CONTENT
MATHEMATICS CLASS : XII Preface
1.
Functions Exercise
2.
79 - 100
Application of derivatives Exercise
6.
54 - 78
Method of differentiation Exercise
5.
29 - 53
Continuity and derivability Exercise
4.
01 - 28
Limits Exercise
3.
Page No.
101 - 126
Solution of triangle Exercise
127 - 149
© Copyright reserved 2012-13. All rights reserved. Any photocopying, publishing or reproduction of full or any part of this study material is strictly prohibited. This material belongs to only the enrolled student of RESONANCE. Any sale/resale of this material is punishable under law. Subject to Kota Jurisdiction only.
FUNCTIONS EXERCISE # 1 PART - I Section (A) : A–3.
(i)
f(x) =
f(x) =
x 3 5x 3 x2 1 x 3 5x 3 ( x 1)( x 1)
Division by zero is undefined Domain x R – {1, –1}
x±1 x (–, –1) (–1, 1) (1, )
(ii)
f(x) =
sin1 x x For sin–1x, x [–1, 1] and division by zero is undefined x 0
Domain x [–1, 0) (0, 1]
1 (iii)
(iv)
(v)
f(x) =
x | x |
for function to be defined x + |x| > 0 for x > 0, x + |x| = 2x > 0 for x 0, x + |x| = 0 Domain is x (0, ) f(x) = ex + sin x Domain x R as there is no restriction for exponent of e.
1 f(x) = log (1 x ) + 10
x2
1 – x > 0 and x + 2 0 x (– , 1) – {0} and x – 2
(vi)
f(x) =
and
1–x1 x [–2, 0) (0, 1)
x
3x 1 –1 1 2x + 3 sin 2
1 – 2x 0 and – 1
3x 1 1 2
1 2
and –
1 x1 3
Taking intersection
1 1 Domain x , 3 2
(vii)
f(x) = 2 sin
1
x
x
1
1
x
x (0, 1) (1, ) and 0 < x –
1 f(x) = logx log 2 x 1/ 2 In case of composite function in log. We start with outer log. x > 0, x 1 and
1/2
–
x2 – 1 x 1 and x > 2 (viii)
–1/3
1
1 >1 x 2 1 3 x (0, ) – {1} and
0
RESONANCE
1/2
1
3/2
1 <1 2
x
S OLUTIONS (XII) # 1
Taking intersection
A–6.
1 3 x , 1 1, 2 2
(i)
f(x) = 3 sin x + 4 cos x + 5
– 3 2 4 2 3 sin x + 4 cos x 3 2 4 2 – 5 3 sin x + 4 cos x 5 0 3 sin x + 4 cos x + 5 10 Range y [0, 10]
(ii)
f(x) =
1
> (iii)
1 x x 0
1
0<
1 x f(x) = n (sin–1x) Domain sin–1 x > 0 Range 0 < sin–1 x
(iv)
1
>1+
x 1
Range y (0, 1]
x (0, 1]
2
– < n (sin–1x) n 2 Inequality doesn't change as n is increasing function f(x) = 2 – 3x – 5x2 Domain x R Method 1 y = – 5x2 – 3x + 2 opening downward parabola 0
D Range y , 4a
49 y , 20 Method 2 5x2 + 3x + (y – 2) = 0
D0 (v)
– D/4a 2
9 – 20 (y – 2) 0
20y – 49 0
y
49 20
f(x) = 3 |sin x| – 4|cos x| f(x) is a periodic function with period . So analysis is limited in [0, ]
, |sin x| = 1, |cos x| = 0 2 fmin = 3.0 – 4.1 = – 1 at x = 0, |sin x| = 0, |cos x| = 1 fmax = 3.1 – 4.0 = + 3 at x =
(vi)
f(x) =
sin x
Range y [–4, 3]
cos x
1 tan x 1 cot 2 x f(x) = sin x |cos x| + cos x |sin x| periodic period = 2 sin 2x 0 f(x) = sin 2x 0
+
2
x 0, 2 , x , 2 , x , 2 3 , x , 2 2 ,
Range y [–1, 1]
RESONANCE
S OLUTIONS (XII) # 2
Section (B) : B–1.
(ii)
2 x 2 and g(x) = ( x ) Domain x R, Domain x [0, ) non-identical functions f(x) = sec(sec –1x) and g(x) = cosec (cosec –1x) Domain x (–, –1] [1, ), Domain x (–, –1] [1, ) f(x) = x g(x) = x Identical functions
(iii)
f(x) =
(i)
(iv)
B–5.
(i)
(ii)
(iii)
(iv)
f(x) =
1 cos x and g(x) = cos x 2 f(x) = |cos x| non-identical function f(x) = x and g(x) = enx, Domain x R+ Domain x R non-identical function f(x) = ex and g(x) = n x fog(x) = en x = x, x > 0 gof(x) = n ex = x, x R f(x) = |x| and g(x) = sin x fog(x) = f(sin x) = |sin x| gof (x) = g(|x|) = sin |x| f(x) = sin–1x and g(x) = x2 fog(x) = sin–1(g(x)) = sin–1x2 gof(x) = (f2(x)) = (sin–1x)2 f(x) = x2 + 2, g(x) =
fog(x) = g2(x) + 2 =
gof(x) =
B–6.
x x 1
x2 ( x 1)2
+2=
3x 2 4x 2 ( x 1)2
f (x) x2 2 = 2 f (x) 1 x 1
1 x 2 , x 1 f(x) = 1 x , 1 x 2 g(x) = 1 – x, – 2 x 1
1 g2 , g( x ) 1 x [0,1] fog(x) = 1 g( x ) , 1 g( x ) 2 x [–1,0)
1 (1 – x )2 fog (x) = 1 (1 – x )
,
x [0,1]
, x [–1, 0)
2 – 2x x 2 , x [0,1] fog (x) = 2 – x , x [–1, 0)
Section (C) : C–1.
(i)
y = |(x + 2) (x + 3)| many - one function
(ii)
y = |nx| many - one function
RESONANCE
S OLUTIONS (XII) # 3
(iii)
f(x) =sin 4x, x – , 8 8
2 one-one function period =
1 1 , x (0, ) x x many one function
(iv)
f(x) = x +
(v)
f(x) =
1 –1
1 – e x 1 –1 .
e x f =
2 1– e
1 x2 0
1 –1 x
increasing function
Hence one - one
C–5.
3x 2 – cos( x ) 4 Hence many - one
(vi)
f(x) =
(vii)
f(x) = sin–1 x – cos–1 x = 2 sin–1 x –
(i) (ii) (iii)
f(x) = sin (x2 +1) f(x) = x + x2 f(x) = x – x3
f(– x) = f (x) = even function f(– x) = x2 – x f (x) or – f(x) Neither even nor odd function f(–x) = – x + x3 = – f(x) odd function
(iv)
a x – 1 f(x) = x x a 1
ax – 1 f(–x) = – x – x a 1
even function
monotonically increasing. 2
a x – 1 = f(x) even function f(–x) = x x a 1
(v)
f(x) = log (x +
(vi)
2 2 f(x) + f(– x) = log ( x x 1)(– x x 1) = log [(x2 + 1) – x2] = 0 hence odd function f(x) = sin x + cos x f(– x) = – sin x + cos x f(x) or – f(x) Neither even nor odd. f(x) = (x2 – 1) |x| f(–x) = f(x) even function.
(vii)
(viii)
x2 1 )
f(–x) = log (–x +
x2 1 )
| tan(tan 1 x ) | x 2 x [ 2 x ] 1 x 1 f(x) = sec(sec 1 x ) x x | x | x x0 f(x) = 3 0 x 1 x x
RESONANCE
x x x x0 f(x) = 3 0 x 1 x x
S OLUTIONS (XII) # 4
C–6.
(i)
x 2 – sin x , – 1 x 0 even extension of f(x) = f(–x) = – x e x , x –1
(ii)
– x 2 sin x , – 1 x 0 odd extension of f(x) = – f(– x) = x – e x , x –1
Section (D) : D–2.
(i)
f(x) = 2 + 3 cos (x – 2)
(ii)
f(x) = sin 3x + cos2 x + |tan x|
fundamental period = 2
2 period of f(x) = L.C.M. , , = 2 3 f(x + ) = – sin x + cos2 x + |tan x| f(x)
f(x) = sin
(iv)
f(x) = cos
for fundamental period
fundament period = 2
3x sin 2x – 5 7
period
10 ,7 3
10 , 7 = 70 period of f(x) = L.C.M. 3
Fundament period = 70
f(x) = [sin 3x] – |cos 6x|
period
2 2 period of f(x) = L.C.M. , = 3 3 3
Fundamental period =
(vi)
f(x)=
(vii)
f(x) =
2 3
3 2 3
1 fundamental period = 2 1 cos x sin12x
period of f(x) = L.C.M. , = 6 3 3
2
1 cos 6 x for fundamental period
fx = 6
(viii)
2 , , 3
x x + sin 4 3 period 8, 6 period of f(x) = L.C.M. (8, 6) = 24 fundamental period = 24
(iii)
(v)
period
sin12 x 6 1 cos 2 6 x 6
= f(x)
f(x) = sec3 x + cosec3 x period 2 Fundamental period = L.C.M. (2, 2) = 2
Fundament period =
6
2
Section (E) : E–1.
(i)
f:DR f(x) = 1 – 2–x
f (x) = 2– x n2 > 0 increasing function one one function
D : [x R), Range : (–, 1) codomain
function is not bijective
RESONANCE
f –1 does not exist S OLUTIONS (XII) # 5
(ii)
f(x) = (4 – (x – 7)3)1/5 f (x) =
1 (4 – (x – 7)3) 5
– 4/5
. (– 3 (x – 7)2) 0 decreasing function one one function
Lim f ( x ) – x
Lim f ( x )
x –
D:R
Range : R = codomain
onto function
function is bijective (invertible)
y = (4 – (x – 7)3)1/5 4 – y5 = (x – 7)3 x = 7 + (4 – y5)1/3 (iii)
f –1 (x) =
E–6.
f –1(x) = 7 + (4 – x 5)1/3
or
x=
f(x) = 1 ± xn
or
f(x) = 1 – x3 f(1) = – 3
f(x) = n x 1 x 2 D : x R, Range : R y = n x 1 x 2
E–5.
or
e y ey 2
e x e x 2
1 1 f(x) . f = f(x) + f x x f(3) = – 26 f(x) = – 3x2
f(x + y) = f(x) . f(y) and f(1) = 2 10
f (n) = f(1) + f(2) + ........... + f(10)
n 1
210 1 = 21 + 22 + 23 + ....... + 210 = 2 2 1 = 2046
PART - II Section (A) : A–2.
For domain – log0.3(x – 1) 0 log0.3(x – 1) 0 (x – 1) 1 x2 Taking intersection x [2, )
A–3.
f(x) = cot–1
x( x 3 ) + cos –1
for domain x(x + 3) 0 x (–, –3] [0, ) Taking intersection x {–3, 0}
RESONANCE
and and and
x2 + 2x + 8 > 0 (x + 1)2 + 7 > 0 xR
x 2 3x 1
and and
0 x 2 + 3x + 1 1 x 2 + 3x + 1 0 and
x 2 + 3x 0 x [–3, 0]
S OLUTIONS (XII) # 6
A–5.
f(x) = 4x + 2x + 1 Let 2x = t > 0, x R
f(x) = g(t) = t2 + t + 1,
t>0
2
1 3 g(t) = t + 2 4 2
1 1 t > 2 2
1 1 t > 2 4
2
1 3 t + >1 2 4
Range is (1, )
Section (B) : B–2.*
–1
f(x) = en(sec x ) = sec–1x, x (–, – 1] (1, ) –1 g(x) = sec x, x (–, – 1] [1, ) non-identical functions f(x) = tan (tan–1 x) = x, x R g(x) = cot (cot–1 x) = x, x R identical functions
(A)
(B)
1 x 0 f(x) = sgn (x) = 0 x 0 – 1 x 0
(C)
1 x 0 g(x) = sgn(sgn x) = 0 x 0 – 1 x 0
Identical functions f(x) = cot2 x . cos2 x, x R – {n }, g(x) = cot2 x – cos2 x = cot2 x (1 – sin2 x) = cot2 x. cos2 x Identical functions
(D)
B–4.
B–6.*
Domain of f(g(x)) Range of g(x) Domain of f(x) – 5 |2x + 5| 7 – 12 2x 2 f(x) =
1– x , 1 x fog(x) =
0x1
n I x R – {n },
n I
0 |2x + 5| 7 –6x1
g(x) = 4x (1 – x),0 x 1
–7 2x + 5 7
1 – g( x ) 1 – 4 x(1 – x ) 1 – 4 x 4x 2 = = 1 g( x ) 1 4 x(1 – x ) 1 4x – 4x 2
1– x 1– x gof(x) = 4f(x) . (1 – f(x)) = 4 1 x 1 – 1 x
=
8 x(1 – x ) (1 x )2
Section (C) : C–2.
One One / Many One f(x) =
f(x) =
f(x) =
2x 2 x 5 7 x 2 2x 10
, Domain x R
( 4x 1)(7 x 2 2x 10) (14 x 2)(2x 2 x 5) (7 x 2 2x 10)2 11x 2 30x 20 2
(7 x 2x 10)
2
30 > 0 x (– , 0) , 11 30 f (x) < 0 x 0, 11
f(x) = 0
RESONANCE
x = 0,
30 11 S OLUTIONS (XII) # 7
Function is increasing and decreasing in different intervals, so non monotonic Many one function. Onto / Into f(x) =
2x 2 x 5
7 x 2 2x 10 2x 2 – x + 5 > 0, x R and 7x 2 + 2x + 10 > 0 x R a = 2 > 0 and a = 7 and D = 4 – 280 < 0 D = 1 – 40 = – 39 < 0 f(x) > 0 x R Also f(x) never tends to ± as 7x 2 + 2x + 10 has no real roots, Range Codomain so into function.
C–3.
f(x) = x 3 + x 2 + 3x + sin x, f(x) = 3x 2 + 2x + 3 + cos x
3x 2 + 2x + 3
–1 cos x 1
lim f(x) = +
xR
32 as a = 3 > 0 and D < 0 12 so f(x) > 0 x R
lim f(x) = –
x
x
Hence f(x) is one-one and onto function (as f(x) is continuous function) C–6.
f(g(x1)) = f(g(x2)) as f is one - one function hence f(g(x1)) = f(g(x2)) x1 = x2
g(x1) = g(x2) x1 = x2
f(g(x)) is one - one function
as
g is one - one function
Section (D) : 2 D–2.
f(x) = sin
[a] x .
[a] = 4 D–3.
Period =
[ a]
=
a [4, 5)
f(x) = x + a – [x + b] + sin x + cos 2x + sin (3x) + cos (4x) + ........ + sin (2n – 1) + cos (2px) f(x) = {x + b} + a – b + sin (x) + cos (2x) + sin (3x) + cos (4x) + .... + sin (2n – 1) + cos (2nx) Period of f(x) = L.C.M (1, 2,
2 2 2 2 , , ........., , )=2 3 4 2n 1 2n
period of f(x) = 2 since f(1 + x) f(x) , hence fundamental period is 2 D–7.*
(A) (B)
f(x) = cos (cos–1 x) = x, x [–1, 1] odd function f (x + ) = cos (sin (x +)) + cos (cos (x + )) f (x + ) = cos (sin x) + cos (cos x) = f(x)
f x = cos sin x + cos cos x 2 2 2 = cos (cos x) + cos (sin x) = f(x) fundamental period = (C)
2
f(x) = cos (3 sin x), x [–1, 1] – 3 sin1 3 sin x 3 sin 1 cos (3 sin 1) cos (3 sin x) 1
Range is [cos (3 sin1), 1]
1 x f–1(x) = n 1 x
Section (E) : E–1.
ex ex y = x 1 e e x By compnendo and dividendo
1 y 2e x = 1 y 2
RESONANCE
1 y x = n 1 y
S OLUTIONS (XII) # 8
E–7.
E–8.
f(1) = 1 = 2 – 1 f(n + 1) = 2f(n) + 1 f(3) = 7 = 23 – 1 f(4) = 15 = 24 – 1 Similarly f(n) = 2n – 1
f(2) = 2f(1) + 1 = 2. 1 + 1 = 3 = 22 – 1
Method 1 : (usual but lengthy) x2 f(x) + f(1 – x) = 2x – x4 .....(1) replace x by (1 – x) in equation (1) (1 – x)2 f(1 – x)+ f(x) = 2 (1– x) – (1 – x)4 .....(2) eliminate f(1 – x) by equation (1) and (2) we get f(x) = 1 – x2 Method 2 : Since R.H.S. is polynomial of 4th degree and also by options consider f(x) = ax2 + bx + c x2 f(x) + f(1 – x) = 2x – x4 x 2 (ax2 + bx + c) + a (1 – x)2 + b (1 – x) + c = 2x – x4 by comparing coefficients a=–1 b=0 c=1 f(x) = – x2 + 1
EXERCISE # 2 PART - I 1.
(i)
f(x) =
or
3 2 x 2 .2 x 3 – 2x – 2 .2–x 0 (2x – 1) (2x – 2) 0
(ii)
f(x) =
(iii)
1 – 1 x 2 0 f(x) = (x2 + x + 1)–3/2 D:xR
(iv)
f(x) =
or
(2x)2 – 3.2x + 2 0 2x [1, 2] x [0, 1]
1 1 x2
x2 + x2
1 x 2 1
0 1 – x2 1
or
x
or
x 2n
or
x (0, 1] [4, 5)
x [– 1, 1]
1 x 1 x
x2 1 x 0 and 0 x2 1 x x (– , –2) [2, ) and x (–1, 1] D: (v)
f(x) =
tan x tan 2 x
tan x – tan2x 0
or
0 tan x 1
n
n , n 4
1
(vi)
(vii)
f(x) = 2 sin x 2
f(x) =
sin
x 0 2
5x x 2 log1 / 4 4
5x x 2 1 4
RESONANCE
and
5x – x2 > 0
S OLUTIONS (XII) # 9
(viii) or 2.
(i)
f(x) = log10 (1 – log10(x2 – 5x + 16)) 1 – log10 (x2 – 5x + 16) > 0 x (2, 3) f(x) = 1 – |x – 2| |x – 2| [0, )
or
x2 – 5x + 6 < 0
f(x) (– , 1]
1 f(x) , 1 3
1 (ii)
(iii)
f(x) =
x5 D : x (5, ) R : f(x) (0, ) 1 f(x) = 2 cos 3 x range of cos 3x is [–1, 1] cos 3x [–1, 1]
(iv)
x2
f(x) =
=y x 8x 4 x + 2 = yx2 – 8yx – 4y for x to be real D 0 (8y + 1)2 + 4y (4y + 2) 0 64y2 + 16y + 1 + 16y2 + 8y 0 2
80y2 + 24y + 1 0 (v)
f(x) =
(viii) (ix)
f(x) = 3 sin
(i)
1 1 , y , 4 20
or
1 y , 3 3
2 x2 16
D : x , 4 4
f(x) = x3 – 2x2 + 5 = (x2 – 1)2 + 4 R : [4, ) f(x) = x3 – 12x , x [–3, 1] = x (x2 – 12) f(x) = 3x2 – 12 = 0 or f(x) = sin2x + cos4x = sin2x + 1 + sin4x – 2 sin2x = sin 4x – sin2x + 1 1 2 3 = sin x + 2 4
7.
or
=y x 2 2x 4 x2 – 2x + 4 = yx2 + 2xy + 4y x2 (1 – y) – 2x(1 + y) + 4(1 – y) = 0 D0
2 x 2 0 , 4 16
(vii)
yx2 – x (8y + 1) – (4y + 2) = 0
x 2 2x 4
4(1 + y)2 – 16(1 – y)2 0
(vi)
or
f(–x) =
3 f(x) 0 , 2
x=±2
R : [–11, 16]
3 R : , 1 . 4
(2 x 1)7 (2 x )6
neither even non add (ii) (iii)
sec x x 2 9 = f(x) x sin x f(–x) = – f(x) odd f(–x) =
RESONANCE
even
S OLUTIONS (XII) # 10
(iv)
x 1 x2 2 [ x ] [ x ] 1 x 1 , even by graph of function f(x) = 2 x x 1
(v)
f(x) =
2x(sin x tan x ) x 2 1
if x = n, f(n) = 0 if x n
8.
x x = – 1
f(–x) = – f(x) odd function
(i)
f(x) = 1 –
cos2 x sin2 x – fx = 1 – f(x) 2 1 – tan x 1 – cot x fundamental period =
(ii)
(iii)
(iv)
sin2 x cos2 x – 1 cot x 1 tan x period of f(x) = L.C.M. (, ) = For fundamental period
f(x) = tan [ x ] : [x] 2n + 1 2 f (x) = 0 By graph fundamental period = 2 f(x) = log (2 + cos 3x) fundamental period of f(x) = fundamental period of (2 + cos 3x) (as log is a monotonic function) f(x) = en sin x + tan3x – cos (3x – 5) f(x) = sin x + tan3x – cos (3x – 5), sin x > 0
period 2 ; ,
2 3
2 = 2 Period of f(x) = L.C.M. 2 , , 3
(v)
x x x x x x x f(x) = sin x sin 2 sin 4 .... sin n –1 tan tan 3 tan 5 ... tan n 2 2 2 2 2 2 2
Period of f(x) = L.C.M. of 2, 23 , 25 ,......2n , 2, 23 .....2n = 2 n
(vi)
f(x) =
sin x sin 3 x cos x cos 3 x
2 2 period of f(x) = L.C.M. 2. , 2, = 2 3 3 For fundamental period
f(x + ) = 11.
f(x) =
sin ( x ) sin(3 x 3 ) – sin x – sin 3 x = cos( x ) cos(3 x 3) – cos x – cos 3 x
1 x
1 x2
f(x) = 0 at x = 1 ±
Fundamental period =
2
for x 2 1, 1 2 f is bijective function hence f is invertible.
RESONANCE
S OLUTIONS (XII) # 11
1 x 1 x2 or
or
=y x2y + x + (y – 1) = 0 x=
1 1 4 y( y 1) 2y
=
1 4y 4 y 2 1
1 4x 4x 2 1 , f–1(x) = 2x , 1
2y
x0 x0
as f (1) 0
n
f (a k ) = 16 (2
n
13.
k 1
or
or Now or 15.
(i)
(ii)
– 1)
f(a + 1) + f(a + 2) + ......... + f(a + n) = 16 (2n – 1) f(x + y) = f(x) . f(y) f(0) = 1, f(1) = 2 f(x) = 2x f(a + 1) + f(a + 2) + ........ + f(a + n) = 2a [2 + 4 + ......... + 2n] = 2a . 2(2n – 1) 16 = 2a + 1 or a=3 f(x) = Ax2 + Bx + C x and f(x) at x = 0, f(0) = C at x = 1, f(1) = A + B + C C is integer at x = –1, f(–1) = A – B + C f(1) + f(–1) = 2A + 2C 2A is also integer f(x) = A x(x – 1) + (A + B) x + C f(x) = 2A
C is integer A + B is also integer C is integer
x( x 1) + (A + B)x + C 2
x( x 1) is also an integer and 2A, (A+ B), C 2 f(x) is also an integer.
If x is an integer then
PART - II 2.
f(x) = here
1
x
1 cos 1 (2 x 1) tan 3 x
– 1 2x + 1 < 1
– 2 2x < 0
–1x<0
x [–1, 0) But x – 1 as |x| – 1 0 x (–1, 0) for x (–1, 0), (|x| – 1) is –ve tan 3x < 0 0 > 3x > –
2
or
x , 0 6
Domain : , 0 (–1, 0) , 0 6 6
RESONANCE
S OLUTIONS (XII) # 12
3.
1 x3 f(x) = sin 3 / 2 + sin(sin x ) + log(3{x} + 1) (x 2 + 1) 2x Domain : 3{x} + 1 1 or 0 x –1
and
6.
1 x 3
1 2x 3 / 2 – 2x 3/2 1 + x 3 2x 3/2 1 + x 3 + 2x 3/2 0 (1 + x 3/2)2 0 xR 1 + x 3 – 2x 3/2 0 or (1 – x 3/2)2 0 3/2 or 1–x =0 or x=1 Hence domain x f(x) = (sin–1x + cos –1x)3 – 3 sin–1x cos –1x (sin–1x + cos –1x) –1
=
3 3 1 3 2 – 3 sin–1x cos x = – sin–1 x + 3 (sin–1x)2 2 2 8 8 2 4
3 3 = + 8 2
2 2 2 1 1 3 3 3 3 1 sin x (sin x ) sin x – = + 2 16 4 32 32 2
maximum value of f(x) at x = – 1 8.
f maximum =
9 3 7 3 3 3 + × = 32 2 16 8
Here (2 – log2 (16 sin2x + 1) > 0
0 < 16 sin2x + 1 < 4
1 16 sin2x + 1 4
3 16 0 log2 (16 sin2x + 1) < 2
log
2
2 2 – log2 (16 sin x + 1) > 0
0 sin2x <
2
2 log
2
(2 – log2 (16 sin2x + 1)) > –
2y>– Hence range is y (– 2] 11.
(A)
f(x) = e1/2 n x = g(x) =
12.
D:x>0
x,D:x0
D : x ± (2n +1)
2
(B)
tan–1 (tan x) = x
(C)
cot–1 (cot x) = x D : x ± n f(x) = cos 2x + sin4x = cos 2x + (1 – cos 2x)2 = 1 – cos 2x + cos 4x = sin2x + cos 4x g(x) = sin2x + cos 4x
(D)
f(x) =
|x| , D:x0 x g(x) = sgn (x), D : x R
f(6{x}2 – 5{x} + 1) (3{x} – 1) (2{x} – 1) 0
13.
x,
f((3{x} – 1) (2 {x} – 1)) or
1 1 {x} , 3 2
x
n
1 1 n 3 , n 2
R+ 0 , 2 g(x) = 2x – x2 R R f(g(x)) = cot–1 (2x – x2), where x (0, 1]
f(x) = cot–1x
hence f(g(x)) , 4 2
RESONANCE
S OLUTIONS (XII) # 13
20.
21.
25.
1 1 2 1 f x = x + x + [x + 1] – 3 x + 15 3 3 3 3 1 2 = x + x + [x] – 3x + 15 = f(x) 3 3 f(x) = |x – 1| f : R+ R x g(x) = e , g : [–1, ) R fog(x) = f[g(x)] = |ex – 1| D : [–1, ) R : [0, )
f(x) = (A) (B) (C)
(D)
fundamental period is 1/3
sin( [ x ]) =0,x { x} By graph fundamental period is one f(–x) = 0 = f(x) even function Range y {0} { x } y = sgn sgn – 1, x { x } y = sgn (1) – 1 y=1–1 y = 0, x Identical to f(x)
28.
f(x) = sin x + tan x + sgn (x2 – 6x + 10) f(x) = sinx + tan x + sgn ((x – 3)2 +1) f(x) = sin x + tan x + 1 period = L.C.M. (2, ) = 2 fundamental period = 2
29.
f:NI
n – 1 , n odd f(n) = 2 n – , n even 2 For For
n odd numbers f(n) 0, 1, 2, 3, ...... n even numbers f(n) –1, –2, –3, ...... range I
f(n) is one -one onto function.
EXERCISE # 3 2.
x = 2
(A)
sin–1 x + cos–1
(B)
2 sin–1 x + cos–1 1 x = 0
(C)
x [0, 1]
x [–1, 0]
x [0, )
1 x tan–1 x + tan–1= tan–1 1– x
1 – x2 g 2 = 2h(x) 1 x
(D)
cos–1 1 x 2 = – sin–1(x)
cos
–1
1 – x2 –1 1 x 2 = 2 tan x
1 x h(x) + h (1) = h 1– x x (–, 1)
RESONANCE
S OLUTIONS (XII) # 14
Comprehension # 2 (6, 7, 8) Period of e
x tan 4
is 4
(1 2 [ x]) =0 2
cos
xR
[x]
Period of sin 2 is 4 then y =
8 2[ x ] [ x ] 2
p=4
[x]2 – 2[x] – 8 0 – 2 [x] 4 q=–2 , r=5 r–q–1=5+2–1=6 x 2 , f2 (x) = 2 x ,
Period of f(x) is 4
– [x]2 + 2 [x] + 8 0
i.e.,
([x] – 4) ([x] + 2) 0 –2 x<5
x0 x0
2 f2 (x) , f2 (f2 (x)) = 2 f ( x ), 2 2 x 2 2 ( x 2) = 2 2 x 2 (2 x)
f2 (x) 0 f2 (x) 0 ,
x 2 0,
x0
,
x 2 0,
x0
,
2 x 0,
x0
,
2 x 0,
x0
x0 4 x , = x0 4 x , Range of f2 (f2 (x)) is [4, ) (4 , ) = [4 , ) = [p , )
11.
f : [0, 3] [0, 13] y = f(x) = x2 + x + 1
x=
– 1 1 – 4(1 – y ) 2
x=
– 1 4y – 3 2
– 1 4x – 3 2 Hence option ‘B’ is correct
14.
f–1(x) =
as
f–1 [1, 13] [0, 3]
f(x + 4) = sin [ x 4] 2 = sin [ x ] 2 = sin [ x ] = f(x) 2 2
17.
f(x) =
2x 2 x 1 (7 x 2 4 x 4) f(x) =
x 2 2x (7 x 2 4 x 4 ) 2
f(x) is not monotonic
f(x) is many one.
RESONANCE
S OLUTIONS (XII) # 15
22.
1<2<3 f(1) f(2) f(3)
f (1) f (2) f (3 ) No. of maps 1 1 1, 2, 3, 4, 5 5
2
3
4
2
2, 3,4,5
4
3
3,4,5
3
3
3,4,5
3
4
4,5
2
4
4,5
2
5 2
5 2, 3, 4, 5
1 4
5 2
5 2, 3, 4, 5
1 4
3
3,4,5
3
3
3,4,5
3
4
4,5
2
4
4,5
2
5
5
1
5
5
1
3,4,5
3
3,4,5
3
4,5
2
5
1
5
24.
5
2, 3,4,5
4
5
Q y uksad h la[;k
2
3
4
f (1) f (2) f (3 ) 1 1 1, 2, 3, 4, 5
2
3
3
4,5
2
5
1
4
4,5
2
5
5
1
4 5
4
4,5
2
5
5
1
5
5
4
1
5
5
5
1
4
f(x) = e cos x { x } cos(x ) Since ex is a monotonic function fundamental period = L.C.M. (1, 1, 2) = 2
EXERCISE # 4 PART - I 1.
f : [0, ) [0, ) f(x) =
x 1 x
x1 x2 1 x1 = 1 x 2 for given domain f(x) < 1 2.
y=
x2 x 2 x2 x 1 D0
,xR
(y – 1) (3y – 7) 0
x 1 = x 2 only
function is into
x 2 (y – 1) + x(y – 1) + (y – 2) = 0
(y – 1)2 – 4(y – 1) (y – 2) 0
1y
7 3
1=2
not possible
but for y = 1 quadratic vanishes so put y = 1
1=
RESONANCE
x2 x 2 x2 x 1
S OLUTIONS (XII) # 16
3.
y=
No real values of x.
sin 1 2 x
4.
–
y = 1 is not in the range
6
For domain sin–1 2x +
0 6
1 2x 1 2
–
sin–1 2x 6 2
–
1 1 x 4 2
g(f(x)) = (sin x + cos x)2 – 1 = 1 + sin 2x – 1 = sin 2x
2x 2 2
gof(x) is invertible in , 4 4
5.
x, x Q y = (f – g) (x) = x, x Q
6.
For option A
Which is one-one and onto function
f –1 (f(A)) = A A A
Hence A is wrong
For option B
f(X) = Y
f is onto but it will not effect on mapping of function
Hence B is wrong For option A & B other explaination can be given else if Y is a singleton set then the function f is constant function and hence is trivially onto (unless X = ). But in such a case, even if A consists of just one point, f(A) is entire set Y and so f –1 (f(A)) is the entire set X, which could be much bigger than A. So A and B are wrong even if f(X) = Y For option C
f(X) Y (range co-domain) f(X) is a proper subset of Y (so that f is not onto), then for B = Y option C is wrong because f –1(Y) = X but f(f–1(Y)) = f(X) Y. For option D
If B = Y, then f(f –1(Y)) is the range of the function f. If this is equal to Y, then function must be onto, thus f(X) = Y is necessary condition Hence D is correct
RESONANCE
S OLUTIONS (XII) # 17
7.
A = {x |x2 + 20 9x} = {x |x [4, 5]} Now, f(x) = 6(x2 – 5x + 6) f(x) = 0 x = 2, 3 f(2) = –20, f(3) = –21, f(4) = –16, f(5) = 7 from graph, maximum of f(x) on set A is f(5) = 7
8.
g(f(x)) = x g(f(x)) f(x) = 1 ........(i) if f(x) = 1 x = 0, f(0) = 1 substitute x = 0 in (i), we get
1 g(1) = f (0) 9.
(f(x) = 3x2 +
g(1) = 2
f(x) = x2 ; g (x) = sin x gof (x) = sin x2 (fogogof) (x) = (sin (sin x2 ))2 = sin2 (sin x2) Now sin2 (sin x2) = sin (sin x2)
sin x2 = n, (4n+1)
x2 = n
; 2
I
x = n ; n W
11.
cos4 =
2 2 – sec 2
=
sin (sin x2) = 0, 1 sin x2 = 0
F : [0, 3] [1, 29] f(x) = 2x3 – 15x2 + 36 x + 1 f(x) = 6x2 – 30 x + 36 = 6(x2 – 5x + 6) = 6(x – 2) (x – 3) in given domain function has local maxima, it is many-one Now at x = 0 f(0) = 1 x = 2 f(2) = 16 – 60 + 72 + 1 = 29 x = 3 f(3) = 54 – 135 + 108 + 1 = 163 – 135 = 28 Has range = [1, 29] Hence given function is onto
Now f(cos4) =
gogof (x) = sin (sin x2)
10.
1 1 2 2cos22 – 1 = cos22 = 3 3 3
1 x/2 1 e f(0) = ) 2 2
cos2 =
2 3
1 cos 2 1 =1+ cos 2 cos 2
1 3 f = 1 ± 3 2 NOTE : Since a functional mapping can't have two images for pre-image 1/3, so this is ambiguity in this question perhaps the answer can be A or B or AB or marks to all.
PART - II 1.
We have f : N If x and y are two even natural numbers then
x y = x=y 2 2 Again if x and y are two odd natural numbers then f(x) = f(y)
x 1 y 1 = x=y f is one-one 2 2 Also each –ve integer is an image of even natural number and each +ve integer is an image of odd natural number. f is onto. f(x) = f(y)
RESONANCE
S OLUTIONS (XII) # 18
2.
f(x + y) = f(x) + f(y) function should be y = mx f(1) = 7 m = 7 n
n
f (r ) = 7
r 1
3.
4.
r
=
r 1
f(x) = 7x
7n (n 1) . 2
4 – x2 0 , x3 – x > 0 x ±2 and –1 < x < 0 or 1 < x < D = (–1, 0) (1, ) – {2} or D = (–1, 0) (1, 2) (2, ). 2 f(x) = log x x 1
x 2 x 2 1 2 f(–x) = log x x 1 = log 2 x x 1 2 = –log x x 1 = –f(x)
5.
f(x) is an odd function.
We know that – a 2 b 2 a sin + b cos
a2 b2
–2 sin x –
–1 sin x –
3 cosx 2
3 cosx + 1 3
f(x) [–1, 3]. 6.
Let us consider a graph symmetric w.r.t. line x = 2 as shown in figure
from figure f(x1) = f(x2) where x1 = 2 – x & x2 = 2 + x f(2 – x) = f(2 + x) 7.
f(x) =
sin 1( x 3 ) 9 x2
is defined if
–1 x – 3 1 & 9 – x2 > 0 Hence from (1) & (2) we get 2 x < 3 Domain = [2, 3). 8.
2x4 –3 < x < 3
...(1) ...(2)
7x
Px 3 is defined if 7 – x 0, x–30 3 x 5 and x
f(3) =
7 3
P3 3 = 4 P0 = 1
f(4) =
74
P4 3 = 3 P1 = 3
and 7–xx–3 x = 3, 4, 5
P5 3 = 2 P2 = 2 Hence range = {1, 2, 3}. f(5) =
7 5
RESONANCE
S OLUTIONS (XII) # 19
9.
2x = 2 tan–1 x for x (–1, 1) f(x) = tan–1 1 x2 tan–1 x , 4 4
If x (–1, 1) 2 tan–1 x , 2 2
Clearly, range of f(x) = , 2 2
10.
Codomain of function = B = , . 2 2 f(2a – x) = f(a – (x – a)) = f(1) f(x – a) – f(a – a) f(a + x – a) = f(1) f(x – a) – f(0) f(x) = – f(x) [ x = 0, y = 0, f(0) = f 2(0) – f 2(1) f 2(1) = 0 f(1) = 0] f(2a – x) = –f(x).
11.
f(x) is defined if –1
for f to be onto, co-domain = range
or 0
x –1 1 2
x 2 and – < x < 2 2 2
12.
y = 4x + 3
13.
f(x) =
x=
and cos x > 0
or 0 x 4 and –
y 3 4
x 0, . 2
f –1 (y) = g(y) =
y 3 . 4
1 | x | x
|x|–x>0 |x|>x 14.
x< 0
x (– , 0) Ans.
f(x) = (x – 1)2 + 1, x 1 f : [1, ) [1, ) is a bijective function x=1±
y – 1 f –1(y) = 1 ±
y = (x – 1)2 + 1 (x – 1)2 = y – 1
y –1
f –1(x) = 1 + x – 1 { x 1} so statement-2 is correct Now f(x) = f –1(x) f(x) = x x2 – 3x + 2 = 0 x = 1, 2 so statement-1 is correct
(x – 1)2 + 1 = x
ADVANCE LEVEL PROBLEM PART-I 1.
f(x) =
2x 1 log x 4 log 2 3 x 2
2x 1 0 For domain : log x 4 log2 3x 2
Case-I 0<
x4 <1 2
RESONANCE
–4
..........A
S OLUTIONS (XII) # 20
2x 1 then log x 4 log 2 0 3x 2
2x 1 1 3x on A B x (–4, –3)
log2
Case-II
x4 >1 2
or
x > –2
2x 1 2 3x
x < –3 ..........B
1<
..........(i) ..........A
2x 1 0 log x 4 log 2 3x
0 < log2
(i) (ii)
2
x (4, ) ..........(ii)
2.
f(x) = (x 12 – x 9 + x 4 – x + 1)–1/2 Dr : x 12 – x 9 + x 4 – x + 1 > 0 For x 0 it is obvious that for f(x) to be defined Dr > 0. For x 1, (x 12 – x 9) + (x 4 – x) + 1 is positive Since x 12 x 9, x 4 x. For 0 < x < 1, Dr = x 12 + (x 4 – x 9) + (1 – x) > 0 Since x 4 > x 9, x < 1. Hence Dr > 0 for all x R Domain is x R
3.
f(x) =
2x 1 1 3x
2x 1 2 3x
Domain x (– 4, – 3) (4, )
e x e |x| e x e | x|
if x 0, f(x) =
e x e x 2e x
=
1 1 1 – x 2 = 2(e ) 2 2
1 1 (e x )2
; f(x) 0, 1 2
........(i)
1 f(x) 0, 2
if x < 0, f(x) =
4.
f(a) =
ex ex x
e e
x
=0
.........(ii)
a(2a – 1) 0
Let g(x) x 2 + (a + 1)x + (a – 1) = 0 (i) D0 (a + 1)2 – 4(a – 1) 0 aR
B <1 2A (iii) g(– 2) > 0 (iv) g(1) > 0 Now (i) (ii) (iii) (iv) we get 5.
1 range of f(x) is (i) (ii) = 0, 2
1 a (–, 0] , 2
2a 2 a for domain of f(x)
2a2 – a 0
(ii)
–2 < –
2 1 f(x) = sin–1 x + cos –1 2
...(i)
(a 1) <1 2 4 – 2(a + 1) + (a – 1) > 0 1+a+1+a–1>0 –2<–
a 3, 3 ....(ii)
a<1 a > –1/2
2 1 x 2
Domain :
2 1 –1 x 1 2
5 5 x 2, 2
and
2 1 – 1 x 1 2
3 3 , x 2 2
RESONANCE
S OLUTIONS (XII) # 21
3 3 domain is x 2 , 2
6.
7.
8.
9.
3 x 2 0, 2
or
if
(i)
1 x 2 0, , then 2
f(x) =
if
(ii)
1 x 2 ,1 , then 2
f(x) =
if
(iii)
3 x 2 1, , then 2
f(x) =
range = {}
1 1 2 1 1 1 1999 1 f = + + +....... = 1000 2 2 2000 2 2000 2 2000 2
f(x) = ax 2 + bx + c f(0) = c c f(1) = a + b + c (a + b + c)
6 x 6 x f(x) = 2.6 x
f(x) =
(a + b)
, x0 , x0
sin 2 x 4 sin x 5
=y 2 sin 2 x 8 sin x 8 sin2 x (1 – 2y) + 4sinx (1 – 2y) + (5 – 8y) = 0 vertex (–2, 1) Let sin x = t, where t [–1,1] 5 g (–1) · g (1) 0 or 2(1 – y) . 2(5 – 9y) 0 or y ,1 9
y
10.
0
–2
2
4
x
y = f(x + 2) is drawn by shifting the graph by 2 units horizontally.
11.
0 2 x sin x f(–x) = x x
x0 x (1,1) 0 |x||
= – f(x)
odd function
PART - II 1.
(i)
log1/ 3 log 4 ([ x ]2 5) Domain (i)
log1/3 log4 ([x]2 – 5) 0 or or [x]2 9 or
RESONANCE
log4 ([x]2 – 5) 1 x [–3, 4)
.........(i) S OLUTIONS (XII) # 22
log4 ([x]2 – 5) > 0 or [x]2 – 5 > 1 or x (– , –2) [ 3, ) [x]2 – 5 > 0 x (– , –2) [ 3, ) Now (i) (ii) (iii) x [–3, 2) [ 3, 4)
(ii)
(iii)
(ii)
.........(ii) .........(iii)
1 f(x) = [ | x 1 | ] [ | 12 x | ] 11 Case- x > 12 f(x) =
1 [ x ] 1 [ x ] 12 11
Now for f(x) to be defined [x] 12 x (12, 13) Case- 1 x 12 f(x) =
x [12, 13)
1 1 [ x] [ x] 12 11 xI xI
x (0, 1)
x (–0.5, ) & x 0.5
x<1
x2 2x 3
2
or
f(x) = x 0.5 log( 0.5 x ) 4x2 4x 3 x + 0.5 > 0, x + 0.5 1
&
but x > 12
1 if x I 1 = [ x ] ( 1 [ x ]) [ x] 1 12 [ x] 11 not defined if x I
1 2(1 [ x ]) if f(x) = 1 if 2 [ x ] (iii)
1 f(x) = 2 ([ x ] 12)
x {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
Case- x<1 f(x) =
x 2x 3 2
4x 4x 3
> 0 or
.....(A)
( x 3)( x 1) >0 (2x 3)(2x 1)
1 3 x (– , –3) ,1 , 2 2
.....(B)
1 3 1 (A) (B) Domain of f(x) : x ,1 , – 2 2 2
cos x
(iv)
f(x) =
1 2
6 35 x 6 x 2
cos x –
1 0 or x 2n , 2n , n 3 3 2
and
6 + 35x – 6x 2 > 0
1 5 Domain , ,6 6 3 3
RESONANCE
or
1 x ,6 6
S OLUTIONS (XII) # 23
(v)
2.
f(x) =
( 7 x 1) ! 5 sin1 x 2 3 + x 1 x1 2
x 1 2 0
x [1, 3)
&
x [–1, 1]
&
x (–1, )
&
7x + 1 w
x+1>0
1 1 2 3 4 5 6 Domain ,0, , , , , , 7 7 7 7 7 7 7
(i)
f(x) =
x 1 + 2 3 x D:x–10 & 3–x0
1 Range : f(x) =
(ii)
x [1, 3]
or
f(x) = 0 at x =
7 5
maxima at x =
7 5
1
2 x 1
–
f 5 > 0
&
7 f 5
For domain
(i)
7
3x
=0
< 0 [x] > 0 and [x] 1
for range if x [2, ), then
|x| =1 x
so
Range :
2,
10
[x] 2, so x [2, )
so f(x) = cos –10 =
2
Range of f(x) = 2
log1/ 2 log 2 [ x 2 4 x 5]
(iii)
f(x) =
D : 0 < log2 [x 2 + 4x + 5] 1 [x 2 + 4x + 5] = 2 D : x (–2 – R : {0}
2 , – 3] [–1, –2 +
(iv)
x2 f(x) = sin–1 log 2 2
1 x2 <4 2 2
and (v)
or or
1 < [x 2 + 4x + 5] 2 2 x 2 + 4x + 5 < 3
2)
x2 –1 log2 2 < 2
x (– 8 , –1] [1,
R : , 0, 2 2 f(x) = log[x – 1] sinx sin x > 0 x (2n,(2n+1)) here [x – 1] > 0 & [x – 1] 1
8)
x [3, ]
Domain x [3, ) 2n , (2n 1) . n 1 For range sin x (0, 1] and [x – 1] [2, ) so range (–, 0] (vi)
f(x) = tan–1
[ x ] [ x ] 2 | x | +
Domain : (i) [x] + [–x] 0 (ii) 2–|x|0 (iii) x 0 For domain (i) (ii) (iii)
1
x2 x |x| 2 x [–2, 2]
Domain : {–2, –1, 1, 2}
1 Range : , 2 4
RESONANCE
S OLUTIONS (XII) # 24
3.
3 f(x) = sin
x x sin5 2 5
T 1 = 2, T 2 = 5 4.
(i)
T = 10
y = cos (sin x) sin x [–1, 1]
1 cos 1
3 2
–
O
2
(ii)
y = | n | x 2 – x | | (rough sketch)
(iii)
y = min (x – [x], – x – [–x]) 0 = min ({ x }, { x })
2
3 2
5 2
, xI ,x I
½
–1
(iv)
y = (sin 2x)
RESONANCE
0
1
2
3
1 tan 2 x
S OLUTIONS (XII) # 25
(v)
(vi)
5.
y = sin x + | sin x | Ans. y = 2 sin x =0
y = In x –
if if
, ln x 0 , x 1 0 (In x )2 = 2 ln x , ln x 0 , 0 x 1 | In x |
[x] [y] = x + y (i) if x, y or (ii) and
sin x 0 sin x < 0
x x 1 if x, y I y = I2 + f 2 f1 + f2 I 0 < f1 + f2 < 2 I 1 + I 2 + 1 = I 1I 2 y=
then
xy = x + y
(x, y) is (0, 0), (2, 2)
Let then
x = I1 + f 1 I 1 + I 2 + f 1 + f 2 = I 1I 2
f 1 + f 2 = 1.
I2 1 2 I1 = I 1 1 I 1 . 2 2
6.
I2 – 1 = ± 1, ± 2, I2 = 2, 0, 3, – 1 \ I1 = 3, –1, 2, 0 I1 I2 = 6, 0 x + y = I 1I 2 x + y = 0 or x + y = 6
(i) | [x] – 2x | = 4 or [x] – 2x = ± 4 let x = + f then (a) – 2 – 2f = – 4 = 3, f = 1/2, (b) – 2 – 2f = 4
RESONANCE
or
f=
= 4, f = 0
4I 2
4I <1 2 x = 4, 7/2 0
= 3, 4
S OLUTIONS (XII) # 26
(4 I) 2 = – 4, f = 0 f=–
(4 I) <1 2 x = –4 0 –
1 9 x=– 2 2 [x – 1] + [1 – x] + x – {x} > 0 [x] + [–x] + [x] > 0 x , x > 0 x : {1, 2, 3, 4, .......... } x [x] – 1 > 0 [x] > 1 x [2, ) A x {1} [2, ) = –5, f =
(ii) If If 7.
9 7 x = 4, , 4, 2 2
.......(A)
.......(B)
Case
y=x x<1 x=y y<1 f –1(x) = x x<1 Case y = x2 1x4 x2 = y 1 y 16 x=
y
f –1(x) = Case x=
1 y 16
x
1 x 16
y= 8 x
y2 64
f –1(x) = 8.
x>4
y > 16
x2 64
x > 16
Let x = y = 1 f(x) + f(y) + f(xy) = 2 + f(x) . f(y) 3f (1) = 2 + (f(1))2 f(1) = 1, 2. But given that f(1) 1 so f(1) = 2 1 Now put y = x 1 1 1 1 f(x) + f + f(1) = 2 + f(x) . f f(x) + f = f(x) . f x x x x so f(x) = ± x n + 1 Now f(4) = 17 ± (4)n + 1 = 17 n = 2 2 f(x) = +(x) + 1. f(5) = 52 + 1 = 26
9.
Put x = 1, y = 1 (f(1))2 = f(1) + 6 f(1) = 3, – 2 f(1) = 3 [Since f(x) > 0] Put y = 1 in given relation f(x) f(1) = f(x) + 2(x + 2) 2f(x) = 2x + 4 f(x) = x + 2
10.
| f(2k) – f(2i)| = | f(2k) – f(2k –1) + f(2k–1) – f(2k–2)......... f(2i+1) – f(2i)| | f(2k) – f(2k–1)| + | f(2k–1) – f(2k–2)| + ...........| f(2i+1) – f(2i)| Consider | f(2k–1 + 2k–1)| – f(2k–1) | 1 So | f(2k) – f(2i)| 1 + 1 + ........(k – i) term
RESONANCE
S OLUTIONS (XII) # 27
k
| f ( 2k ) – f (2 i ) |
i 1
k (k – 1) 2
11.
(k – i) Hence proved.
1 = f(x + 1) (x + 1)2 f x 1
1 f ( x) 1 = f ( x 1)2 x 1
...........(i)
x x 1 = f 1 – = 1+ f – Also f x 1 x 1 x 1 x = 1–f x 1 x 1 x =1–f x x 1
= 1–
2
x2
f (x) 1 x2 1 1 – 1 2 .........(ii) f = 2 2 x x ( x 1) ( x 1)
from equation (i) and (ii), we can say that (i) = (ii)
1 f ( x) ( x 1)
2
= 1–
x 2 f (x) ( x 1)2
1+ f(x) = 1 + 2x – f(x) 12.
f(x) = x
(i)
Put x = y = 1 in given relation, we get f(f(1)) = f(1)
(ii)
Now put x = 1, y = f(1) in given relation, we get f(f(1)) =
from (i) and (ii) f(f(1)) = 1 Put x = 1, f(f(y)) = f(f(f(x))) = 13.
f (1) =1 f (1)
f(1) = 1
f (1) 1 y f(f(y)) = y now substitute y = f(x)
1 1 1 f = f (x) f (x) x
f(x, y) = f(2x + 2y, 2y – 2x) = f(2(2x + 2y) + 2 (2y – 2x), 2(2y – 2x) – 2(2x + 2y)) f(x, y) = f(8y, –8x) = f(8(–8x), –8(8y)) f(x, y) = f(–64x, –64y) = f((–64) (–64 x), (–64) (–64y)) f(x, y) = f(212x, 212y) f(x, 0) = f(212x, 0) Replace x by 2y f(2y, 0) = f(212 . 2y, 0) f(2y, 0) = f(212+y , 0) f(2x, 0) = f(212+x , 0) g(x) = g(12 + x) [ given g(x) = f(2x, 0)] Hence g(x) is periodic function with period 12.
RESONANCE
.......(i) from (i) .......(ii) (using (ii)) .......(iii) (using (iii))
S OLUTIONS (XII) # 28
LIMITS EXERCISE # 1 PART - I Section (A) : A-6.
(i) (ii) (iii)
0 im [ x ] = Not an indeterminate form x 0 x ve value im
im (tan x)tan2x = ()º form Yes x
(iv)
x 2 1 – x + = Not an indeterminate form
x
2
im
x
x 1
im {1 h}
1 nx 1 n(1h )
h 0
im {h}
1 n(1 h )
h 0
= (0 form) = 0 Not an indeterminate form
SECTION (B) : B-2.
(i)
im x 0
1 cos 4 x 1 cos 5 x
0 form 0 2
sin 2x 22 2 sin 2x 16 2x im im = x 0 = x 0 2 = 2 5x 25 5x 2 sin 2 sin 2 5 2 2 5 x 2 2
(ii)
3 sin x cos x x 6 using L' Hospital rule im x
=
(iii)
6
im x
im x 0
im x 0
(iv)
6
0 form 0
3 1 3 cos x sin x = =2 2 2 1
tan 3 x 2x 3x sin2 x 3 . tan 3 x –2 1 3(1) – 2 3–2 3x = = = 3 – 0 . 1 3 3 sin x 3 – sin x. x
2 2 0 im (a x ) sin(a x ) a sin a form x 0 0 x using L' Hospital rule
2(a x ) sin(a x ) (a x )2 cos(a x ) = x im 0 1 = 2a sina + a2 cos a
RESONANCE
S OLUTIONS (XII) # 29
5
B-4.
5
2 2 im ( x 2) (a 2) x a xa
R.H.L. = im
(x
5 2) 2
– (a x–a
x a
= im
(a
h 0
5 2 h) 2
– (a ah–a
(a
5 2) 2 1
im = h 0
5 2) 2
(a
5 2) 2
5 h 2 – 1 a2
5 2) 2 1
= im
h
h 0
5 3 2 5 h h 2 2 . . ..... – 1 2 a2 2! ( a 2 )2 h 5
3
5 ( a 2) 2 = 2
5
(a 2 – h ) 2 – ( a 2 ) 2 L.H.L. = im h 0 –h
5 3 2 5 h h 2 2 a 2 1 – .... – 1 2! 2a2 a2 = im h 0 –h 5 2
3
5 2 = ( a 2) 2
L.H. L. = R.H.L. 5
So
im
x a
5
3
( x 2 ) 2 – (a 2 ) 2 (x – a)
=
5 ( a 2) 2 2
SECTION (C) : C-1.
(i)
2 x 1 im 2 2 .... 2 = im x x x x x im = x
(ii)
x( x 1) 2x
im cos x
im = x
2
1 2 ..... x x2
1 1 1 1 x = 2 2
x1 cos x
x x 1 x – x 1 im 2sin = x . sin 2 2 x x 1 x – x –1 im 2 sin = x . sin 2 2 . ( x x 1) x x 1 –1 im im sin =2 x . sin x 2 2. ( x x 1) = 2x (oscillating –1 to 1) × 0 =0
RESONANCE
S OLUTIONS (XII) # 30
(iii)
im x
x
2
8x x
= ( + ) = 3 3
(iv)
3
2
n 2n 1 n 1
im
n 4
4
n2 1–
4
= im
n 6n5 2 5 n7 3n3 1 6
n
3
2 1 1 n3 1 4 n n3 n 7
n2 1
6 2 3 1 – n5 1 4 7 n n6 n n
1
– 2 1 1 3 n 6 1 4 n n n
1– im = n 1
(v)
im x
6 2 –n n n6
–
1 10
2 2 x 13 – ( x – 1) 3
1
=
3 1 n 4 n7
1 0 =1 1– 0
4 2 2 4 2 2 ( x 1) 3 – x – 13 ( x 1) 3 x 13 ( x – 1) 3 ( x – 1) 3 im = x 4 2 4 2 ( x 1) 3 x 13 ( x – 1) 3 ( x – 1) 3
( x 1)2 – ( x – 1)2
im = x
( x
4 1) 3
2 3 (x
x 1
2 – 1) 3
(x
4 – 1) 3
(x
4x
im = x ( x 1)( x
1 1) 3 1
2 – 1 3
4 – 1 3
x x x 1 x 1
4x
im = x
=
2 4 x – 1 3 x – 1 3 x 1 x 1
4 1) 3 1
4 =0 (1 0) () [1 1 1]
SECTION (D) : 1
1
D-1.
(i)
5 2 im ( x 2) (15 x 2) x 2
(7 x
Let
im = h 0
1 4 2)
x
x=2+h
(4
1 h) 2
(16
– (32 15h)
1 7h) 4
– (2 h)
1
1
1 5
im = h 0
15 h 5 h2 2 1 – 2 1 32 4 1
7h 4 2 1 – (2 h) 16
1 1 1 4 h – h2 3h – 15h 2 2 5 2 5 21 .... – 2 1 .... 2 2 8 32 32 16 im = h 0 7h 21 ...... – ( 2 h) 64
im = h 0
1 3 1 9 1 3 2 – – h – h – ... 16 4 16 4 64 256 = 7 7 –1 – 1 ..... h 32 32
RESONANCE
=–
2 25 S OLUTIONS (XII) # 31
(ii)
im
e x 1 sin x
tan 2 x 2
x3
x 0
2 3 4 3 5 3 x x x x ... – x – x x ... – 1 x x ... 2! 3! 4! 3! 5! 3 2 im h 0 x3
2
1 1 1 1 1 1 x 2 – x 3 – x 4 – .... 2 2 6 6 4! 3 im = h 3 0 x
1 1 1 + = 6 6 3
=
SECTION (E) : E-2.
(i)
im (tan x)tan2x x
=
4
im (tan x –1) tan 2 x x e 4
= e–1 =
=
–2 tan x im 1 tan x x e 4
1 e x
(ii)
1 2x im x 1 3x
(iii)
im 1 nx x 1
x
sec
= (iv)
im = x x 2
nx im x 1 cos x 2 e
1 2 x 2 = =0 1 3 3 x
im ( nx ). sec
= e x 1
x 2
lim
1 x
x 1 – sin x 0 2 2 ( form) = e 0
im x x 2
=
–2 e
((0)0 form)
x 0
im x x 2 Let y = x0 1
y=
(v)
im
e x0
x 2(nx)
im (tan x) cosx – x
(0 form)
y=
nx im 1 x 0 2 x e
y=
im cos x.( n tan x ) – x 2 e 1 sec 2 x im tan x sec x tan x – x e 2
2
y=
n tan x im sec x – x 2 e
y=
y=
cos x im 2x – sin x e 2
y = e0 = 1
RESONANCE
y=
x im 2 x 0 – 3 x e
= e0 = 1
S OLUTIONS (XII) # 32
(vi)
im ([x])1–x
x 1
im [1 – h]1 – (1 – h)
h0
im
h0
E-3.
(0)h = 0
im [1 . 2x ] [2 . 3 x ] ..... [n . (n 1) x ] n n3 (1.2)x – 1 < [1.2x] (1. 2)x (2.3)x – 1 < [2.3x] (2.3)x n(n + 1) x – 1 < [n (n + 1)x] n(n + 1)x so (1.2)x + (2.3)x + ... n (n + 1)x – n < [1.2 x] + [2. 3 x] + .... [n(n +1)x] (1. 2) x + (2. 3) x + .... n(n +1)x x . (n2 + n) – n [1. 2x] + [2. 3x] +......[n(n+1)x] x (n2 + n)
n(n 1) (2n 1) n (n 1) x. –n [1 . 2 x ] [ 2 . 3 x ] ..... [ n ( n 1) x ] 6 2 im < im n n n3 3 n
im n
n(n 1) (2n 1) n (n 1) x 6 2 n3
1 1 1 1 1.1 n 2 n n 2 1 [1.2 x ] [2.3 x ] ..... [n(n 1)x ] n im x – 2 im n n 6 2 n n3 1 1 1 1 1 . 1 n 2 n n 2 n im x n 6 2 x [1.2 x ] [2.3 x ] ..... [n(n 1)x ] x im 3 n 3 n3
so
E-5.
im
[1.2 x ] [2.3 x ] ..... [n(n 1)x ]
n
n
3
=
x 3
2n im x 1 f(x) = n x 2n 1
case (i) when x = 1
im 1 – 1 = 0 f(x) = n 1 1
case (ii) when x > 1
1 1– 1– 0 x im f(x) = n =1 2n = 1 0 1 1 x
case(iii) when x < 1
2n im x 1 = 0 – 1 = – 1 f(x) = n x 2n 1 0 1
2n
range of f(x) is {–1, 0, 1}
RESONANCE
S OLUTIONS (XII) # 33
PART - II Section (A) : A-3*.
f(x) =
x 2 9 x 20 x [x] x 2 9 x 20 25 – 45 20 = =0 x [x] 1
im
x 5
2 2 im x 9 x 20 = im (5 h) – 9(5 h) 20 x 5 h0 x [x] 5 h – [ 5 h]
25 10h h2 – 45 – 9h 20 h 0 h
= im
h(h 1) h2 h = im =1 h 0 h h0 h
= im im
x5–
im f(x) x5 f(x)
im f(x) does not exist x 5
so
SECTION (B) : 3
B-2.
4x – 1 x3 x x 3 ( 4 1 ) im = x im 2 x 0 0 x x x sin n 1 sin p 3 p x x 2 .n 1 3 p x p 3
4x – 1 x2 x 3 = 3p . im . x x 0 x2 sin n 1 p 3 x p
B-6.
= 3 p (n 4)3
im tan2 x 2 sin 2 x 3 sinx 4 sin 2 x 6 sinx 2
x
2
2 sin2 x 3 sinx 4 (sin2 x 6 sinx 2) = im tan2 x 2 2 x 2 sin x 3 sinx 4 sin x 6 sin x 2 2 = im tan2 x . x
2
(sin2 x – 3 sin x 2) 2 3 4 1 6 2
1 sin2 x – 3 sin x 2 = im 6 cos2 x x 2
0 form (use L'Hospital rule) 0
=
1 im 2 sin x cos x – 3 cos x 2 cos x(– sin x ) 6 x 2
=
1 1 1 im 2 sin x – 3 1 = = 6 2 6 x 2 – 2 sin x 12
RESONANCE
S OLUTIONS (XII) # 34
B-7*.
Let f(x) =
cos 2 cos 2x x2 | x |
f (x) (A) xim 1
im
Now
x 1
for x = – 1 cos 2 cos 2x x2 x
cos 2 cos 2x x2 x
(B) xim 1
|x| = – x
f(x) =
(
0 2 sin 2x form) = im = 2sin2 x 1 0 2x 1
(
0 2 sin 2 x form) = im = 2sin2 x 1 0 2x 1
cos 2 cos 2x x2 x
SECTION (C) : C-1.
sinh < h < tanh h 1 sinh
,
h 0, 2
–h –1 sin h
h 2 h im 2 LHL = h0 = –2 = h im 0 sinh cos 2 h h 2 h im 2 RHL = h0 = –2 = h im 0 sinh cos 2 h
C-3.
C-6*.
im
3n ( 1)
n
im
x–
im
(B)
x
1 n 3 –3 0 =– n 1 = 4 ( 1) . 4–0 4 n
3 ( 1)n
n
im = n
4n ( 1)n
(A)
LHL = RHL = –2
2
x 2 3 x6
2 x2 1 im x 2 = im = x 6 =– x – 3 x6 3 –3– x
x2 2 im = x 3x – 6
1
2
2 x2 6 3– x 1
=
1 3
SECTION (D) : D-4.
im e x 0
–
x2 2
– cosx x sinx 3
x x4 x x4 1 1 1 1 – ..... x4 – – x6 – ...... – 1 – – ...... 1 – 2 4 . 2! 2! 4! 8 4! 8 . 3! 6 ! = x im = x im 0 0 2 3 x x x 4 1 – ....... x3 x – ....... 3 ! 3! 1 1 1 = – = 8 24 12
RESONANCE
S OLUTIONS (XII) # 35
D-5*.
1 a cos x For x im 0 x2 0 for 0 form 1+a=0
a=–1
b sin x im for x im = x 0 3 0 x b=0
so Now
b x2
1 a cos x b sin x = x im – x im 0 0 x2 x3
2 sin2 x 1 – cos x im im 2 = x 0 = x 0 x2 x2 (a, b) = (–1, 0) and =
2 = x im 0 4
sin x 2 x 2
2 =
1 1 . (1)2 = 2 2
1 2
SECTION (E) :
E-3.
im (1 [ x ]) x
E-7.
1 n (tan x )
4
im n
= im ( exact 1) x
1 n (tan x )
=1
4
1 [13 x] [23 x] ... [n3 x ] n4
13 x –1 < [13 x] 13 x 23 x –1 < [23 x] 23 x . . . . . . . . . n3 x –1 < [n3 x] n3 x Adding all these inequilities (13 + 23 + 33 ...........+ n3) x – n < [13x] + [23x] + ...........[n3x] (13 + 23 + ..........n3) x 2
n(n 1) n 2 (n 1)2 x x n 3 3 3 [1 x ] [2 x ] .... [n x ] 2 4 < n4 n4 n4 2
2
1 x 1 1 x [13 x ] [23 x ] ......... [n 3 x ] im 1 im 1 3 < im n n n n 4 n n 4 n4 x [13 x ] [2 3 x ] ........[ n3 x ] im 4 x n4
E-9*.
im f(x)= im | 0 – h| h0
x 0
sin(0 –h)
x 4
im x
im hsin(–h) = him0(– sin h ) ( nh ) = h e 0
[13 x ] [2 3 x ] ........ [n3 x ] x 4 n4
= e0 = 1
im f(x) = im | 0 h |sin ( 0 h ) = im hsin h = im (sin h ) ( nh ) = e0 = 1 h e h h
x 0
im f(x) = im f(x) = 1 x 0
x 0
RESONANCE
im f(x) = 1 x 0
S OLUTIONS (XII) # 36
EXERCISE # 2 PART - I 1.
(i)
Pn =
3 23 1 3 3 1 4 1 n3 1 . . .......... 3 23 1 3 3 1 4 1 n3 1
(2 1)(2 2 2 1)
Pn =
(2 1)(2 2 2 1) 2 . 13
1.7
(3 1)(3 2 3 1)
.
(3 1)(3 2 3 1)
...........
(n 1)(n 2 n 1) (n 1)(n 2 n 1)
(n 1)(n 2 n 1)
3 . 21
1 . 2 . 3 ...........(n 1)
7 . 13 . 21...........(n 2 n 1)
Pn = 3 . 3 . 4 . 7 . 5 . 13 ........ Pn = 3 . 4 . 5..........(n 1) . 3 . 7 . 13..........(n2 n 1) (n 1)(n 2 n 1) Pn =
(ii)
im
n
im = n
im
n
k 1
n
r 1
n
im = n
( 2k 1)(n 1 k )(n 2 k ) 2n
k 1
4
(2k 1) (n 1)(n 2)
k 1
2n 4
( 2k 1)(n k 1)(n k 2) 2n 4
k 1
n
im
=
n
( 2k 1) (n 1)(n 2) k( 2n 3) k 2 2n
k 1
(2n 3) (2k 2 k ) 2n 4
2.
(2k 1) (n 1)(n 2) ( 4n 7) k 2 2k 3 (2n 3) k 4 = n 2n 4 2n 4 2n 2n 4 k 1 im
(i)
im
x 1
(n(1 x ) – n2) (3.4 x –1 – 3 x ) [(7 x )1/ 3 – (1 3 x )1/ 2 ] sin( x – 1)
4
2k 3 k 2 2n 4
n
=
2 (n2 n 1) 2 3 n (n 1) 3
n k 1
n4
n
im
(2k 1) r n
=
im P = im n n n
n n 1 n2 1 3 k 5 ...... (2n 1) . 1 1 k k n 4 k 1 k 1 k 1
n
=
2 (n 2 n 1) Pn = 3 n(n 1)
1.2 n2 n 1 . n (n 1) 3
im = h 0
1 12
[n (2 h) – n2] [3.4 h – 3 – 3h] [(8 h)1/ 3 – ( 4 3h)1/ 2 ] sin h
h n 1 h 2 3( 4h – 1) n 1 3( 4 h – 1) – 3h · – 3 2 (h / 2) h im im = h = h 1/ 3 1/ 2 0 0 h 3h h 3h 2 1 – 1 1 – 1 sin h sin h 24 8 8 4 4 h h
=
(ii)
9 4 1.(3n 4 – 3) 9 – (n 4 – 1) = – n 4 e 4 1 4– 3
1 x 11 2 (1 x ) x = e 1 – 2 24 x .....
im e (1 x ) Now = x 0 tan x
RESONANCE
1 x
x 11 2 e – e 1 – x – ..... 2 24 e im = x = 3 5 0 x 2x 2 x ..... 3 15
S OLUTIONS (XII) # 37
8.
AT AQ
tan = sin 2 =
AP AT 2r 2r
2 tan 2
1 tan 2 tan 2
1 tan
AQ =
11.
AT 2r
AQ tan 2r
4r
im AQ = im 0
2
P A
1 tan
14.
1 tan2
= 4r = 2 (Diameter)
im (f(x) – f(x)) L1 = x
– x im e f ( x ) – f ( x ) L1 = x e – x
d f ( x )e – x dx im L = L1 = x d – x 1 – e . dx
L = im – f(x)
L = – im f(x)
L = – L2
L2 = –
12.
4r
– x – x im e f ( x ) – f ( x )e L1 = x e – x
x
– x im f ( x )e L = x – x – e
x
L
1<2
n
im n! < 0 0 < n nn
n
im
1 im n! < im 1 n –1 < n nn n n n
im n! = 0 nn
AN = tan CN CN = AN cot
Area of ABC =
cos 1 (AB) (CN) = AN.CN = AN. AN sin 2
r cos 2 r 2 cos3 = r cos. sin = sin
RESONANCE
S OLUTIONS (XII) # 38
1 (DE) (CM) = (DM) (CM) = (CM)2 tan = (OC – r)2 tan 2
Area of DEC =
2
r 2 (1 sin )2 r – r tan = sin cos sin now
im r 2 cos 3 . cos . sin ABC = sin . r 2 (1 – sin )2 DEC 2
im
AB 0
=
im
2
cos 4 (1 – sin )2
= im
(1 – sin2 )2
2
(1 – sin )2
= im (1 + sin)2 = (2)2 = 4
2
PART - II 1.
n im x = 0 x ex case(i) when n = 0
(n integer)
im xn = im x ex
then
x
1 =0 ex
case(ii) when n is +ve integer
im xn
x
ex
form
n!
im = x ex = 0 case(iii) when n is – ve n = –m where m z+ –m 1 im xn im x im = x x ex = x xm.e x = 0 ex so
3.
n im x = 0 x ex
im x0 f(g (h (x))) L.H.L. x 0– im + x 0– h (x) = 0 im x0 f(g(x))
then
im g(x) = 1+ x0
im f(x) = 1 – 1 = 0 x 1 R.H.L. x 0+ im + x0 h (x) = 0
5.
so
im f(g(x)) = 0 x0
L.H.L. = R.H.L. = 0
im x sin 1 sin 1 2 x x x
sin 1 x 1 im sin = 1 + 0 = 1 x 1 x 2 x
RESONANCE
S OLUTIONS (XII) # 39
6.
3 3 im |x| – x (a > 0) x a– a a
x=a–h
3 |a –h|3 a –h 3 |a|3 h im – im – 1 – = h0 a = h0 a a = a2 – 0 a
12.
= a2
x im sec–1 x 1
x
replace x
1 y
im sec –1 = y 0
1 y im sec –1 1 = y 0 y 1
when
im im y0
x
1 y 1
1 <1 y 1
y 0+ ;
1 im sec –1 so y y 1 does not exist. 0
14.
(i)
im sin x 1 sin x = x
x 1 x . sin x 1 x im 2 cos = x 2 2
x 1 x x 1 x . sin im 2 cos = x 2 2 x 1 x
x x 1 1 sin im 2 cos = x 2 2 x x 1 = (oscillating value –1 to 1) × 0 = 0
(ii)
sin x 1 sin x m = xim
when x then x undefined m is undefined 16.
im f(x) To find x 0 L.H.L. = xim f(x) 0– = xim 0–
im { x } cot { x } = h 0
im f(x) = im R.H.L. = x0 x 0
(1 – h) cot (1 – h) =
cot 1
2 tan2 [ x] tan2 [0 h] im im tan 0 = = h0 (0 h)2 – [0 h]2 h0 x 2 – [ x ]2 h2
=0
im f(x) does not exist. f(x) is not continuous at x = 0. L.H.L. R.H.L. so x 0
Now
cot
2 –1
im f ( x ) – x 0
= cot–1 ( cot 1)2 = cot–1 (cot 1) =1
RESONANCE
S OLUTIONS (XII) # 40
18.
sin < < tan
0, 2
,
sin tan 1 n sin n tan n
n sin n tan im
0
im
L.H.L. =
0
n N
n sin n tan
im n sin n tan
R.H.L. =
20.
;
0
= n – 1 + n = 2n – 1 = n – 1 + n = 2n – 1
L.H.L. = R.H.L = 2n – 1
1 1 1 1 im .......... ... 2 2 2 n n 2 n 1 n 2 n 2n
using sandwitch theorem
1
2
n
1 n
1 2
n 1
1 n
1 2
n 2n
1 n
adding all these inequilities 1 n
2
1 2
n 1
1 2
n 2
.......... ...
1 2
n 2n
2n n
im Taking both side n 1 1 1 1 im .......... ... = 2 n n 2 n2 1 n2 2 n 2 2n
21.
im 2x cot 1 x f(x) = t 0 t2 Case-I : when x = 0 f(x) = 0 Case-II : when x > 0 x 2x 2x 2x im cot 1 2 = cot 1( ) = f(x) = t .0=0 0 t Case-III when x < 0
x 2x 2x im cot 1 2 = 2 x × cot–1 (– ) = f(x) = t . = 2x 0 t f(x) = 2x
RESONANCE
S OLUTIONS (XII) # 41
25.
ay by exp x n 1 x exp x n 1 x im im im = y y 0 0 x y
x x 1 ay 1 by x x im x y
2 2 2 2 1ay x(x – 1) . a y ..... 1 by x(x – 1) . b y .... 2! 2! x2 x2 im im x y = y 0
by expansion
y2 2 (a – b 2 ) ..... y( a – b ) 2 im = y y =a–b 0 29.
im
(ax 1)n
xn A (A) If n N x
n
1 a x (a 0)n im = an A = x 1 0 1 n x –
(B) If n Z & a = A = 0 n im (ax 1) = im 1 = x x xn xn A (C) If n = 0
then
nZ
–
n 1 1 im (ax 1) = im = x x 1 A 1 A xn A
then –
(D) If n Z , A = 0 & a 0 n
n n im (ax 1) = im (ax 1) = im a 1 = (a + 0)n = an x x x x xn A xn
then
EXERCISE # 3 1.
(A)
2 2 2 2 im tan[ e ]x tan[ e ]x x 0 sin 2 x
[e2 ]x2
= xim 0
2 2 tan[e2 ]x2 2 2 tan[e ]x [– e ] x [e2 ]x2 [e2 ]x2 = [e2] – [– e2] = 15 2 2 sin x x x2
im min(t 2 4t 6) sin x = im 2 sin x x 0 x x
(B)
x 0
sin x < x
RESONANCE
2 sin x <2 x
2 sin x =1 x
So
im 2 sin x = 1 x
x 0
S OLUTIONS (XII) # 42
1 1 – 1 2 4 x 2 .... 1 x .... – 1 – x 4 4 2 3 2! 1 = xim = 0 2 2 xx
1
(C)
(D)
2 1/ 3 im (1 x ) – (1 – 2x ) 4 x 0 x x2
im =
2 1 cos x
= xim 0
2
x 0
sin x
2 2 sin2 2
sin x
x 4 = xim 0
2 2 sin2
x 4
x 2 sin2 x 16. . 2 16 x
2 8
=
Comprehension # 1 (For Q.No. 3 to 5) n
im cos x im cos = e n f(x) = n n
Substituting, n =
1 t2
4b g(x) = – x
g(x) = – x
4.
1 2
x n
1 . n
cos tx 1 im 2 e t 0 t
= e
1 cos tx im x 2 2 2 t 0 t x
= e
1 x2 2
f(x) =
x2 x 1 x2 1 1 im x 2 x 1 x 2 1 = im b = x = 2 2 x 2 x x 1 x 1
= – x2
By observation, graphs of f(x) and – g(x) intersect each other at two points Number of solutions is 2. 9.
Statement -1 is true as sin x im and =0 x 0 x Statement - 2 is true as
im h( g( x )) = h ( im( g( x )) xa x a 10.
sin x im x =1 0 x
if h(x) is continuous at x = g(a).
Statement -1
im
x 0
1– cos2x 2 | sin x | = xim 0 x x
L.H.L. = – 1
&
R.H.L. = 1
Statement -2 is true 14.
True indeterminate form of type –
18.
im
x 1
(5 x )2 (2 x)1
(2 – x ) 1 1 1– x 2 im (5 – x ) – 4 = = xim x 1 ( 2 – x ) – 1 1 (5 – x ) 2 1– x 4 2
RESONANCE
S OLUTIONS (XII) # 43
21.
im
( x a)(x b) x
x
im = x im = x
( x a)( x b) – x 2 ( x a )( x b ) x
(a b) x ab
ab ab = 1 1 2
=
(a b) ab x 1 2 1 x x
EXERCISE # 4 PART - I 1.
im
x tan 2x 2x tan x
x0
(1 cos 2x )
2
im = x 0
x 2
(2 sin x )
2
2 tan x 2 tan x 2 1 tan x 3
tan x 2 1 x 2 . x tan x . tan x 1 1 1 im im . = x0 = x0 = . 4 4 2 sin x 2 1 2 4. sin x x
2.
x3 for x R , im x x 2
3.
im
=
x–3 im –1 · x x 2 e x
= e
–5 im · x x 2
x
= e–5
sin( cos 2 x ) x2
x 0
= im
sin( (1 sin2 x ) x2
x 0
4.
x
sin( sin2 x ) sin2 x = 1..1 = x 0 sin2 x x2
= im
x im (cosx 1) (cos x e ) x 0 xn
x 2 x 4 x 2 x 4 x2 x3 – ......... 1 1 – ......... 1 x ......... 1 im 2! 4 ! 2! 3 ! 2! 4! x 0 n x
1 x2 1 1 1 x2 1 1 – ......... 1 x – ......... – ......... 1 x – ......... x 2! 4! 2! 2! 2! 4! im im 2! 2! = x x 0 0 n–3 x xn is finite and non-zero if n = 3 3
5.
im ((a n)nx tan x ) sin nx = 0 x0 x2
tan x sin nx im 0 (n) (a n) n x 0 nx x (1) (n) [(a – n) (n) – 1] = 0 n(a – n) –1 = 0
a–n=
1 n
RESONANCE
a=n+
[ n 0]
1 n
S OLUTIONS (XII) # 44
6.
1 1 im x x 0 sin x x
for x > 0 1 x
1 im(sin x ) im x 0 x0 x = e
7*.
1 x im x 0 (cos ecx cot x )
=
sin x
sin x
1 = 0 + im x 0 x
2 im sin x x cos x e x0
sin x
im (sin x ). n 1 x
= e x 0
im
e x 0
=
n( x ) – cos ec x
form
= eº = 1
1 1 x 2 1 2 1 x 4 x2 . a a . 1 . 2 .... 2 2 2 a 4 a4 x2 2 2 a a x 4 = im L = im x 0 4 4 x 0 x x
( a > 0)
x2 1 x4 x2 . 3 ...... 4 im 2a 8 a = x 0 x4
Since L is finite
8.
lim
xn(1 b2 ) e x
2a = 4
= 1 + b2 = 2b sin2
sin2 =
1 b 1 b 2
but
sin2 1
x 0
We know b +
9.
1 2 b
sin2 =1
sin2 1
= ±
1 8.a
3
=
1 64
2
x2 x 1 im – ax – b = 4 x x 1 x 2 (1 – a) x(1 – a – b) (1 – b) =4 im x x 1 Limit is finite it exists when 1–a=0
then 10.
im L = x 0
a=2
a=1
1– b 1– a – b x im 1 x =4 1 x
1–a–b=4
b=–4
((1 + a)1/3 – 1)x2 + ((a+1)1/2 – 1)x + ((a+1)1/6 – 1) = 0 let a + 1 = t6 (t2 – 1)x2 + (t3 – 1)x + (t – 1) = 0 (t + 1)x2 + (t2 + t + 1)x +1 = 0 2x2 + 3x + 1 = 0 x = – 1 and x = –
As a 0 , t 1
1 2
PART - II 1.
im
x 0
im
x 0
1 – cos 2x 2x
2 sin2 x 2x
=
im | sin x | x
x 0
im sin h – 1 , LHL = h 0 –h LHL RHL So limit does not exist
RESONANCE
im sin h 1 RHL = h 0 h
S OLUTIONS (XII) # 45
2.
im x – 3 x x2
= e 3.
x
x–3 im –1 x x x 2
(1 form)
im –
= ex
im x f (2) – 2f ( x ) x–2
f (x) 1
x 1
x 1
2 im x 5 x 3 2 x x x3
im f (2) – 2f ( x ) = f(2) – 2f(2) = 4 – 8 = – 4 = x 2 1
0 form 0
f( x ) 2 x = xim 1 2 f (x)
=
f (1) f (1)
2 2 1
n [ x] im nx – im 1 = x x [ x] [ x]
=0–1=–1
x
im
(1 form)
x ( 4 x 1) 2 x3
x = e x
= e4
x x 1 – tan (1 – sin x ) tan – (1 – sin x ) 2 im im 4 2 = x x x 2 2 3 ( – 2 x )3 1 tan ( – 2x ) 2 put x =
im = y 0
y 2
y 0+
y y tan – (1 – cos y ) tan (1 – cos y ) 2 2 im = y 0 (– 2y )3 8y3
y tan 2 im = y y 0 2 8.
0 form 0
x
4x 1 im 1 = x x2 x 3
7.
= e– 5
n im n x – [ x ] x [ x]
n im nx – im = x x [ x]
6.
= e
–5 2 x
1
f(1) = 1, f(1) = 2
im
5.
im
x
f(2) = 4, f(2) = 4 x 2
4.
5x x 2
sin2 y 2 · 2 y 2 64 4
= (1) (1) ·
1 1 32 32
im n (3 x ) – n (3 – x ) k x 0 x
x x n 1 – n 1 – 3 3 k im x 0 x 1 1 k 3 3
RESONANCE
x x n 1 3 1 n 1 – 3 · – – 1 im x 3 x 3 = k x 0 – 3 3
k=
2 3 S OLUTIONS (XII) # 46
Alt.
im n(3 x ) – n(3 – x ) k x 0 x Apply L' Hospital rule
9.
im 1
x 0
k=
1 1 k 3 3
2 3
f (a) g( x ) – g(a) f ( x ) im = 4 x a g( x ) – f ( x )
im k g( x ) – f ( x ) 4 x a g( x ) – f ( x ) k=4
im 1 a b x x x2
e
2x
e2
a b im 2 2 x x x
x
e2
im 2a 2b 2 x 2 ax + bx + c = 0 a(x – ) (x – ) = 0
11.
1 k 3– x
im f (a) g( x ) – f (a) – g(a) f ( x ) g(a) 4 x a g( x ) – f ( x ) Apply L' Hospital rule
10.
3 x
x
im
x
im (ax b)2 2 x
x
b R, a = 1
1 cos(ax 2 bx c ) ( x )2
ax 2 bx c a 2 sin2 ( x – ) ( x – ) 2 sin2 2 2 im = x = im 2 2 ( x – ) x ( x ) 2
a( x – ) ( x – ) sin 2 2 2 2a ( x – ) im = x a( x – ) ( x – ) · 4 2 12.
lim
x 0
= (1)
2a2 ( – )2 a 2 ( – )2 4 2
f (3 x ) =1 f ( x)
f(x) < f(2x) < f(3x) Divide by f(x)
1
f ( 2 x ) f (3 x ) f(x) f ( x)
using sandwitch theorem
lim
x
f (2x ) =1 f ( x)
RESONANCE
S OLUTIONS (XII) # 47
13.
lim 2
x2
sin ( x 2) ( x 2)
does not exist
14.
im
( f ( x )2 ) – 9
x 5
|x–5|
0
im[( f ( x ))2 – 9] 0 x 5
im f(x) = 3 x 5
ADVANCE LEVEL PROBLEM 1
1.
x x im a1 a 2 x x x 0 b1 b 2
1
= e2
2.
a x a
(log e a1 loge a 2 log e b1 loge b 2 )
p q im p q qx px x1 1 x p x q x pq
= xim 1
x
im 1x 2 x x = e x 0 b1 b 2
1 1 x
1
= e2
=
a x 1 a 2 x 1 (b1x 1) (b 2 x 1) 1 im 1 b x b x x x x x 1 2 e x 0
aa log e 1 2 b1b 2
=
a1a 2 b1 b 2
pqx p 1 pqx q1 0 0 form = im form x1 px p 1 qx q1 (p q)x p q1 0 0
pq(p 1)x p 2 pq(q 1)x q 2 p(p 1)x p 2 q(q 1)x q 2 (p q)(p q 1)x p q2
=
pq 2
1
3.
t 1 t t 1 im b a t 0 ba
b t 1 a t 1 1 b(bt 1) a(a t 1) 1 bnb ana 1 im bb t ba b a t 0 t t = im e e ba = t = = e aa 0
4.
1
b a
im f(0 – h) = im f(– h) = im h2 =1 LHL = h0 h 0 h 0 – 1 im f(0 + h) = im f(h) = im im 1 = 1 RHL = h0 h 0 h 0 n 1 hn
5.
im
x0
nx k x2 2 (sin x tan x)
e n x e n x 2 cos
n2 x 2 n 4 x 4 n2 x 2 n 4 x 4 ..... 2 1 ........ k x 2 2 1 2! 4! 4.2! 16.4! im 3 3 = x 0 x x ........ x x 2 x 5 ....... 3! 3 15
2n 4 2n 4 n2 x 2 n2 k x4 4! 16.4! 4 im = x 0 1 1 3 x .......... 3! 3
RESONANCE
limit exists, if coff. of x 2 is zero.
S OLUTIONS (XII) # 48
n2 –k=0 4 so the possible value match that is n2 +
6.
L=
n = 2, k = 5
1 3 im cos (3 x 4 x ) cos 1( 4 x 3 3 x ) = im1 1 1 x 1 x 2 x 2 x 2 2
Let
= cos–1 x
As x
1 2
3
1 L = im cos (cos 3) 1 3 cos 2
1 im cos (cos 3) im = 1 3 cos 3 2 3 = 2 3 = im sin 3
LHL =
Also,
RHL =
= im
3 0 im =– 2 3 form = 1 0 sin 3 cos 2 LHL RHL Limit does not exist
im
n
1 cos 2
1 1 ( 2 3) im cos (cos 3) = im cos (cos(2 3)) = im 1 1 1 cos 3 cos cos 3 3 2 2 2
3
n
n
r
0 form 0
3
Now
3
7.
4k = 5n2
2
(n r 1) = im
r 1
r 1
r
3
r 1
n
n
n
r
n
(n 1) r 2
r
3
3
r 1
r 1
(n 1) (n) (n 1) (2n 1) 4 1 6 1/ 3 im 1 = n = 1/ 4 – 1 = 3 1 3 n 2 (n 1)2 4 8.
9.
n1999
1 = x x 2000 C C 3 2 n x 1 x C1 ... 2 2 n 6 n the limit obviously exists if 2000 – x = 0
im
n
Let = sin–1 x
as
x
1 2
x = 2000
1 1 im cos (2 sin cos ) im im cos (sin 2) = = 1 1 4 4 4 sin sin 2 2
4 cos 1 cos 2 2 1 sin 2
cos 1 cos 2 2 2 2 = im Left hand limit = im 1 1 sin 4 sin 4 2 2
RESONANCE
0 form 0
S OLUTIONS (XII) # 49
= im– 4
2 = 2 2 cos
Right hand limit =
= im 4
10.
im
4
cos 1 cos 2 cos cos 2 2 im im 2 2 2 = = 1 1 1 4 4 sin sin sin 2 2 2
2 = 2 2 cos
LHL RHL
x x x f ( x ) f f ... f im 2 3 k x 0 x
Limit does not exist
0 form 0
im f ( x ) 1 f x 1 f x ... 1 f x = x 0 2 2 3 3 k k 1 1 1 =1+ + + .... + = 3 2 n n
= n C1 –
C2 + 2
n
1
1 2
(1 x x ... x
n 1
) dx =
0
0
C3 – ........ + (–1)n–1 . 3
n
1 xn dx = 1 x
1
0
1 (1 x )n dx x
Cn n
PART - II 1.
im 1 – cos(a1x). cos(a2x).cos(a3 x).......cos(an1x) Ln+1 = x 0 x2
Let
im 1 – cos (an1x ) cos (an1x ) – cos (a1x ). cos (a2 x )..... cos (an1x ) Ln+1 = x 0 x2 im 1 – cos(an1x) cos (an1x) {1 – cos(a1x).cos(a2 x).....cos (an x)} Ln+1 = x 0 x2 im 1 – cos(an1x ) + im cos (a x) . L Ln+1 = x n+1 n 2 0 x 0 x
Ln+1 =
an12 + L n 2
a12
a22
a22
a12
a32
a32
a22
a12
n
1 ai2 L1 = , L2 = + L1 = + , L3 = + L2 = + + , Ln = 2 i 1 2 2 2 2 2 2 2 2
2.
im x 2 x 1 a x b = 0
x
im x 2 x 1 ax b = 0
x
Let x =
1 h
So
1–a=0
im
h0
im
h0
1 h h 2 a bh 0 h
limit exists
a=1
1 h h 2 1 bh 0 h
RESONANCE
S OLUTIONS (XII) # 50
3.
( 2h 1)
im
h 0
So
a = 1, b =
x
2 1 h h
1 –b=0 2
–b=0
2
b=
1 2
1 2
im xnf(x) = p
n1 im x f ( x ) = p x x using L- Hospital rule, we get
n n 1 im (n 1) x f ( x ) x f ( x ) = p x 1
4.
Let f(x) =
im xn+1.f(x) = p (n + 1) p + x
im xn+1 f(x) = –np.
x
ex – x – 1 x2 x3
Since limit exists
im f(0 + h) = im f(0 – h) = L (say) h 0
h 0
h 2 im e – h – 1 h L = h0 h3
h –h –h 2 im e h – 1 h 2L = im e – e – 2h Also, L = h0 h 0 h3 – h3 Put h = 3t 3t –3 t im e – e – 6t 54 L = im ( e t – 1)3 – ( e – t – 1)3 3( e 2 t – e –2 t ) – 3( e t – e – t ) – 6t 2L = t0 t 0 27 t 3 t3
3 3 t e – t – 1 e – 1 (e 2 t – e – 2 t – 4t ) ( e t – e – t – 2t ) im 3 – 3 54 L = t 0 –t t t3 t3 3 3 t – 2t –t 2t e t – e – t – 2t – 4t e – 1 e – 1 24 e – e 3 – im 54 L = t 0 t –t ( 2t )3 t3
54 L = 1 + 1 + 48 L – 6L
5.
12 L = 2
im n2 ( n 1) n 1 n 1 ....... n n n 2
2
2
1 1 (n 1) n ....... n n –1 2 2 im = n nn im 1 1 = n n
n
2n 2
1 1 2n 1
1
=e .e
1/2
.e
1/4
....... e 2
n –1
L=
1 2n 1
1 6
n
n
n
1 1 1 im 1 1 .......1 n –1 = n 2n 2 . n n
(1 form )
2n – 1. n
1 ........ 1 n –1 2 .n
...... term
2n – 1
im 1 1 { using n n
pn
1 e p } { im 1 n n
pn
ep }
= e2
RESONANCE
S OLUTIONS (XII) # 51
6.
Let x 2= 1 1 =
2 ; x3 =
2 1 =
n n 1 x im n 1 = im n n x n n
=e
7.
1 im 1 1 1 n n
Now,
1 2
n n
<
8.
1
<
n k
2
n n
n
n
=e
n n 1 n
im n
n 1
k
<
2
n k
n
k 2
k
k 1
n
k
<
2
n 1 k 2
k 1
k
=
loge x sinsinx 1 let y = x –1
<
n
k 2
k 1
n
n
n
n
<
n k 1
k 2
k
n
<
n
k 2
k 1
1
nn 1 2 n2 1
n
n
k 2
k 1
k
im < n
1 2
nn 1 2 n2 1
(By Sandwich theorem)
im x 1
x = 1 + y
log e 1 y log e 1 y y 1 im im = y × × sin y 0 sinsin y = y 0 y sinsin y sin y
im x 3 x 2
2 4 2 x 1 x 2x im im 3 = x x 2 = x 4
x 1 x
im = x
im = x
x 2
x3
(1 x 4 x 4 )
4 2 2 x 1 x 4 x 2 1 x x
x3 2 x 1 x 4 x 2 1 x 4 x 2 x3 x3 1
Let y = x–
1 x4
1
1 2 1 4 1 x
1 2 2
.
1 1 2 4 2
2
im e cot y = im
y 0
= –1 × 1 × 1 = –1
1 x4 x 2
x
10.
n 1 n
1
1 . nn 1 im im < n n n 2 n 2 im
=e
im n
2
1 . nn 1 2 < 2 n n
Given limit
9.
n 1 1 n n
xn = n
e
2
n
=e
im n
;......;
1
= e2 =
k
n
3 ; x4 = 4 ; x5= 5
y 0
1 e
cot y
RESONANCE
=0
S OLUTIONS (XII) # 52
11.
12.
log e log e x
Let
im L = x
im L = x
Since
x log e x im x 0 (using L.H. Rule) = 0 and x x e x
e
x
2 log e loge x loge x x . . loge x x e x
= 2×0×0×0 = 0
im
im log e sin 4m 1x x log e sin4n 1x 2
0 form 0
1 . cos4m 1x.4m 1 im sin 4m 1x im tan 4n 1x. . 4m 1 = x = x tan4m 1x 4n 1 1 2 2 . cos4n 1x.4n 1 sin 4n 1x =y x= +y 2 2 tan (4m+1)x = – cot(4m+1)y similarly tan (4n+1)x = – cot(4n+1)y Put x–
im cot 4n 1y . 4m 1 Given limit = y 0 cot 4m 1y ( 4n 1)
13.
Let
tan 4m 1y . 1 . 4m 1 ( 4m 1) y tan4n 1y 4n 12 ( 4n 1) y x–1 = y x=1+y loge y cot
given limit = im
14.
cot y
=
4m 12 4n 12
cot y 2 im loge y tan y = y 0 cot y
y tan y tan y 2. . 2 y loge y = 0. – 2.1.1 = – 2 = yim y 0 y tan y 2 n1 nx 1 x 1/ x 1/ x x e n 1 nx 1 nx 1 nx . 1 nx x e im im im = im1 = x ( e 1 ) x e 1 x e x e 1 x e 1 x e –1 x e –1 x e 1
=
15.
y 0
y 2
+(4m+1)y 2
tan 4m 1y . 4m 1 im = y 0 tan 4n 1y ( 4n 1)
2
im = y 0
(4m+1)x = (4m+1)
im
x e
(i)
–1
1 x en ex .1 nx x = e.1. (0)e–1 ex 1
nx 1 = 0 xim 1 x 1
Since x 2>0 and limit equals 2, f(x) must be a positive quantity. Also since im
f x
= 2, the x2 denominator zero and limit is finite therefore f(x) must be heading towards zero. If f(x) tends to some non-zero number then limit will cease to be a finite quantity. f(x) > 0 in small neighbourhood of x = 0 thus im f x = 0 x0
x 0
(ii)
f x xf x f x f x f x 2 im = im x. 2 = im x. im 2 = 0 ×2 = 0 x0 x0 x 0 x x x0 x x x
f x im im if we find RHL of x then it is zero but if we find LHL of x 0 x 0 Hence limit does not exist.
RESONANCE
f x im x = x 0
x.f x 2 = –1 x
S OLUTIONS (XII) # 53
CONTINUITY AND DERIVABILITY EXERCISE # 1 PART - I Section (A) : A-3.
(i) h(x) = {x} [x] at x = 1 at x = 2 (ii) h(x) = {x} + [x] = x (iii) h(x) = {x} – [x] = x (iv) h(x) =
RHL = 0 RHL = 0
{ x } + [x]
at x = 1 at x = 2 A-4.
h(1) = 0 LHL = 0 h(2) = 0 LHL = 1 at x = 1 continuous – 2[x] discontinuous at x = 1
h(1) = 1 h(2) = 2
LHL = 1 LHL = 2
RHL = 1 RHL = 2
f (x) = (x + 2) (x – 2) (x – 3) ( x 2) ( x 2) , x 3 h (x) = , x 3 k
for continuity
k = xlim h(x) = 5 3
h(x) = (x + 2) (x – 2) = x2 – 4 which is even x R
Section (B) : B-2.
1 { x }, Since {–x} = 0,
f(x) = x + {–x} + [x] x 1 { x} [ x ] , = , x [ x] 1 2 [ x ] = 2x
x x
x x
,
x
,
x
Curve of y = f(x) discontinuous at all integers in [–2, 2]
B-5._
u=
1 is discontinuous at x = – 2 x2
f(u) =
3 2
2u 5u – 3
=
discontinuous at u =
1 1 = x2 2 x=0
3 2
2u 6u – u – 3
=
1 & –3 2 and
and
1 =–3 x2 x=–
7 3
Hence y = f(u) is discontinous at x = –
RESONANCE
3 is (2u – 1) (u 3)
7 , – 2, 0 3 S OLUTIONS (XII) # 54
Section (C) :
C-5.
x m sin 1 ; f (x) = x 0 ;
x 0 x0
for continitity f(0) = 0 = RHL (x = 0) 1 lim hm sin 0 h 0 n lim hm [a finite quantity between [–1, 1]] = 0
h 0
It hold only when m > 0 if m 0 neither continuous nor derivable for derivability
lim
h 0
f (h) f (0) = finite h
1 lim h (m 1) sin h 0 h
it is finite and unique
and equal to zero if m > 1 when m >1 continuous and derivable if 0 < m 1 continuous but not derivable
Section (D) :
D-2.
y = f(x)
Section (E) : E-2.
f : R R and f(x + y) = f(x) f(y) x, y R Put x = y = 0 f(0) = f2(0) since f(0) 0 f(0) = 1 f '(x) = lim
h 0
f (h) 1 f ( x h) f ( x ) = lim f ( x ) = f(x) f '(0) h 0 h h
dy = y.f '(0) dx On solving ny = x f '(0) + c y = f(x) = ec. ex f '(0) xR Thus f(x) = ex.f '(0)
Let f(x) = y
E-3._
f(x) is continuous and
f(0) = 1 c = 0
7 [f(–2), f(2)], by intermediate value theorem (IVT), there exists a point 3
c (–2, 2) such that f(c) =
7 3
PART - II Section (A) : A-2.*
(A) f(x) is continuous no where (B) g(x) is continuous at x = 1/2 (C) h(x) is continuous at x = 0 (D) k(x) is continuous at x = 0
RESONANCE
S OLUTIONS (XII) # 55
Section (B) : B-4.
1 1 , where t = , y = f(x) is discontinuous at x = 1, where t is discontinuous and y = t t2 x 1
y =
2
1 at t = – 2 and t = 1 ( t 2)( t 1) 1 x 1
1–
1 x 1
–2x + 2 = 1,
x=2
x=
1 2 f(g(x)) is discontinuous at x =
1 , 2,1 2
Section (C) : C-9.
3 Lim = f(2) x 2 f(x) = 1 5 f(x) is not continous at x = 2 Lim
x 2
Lim x 3
f(x) =
f(x) =
Lim x 3
f(x) = f(3) =
9 2
1 9 ((3 h)3 (3 h)2 ) Lim 4 2 h0 h
Now LHD (x =3) is
2 Lim h 8 h 21 21 4 4 9 9 Lim 4 (| h 1 | | 1 h |) 2 0 f(x) is not differentiable at x =2 and x = 3 h0 h
and RHD (x = 3) is
h0
Section (D) : D-3.*
(sin1 x )2 cos1/ x y f (x) 0
x0 x0
f(x) can be discontinuous only at x = 0 in [–1,1] So we check only at x = 0 1 (sin1 h) 2 cos 0 n LHD (x = 0) = lim h 0 h 2
sin 1 h . h cos 1 = –1. 0. [finite quantity between [–1,1]] = 0 lim h 0 n n
RHD (x = 0) is lim h h 0
sin
1
h
n2
2
.cos 1 0 n
Hence f(x) is differentiable as well as continuous in [–1,1]
D-4.
RESONANCE
S OLUTIONS (XII) # 56
D-6.
x x 2 y g( x ) 1/ 4 sin x
0 x 1/ 2 1/ 2 x 1 x 1
Section (E) : E-1.
f(x + 2y) = f(x) + f(2y) + 4xy x, y R Replace 2y with y we have f(x + y) = f(x) + f(y) + 2xy x, y R diff. w.r.t. x f '(x+y) = f '(x) + 2y Put x = 1 y = –1 f '(0) = f '(1) –2
EXERCISE # 2 PART - I 2.
f(0) = 0 f(0+) = hlim 0
h h h + ............... h 1 (h 1)(2h 1) (2h 1)(3h 1)
1 1 1 1 1 .......... .. 1 = hlim 0 h 1 (h 1) 2h 1 2h 1 3h 1 f(x) is not continous at x = 0 since f(0) f(0+)
4.
f(1) = lim
n
log 3 12n sin1 2n
1
lim f(1+) = hlim 0 n
1
log 3 sin1 2
log(3 h) (1 h)2n sin(1 h)
lim f (1–) = hlim 0 n
(1 h)2n 1 log(3 h) (1 h)2n sin(1 h) (1 h)2n 1
sin1
log 3
discontinous at x = 1 6.
y = f(x)
RESONANCE
S OLUTIONS (XII) # 57
y = |f(x)|
y = f(|x|)
9.
y = f(x) = xsin 1/x. sin y = 0, x = 0,
1 r
Let t = x sin1/x
1 x sin 1/ x
when x 0,
where r = 1,2,3,............... as x 0 , t 0 and as x
y = t sin1/t
also
1 , r = 1,2,3 r
1 , t 0 r
lim y lim t sin t 0 = f(0)
x 0
t 0
1 lim y lim t sin t 0 = f r 1 t 0 x r
1 f(x) is continous x [0, 1] r We know that t = xsin1/x is not differentiable at x = 0
f(x) is continous at x = 0 and
therefore y = tsin1/t = xsin1/x. sin
1 x sin
1 x
is not differentiable at x = 0
Section (D) : 10.
y = |sinx|
y = sin|x|
RESONANCE
S OLUTIONS (XII) # 58
y = f(x) = |sinx| + sin|x|
f(x) is continous every where f(x) is not differentiable at x = n f(x) is not periodic 16.
Differentiability at x = 1 sin[(1 h)2 ] (1 h)2 3 (1 h) 8 f(1–) = Lim h0
a (1 h)3 b (a b ) h
2 a (1 h)3 a 0 form Lim 3a (1 h) = Lim = h0 h0 0 h 1 – f(1 ) = 3a
2 cos(1 h) tan 1(1 h) a b f(1+) = Lim h0 h Function is differentiable
–2+
=a+b 4
.....(1)
2 cos h tan 1(1 h) 2 / 2 = Lim h0 h Now f(1–) = f(1+) a=
1 6
3a =
( 2 cos h tan 1(1 h) a b) = Lim h0 h
= Lim 2 sin h + h0
1 1 (1 h)2
=
1 2
1 2
....(2)
by (1) and (2) b =
13 – 4 6
PART - II
3.
1 cosh n (cosh) f = hlim 0 4h2 n [1 4h2 ] 2 2 sin2 h / 2 4h2 n(1 2 sin 2 h / 2) 2 sin 2 h / 2 lim . = h0 16 16 2 . 2 . 2 sin 2 h / 2 h2 / 2 h / 2 n (1 4h ) =
1 1 . 1. 1.(–1) .1 = 64 64
RESONANCE
S OLUTIONS (XII) # 59
5.
[sin 0] 0 [sin 1] 0 [sin 2] 0 f(x) = [sin[x]] = [sin 3] 0 [sin 4] 1 [sin 5] 1 [sin 6] 1
0 x 1 1 x 2 2x3 3x4 4x5 5x6 6 x 2
f(x) is discontinuous at (4, –1)
9.
10.
x , x 1 f(x) = 2 ax bx c , otherwise f(x) should be continous at x =1 it gives a+b+c =1 f(x) should be differentiable at x= 1 it gives 2a+b=1 b =1–2a c= 1–a–b= a lim f ( x ) lim x 2 e 2( x 1) 1
x 1
x 1
f(1) = 1
lim f ( x ) lim a sgn (x +1) cos2(x–1) + bx2 = a.1.1+ b x 1
x 1
for continuity a + b = 1
e 2h 1 2h 2h (1 h)2 e 2h 1 lim 2 e he LHD (x = 1) is lim = h 0 h h 0 h = 2+0+2=4 a sgn(2 h) cos 2h b(1 h)2 1 h 0 h
RHD (x = 1) is lim
a cos 2h b bh 2 2bh (a b) = h 0 h f(x) is differentiable at x = 1 if 2b = 4 b = 2 a = –1
= lim
11.
f(x) = [x] [sin x],
13.
, x ( 1, 0) 1 = , x [0, 1) 0 f(x) is continuous in (–1, 0) Given f(0) = 4
x (–1, 1)
lim 2f ( x ) 3f ( 2x ) f ( 4 x ) x2 using L Hospital rule
0 0 form
lim 2f ( x ) 6f (2x ) 4f ( 4 x )
0 0 form
x 0
x 0
cos 2h 1 lim a bh 2b = 2b h
h 0
2x
using L Hospital rule
lim 2f ( x ) 12f (2x ) 16 f ( 4 x ) = 2.4 12 .4 16.4 = 12 2 2
x 0
17.
f(x) = [n + psinx] , x (0, ) graph of y = n + p sinx
RESONANCE
S OLUTIONS (XII) # 60
obviously f(x) = [n +psinx] is discontinous at points mark in above curve number of such points (p –1) + 1 + p –1 = 2p –1 21.
f(x) = [x] +
{x}
1 x 1 , 1 x 0 x , 0 x 1 Curve of y = f(x) = 1 x 1 , 1 x 2
Method : II y = f(x) can be discontinuous only at x so we check continuity only at x = n f(n) = [n] + {n} n 0 n LHL (x = n) is
h0
Lim [n – h] +
{n h} = (n–1) + 1 = n
RHL (x = n) is
h0
Lim [n + h] +
{n h} = (n+0) = n
f(x) is continous for x R n
22.
f(x) =
a
k
| x |k
k 0
= a0 + a1 |x| + a2|x|2 + a3|x|3 + ............+ an|x|n f(0) = a0
| x | 0 we know that xlim 0
lim f ( x ) a0
x 0
f(x) is continous for x = 0 |x|n is differentiable if n 1, nN f(x) is not differentiable at x = 0, due to presence of |x| If all a2k+1 = 0, f(x) does not contains |x| f(x) is differentiable at x = 0
RESONANCE
S OLUTIONS (XII) # 61
EXERCISE # 3 2.
(A)
f(x) = |x3| is continuous and differentiable
(B)
f(x) =
| x | is continuous
1
f (x) = (C)
{does not exist at x = 0}
f(x) = |sin–1 x| is continuous f (x) =
(D)
x |x|
.
2 |x|
sin 1 x
1
.
1
1 x 2 f(x) = cos–1 |x| is continuous | sin x |
1
f (x) =
1 x
2
.
x |x|
{does not exist at x = 0}
{does not exist at x = 0}
Comprehension # 1_ 3.
(A)
1 f (x) = n | x |
(B)
f (x) = x sin
(C)
f (x) =
LHL = 0 = RHL
x
LHL = 0 = RHL
1
f (0) = not define
1 2cot x
LHL = 1 RHL = 0 (D)
| sin x | f (x) = cos x
LHL RHL
LHL (at x = 0) = cos (– 1) = cos 1 RHL (at x = 0) = cos 1 LHL = RHL
4.
(A) (B) (C) (D)
5.
Lim x 0
Lim x 0
Lim x 0
Lim x 0
Lim
f(x) = 1 f(x) = –
x 0
2
f(x) = –1 f(x) =
1 tan tan x x f(x) n [ x] 1 x
Lim x 0
Lim x 0
Lim x 0
f(x) = 0 f(x) =
2
f(x) = 1
f(x) = 0
f = 1 4
f = x = 4 4 Jump P - 1 –
4
RESONANCE
S OLUTIONS (XII) # 62
Comprehension # 3 (9 to 11) 0 1 x Given function f(x) can be rewritten as, f(x) = 1 x 0
also,
Now,
0 1 ( x 1) f(x – 1) = 1 ( x 1) 0
,
0 1 ( x 1) f(x + 1) = 1 ( x 1) 0
,
0 x 1 1
,
x 1 1
,
,
x 1 1
or
, 1 x 1 0 , 0 x 1 1
or
x 1 1
0 2 x x g(x) = f(x – 1) + f(x + 1) = x 2 x 0
x 1
, 1 x 0 , 0 x 1
x 1 1
, 1 x 1 0
,
,
x 1 0 x f(x – 1) = 2 x 0
,
0 2 x f(x + 1) = x 0
,
x0
, 0 x 1 , 1 x 2 ,
x2
x 2
, 2 x 1 ,
1 x 0
,
x0
, x 2 , 2 x 1 ,
1 x 0
, ,
0 x 1 1 x 2
,
x2
It is easy to check that g(x) is continuous for all x R and non-differentiable at x = – 2, –1, 0, 1, 2. 13.
Statement - 1 f (x) = {tanx} – [tan x]
, tan x f(x) = tanx – 2 [tan x] = tan x 2 , obviously at x =
0x
4
x tan 1 2 4
f(x) is continuous. (True) 3
Statement-2 y = f (x) & y = g(x) both are continuous at x = a then y = f(x) ± (g(x) will also be continuous at x = a (True) Statement-1 can be explained with the help of statement-2.
21.
x f(x) = |x sgn (1 – x 2)| = 0 x
x ( ,1) ( 1, ) x 1, 0, 1 x (0, 1) (1, )
function is discontinous at x = –1, 1 and non differentiable at x = –1, 0,1
RESONANCE
S OLUTIONS (XII) # 63
24.
1 3 3 (x ) x , x0 1 1 f(x) = (x2 |x|)1/3 = ( x 5 ) 3 ( 1) 3 x x , x 0
=–x f(x) is differentiable every where except at x = 0
EXERCISE # 4 PART - I 1. 2.
f (2h 2 h 2 ) f (2) (h h 2 1) (1) (2h 2 h2 ) (2) f ( 2) h(2 h) lim 6 = lim . = hlim =3 h0 h0 ( 2h 2 h 2 ) ( 2) f (h h 2 1) f (1) (h h 2 1) (1) 0 f (1) h(1 h) 4 We have given L.H.D. at x = a is zero f(a–) = 0
f (a h ) f ( a ) =0 h 0 h Now, L.H.D. at x = – a lim
f(–a–) = lim h 0
= lim h 0
...........(1)
f (a h ) f (a ) f ( a h ) f ( a ) = lim h 0 h h
f (a h) f (a) = h
lim h 0
[ f is an odd function]
f ( a h ) f (a ) f [ 2a ( a – h )] f ( a ) = lim h h0 h
[ f(2a – x) = f(x) x [a, 2a]] f (a h) f (a ) _ = – f(a ) h = – (0) = 0 Thus, f(–a–) = 0
= – lim h 0
3.
[using (1)]
Since f(x) is differentiable at x = 0 i.e.,
continuous at x = 0
lim f ( x ) lim f ( x ) f (0) x 0
x 0–
e ah / 2 – 1 e ah / 2 – 1 a a lim · h h0 h0 2 2 h a 2
lim f ( x ) lim
x 0
also,
lim x 0
–
c –h c = b sin–1 f(x) = lim b sin–1 2 2 h0
c a 1 2 2 2
b sin–1
a=1 ... (i) Also, f(x) is differentiable at x = 0 f(0+) = f(0–)
eh / 2 – 1 1 h/2 – –2–h 1 h 2 = lim 2e f (0+) = hlim = 0 h0 8 h 2h 2
and
f(0–) =
lim h0
c –h 1 b sin –1 – 2 2 = h
b/2 1–
RESONANCE
c2 4
S OLUTIONS (XII) # 64
b
4.
2
1 8
4–c a = 1 and
or
64b2 = (4 – c 2)
64b2 = (4 – c 2)
2 lim f ( x ) f ( x ) . Put x = 0 and we get 0 form. Also because ‘f’ is strictly increasing and differentiable. x 0 f ( x ) f (0 ) 0
Apply L-Hospital rule, weget 2 lim 2xf ( x ) f ( x ) = – 1. Since ‘f’ is strictly increasing f(x) 0 in an internal x 0 f ( x )
5.
Graph of f(x) is
From graph f(x) is not differentiable at x = 0, 1. 6.
As f is continuous
lim f ( x ) = lim f (1/ n) = lim 0 0 f(0) = x 0 n n Also f(0) = lim
x 0
= 7. put put
f ( x ) f (0 ) f (x) = lim x 0 x x
f (1/ n) 0(exact zero) lim = =0 n (1/ n) n (1/ n) lim
f(x – y) = f(x).g(y) – f(y) g(x) x = y in (1) we get f(0) = 0 y = 0 in (1) we get g(0) = 1
given that f(0+) = lim
h 0
So f(0) = 0 = f(0)
...................(1)
f ( 0 h) f ( 0 ) f (0 ).g( h) g(0)f ( h) f (0 ) = lim h 0 h h
f ( h) lim f (0 h) f (0) = h 0 = f(0–) h h0 h Hence f(x) is differentiable at x = 0 Let g(x – y) = g(x) . g(y) + f(x). f(y) ..................(2) Put y = x in (2) 1 = g2(x) + f 2(x) g2(x) = 1 – f 2(x) Put x = 0 g(0) = 0 = lim
2g(x). g(x) = –2f(x). f(x)
8*.
From graph broken at x = 2, 3 & does not have definite tangent at x = 2, 3 9*.
Here, f(x) = min. {1, x2, x3} which could be graphically shown as
RESONANCE
S OLUTIONS (XII) # 65
1, x 1 f(x) = 3 x , x 1 f(x) is continuous for x R and not differentiable at x = 1 due to sharp edge. Hence (A) and (C) are the correct answer.
10.
11.
(A)
y = x|x|
(A) p, q, r
(B)
y=
(B) p, s
(C)
y = x + [x]
(C) r, s
(D)
x 1 2x ; ; 1 x 1 y = |x – 1| + |x + 1| = 2 2 x ; x 1
(D) p, q
|x|
f(x) = g(x) cos x + g(x) sin x f(0) = g(0) = 0
f ( x ) f (0) g( x ) cos x g( x ) sin x g(0) f(0) = Lim = Lim x 0 x 0 x x g( x ) cos x g(0) g( x ) sin x = Lim + Lim x 0 x 0 x x g( x ) cos x g(0) g( x ) cos x g(0) = Lim = Lim = Lim (g(x) cot x – g(0) cosec x) x 0 x 0 x 0 x sin x 12.
f (1 h) f (1) |h| 0 Clearly ‘p’ = hLim = =–1 0 h h Now
Lim x 1
Lim x 1
( x 1)n =–1 log cos m ( x 1) ( x 1)n =–1 log [1 cos( x 1) 1] m [cos( x 1) 1] cos( x 1) 1
RESONANCE
S OLUTIONS (XII) # 66
or,
n Lim ( x 1) x 1 m
1
=–1 ( x 1) 2 (C) is correct answer.
2 sin
Hence n = 2, m = 2.
2
Aliter : LHD of |x – 1| at 1 is – 1 p
lim g(x) = lim x 1 t 0 =–
–
2 m
2 m
tn log cos m t
=
lim tn–2 t 0
lim tn–2 = – 1
t 0
1 m
cos t 1 t2 lim tn–2 . . t 0 log cos t cos t 1
( tlim 0
1 cos t
=
t2
1 ) 2
n = 2, m = 2
13.
f(x) = kx Hence f(x) is continuous & differentiable at x R & f ’(x) = k (constant)
14.
(A)
at x = –
2
Lf – = 0 2
= f– 2
Rf – = 0 2
(B) (C)
(D)
15.
continuous at x = 0 Rf(0) = 1 Lf(0) = 0 at x = 1 Rf(1) = 1 Lf(1) = 1
not differentiable
differentiable at x = 1
3 > – 2 2
f(x) = – cos x
at x = –
differentiable at x = –
1 b x b 1 b f(x) = = + bx 1 b (bx 1)
1 b b, f(x) < 0 x (0, 1) f(x) = b (bx 1)2
Range of f(x) is (–1, b) so range co-domain so f is not invertible f–1 doesnot exist No comparison with f–1 16.
(I) for derivability at x = 0
h2 . cos – – 0 f ( 0 – h ) – f ( 0 ) im im im – h . cos h L.H.D. = f '(0–) = h0 = h0 = h0 =0 h –h –h h2 . cos – 0 h im f (0 h) – f (0) = im RHD f '(0+) = h0 =0 h0 h h So f(x) is derivable at x = 0 (ii) check for derivability at x = 2
RESONANCE
S OLUTIONS (XII) # 67
3 2
im f (2 h) – f (2) = h0 h
RHD = f '(2+)
(2 h)2 . cos (2 h)2 . cos –0 im im 2h 2h = h0 = h0 h h h ( 2 h)2 . sin (2 h)2 . sin – 2( 2 h) im im 2 h 2 . = = h0 = (2)2 . = h0 2 ( 2) 2( 2 h) h h 2( 2 h)
(2 – h)2 . cos –0 f ( 2 – h ) – f ( 2 ) im im 2–h = h0 = h0 –h –h
LHD
(2 – h)2 . – cos (2 – h)2 cos – 0 im 2 – h 2–h = h0 h –h
im = h0
(2 – h)2 . sin – im h 2 2 – = h0 h
h ( 2 – h)2 . sin – 2( 2 – h) . – im = h0 =– 2( 2 – h) h – 2(2 – h)
So f(x) is not derivable at x = 2 f (2n) a n
an b n 1
f (2n ) a n f (2n ) b n 1
17.
an bn 1 So B is correct
f (2n 1) a n
an b n 1 1
f ((2n 1) ) a n f ((2n 1) ) b n1 1
a n b n 1 1 an 1 b n 1
PART - II 1.
Continuity at x = 0 1 1 – |– h| (– h ) e
(0 – h) LHL = lim– f ( x ) = hlim 0
= lim (–h)e
x0
f(x) RHL = xlim 0
1 1 – – h h
h 0
1 1 – | | e h h
= lim (0 h) h0
= lim
1 1 – he h h
h 0
lim (–h) = 0 = h 0
= lim
h0
h 2 h e
=0
lim f ( x ) = lim f ( x ) = f(0) x 0
x0–
Therefore, f(x)is continuous for all x. Differentiability at x = 0 1 1 – –
(–h)e h h – 0 e0 = 1 Lf (0) = lim = hlim 0 h 0 (–h) – 0 1 1 – he h h
– 0 = hlim 0
1
2 =0 eh h–0 Therefore, f (x) is not differentiable at x = 0.
Rf (0) = lim
Rf (0) Lf(0)
h 0
RESONANCE
S OLUTIONS (XII) # 68
2.
Since, f(x) =
1 – tan x 4x –
1 – tan x lim f ( x ) lim 4x – x x 4
(Using L'Hospital's rule)
4
– sec 2 x – sec 2 lim 4 – 2 = = 4 x 4 4 4
lim f ( x ) –
x 4
1 2
Also, f(x) is continuous in 0, , so f(x) will be continuous at . 2 4
1 f = lim f ( x ) – 2 4 x 4
3.
Since |f(x) – f(y)| (x – y)2
| f ( x) – f ( y ) | lim | x – y | xy |x– y| | f (y)| 0 f (y) = constant f (1) = 0 lim
xy
4.
f (1) = lim
h 0
Since,
f (y) = 0 f (y) = 0
[ f(0) = 0 given]
f (1 h) f (1) f (1 h) – f (1) – lim = lim h 0 h 0 h h h
lim
h0
f (1 h) f (1) = 5, so lim must be h0 h h
finite as f (1) exist and lim
h0
only, if f(1) = 0 and lim
h0
5.
f (1) can be finite h
f (1) =0 h
Since, f(x) =
x 1 | x |
Let
g( x ) x = h( x ) 1 | x |
f(x) =
f (1) = lim
h0
f (1 h) = 5. h
It is clear that g(x) = x and h(x) = 1 + |x| are differentiable on (–, ) and (–, 0) (0, ) respectively. Thus, f(x) is differentiable on (–, 0) (0, ). Now we have to check the differentiability at x = 0
x –0 f ( x ) – f (0 ) 1 |x| lim = lim x0 x–0 x 0 x = xlim 0
1 =1 1 | x |
Hence, f (x) is differentiable on (–, ).
6.
Now,
= xlim 0
2 e 2 x – 1 – 2x 1 lim – 2 x = lim x0 x x 0 x( e 2 x – 1) e – 1
2e2 x – 2 (e 2 x – 1) 2xe2 x
RESONANCE
(using L'Hospital's rule) S OLUTIONS (XII) # 69
= lim
x 0
7.
4e 2 x 4e 2 x 4 xe2 x
=1
(using L'Hospital's rule)
f(x) is continuous at x = 0, then xlim f(x) = f(0) 0
1 = f(0)
f(x) = min {x + 1, |x| + 1} f(x) = x + 1, x R. It is clear from the figure that f (x) 1, x R.
8.
1 f (1 – h – 1) sin –0 1 1 – h – 1 f (1 – h) – f (1) lim sin – = – lim sin 1 Now, f (1) = lim = h 0 = hlim 0 – h h0 h 0 h –h h
and f (1+)= lim
h 0
f (1 h) – f (1) h
1 (1 h – 1) sin –0 1 1 h – 1 = lim = lim sin h 0 h h 0 h f is not differentiable at x = 1. Again, now
f(1–) f(1+)
1 (0 h 1) sin – sin1 0 h 1 f (0) = hlim 0 –h 1 1 1 sin – (h 1) cos 2 h 1 (h 1) h 1 = lim h 0 –1
(using L' hospital's rule)
= cos 1 – sin 1
and
1 (0 h – 1) sin – sin1 0 h – 1 f (0+) = hlim 0 h
1 – 1 1 (h – 1) cos sin 2 h – 1 (h – 1) h – 1 = lim h 0 1 = cos 1 – sin 1 f (0–) = f (0+) f is differentiable at x = 0.
9.
(using L'Hospital's rule)
gof (x) = sin (x |x|) x ) , x0 cos( x | x |)(| x | x . |x| gof (x) = | x | cos( x | x |) , x0
gof is differentiable at x = 0 and the derivatives is continuous statement-1 is true Statement-2
lim h0
h 2 cos(h | h |) | h | h (gof )(0 h) (gof )(0) | h | = cos(h )(h h) = 2 = hlim 0 h h h
RESONANCE
S OLUTIONS (XII) # 70
10.
h 2 cos(h | h |) | h | 2 | h | lim (gof )(0 h) (gof )(0) = lim lim cos( h )( h h) = – 2 = h0 h0 h0 h h h not differentiable statement-2 is false f(0) = q 1 1/ 2 1 x ..... – 1 1 ( 1 x ) – 1 2 f(0+) = im = im = x 2 x0 x x0
f(0–) = xim 0–
sin (p 1)x sin x x
f(0–) = im– x 0
(cos(p 1)x )(p 1) (cos x ) 1
= (p + 1) + 1 = p + 2
11.
p=–
p+2=q=
1 2
3 1 ,q= 2 2
x sin(1/ x ) , x 0 f(x) = 0 , x0 at x = 0
1 – h sin – = 0 × a finite quantity between – 1 and 1 LHL = hlim 0 h 1 RHL = hlim h sin =0 f(0) = 0 0 h f(x) is continuous on R. f2(x) is not continuous at x = 0 12.
x 2 f (a) – a 2 f ( x ) 2xf (a) – a2 f ( x ) = im = 2af(a) – a2f (a) xa x a x–a 1
im
x 2 f (a ) – a 2 f ( x ) x 2 f (a ) – a 2 f ( a ) a 2 f (a ) – a 2 f ( x ) ( x 2 – a 2 )f (a) – a 2 ( f ( x ) – f (a)) = im = im xa x a xa x–a x–a x–a
im
Alter
f ( x ) – f (a ) im (x + a) f(a) – a2 = 2af(a) – a2f (a) = x a ( x – a)
13.
Doubtful points are x = n, n I 2x – 1 2n – 1 = (n – 1) cos = 0 L.H.L = lim– [x] cos 2 2 x n
R.H.L. =
[x] cos
= n cos
=0
f(n) = 0 14.
f(x) = 3 f(x) = 0
2x5 2
RESONANCE
f(4) = 0
S OLUTIONS (XII) # 71
ADVANCE LEVEL PROBLEMS PART - I 1.
·
=
2.
R.H.L =
L.H.L =
=–
=
–
=
=
=
3.
L.H.L R.H.L
L.H.L. =
and R.H.L =
=1×–1=–1
f(x) =
=
f(x) =
=
L.H.L R.H.L
(D)
4.
f(x) = discontinuity may arise at the points where ,
x=
; x=
5.
,
and
;x=
five points
=
=1
6.
,
=0
=
similarly
f(x) = 1
=2
now, L.H.D. =
=
=
L.H.D does not exist.
RESONANCE
S OLUTIONS (XII) # 72
7.
As 0 < {ex} < 1
8.
f(x) = – 1 x R
f(x) =
(1 + 0) = 1
f(x)
(0 + 1) = 1
f(1) = 1
f(x) = f(1)
and
continuous at x = 1 similarly we check for another integers 9.
As f(x) is continuous for all x R Thus
f(x) = f
since f(x) =
f(x) =
Thus
10.
,x
=2
=
Let f(x) =
f() = 2
=
Now
=
= f()
f(x) =
f() = 0 11.
Function f(x) = (x 2 – 1) |x 2 – 3x + 2| + cos (|x|) ....... (i) Imp Note : In differentiable of |f(x)| we have to consider critical points for which f(x) = 0 |x| is not differentiablity at x = 0 but
cos | x | =
cos | x | =
Therefore it is differentiable at x = 0 Next, |x 2 – 3x + 2| = |(x – 1) (x – 2)| = Therefore,
RESONANCE
S OLUTIONS (XII) # 73
f(x) =
Now, x = 1, 2 are critical point for differentiability Because f(x) is differentiable on other points in its domain Differentiability at x = 1 L f (1) =
=
= 0 – sin 1 = – sin 1
(
=
(cos x)
at x = 1 – 0 = – sin x at x = 1 – 0 = – sin x at x = 1 = – sin1 and
R (1) =
=
= 0 – sin 1 = – sin 1 (same approach) Lf (1) = Rf (1). Therefore, function is differentiable at x = 1. Again Lf (2) =
=
and
= – (4 – 1) (2 – 1) – sin 2 = – 3 – sin 2
R f (2) =
= (22 – 1) – sin 2 = 3 – sin 2
=
So L f (2) R f(2), f is not differentiable at x = 2 Therefore, (d) is the answer. 12.
f(x) = [x sin x] f(0) = 0 [–h sin(–h)] = 0 ; f(0+) =
f(0–) =
[h sin h] = 0
+
Here f(0 ) = f(0 ) = f(0) = 0 So continuous at x = 0 Since graph of f(x) is as shown in the figure Now all options can be checked from graph. –
PART - II 1.
f(x) = (i)
for 0 < sin x < 1,
f(x) =
(ii)
=1
for sin x = 0, f(x) =
RESONANCE
S OLUTIONS (XII) # 74
(iii)
for – 1 sinx < 0,
f(x) =
f(x) =
f(x) is discontinuous at integral multiples of
2.
=
=
=
=
for g(x) to be continuous (na)2 = (n2a)2
3.
a=
f(x) =
g(0) =
(na + n2a) = 0
(n 2)2
by definition of g(x)
g(x) =
g(x) =
clearly g(x) is discontinuous at x = 0 and not differentiable at x = 0, 2
4.
f(x) =
graph of f(x) is as shown is figure f(x) is continuous for all x but non-differentiable for integral points.
5.
f(x) =
RESONANCE
S OLUTIONS (XII) # 75
f(x) =
and
= 0 and
f(x) =
=0
f (0) = 0 f(x) is continuous at x = 0 f(x) =
=
and
f(x) =
f(x) is discontinuous for x = 1 Similarly we can check that f(x) is discontinuous at x = – 1
L.H.D. at (x = 0) is =
=
R.H.D. at (x = 0) is =
=
=1
=1
L.H.D. = R.H.D. at x = 0, f(x) is derivable. 6.
is 1 or 0 according to x is a rational number or an irrational number. As m!x will become integral multiple of when x is rational, then cos (m!x) = ± 1. And when m!x is not an integral multiple of i.e. when x is irrational then –1 < cos (m!x) < 1 f(x) = f(x) is discontinuous and non-differentiable at every real number.
7.
f(x) + f(y) =
f ’(x) = f ’
f ’(x) = f’ put x = 0 f ’(0) = f ’(y) (1+y2) = f ’(y) Integrating both sides f ’(0) tan–1y = f(y) + c ..... (1) Now put x = 0 & y = 0 in f(x) + f(y) = f we get 2f(0) = f(0) f(0) = 0 ............. (2)
and =2
=2
f(x) = 2
f(0) = 2
........... (3)
from (2) & (3) & (1) 2tan-1y = f(y) + c now put y = 1, we get 2tan-11 = f(1) + c =
+c
c=0
f(x) = 2tan-1x
RESONANCE
S OLUTIONS (XII) # 76
8.
R.H.L. =
f(0 + h) =
=
.
(putting 1–h2 = cos2) =
=
L.H.L =
=
f(0 – h) =
=
=
=
=
since R.H.L. L.H.L, therefore no value of f(0) can make f continuous at x = 0 9.
As f is continuous on R, so f(0) =
Thus f(0) =
10.
=
f(1 + h) =
L.H.L. =
cos –1
f(1 – h) =
=
cos –1
f(–1) = 0 f(x) is discontinuous hence non-derivable at x = 1
f(–1+) =
=0
and
f(–1–) =
=0
f(–1+) = f(–1–) = 0 f(x) is derivable at x = – 1
f(x) =
=0
=
=
so
cos –1
= cos –1 (0) =
= f(x)
12.
=0+1=1
f(1) = 0
R.H.L. =
11.
f
f(x)
dx =
f(x) =
=
we have f(x) =
(sin(–h) + cos(–h))cosec(-h)
RESONANCE
=
(cosh – sinh)–cosech
S OLUTIONS (XII) # 77
=
=
=e
Now we have f(x) =
=
=
If ‘f’ is continuous at x = 0 , then e=a= 13.
gives a = e and b = 1
Given that f(xy) = exy–x–y (eyf(x) + ex f(y)) putting x = y = 1 , we get f(1) = e–1 (ef(1) + ef(1)) f(1) = 0
now
x,y R+
f(x) =
=
=
= f(x) +
f(x) = f(x) +
=
=
Integrating both sides w.r.t. ‘x’ , we get n |x| + c = or f(x) = ex (n|x| + c) since f(1) = 0 c = 0 f(x) = exn|x| 14.
Given f(x + y3) = f(x) + [f(y)]3 and f ’(0) > 0 putting x = y = 0, we get f(0) = f(0) + (f(0))3 f(0) = 0 also f(0) =
=
Let L = f ’(0) =
= L3
=
or L = L3 or L = 0 , 1, –1 as f(0) > 0 f(0) = 0, 1 Thus f ’(x) =
=
f ’(x) =
f ’(x) = 0 , 1
Integrating both sides, we get f(x) = 0 or f(x) = x + c As f(0) = 0 , we have f(x) = 0 or f(x) = x Now f(x) = 0 is imposible as f(x) is not identically zero f(x) = x and f(10) = 10
RESONANCE
S OLUTIONS (XII) # 78
METHOD OF DIFFERENTIATION EXERCISE # 1 PART - I Section (A) : A-1.
(i)
f(x) = sinx 2 f(x) =
=
=
=
=
(2x + h) .
·
.
cos
· cos
(f(x)) = (1) . (2x) . cosx 2
f(x) = 2x cosx 2 (ii) f(x) = e2x + 3 f(x + h) = e2(x + h) + 3 (f(x)) =
= 2e2x + 3
A–2.
(i)
y = x2/3 + 7e – =
(ii)
= e2x + 3
=
f(x) = 2e2x + 3 . 1
.2
f(x) = 2e2x + 3
+ 7 tan x + 7 sec2 x
x–1/3 +
y = x2.n x.ex = 2x.n x .ex + x.ex + x2.nx.ex
(iii)
y = n
=
(iv)
.
sec2
=
.
=
= sec x
y=
=
=
RESONANCE
S OLUTIONS (XII) # 79
(v)
y = tan
y=
y = tan
=
sec2
Section (B) : B–3.
(i)
ax 2 + 2hxy + by2 + 2gx + 2fy + c = 0 =–
(ii)
=–
=
xy + xe–y + y. ex – x 2 = 0 =–
Section (C) : C–3.
(i)
y = tan–1
+ tan–1
y = tan–1
+ tan–1
y = tan–1 5x – tan–1x + tan-1
+ tan–1 x
=
(ii)
y = sin–1
y=
,0
– cos–1
Let
tan–1 x = ,
y=
– cos–1 (cos 2)
0 < 2 < y=
– 2 tan–1 x =
RESONANCE
S OLUTIONS (XII) # 80
(iii)
y = sin–1
y=
,–1
– cos –1
let
2 = cos –1x
y=
– cos –1
y=
–
y=
cos –1x
– cos –1 (cos) =
.
Section (D) : D–1.
(i)
y = tan–1
,z=
y = tan–1 (1) + tan–1 (2x) =
=
(ii)
.8x
y = tan–1
,
.
=
z = tan–1x, z
x = tanz
=
y = tan–1
y = tan–1 (tan z/2) y=
=
Section (E) : E–1.
(i)
ey (x + 1) = 1 x + 1 = e–y 1 = –e–y = e–y
= –ey
(ii)
...(1)
y = sin (2sin–1x) =
= –ey (–ey) =
..... (i) .... (ii)
=
RESONANCE
S OLUTIONS (XII) # 81
=
(1 – x 2)
E–5.
(i)
= – 4y + x
y=
(1 – x 2)
=
=x
– 4y
= e1/3
=
(cosecx)1/nx
(ii) n y =
E–7.
ny =
· (– cosec x cotx) ·
ny = –
·
By L.H.Rule
cosx
y = e–1
H(1) = 1, g(1) = 2, H(1) = 1, g(1) = 2
=
By L.H. Rule
=
=0
PART - II Section (A) : A–2.
f(x) = logx(nx)
f(x) =
f(x) =
f(e) =
= 1/e
Section (B) : B–1.
B–3.
y = x 3 – 8x + 7 and x = f(t)
t=0,
= 2 and x = 3
=
t = 0, x = 3
t = 0,
=
=
sin(xy) + cos (xy) = 0
=
=–
RESONANCE
cos(xy)
– sin(xy)
=0
=–
S OLUTIONS (XII) # 82
Section (C) : C–3.
C–4.
f(x) = |x||sinx| at x = /4, |x| = x and |sinx| = sinx f(x) = x sinx
n(f(x)) = sinx . nx
f(/4) =
y = sin–1
+ cos–1
f(x) = cosx nx +
, |x| > 1
y=
=0
Section (D) : D–2.*
y = sin–1
,
z = cos –1
<1
–1<
let
sin–1
=
sin
cos =
(i)
if
and
0<
1 t R
(– /2, /2)
, then
y = , z =
= 1
(ii)
if
y = , z = –
, then
= – 1
Section (E) : = f(ex).ex
E–2.
= ex f(ex) + e2x f(ex) E–5.*
u = ex sin x, v = ex cos x v
–u
= v(ex cos x + ex sin x) – u(ex cos x – ex sin x) = ex sin x(v + u) + ex cos x( v – u) = u(v + u) + v(v – u) = v2 + u2
RESONANCE
S OLUTIONS (XII) # 83
= ex sin x + ex cos x
again
= ex sin x + ex cos x + ex cos x – ex sin x = 2v similarly other options can be checked.
EXERCISE # 2 PART - I 3.
3
x = at
2
and y = bt
= 3at2 , =
= 2bt
.
=
.
=– 4.
.
y = 1+
=–
.
.
=
+
=
.
=
+
+
+
=
=
=
·
+
·
ny = nx – n(x – c 1) + nx – n(x – c 2) + nx – n(x – c 3) Differentiating both sides w.r.t. x , we get =
=
10.
=–
y = xn
=
= n
–
...(1)
–
=–
(1 + x)
(1 + x)
=–
(1 + x)
= –x
RESONANCE
+
=–
=
–
from equation (1)
–
+y–1
(1 + x)
+x
=y–1
S OLUTIONS (XII) # 84
12.
let g(x) =
g’ (x) =
+0+0
g() = g() = 0 i.e. is the repeated root of g(x) = 0 and h(x) is a polynomial of degree 3 f(x) = 0 has repeated root hence g(x), is divisible by f(x)
PART - II : OBJECTIVE QUESTIONS 3.
x
+y 2
=0 2
x (1 + y) = y (1 + x) x 2 – y2 + x 2y – y2x = 0 (x + y) (x – y) + xy (x – y) = 0 (x – y) (x + y + xy) = 0 =
5.
y = sin–1
y=–
=–
+
f(x) =
+ sin–1 x
=
6.
xy
=
+
P=
, g(2) = a & g(2) = ?
g is inverse of f f(g(x)) = x Differentiating w.r.t. x f(g(x)) . g(x) = 1 g(x) = 10.
g(2) =
=
g(2) =
u = ax + b Let y = f(ax + b) = a f(ax + b)
=a2 f(ax + b)
= a3 f(ax + b)
= an f n (ax + b)
RESONANCE
f(ax + b) = an f n (u) = an
f(u)
S OLUTIONS (XII) # 85
12.
y=f
&
= f
14.
17.
20.
f(x) = sin x
.
= sin
.
y2 = P(x)
2y
= P (x)
2
=
2y3
2y3
y2 = P(x)
2
= P(x) . P(x) + P(x) . P(x) – 2
2
= P(x) . P(x)
= P(x) P(x) –
=
= y2 P(x) – P(x) . y &
y
=
f(x) = – f(x) .... (i) f(x) = g(x) .... (ii) h(x) = (f(x))2 + (g(x))2 .... (iii) h(0) = 2, h(1) = 4 Differentiating equation (ii) w.r.t. x f(x) = g(x) = – f(x) Differentiating equation (iii) w.r.t. x h(x) = 2f(x) . f(x) + 2 g(x) . g(x) = 2f(x) . f(x) – 2f(x) . f(x) = 0 { g(x) = – f(x)} h(x) is constant h(x) is linear function h(0) = 2 h(x) not passing through (0, 0) Let y = h(x) = ax + b at x=0 y=2=b y = ax + 2 at x=1 a+2=4 a=2 curve is y = 2x + 2
y = cos –1
=
·
=
=
RESONANCE
·
·
when
x<0
=
=
·
S OLUTIONS (XII) # 86
when
x>0
=
Alternate : put x = tan tan–1x =
y = cos –1
y = cos –1 (cos/2)
y=
= cos –1
=
EXERCISE # 3 2.
y = f(x3)
(A)
= f(x3) . 3x2
= f (1) . 3 = 9
(B)
f(xy) = f(x) + f(y) f(1) = f(1) + f(1)
f(1) = 0
(C)
f (x) = – f(x), f(x) = g (x) g(x) = f (x) = – f (x) h (x) = (f (x))2 + (g (x))2 h (x) = 2 f (x) . f (x) + 2g(x) . g (x) = 2 f (x) . g (x) + 2g(x) (– f (x)) = 0 h (x) = c, x R h (10) = h (5) = 9
(D)
y = tan–1 (cot x) + cot–1(tan x),
f(1) = f(e) + f
=
f(e) + f
=0
+
=–1–1=–2 Comprehension # 2 (6, 7, 8)
=–
=–
=
=
at (1, 1)
=
=
For question 8 Slope of normal at (1, 1) = –
=
Equation of normal y–1=
(x – 1)
RESONANCE
5y – 5 = 8x – 8
8x – 5y – 3 = 0
S OLUTIONS (XII) # 87
11_.
y = x2 = 2x
=2
again 2x
2
=1
+ 2x
=0 x
=–
=–
1
Statement-2 : =
15.
x = 1/2
then
tan–1 x =
u = sin–1
=1
19.
=–
0
,0<
=–
<
= sin– 1 (sin y) = y
Statement is true.
= =
21.
=
= 4y
=
a=±
F(x) = f(x).g(x).h(x) F(x0) = 21F(x0), f(x0) = 4f(x0), g(x0) = –7g(x0) h(x0) = kh(x0) F(x) = f(x).g(x).h(x) + f(x).g(x).h(x) + f(x).h(x).g(x) at x = x0 21F(x0) = 4f(x0)g(x0)h(x0) – 7f(x0).g(x0).h(x0) + kf(x0)g(x0).h(x0) 21(f(x0).g(x0).h(x0)) = (4 – 7 + k) f(x0).g(x0).h(x0) k = 24
EXERCISE # 4 PART - I 1.
We have x 2 + y2 = 1 Differentiating w.r.t. x. 2x + 2yy = 0 Again diff. w.r.t. x. 1 + yy + yy = 0 yy + (y)2 + 1 = 0
RESONANCE
S OLUTIONS (XII) # 88
2.
p(x) = a0 + a1x + a2x2 + ........ + anxn p(x) = a1 + 2a2x + ......... + nanxn – 1 p(1) = a1 + 2a2 + ........ + nan .......(i) Now | p(x) | |ex – 1 – 1| x 0 (given) |p(1)| |e0 – 1| = |1 – 1| = 0 But | p(1) | 0 p(1) = 0 Now for – 1 < h < , h 0, 1 + h > 0 and |p(x)| |ex – 1 – 1| x 0 |p(1 + h)| |eh – 1| h > –1, h 0 |p(1 + h) – p(1)| |eh – 1| p(1) = 0
Taking limit as h 0, we get
|a1 + 2a2 + 3a3 + ........ nan| 1 Hence proved 3.
| p(1)| 1
{from (i)}
f : R R, f(1) = 3, f(1) = 6 y=
4.
ny =
ny =
n
=
At x = 0, ny = 0
=2
ny =
y = e2
y=1
Also on differentiating w.r.t x on both sides, we get
Putting x = 0, we get,
(1 + y) = 2y + 2xy
= 2y..
y = 2y2 – 1 = 1.
5.
Let P(x) = bx2 + ax + c b0 P(0) = 0 c=0 P(1) = 1 a+b=1 P(x) = (1 – a) x2 + ax P(x) = 2(1 – a)x + a Now P(x) > 0 for x [0, 1] P(0) > 0 & P(1) > 0 a>0 & 2(1 – a) + a > 0 0
6.
x sin y + y cos x = x = 0, y = x cos y
By L.H. Rule
×
+ sin y + y (– sin x) + cosx
RESONANCE
=0
S OLUTIONS (XII) # 89
=
y(0) = 0
=
=
7.
g(x) = f(x) g(x) = f(x) = – f(x)
F(x) =
+
F(x) = 2f(x/2) . f(x/2) .
F(x) = f
F(x) = 0
8.
. f
+ 2 g(x/2) . g(x/2) .
f
– f
F(x) =
+g
g
{Using (i) & (ii)} F(x) = constant
F(5) = F(10) = 5
=
=– 9.
..... (i) ..... (ii)
.
=–
g(x + 1) = log [f(x + 1)] = log [xf(x)] = log x + log [f(x)] = log x + g(x) g(x + 1) – g(x) = log x
g(x + 1) – g(x) = –
g
=–
– g
Adding all, g
– g
g
g
– g
=–4
=–
– g
=–4
PART - I
1.
=n
.
=
=
=
(1 + x2)
RESONANCE
= n2y – x
(1 + x2)
+x
= n2y
S OLUTIONS (XII) # 90
2.
x=
= 3.
xy = ex–y x – y = y n x 1–
= n x .
5.
+
(1 + n y) =
4.
=
Let f(a) = a1x2 + a2x + a3 f(1) = f(–1) a1 + a2 + a3 = a1 – a2 + a3 f(x) = a1x2 + a3 f(x) = 2a1x f(a) = 2a1a f(b) = 2a1b f(c) = 2a1c a, b, c are in AP
=
a2 = 0
f(a), f(b), f(c) are also in AP
=
f(x) = nxn–1 f(x) = n(n – 1) xn–2 f(x) = n(n – 1) (n – 2) xn–3 fn(x) = n(n – 1) ..... 3 . 2 . 1 Now
6.
f(1) –
+
= 1 – nC1 + nC2 – nC3 + ..... + (–1)n nCn = 0
+ ....... +
–
x = ey+x x + y = n x 1+
= =
7.
xmyn = (x + y)m+n taking log both sides m n x + n n y = (m + n) . n (x + y) +
=
=
–
=
8.
x2x–1 . 2x + 2x2x n x – 2 (xx n x + x . xx–1 ) cot y + 2xx cosec2y . y = 0 at x = 1, y = /2 2 + 0 – 0 + 2y = 0 y = – 1
9.
g(x) = 2f(2f(x) + 2) . f (2f(x) + 2) . 2f(x) g(0) = 2f (2f(0) + 2) f (2f(0) + 2) . 2f(0) = 2f(0) f(0) 2f(0) = (2) (–1) (1) (2) (1) = – 4 Hence correct option is (1)
RESONANCE
S OLUTIONS (XII) # 91
10.
=
=–
=
ADVANCE LEVEL PROBLEM PART - I 1.
y= ... (i) taking loge both sides, we get ny = (n x)n (n x) . nx Again taking loge , we get n (n y) = n (n x) . n (n x) + n (n x) = {n (n x)} [n (n x) + 1] Diff. w.r.t. x, =
2.
= y ny
= y ny
At x = –
[n (n x) + 1] + {n (n x)}
,
cos(4x) = cos
= – cos
|cos 4x| = – cos 4x
and
sin x = sin
= – sin
|sin x| = – sin x.
y = logu | cos 4x| + |sin x|
y=
... (1)
(y + sinx) n sec (2x) = n (– cos 4x) Diff. w.r.t. x, (y1 + cosx) n sec(2x) + (y + sin x)
=
(y1 + cosx) n sec(2x) + (y + sin x) 2 tan (2x) = – 4 tan 4x
Put
x=–
in (1), y =
Put this in (2) and x = –
y1 =
... (2)
, we get
n 2 +
=
RESONANCE
S OLUTIONS (XII) # 92
3.
Here
=
.....(i)
but
y=
.....(ii)
From (i) and (ii)
4.
and
x = cosec – sin x2 + 4 = (cosec + sin)2 y2 + 4 = (cosecn + sinn)2
Now
=
=
=
Squaring both sides, we get
or 5.
=0
(x2 + 4)
=
= n2 (y2 + 4)
(y1/5 + y –1/5)2 = (y1/5 – y –1/5)2 + 4 Then
y1/5 – y –1/5 = 1/5
Given y + y From (1) & (2)
–1/5
... (1)
= 2x
... (2)
y= Differentiating both sides w.r.t. x, we get or
Again differentiating w.r.t. x, 2x
Dividing by 2
6.
(x2 – 1)
= 25y2
+ 2(x2 – 1)
·
= 50 y
on both sides
x
+ (x2 – 1)
1<
If x =
[x] = 1
so,
f(x) = sin x3
f(x) = 3x2 cos x3
f
= 25y
<2
RESONANCE
S OLUTIONS (XII) # 93
7.
y = (tan–1 (x + 1) – tan–1x) + (tan–1 (x + 2) – tan–1(x + 1)) + .........+ (tan–1 (x + n) – tan–1 (x + (n – 1))) y = tan–1 (x + n) – tan–1 (x) Hence,
8.
–
Given that g–1(x) = f(x) x = g(f(x))
9.
=
or
g(f(x)) =
g(f(x)) f(x) = 1 g(f(x)) · f(x) =
y = sin(m sin–1 x)
g(f(x)) = –
= cos(m sin–1 x) .
Squaring and cross multiplying, (1 – x2) y12 = m2 (1 – y2), Again differentiating w.r.t.x (1 – x2) 2y1y2 + (– 2x) y12 = m2 (– 2yy1) Dividing by 2y1, (1 – x2) y2 – xy1 = – m2y 10.
11.
Take = tan–1x, then
y = cos–1
or
y=
so |sec| = sec
xy . yx = 1 Diff. w.r.t. x, we get . nx +
y=
tan–1 x
=
y nx + x ny = 0
+ ny +
=–
12.
so (–/2, /2)
y = x(nx – n (a + bx)) = nx – n (a + bx) +
... (1) ... (2)
x3
... (3)
By (1) and (2), x
x3
–y=
=
RESONANCE
S OLUTIONS (XII) # 94
PART - II 1.
x = a(t – sint), y = a(1 – cost) = a(1 – cost)
... (1)
= a sint
=
=
= cot t/2
=
=
=–
from (1) ;
=–
2.
y=
+ k n
Differentiating both sides w. r. t. x, we get =2
+
·
=
n
= 2 n
– 2 n a + k
Differentiating both sides w.r.t. x, we get +
or
or
=
·
+
(x2 – a2)
+x
=
=2
hence value of (x2 – a2)
RESONANCE
is 2
S OLUTIONS (XII) # 95
3.
Let f(x) = xx From definition f(x) =
=
=
=
=
=
= xx (1 + n x)
=
4.
(a + bx) ey/x = x or
ey/x =
... (1)
Taking loge both sides, we have
= nx – n (a + bx)
Differentiating both sides w.r.t.x, we have or
(xy – y) =
= aey/x
=
=
from (1)
Again taking loge on both sides, we have n(xy – y) = n a + Again differentiating both sides w.r.t.x, we have (xy+y – y) = 0 + 5.
x3y = (xy – y)2 = a tan–1 (a n y)
a n y = tan
.... (1)
Differentiating both sides w.r.t.x, we get = sec2
= sec2
= 1 + tan2
= 1 + a2 (n y)2
RESONANCE
(from (1))
S OLUTIONS (XII) # 96
= 2a2 (ny)
Again differentiating both sides w.r.t.x, we get
. y
y y– (y)2 = yy (ny) y y – yy(ny) = (y)2 6.
Let
y1 = tan–1
and
y2 = tan–1
Let
a = 2 n x,
then
y1 = tan–1
= tan–1
= tan–1
=
Similarly y2 = tan–1
7.
= + , where tan = 3
y=
+ ( + ) =
=0
y=
– , where a = tan
+ tan–1 3 = constant
=0
tan–1
=
=
= 8.
xy = ex – y Diff. w.r.t. x, we get nx = 1 – y
y nx = x – y
... (1)
y + y . xnx = x – xy
y =
From (1), y=
x–y=
RESONANCE
y =
S OLUTIONS (XII) # 97
9.
y3 – y = 2x
... (1)
Differentiating both sides w.r.t.x, we get (3y2 – 1) or
=2
... (2)
Again differentiating w.r.t.x,
=
......... from (2)
=
... (3)
Now L.H.S. =
=
+
=
= 3y2 – 1 =
Let =
10.
=
y=1+
=
=
+
= R.H.S.
+ ..... (n + 1) terms
+ ....... (n + 1) terms.
=
+ ...... (n + 1) terms,
finally we get y= Taking loge of both sides, we have ny = n nx – n (x – a1 ) – n (x – a2) – n (x – a3) – .......– n (x – an) Differentiating both sides w.r.t. x, we get =
RESONANCE
S OLUTIONS (XII) # 98
=
=
=
11.
Let
z = cos x + i sinx
2 i sin x =
z–1 = cos x – i sin x
(2 i sinx)9 =
29 i sin9x =
y=
Binomial coefficients of
.... (1)
(with sign) are
1, – 9, 36, – 84, 126, – 126, 84, – 36, 9, – 1 = z9 – 9z7 + 36z5 – 84z3 + 126z –
=
–9
+ 36
+
+
–
+ 126
– 84
= 2 i sin 9x – 9.2 i sin 7x + 36.2 i sin 5x – 84.2 i sin 3x + 126. 2 i sinx From (1) & (2), we get y=
(sin 9x – 9 sin 7x + 36 sin 5x – 84 sin 3x + 126 sinx)
yn =
– 9.7n sin
+ 36.5n sin
+ 126 sin
12.
Given
..... (2)
– 84.3n sin
, where n w..
y=
or (x2 + c)y = ax + b Differentiating both sides w.r.t. x, we get (x2 + c)y + y . 2x = a Again differentiating both sides w.r.t. x, we get (x2 + c) y + y . 2x + 2 (xy + y.1) = 0 or
(x2 + c) y=– 4xy – 2y
or
– x2 – c =
Now differentiating both sides w.r.t. x, we get
RESONANCE
S OLUTIONS (XII) # 99
– 2x = or or 13.
– x(y)2 = 2x(y)2 + 3y y – (2xy + y) y (2xy + y) y = 3 (xy+ y) y
We have sec–1 (2x) + 2x tan (n (x + 2)) = 0
sec–1 (2x) + 2x tan (n (x + 2)) = 0
.... (1)
esin(x/2)n sin y +
sec–1 (2x) + 2x tan (n (x + 2)) = 0
Differentiating both sides w.r.t. x, we get .
+ 2x . sec2 (n (x + 2)) .
.2
+ tan (n (x + 2)) . 2x n 2 = 0
... (2)
Putting x = – 1 in (1), we get (sin y)–1 = –
sin y = –
.... (3)
and putting x = – 1 in (2), we get e–n sin y
.2+
=0
Hence
{from (3)}
=
RESONANCE
S OLUTIONS (XII) # 100
APPLICATION OF DERIVATIVES EXERCISE # 1 PART - I Section (A) : A-3.
Let AC be pole, DE be man and B be farther end of shadow as shown in figure From triangles ABC and DBE
3y = 1.5 x = 2,
(x + y) = =4+2=6
A-4_.
Let r be the radius of the sphere and r be the error in measuring the radius. Then r = 8 cm, and r = 0.03 cm, Now the voume V of the sphere is given by Let r be the radius of the sphere and r be the error in measuring the radius. Then r = 8 cm, and r = 0.03 cm, Now the voume V of the sphere is given by
r3
V=
= 4r2
V =
r = (4r2) r = 48)2 × 0.03 = 7.68 cm 3
Section (B) : B-3.
Here x 2/3 + y2/3 = a2/3 Differentiating w.r.t. to x.
Equation (y – k) = –
P(0, k 1/3 (h2/3 + k 2/3)) or P(0, a2/3 k 1/3) Q (h1/3 a2/3, 0)
And, PQ = B-7.
(x – h)
= |a| = constant.
f(x 1) = g(x 1) = 0 m 1m 2 = – 1 and |m 1| = |m 2| m1 = 1 ; m2 = – 1 or [(0 + h) (0 – h)] =
RESONANCE
m1 = – 1 ; m2 = 1
[0 – h2] = – 1
S OLUTIONS (XII) # 101
B-9.
Minimum distance = 10
Section (C) : C-3.
f'(x) = 3x 2 – 3 = 3(x – 1) (x + 1)
(i)
at at at at at at
(ii)
C-6.
x = 1point of minima Neither increasing nor decreasing x = 2increasing x=–2 decreasing x = 0 decreasing x = 3 neither increasing nor decreasing x = 5 increasing
g(x) is monotonically increasing g(x) 0 & f(x) is M.D. (fog) (x) =
C-7.
=
as Also
f(x) 0 & g(x) 0 (fog) (x) is monotonically decreasing x+1>x–1 f(x + 1) < f(x – 1) as f(x) is M.D. g(f(x + 1) < g(f(x – 1)) as g(x) is M..
Let
f(x) =
, x
f(x) = Let
f(x) 0
.
g(x) = x sec2x – tan x g(x) = 2x sec2x tanx > 0 x>0 g(x) > g(0), g(x) > 0 x1 < x2 f(x1) < f(x2) <
RESONANCE
f(x) > 0
f(x) is M.I.
< S OLUTIONS (XII) # 102
Section (D) : D-2.
f(x) = 3x 3 f(x) = 0 x=0 x = – 2, f(–2) = – 8 x = 0, f(0) = 0 x = 2, f(2) = 8 Minimum = – 8, maximum = 8 (ii) f(x) = cos x – sin x (i)
f(x) = 0
x=
x = 0, x=
f(0) = 1 ,
x = ,
f
=
f() = – 1
Minimum = –1, Maximum = (iii) f(x) = 4 – x f(x) = 0 x=4 x = – 2,f(–2) = – 10 x = 4, f(4) = 8 x=
,f
=
Minimum = –10, (iv)
Maximum = 8
f(x) = cos x – sin 2x f(x) = 0
x = 0, f(0) = Minimum = D-6_.
cos x = 0, sin x =
x=
, x=
x=
f
=
x=
, f
=
, Maximum =
Let No. of children of john & anglina = y x + (x + 1) + y = 24 y = 23 – 2x Number of fights F = x(x + 1) + x(23 – 2x) + (x + 1) (23 – 2x) F = – 3x2 + 45x + 23 But 'x' wil be integral.
D-8.
,
2
2
= 0 – 6x + 45 = 0
x = 7.5
check x = 6 or x = 7, F = 191
2
R +r =h R2 = h2 – r2 volume of cylinder , V = R2 (2h) = (2h) (
)2
= 2 (r2 – h2) + 2h(–2h) = 0
r2 = 3h2
h=
< 0 at h =
Vmax = 2
RESONANCE
= S OLUTIONS (XII) # 103
D-10.
2 + 2r = 440 A = 2r = – 2r2 + 440r = – 4r + 440 = 0
D-12.
at
r=
Let Let
x, y be dimensions of rectangle. 2x + 2y = 36. V be volume sweeped V = x 2y V = x 2(18 – x) = x.3.(12 – x)
At
x = 12, V has maximum value
y=6
Section (E) : E-2.
Let (h, k) be point of inflection h sin h = k y = sin x + x cos x y = cos x + cos x – x sin x y = 0 2 cos h – h sin h = 0 2 cos h = k sin2 h + cos 2 h = 1 = 1 4k 2 + h2k 2 = 4h2
+
...(1)
...(2)
locus y2 (4 + x 2) = 4x 2
Section (F) : F-2.
F-4.
Let
f(x) = 3x2 + px –1
f(x) = x3 +
f(x) satisfies conditions in Rolle's theorem 3x2 + px –1 = 0 has atleast one root in (–1,1).
–x+c
f(–1) =
+ c = f(1)
f(c) = 0 for atleast one c (–1,1)
Let h(x) = f(x) g(x) h(a) = 0 = h(b) By Rolle’s theorem on [a, b] h(x) = 0, for at least one c (a, b). f (c) g(c) + f(c) g(c) = 0
PART - II Section (A) : A-1.
V=
V=
=
77 × 103 =
× 70 × 70 ×
( 1 litre = 103 c.c.)
= 20 cm/min.
RESONANCE
S OLUTIONS (XII) # 104
A-3_.
= Let x = 25 and x = 0.2 such that f(x) = f (x) =
f(x + x) = f(x) + f(x). x
=
+
.x
= A-4_.
+
× 0.2 =
=5+
= 5 + 0.02 = 5.02
V = x3 x = (3x 2) x = (3x 2) (0.04x) = 0.12x 3m 3
V =
Section (B) : B-5*.
2y3 = ax 2 + x 3 6y2
= 2ax + 3x 2
=
=
Tangent at (a, a) is 5x – 6y = – a =
,
2 + 2 = 61
= = 61
a2 = 25.36 a = ± 30 B-8.
P1 : y2 = 8x C1 : x 2 + (y + 6)2 = 1
Equation of normal of parabola y = mx – 2am – am 3 if passes through (0,–6) –6 = – 2am – am 3 a=2 3 = 2m + m 3 3 m + 2m – 3 = 0 m = 1. Point on parabola (am 2 , – 2am) (2, –4).
Section (C) : C-2.
5x 4 – 3
f(x) =
It is sufficient to solve for p, the condition f(x) 0
xR
5x 4 – 3 0 x R
RESONANCE
S OLUTIONS (XII) # 105
Case -
1–p<0 p>1 Inequality holds true. 1–p>0 p<1
Case -
Inequality holds if
p – 4, p + 4 (1 – p)2 p – 4, p2 – 3p – 3 0
– 4 p
Hence p
C-5*.
–10
(1, )
g(x) =
and
g(x) = f(x/2) – f(1 – x) Now g(x) is increasing if g(x) 0 f
f(1 – x)
[ f(x) < 0 i.e. f(x) is decreasing]
1–x
x 2 – 2x
x 2/3
3x 2
and
g(x) increases in 0 x 2/3 g(x) 0 for decreasing
f(1 – x)
0 x
1–x
x 2/3 2/3 x 1
Section (D) : D-3.
f(x) = 2 – |x + 1|
From figure it is clear that greatest, least values are respectively 2, 0 D-6*.
f(x) = The only factor in f(x) which changes sign is cosx – x. Let us consider graph of y = cos x and y = x It is clear from figure that for x (0, x 0), cos x – x > 0 and for x cos x – x < 0,
RESONANCE
f(x) has maxima at x 0
S OLUTIONS (XII) # 106
D-8*.
f(x) =
,x>0
=
x > 0.
f(x) is decreasing On
x > 0.
, greatest value is
f(
)=
–
n
f
=
n
and least value is
.
D-10. S = 2rh = 2H
= 2H
Maximum at r =
D-13.
Let d be distance between (k, 0) and any point (x, y) on curve. d= ( y2 = 2x – 2x 2).
d=
Maximum d =
Maximum d =
Section (E) : E-3.
x=1
a=–
E-4.
3=a+b
=0
,
b=
3a + b = 0
f(x) = n(x – 2) –
f(x) =
=
=
=
.
As n(x – 2) is defined when x > 2 f(x) is M.. for x (2, )
f –1(x) is M.. wherever defined
Also
f(x) is always concave downward
f(x) =
RESONANCE
<0
S OLUTIONS (XII) # 107
EXERCISE # 2 PART - I 1.
y = 50 – 16t2
So,
tan =
y=
.x
=
=
= – 16
= – 1500 ft/sec. 2.
at t = 0
;
x = 0, y = 1
= 2cm/sec
A=
(At, t = 7/2 sec, change in y -co-ordinate = 7 hence, pt. C has y-co-ordinate = 8 and x- co-ordinate = 6 at t = 7/2 sec.) = (4 + 7) ×
7.
×2 =
cm 2/sec
f(x) =
=
=
0
f(x) is increasing
RESONANCE
x [0, )
f(x) is injective.
S OLUTIONS (XII) # 108
12.
Let (x) = x + (x) = 1 + If x < 0 , –|x| = x (x) =
=
>0
If x > 0, (x) > 0 Hence (x) is increasing As we know ex x + 1 (ex) (x + 1) ex + 13.
x+1+
Let x > –1 Consider f(x) = (1 + x)n(1 + x) – tan–1 x f(x) = n(1 + x) + 1 – f(x) =
>0
f(x) is increasing f(x) < 0
For x < 0, f(x) < f(0) f(x) decreasing f(x) > f(0)
(1 + x)n(1 + x) – tan–1 x > 0 For x > 0,
f(x) > f(0) f(x) > 0
f(x) > 0
n(1 + x) > f(x) is increasing
f(x) > f(0)
f(x) > 0
n(1 + x) > Hence larger of these is n(1 + x). 15.
f(x) = a0 + a1x + a2x 2 + a3x 3 + a4x 4 + a5x 5 + a6x 6 a0 = a1 = a2 = a3 = 0 = e2
a4 = 2
f(x) = 2x 4 + a5x 5 + a6x 6 f(x) = x 3 ( 8 + 5a5x + 6a6x 2) f(1) = 0, f(2) = 0 , 17.
f(x) = 2x 4
xy = 18 Area of printed space
=
=
Maximum when x=
RESONANCE
y= S OLUTIONS (XII) # 109
21.
f(x) = 0 sin x=
=0
= n
,nN
x = .......,
,
, .......
,
Consider interval
, 1.
=0=
By Rolle’s theorem f(x) vanishes at least once in Infinite number of such intervals are there. Hence f(x) vanishes at infinite number of points in (0, 1) 24.
Let g(x) =
, x [a, b]
By Rolle’s theorem, g’(x0) = 0 =0
25.
f(x0) =
Let f(x) = (x + a) – (x) f(x) = (x + a) – (x) + k f(0) = (a) – (0) + k f(2a) = (3a) – (2a) + k f(0) = f(2a) By Rolle's theorem on [0, 2a], f(c) = 0 for at least one c (0, 2a) (x + a) = (x) has at least one root in (0, 2a)
PART - II 3.
f(x) =
>0
f(x) increasing hence g(x) is also increasing function 7.
Let
be quantity y=
y2 = y
=
=
=a 9.
= = a
f(x) = ; g(x) = for a > 1, a 1 and x R n a h(x) = n f(x) + ng(x)
(n a) h(x) =
h(x) =
na +
n a
+ |x|
h(x) = a sgn x Now h(–x) = a|–x| sgn (–x) = –h(x) h(x) is an odd function Also graph of h(x) is It is clear from the graph that h(x) is an increasing function
RESONANCE
S OLUTIONS (XII) # 110
12.
f(x) =
f(x) = For 13.
16.
0 < x < 1,
tan
f(1–) f(1) and f(1+) f(1) – 2 + log2 (b2 – 2) 5
f (x) > 0
0 < b2 – 2 128
f(x) is increasing.
2 < b2 130
2 = h2 + x 2 Area of base (triangle) is
3x =
a
Volume V = h
. 4 . 3.x 2 = 3
=h
=3 18.
a2
(2 – 3h2)
h (2 – h2)
V is maximum when h =
Maximum of f(x) is Given expression is f(x 1) + f(x 2)
20.
.
f(x 1)
f(x 2)
f(x 1) + f(x 2)
f (x) = 1 +1– 2– At x = 0, f(x) is least. Least value = f(0) = 1
23.
f(x) = m – n is odd. f (x) < 0
25.
>0
x (–, 0)
f (x) > 0
x (0, )
(x) = (3(f(x))2 – 6(f(x)) + 4)f(x) + 5 + 3 cos x – 4 sin x 5–
5 + 3 cosx – 4 sin x 5 +
adding (3(f(x))2 – 6(f(x)) + 4)f(x) (3(f(x))2 – 6(f(x)) + 4)f(x) (x) (3(f(x))2 – 6(f(x)) + 4)f(x) + 10 3(f(x))2 – 6f(x) + 4 = 3 (f(x) – 1)2 + 1 > 0 2 (3(f(x)) – 6(f(x)) + 4)f(x) 0 when ever f(x) is increasing. (x) 0 (x) is increasing, when ever f(x) is increasing. If f(x) = – 11 then (3(f(x))2 – 6f(x) + 4) f(x) + 10 = – 33 (f(x) – 1)2 – 1 < 0 (x) < 0 (x) is decreasing.
RESONANCE
S OLUTIONS (XII) # 111
28.
f(x) = f(x) = 0 at x = 0, x = – 3, x = 1 so at x = 0, f(x) has local minima. and at x = –3, x = 1 ; f(x) has local maxima f(1) =
,
f(– 3) =
. f(–3) < 0, f(1) > 0 and f(x) 0
f(x) is undefined at point(s) in (–3, 1). Hence f(x) has no absolute maxima.
EXERCISE # 3 PART - I 2.
(A) (B)
f(x) is continuous and differentiable f(0) = f() Hence condition in Rolle’s theorem and LMVT are satisfied. f(1–) = –1, f(1) = 0, f(1+) = 1 f(x) is not continuous at x = 1, belonging to Hence, atleast one condition in LMVT and Rolle’s theorem is not satisfied
(C)
f’(x) =
(x – 1)–3/5, x 1
(D)
At x = 1, f(x) is not differentiable. Hence at least one condition in LMVT and Rolle’s theorem is not satisfied. At x = 0
L.H.D. =
3.
=
= –1
R.H.D. = 1 At x = 0, f(x) is not differentiable Hence at least one condition in LMVT and Rolle’s theorem is not satisfied. (A) Let PQ = x Then BP =
PS =
tan60º =
area A of rectangle =
=
=–
(4 – x) x
(4 – 2x) = 0
x=2
<0
A is maximum, when x = 2.
Maximum area =
2.2 =
.
Square of maximum area = 12
RESONANCE
S OLUTIONS (XII) # 112
(B)
Dimensions be x, 2x, h 72 = x . 2x . h 36 = x2h ....(1) S = 4x2 + 6xh S = 4x2 + 6
= 8x –
=
For least S, x = 3 and least S is 108. (C)
Let y = x2 + y2 – 4x + 3 = 0 (x – 2)2 + y2 = 1, center C = (2, 0) Consider point P(5, – 4) CP =
=5 is (5 + 1)2 = 36.
Maximum value of
(D)
x2 + y2 = 5 = Let
cos, b =
sin
f() be perimeter f() = 2a + 2b =2
(2cos + sin)
f()= 2
(– 2sin + cos)
f()= 2
(–2cos – sin)
f() = 0 tan =
and f () < 0
f() is greatest a = 4, b = 1 a3 + b3 = 65
Comprehension # 2 (7 to 9) Let g(x) =
, x [0, ]. g(x) is increasing function of x.
range of g(x) is
f(x) =
, x [0, ]
Now let t 2, then f(t) + f(2 – t) =
RESONANCE
S OLUTIONS (XII) # 113
i.e
f(t) +
=
i.e
f(t) + –
i.e
f(t) =
f(x) =
–
=
for x 2
Thus f(x) =
for 0 x 2
Also f(x) = f(4 – x) for all x [2, 4] f(x) is symmetric about x = 2 from graph of f(x) = 2 – 0 = 2 = Maximum value is f(2) = = Comprehension # 3_ (10 to 12) 7. Sin x is concave downward in (0, ) 8. ex is concave upward 9. f(x) concave downward (f(x) < 0) f(x) increasing (f(x) 0) Let g(x)= f –1(x) = x f(g(x)) = x f(g(x)). gx = 1 g(x) =
>0
g(x) = –
× f(x).g(x)
g(x) > 0 g(x) = f –1 (x) concave upward
15.
f(x) =
17.
(1 – nx) f(x) 0, when x e f(x) is decreasing function, when x e >e f() < f(e) 1/ < e1/e e > e Statement-1 is True, Statement-2 is False
f ’ (x) = 50x49 – 20x19 = 10x19(5x30 – 2) x = 0 is stationary point. Statement-2 is ture. f(0) = 0 =
–
<0
f(1) = 0 Global maximum is 0. Statement-1 is true.
RESONANCE
S OLUTIONS (XII) # 114
19.
y=
is even funciton.
Even function is nonmonotonic. 27.
From figure z2 = x2 + y2 z
=x
If z = 500 then x = 400 500
= 400(5) =4
EXERCISE # 4 PART - I 1.
In case of function given in (A), f is continuous on [0, 1] but not differentiable at x = 1/2 (0, 1). Note that Lf (1/2) = – 1 and Rf (1/2) = 0 Thus, the Lagrange's mean value theorem is not applicable. The function in (B) is continuous on [0, 1] and differentiable on ]0, 1[ and hence the Lagrange's mean value theorem is applicable. The function in (C) is f(x) = x|x| = x . x = x2 and in (D) is f(x) = |x| = x on [0, 1]. As both are polynomial function, the Lagrange's mean value theorem is applicable.
2.
Given that 2(1 – cosx) < x 2 , x 0 To prove sin(tanx) x, x Let f(x) = sin(tanx) – x f(x) = cos(tanx) sec 2 x – 1 f(x) =
2(1 – cosx) < x 2 , x 0
...........(i)
cosx > 1 –
Similarly cos(tanx) > 1 –
..........(ii)
By equation (i) & (ii)
f(x) >
f(x) >
f(x) >
f(x) > 0
x
f(x) is an increasing function.
For x x0 f(x) f(0) sin(tanx) – x 0 sin(tanx) x Hence proved
RESONANCE
S OLUTIONS (XII) # 115
3.
f is differentiable function on [0, 4] f is continuous on [0, 4] also. By using LMVT, there exists a (0, 4) such that f(a) = Now
........ (i) [(f(4))2 – (f(0))2 ] =
[(f(4))2 – (f(0))2 ] = 4 f(a) [f(4) + f(0)] ....... (ii) f is a continuous function on [0, 4], so By intermediate mean value theorem, there exists b (0, 4) such that f(b) =
..... (iii)
now by equation (ii) & (iii) [(f(4))2 – (f(0))2 ] = 8f(a) f(b) hence proved 4.
In OSP tan =
and
=
sin =
cos =
Area of PSM =
=
SM × PN
. 2SN × PN = SN × PN
= SP sin × SP cos =
× sin cos
= (100 – r2)
=
=
.
(100 – r2)1/2 (–2r) r +
=0
(100 – r2)1/2 (– 3r2 + 100 – r2) = 0, r 10 as P is outside the circle 4r2 = 100 r2 = 25 r = 5. Also
= 0,
=0
Thus for r = 5, areawould be maximum. 5.
. Put x = 0 and we get
form. Also because ‘f’ is strictly increasing and differentiable.
Apply L-Hospital rule, weget = – 1. Since ‘f’ is strictly increasing f(x) 0 in an internal
6.
f(x) = For Rolles theorem to be applicable in [0, 1], f(x) should be continuous in [0, 1], differentiable in (0, 1) and f(0) = f(1). Last two conditions hold and
x n x = 0
Put x = e–t, then as x 0, t =0
which is true for all > 0
RESONANCE
S OLUTIONS (XII) # 116
7.
=
– 23 x101 – 45
+ 1035x + c.
Now consider a function f(x) =
(x100 – 45) – 23x (x100 – 45) =
(x – 46) (x100 – 45)
It satisfies all conditions of Rolle’s theorem in . Hence there exist at least one c which f(c) = 0 P(c) = 0 which proves that there exist a root of P(x) = 0 in 8.
f(x) = 3x2 + 2bx + c whose discriminant is 4(b2 – 3c) which is negative as 0 < b2 < c. Thus f(x) is always positive and f(x) is strictly increasing.
9.
f(x) = sinx + 2x – f(x) = cosx + 2 – f(x) = – sinx – Also f(
< 0 x
f(0) =
>0
)= 2 –
... (i)
... (ii) =2–3–
Equation (1), (2) & (3) shows that value of x
f(x) is decreasing function
=–1–
<0
... (iii)
a certain
for which
f(x) = 0 & this point must be a point of maxima for f(x) since sign of f(x) changes from + ve to – ve 10.
As |f(x 1) – f(x 2)| (x 1 – x 2)2 |f(x 1) – f(x 2)| (x 1 – x 2)2
x 1, x 2 R {As x 2 = |x|2} =
|x 1 – x 2|
Taking limit both sides as x 1 x 2 So
or 11.
12.
|f(x 2)| 0, x1 R |f(x)| 0 |f(x)| = 0 f(x) = 0 or f(x) is constant function Equation of tangent at (1, 2) is y – 2 = f(1)(x – 1) y = 2 is required equation of tangent.
Let g(x) = f(x) – x2 g(x) has atleast 3 real roots which are x = 1,2,3 By langrange mean value theorem (LMVT) g(x) has atleast 2 real roots in x (1, 3) f(x) – 2 = 0 for atleast 1 real roots in x (1, 3)
|x 1 – x 2|
xR
g(x) has atleast 1 real roots in x (1, 3) f(x) = 2 for atleast one x (1, 3)
Let P(x) = ax 3 + bx 2 + cx + d P(x) = 3ax 2 + 2bx + c P(x) = 6ax + 2b given that P(–1) = –a + b – c + d = 10, P(1) = a + b + c + d = –6 P(–1) = 3a –2b + c = 0 P(1) = 6a + 2b = 0 a = 1, b = –3, c = –9, d = 5 P(x) = x 3 – 3x 2 – 9x + 5 P(x) = 3x 2 – 6x – 9 = 3(x + 1)(x –3) x = – 1 is point of maxima & x = 3 is point of minima Hence distances between (–1, 10) and (3, –22) is 4
RESONANCE
units. S OLUTIONS (XII) # 117
for
13.
g(x) =
(f(x). f(x))
to get the zero of g(x) we take function h(x) = f(x). f(x) between any two roots of h(x) there lies at least one root of h(x) = 0 i.e. g(x) = 0 Now h(x) = 0 f(x) = 0 or f(x) = 0 As f(x) = 0 has 4 minimum solutions. and f(x) = 0 minimum 3 solutions. h(x) = 0 minimum 7 solutions. h(x) = g(x) = 0 has minimum 6 solutions. 14*.
Since f(x) has local maxima at x = –1 and f(x) has local minima at x = 0. f(x) = x f(x) =
{f(–1) = 0}
+c=0
= –2c
...........(i)
again, Integrating both sides we get f(x) =
+ cx + d
f(2) =
and
f(1) =
+ 2c + d = 18
+c+d=–1
using (i),(ii) and (iii) we get =
.............(ii)
..............(iii)
f(x) =
(19x3 – 57x + 34)
(x –1)(x + 1), using number line rule
and
f(x) =
f(x) is increasing for [1, 2
(57x2 –57)
]
f(x) has local maximum at x = –1 and f(x) has local minimum at x = 1
also, f(0) = 15.
Slope of the line joining the points (c – 1, ec–1)
and (c + 1, ec+1) is equal to
tangent to the curve y = ex will intersect line to the left of the line x = c. Comprehension # 1 (16, 17, 18)
16.
RESONANCE
S OLUTIONS (XII) # 118
17. Consider y = kex and y = x Let (, ke) be a point on y = kex if it lies on y = x also then = ke = kex
{ y = x is tangent to y = kex at one point}
= ke = = 1
1 = ke i.e. k = 1/e 18. Consider y = kex and y = x from above question ex = slope of y =
if we decrease the value of k from
, then
increases
y = ex and y =
intersect at two distinct points
k
19.
f(x) = 2 + cos x f(x) = – sin x f(x) = 0 x = n , n Now, we can easily see that, the interval [t, t + ] for all values of t, contain atleast one integral multiple of Statement - 1 is true f(t) = 2 + cos t f(t + 2) = 2 + cos (t + 2) = 2 + cos t = f(t) Statement - 2 is true but we can see that Statement - 2 is not a correct explanation of Statement - 1
20.
g(u) = 2 tan–1 (eu) –
21.
g(u) = tan–1 (eu) – cot–1 (eu) g(u) = tan–1 (eu) – tan–1(e–u)
odd function.
g(u) =
Strictly increasing function
+
>0
f(x) =
one point of local maxima at x = – 1 one point of local minima at x = 0 (C) is the correct option
22*.
f(x) = x cos
f(x) =
,x1 sin
RESONANCE
+ cos S OLUTIONS (XII) # 119
f(x) = –
Now
cos
f(x) = 0 + 1 = 1
x [1, )
option ‘B’ is correct
(0, 1]
f(x) < 0 As f(1) = sin 1 + cos 1 > 1
option ‘D’ is correct
f(x) is strictly decreasing and
f(x) = 1
so graph of f(x) is as below Now in [x, x + 2], x [1, ), f(x) is continuous and differentiable so by LMVT, f(x) = as
f(x) > 1 for all x [1, ) >1
f(x + 2) – f(x) > 2
for all x [1, ) 23.
p(x) = ax4 + bx3 + cx2 + dx + e p (x) = 4ax3 + 3bx2 + 2cx + d p (1) = 4a + 3b + 2c + d = 0 p (2) = 32 a + 12 b + 4c + d = 0
.....(i) .....(ii)
=2
=2 c + 1 = 2, d = 0, e = 0 c=1 Now equation (i) and (ii) are 4a + 3b = – 2 and 32 a + 12 b = – 4
a=
and b = – 1
24.
f(x) = 2010 (x – 2009) (x – 2010)2 (x – 2011)3 (x – 2012)4 f(x) = n (g(x)) g(x) = ef(x) g(x) = ef(x) . f(x) only point of maxima [Applying first derivative test]
25.
Clearly f(x) = f(x) = 2x ( g(x) = x
–
) 0 increasing
+
g'(x) =
fmax = f(1) = e +
+ 2x2
– 2x
> 0 increasing
gmax = g(1) = e +
h(x) = x2
+
+
hmax = h(1) = e +
RESONANCE
h(x) = 2x ,
+ 2x3 so
– 2x
= 2x
>0
a=b=c S OLUTIONS (XII) # 120
26.
(A)
Re
= Re
= –1 y 1 =
1 or
= Re
= Re (–1/y) =
– 1
Alternate
Re
= Re
= Re
= Re
= Re
= Re as –1 sin 1 (– , 0 ) (0, ) (B)
(C) (D)
–1
1
–1
0
1
–1
0
0
0
1
– 1 0
t (– , –9] [–1 , 1] [9, ) x (– , 0) [2 , ) f() = 2 sec2 f() 2 f(x) = x3/2 (3x – 10)
f ’(x) = x3/2 3 +
0
f() [2, )
x1/2 (3x –10)
asf ’(x) 0 0
27.
– 15 0
x 2
3x +
– 15 0
x [2, )
f(x) = x4 – 4x3 + 12x2 + x – 1 f(x) = 4x3 – 12x2 + 24x + 1 f(x) = 12x2 – 24x + 24 = 12 (x2 – 2x + 2) > 0 xR f(x) is S.I. function Let is a real root of the eqution f(x) = 0 f(x) is MD for x (– , ) and M.I. for x (, ) where < 0 f(0) = – 1 and < 0 f() is also negative f(x) = 0 has two real & distinct roots.
RESONANCE
S OLUTIONS (XII) # 121
28.
p = (x – 1) (x – 3) = (x2 – 4x + 3) p(x) = (x3/3 –2x2 + 3x) + p(1) = 6 6 = (1/3 – 2 + 3) + 6 = (1/3 + 1) + 18 = 4 + 3 ...(i) p(3) = 2 2 = (27/3 – 2 × 9 + 9) + 2= =2=3 p(x) = 3(x – 1) (x – 3) p(0) = 3(–1)(–3) =9
29.
f(x) = |x| + |x2 – 1|
f(x) =
f(x) =
PART - II 1.
Let
f(x) = x +
f(x) = Minimum occures at x = 1. 2.
3.
f(x) = 6x2 – 18ax + 12a2 f(x) = 0 x = a, 2a f(x) = 12 x – 18a f(a) = – 6a < 0 and f (2a) = 6a > 0 p = a, q = 2a p2 = q a = 2 (a > 0) Let
f (x) = ax2 + bx + c
f(x) =
a2 – 2a = 0
a = 0, 2
f(0) = d = f(1) (2a + 3b + 6c = 0) By Rolle's theorem, at least one root of f(x) = 0 lies in (0, 1) 4.
y2 = 18x Differentiating w.r.t. t
...... (1)
From equation (1), x =
RESONANCE
2y.2 = 18
y=
Required point is S OLUTIONS (XII) # 122
5.
x = a (1 + cos ), y = a sin
Equation of normal at point (a(1+ cos ), a sin ) is y – a sin =
(x – a (1 + cos ))
y cos = (x – a)sin It is clear that normal passes through fixed point (a, 0) 6.
y = x2 – 5x + 6 = 2x – 5
= – 1,
product of slopes = –1
=1
angle between
tangents is 7.
Let f1(x) = x3 + 6x2 + 6 Increasing in (–, – 4] Let
f2 (x) = 3x2 – 2x + 1
f1(x) = 3x (x + 4)
f2(x) = 6x – 2
Not increasing in Let
f3(x) = 2x3 – 3x2 – 12x + 6
f3(x) = 6x2 – 6x – 12 = 6(x +1) (x – 1)
Increasing in [2, ) Let f4(x) = x3 – 3x2 + 3x + 3 Increasing in (–, ) 8.
V=
4 (10 + r)2
, 0 r 15 = – 50. = – 50
=
9.
Any point on ellipse is P(x, y) = (a cos , b sin ) Area of rectangle = 4ab cos sin = 2ab sin 2 Maximum area = 2ab.
10.
By LMVT and f(x) 2
f(x) = 3(x –1)2 0
= f(x),
x (1, 6)
11*.
(where r = 5)
2
2
f(6) 8.
Equation of normal is y – a(sin – cos ) =
(x – a (cos + sin ))
x cos + y sin = a. Distance from origin = |a| (constant) Slope of normal = –
RESONANCE
= tan
angle made with x-axis is
+ . S OLUTIONS (XII) # 123
12.
f (x) = f (x) changes sign as x crosses 2. f(x) has minima at x = 2.
13.
= f(c) 1 < c < 3
c =
14.
f(x) =
15.
Graph of y = x3 – px + q cuts x-axis at three distinct pints
(cos x – sin x)
=0 16.
= 2 log3e
x =
Maxima at x = –
, minima at x =
Condition for shortest distance is slope of tangent to x = y2 must be same as slope of line y = x +1.
=1
y=
,
x=
,x–y+1=0
Shortest distance =
17.
P (x) = 4x 3 + 3ax 2 + 2bx + c and P(0) = 0 c=0 P (x) = x(4x 2 + 3ax + 2b) D = 9a2 – 32b < 0
b>
>0
(P(x) = 0 has only one root x = 0)
P (– 1) < P (1) a>0 P(x) has only one change of sign. x = 0 is a point of minima. P(–1) = 1 – a + b + d, P(0) = d P(1) = 1 + a + b + d P(–1) < P(1), P (0) < P(1), P (–1) > P(0) P(–1) is not minimum but P(1) is maximum.
18.
y=x+ y = 1 –
=0
y=2+
=3
x3 = 8
x=2
(2, 3) is point of contact Thus y = 3 is tangent Hence correct option is (3)
RESONANCE
S OLUTIONS (XII) # 124
19.
f(x) = 1 f(–1) = k + 2 f(x) = k + 2 f has a local minimum at x = – 1 1k+2k+2 possible value of k is – 1 Hence correct option is (3)
20.
ex + 2e–x 2
f(–1+) f(–1) f(–1–) k–1
(AM GM)
f(x) > 0
so statement- 2 is correct
As f(x) is continuous and
f(c) =
21.
belongs to range
for some C.
of f(x),
Hence correction option is (4).
y–x=1 y2 = x 2y
=1
=
y =
= 1 , x=
tangent at
y=
y=x+
y–x=
distance =
22.
=
=
f(x) =
In right neighbourhood of ‘0’ tan x > x
RESONANCE
S OLUTIONS (XII) # 125
In left neighbourhood of ‘0’ tan x < x as(x < 0) at x = 0 , f(x) = 1 x = 0 is point of minima so statement 1 is true. statement 2 obvious
23.
r3
V=
4500 =
= 4r2
45 × 25 × 3 = r3
r = 15 m after 49 min = (4500 – 49.72) =972 m3 972 =
r3
r3 = 3×243 = 3× 35 r=9 72 = 4 × 9 × 9
=
24.
f '(x) = at x = – 1
+ 2bx + a –1 – 2b + a = 0 a – 2b = 1
at x = 2
+ 4b + a = 0
a + 4b =
On solving (i) and (ii)
f '(x) =
...(i)
=
a=
...(ii)
, b=
=
So maxima at x = – 1, 2
RESONANCE
S OLUTIONS (XII) # 126
SOLUTION OF TRIANGLE EXERCISE # 1 PART - I Section (A) : A-1.
(i)
L.H.S. = a sin (B – C) + b sin (C – A) + c sin (A – B) = k sin A sin (B – C) + k sin B sin (C – A) + k sin C sin (A – B) = k (sin2 B – sin2 C) + k (sin2C – sin2 A) + k (sin2 A – sin2 B) = 0 = R.H.S.
(ii)
L.H.S. =
first term =
= = k 2 sin (B + C) sin (B – C) = k 2 (sin2 B – sin2 C) = k 2 (sin2 C – sin2 A)
Similarly
= k 2 (sin2 A – sin2 B)
and
L.H.S. = k 2 (sin2 B – sin2C + sin2C – sin2A + sin2 A – sin2 B) = 0 = R.H.S. (iii) L.H.S. = 2bc cos A + 2ca cos B + 2ab cos C = b2 + c 2 – a2 + a2 + c 2 – b2 + a2 + b2 – c 2 = a2 + b2 + c 2 = R.H.S
(iv) L.H.S. = a2
– 2ab
= a2 + b2 – 2ab cos C = a2 + b2 – (a2 + b2 – c 2) = c 2 = R.H.S. (v) L.H.S. = b2 sin 2C + c2 sin 2B = 2b2 sin C cos C + 2c 2 sin B cos B = 2k 2 sin2 B cos C sin C + 2k 2 sin2 C sin B cos B = 2k 2 sin B sin C [sin B cos C + cos B sin C] = 2(k sin B) (k sin C) sin (B + C) = 2bc sin A (vi) R.H.S =
(b = ksin B, c = ksin C)
c = a cos B + b cos A, b = c cos A + a cos C
=
=
=
A–4.
= L.H.S.
= sin(B + C) sin(B – C) = sin(A + B) sin(A – B) sin2 B – sin2 C = sin2 A – sin2 B 2 sin2 B = sin2 A + sin2 C 2b2 = a2 + c 2 a2, b2, c 2 are in A.P.
RESONANCE
S OLUTIONS (XII) # 127
A–7.
x 3 – Px 2 + Qx – R = 0
a2 + b2 + c 2 = P a 2b 2 + b 2c 2 + c 2a 2 = Q a2b2c 2 = R abc =
+
+
=
[a2 + b2 + c 2] =
Section (B) : B–1.
(i)
L.H.S. = 2a sin2 = = = =
(ii)
+ 2 c sin2
a(1 – cos c) + c(1 – cos A) a + c – (a cos C + c cos A) a+c–b R.H.S.
L.H.S. =
+
=
.
+ +
= (iii)
.
+
=
.
.
L.H.S. = 2bc(1 + cos A) + 2ca(1 + cos B) + 2ab(1 + cos C) = 2bc + 2ca + 2ab + 2bc cos A + 2ca cos B + 2 ab cos C + a2 + b2 + c 2 = (a + b + c)2
=2 = R.H.S. (iv)
L.H.S. = (b – c)
(b – c) cot
+ (c – a)
+ (a – b)
= k(sin B – sin C)
= 2k cos
sin
= 2k sin
sin
= k [cos C – cos B] similarly (c – a) cot and (a – b) cot
= k[cos A – cos C]
= k[cos B – cos A]
L.H.S. = k[cos C – cos B + cos A – cos C + cos B – cos A] =0 = R.H.S.
RESONANCE
S OLUTIONS (XII) # 128
(v) L.H.S. = 4 (cot A + cot B + cot C) = 4 = 2bc cos A + 2 ca cos B + 2ab cos C = a2 + b2 + c 2 = R.H.S. (vi) L.H.S. =
cos
. cos
. cos
= =
= = R.H.S.
B–3.
Let ADB = we have to prove that tan = if we aply m – n rule, then (1 + 1) cot= 1.cot C – 1.cotA. =
–
=
–
= =
[2(a2 – c 2)]
2cot =
tan =
Section (C) : C–2.
(i)
r. r1 .r2 .r3 =
(ii)
r1 + r2 – r3 + r = 4R cosC
= 2
L.H.S. = =
=
=
RESONANCE
S OLUTIONS (XII) # 129
=
=
=c
=
L.H.S. =
(iii)
=
= R.H.S.
=
(s – a + s – b + s – c) =
·
=
=
=
=
=
=
=
= 24 sq. cm 2s = 24 r1, r2, r3 are in H.P.
=
=
=r
=r
.... (i) s = 12 .... (ii)
are in A.P..
[4s 2 – 2s(a + b + c) +a2] =
R.H.S. =
similarly we can show that
= 4RcosC
L.H.S. =
=
C–4.
=
(s + s – a + s – b + s – c)2 = 4
(v)
=
L.H.S. =
=
cos C =
[s 2 + (s – a)2 + (s – b)2 + (s – c)2] =
(iv)
=
=
a, b, c are in A.P. 2s = 24 a + b + c = 24 3b = 24 b=8
are in A.P..
2b = a + c
a + c = 16
But = = 24 × 24 = 12 × (12 – a) × 4 × (12 – c) 2 × 6 = 144 – 12 (a + c) + ac 12 = 144 – 192 + ac ac = 60 and a + c = 16 a= 10, c = 6 or a = 6, c = 10 and b = 8
RESONANCE
S OLUTIONS (XII) # 130
Section (D) : D–1.
(i)
,=
=
, =
=
R.H.S. =
=
=
L.H.S. = R.H.S.
(ii)
=
=
=
R.H.S. =
=
= L.H.S.= R.H.S.
PART - II Section (A) : A–4.
(b + c)2 – a2 = kbc
(a + b + c) (b + c – a) = kbc
b2 + c2 – a2 = (k – 2) bc
In a ABC –1 < cos A < 1
–1 <
b
=
= cos A
<1
0 < k < 4.
Section (B) : B–2.
b cos 2
+ a cos 2
[ s – a + s – b] =
=
c.
c
=
+a
×c=
a + b = 2c
=
c.
c
a, c, b are in A.P. B–5.
B–6*.
= (a + b – c) (a – b + c) = 4(s – c) (s – b)
tan
=
(A)
tan
tan2
=
RESONANCE
=
cot
=
=
tan A =
tan A =
.........(i)
= S OLUTIONS (XII) # 131
tan
=
a = 5 and b = 4
from equation (i), we get =
cot
=
cos C =
=
=
Area =
=
=
ab sinC cosC =
Area =
Area =
cot
c 2 = a2 + b2 – 2ab cos C
cos C =
(B), (C)
cot
sinC =
c=6
=
×5×4×
sq. unit. From Sine rule
=
=
sinA =
=
sinA =
Section (C) : C–3.
=
=
=4 = C–5*.
(A)
. +
=
+
+
+
=
(B)
(C)
+
=
+
=
=
+
+
=
cot A = cot B = cot C
A=B=C
true for equilateral triangle only
RESONANCE
S OLUTIONS (XII) # 132
(D)
=
=
=
=
true for equilateral triangle only
cot A = cot B = cot C
A = B = C
Section (D) :
D–1.
D–4*.
=2
a =
cos
(A) correct
(C)
(B) incorrect
=
(D)
cosec
=
=
=
.
=
cos
.
=
cos
EXERCISE # 2 PART - I 3.
If we apply Sine-Rule in ABD , we get =
sin =
AB =
and
cos =
AB =
=
...(i)
from equation (i), we get
AB =
7.
RESONANCE
S OLUTIONS (XII) # 133
required distance = inradius of ABC 2s
=a+b+b+c+c+a = 2 (a + b + c) s=a+b+c
= = required distance =
=
=
= 8.
(i)
L.H.S. = (r3 + r1) (r3 + r2) sin C =
sin C
=
sin C
=
sin C
=
=
= 2 sr3
R.H.S. = 2r3
= 2r3 = 2sr3 L.H.S. = R.H.S.
(ii)
L.H.S. = –
=– (iii)
=
= R.H.S.
First term = (r + r1) tan =
=
cot
.
.
=b–c similarly second term = c – a & third term = a – b L.H.S. = b – c + c – a + a – b = 0 = R.H.S.
RESONANCE
S OLUTIONS (XII) # 134
(iv) and
11.
(i)
r1 + r2 + r3 – r = 4R (r1 + r2 + r3 – r)2 = r12 + r22 + r32 + r2 – 2r (r1 + r2 + r3) + 2(r1r2 + r2r3 + r3 r1) r(r1 + r2 + r3) = ab + bc + ca – s2 r1r2 + r2r3 + r3r1 = s 2 from equation (i) 16R2 = r2 + r12 + r22 + r32 – 2 (ab + bc + ca – s2) + 2s2 r2 + r12 + r22 + r32 = 16 R2 – 4 s2 + 2 (ab + bc + ca) = 16R2 – (a + b + c)2 + 2 (ab + bc + ca) = 16R2 – a2 – b2 – c2
........(i)
EFA is a cyclic quadrilateral =A
A = r cosec A/2 EF = r cosec A/2.sin A = 2 r cos A/2 similarly DF = 2 r cos B/2 and DE = 2r cos C/2. (ii) ECD is a cyclic quadrilateral
CE = DE =
similarly DF = BF =
(iii)
area of DEF =
FDE =
=
=
–
FD . DE sin FDE
=
= 2r2
= 2r2
=
=
=
=
=
=
=
PART - II 3.
ED =
– c cos B
=
–c
=
–
=
=
RESONANCE
S OLUTIONS (XII) # 135
5.
f = RcosA , g = R cos B, h = R cosC. +
+
=
+
+
=2 =8
+ = .8
9.
+
=
=
MNA is a cyclic quadrilatral = A
MN = r cosec
sin A = 2r cos
M = N = r
x=
=
similarly y =
=
r2 R
=
r1 + r2 =
(r1 + r2) =
=
=
=
= 4Rs 2
=4
14.
=
and z =
xyz =
12.
,
A, C1 , G and B1 are cyclic BC1 . BA = BG . BB1 .c=
=
16.
18.
(2c 2 + 2a2 – b2)
c 2 + b2 = 2a2
a=1
2s = 6
2s = 2
R=1
sin C =
RESONANCE
= 2R sin A =
A=
1 cos (A – B) 1
cos (A – B) = 1 sin C =
A–B=0 =1
A=B
C = 90º S OLUTIONS (XII) # 136
20.
if we apply m-n Rule in ABE, we get (1+1) cot = 1.cot B – 1.cot 2 cot = cot B – cot 3 cot = cot B tan = 3 tan B
..........(1)
Similarly, if we apply m-n Rule in ACD, we get (1+1) cot (–) = 1.cot – 1.cotC. cotC = 3 cot
tan = 3 tanC .......(2)
form (1) and (2) we can say that tan B = tan C
B=C
A+B+C= A = – (B + C) = – 2B
B=C
tan A = – tan2B
=–
=–
tan A =
22.
r1 – r =
–
(r1 – r)
=
= a tan
= abc tan
tan
tan
= abc tan
= abc
RESONANCE
=
=
=
=
= 4Rr2
S OLUTIONS (XII) # 137
EXERCISE # 3 2.
Match the column (A) AA1 and BB1 are perpendicular a2 + b2 = 5c2
c2 =
=5
cos C =
=
2 = 11
(B)
G.M. H.M.
(r1 r2 r3)1/3
=
=
=
a = 5, b = 4
=
cos B =
=
2a2 + 4b2 + c2 = 4ab + 2ac.
(D)
(
ab sin C =
(r1 r2 r3)1/3 3r
tan2
(C)
c =
=
sin C =
27
2s = 9 + c
c2 = 36
(a – 2b)2 + (a – c)2 = 0
c=6 a = 2b = c
=
8 cos B = 7 COMPREHENSION # 2 (Q. No. 7 to 10) 7. Clearly 8.
Let 3 1 2 = Then angle of pedal trinagle = – 2 = A =
9.
Side of pedal triangle
= I2I3cos = BC
I 2I 3 =
I2I3 = 4Rcos
10.
1 = 4 R sin I2I3 = 4 R cos
RESONANCE
12 + 232 = 16R2
S OLUTIONS (XII) # 138
12.
1 2 = 4R cos
if we apply Sine-Rule in 1 2 3 , then
2 Rex =
=
=
14.
2Rex
= 4R Rex = 2R ABC is pedal triangle of I1 I2 I3
statement - 1 and statement - 2 both are correct and statement -2 also explains Statement - 1
sin
=
=
similarly sin
3 sin
19.
–
=
– 4 sin3
=
=
ax 2 + bx + c = 0
r2 =
r = a.
cm.
...(1)
x2
+x +1=0 ...(2) roots of (2) are imaginary and a, b, c are real
b a c = = =k 2 1 1
cos C =
2 1 1 b2 a2 c 2 = = 2 1 2 2ab
1 2
C=
4
EXERCISE # 4 PART - I 1.
We have a2 a2 – (b – c)2 = (a + b – c) (a – b + c) a2 (2s – 2c) (2s – 2b) = 4(s – b) (s – c) similarly b2 4 (s – c) (s – a) and c 2 4 (s – a) (s – b). Multiplying the above inequalities, we get a2b2c 2 64 (s – a)2 (s – b)2 (s – c)2 (a + b + c) abc 16 s (s – a) (s – b) (s – c) = 162
1 (a b c ) abc 4 Equality occurs if and only if (b – c)2 = 0 (c – a)2 = 0 and (a – b)2 = 0 i.e if and only if a = b = c. 2.
(A)
a, sin A, sin B are given one can determine
a a sin B c = sin C So the three sides are unique. So option (a) is incorrect option sin A sin A S OLUTIONS (XII) # 139 RESONANCE
b=
(B) (C)
The three sides can uniquely determine a triangle. So option (b) is incorrect option. a , sin B, R are given one can determine b = 2R sin B, sin A =
(D)
. So sin C can be determined. Hence side c can also be uniquely determined
for a, sin A, R = 2R
But this could not determine the exact values of b and c 3.
n = 2n × area of OA11
n = 2n ×
×A A11 × O1
n = n × sin
× cos
n =
.
sin
.........(1)
On = 2n × area of OB1O1
On = 2n ×
× B1O1 × O 1O = n × tan
On = n tan
......(2)
Now
R.H.S. =
= 4.
× 2 cos 2
× 1 = n tan
=
= On. cos 2
Let angle of the triangle be 4x, x and x . Then 4x + x + x = 180° Longest side is opposite to the largest angle. Using the law of sines
= n tan
.cos 2
x = 30°
2S =
=
sin
= n
= L.H.S
= 2R
a = R, b = R, c =
5.
Clearly the triangle is right angled. Hence angles are 30º, 60º and 90º are in ratio 1 : 2 : 3
6.
Consider
=
=
=
RESONANCE
=
=
S OLUTIONS (XII) # 140
7.
Clearly P is the incentre of triangle ABC. r=
8.
=
Here
2s = 7 + 8 + 9
Here
r=
=
=
. b . b . sin 120º =
Also and =
and s =
=
s = 12
b2
.........(1)
a=
.........(2)
(a + 2b)
(a + 2b)
..........(3)
From (1), (2) and (3), we get = 9.*
We have ABC = ABD + ACD
bc sin A =
c AD sin
+
b × AD sin
AD =
Again AE = AD sec =
AE is HM of b and c.
EF = ED + DF = 2DE = 2 × AD tan =
=
× cos
sin
As and DE = DF and AD is bisector Hence A, B, C and D are correct answers. 10.
× tan an
AEF is isosceles.
In ABC , by sine rule =
=
C = 45º, C = 135º
When C = 45º A = 180º – (45º + 30º) = 105º When C = 135º A = 180º – (135º + 30º) = 15º Area of ABC =
AB . AC.sin BAC =
Area of ABC =
AB . AC .sinA =
×4×
Absolute difference of areas of triangles = | 2
RESONANCE
sin (15º) =
×4×
×
=2
sin (105º) = 2 –2
|=4
S OLUTIONS (XII) # 141
Aliter
AD = 2 , DC = 2 Difference of Areas of triangle ABC and ABC = Area of triangle ACC = 12.
cos B + cos C = 4 sin2
2 sin
cos
– cos
tan
= 4 sin2
cos
=0
=0
– 2 cos cos tan
+ 3 sin
sin
as sin
0
=0
=
=
=
2s = 3a
b + c = 2a
Locus of A is an ellipse
12.
×2×4=4
2 cos
11.
AD × CC =
sin 2C +
cos
sin 2A =
(a cos C + c cos A) =
= 2 sin B = 2 sin 60º =
=
=
=
=
(
– 2) x2 + (
– 2) x + (
(x2 + x + 1) = 2x2 + 2x – 1
+ 1) = 0
on solving x2 + x – x=
= 0 we get + 1, –
RESONANCE
At x = –
, Side c becomes negative.
x=
S OLUTIONS (XII) # 142
13.
Area of triangle =
. 6 . 10 sin C = 15
14.
ab sin C = 15
C=
Now
cos C =
–
r=
sin C =
c = 14
r2 = 3
(C is obtuse angle )
=
=
=
a = 2 = QR b=
= PR
c=
= PQ
s=
=
=4
=
=
=
=
= tan2
=
=
=
PART - II 1.
Let a = 3x + 4y, b = 4x + 3y and c = 5x + 5y as x, y > 0, c = 5x + 5y is the largest side C is the largest angle. Now cos C =
=
<0
C is obtuse angle ABC is obtuse angled. 2.
r1 > r2 > r3
>
>
s – a < s – b < s – c –a < –b < –c;
3.
tan
=
; sin
r+R=
RESONANCE
a>b>c
=
r+R=
.cot
S OLUTIONS (XII) # 143
4.
a
=
=
a + c = 2b 5.
a + b + c = 3b.
a, b, c are in A.P.
AD = 4
AG =
Area of ABG =
=
Area of ABC = 3(Area of ABG)
6.
cos =
7.
C = /2
×4=
×
×
× AB × AG sin 30º
×
=
Sin 60º =
AB =
=
= 120º
=
=–
r = (s – c) tan
C = 90º
r = s – 2R 2r + 2R = 2 (s – 2R) + 2R. = 2s – 2R = (a + b + c) –
C = 90º
=a+b+c–c =a+b
8.
are in H.P.
are in A.P.
9.
a,b,c are in A.P.
= cos
Let cos
=
As
for some n 3, n N
cos
cos
cos
3 n < 4, which is not possible so option (2) is the false statement so it will be the right choice Hence correct option is (2)
RESONANCE
S OLUTIONS (XII) # 144
ADVANCE LEVEL PROBLEMS PART - I 1.
From figure, AD = c sin B Hence number of triangle is 0 if b < c sin B one triangle for b = c sin B two triangles for b > c sin B
2.
C = 60° Hence c2 = a2 + b2 – ab
3.
=
= 2 cos
Using properties of pedal triangle, we have
MLN = 180° – 2A LMN = 180° – 2B MNL = 180° – 2C
Hence the required sum =
sin2A + sin2B + sin2C
=
4.
5.
4sinA sinB sinC
From figure, we can observe that
OGD is directly similar to PGA
BD = s – b, CE = s – c and AF = s – a Hence BD + CE + AF = s
6.
, as cos
= cos
A = B, in either case
7.
, Using cosine rule in
ABO, we get
h=
8.
In
ABD,
RESONANCE
S OLUTIONS (XII) # 145
Comprehension # 1
9.
10.
+
+
= b sin B + c sin C + a sin A =
k = 2R
cot A + cot B + cot C =
=
(b2 + c2 + a2) =
(b2 + c2 – a2 + c2 + a2 – b2 + a2 + b2 – c2)
=
=
.
=
11.
=
k=
=6
Comprehension # 2 (12 to 14) 12.
PG =
AD
= =
= PG = =
.ab sin C
or
b sin C
( =
ac sin B)
ac sin B c sin B
13.
Area of GPL =
and
Area of ALD =
(PL) (PG) (DL) (AD)
=
PL =
=
DL and PG =
AD
=
14.
Area of PQR = Area of PGQ + Area of QGR + Area of RGP ...(1)
Area of PGQ = = =
RESONANCE
×
×
PG.GQ.sin(PGQ) AD ×
×
BE sin ( – C) sin C S OLUTIONS (XII) # 146
=
×
=
bc sin A ×
ac sin B × sin C
sin A.sin B.sin C
Similarly Area of QGR =
sin A.sin B .sin C and Area of RGP =
sin A.sin B.sin C
From equation (1), we get (a2 + b2 + c 2) sin A.sin B.sin C
Area of PQR = 15.
In
CDB ,
=
Also from same triangle 16.
17.
BD =
cosAcosB + sinAsinBsinC = 1
(cosA – cosB)2 + (sinA – sinB)2 + 2sinAsinB(1 – sinC) = 0
a:b:c=1:1:
A = B & C = 90°
We have
18.
=
a:b:c=5:4:3
from figure, OO = ON – ON = R –
ZO = ZM + = from
RcosA +
OZO, using Pythagorous theorem,
we get (R –
)2 = (RcosA +
)2 +
=
PART - II 1.
from
from
ABC ,
=
AB = 2Rsin(A + )
ACB,
=
AC’ = 2Rsin( – A)
=
4RcossinA = 2acos
similarly CA = 2bcos =
RESONANCE
area
BC = 2R(sin (A + ) – sin( – A))
ABC = =
4cos2. S OLUTIONS (XII) # 147
2.
c2 – 2bc cosA + (b2 – a2) = 0 c1 & c2 are roots of this quadratic equation Hence (c1 – c2)2 + (c1 + c2)2tan2A = 4a2
3.
Area =
=
= =
2Rs
= 4.
We know that OA = R, HA = 2RcosA and applying Appoloneous theorem to
AOH, we get
2.(AQ)2 + 2(OQ)2 = OA2 + (HA)2
2.(AQ)2 = R2 + 4R2cos2A –
5.
=
+
using sine rule, diameter of required circle =
6.
=
= 20
radius = 10
L.H.S. =
(a2 (b + c – a) + b2 (c + a – b) + c2 (a + b – c))
=
=
=
abc
=
4R
RESONANCE
S OLUTIONS (XII) # 148
7.
from the parellelogram ABAC, AA = 21 , from
AAC, AA < b + c 21 < b + c
similarly 22 < c + a
...(1) ...(2)
and 23 < a + b ...(3) (1) + (2) + (3) gives 1 + 2 + 3 < 2s 8.
ZXY =
and
Area of
=
Area of
Area of XYZ = 2R2 cos
9.
cos
cos
=
Drop a perpendicular from the apex P to the base
ABC.
The foot of perpendicular is at circum centre O of
ABC
Using given data, we get from, right angle
POB, we get
= = 8.83 m 10.
from cyclic quadrileteral CQFP, we get
from cyclic quadriletral AQMF, we get FQM = FAM = 90º – B
AQM = 90º + 90º – B = 180º – B
P, Q, M are collinear
similarly P, Q, N are collinear hence, P, Q, M, N are collinear
RESONANCE
S OLUTIONS (XII) # 149