertiesof ................................ 186 3 1 conversion.................................... 4 test report..................................... 487 I n s op e p c............................ et i n o in 1 n g of foreigncountries..................... 2 3 194 l n s pc c h c e........................... t oc r k ’ l s 2i s Maximum t 5 5 allowablepressure, I n s uw l aoe t ....................... i i fo ng , .4 h . tflanges.1........................................... 4 28 I n t e w r m................................ i t et e n t l 4 dfor pipes....................................... 8 7 142 I n p t r e ............................ e r s n s a u 1l r1 e stress5.............................................. , 8 13 I n t e or cs e c t o i o n n f e stress values........... 16, 189$190,487 and cylindcr .................................. 28S workingpressure................... Is, 487 ...........................
,
4
8
7
wall t
h i f c k n eo s s r n p t r e ...................... e r s n s a1 u l r e 4 w oe ...................................... i g h 3t f 9 P f i si t y ........................... t pm i b n eo 3 g l s 6 P ci ....................................... po i d n eg 2 s 0 P l a ............................................ s t i c i t y 4 8 P b l e a nal l d o. t . iw . . . a.ne. n. . g.c. . e. . s. . . . 2 3 7 P o ul 8 n t a eh i qt c0 uk en a ef ls s , l d i n 1g f 7 M i l lt i m n e tc e hr s e s ow , e o .................................... c o n .................................. v e r s i o 4n P t .hl 3 i rca ke tnlt. 3e a s et s ,i o n o M i t n h i oi m c u k mn s s r a df i oe gx r a a mp. i.h .ni . ac. .t . i . o. . n. . . . 3 s ah h e ........................... e l n al 1 s d Pd sl w 8a oe ................................ t i e g2s ,h 4 t f 0 M o e ld a . u.s . .t . l .i .1 .c i. 4.i . .t f.P8y. . l. . .............................................. a7. 8 t f o, 8r m 3 1 M o o rd i u ........................... g l i u d s 4i t Pf y v 8.......................................... 8 v g 4 e l a lu 8 M oo i m n.............................. ee nr t 4 i Plug f a weld .........................:................. 8 8 489
Measures ............................................ 321 Measurement, metric system of... ...... 427 Membrane stress ................................ 488 Metal arc welding .............................. 488 Metals, chemical resistance of... ....... 224 Metric System of measurement .........427 Mist extractor .................................... 316 Mitered pipe ...................................... 2
Nameplate......................................... 317 Needle valve...................................... 488 Neutralaxis........................................ 488 Surface......................................... 488 Nipple ................................................ 488 Non-pressurewelding....................... 488 Normalizing....................................... 488 strength ........................................ 488 test ................................................ 488 Nozzledetails.................................... 244 Nozzle loadings................................. 153 Nozzleneck thickness...............122, 140 Nozzleweightof ............................... 413
i
Pneumatictest................................... 489 P P P P
o ir s .................................... sa o nt ’ si 4 o o .............................................. r o s i t y 4 w h o t e r ees.................... al t a tm4 d e nt t oper sq.uinch ton d s e q r . kilogramp s c e n tc i o m n e .v .t . e.e . r.r . s., . i. . o. . .n . . P ot k ui l cn o o gdn .rv s. ae . rm. os ., i . o, P po ci w............................. p oei nr 2d g e P r el fo eco rva r t ee i dos n s s e c o m p.................................. o n e n t 2s P po ci w............................. p o ei nr 2d g e P r el fo eco rva r t ee i dos n s s e c o m p.................................. o n e n t 2s h e a t i n g 4 Openings............................................ 122 P r e .......................................... P r o e f s ................................... sl u ur e i2 f d detailingof ................................... 244 P r e s s u r e T e m r p e r a a t u r e t i . . . . . . . . . . n. . extensionof.................................. 128 P r v e s ................................... e s s u r s e 4 e l reinforcementof..,................. 129-137 d e ........................................ t a i l i n 2g weightof ...................................... 413 l a w ............................................... 4s weldingof .................................... 244 P r r e v s e s .......................... l a u i r l e e 4 v f e Operatingpressure....................... 15,488 P r e s s u r e welding................................489 temperature.................................. 488
8 8 8
. 4 4 0 n. 4 0 f l 4 0 f l 4 8
. .g . 2 8 3 7 8
optimum vesselsize.......................... 272 Primarystress.........................,,.!,...,,,.489 Organizations..................................... 476 Propertiesof pipe............................... 3 o s e .................................... c t i o n4 f s Oxidation........................................... 488 s
t
2 5 , ,l . 9, as i...................... n t l e , . s e 1s. ................................... t e e .1 f l. . . 9 . ......................................... u b e 332 f s
P-number........................................... 489 o s Packing,weightof ............................. 414 o t Paintingof steel structures................247 ne a c l ih 4 n g oo c l y lu, . i . m .n . d. e. Qe4 1r f8uas, 4n e2 n1.............................. Partial v h e a d 4s 2n ............................................ R a to 2degrees,conversion.........442 d i a s s p........................................... h e r 4e 2 2 Radiographing...................................490 P a s s 4 .................................................... 8 9 Radiusof gyration .............................490 P e t refinerypiping r o l e.................208 u m Radiographicexamination.................174 P b ei .............................. n dp i 2 n e 3 g 4 relationto , 2 platethickness..............30 8 0 d i m oe ............................... n s i o n 3s f 3 0 Randomlength...................................490 e n g a.................................. g e m e n 2t 3 5 ............................. 1 Reactionof l eo f on p e ng i n got1s , .1h. . . R 3. f. e.r . c, m i ,....0..,.,.............................. t e r e 2d R e f p r o o p................................. e r t i e 3s f
t38t a n.............................. ag ,u l9n a r 2 k 8.......................................... r a c t o0 r y 4 2 2
9
s
5 1 9
R e f r i pg e ri. . .a. . t.p. i. . .o. . in. . . . : .n. . . . .w.g. . 2thicknessfor I( a internal l l R c i n f o Cr c ct m c co yn t...... l, 1 in n dpressure e eS o .............................. r $ 18,22 R e i n o f o o pr c........... e i nn 1 gi 1 n Spot 2g f welding..................................... s 39 , 7 491 R e wq t u h i ai r c e k l d n e Squarefeet ls s to squaremeters,
for internalpressure................. 18-2; Residualstress ................................... 49( Resistance welding ............................ 49Q Right triangles, solution of... ............. 27(!
Ringjoint flanges ...............................356 Ringsmadeof sectors........................ 274 Rootof weld ......................................490 Saddledesign....................................... 98 dimension..................................... I Scale...................................................49a Scarf ...................................................49(I Scheduleof openings ........................245 Screwedcouplings.............................368 Seal weld............................................49o Seamlessheadjoint efficiency..........176 vesselsection ............................... 176 Secondarystress ................................ @O Section modulus ................................ 49o Sections, properties of ....................... 450 Segments of circles ............................ 290
conversion................................... 437 Squaremetersto squarefeet, conversion................................... 437 Stabilityof vessels............................ 491 Staggeredintermittent filletweld..................................... 491 Stainlesssteel, propertiesof...., ....... 190 Stair ................................................... 313 Standards........................................... 47o Statichead ........................................... 29 definition..................................... 491 Steelstructures,designof................. 447 Stiffeningring, externalpressure .......40 construction................................... 48 Strain ................................................. 491 Stressand strain formula;.................448 Stress,definition............................... 491 Stressvaluesof materials.................. 189 Stresses,combinationof... .................. 69 in cylindricalshell......................... 14 in largehorizontalvessels supportedby saddles................86 in pressurevessels................. 13,491 Structures,designof ......................... 447 Structuralmembers,weldingof...,.... 458 Stud ................................................... 491 Studbolts, lengthof.......................... 237 Studdingoutlets ................................ 357 Subjectscoveredby literature.......... 481 Submergedarc welding .................... 49] Supportof vessels,leg ...................... 102 ................................................ 109
Seismicload.........................................61 map of seismiczones ..................... 64 Services,Code rules .......................... 181 Shapeof openings ............................. 122 Shearstress ........................................49o Sheet steel, weight.,...........................399 Shell, definition.................................49o volumeof .....................................416 weightsof ..................................... 375 Shieldedmetalarc welding ...............49o Single-weldedbuttjoint ....................49o lapjoint ........................................490 ............................................. Size of openings................................ 122 checkwdvcs........................... 367 vessel............................................ 272 ~ymbolsfor pipe fittings.................. 369 weld .............................................. 49o Shop weldedtanks............................. 203 I’ackweld .......................................... 492 Skirt design..................,.,,.,,...,.,..,,,..,,,. 76 rail towers,design.............................. 52 openings.......................................319 ranks, rectangular............................. 212 Slag .................................................... 491 ranks, shop welded........................... 2 Slendernessratio................................ 491 for oil storage .............................. 204 Slot weld ............................................491 ree joint ............................................ 492 Solutionof right triangles .................270 temperature,conversion Specificgravities...............................415 centigradeto Fahrenheit.............. 444 Specificgravitydefinition.................491 rensile strength................................. 492 Specificationfor design stress ............................................ 492 of vessels...................................... 195 rest .................................................... 492 Specifications.....................................470 rest pressure ..................................... 492 Sphere,allowablepressure............18, 22 rest pressure,external........................ 31 externri! pressure ............................ 34 rhermalexpansionof metals............ 191 partial volIImc of .......................... 412 [’hcrnmlfa[iguc................................. 492 rhermalstress ........,..............+........... 492
0
Thicknessof VCSSCI wall,’ for pipes ....................................... 148 definition......................................492 Weaving............................................. 482 8o 2 321,374 code rules related t ..................... 1 Weights..................................... for full vacuum...............................49 bolts..............................................412 charts .,.,,,..,,,...,,,,,..................... 49-51 c i pr ............................... cl u a l ta 4r e s for internalpressure................. 18-27 couplings......................................413 for nozzleneck............................. 140 flanges..........................................395 of pipe wall .................................. 148 galvanizedsheet ...........................399 Threadedand weldedfittings............126 insulation......................................414 Throat.................................................492 nozzles..........................................413 Tolerances,definition........................492 openings.......................................413 Tolcranccsof fabrication...................200 packing.........................................414 Topicscoveredby literature..............481 pipes and fittings Transitionpieces........................ 287-288 plates ............................................400 Transportationof vessels...................246 sheetsteel .....................................399 Tube, bendingof..,.............,............... 234 shells and heads ...........................375 propertiesof .................................332 vessels ............................................59 e ....................... l d e dWeld,definition.................................492 Typesof w metal.............................................493 U. M. plate .........................................492 e on 1i n1 g r2 s sizes f o p ................ Ultrasonicexamination......................492 W je c l oa dt ..................... ei eg ond r1 i t e s Undercut............................................ 492 designof ....................................... 174 Unequalplatethickness examination.................................. 177 weldingof .................................... 178 locations....................................... 174 Unit strain ..........................................492 Weldedsteel tanks.............................204 stress.............................................492 Welding,definition............................493 fittings ..........................................361 V~]VCS . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JtjS of nozzles .....................................244 Vessel,definition............................... 492 procedure...;..................................493 Vessel,components, of pressurevessels ...................... 170 preferredlocations.......................241 rod ................................................493 Vibration..............................................60 symbols........................................ 179 Volumeof cylinders, partial ....,..........,...................418,421 Wind load ............................................52 of shells and heads.......................416 Windspeed map ............................54,57 of solids........................................ 264 Workingtcmpc.mturc.........................488 Vortex breaker...................................320 Wroughtiron......................................493 Yield Wallthicknessfor internal pressure.................................... 18-27
........................................ 493
24 7