=~1 [wL/£)) ~ . ACf.>cl> !5 ~"i ~ ~ ~ N-= ~+(IJL)t.. .40 A= 4Rz.H<.JL)'l.. rp~ i.Ct)=: t;,iJL eRt/IQ + ~ ~(tJ.t- ~
=
R2°+(tJLY° ~R + (t.JL)t 6. m f:t) IY\o ekt /:>() g:: toe-{,()~ ~ - w-k :: ;,.,. o.g.) 1. 0.00312.. ,60 00312 rn(t) toe- 0 ·003'72.! . 2.:: 10 ;t ~ .t 432.C, ~J 2 0 3 aJWl 0.1::: 10 e ·00 '1 t ~ ;t 12.37.9 MJ10f. -Jc.;t rr./ J -70~ " - - ,_ 0 ~~ '7. m.(t) = m0 e . o.Sr-0 'floe ~ .If{_= 0.003188. ll\M.\.) (). 5'JP{o o/., e-o.003Y-88T ~ rp ~ 21~.4 ~: 1 1 12•• (ll) Ynt\f =rrt~-Cl\rj (\j(o)=.0. ~ N" +~M=~ (~-d\Jut~~·)Ao Ntt) e - c.tt/111. ( efcctt/m ~ tlt" t A ) = e -Ct/M ( ~ ed:/m d.:t + fll ) ::: rM. + Aed/M.. rr~ rv-to) =o =~+A ~ A=- ~c ~cl -CO C 0 « , ft _ tl - ,, N"(t) ~(1-e-ct/m ). a.o t~c0> l\rlt)~-% =~~ ~~. (b) ml\T'= l'\'ld-c""z. M> ~ "'- R~~: :ii~- (flu. ~~II""" S.u..2:2.J )
=
=
= =
e ·
=
=
=
= .r
s
s
=
With. X.J 'd ~ 10 t, l\f, ~ f>Ct) - - <;Im 1 jf:t) =O, ~:t) =ef · (9'~J. tktp~~ ~m~c) ~ ~~~ ~j.Jo t\f{t)=~m~/c+d£rj. ~ ih<. ODE~ o-~=d- ~O~+_t:)
= f ~(~u-l~-ix +~) M.Ct)-
_J_
r:J"L
u.'-2~~u.== ~ ~ ~
~ +Ae1.1~C/rl\';t rp~ rV{O)=D=1%·+_j_ ~M{O)=-~c
2. 'i ~
·
O
J
Ll(O)
d
-
~
==-±.[;:~+A ~ A=-1~~. F~J f\fCtJ::J~ +iilt)
=~~ + -t~ -f~ e~1¥'£x = pj(1- J+~2~x) ~
Q/(3A
Q/pA
Section 2.4
7
'T'o ~ ~ ~\r''"'',.,;.~ ODE~ ~.ii. Yv)~ ~ ~ IN>\ ~ ~ i i1't .n.wtri, ~ x ~ ~+Ll:i'. F.A.Ck>,o, ki ~ ~ -tt-..:t ~ fkw- { c<>1 ~) ~ &-e "~,, 1 AnUI,. A u- ~ ...o N.~oJ. :to. J4 /'IY\M().
~f\'b~
ctv:iil.£4. ~~.-#?. ~-'°'CA.~~~~~
~. ~l\rUl. ~ ~ .4t <2t4, ~ ~k ~~:
1 f~ 't.. o..vJ. ...xi.~ ~
~:!>~: €cc~>A1::,X,~t
D*-: -~Ac'c~>.at
D~~.: --k.Ac'cx.+~-x,)llt
~: (llit)Acc~)
~: (U6t)Ac.c,c,+~) ~
x+6x,
1)~~~: Qc~)AXAt .. .. ~ tk h ~Jo ~.J_ ~ M, €. t.ui-~MMD ~ .i-.t ~ AN-A. Qc4X) >.(, ~ ~ ~ Jk ~ ~ ~ ~k~ 'ftJ\ MMl- ~. NdWJ n~ ~ JW\fM>O, °",# ~ ~ ~ . . .... ~ b,~ ~ 'rM..ll. :t.-.i .t.t ma.oo AN'\ - IY\
=
E.c("/.,)
AO
Allx.t:>t =[-JcAc..' (X.).At -(U.6t) Ptccix.)]
- [-J:f\c'c~+6X.)~t-(Ua.) Acc~+6X.)+ Qc?<'..)6ut J
. .
J)~ ~
~ ~ 4X:~O ~ -kc'' - Uc ~ Let ..ua eaM. ~ f
15. (0..)
ALJ
~ +-k.t-l = .m ~
Set>=
Section 2.4
A.I.Ct)=
eS-Mt ( seS-hlt klictt + c) =U + c e.kt.
=U+C ~ C=-40-U, M:J
Lto+ U(1-e---kt). S0 (1+ ~)"t = S0 (1+~)fi)J:.t == So(1+f.n,,ttt ~ S0 e~t DJ.:>m~oo.
M.{0)=.4 0
''·(Cl)
_JIDc =-
M(.t)=
Section 2.4
-----+---"'-----9
x
8
Section 2.4
9
1
Section 2.4 Cf) /\.\ '= ~+2~-1 . L4: x.+2,4-\ = ~ 40Jrv=1+2 ~ .2X.+4~-I
0
U
~
(J;l
=l+ 2. 21\T"-I rr-1 . ~, ~ =.41'V'--3 OIX... "21\r-I
n~:~ cllll" =J~ 40 ~ rv + .g~cs/\)""-') =x.+ C, "", 12.
4(X.+z.At >+
.k(ax.+1c.11H, )= 'i!~+A
~i1u.~M....~~· () d ..L. dtJ/&.t =KN f, N-rd.N = k~, ~~-r = Kt+ c Cf'*'), Net>= [Ct-p)k'.t+A] i-p.
e 1~r ~ f~a;..ff':~
-L
Fett f < 1, Net) "" gi-r)l<:ttr
= o{t p.wk.e. = ]t-r -+ 00 a.o. :t~ A
Fo>t f>>l, N(t) = [A I
- Cp-1)1< :t
~ ~ ~ N0 ~ N0 =
=
13.
10
-
Cp-t)I<
-'-
J
~ AC4.M.k-01~
A'-r ~ A= N~-r. 1'~,
NCt)....,.o0 ~
1
~ 'f 1/[q~-t)KNf- _]. _ _
.t..+'P,
taN_(a..-b~-N)~t:t o'l, m=c1-N)N· ~N'o)=}JoO'lNCo)=bNo:~ -teat b b ,.._. cit ; o "' ~ ' cUJ_=clt ~N-4CN-t)=t+A N =Cet Nro)=8~C,=~· N(t-N) J ) N-f ) \ 4 f-( rn
1 -kv.o,,
-
Ntt) =.
= 14.
L.&:
c e~
-
1-ce~
=_
et 1-p. e± J2.
@-1
-N
·
(3
~+ (1-~)e-t
r, i,T ~.!.fort -fcri-ct, 1,,.~
l>vv\tl ~. ~ ~)D..
:t
-~ l'Y\~ ~M-dt ~~~:tr\~:~=: fi_2. v~ DMN\~ P~
NOVJ,
2'.r\.a
'£
x
c
*F "' ~o x~
j:"')' /£
~/'it ~
1/'t'
£.
'Po.~~~ t' ~ "'°4 a. ~~ ~
1T) ~ ~
'
1tk ~~ -e......o
o&M.t..
v~) Xo~~~ !.. YV\/C) d1.. c/-k._; ~ ~ ~ ~ Let M.()J MM, l/t..) J ~ • ak:t ..\I:)) ;t : ~ = iAJt . % ~~~ ~ Ml(_ Mo.cl °'- ~~ "\ ik 'P~_iW .fuu.., ~ ;l) ~ a,o, ?lo ) X,~/CJ) FI*) llM.A. ..00 m. . Let .u.o M4.t.. ?to>~ : x 0 N~~ ~ ctt ii' , d'k ODE ~ h'l. ~ tft 'X.0 X.lf) + C ..1.G\. _ ?G0X.(i )+ ix.0 £Cf)::. F~t; X-0~(0)=X.0J
1
_!
CJ
CA:>
=f .
=ts
welt"
..L ?G i
J.. -
(.Veit
0
(o) = ')l' 0
Section 2.5
Section 2.5
11
Section 2.5
12
Section 2.5
13 ·
'Tiw.o., e-3X#.-,,J2"~ =o. "W~~~ ~Fl~x=e 3 x~f==Jii 3x~x=..1c. ~ ~F~ =-i2. t:>0 ••• ..1<-, W ..:t -'<> ~ { "-". ~a.U) ;IQ ~ ~: Je""3"-J,x,- f 'f:z.~ =O' ~ + ~ =C ,o'l., 'J(lC.):: 1/(C.+}e -3X-).
Cb)
s
I
=
+te2....,= c.
=J~'L~e+l)C)5L =n-z..µMe+.n.+ A
'df/"i>e =.5l..,_~e- = n~e+ A'ce-) ~ Ace)=~.) ./)-0 Fc.n,e)=~ ~ ~ ~ Jtt.~e+n= C (~~fat sue)at·em))1~>· (c)
(2.~-e~)#.+~(~-e1)~ =O) M_'j=2.x.-e~=Nx) .Ao.;V)(~. dF/ax = 2x~-e~-+ fC')G,~) = S(2x"j-e'Y) e>~ = x.'2.'j-Xe~ + Af"tJ)
cf/t)'d = x}·-x.e'd
=~'1-- ?C.e~ + A't71)
~ At~)= cM. J
A:J
'X.~-?le~ = C.
10. cr=i.(o'l~ ~~) 11. (b) N.t ~· fdl. ~. { Mc,;,~)= eV3 ~ Mc1,1e>== e"J", 'flu,,,. M~C')(,?).: 11.ex;} ~ Mx{>J>~) =~e.~~ :::/: ~e-x~. 12. Fc4,b)=-c . AO p~ ~ ~ F~~,~)::Fr~,b). 13. 'j)O'(o (H+P)'J= (N+Q)~ ~ Y~, ~ ~ ~ ~+~=}(+~
O't
0::0 ./
Section 3.2
14
CHAPTER3 Section 3.2 L (b) a. Att w LD ~it~~ LI) .40 ~ ~ k ~. NO. ~. (b) 1x~ x.z.+x.) x_z.4Jx.+1J x.-1}. c~-z.+~)- (x,z.):: x
=t [(x-i.+~+1)-(x.i.)+ (1--t )]
i..e.) 1 (X'2.+ X.) -f (~t.+ x+ l)- ~(Xi.)- t {X-1) = 0. (~) '1(0) +O(x) + 0[X 3 ) 0) ~ ,,o,o A1'.t, 4 ail ~ (~) '(x.)-3(2.x.)+ocx~)=o, ~ '1,-3,o o.n.t.4~~-
=
3. Cb)~
1'~ 3.2..2:
4
W[e '~ ... leo."x]=
eG..J.~
a.,_e"'x
~.e~'X.,··· a..,,,_er...,,:x.. s'dm'l:>7~~10.'t)ih.O
: n-1
a.1 rt·~ ea..2 ~
=
•.•
·..
~·~
:
a.,><
:
rH
Q.i,X
I
l
·· ·
a.,
a.2. ...
n-1
tln 'X
a.i e ··· a.rt e
e
ea."''X,
ea.."~
n-l
TH 1 • ··
l
O.n
•
rri.t. .4tt.n.
~~ ~
Q.
v~~~~c~ · . ·
1
n-1
E~~ 1'1 > ~ to.~) AJ ~ a.a't)tll"l(. ~~~~~)~ ~v (~&ea
.
.
a. 1 a..
a.n
~~~~~x) ~~· ~~~rr~s.2.2 tkt &-t a.;~ Ant: ~ ~ [ ~· ~ ... , e"· ic: 1 .i.o. LI.. s~ >{.
a.~'.-o
1
Aru.
L'D. Fd1. ~ a,=~3 )-fth ~~.
~ ~ ~
'T'~ 4ea.,~ +oe.o..1.x. -lf-
+ ... +oeo.._x =o ~ '"11...t. ~~
4,o,-c+,o, ... ,o ~ ill o. (c)
l HX l+X'Z.
w[I)\+ x.) \-\- x.i..1 = \.T
-
l 0
0 0
... • •
Ce) \N~x,)c.r,:,x,1~x.
)
A-0~ ~ o
cf)
t.
I x 'X.}-1
2.X
= ~ ::
2 =f. 0 ~ ( rp~ 3. 2.. '2.)
LI.
2.
= O'Y\.
~~ cr.>X ~~ cr.>x -~x. ~x,
+
....
A
•
J_
·,.
=~= -2PV"\-t'\.?l> ~
- ~'X. -~'X. /)vJvX,
"'1~.11~ ('1'~3.2..2.), LI.. • • ~
= X-_,~ ~ ~ ~ 0 cn""'d ~. t\~ C'.11~3.2.2)J LI. s~ ~ ~ t"..o ~ ~Jh. ~) 'iJ[?Ci'X.
J=
I 2.X.
'2.
aJ'\l_
j~~;o ~rr~3.2.?f: ~~a.~~ ~)~~LI. C~) LI.1ra 'P~3.2.lt.
4.
Ch)
W[~'2X)co2x,J
=
l~2.X. I 2~2.~ -2~2x = Cp2.X,
-2:po MJ ('11~.3.2.3)
1 'ii.t.~;
LI.
Section 3.3
Section 3.5
Section 3.5
17
Section 3.5
191
Section 3.6
~
.
t.(b) ~= x, ~ A-1 =o
cc;
20
...\=I) /)=Ax,) 'dl2)= s-= 2-A ~ A=s/.z ~ ~<~)=SX.12.. <-o0<~
=r
Ce) A'l:..A..-rA.- ~ = o, A= ±3, ~=Ax
=Zs
f
3
-J
-1: Bx..
l A+ Btnc-x.) f01. -o0 < x< o ()f2>= 1=sA+ fYg ~ ~ 1 r2)=2= 12A-3B/1"
~ 'OC~) x.,3x.-3 O"n O< X< cO , (f) A'l..-~+i\+ I =o 1 A.= ±L J ~ A~(~x.)+8/)w\(~x). 1 "(1(1)= I= A) 'j (1)=0:: /)JJ ~(X) C(.)(4x) (SY\ O
=
rs )
~ C1r1.)
~l'X..)::: ~2/2..S - t07K.
(S'n.
=
-
o0 < X<
0
>..r>--1X>.-2)-2A=oJ >-.~O,D,3j ~
cO? X-A+ X-K2.=o, ~ =:tK,
.
1J
~K + B1-if-K
0r1)= 2.= A+C, 'd'rn=o=l3+3C.
-PO,:: x«>o.
={A xK+ 13~ K
O'Y\.
o< ?G< o0
A~K+ 8(-~JK oY\-oO
Section 3.6 (~) AJA.--1)(>.-2.) + 2i\.-2 =o, (JV\.
2.. {m.)
,\::: •11±.i..j
~(~)=Ax.+
21
x.[Bep( 1...1?C.1 )+ c~ (!., l'X.I )]
x < 0. ~ ( f X"2>J ~(~CX),~,?<.-,X,)-2.~~(~C~),x,) 0) ~(1)=2) J)(~)'l)= 0 J :i)(J)(-'j)X1)::0}, "jC'X-)_) j . ~· !)<"-):: 2. Nott. if.c. 'D<~X1) 0<' ~ < oO <:fl 6'V\. - oO <
=
r'fk
~ J)(J:X~))(a) ~~ fdt_~'(I) ~ ~ 'l•)..
"· ~ -M ~~~LI t tLwt. ~(J{ ~
.
A.o
~~ ~~
~ik ~. 'P~,~ ~ ~..;y(33) ~LI 1~ ~ 1 ~= f'Yc·x.)z~ft.i:,Cx.)M ~ -:t ~.....!.VJ~' cl fYcx)ze-Ja,~tl?<. = efa,~/y2rx)=O A.o- ~ ( Aw-e<. Ji.e.. -"1f~ ~ ~ ~ o """'J.. Y'
7. (a...) 'X,;t.."a''-xltj' -3'j =O.
d:t/d«.=
~~6'x:t.= ~(etg)~ =(-exrJ:t+e:c~)e-r , ezj; (-et ~ + et:~) er - e!- (er~ ) - 3Y = o, d.ZY/JJ:.t.. - 2.d.Y/M. -3Y = o, Yrt)= Aet+Be3~ B.Mt x.=er~t= ~K, ~(X) :: Ae""'" + Be 3 .k?l Atx,-+ Bx,' .
. M>
=
.40
8.
e\ dlx/tl:t= ex-,
e-:t ~tlvx.= ,J.Y;~ dt/.14 =ex tJ.Y/AX 'X.=
ca.) w~ ~ ~ 7to..) ~
x-z.D'2.'d + ~ =D2.Y DY
N>U:,
xD~= T>Y. ~ x.DCxD~)= J:fY ~ O't ~2 D-z-'d Jf-Y-D'/ = DlD-1) 'I.
=
=
xD ( x2.D-i."J) D D(D-1)Y 3 'X3 D -;j + 2~ = 'J>'l.(D-1)Y D(D-1)'/ -x, ])1~ = Jf(D-1)Y-2D(D-1)'/ :: DlD-1)(:D-2)Y)
~
3
~AO 6Y\,.
9.cI->) ~=A+B~JL 1 ~'CJl1)=0= Bin,~ B=o~ ~t.n)=-A:1iA.v\. p{JiJ=4'i.=A) ~ ~fn>=q52 1 10. Cb) J..l. =A+ B/Jt .U. lJ1,) =3 = -B/5l~ 9 B= -3J2.-:- /)0 ,U{Jt)= A- 3ll~/~. ~ 11.cb)
=A- 3.ll.f/Jl.z ~
A= 3Jlfl.R.z. /llO M(Jt):: g;p_f (f--:}) s.....Jc. o<~>= At'Jl)x. -a'=A+A'x., ~"=A'+A'+A"'X- AO 1 2. 1 xC2A'+A''x)+ ~l~A'~)-/}h=o) ~2.A' +(2'X.+X.7..)A =o o1t, ~ A'=P', ~ ft 11 B A' B-~-2~-t, -x ~ + (~+1) 4 =0, .
..U.(Jl2)==0
c
M 12.C.b)
Atx.)= cf ex x.2.d4. . ~)
"3l'X) =:
A'X.+ C-x. I e"' rJ,j.f'X.2..
~( X-lt:~(';jlX),:- 1 ~)+ X.-*cYl(~l?l),X.)-'J(X)=O,
c
~(x) = 1~ r Cz.(-e ~+ &c1>x).K.) ~
Jo~ .i..~ /tC> O'W'l..~· ~ (11.b)~
1
8.(n., X):
Seo _ea± 1
tn.
~
~[.i_ ~ ~ ~ 'rf\I!~•
~U.1 d4 ~~ ~ ~-44>" --4··- ...
'Otx))j
,._
Section 3. 7
Section 3.7
A= 1, B=-4, c =12 , J) =- z2 E=2 z 1
M
~ex)= c1 e~+ x.lf-4x 3 +12xi.-22.x.+ 22
23
Section 3.7
24
Section 3.8
25
(n) 't;i-~"-~~·-~ =-4~. ~~:: Ax3+Bi ~ ~ 'd :: A
~~ .Aj,Cx) ~M~~'d 1 Cx.)i.oo..~~.
s~ .fdL ik i!.r.. ~.
7. s~ it~~.
Ra:dwt ~ ~ fk ~~)Lr JA4' ·~ ~ ~~~~ t, .N.·~'I ~4
=
r ~~j~~=o,~:r=,,'°d· 3
4
-
j"= 3X'A'+ ')(A-x~ B'+2.x B ~d ~ iW ~ ~ O:Dt:. ~
(3~ A'+~-B'+~-(,x+~-~-(~-t-~)=Llx. 3 3 AO >< A'+x'rs'=" 1 A'=4x.- , A<'Xl=:2'X--~+c 3'X"' A' - B' = rox. } B' = 2 x. , Bex) =~~ + 'D ) M:J 1 1 3 3 'd(:t):: (- ~z. + C) x. + ( x.2.+"]) ){: =-2x. 4-C-x.3 + x.+ J)\{ =Cx. + Di. -x., ll.a. ~. Section 3.8 '· (c.1.)
m~u+ c~' +kx.:: F., ~Qt. ~ >U Yv\ =I, .ife = 3 2., C =CCJt ~ = 8 , .Q. =I> Fa= 10.
'r~ ~= fk7M ~ ~
=,(32
=
x
CW\tl (l') ~cl (l') ~ '")L_
•o
~(32-1)'2·+ 82.
:-4t
:: e
o. x
;-
~(t-+~1L)
CA+B:t)-t-0.3J2.34:)(t+2.ss,).
/
~ ~~'~ ~~
RcitA.ui ~ ~ ~lo)~ ~ (o) ~ {O,n') ~ fo'1, A,B) ;t ~ ~ ~ :10 k f4 1
0.
I
8
6
I
-o.
X
10
~P
~= ~ A=1,B=o.S"J~·~ -X.(o)::O.'''' ~~ 'X.'lo)::-3.S?~. ~ \')\~ ~~ ~tt ~~-tk ~ ~ ~:
TopeJ:J.u.oe.
> with(plots): > implicitplot({x=(l+0.5*t)*exp(-4*t)+0.3123*cos(t+2.889),x=0.3123*c os(t+2.889) },t=0 .. 10,x=-2 .. 2,numpoints=2000);
Section 3.8 9. Cll.) ~tt):: 'Xh
26
""" x.,....
~ ~ ~~ x"(o)=o, x~/o) =.o j ~ ~ ~ A=B=o ~ o'>-~
~~
Cb) l~
=~)+Ee<.:>~
~ ~ ~ 'Xi*.)~
= E~~ u X-'fo)=~' o)-SlE~~ =-.52.E~~+ · " ~ _+ _.._ _I + ~·
X{O)
....,.,
tf't\. X"1_lt)
~-;:;...-~;;-~ ~
Ab)
•••• ••
N"o~I -"-' 1 ,1
~~-IA.QI ~(a!~~.t)/~
i,k ~ ~ 'X(O), 'X.'{O) ~ ~ AA.Qr ~d ~ ~. 10. rnx''=-~('X.-~) ;Go MX"+-kx= --k~ '1f.:>J2.;t
""*-
ti. (cl.) ~ =-lc.=1
AO
CJ= ~ii~
=1, Fo = 2s-,
cCJ?.= 2.1ml: =2. ~
(20), 41.l
~~
\~
:
•
.
... ••• ••
=·
IX (0)
••
~:
:
.
t
:Lx.s~~
•·•··· ..•.•
="'pl*-~
=Eco(..Q.t+~)
C= oJo.s:, 1, 2/f-, s.
> with(plots): > implicitplot({y=25/sqrt((l-xA2)A2+0*xA2),y=25/sqrt((l-xA2)A2+0.25* xA2),y=25/sqrt((l-xA2)A2+l*xA2),y=25/sqrt((l-xA2)A2+4*xA2),y=25/sq rt((l-xA2)A2+16*xA2),y=25/sqrt((l-xA2)A2+64*xA2) },x=0 .. 4,y=0 .. 60,n umpoints=4000);
Section 3.9
27
> with(plots): > implicitplot(x=S-exp(-t)*(S*cos(3*t) +(5/3)*sin(3*t)),t=0 .. 15,x=O •• 10,numpoints=6000);
Q
~
IA('----t 'I V
~-s.t..n.
I
2
=s
2
4
6
t
8
10
+exp(-t)*((l/18)*cos(3*t)-(1/6)* sin(3*t)),t=0 .. 15, x=0 .. 10,numpoints=9000);
.r
f
0
> implicit~~oti~=(l/2)-(5/9)*exp(-t)
12
14
t
S~-
sta.£. d: O.S
I
Q•.
o. I ~I o.
I I
0.
iI i
I 0
2
4
6
t
8
10
12
14
Section 3.9 We call your attention especially to Example 8, on the free vibration of a two-mass system. We return to that problem in Section 11.3 and study it there in tenns of the matrix eigenvalue problem. It is an important problem, and you may wish to give it added emphasis by discussing it in class, both for Section 3.9 and Section 11.3, and even comparing the two lines of approach to the solution. 1
.3. ~, )(1 >Xz.>X3 >0: m,x;~: -~x.;--k(x;X3 )-k(x.-x1-) m 1~:. -kcxrx.2. )- ~(~- K,3)
=
rn3x;' =-kc~.-x.3) + k£~~x,3)
Section 3.9
29
Section 3.9
To-~ ~ s~5 ~d A,B, C, E F* d~. ~ .:...to .L...V.vi, ~ OD~~,~!4f~: '.Dx+(D-•)-J=5 ~ (-Ae :t+2B~~+ (-Ce?=+2Ee2 t)-(-5 + Cet+Ee7t) == s(-A-2.C)e"";t+(2.B+2E-Ef~=O
di,
'f~,
ce)
f-2ee-r+Be 'd ct)= -s- + c e1 -2B e 2 t
j1 == ~t ~x,+JJM =4
.
..,. I
Dd
+
A=-2C-~
1'1-'4..
E=--2-B.
2
?Ut)=
J)X,+
Ml
30
1
E:~~
.-
~ ~ .
?Git)=
·
~
(D'Z:~)$t = 'J)(~t)-4('D'L-C))M=
Ae3t+oe 0 -3t ti -U;cc:>:t +t
= C/:)t-4
-'}~t+'Dro) = -~~:t
~ct)= C~:d:+Ee 3t +-(-~ . . 'f'o- ~ ~ ~ ~~ A, §,c,£, ~ ~ ~;Jo ~
1tk ~cl, ODE~) !'d ii.e., f~ : ~
Jh:.+ j
_=3 ~x
~
.
(3Ae t-sBe3t +fo-~t)+(Ce t+Ee :t+~:t) =~ 3A+C=O ~ct -38+£ =o o12) C=-3A ~ t:. =38,. ~.) 3
3
Ae 3 t+Be 3t -fo-c.ot+±} ~(t) =-3A e 3 t + 3Be-3 t +-(c;-~:t
xct) == (:f) -x.tt)
= - ~ t-z.- -'~ -4A e
~ft)=
3t
+ 2Be-3r
1-:t- ;12! l xz. + Ae3t + Be3.t
(-?,,) xct) = Ae'}t + 48i\
~
-*t-*Ae
it) =-fle"t+ B
7
7
+48€x, 'dct> = tN-f,+;t: +Ae t +Be-;t (i) x.ct)= A~..fft + Bco{3:t +2C+2E:t, ~(t)= 2A~"3t+2Bc.o43t + C+ Et 4 (M) 1G(t)= tl3-t -ft2.-f%;- + A~€t +8cp.(3.t +2C.+2Et) "jCt) =-fgt~ + ~c, tlf- + #t + 2A ~€t + zBeo€:t + C +-Et ~ ) 3t ~ .. (i) (2'D+-3 x,+(21)+1)~=4€ -7 CL)
x.
J)x. + (D-2)d
= 2.. d4Ji:::: 2~ ~(x,(t)) t 1t)+ 3j Xlt)+ 2*~(~Ct),t) +~Ct)= 4~ 'llf.p{3~t)-7: d~2.:= ~(Xli.),t) + ~(~(t),t)-2 ~ ~(:t) =2.:
~(£tl.ei1,ctei21, fX.Ct.)J~ft)J)j ~ x(t) -2 + txe=tt e 3 t + Ae3 t + (-6+2 C.)~t + (-2B-e)C(:>:t 3 3 '4(t)= -1-. ~t e 3t + B~:t + C Cef.:>t . (). 5 e t +-9.. 25' e t + (~-3A) s
-ls
=
x,Ct) == G~(t+
'1.
= == =
H H H
Section 3.9
(b)
31
~~~~~~~dt., ~/V'A.~· X,(o)= I= G~
~(o)::O= G~cp-H~"I' x:toi :: o ::: G<-04' + 43 Hee."'
G~4>= 1/2 a.o. ...i-. ~--+ H~"V:: 112. X~(O): 0 = Geo:>cp- ,(3 Hec>'I' c; Cc>4>:: 0 4'3 HC(.) 'l' =o Ao x,Ct) f ~l.t+ Tif2.) +f ~(,[3 .:t +1T/2) ~ <:.r.:>-t + tCf,:),[3.t
=
X 2 lt):
t
~(:t+TT/2.)-
m~~
~
c:P= "o/= 1f/2.) G=H= 1/2.
=
i ~ {"3:t+1f/2.): tC/:):t-t Cr.>"3:t
P.eot~~~tk
~~~
~(~):
~({'X,:0.5~ Ctr.lC:l:) + o. 5 C\1J(~Jtt(3)~ t.)) x. =
*
-0.5
O.Sf Ct:>lt)-o.st:~(Tt(3)~t)} t= 0 .. 20, x, = -2 .. 2 ,
~=,CXXJ)j
Section 4.2 CHAPTER4
Section 4.2
5"
-7,
(f)
\
x,'2:.3x,+ I ('X.+2.)2.. - -
~
/
R=S"
-,'\
\ --iK---+---+--.-. I
3 \
' '-
~/
/
'
....._.
___
/ .,,,.
/ /
x
---- R=2
34
Section 4.2
35
Section 4.2
36
Section 4.2
A:
37
= Bex- xz.+ _ix,3 -tx." + ,~ x 5 ) + Ocx.~)1 ~ ~~ OWl. ..n.-.J.:t,.;,., E)t~ '7Cb) (~ A..o ao 11-d B..:a o..,12.). ( :f) Fcfl-: 'X!'~"- _"j =O) d1.t. ~~&.. ~ ( 'X."2.~ cl.4tf"(1('X-), 'X-,~ )-~(X) ::O, :at')(),~ =~)j .~ ~ ~ ~~ oJrnt ~=O. fa~~ ~p~ ~ .
'd(X-)
x =2, µ 0
~ -r=~-2- ~~ODE~ (~+2.)i:Ycr.)-°YC'?:)=O. N~J4
C6'W\'VW\~~
~( (~+2)"'2 -1 cLU,(Y
=o, Yee), ~~~)j
~ Yee)= Yeo)+ J){Y){o)r +~"!to)r.2-+ (-fcr. Yto)+ g !XY)(o)) "i: + ( i1sq. Yto) - ~ J:XY)(o)) %: ,,_ -t Yeo)+ 1 ~20 DO')(o~ cs+()(~') 3
8
O'l.J
(-clo
i,...W~; ~C-x.)= C, [1+ ~('X.-tf-iq. (x-tf + ~ ('X.-1.)4 -fiz, c-x.-1f] + C2.[c~1)+ -f4Cx.-t.)~-fs
13.
"a"+ 'J =0. d ::< l\o + 41 'X. + /J.2. 'X..,_+ £\3 x_3 + a.
C,£l3X + l2.Ct4 'X-2..+ 20 Q5X.3 +···)
~o; 2~2. + Q. 0 =0 ~I: '43 + t\ 1 :: 0
__,,
a.i == - a.o/2.
r
Section 4.3
38
+ (q 0 +q, 'X. + 42. 'X.-z..+ 4s'X.3 + 4q. %'f + Q5'X.,S"+···) =0
-» Q3: - ll.,/G, X : 12Clq. + Q2 =0 ~ Aq. -£t2./1'2. O..o/2.4 3 'X., : 2oa 5 + 4 3 =o 4 a. 5 = 3 /20 a. 1/120; 4 ~. -rk lfA>l) _r__ N\fx) =Ct 0 +lt I x - Ai>x-z.. - T4 • x.3 + Aax. -tAL 'X,c; - .•. () 2. 2't 12.0 4 =llo (1-J.. 'X,,,_+ $X. -···) + ~. (X.-t; ~ 3 + x_'ii_ ... )
=
=
2
=
-a.
IS.
r~ E~~s,
_LI x -
=l+~+~'Z.+···+~n-1+ .:£::...,~Sn= l-'X. Sn
Sa+···+ SN _ (l-X-)+ (l-'X.'2.) + ... -+ Cl-~ 911 ) _ N N(l-~) -
:-1- - 1 l-~N 1-X.
N (I- x,)i.
_c.n -i'"''"
-z.
N-(~+'X.: ,_ ···-+ 'X. N(l-'X-)
N
clo
·-~n. ~} J~
) : _L _ ~ \-+ 'X+· .. + X\.J\-% N I-~
jQ X.:Fl. ~- l'Xl
J
1-x
1-X
l
=J_.
1-'X
cap-1~1>.1 ~ik ~N~oO a..o ~~ oO D-Mtl.~ ~ ~ ~ ~ ~ ~·
Section 4.3
Section 4.3
39
*
NOTE CAREFU~L)': ~ ~ ~ ~ ~.~~ 1-0 Ex~t.~2./7f, fen . .t?.~. HAl\(W\' , ~ ~ ~ ~~ )M~ ~ ~ 2.1\tl ~A 3.J\
~. ~'14 ~~fa~ (l.e., Z:n) kvv~ ~J wt~~~ ~M.~ ~ to .k ~ r.-.-t, ~ ~ -tk -1 a.-tA -2 ~ ~ t; o. W.e. ~ ti<>~ ~ ~ >1=-1 ~ ~ Z_ 1 tl{Vl+l)Yl~~+l'Z.~ ~~~ ~ {Jk V\+1-fo..c1dt;
~~,ik n=-2~ ..-.=-• ~ ~ r::_4(t\+2.)(r'l+l)Q.n+2.'l-~ Mt. ?fM ~ ~ j tk n+2 o.,..d. n+ 1 ~. .0... +'-t ~ ~, a..4.tl.~ .w< cam ~~ ~ 3fo ooaAM. L3 (~-? ~ ti._ 3 ~z =o._1 =o), kt~~ thL -21<, o ~ ~~~AN\~~ Mt~ ~e.NJ~ n=-2AMtt t\=-1. ~,Jo~~-~~~ ~t-, ~~ '2_~ "-
hi<.4+, =
z:_
L.;' ~
r.: ~ ~
~=t!.,,_=q3=~2=~.=o. tk, ~ ~
~
n+~
L_2 [
/.l-0
n : -2 :
Jt. (51-2.) ll
=0
~
'f1~'f.3.I ~~ ~ n...,t
JZ..(Jl-2.)
(Yl.=O)
=O)
=0 ,
-~ n =-2,-1, o, I, ... Jl =D, 2.
.w&.l ~ ~~
dl
~'~
dk~ (12=2.) ~ ~ ""- ~-,J4 ~ ~ ~ "';J#•c.).J;t~-tt-..1 '1.=0 ~ i'< ~ A.t..~4.;) .e.:t M.o. ~ ..:t ~ ~ ~ A
w
~~ ~ (n~2.)na.n+z. +4t.ln_3 n= -2.: ~ ao= o.n.er.
14
-a, :::o ~ a1 =o n-= o: o=o M> ei,=aner. n= 1: 3a. 3 =o ~ ~3 =o
n= -1:
Btt 4 =o J>-O llq. =o n 3: 1sa.5 +440 o 40 l
n= 2..:
=
=
'ttt)
=o
r-WJt'Nt ~ ~ n=-2..
{n=-t>o, 1,2 , ... )
n=s:
35(.{.,
+ 4-l(,a, =o Ao
n=b: 48a.9 +4a.3 =o
AO
n=7: b3d,+4£4=0
M)
Q7
= -fs-a.2.
a.8 =o
q,=-tsa.q.=O
n=s: goa. 10 +4a 5 =o ~ a 10 =-1z,t:
=Q + Q,:tz.-ia ts--fs: £lz.t7 +;/s~t 10 +; 5 Q.2.t + ·· · 5 7 = ~o (1- ~t + 7'5 t' + a.2.(ta-~f +1:.. 5 35 gs t'2.- ... ) 0
0
0
- ···)
1 2.
.$
Section 4.3
n=o:
a1 =o
5z. Cl..3 --o
n -1L• - ..,... •
'-'5 -
n -5· - .
n~-..L"'
/1
~
-
_l
- "%. 144 it:,
-
I 2~'Z."'Z.
a_
0
40
Section 4.3 ··'' .~o
[~~ 1 -1\1"(1 1 ]k 1.t
rfi,
+Lio0 n-z.Cn~n-1 -2: o01 Cn?ln+l =-2~;
41
=-2. ( t~ + -k-X. + · ··) 3
x0 :
C1 =O L#Cz. =-I AO C2. =-1/4 'X,i.: ~c3 - C 1 =O MJ C3:0
X:
X-3 : lbCq. - C,_
'l'~}
N~TE:
=-1/S
AO Cq.: - 3/L2'i1
>
AN-.d
1\12.lx):: M l'X)~~ -.Lx,2. - ~ ~4- .... ('Ll.lu ~1 . A-- -;- nJ, di 'X.~ '+1·f- 4%d ::o12.8 AO -,~ ...i.J T"t. ....
1
A
(')
A
:t .
·~ ~·"~c
i
~ 0)
~ ~ ~ 'd(X) = C,IOCX.);. c2. Koc~)) ~ Io, Ko a.n.t. ~~ ~ ~I;. o'lAut 0. 4...J.. t4 ~ ~ ~ ~> ~J 44' ~ k_ . ~ ~ s~ 4.~. C7.wi 'd•l") Ao IolX) ~ OW\ 'JlX> .AO a__~~~
i
~ I
0
~ K0 •
NOTE: Before continuing, note that the different cases defined in Theorem 4.3.1 depend on whether the roots of the indicial equation are equal, differ by a number not an integer, or differ by an integer. Since we will not be solving all parts of this lengthy problem, let us at least give the indicial roots for all parts of the problem, to assist you in choosing which parts to assign. (!) r = 0,1/2 (Q) r = 0,0 (c) r = 0,0 (d) r = 0,0 (S) r = -1,1 (f) r = -1,2 (g) r = -1,l (h) r = -1,1 (i) r = 0,1 G) r = 0,2/3 (k) r = 0,1 (1) r = (1±-{3)/2 (l!l) r = -1,2 (n) r = 0,4/5 (o) r = 0,1 {P) r = 0,1/2 (q) r = -1/4,3/4 (r) r = -1/4,3/4 (s) r = 0,0
Section 4.3 (YL'2.-3n.. )t{>\
=
(V\::t,2., •.. )
(t\-2)49'-l..
n= I! -3Q. 1 =-4.0
=0
~
't 1 : 4o/3
n= 2.:
-2Q.i.
n:3:
oa3= a.,::. 4.o/3 ~ 4o=~ ~,Ao. A.~~-~J
AO l.l2.: 0
_
.
.
Jl.=-1
W:t:>~~--
S.t:t
(~ ~ ~
st=2.
(n.-z.+3n)~n
n=l:
=(n+l)«n-1 .
4a, = 240
M:1
42
~~
*' ~ ~, ~ 1o'P~4.'3.I).~*~ (Y\:(,z, ... )
a,= a..o/2.. a.2.= 3Q.0 /2.0 a3 = a0 / 30
n=Ll-: ~go..4 = 5"£i3 Ad ~4
= l{o/l"s>
n=S": 40as: c,a.4 ~a;-:: a0 /U2.0 n=3: I ga.3 =4tl2. M it:,· m1 _ . '..L~ ~ o0 t\+2. t.. J.. 3 3 4 .L ~5 ...L t;. , .., "f\.WJ. '~ ao=I ~ J (X.)= ~o '4'nX. X -1- 2. ~ +20 X. + 30 +T,8 ~+ii'i:Ox_+ ... To~~~~ "J2.(~) MAt (41c): ~ 2 (x)=: K~ 1 lX)~X ~ -x,-• dn~". n=2: 10~=
34. 1
00
I
=
fd1
~~ ~
.v:.:to-f4
L.a;
ODE ~
x. [~-t 2K~:1x -K"c)1/X't.+ L~(n-l)(n-2.)GtnX.n- ] rH 1 -x.~[~+ Kfil'x.+ :L~fl\-l)d."~n- ]-2.[~x+L:tl,,x. ] =o 2
dt, efl.)
3
= =
1
L;'Co-1){t'l-2.)~.,,xn- -L:(n-1)cAnx,n-2.L:d.n'X.n-• K('d 1 +~~.-~x~r) 1 3 3 (~i +2.cl3 Xt.+ 'd.q. X + l2.d.5X. 4 +··-) !K( 'X.t.~ f~ +:0- ~'f +··· -( -d.o + c:l2.'X.'Z.+ 2.d.3 x 3 + 3 d.4 /(.q. + . . . ) + x3 + -£ x.4 + ... 3 3 -2. ( ~-· + ll, + tA.2.~+ d.3X,z.+ tlq. x +dsx.c.f.+···) -4-x.'2.-3X. -t~lfX-0 :
... )
=
X1: -2tl, 0 M) ~2. =0 X.-z.: ~-d.2.-~3= K(t-4)J ~ dz.=O, AO .wt.~ K=Oj ol3 =anlr. x.a: t;,t1 4 -2d..3 -2.&.q. O A-O olq = J..3/2~t: 12tt 5 -3J 4 -2~ 5 o AO ds =Sclq./10 3d..3 /20
= =
=
.t.k
~
dzcx.) =o ·:V'X'.l t.-'lC + '<'.-1( Ao+~~ +ox.z.+d.3~3 + 4:1"'4+3,tJ x.s+ ... ) = d.o (~ +t)
i,x."' +· .. )
+ tf3 ( x_2.+tX.3 +
2.0
H~~ ~ ~ 'dlX)} ~ ~ ~t ~
~~ ~
'jz.00 ;le,
LI~. ~'it ~t ~ it.e c.t3(X~+fx +.1..'X..'f-f..···) ~ -Arnk · 20 ~ hfu.ro, ~·· I , ~ d 0 =1, ~' 'd2fX) ~ + t . o0 Y\T. Cj.) 3X."j" +:'j'+ "c1 =a. '.()
=
~ dt,
/:l-0
n= o:
+
11
~ oO "'- 0
[
2.:
-+
" ]
n+n.-1
3{n+n.)(f\+'1.-l) a..n. + (f\+Jt)lln + ltn-• ~
2
=0
L: 00
a
a
( £L1:: 0)
[ 3(n+.n.)"2..- 2.(n+Jt.)] lln. + 4rt-l == O -fO"l n = 0,1,2> ... (3Jl..-z.-2J2..)ltc, 0 ~ .Jl..= ~' 2./3 /M\c! qo = an..fr. E~ .n ~ ~ ~ ('t\.t.. ~.
=
n-1
xY\+st-1 -0 -
Section 4.3 F~ .ti:' .Yl=O: ~
a1 :
Yl=I:.
*~
>1=3: 2.ll.l3
n:: 4:
= -a.rH fo't n= 1,2.> ...
-Q 0
aa.2. = -a,:: ao
n=2.:
(3fl-z.-2.n)a.n
43
=
a.2. = ao/8
Ao
lt.3= -~o/1'-8 a.o I I" 8 M) Q4 = a.o ; , '72. 0
-Q2. =-a.o/8 A.a
40a.4
=
= - a.. 3
~
Ac,~a 0=1~, 'daC~) = I-~+ ~~i. -i!a x,3 + '~2.0 ~4-- ••• NN;lr, .L.:t st= 2./3: ~ ~ ~ (3n.-z.+2n)an =-a..n-& -ftn. n= 1,2>···
sa. = -a.o
n= t:
M:J
a,= -0..ol~ =a.a /so
n =2.: 1'a.i. =-a 1 M1 'l2 f\ = 3 = 33 a3 =- a.2. ~ a.3 = - a.o/2.(,40 n=4: S,4_4:: -q 3 A<1 ~4 = a 14'7~40 0 /
.J.c,
M)~ao=I~ ~2.(X,)
(tn.)
=
n +2J3 1A.n'X 0 o0
=
2/3(
X.
J_
_L
i..
I
3
I- 5" + 80 X.. - a.e.,40 X:.
+
1
4
141g40 ~ -···
)
X.~"j"-(2.+3X.)~=0.
"J(X.):: 2:~t:tn~Yl+Jl.r oO n+Jt+I L~ (n+n.)(n+Jt-1)4'n.~n+n _ L~ 2.Q.n.x,n+ -3L 0 £:{nX. =O
en ~
r: cn+nxn+.n-1 )t.tn ~
Y\+n - L.~ 24n x'f\+11.
L.~ 3 a.n_, ~ n+n. = o (1'-tS7.)(n+st-l)-2Ja.n - '3a.n-l} x,n+:Jt = 0 (a_,= 0)
r: {[
[Cn+Jl.Xt'\+st-l)-2Ja.n-3a.n-i
Ao
2
n~o: (Jt -~·z)a 0 =0 ~
Fu~~t}U n=1: n=2.: n=3:
-
= O fo't· n=o,1,2,... ~tA ~o=anlr..
.n.=-1,2.
*
{~;;;J-{ ~m~ dt~).~°*~ cnz.-3n)an = 3lln-1 fdt n =1,2, ... -2a.. = 3llo M) a,= - 3do'2-2ct2. = 3 Q, P-0 tl2= -S0.., /2'tto/4 . . Jl=-1
oa3=3a2
=274o/4
=
~ t:{f)=o ~~a..~.~) n=-1
~ ~ ~- 1\JJ. ~ ~ ~ ~ ~ n= 2 ~ i4 otlut ~(I.fie).
n=2: tk*~ (n'2.+3n)a.n:: 3lln-i n.=1: 4a. 1 3a. 0 A
=
·
-/di n=1,2, ...
=
=3ll1 /to = "J0.. }40 n= 3: isq3 = 3ll, MY a3 =a2.I" :: 34 /ao n =4: 2.8 ({4 =3t<3 '°° a.q. =3Q. 9 = ~a.al 2.240
n=2.: lOQ.2.: 3Q 1 A
0
0
3 /2
it:,.
.
~ > ~ ~o= I,~' .
'fo ~ fk
.._,o0
n+2.
"ja(X.): Lo~nX.
'2. 3 3 ~ ~ 3 5 ~ ' : 'X, -t- 4 X +40 'X. + BQ?C +fiiro" +···
~d ~ ~'2.C~) ~ {41c..):
'diX) = K "J/?l) ~'X. +
r:
d.n'C,n-a.
P~~~~ ~tkOj)E~
Section 4.3
44
Section 4. 3
~ Jl~> = x.:~·-+i.f. 2:: o..n.-x," ~
10. ca.>
'O''+r~+t:J
=f
o..
45
:t. ()"+ti:i'+ i-a=o, ~ o =
~
+r1·+~i ~~ ;-10o. ~ M c...tl ::Cl."~z:a.,,x.."
a_n'X.'t\. :: X. ~Lo; ~x,""J ~ AN-t. Ac.t. ~(!-'fl== 'ln.
= x,ct-.c-'f L:o Cb) p~
= x,« [ A~o !: CnXl'\. ~ A.t ~) !: cl.n~Y\ -A~c >L ol.r\-x. +A~~(
)L
n
Cn'X.
+Sepe) !.cn'X,n - B.A,cp() I:clnx,-n. -B~c) L. d.nx,n -B.t~o !: c.Y\'X.n}
= 'X,clf (A+S) [ er.>c? ~Cn.X-n ~
(c) X}·Nj.~-+ X ( \-r't,)rf + ~
.
rr~ .vdt
~c) !: dn'X."'}
+ ~ll\-6) [Col l 1.J.n?C." + A
= 0. Jt~-.n.+.n + t = 0 ~
.n= :ti.
AO
1-i'k
ol=O AN\4'
~ =~
~,~Lt~~~ C~[ 1 ~ ~ f~; fdt ~' ~ AAnlQ. ~ ~c~~):c. ~'1 ~(~~K.,):s. S.tt..k ~(X) = LooO ( C.Cn - scln) 'X.,'I\. • ~ 1f'X.) =L (-sct\-c~~~V\C.Cn- Y\Sdn )x."'-l "ti"~) = L [-c.c..i.+ Sdn-VISC.... -ncd., +(tl-1)(-sc.... -cdn +ncCn-n.sd.,)] x."'-2.
..k
?~~~-rkODE~
'X~,,~ +~'~ +N\~
L~ { C [Cn-z-~-j')cn -(2n-\)d.nJ + S [-C~n-~cn-(1'i.-/1')cin] .+ C..(ryin-~n)-S~+~) + c(d~)-S~)} ~n
0
dt
'f"
oO
n+I
+ 2'0 [c(ncn-&.n)-S(ruln+Cn)]~
+x~'~
=O
) rooOf c.(nt.cn-2.nGl.n,)+ s (-2.nCn,-n'Z.dn)JJ?tY\ + Lo[c(nc~cln)-S(nd.n+Cn )]X.Y\otl = 0 0()
~,
cit,
~
L 1t
~
1X.n-+L1 {c[{tH)Cn-ici"_11- S fJn-l ~n-a"'° ct\_, J}xn =O
''
.0
I. fc[nt.cY\-2.n.d~ +(1'-l)Cn-tdn-11 + s [-2.nC~-n?.ci~ -(n-l)d.n_,-cr\-1]} x..Y\ = 0 ~
T..lu. ~ ~~ AO~ ~At:I: •=O ~tlr=O:
n?..Cn-21\d.n + (1\-l)Cn_,-d.Y\-l
AJtt.
*
~ ep(.D..,x) 't-n a-.!. Ai,,.(J.,~) -x." ~;
=0
-2nc"-n-z..oln- (n-l)~n-1Cn_ 1 =0
.
,fort ":=1,2., ..• , ~ Co~ c\ 0 ~ ~ • n=l ~
c,= f-2.C
+a0 )/S
=
~a d. 1 -(co+2.d.c,)/.S'" n=2.~ Cz.= (2.C.0 -c!o)/2.0 '1,.nd d.z.= (Co+2.tl.0 )/20
n:3 ~ ~c:l.
,Q..() 6V\. •
C3
0
=-(\'1C 0 -,d.o )/780 ~d.3 = -
('Co+ l1d.o)/780
Section 4.4
46
~~~cnj"~~~ ~~(10.3)~~~1-4~~ ~ C,D,c;,,cl0 • Lit~A.tt ... W..t.~ ~fk Cvi''°' ~ aln'AJAOJ ~ C=1 ~ .:D=o ~, cto.3) ~ "a(X.) = Ct=>(-k 'X.) tc0 + ~(-2.C 0 +c:lo)~ + k,C2.C 0 -clo)~i.- 7180 (17C 0 -'9d. 0 )x 3+ ·· ·] -~(~~)[ cl0 - ~(C0 + 2.d0 )"-+ia (C 0 + 2.d.0 )X.?..-ko ('C0 +l7iAo )'X.3 +···] J
=Co { ~(~'t) [ l - ~"' +~~2.-J:z.. X-3 + ... ] s 20 '780 } -~ckx)[-.L x.+-1-'X,i.--'-- 'X.1 +···] 5
20
7SO
+<4 { C4:l(Jn~)[ ~X.-:$ x,i.+ ~ "3_ ... J
-~ckx) [ 1- ~"-+Jo x..,.- ~~ x.3 +··· J}
NOW"" M CAM. ~ -tf-.4' ik ~ 40,.tM ~' ~1 C-.:t D.
Section 4.4
1t'-<. ~
(10.3),
~ c.,Jo
h
~
Section 4.4 (n+i)~HC~) = £2n-r1)~fn.<~)-nfn_ 1 c~)
dt.
at '7. (O.,)
47
Cn=r,2, ... )
nPn.c!(..) :: C2n-1)~fn_1 c~)-Cn-l)fn-2.Cx.) cn=2,3, ... ) a/ax ~ -.L -2rz. = "'£ o0 f. '('6) SLn 0 -
2.
.
(l-2.XJ?. ... Sl'2.)3k. n
oo
(l-2.X.lt+ Jt'2..) 312. n+l oo
0
=
2:
n.
o0 (l-2.i(.Y(.
+ Sl..'l.)t>~ ('X.).n.n
0
=L P~CX)lln - 2~ L.oo P,:cx.)Sln+I + L eo Fn'<~)Jtn+2. L7 Pn-1("-) Sln =L~ Pn,'cix.)nn- 2~ !,o0 P~_ 1 l"-)J'l..n + L.'; P~-a. -fori n =2)3, ... 'Pn-1 l~) =p~ ('X. )- 2. x, p;_, ('X.) + p~-2. <"-). -R:
L0
~(~)Yi.-¥\;-
0
0
0
('X,)stn
.AQ)
8. (a.) ~ ~
4
,,..0.
1o
"1-p~
-t~(~:~) =-k 2.(n-+!-3+~+ ~'1+··) "'oo ""2n
=2. L I
~
O ~n+I
2.
> AO ----
2.0+1
=J
l -I
fort \n.\< ~ f Pnlix,)l1t.. tJJ'i
,,_f:O
•
1-
10. (Cl.) Cl-'X.2.)d-''-2x'd + ?"()=o. To kt~~ ~=• ~;,a,~~~ 1l-1:t. r~ ~ ODE ~ tC2.+t)Y''+!i.O+tff '= o -':J~ Yrt). rp"'- ~ ~ ~ Jl~=o Ad .n=o,o. 1JJ!... n=o, ~ 'frt) ~a.ntn ~cl ~ (2.t+t2. )(2.42.+'43t + ... ) + (2.-+ 2.t )(°' l + 2~z.t + 3ll3 tt. + ... ) 0
=
=
/.)() 'la :o
;t.O: .2.tt I : 0
= =
iA 2:+ 20., 0 ~ a.z. =O :tz.: I 8tt3 +'tlz o tK> a3 =o ~ M) li'f\· ~) Yrt): t.l 0 +0+04-···=a.0 MJ ~ ~ fort). ~d :IO (41b) .W..
t' :
~
Ito-
Y.
Y2.(t) = Cl).0..J: + ~7 Cntn • P..d::t..j ~ ~t4 ODE ~
(2.t+;tz.)(-iz_ + 2C2.+,c3 t +···) + (2.+2tX f + c1+ .2Ci.t +3c3t'Z.+ ···)
£ 1: t0:
-2-4-2. =O
-I +2.C 1+ 2: 0 AO
c, =. -1/2
:t: 4C2. +4c2. + 2.C 1 =0
Ao Cz. = l/g
=0
£t().
0..-+ oO .
Section 4.5
50
Section 4.5
51
Section 4.6 60~0. 'f~, TC&o)~ 2trf17i
>~
~ ~' ~i{..i t!/til:
-e+
t~e=o.
52
o) ~ 60~0. NOTE: PJ\~d ~~ ~
1-
(1'R.1)
~
~~ ~ ODE
.
.
.
.
fdt- ~ ~ (~.e. 1 J&l<<.1.~), ~e-e ~af-4 ~ ~4
*AA.~~ (S~ss) ~~~ -e-+c~/i)e=o,.w4 ~~ Sft)=,L)~(~.t+
l,.(b)
ro't
f
Cx.2.
(aoX..:JO).
W..Jl) fC't)-4 = -q.~z.+ qx
·· · rv - 4X'Z.. ~ x_,o . ../ I' 0 c~> o..o. ~...,.o ~ ~ to- ~ i-kt Hr~> A.J CX- ~ "'~ oo. tJ.J.l,
=
cf) fort, H(x.) Hex): :ix.'3-x.-+l x,l+4
=ix ~~"'o0. v
7'X}
"J
x_"Z..
Section 4.6
+
2.. ~)~ ~ astt.~ ~
[ W3/2.) _L_
+
(2)-(10).
L.tt°MO. ~~(')ANA
{JO)
c-rf! (~)'2. a (~ )4 ] rCS"/2.) 2. + .2 l1(7/2) T + ... '2.
=~ftrn-t(tffe) ~ +2(-H~X-Hif) ~ -···)=J;( 2 -tx~+tc;?l -···) =,_fi'X rr (l-zC , +~Q.-···) 120
4
4
=~ :z... (~-z!-+-~ -···) = r:!:" MM"'. rr~
s~
3!
~~
S~~ {o'i J_Yz. C'X-). 3. "foe):)= rr [ ~
+ Os'-kz)~~ C/:)(x.-~)}
=#L~~~-~?l+Jrlr-11;&CA~-~+r +#¥2)~
(~c.r.>?G + t~?C.)}
= ~ (~~-er.>~) ::: ~:x. ~(?C.-%) > ~ Wf. 1\tt ~ e<.>tA-8)= epACllB 2
+~A~8~~fA-B)=~Acn8-~ fo't. iL. CA4t. ~ '1: ..6 J. 'T'W ..0, W<. A.ul:tii ~1".ct:cr-iA
rrx
4. (
(4.1) (XVJl,('X.))': X,VJV-1(~)
~ (') J
x, JvlX,) y
M
(-1)"-
= Lo -k! T1Cv+,k.+a) 00
11
,
00
2.(-k-tvH-n*
l(.i.h2v
2
2t+v
Ex- J/x.>] = Lo -k! f(1'+k.+1)
~2k+.t1'-• 2.2.fi+v
co
c-R.1-v)(-•r
~2.-k+2."-'
=Lo -k! rev+*.+ I) ~il+v-1 *
Section 4.6
53
Section 4.6
r_:
55 :
r.:
o'(l~ ~'.. ~.Jn.(X.)tn.+ fJ 11H(t.)tn =r::(n+l)J°n+l(X.):tn ~~~~~1~t~1:t ~ . fJn('X,) -i-fJn+2.("-) = (n+l)Jn+l(X.) cY?_)
r~, rs.3).
ctJ.,) A~.> (~2) ~ ~ ~
~ it_~~ ~ {tn n=I, -~~.t~x.) = :!_ [J0
~ n=o
~.
J.'l'X.)
J(l,'~),~)j
.
= J;,C't-)-~J.C"'),
~
(8,3)
1di n =o
.
kt it~ 4.-h -
!~ ~ ~~ ~ ~· Hl\V
=2.\CX.> - ~C"-)
J°2
Y'I\+
J;tx>)
~ ~~~ J;. IX)) ~( J,~x.) . ./
~I l?C) = HJ,, (x)- ( 2.~X l -
J :::
')(.) -
6W'\.
~~
ec>(ll'..~~)d.& = TT L ~=o ."" c-~>~ x.2.j f.n.o.;...~e-.1e (2~)! ~
....L J.11" 1T o
_i_
• r 4ff'J "· ?.~. • 2.a ed.-0
a
~= 2.J
0
= ~(~)~( =
r(¥)
2
t1
J
rct)
rca+I)
~
k-
J
(~ii..e..~L i.o,~ ~ f7=1ll2.)
1? (".1) ~ Ex~I' 1 ~'4.S 11 (14.1) ~ E~~ t41 S~4.s
°t')
=Ji!. rr~+4:)= J!f <1-f){~-!)···(:.L)~r~) =.U. c2~-1>c2~;3)···
= ~ J_. "l· 2..°I
0
d
2.
c2~-1 >C2;-2x2~-3)·· ·C:z.XJ)
= ir
c2j-I) !
~!2.~ 2~-Tc~-a)~ . M .L f.fT Ct':>(~~e) d.-0 = ..L (-&)~ ~'-j rr (2~-1) l _ t T_6? (-l)~ 'X,;2-t_·....._,;!('_____ n 0 . 1T ~:o (2~)! a~2.~2f-'(~-I)~ -'j( ~=o 2~ ~\2a2~'" 1 (~-I)! (2l-2.H2a-4) .. ·2.
.
lo0
~ )~ (X..)2.~ =L-a=o CjD2. T oO
10.
(-1
s~ ~ a"1"
(41.i)>,c)
OQo =0 ~ 4o= t.=I: (q-'3)tt 1=0 ~ q1=0
-k =o:
'k.=2.:
=
./
l~ 'lJ=3,~, ~~ ~ Jt=-v=-3.
an.er. = -ao/8 a 3 =o
(1-~)~z. + {{ 0 ==0 ~ 1{ 4
-k.=3: co-,)a. 3 +a.:o M) 'k=4: (1-~)a.q + a.2. =O A<1
*-=5:
J()lX.)
C4-~)a. 5
+ a. 3 =0
a.4 =-Qo/'4 MJ a5 =o
oa,+ {{ 4 =O ~ a,=~ ~tt ~q.~o. B~ ~=o ~ ~ii4'
i='1:
~~ 42=0~.~~o~~~~. --t=1: (1"-')a..,+ a5 o MJ a. 1 =o -ft.= 8: c2s-·n ct 8 +ct"= o MJ l( 8 =- a., It'
Q0 =o
=
~.
MJ 'O{?C)
-i.-t.Jl ,oa -k-3 -3 -z. 3 4 Q S" ='«> Lo Q~X :: Lo Qi~ = O~-t-OX,+0~+0-(+0X-+O~+a.0~+0~ --rt~+··· =a.o ('X,'3 - -k; ~s-+ ... ) -t
o
i.
Section 4.6
57
1
15". ~''+4~ =0. Q.,=0, b=4, c~o, ol=i,'V=l/2. A
=A~.~2x.+Bfff cr.>2x =
C,~2'X.+ C2.C1=>2.~.
v
(~E"~5)
fb. ~ ~ ~ n(3.w.lt! f~ {di E~~: 2.rwl..ul., N.W.McL~~ trrp~ I
~~ ~
~Ao-I-ht
ka 1>~ B~ ~ t'732.> ~ ~ ~ EAJui_~ 11g1.
-f.Mt ~ 1
(0..)
0..
~ ,,,,~ ~ ~
41\L.........,.
~B~-f~J (b)~~"-t-4~~~ ~~~-"V l (tl.)1 .. Y=o. =o M>,..;..(SO)) Q=IJ b= £Jz./~, C.. =O, ol =2., v:O ~ 'd(~) = ~ 'l 0 (~ ~·12-) .oo '.de~> = A~(~~ ) + B'fo ( ~ ~ ) 1. ~ "fc-x,>= AJ0 (~~) +BYo t~.f.R:). B~ ..tx:t ~ B=o. Cb) Y
[~c..e-x.)Y'J'+fC.i
{..jn,::
t,/'{ ~n
L~ ~-X.=~, ~ (~"a')'+°f%.'d 0
(n=t,:l, ... )
.~ i.,~2.405', ~ 2 ::::s:s-w, ~3 z
8.C,54)
.it:..
~~~~ ~~ ~~ Y,..ctt-) (J:to.k~ ~+k,
~f~Y),~ Y.ctX.)= A~<2.t1os1'1-X1.t ~ ~c~)=AJ:,(s.s20J1-~ ), ~c~)=A~(S',,s4~,-~)) .a:t..
Su. -pAAt (C) fdt ~' ftn. A= l
(C) > with(plots): > implicitplot({y=BesselJ(0,2.405*sqrt(l-x)),y=-BesselJ(0,2.405*sqrt (1-x)),y=BesselJ(0,5.520*sqrt(l-x)),y=-BesselJ(0,5.520*sqrt(l-x)), y=BesselJ(0,8.654*sqrt(l-x)),y=-BesselJ(0,8.654*sqrt(l-x)) },x=0 .• 1 ,y=-2 •• 2,numpoints=2000);
Section 5.2 CHAPTERS
Section 5.2
58
Section 5.3
59
Section 5.4 10~ Cb) L { S0:t C/;) 3ft--t)tt'C] : L~ 1-t cr.>3:t 1=L f '1 L ~ ~3t] =3 4-: = ~ . (C)
Lf J: :t Ct-1:.) 8 e-3'C t:l.'!:1= q ;t8 * e-3:t1 = L{t 81 Lf e3t 1 s""' O
-
-
t' f FCs) Gts)1 =[' {t2.
11. (C)
8\
s~
s
=+'
I
s+3 ·
~31 = Lfts1 = 2. ii :t"' = ,~±+ ~ f{t)~ (t) =:t'3 1
Section 5.4 1. Cb) I 3x,'+X.='1e~~ 3 [si(s)-1/o~J + X.Cs) = !
= ~ ( __!_ '1
5-2.
-
_J_) ))()
S+t/3
j..2. ~
tit)= k..(e2t_ 7
e-t/3).
i
61
Section 5.4
62
Section 5.4
NOTE: You might wish to discuss the foregoing exercise in class. One important feature is the complication caused by the nonconstant coefficients in the ODE, factors of t causing d/ds's and hence leading to an ODE on X(s) rather than an algebraic one. The differentiations under the integral sign (with respect to s) actually involve the Leibniz rule, which is introduced in Chapter 13. Also, the idea of inverting a transform by expanding it in inverse powers of s and then inverting term by term is important. It is easy to come up with other such examples, such as:
63
Section 5.5 I. (b) f(t) AO
Hct]) -t -:t H -t -ct-l) = e-:t [ rHr.n.. t- c:t-l) = e - e C:t-n =e - e e H<:t-1)
Fcs)
-t
=...!-- - e' Lr ect-t) H
l
_ ...L _ - S+\
2.. . (a..) f l
..... .
:t
-1
tJAAt.
-s--1-
e e
_
S+I -
~'lo)~ f
f l ()
l
tH(t-2.)
Section 5.6
67
NOTE: For the Maple dsolve command to cope with the Heaviside function (and also with the Dirac delta function introduced in the next section), use the option method=laplace.
T~, ~(f ~C'X.
r
7. (a.)
~t), ~=~);
tk AfJJW'.l
x''- x.::
s2.x- x.
.
.
~ ~ ~ o.1r-rrl. AN\. Ex~ S(b). Hct-t) , xco):: ~'Co) =O . Hct-1) = -trt)
=f- }
%
=+f- cs> 5 -1
~
~±
c..u.
AO
~
. xct) = ~t ~ f(*:) =~r * Hrt-1) :t
-: : s
HC1::-\) ~('t--C) eke
= HPt--•) r~ ~ct-t) tA.i: Clt;J im.~ = Hc.t-1) s~ -'~ct.-t) cit. ~, P". = -Hc:t-1> 's1~x ~ i1""4t ~) H
rtA.r
AO ?U:t):::
s?.x-i=f )
e
=J.Hct-3) S~ (e:t:-zT.+ e-.x)clt 2
A-O
'Xlt)::
Section 5.6
~ Hct-3) [ cs-2t) et+ et-' J.
3
=-tt+t~2t +tH<~-1)[~2.(:t-l)-2Ct-I)) 0.)
x"'' -x:::
bft-1), x
x
F~, s+-1 "'
x"ro) = x "'{o) =o
a
s4-1· s!+t = sL1 - s~+I) -+ {~t - ~t )_, A-
±-
H
= t Hc.t-1)[~
2.. Ca.) J.o,
f-: ~
J~~ ~(-~) ~('C)(~t) =
~ (0)
J_o0 ~(-1:} 8("C)tAt = d(O) ~(O)
~
~
= ~(O) v
Section 5.7 3..
691
NO~:. You ~ght consider discussing this exercise in class. The properties of the delta and Heav1s1de functions that we will use are these:
H'(t) = o(t) or,
H'(t- a)= o(t- a),
and f(t)o(t-a) ={f(a)o(t- a),
o,
(ct)
.if f(a) ~ o if I Ca>= o.
P~: ~~tk ~ ~)== Hct-a.)~c:t-z)
1
'X 11-'X,
= 'Oft-2..)
1
> X.(O)= X. (0)=0.
=
Xlt) =Hrt-2)~Ct-2.) Ao ~
=~J + Hct-2) ~(t-2.J ~'Co)= Hc-2)~(-2) =O ./ x (t) = H'ct-2.) ~ ct-z) +Hct-2)~ct-2) = sct-2.) ~ct-2) + Hr.t-2)~Ct-2.) = HCt-2..)~Ct-2)
A<>
11
=
A-O
S(t-2)
+ H
~''-~= sct-2)+H<~Ct-2)-~~ct-2)::: ~ct-2.)
v
Cd.)P~: V~ tkt ~ ')'.ft):: 2.+t-.2e-:t+Hct-2)(1-e-ct-2.~) x''+ x,':: 1+ Sct-2)) 'Xto>= o, x/to> =3. xtt) 2. + t -2 et+ Hct-2.) {1- e-rt-2.)) AO 'tio) =1..+0-2 + 0 = 0 v' 'X.'(t}:: J+2.e-r + cSCt-2.) (1-e-(t-2.)) + Hr.t-2.) e(.t-2.) 1+ 2e-t + Hrt-z.) e-ct-~) ___ ) .A.a ~'to)= 1+2+0 =3 v x,11 c:t) -2. et+ srt-2.) e1 t-z) + Hrt-2)(-ect-z)) -2et + gr±-2.) - Krt-z) e-ct-z) 2 Ao ~··+x.'= -~+&ct-2)-l-\r~t- )+1+~t+l-lc~ct--2.) == t+ ~ct-2.) ./
1-
=
1
= = =
(~j \>~: v~ +k ~ i'.J::t}:: 8e:t-4ert + ltio HCt-3) (e 2 H- e:t.-3 )
1-
'X, ~3~ +2 'X. : JOO£ (:t-3) , 1
1
XCO) =4, ~/(O)
t_, _
=0.
=
xc.t):: g et-q e t +too Hrt-3) ( e et. . AO ~ro>
2
3)
=
~~ +~zt_goo HC:.t-3)(z e 2 t-' -e:t-3 ) ~t.-~-z±+200Hft-3)( e'2.:t-'--e:t- 3 ) =ltm~Ct-3)v
Section 5.7
Section 6.2
73
CHAPTER6 Section 6.2 2. (b)
'd': 2.X.~ > 1(0)=0.
=
X0 =0)~=0.z_
=
~ 1 ~o + ff~o 1 ~ 0 )t 0 + 0(0.2)=0 '{)42-=': ~' + ff~1,~· )1l = o+ oco.2.)=0, ~A AO M.. ~M) ¥..t. ~o_j ~ M '(J('X-)=o. (c) aa, ~ (Jo) J ~{X) ::::- 0. (e) ~· = 2.x,e,-1, 'd(l) =-t. ~0 =1, ~ 0 = -1, -k=o.z ~1=~D+ ffXo,~ 0 )h = ~o +1~e-~ 0 h -l + 2.(2.'7l8)(o.2.) 0.0'8"73
=
=
~2.= ~I+ f(?th~I )~ = ~,+2.X, e'd·~ :: 0.0~?3 +2.(1.2.XO·""xo.'2.) = O.S2.'7 ~ 3 = ~2.+ ffXz.,~:z. ).~ = ~2. + .X.2 e-~"ln =OS2'7 +2(r.4)(o.s,o)(o.2.) =O. SSS
=
3. (a.) E~ ~ ).(). ~lX) x.'"+ I. X> o 0.1 o.2.. o.3 o.'f&Ja.n_ ~n. E)(a.,d ~(X)
I
J
1.02..
l.0'1
t.Of
l.04
1.0,
Yao: ~(~LO)- 'j10::
1.12. 1.fc,
o.s-
o.,
1.2.0 1.25
o.~
o.,
J.O
1.30
0.1 l.42
1.5,
t.72.
J."o
f. 3&,
J .4~
f.,4
J. SI
2.00
2.0Q-(.,O: 0.fQ.
4. Cd.) tj':: 'j ~x; 'dcoi =1 -ki. u.....t ~ 'd<_">:: e F~~~
-C(.)X,
1
P~avi:
program sec6_2prob3d
Section 6.2, problem #3(d) Solving the problem y_prime=ysin(x) with y{0)=1, h=0.1
real yold,ynew,xold,h, analytic integer count print *,'Section 6.2, problem #3(d)' pr~nt :·:solving the problem y_prime=ysin(x) with. y(0)=1, h=0.1' print , -------------------------yold=1.0 xold=O.O h=0.1 ynew=O.O count=O analytic=exp( 1-cos(xold)) p~nt :.:x n Eulers Analytical Acc. Trunc. Err.' print , -------------------print '(F5.2, 3X, 12, 3X, F9.6, 3X, F9.6, 7X, F9.6)',xold,count,yold$
------------n
x
Eulers
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0 1 2 3 4 5 6 7 8 9 10
Analytical
Acc. Trunc. Err.
---------------
1.000000 1.000000 1.000000 1.005008 1.009983 1.020133 1.030049 1.045676 1.060489 1.082138 1.101786 1.130226 1.154608 1.190846 1.219802 1.265108 1.298384 1.354312 1.391525 1.459932 1.500527 1.583595
0.000000 0.005008 0.010150 0.015627 0.021650 0.028440 0.036238 0.045306 0.055927 0.068408 0.083069
do count= 1, 10, 1 ynew=yold+h*yold*sin(xold) yold=ynew xold=xold+h analytic=exp(1-cos(xold)) print '(F5.2, 3X, 12, 3X, F9.6, 3X, F9.6, 7X, F9.6)',xold,co$ end do end
E~:>~ ~d ~ o.. f~-~ ~Ao ~ c. f~~ -t4.~)
tJu
'X-
f~ (~=o.s- ~ ~
~~ ~ JJ\Tt.d2. E ~ ~~ ~ E r.J
~~ u~ ~ F~ crl.e.
"'=0.1
l.J302.2<; E'X-ad. '(j at x=o.5 1.10118, E~ ~ oJ: ~= o.s Acc.Trvnc. Error it x= o.s 0.02.94'+
't~
0
~ ~:
~=o.os
C-8'.
~=O.CX'X)l (.13022'
1-t:o.ooJ
-h=o.rros
l.13D2.2k,
1#1302.2.,
I· I !02.2G,
l.lf S-'7~2..
1.12.'730~
1.12~'7'J
t.\2.,,~32.
0.0~34-
0.002.~23
o.ooJ~S"
0.0002.94 't-e
t,c
~cl
~ ~.:.,o.
Dn
~n.:: (1+A-n)
'do
= e, ( + AD~) cc
vt.
>J
t
Section 6.3
4ih.- O"LdJ.n. R-K : Yn+ 1 = Yn
k1
(a.)
= hf (Xn, Yn),
+ ! (k1 + k2) , k2
= hf (xn+l
1= 3000-x.~-~ ~ro)= 2.
2 ncl-o'telttL n=0 !
n
=1:
= Yn + ~ (k1 + 2k2 + 2k3 + k4) k1 = hf(xn,Yn), k2 =hf (xn + ~,Yn + tk1), k3 =hf (xn + ~,Yn + !k2), k4 =hf (xn+I 7 Y~ + k3), Yn+l
7
Yn
+ k1) ·
Exo..cl ~ (,~1 ~)k ~=¥ls-oox.'"+ a.
R-K : -f\. =r;. o2. -k 1;:: {i f (X0 /~0) = 0.02.. ( "31:JOO'){O)i2. =0 *-2. =¥lf(ll'.,, +!,) =o. 02. ( 3000 )(0.02.) 2...z = 0:3 3 ~ 1 =~o + 2. {i,+-k... ) ::: 2+ i-Co +0-3) ~2.15 • ~(0.02.)= .jfwro.02.).,_+ 8 :=.2 .139,7. ~ -= ftfrx.,,"(1 1) =o.02(3oooxo.02.) (2.15') = 0.2.s,,o 1 -kz. ==..ft:f(~1, ~ 1+!1) = D.02.(3000)(0.04)(a.tS'+0.25',,0 )2.::: 0.'/-133S d2.:: ~ 1 + t(-k,+~z.)= 2.\S4--f(0.2.S-~'0+0.'/133S) = 2.q.8,S-. ~(O.Olf)= 2.4'7'712.
fo
4~-er~trt.
R-k':
=*
n=o: -k.1
~\ =o.
Section 6.3
oz
tCX'o/-10) = 0.02. (3000)(0)ii =O ()
75
h 5('X.0+ "''2.>~o+ '*-•12.) =0.02. (3000)(0.01)(2+0) =O.IS2 *3 = n f(X +t/2., ~ 0 +-f!2./2.) =0.02.(3COO){O.Ol ){2+0.075").. =0.13'13S -2.
,t2.::
~q. =~ f
0
(X 1 > ~o -t-l.3): 0.02..(3000 )(o. 01)(2+0.13,35"f2.
'j 1= 'j 0 + tC-kt+2:k2.+z1t3 +k. 4 )
~ l=
=2.14o~s)
~co.02.)
=0. 2."2.1~ =2.1'3,,7
I\ ffXq~'):: 0.02. (30G0)(0.02.)(Z.14-0l5) 2. :::: 0. 2.G,l ~~ ~2. =~ f (~+ ~l:z., '(j1-1--kt12.) = o.o2.{3a:DXo. o!)(z.14-0lS + o.13 lOOf2. = 0.3t1g~c, 2 *..3=1' f(~.+ h/2.,~ 1 +!212.) =o.02(3oooxo.o3)(2. t40l5 +o.17<1-q.st ·= 0.335''8 i4= hf(7(.,_,'~ 1 +~ 3 ) 0.02.(3000)(0.04)(2.l40(S-+0.~35''Bf2.= 0.'3,lt.14-
fl: I:
=
~2.= ~,+t(i,+2*,+2i3+~11-)= 2.41?3'7) 'd(0.04)= 2.'ff]'712
Cb)
"tJ' =40~e1) ~co>= s. &a.ct ~· ri, ~ 1~) ;.o, ~=.D.vi.(2.0x.'"+ l')
2Y\d.-~ R·k':
n=o:
-k=o.02
-k, =~ ffxo;'jc) = 0.02.(40)(0) e3 = 0 ..k.2. ~ -h f( X.1 '.'jo+,k I) : 0.02. (40)(0.02.) e-i3+0) =0. 0007'1 J
';). 1 ::;
n=l: k 1 -=
';lo+ t (-it,+ ,l: 2) = 3. OOOlf-0 • -Rfcx.,~,)
=0.02.('loXo.02.)e-
.k.2.:: hfCXu"j1+k,) = ~:
4th-~
~ (0.02.)
.ooo'tO
=3. 00040
= o.ooo'7~c,
=0.0CXY7""
0.02.(40X0.02.)e< 3 ·00040 +o.ooo1'')
11+t(!1+4_2.)=
3.00040+0.000179,:: 3.00J:2.0J
"j(O.O'f)= 3.0015'}
t<-K: --h=D.02. 3 n=o: J?. 1=~fCX.o/'Ao) 0.02(40)(0)€ ::0 ( ~
=
=
n=t: ~' =--l{f(x,,~,) =0.02.(tfo)(o.oz.) e- 3 .coo3 ' 6
::
o.ooo7CJ'
,,k2.::: ivf(Xl+"'/2.J ~,+wk, /2.)::: 0.02.(4o)(0.03) e-r3 .C(X'.)3'8+.0003~8) = O.. OOJ l~ ~:s -h f(x,+~h) '':h+*2/2) = 0.02.(qoxo.03) e-c 3 • 0003 ~B+.ooo~ 1 )= 0.0011' "k.4:: ..h_ f ('X.2.> ';11 +~3) :: 0.02. (40)(0.04) e-(3.000 3' 8 +.OOH') 0.00l5'~
=
=
=
~2.:: ~ 1 +t(-t,+2-k2+2.-k.3+.-1<4.)= 3.0003~~+0.0011~1 3.00l5"P} d(O.Olf):: 3.0015~
Section 6.3
2.(d.)
i:::-'d~} ~(o)=I. E)(MXAl...t"....,~ 0';) ~ F~ ca4
fo'1.
~ ~ ~-d\fJ.JJ't l<-k':
real yold,ynew,xold,xnew,h,kl,k2,k3,k4 integer steps,i OPEN(l2,FILE='ques2') h=0.05 steps=20 xold=O.O yold=l.O write(12,*) • n y' do i= 1,steps,1 kl=-h*yold*tan(xold) k2=-h*(yold+kl)*tan(xold+0.5*h) k3=-h*(yold+k2)*tan(xold+0.5*h) k4=-h*(yold+k3)*tan(xold+h) ynew=yold+(k1+2*k2+2*k3+k4)/6 write(12, *) i, ynew yold=ynew xold=xold+h enddo write(12,*) 'Exact solution is' , cos(l.O) end
"· (
n
:>l .OS .1 .15" .2.
.25' ,3
.35 .Lf-
.LJS" .5"
1 2 3 4 5 6 7 8 9 10
1~~) J~ Y
(R-k)
9.987505E-01 9.950083E-01 9.887869E-01 9.801059E-01 9.689912E-01 9.554746E-01 9.395937E-01 9.213923E-01 9.009197E-01 8.782308E-01
Th4 ~:
> wlth(DEtools): > de1 :::dlff(x(t),t)=0.02-0.01 *sqrt(x(t));
del := :t x(t) = .02- .01
Jx(t)
> dsolve({ de1 ,x(O)=O},x(t),type=numerlc,value::array([0,600, 1200,1800,2400,3000, 3600]),abserr=Float(1,-5));
Error,
(in dsolve/numeric/rkf45) cannot evaluate boolean
> dsolve({ de1 ,x(O)=O},x(t),type=numerlc,method=dverk78,value=array([0,600, 120
o,1800,2400,3000,3600]),abserr=Float(1,-5));
Error, (in dsolve/numeric/dverk78) keyword was, abserr, optional keyword must be one of, control, initial, number, output , procedure, start, tolerance, value A
[t x(t)] 0
0
600.
3.313877493498139
1200.
3.852107843603627
1800.
3.967238747167962
2400.
3.992701615124026
3000.
3.998372087416714
3600.
3.999636792316914
H.RJU. (1J\.(. ~ ~ ""~· l~. O'~ fu_ ~ -ro tk ~-~~~~=4.
76/
'd(:t.)::epx..
~ Cx):: Cl) x ( E~)
o. "~'75'0 3 O. ~'S"OOlf 2. o. '88'7'7 J l
o.,soo''" 12..4 O."B~
o. 'S'S33'5 0 .~3,3'72.'T
o
o.~2.to' 1 ~00lf't1 l
o.
o. S7'7582.G,
7. (a.) ~'=Q- 0.01 rfx J
cPt. 0.01.(X-Q
=_cit)
MP ~
Section 6.3
.rx:: u.
15(-te>OQ
t - J..t )
2ao .u.t!u..
M.-1~
771
=-tkt >
=
.2ro r.u-1ao~)+10Q$) ~ =.. Jt)
~.u +20000Q k.c.u.-100Q) -t+ c M-looQ , 2.oofi + 20>()()0(Q ~ ( t/i - f~) = -t-t C ( b) ry'k_ 'X,(O) =0 ~ C = 2~000Q 1"" ( 100~) • Q..k,) lit Ml.,\, '™- ~ ~ ( lfX .. 100 lQ) GUV ~(lroQ-,/X) ~ fdM/.u.= ~l.ul MM~ 'le~ -t4 iMc )>A~
·~I I'~. 3~ ~o):OJ >M-~ ~6 =4~~;~, l~-R~..k >O, ~~~~I I ~~~. rp~, ~Q=o.02, 2.0ot{i. + 400 ~(2.-~) = -:t + i+ao k~. rp~
}'}\~ ~AMc( . f~ (2.DO;t~"(l/2.)+lfOOf k(2.- ~/'(1/2.}) = -Gl>O +4eiPJ;k{2.), ~)) fdl. 'XUOO) > 3.313'8'7'744':3. ~r:,~J.:70 120D;Jgan} •• ., 3'® X(12D?>) = 3.a5"2107&lflf
t"'-
rJ
X.(l800)
=
X,(2.lflro)= ~(300())
~
3.~,72.38'7~'7
3.,~2.70) ' ' 5
= 3.~CJ8372087
'X(3b00)= 3.~~~'3'1~2.
~~ ~'?8 ~) ~ E't.~'ra.),~~)
tv(
At.t.~t4 ~
~;t~ IO~oJ.~: . 8. En""' Ctf Ao.~~~~ .1' ?~-?t~o)~:to c.. To~U ~ .1.t C=l ~ r=2.. ~) fo't ~ rn~... '°" -It M- ~ . -h= 0.1 4'= o.of ~:; 0.001 Cf,t =i:k-z. = 0.01 o.OCX>l o.oooooJ +-- ~ H~ c, o.5Cf!::: o.s~-i.= o.oos o.rxxns o.oooooos +- ~ 4 ~f, C-h'l.P== i.h = 0.0001 o.ooooooot o.ooooooooax>f-t-M~~ ~. W.e. ~ ~. ~pAl'Nl. J-[~n.+Ol-ltJ ~(1Cn)+~frx.n,~CXn)J-k] ~ "'· C...U. it" F<-lt). ~) Ji.a~~~. F'<-h) = ~ + ~ ~ = o<.# + ~f[x.,~c?G.l) ~
i
*
M
o(fx + ~f f'cl Cl~) = '(j+ fa.f +hCf+Cclf~+~ff':t)t+···J} ~ = 'j + (a.+b)fh + (olfx + ~ff't)b-h-z. + ··· v
RHS 1
=:
Section 6.3 10. (a.)
#include
/* Defining the variables now */ char c; int i, steps; float xold, yold, xnew, ynew, h, x_n, y_n, kl, k2,k3,k4; fpt=fopen("answer","a"); h=0.05; xold=0.0; yold=l.O; steps=20; fprintf{fpt, "\n"); /* Starting the loop now */ for {i=O;i< (steps);i++) {
kl=h*(yold+2*xold-xold*xold); k2=h*((yold+0.5*kl)+2*(xold+0.5*h)-(xold+0.5*h)*(xold+0.5*h)); k3=h*((yold+0.5*k2)+2*(xold+0.5*h)-(xold+0.5*h)*(xold+0.5*h)); k4=h*({yold+k3)+2*(xold+h)-(xold+h)*(xold+h)); ynew= yold+(k1+2*k2+2*k3+k4)/6.0; xold=xold+h; yold=ynew; /* Writing out the results to the file now */ fprintf(fpt,"The solution y(l) using h=0.05 is %2.9f \n", ynew); fprintf(fpt,"The exact solution y(l) is %2.9f \n",l+exp(l)); fclose(fpt); /* Result obtained- closing the file */
The solution y(l) using h=0.02 is 3.718281819 The exact solution y{l) is 3.718281828 y(exact)-y{estirnate)= 0.000000009 The solution y{l) using h=0.05 is 3.718281474 The exact solution y{l) is 3.718281828 y(exact)-y{estirnate)= 0.000000354 Thus, computed order of the method from Eqn.
(b)
<'.5MX'~:
The output after {x_n+h/2) was changed to x_n ..... The solution y{l) using h=0.05 is 3.701259429 The exact solution y{l) is 3.718281828 y{exact)-y(estimate)= 0.017022400 The solution y(l) using h=0.02 is 3.711558039 The exact solution y{l) is 3.718281828 y(exact)-y{estimate)= 0.006723790 The new order of the method -
!..:..Q.!
It is no longer a fourth order method.
{28)~
4.0075
781
S~ ~ ~
-fa't A,B, c ~
A= (2X-~fn +2~! f~+,-zrx~ -fn+Yz.. + 3"n.f"'"h + ~t\fn. . 1 ~-4Xn.fn+'t:z.~+ f..,,-#t)/~~
B: -(4X.n.-fn+4Xy,,fn+1-8~fY\.f.Va.+ -'fn-k+ Tn+t'lt-4fn+h~)/1t C:: 2(fn-2.fn+Y2. + fn+•)
Section ().4 1.
Cb) '})'=4~) ~(2)=51 ~''=4-:r.'= - LJ.tj. ~ "j= A~2~+ (Scp2~. t' =-'d, ~(2):0 '1T'~ 1! = 'd'l4 = (J1ct:>2x- B~2~)/2. Tk "d(2)=5'= C~4)A+C~4)B } ~A= sA-\M4
=
~a 'i:(2)== o (~'t) A- (~'t-) B 2. 2.
•
Ao (I)(~~
A.O.
B= scp4
'd(X):: 5(~4~2.%+ e<,>4C(:>2.~)
=5C'.(.:)(2X-4) =
~(~) =f(~4~2.'X.- C<.>4 ~'-.'X..) -~ ~(2.X.-4) H~, .ll](a..c::t. 'dto.2) 4.'0530427 thwl rico.2.) = -o.,~354SBS,. ~: ~I= ~ 0 -t-f(XoJ~o1~0)-h "(1o+ ll2ot:: S-+0 5 ~,= ~o + ~< ·· )-h := ~o -.~ 0 .ft o-S(o.ri.) _:!
=
=
~ ~
2.ntA.-(5'Jt.J..u-t R-K:
=
=
).QI
= 1n+• = ';JV\+ ~ (--k,+k2-) +t ~Xru';)~) >12. =-h f(%V\+I >'dW\+i,)
-k1 :: Ao ftn.~ ~ 'd'= :f{x,d)~)) 'i!= a(.x,j,:) .At°~ 'dn+1 ~n + t cl, +!2.)
= ~n+I =~n + 1: (.Q, -+ ;,2.)
~f(Xn1'd~,'Z:r\), _.k2. =~f(XMI > ~n+~11 ~r\+.Q,) 1,::: ~~('Xn,~n,%:'1.), 12.:: -h~(Xn+L>'dn+~,, '2r\+~1) In~~~J fortn=o, = -h(4~ 0 ) C0.2)(1.fXo)::o ~. :: hC-Jjo) co.2)(-5) =-I i:,:: -h,(4)(~0+.0.,) (D.2.X4Xo-I) -o.B 4 =-/t(-('()0-t-.k, )) = (0.2.)(-(5+0)) -r 'd• =~ 0+ t(.k,+,k.2.) s+-£ (o-o. S) 4.'1 (~ ~!) ~.:: 'r:o+ ± {.el+.Q2.) = o+ f (-1-l) =-=l )(,:
*•
= =
=
= =
=
4·ih t5~ R-K: ~ ~ ~ ~ ~ -I!,= ~HXo,~o,lo) =(O.'l.)4~ :: 0 Q1 :: t~
=
fi,):
( " ) e (0.2)(-~ 0 ) =-I
-k:z. =-hf (~+~2.J ~o+-kv2., ~0+Ja12.) = (0.2)4(~~ .Q1/2.):: -0.4
) :: (0.2.)[-(~0+i1/:z.}]= -I 'k 3= ~ f ( ~0+~z, tj +-k2/2;e +.l.:z./2.) = (0.'2.)4(l: +Qz/2)= -o.q.
~z.::
-h 'C
"
0
0
0
l3 = t~ ( =(0.'2.')[-(~0+!2./2)]~ kq_ =-hf (Xa> ~o+-k3, i:I) +.!3) ={o.i)lf-(i:-0~~3) =-o:u,s .lq. =-h ~ ( '' ) =(0.2.)[-(~ 0 +.f:3)] =-0. <}2. ~I ::: "'jo + (-k,+2:k2. +2:k3 + ·t4')/, = 'f.,05'333:33 ti
~.
~(x) = 5'Cd:>(2x.-t.1-) c(X)
-o.,,
= 2:0 + (~1+2.l:z. +2~3+14)/, =-0.9133333
3._(b) E~:
)
=
x =3
~=5
~=10
-2.ogo134183 4. 8008.5"1433 -4.7882,'7tl02.
=-~~{2X-IJ.) = -2..2132.'-l-35'1
0.,,8538'74~
o.7J"J'7S82'2.
~: ~~lk~RKF45"~~)~~~
81
Section 6.4 ~(:DE~):
*
~ (f~ (~C~) > X) =4 "i:.('X,,], ~ {?::(~), x,) = - ~(?G )) ~ (2): S:, ~=~J ~=~([3,5,IOJ))j
r
~ ~
c~, '(1(~,, %;(?(.)]
=
-.2..080'7.342.IO
3
s- 4. 800851531
[
4. Ca.)
~'Ct)= F(t,~ 1 ~ 1 i:)
= G( i!'{t} = H(
~ict)
Eu.k:
-Xn-+l
JO
='d- t
;
l
0.71~7583300
'X-(0)=-3
)
.,
o. '"~ 85381'4~
-4./882.,7,bl
= i! ; ) =t+~+ 3(~-~+I) j
••
-2..2.'732.'4-3S'77
%:(2.): 0] >
0 r,{O):: 2...
"j(O):::
=~n+F(tn,~n/~Y\,~V\)h
~n+1:: ~n+ Ge
t:f\+, = ~n + Hl
)-h
"
) -h ~I = k f C:tn> ?lYl>~n >~Vl) .Q• = ~ G( " )
2nd.~~ RK:
~He
m, ::
11
)
1<2. = ~ F(±"n+I) x.n-r*-1> ~n t .Q, = -h G< .. m2..=
4-thO-.nJ.ut RK: -k,
hHC
.e., ~n+ mI)
..
)
)
~n+I : X, Y\ + f (--ki + ~ 2. J ~ n-tl = ~ n + f (!a + ~:z. ) rn+1= ~n+ t(~,+Yri-z.) = tfCtn, ~t\,~~,r.n)
.e.,=nGc . ) rn, =hH ( ) *z. = ~ f (tn+~k.J X.n+ *dz>~~+ .Q,/z, ~n+ m,/2. ) ~z. =R_G( " )
mi =~H c " ) -k.3 :: { F( tVt.+ 'f../z, Xn+ *-2/2. 1 ~n + l.dz, ~~+ Y't\1/Z) 13 =hG( " )
m3=ftHC -k.4 = ~ F ( t'n+l ~<1>
= ~G( m"' = ~H (
"
> 'X,Y\ +
-k.3 , ~ n+ .Q3 ' ~ V\ + ~ 3 ) "
)
"
)
~n+l
= ?ln+ 1;(..k,+2.~z.+2.-k3+!4)
"J>'\+l
=
Z;n+1
= z., + tcm,+2.m'2. +2.m3+W\4)
'dn + 1;( .ka +2~z. + ~3+ .Q4)
)
82
f ~(X), i:lX.)]
Section 6.4 ~~MM,{.\. M/'~ ~
Sk1. ~--
Q.NI.
C5"~ RK ~' ~~
:to
83
~ x,>"(j,,~ 1
~ X2,~2.,r2. fdl ~ ~ .VX~· E..u.k: 'X.t = 'Xo+ f(.t0 ,'X,01 ';) 0 ,~ 0 )-h = X.0 + (Aj 0-I)~ -3+ (0-1)(0.3) 3.3 ~I =~o +Ge .. >""- = ~o + ~o~ o+ 2.(0.3) = 0.b '"i, =~o + H( " )t =~ 0 + [t0 +1
=-
=
=
=
='·'
2M O'Nlvt RK:
= "'-<~,,-1) = (0.3)(0-1):::: -0 .. 3 =-h ~ = (o. 3)(2.) = O.b
-1!1
.e,
=
= -h[t 0 +'Xt0 +3(~ 0-~ 0 +1)] ::(0.3)[0-3+3(2-0+l)] LS --ki. = +t.(t;l 0+i1 •l) = (0.3)(0+ 0.,-1) =-0.12. ~t. = t ('%:0 +M,) =: (0.3)(2.+l.8) = J.14 m, = ~ (t 1+ ~ 0+-1<: 1 + 3(r:0+m1-"j0-11 +I)] = (0.3)[0.3-3-0.3+3(2.+l.8-0-0.b+ t )] = 2..88 X.:: ?Go+ -£C~,+-k2..) -3 + i(-0.3-0.rz) = -3.2.l "(11 ::: 'do+ t (1., +..Qz.) :: 0 + i (o.,+ l.J4) o. 87 7! 1 '2:0 + t Cm 1+ VY\2.) = 2 + 4: (I. 8 + 2.88) = 4.34 M1
=
=
-k,::
-kC"j 1-J)= o.~(o.e1-1)
=
= -0.03"
.2., = ti.~. :: 0.3(4.3lf-) = 1.. 302. m1 = -h[t 1+X1+3("! 1-tj,+1)]::: 0.3[0.3-3.2J+3{4.3'f-0.87+1)] = 3.IS ~i.= h("J 1+.Q,-1) := o.3(0.8'7+1.302..-1)= 0."35H, ~z. : ti_ ( ~. + M,) = 0. '3 (4. 3tf- -t 3.15") : 2. 2.'f'7 >Ylz.: ~(:tt+X 1 +i 1 +3(l 1 +M1-~ 1 -J,+1)] = 0,3 [ o., -3.2.I - 0.03 '} + 3 ('f:3't +3.IS -0.8'1-1- 302. + 1)] = 4. S~IS"
t
= =
·i
~2.::: X 1 + (-k,+.k.2.) -3.21 + (-o.03,+0. 3Sl') "<''Z.:: ~· + ~ c~ 1 +1.2.) o.87 + f ( 1.302.+ 2.2ct1) 'lz_::: r.,+ tlm,+mz.)= 4-34-+f-(3.IS"+lf.6'15")
= - 3.05'3?
= 2.,445 =
8.%075
1J.t~)t~ fo ~Ml~~~~~ 1 WM~ rJoMJ~~· rpfu ~ Cc1WvW\~ . ~ 3
~ 0 ..
( f cL-H ('r-(t)) t) =~( t)-1) d4l,( ~(t), t) = ~(t)) ~(Tit) It)::: t+ 'X.(t) +
(c(t)-~(t)+ 1),
'X.Co)= -3, 1fo)
=o, ~to):: 2.}, f ut>)~lt) >ett)]),;
.tzet - 3-.tt ~ ~(t 1 ): X.(0.3)::: -3.\'185"12.'70'1 J 'X.(:t2.) = 'X.(O.b) ";)<:t) = C:t :2.t) e =-2.~'f'Ll-03'1232) 'jct,)= ~to.3) =o.,314025'17) 'l:(t) = (± +4t+ 2.) et 'j(i:z.) = .Ai)fO.{,) 2. t34250S32i;l,
'X.(t):
~
I
=
~ct,)= lf.4410354?'1) ~rt,.)=
8.ta132. 8.5'+~ ~zna.dl~RK~ ~ ~ ~, W J ~ /t'-O.vvu11.P~ ~>~~~=o.3~ .teo ~
Section 6.4 ~(~ ~=u
; l~=~
.tt'= -~u- ~cl+ -[E'lt)
ce) (~)
~' =A..t.
,
.AJ..'
;
L~
.u. (-2.) =4 l\J"(-2)
;
=0
2. .U.':: -2.X + 3"(1 + lOCd'.)3.t' ; M(O)= -I
'd':: (\) f\f
~. (b)
j At(O):
~(-2) = 7
= rv '= 2.~.u. +3X; tt,' =).;{_ (\j
84
1
-:::
X-5"~
'X..(O')::
;
~(0) =Lt
j
~{O)=
3
~'::: -.3x,~ + '62. j 'd(o)= I ':l. 1 : Lt j ~(D) =2.u,'
=ru-
nr'="j2...M.-T:..
)
WO)= 2..
j
ru
'P~tk~~~ ~{DE~):
&4k (f ~ (~C~),X) =-~*X.~ %:£~) + XA2., ~(~l'X,),~ )= M.(:t)) ~ (.U.(~)J ~)
={\j{X),
~(ff(X,),~): "'j(rx,)"21 U{X,)-~l~), ~to>.=t, %:(0)= 2.J
.uro)=2, ArfoJ=-1}, f ~ex.~\ ~Cix.), M<~),.Are?G)]) ~ = ~) ~
= ~.((1,2.])); ~~~~: x,, ~('X.), 'Z;(X), .U.(X)J IU(-X.) -3.J 83Gt 72.0lG, 3.2.~/05"3188 . 25515',3258
I
S.052.2.Jl~38 -2~.027334LIO -2.47. 8533'142 -12.SC,.0'70148
2.
1wkl14 '7.
- 2.5553"7435'7
~~ ~ ~ t4 ~~fort.
~(DE~):
.
~( f ~(Ycx),'X.,) = Uc'X.), ~(UC~),~)=Vcx), ~(V(~),x.) ='X"'2.•Yc'X)} Yeo>= OJ Ufo)= o, Viol =t}, f)'c"X->, Ucic.>, Vcic.>~, =~, ~=~(cs, 1, 2.J))j (~ '/, u,v tt1\t. Y3, U3, V3) ~ x. = O.?, I, 2. ~('t) =.12.'501~~, .502382.75"4) 2..3\22082.3
11ft
Ne4., ~(f ~~CY
r
"a(J)
= (2..0){.5"0238275~)- .00lf-1C,5~l = 1.00000000
.k.l.u.J, ~ IAM¥;J_ ~- ~ ~-°R:> le.~> ~J
tk~&~~alrnt ~~~4<~~.
";j(X):-x_2.,
~
Section 6.5
8 . (t!AJ)
=
~''- 2v.i + ~ :: 3 ~x; 'd(o)=r, (j {2.) = 3. ~Cx) = C,Y.cx,)+ Ca. %Cx) + Yp("-) , ~
LrY.J =o: Y.'= .u.
; Yato>=1
J.,t' = 2.'X.Lt.-
Yi=
L[ Y2.] =o:
Y, ;
(\j
N"'= 2.'X.r-r-Yz.
85
.~(1) ~
=
'f,'Co) =.UlO) 0
;
Y2 to)= o
;
Y.jJO)=fffO)= I
"Yr=.w-
L[Yr]=3~$(.: j Yr(o)=4t w'=a:xw-Yp+3~'6; Y/ro>=wto)=h. rr~, ~(O)=i = C,Y;co)+ C'l,'1.ltJ)+ YpfO)
rp~)M.t.v.Y~ tt=i,~~ c,=o~ J.J.d. cto~ _If. ~ 1-0 ~ Y. t'X.). d(t..)= 3 = ~. 1. (2.) + c'L y2.(2.)-t 'tr(2.) = c2ic2.)+Yr<2) ~ C2.::[3-"'{p<2>)/~('2). ~~h=o)~·
= c,+a..
MC't)
()
= 3-'frc2) '!, C'X) +Yi: (x,) . °%,lz.)
Jj r..t JWk. ~('!-)
f
'Z-
*
iJ: X= O.S, I, 1.5, ~ 1 (a.ei; ... Q~, ~ -x.=I~ ~ -(.:n ~) ~
J.M(.~m~~ ~(:DE~):
~
( f '91(Yrx),'X. )= f\f(~), ~ (Nt~), x)= 'l.'1. 'X..f. nrr~)- Yr'X-') 'Ito>= o, N"(O)= I},
~ ['.C:;1:),r.rf'X.>], ~= ~, ~ =~ ([o, o.5, 1.0,1.s, 2.o]))j
r ~
,
1.0
2..o
t.S
0 , 0$222.0~tf52., 1.2\,JC,ll«BO) 2.,Z37,23?2., '7.G,3~1~012.I
Y2t'X)=
~~
O.S
O ,
4X- ::
(Yio Y, i.w)
(rcq.{C Yr~1, 'X.) =
J.Ar(X,])
~ ( Mf(X), 'x,) = 2* 'X.._• >JS"(~)- Yrx) + .3• ~('X..))
=
Yro) =1~ wto)~o JJ f YtX-), .w
Yyr,,..)-= o,
o.~325J354BO, o.,,~,13008) 1.'733,75'c,2c,)
'd<~) = -o.4131403% ~c11w) + 1rr't)
'I~* ~
,()()
~
=
0
' 0. 5'"
1l'X.)= I (~), 0.'71''7'814 l
Section 6.5
,.15',03?371.
' 1.0 J
) 1. 5
) 2..0
O.Lf'2.00'5''7, o.e,4~~g1~ J 3 ( ~)
Section 6.5
86
Section 6.5
88
Section 6.5
89
~n= c1+c2.c-2t+ ~(nt.-in+2)· 1{,.(b) ~(~(n+1)-2~~(n)=3¥~(n),~(~))j ~ .. n ~ M(O) 2~+ 3 4/)w\{n-Qcpl -~(n-1)-2.~(r\-2.) - 3 ~I 2. 0
""on = ()
-
-S+4ct:>I
To~~~~~
~n=
[ '()fO),
3~']2."+
~4':>1
s-,
cl)~
IV1.
~ > ~) ~ (1+~2.)/2
3 _ 44=>1 5
-S-+4C<->I
1s
J1t.-~ .J:"a..a,
2~2.
(4~5fZ'i.(-.~n-~n~1+~1C!(.)n _
2 ~ne<.>2. + 2.~2. cnn.J
:: C,2.n+ 3 ((2+~-~1-2.~2.)~n+ (~+~1-~2.)~nJ 4er.:>1-6
v
.
Section 7.2 CHAPTER 7
Section 7.2
90
Section 7.2
0
I.----.---'----'----'--'-'--'-'----'-'--'--'-----'-'-'.......
0
A
B,C
B,C
91
Section 7 .2
ce) ~. (d) 'X}:~
]~:-JE
~': -2'X,} 6J
Ao
~
'd?.-+x"'= c. 6N
~ .o.o- c~~(~.e.,fdt~d-~
~))~~"'.JC n
aA
C~cO.
Cb)~( ["j>-2*x"3J,C.t,lll,1j], t:::.o.• w, [[ors,o].[0.,1,oi (0,210], [o}t·o] ~t-= -~
JJ
~= c~}~1, ~=THtN);
92
Section 7.3
Section 7.3
93
Section 7.3
Clf +.r) -f "'"'r) ~
~
(" =~(nrr/4),.+I
(qf-tf>~-(')) ~ n:: OJ :t I)± 2.) •••
2. YJAI. fo'l. ~·; x'= x~+'J.,_ ~ "O'= xi._,.'J,..+I ~ ~. 3. c} (t>-~)X-bY•o ?~ [ ~D-Gl){D-d.)-bc])'=o J>-a.1 -cX+ CD-d.)Y=o) .J- ~ [ " ] X=o. ~' Y''-c1.+J..)Y'+ ca.J..-k>c)'/= o ~ :: e>-t · ,\'l.-Ca.-rtt)A ;-c~-bc.)=o) )\= a.+ct ± ca.+a -i._ *~-be)
=[0v+d.i({a.-d.)'L-t4bc]/2.. v' To~ C3,Cq, ~ ~ 1 c Cz.) rt {Jo).,.,,Jo te;): p~ ~(,a.) 11
~ . >. 1C, e»•t+t.:i.Cz e>-~t :a.Ci e.\,t +a.ti e>-at . +DC3 e)\1t' +hC11-e>-2t ~ ~ eA,t ~ e>iit AN. LI) J:" ~ ~ A,C,:: a.C,+.bC3 ~ C3 >.,·i/·)C, Ai.Cr.= o:Cz.+hC11 C*=(~a.)Cz.. P~Clo).WO (.,b)......,,..U ~ ~~.
=(
~ €)~ ~~ S ~~~. 5. (b) lit ~«EC J ~ol: S. (5".I) ~ (lfo) ~
4. No.
rotiOJ
~C-~'s::: ~(l(°c-;s)+!(Xs+~c)
x's+~'c =-fcxc-~s)-ll(xs+~c).
E~J:.M,
.
u
3
X'= (flci.-t-~c:-J8si.)x_+ (4c~1?cs*11si.-_fgc~)~ ~'= (-.Ii SC-4s;-Hc --Ii sc)x +(--11<:St,/is;+11cs:JBci)~.
To
~
;d': ~1-~ ~~I: -({~X,) Ait ASc'Z.+'lcs-ucs-.msi. =o e11..) t./8 (c1.-si.}-ics-=o >~ ~ -'lcS+ tJ8 Si.+ ucs-fsc."":o rlL) ,f8 (s:.c") +?CS= o v~ sic: ~=t.) ~ {1-tt )- i"t= 0 MJ t ='If§ At:) Of.= r;.;:;}(1/,Ji )) r..,;.! (-,[8) ),.41°, -10. 5"3;
~ ~~ i Mt . ~: ''·'ff x
= ~
,-rs
~
~ x
94
Section 7 .3
F~)~tv{W~~~~1ts ~ (/ N.tt cJ-0 ~la~ +kt r;~= (q.c-z..-.[Scs+usi--,fgcs)/3 ~ ?!~= (4cs-~8 si.-11cs-t ,Ji c'Z')/3 ll1\t. >o. V.&J.) .t =fg ~ 4-Y[t+11t.t.=4-2,m[Y.8 +11/8: I..; o 3/ci8/9)
f':
OMJ.
'tz.= 21fi~j~;l;1.-tll:: 4V
-Ji~ (l?. >o c OJNl. ?/ >0.
~,::t:
1
~.
.Ci:: Cz+Ac. +ACz.t ~A ~r-to/J) ~NA~. 'XCa+ Ci.t fJ
7, fJ'tlw\. ...e..1w- {19,;..)J >.1~0 ~ 1\2.-+ -ca ~ t:~co) Ao
"J "
~f>~~AA~: 8. ~, ~ co.~-'X. S~~~ ~~)...
fdi~.~JNf;~~W(
~~~~~ ~;.-r~ ci.t ~ ~ ~ ~~·~. 9. UAC.. ~ =( tti- cA ! 1-(4-..-tA.)...... £ +_lf_l>_C 1I2. . (a.) A= (2 +,m)/2 =3,-1-+ ~J,JP.J.... s~
'cl =l
'X/= 'X.+J
=
K=2
1-+ 1-t-K=4+K
K1 + I< :1<4+ K
)( =±2..
O'tn, K=+2J ~'=3X-+~~' ~ A K=-2> ~'=-x~~ ~· (cL) }\, =(-2 ±10+12.)/2. =-1 :t{! -+~.$~~ ~:::~XJ ~'=-~.,..31
K=+'/1/3
(wJa.Jk),-Y"3 (~).
K=l/,£3
x
1<=-1/~
95
Section 7.3
ca) )\: ('l-:t 10+~ )12. =3,'
.
~~~.s~~
'd=KX~ ~'= 2'X-+KX-
=X,+2J<:t
} 2.+K:: 1+2.K
7
J<: 1<=-+1 ~A=3J K=-1 rco>..=1 C~) A: {-,1:.flf)/2' -1,-4 ~~tNzlt.. ~=l'X ~ K't.'
=
x'=-3~+Kxi,-3+~= r-~t< I<~'= ~-3K~J 1<:±1 1<:+1~ >. =-2, 1<=-1 ~~=-4
NOTE:
x, K=-1
x:::-lf-
HcJW"' ~ W< ~#.tfht ''~#JI~ NE·~
SW(~~~~)~(,>)~ N\tJk, SE~tj)'?
.k.c~>, x =Ae fir -t Bet tM-J. d::: x.'-2x =Aef.t_s et:, Ml ~""x «.<> t~+o0,~ ~ ?O =Ae-2 t+Be-41-r a...-J.. ~:. ?l'H:i =Ae-zt -8e-4~ .oo ~"' - x, ~ t_,, -o0 (a....J.. ~"' ~ a_o, .t .~ + oO) .
10. '(j:~x,
'r
x.'::A..~+KbXJ i=~~':cx:tKcl~J ~ a.+hK.:: (c+&.1<)/K ~ i~ 11,N\· "'- k,~ ~
~ OJI, c'?,2. ~ ~. I I. ~ A.::: [A.+c:l ±~(a,-d.)i.+4,l,c. ]/2.. (Q.) >..= (2.±-lo-1c. )/2. J ±ii -->- ~ ~.
=
=
~1~~~#..r~~aU i4 ~~ ~, Jnj- fo'1- (~) >Ht ~:to ~ dk
~~~: '::KX~
~'=2~-K'X.
K~'=-~+3k~
1 -+
.2-t<=
-:,14'~1<.) k
K=.,18034
96
Section 7 .3
C«-> H~rk~ ~
t"4.
~1~~? FnfW\. X' 'X.1- 3 d, ~'
=
WC
.0.U.
thit fo'l )(: 0
~ ~ >O, Lvt -k %' ~OJ p,o .~ ~
~·
97
Section 7 .4 Section 7.4
(1)0): ~': O(X·l)t~
1"'-=
~'=-t1-cix~1)+0~
'4.:0,b~l,,
c: -'I-, d.:O)..«>
(o±.1~)/z. =± 2i..,. ~
O't~, .fn,f
~ /~if:_~-x.'t-x,"·: I> --+-\~~--+-_..._I--+-+-___..
~~I
M.~~~k a..~.
98
Section 7 .4 (b)
~=(0±~0+8.. )/2 ~'::-I (X-1) + O{~ -1)) ~ ,4AJJ1.c..,
x
(1,1):
(1,-1): (c.) (-J,O):
c1,o):
1 :
O
1
x'= o
A=(o±,Jo-s )/2.
~':: -l{'X.•I )+O(~+-l) ~~di~ x':o{X.,.I)+ 1(~)1 )\:(0±~0+4 )/z. I ('X,·tl) + O(AJ) _,, ~J&
'() '=
x'= orx-1)+ 1(~)
{)'.::-J(~-l)f-Ol~)
1)\ =(otAo-q. )/a.
-+~en~ aOw. o it" ....JJ. k ~ ~ £...,....o.t. i1't.. ~~ '4.~ ~ 'X- 11 :(1-x'-)/ti+x,,))
O,,
~~~. rct> s~·F Al" =nn-1.i cn=o,:1:1)±2, ...) x = (~-tlTT/a.)-(~-nrr/a.) 1
"='
'j' = epnrr ("'-ntt/2.)+ ~nrr (11-nrrla..) AO ~: I, h =-I, c: tl. =cr:>nTr = (-l)"-J ~ A.: (I+ C-1)"' .:t ~ (1-C-1 )" )'- -4(.. t )" )/2.. · n~=> >.:: 1±i ~ ~~~
no-M~~=:!."2--P~ (e) Co,o): x'=oxt•~J A::(-2±1-4---4)/2=-J,-1
".:)'=-~-2, Tht.~·~no-tt ~. ffiJ: pi.-'+i=o:~~.SH~,
r.= a.+~= -2~i=act-Joe=1,
~ ~~dl.~~~dl ~~~. (-1,1/2.): ~'= l(u1)+or_,· 112H A=(-2±ff)2. 'j'.::-(~+1)-2(,-1'2.) J ~ ~ (1)~2)! ?G':: + ('X--t)+ O('d+V2)J "-= (·1!.ff )/2.
':J'= -(~1)-2(~+1/2)
/)I()
_,.,, ~
<1)
99
Section 7 .4
100
Section 7.4
101
Section 7.4
x' =<~+,) + o(~-•1zJ
1j'==-c~+1) ... M ~
1
t11., "X'~
X+oY ~/,.,(.Mil<. Y=·t<.'X
2(~- 1i2.)
"'f'=-X-2Y, ~ ~) X'=
13..X'~ ~ ht.4- ~ ~. ~ ~ ~ i!O~ ih.~ {~=-V2).--(l...i"N.~r;,...~ ~J /#(} ~ ~ .f.,:J. 4' ~ Y= KX-~ IN<~ ~ ~ X=KY: ~ KY'= l
?r:O
(b) ~
!'J
(G) ~ Cd.) h\-0
S: (o.)d-tb): Su F?.S-~'1. Ce). Jt~ ':2.~
Let'--o~m.:
.ht~~ n::s~~:l"k~ wJJ.k~l011'.:t ~r'1·"' M~~ ~~ ~O,O)J2!f',OJi('f11',0), ••• ~'~ A<>
~~M>~~~~-~ik~ ... ~ ~ (lr.o)~ {Jrr,o) . .Dt:u~..q:t.,~ m,o). ~~
.~AA(,
·x v~y':l.t\-3t. v v di., X :0 +11,
1
'X., :~
~ O(~Tr)+I~
~'=-lM-Avv\x= l(X.-Tl')-3M Cl () t1' Y:kY.. 'a~ X'= J
-2
..
102
()J(J., -
3 :302.8 . So~
rr~oz,
~
~~~ Ul~ •.__!p
S;-··-~-.. --- fdt ~ ~ 0-t .@ ~r. 0 ,~J:~-
·°"
1T-:02;.°°'1
1T
Section 7 .4 rr+.02,.~
~ 11'+.02,-.oG."
~)J~ ~(C~t3"~-~Cx)],[t,x,~J) t =-35•• 3S-) f [o, 3.J,,S--,,.oo, J ,[O, 3.1'1~)-.o'' J)
[o,3.121S~,-.00'1J, (0,3.12.JS~,.O,,J., CO,~.lf"t478.,
(O/~.m7SJ
.00, J,
-·°'"J, ro, ~.~78,-.00" ] [O,~,tfOcf-'78) ·°''J]J 1
~:.OS-> ~=-2 •• 14)~:-3 .. 3J~= [~,~J)j ~ J ~ (Tr\- S ~ ~ -~'to uf.JQ_ M.. »
ikw.
~>.o~~.
~ Jt::.3,,~ (32.) ~ S+=Cx.+.'!J+)=(3).'3) W S_ =(%.. ,~-)= (1/3) .1). E~~ ~ ~ (31) ~ St: x'= -Jl.{'t.-X..:t)+ (~-~:t)
6.(a.)
~' =(2 x.;_ -z.. (x-x.,. )- (':J-'d :±) l+:t:.t)
ar s+ ~ ~
-
x:= -:sx +Y} A.=c-1.~±1.
:::-.221 -1.08) ~.NI,()
IL~~~.
s~~-~~~iis-s+:
Y=1c:X;
X'=-.3X+ t
x:
"'=
S-LA-k ~ ~ ~~ ~
s_: Y= KX,
X'=-.3X+K"X} A'J -:3+~ = c.s't-~)/1<,
>
/:*O
K =-l.J'3'4d-.'U>3'4
L,~x~~'3X+KY
=·"x,
X=ce+·''tlµ; }<:','f'~ ~ ~.~~
103 ,
Section 7.4
K.=-.7
104
Section 7 .4
':1
t.•
~
7. (a,)
M>
:t'= ~
=O~ +I~
~·= -~x +~x.(1-;;)~~ ::; (~-~)x.+o~
~=(o.t~o+4~-~) )It. :::t./P-!&1~· ./21~·, -60~
~
).o
~ ~ (dl-~) ~ Mrl. ~
.rtJc. ~ ~
105
Section 7.4
106
Section 7 .4
I 07
Section 7.5
Section 7.5
108
Section 7 .5 [t,tt,~] >t=o.. ,o,
[ [o,. 05,. 05]}) ~=.03, ~=[~,~])j
~~)-{di
~ =[t,x,].
10
JO
.
109
Section 7.5
110
Section 7.5
111
Section 7. 6
=
I. (b) x;~, = - O{'x,n, + Fo CD.2:t. L:t ~ AC{.)J2.t~ ~ x;'=E-oiA+F0 )cpJ2t, x~= (-olArf;,)~Qt + B) X1:: ~fa c.oStt + ~:t+ ~ :u 0
0
112
Section 7.6
113
Section 7.6
BStJ
l.S
1.5'
2.
r
114
Section 7.6
115
Section 8.2
CHAPTER 8
116
Section 8.3
I I7
Section 8.3 I. (b)
[2.
,2-+ ,2.+(-%_),,t
1
3 -2.
o) o
•
(2.
1
o)
~~..u..t~ x2.=0; x.1 =0
o-!.2. o
•
2x 1 -~2.-x.3 -s~4 =c, ~~~~-~~- ~µ.e ~; X4 =~'> ;i(.3 =cXi.> 'X-z..=ot3 , ~,= '+5~ 1 +oc'l-+ol3 (ot>.o~)
(e)
(2.J -1-1-14 -.30 0) 11,Z~er,z+f·~)~I (2. -l -I -3 0) ~l_, ~ ei1 ~(I -Y2. -Yz. -~h.. 0) 2. 0 -Yi ?t2. 312. 2. ~2.~ -2. ei2. 0 1 -~ -3 -4
(~)
~~ ~.: (-Ii.) (
X't=
l 3)
(I
~2.J X2.= -4+,~.+~Ct!z.
3) ,3..,,~3-{2)e;1.(
J -2. ,2..,~2.-,1 -2. I -I ..3 r e;3~:t3·,J 0 -2. -I -2. l -3 -L} .., > 0 -4 -2. -q.
l
J
> %J=:
I -2 3)
O -2. -l -2
i-a1+f cti+t(·q.+J«,1+9qiz
= -2 + 3 Ol1+ 5'Cl2. ~2.~(-~)~2. ( I l -2. 12
3)
0 I ~ l 0 0 0 0
)o
0 0 0 0
-Jf
~,3,~ 0 l ,,4_,, 1,4t(-l)\2. 0 I - 1~ I 10 -12. -i- ';'I-+ (-3) ~1 ¥ . . 7 >if ' 141 0 I - 1~ ~ 0 O O ' 11 -2. ~ 0 t4 -zo ,.. O I -.1!2'7 oo 0 ..oo ~..u.t. ~: x2. = -1011 > x.1 1&,/1 3 2. ~
,3_, ei3+ (-~), f
0 '[ -5 0 JS
,tt
=
(k)ho~
C~) ~ ~
Xq.::
°'' "°!= 2.-cx.., "i. ~ (t-0(..)/2., ~,=Cl-t-Qt.)/2
c=•o: Y\o~j c=u: ~ ~ x 3 =1, x.z.=o, x.,=2. (n) ~ ~ X3 : 15/4; ~2.. ::: - 3/4, X- 1= 7/2. (~) ~M.t ~ ~4 =2/S> X.3 J/5, x2.. =1/5", ~, 2../5 (f') U.~~ ~ _x.3 :: -5/2.J %2.::: I J x, 1 -1/2. C\) ~M.t. ~ X.s=ri-, 'X..q.= OJ x 3 :-a., X.2.. = O, ~\ = -oc (M)
=
=
=
2. Th~ Ui-4 GaMAO ~- ~ ~.i.) MJ .U'.o ~ ~ 't4 ~(b)
f2
r o) ei1_, {t),r
1 1/2.
\ o -"t o i2+rt)eiz.--+ o
(IC -~l -~_,
(f)
(
1
~
~ ~~~~~)-to(~ t~ ~ -~ ~ ~ -3 2 0 2 2. -1 O 1 0 l
1 l
o
ei1~ ~1 +C-t)ei2.
~
0) ~,_, ~} +(t)~2. (J0 0I -5_, -_,~
-312. -C, -4
ci) L~ ~ o.il ~ ~ f1i. ~
(
o)
0 Y2. J -?/2. I 0 0 I -I -r -l 0
(t o o)
-2. ) -4
o1o
~ ~~ =o>
~.=o.
~ 'Xq.: o(1 ,
X3 =al?.. J
X2.= -4t&,
X-1= -2.+t~,+SQ!-z.., ~ ~-
nu.:
-+
~ ;~ ~ -·~ ~ ~
O 0 2. -3 2. 0 0 O I 0 I 0
2.
l
%.
0
l
2.
0
-l -¥2. - l 0 0 0 2. -3 2. 0 0 0 0 3/2. 0 0
-+ 0
Section 8.3 I ~O ~a.IO 1 V2. 0 o I 0 l~OOl 0 I -2. -I -2. 0 0 -+ -+ o r -1 o -2. o _.,.. 01000 0 0 I-~ I 0 O0 I 0 J 0 0 1 0 I 0 0 0 0
I
0 0
000100
0
p
0 I 0
100010 010000 oo1 o r o 0 0 0 t 0 0
118
Section 8.3 Jp,c:3,'f4.,,_ (e)
p~
~ ~ (~ ~ ~), ~.. ~Q ~ -J= ~, ?(,=-~
ru:i.
~
Clo), A.r<.
-fdt
/\=2
Mrl..
'fkt ~ ~ ~ ,,._,, -fdt fk ~
µ
(g 6 : g), ~ ~ ~ ~=o,~==o, x=ol OOlO ~ (3-~ ~ g), ~ ~ ~ ~=~,"d=f, x =2~
~ == 1,2. ~}\=I AN(_~ o..iv..d.
119
0000
8.(b) P~~'tk ~& ~ 10 x,+~:z.-4~ 3 =2x, 1 -x2.+x3 io ~;lo
~ ~: (' I
-4
2 -1
I
O)i2~:i2.+(-l)'J 0
•
(11 -2.I -4S 0) 0
~l~(O)'t(O 0 0 ____,,
l -2
0)
5° 0
~,+k .bt~i.o~.°"' ~-~~;~~~I~
o ~ ~ ro ~d'iW: ~~ ~·
11. ra.) v~: Ta ~e, + Tz ,(:wv\e2. = F H~a-r\tJ. : T, c.., e. - rr2. (¥.)e2 o . Fo't ~,=ez.=1T/2. flt~~ T.+T2.=F
=
o=o
~~~a.~~~.
-
-o
Fo'L -&l=e2. =o tk ~ ~
o=F ~ ~ M> 11:2 ~. rr1-rr2. =o Cb) V~: '111 ~45° + '112.~'10° + T3 ~30·= F en o.'1l T1 -+0.8'7'112. + o.5'T'3 ::; F H~~&: rr, ep45• - rp2. C(:){,0° - T3 U':)3o· =0 ) 0.11 '11, - o.s Tz -0.8'7'113 0. (G)
p~~ (ll.4) ~ 0.11
!f-
tk ~ ~~ ~ cx-·~p + o. a1 (- ~r.)< ~+ "3 ~ ) + o. s(- ~3 )
=
om ~(~-~) - o.s(-fiX«-+.f3"1:1)-o.1n(-t3Xtff x.+"j) =o. Ve.~~~1"1~ ~~~ ~~i4~..:Jo(11.4) ;to ~ 'r,/P2 /f3 .
JS.
2.
1'
p
'd
'X."'4l·Dl4~ ::Q d
~l~ _1.014
to
1:01
~-tk~t.mQ (~ ~ tkt ~ ~,~)
~ ~ fo.n V\\fN._ ~ ;x ~pk,~,~i-4
~ Li ~a L2.
AA<.
L2. ~ ~+ \.014~=0
~~ f~·
Section 9 .2
120
CHAPTER9 Section 9.2
1.
(0..)
Cb)
(,_A
(C)
~-.8~ ~
-~~)
~-f +3~
-
36
(cl)
--
B-A
(b)
- - - - / C z l.LI 3A I I +B I
I
~~--------- ,c~-A+B \
(V
\
-
"-I
\
\
\
'
\
'B
-
-A Cz
(c)
-
/
-A+!.B
_,..,. - " - 1 -
/
/ /
//
/,
,
7
/
B
/
/
L - - - - - - __ ,____ _ _ _
A
3.
-
CJ.-)
I"
~v:E\\ ' ' \.
/ '
I
'
I ' '
v
I I
l~
c,..., ~ J.47A-1.41B - -
Section 9.2
B+§=Q ik .t\+~+c-m=Q+(-m, B+!?=~+<-§), ~=-.§, M ~ A~s llJ1t.1 :'"\....j ~ II.Mil "tf.~ ~ dl.~ Mt. ~ ~. 'T'-lu ~ ~ ~ ~J 1j ~~' AO ~=~=Q.
7.(r'-)
~
122
J
(b)
c
AB+Bc=Ac~~foi.AB }
J)
BE=~BC ~~-
ABt BE= A£
fAE-Ac=fAB
A
B
~AB
BE=°'Bc.
~ AC-8C+BE=AE
sAf -AC= J. (AC-BC)
r
2.
~~~BE) E~a!t_AE AC-BC+~BC =AE 1 ~3 I pAE+fBc=!Ac J ~ AC-(1-0!.)BC =2~AC-2f8C
(1-]13 )Ac = (1-a-$)BC AC,BC4n~. ~ ...1 ~ 1-~ =O } -u·~ ~
8.
~-
z~
1-«-...L =O 2@>
~ex=~
3
~~= ~8+ 8~ = <"A+otAC ,..,._ ::: fJA + ol cec- (:)A) =(1-d..)OA ,,,.,..... + cl OC · -~
#1".J...,
,.,,_,.,,
,.,,.,.,,
,..,.,~
10.
:·~IJ~ : ' ~~)~ n12. ~ ~ r4-'4 ~rr1, ~ 'd- . . ~
X
..
W/.,A.O:
'
v A" I
'
I .
'°° A~A'~ F\
1 '
~
A"~ ~ Cl,0,-1) .
1T/2.
~ 'd OJ'/io ~ 1T/2, ~
t.
'X. ~:
Section 9.3 Section 9.3
t.
=
(5)( s/~30-) cp('o·+w·)
( b) ~ • ~ :: ( 3)( &,) c.r.>O 18 (C) ~ • ';! :: (~X") Cr.:>\~ -3b cli) ~ •!:! (4/eo3o· )(4/~,o·) ~'Jo·
= -2s
0
2.. (0..) !Y"·~
:::
=
=32.
= fllN""llll~l\ea:>-6' ~ ~,g-:t.~
,
::: ~·~ ~
l 0 , 1 No't..U.:d (b) ~-~ =f ll~lli..epo~.. Y-*~ ; o-4. ~y.:#=Q l 0 .u.::'5 : o ~=O ......
-
(c.) (c:it~-t-(3!1)·~ ::: ol fJt.·~) + f'C~·>!:!) FcJt ol=(l~I: (~+~)·~ = ~-~
Fdi ~ =o:
~)
(!)
(ol~) •':£
-
~
+ t;i"· ~
@
=ot(~·~)
~ ® A-J.@. ~) ©
(ri~... ~~)· ~
1d (2.).
® a,,,,.J..
.
® ~ © J,..c ... 4.t.
= (cl~)·~+(~~)·'::[ fW1- ®
r~.~ ot. M~·;p:n~+~~®~®· (~+~,·~ :: II ~+¥1\ ll>trl\ C!{:ll(6-'t)
F>.Nt @:
= ll~+N""llll~l\( cpecr.>?J+~e~ t)
.
= ~u nw-n(~ n~~co~ +~ l\!fllAW.~) ,._, Jl - \ l~ll ~
N~> ® =
=ll~ll [11~1\~+ll~llep(~-~)] )./ ~ ':!;.·~+t;f·~ =u~\ll\~ll ~e- \\~llll~H Cef.)[e-~) ~ ~ ~o, (oi.!:f.)·~ =lW~ll J\~ll Cf:>& == o<. l\~lll\~I\ ec>e ) v .W-) :: H.t.t ull MrJ\ er.:> & ""' ~ d.< o, (o1.~)· A/! = n°'~ 11 u~ nct:> cn--e) s
0(, ( M •
o(.
= ICX:l ol(~·~)
\\~llll~ll (-c.oe) = ol Jt~ll J\~11
= ol u~ nu~t\ epe
co.:>6') v
~Mrl. AAt ~-
3. (~+~)·(~-4-~)::: ~·(~+Z,) +~·l't[+~) ~
® Jrm ..
={lef+~)·~+(~+'.1<:)·~ ~~~ (&~2.a.) = ~·~+~·~+w·~-t-~·!f f-"l®Jm.t ·. = ~·J!f +~·~+ rf•J.!!+ ~·~ -pui. ~ 4. (b) """"" BA· ~p = BA· (~A+ AD+ t AB+ t_At:J) ~ :DC.:: AB ...__ !. :: o+o-tc1) +o =-Y2(c) AC·DP:::
123
Section 9 .3
124
<-r) BC· (5-P::: BC· (Of\+ AD +:DP)= 0+1+o=1 (~) ~·CJP=
At}·(teA+tAB+A'D)=-t-t-O+o=-1: cft) CP·DP =('[Ae+tBA)· (OC+f P£5'+ tBA) :: -tfJtJ· (n:+4:ACJ+tBA)-'"t EA· CDC ... -£AC1 + t BA)
c0'XJ·
= O+t(O)+t(-l)+O+~=o,
a.A'eovlJ,~ ~ ~ ~ ~
p
~°'~c~o:r~~)1tko='~· 'D
5. (Cl.)
~APO= ~· u:i1~1i;gu
=~· (~A+tBA+!DA)·(tAO+fBA+'.DA) n
= C{.)1 -i +ii: +I
·fif+ f +I U"+ tf-1-1
(h)
~
APB -
- 1 PA· ?B
qp
_
{C)
~ Afc
=crS""' JlPAU PA· PC = ~I 0 JI ?CU
(cl)
~Af;D
=~' UfflllllP.DU ffi•PX>
Ce) ~ ABf- crS1
-
C1-)
~
Ap C
=
_
-{f{f -
·)
48 I
-1 2- _ o ep 3 - 4 u::i
_ -1 -!--1 _i_ _ o - c.o ~.ff = ep i3 - 5''1-."74
BA·BF
i-
-
-1
=
-1 J_ cp tfi
llBAUllBPU - C<-> (l)l{.f
.. , cF\· er
Oto llCflllllCP(I
=Ct->-1 ~ = ~5'. 9 I t
ff =
-1J_ 2
cp
= (,O
o
o
-1
o
..L
~
~ Pl
V
=
_, PB·°"' r ..Y l\ PB~ l\ P.DU
C,,o7:)
:
-a 0
f:.tj
-1 I
o
:S::
90
o
. '?!
= 90 °
cc.i
(A..
..
ffi· PO -I J.. --a = ~ llffillHreU = ep .rh=f =4:> t =rio.S3 '11:""1~ ~~PC = ~I PS·PC ~ 4° lll'SllUPCll = ~;rf' =<:r.> ;ff =5 "''7
(~' «BPO ({,.)
- cr_;"t 2. 3 -
-1 _L
llPAll llPBll - cp
nn
..
IL
u
Section 9.4
Section 9.4
125
Section 9 .4 Cb)
g~, =: ~
126
4CJ ,.._, + Ci,010,0) ~ + Cl,0,0,0) ~ l&O.t) n,o,o,o) ~ CJOtt) ~ (toe)
=
=
Ct)(3~):::. t c1,o,o,o) ~j i,~ "'d '°b~ 1.~
~
=
t°1- (1oe)
..
=
=ct)
..
~ (10~) o,o,o) tv1 c~h)
{C) ..U- 4X, ::O
(~-4~)+4~ :::~+4~ ~ ,,~;IQ~ ( ~+(~))+4~ = 4:Z +~ t"1 (~e) a't\LHS AMA. t{o~) 6n RHS
tm (tob) ~ c1ott),..,, LHS ~ noc) ~ R~S
~+ C4,e,+C4~)] =q~
tm
~+Q:::4~
~
C1od.)
=4~ 1AA- Ctoc.)
.
l\:"~=¥4~) 4~ ~~ ~ ,,~ C¢4)~ ~ ct"oeJ
=
::: .i 'X.
= ~"-tu' (lO~))
4.
(Cl) ol, (.2.,L3)
~ ~
1
1
-
tJ.Mil. ~~~ ~i4 ~.uf.~
=
ol, o1, = o/3 = o.
tt
Wt.
{~.b)
°" +2.ciz. + ol3 , 3a -4cl2. +ct3 ):: (O,O,O)
2.C\',+ olt. :: 0 ol1+2.0i.z.+ol3=0 ~,-llolz. + Q'J =0 2ct I
={0,0,0)
+°"2.(l,l.,-4)+ oe'3 (0,l>l)
( 2ol 1 t ol2. J
C.b) tl.o. ~ c~),
=ct,* ,o,-t )_ F
2.0(13 : 0
ol1+ct2.+~3::0 ~~~-r~ i.-~81-. . sot, +olt -~3 =0 ~ of,=c, o
(C)
Q.o. ~ (D...),
~ ~~ 1 +ei'z.-2.cV3 :: I o{, + 2~2. + =3 3o!.- 4cli - ~.3 =2. ANt
"""'°- fu..wx> ~ ~ ~.M.t ~-
°"3
ol1 = 39/2 6.
(cl) ~ ~ {~) J W( ~ 2ol,
-2.0l3
ol, +ol2.
3ol, (e)
+°'~
D..o. AM C~),
+ ol.3
-
o/3 = 2!}/2.'i, olt = ~/7,
=~
=0
~il ~ ~. ~ ~ ~ ~ ~ ~~ ol~.
ol.3 = -J ,wt ~
«,
~.+ol"L
-4ola
C1) ao. ~ l6.), t.vt ~ o1.
=o =
+ oli.
O
=0
~
4..u.t. ~ o1,=
+ 2.a3 = -2.. ~ ~ ~.
2.ol1+olz. - ot.3
=o
-lf Ol, -r O(.,_ + ol3 = 0
Ol.2.. =O
·
~A.At~ d.
3 =-M1,
o/.2..:: -2./'7 J ol.1 =-2/7 .
Section 9 .5 S.
No. E.~.) { ·~=c,,o,o,o) a..v.4 .~== (o)r,o,?) i{k/\. Ol,.~+
127
(a.)
1
o(, = CXz.
Section 9.5
=0.
i1
Section 9 .5 (j)
<;: GHJ =
Gv.J
128
~\,~~;,~[;J"l\ =~· f-31-~M,-4,-~2 = cP~:!{SO:: :s~.1·
H ~HJ&:: c,:;'\~;l[~GU = ~· cs;1-~~·1:t4) =cO'~~ :: 45'.~· ~
S.tvm.
4. Cd.) ~=-if3
s.
= cn- 1 GJ·GH
)IG:J 1111 Gtl l\
=~I (-2,0,-4)•(3A,-l) ::; ~l -2.
=3~.1 + L4S.~+ ~s.o = 100·
(2,Z,2.):: (V.[3) 1/{3,
~/"\ £
~
~s20
t/W '6Z
= ~s.o·
v
1/./3)) &'=*7-(~4,-5,-'):: (-it/ffi,-s/m,-,/ffl)
s·£. =- <8-§)· £B-~)
-
B
ci. =A·A-A·B-B·A+B·B =A2 +B'2.-2Al3Mc::t
~. (d.) ~= (1)2,0,1), ~=(1,0,1,t), ~= (2.)-1,1, l ).
u ='
,~,e,"" - ' -1.A - - N )UC.~1~-
Jt. ~-
-:.-
~· ,._ rv:: 3 >.w-· >- i.r -
--
2..' M.·w-= I > N'"· )JS'"= 4"'"" G,+2CX.=OJAO ol=-3·
M.• f\T=
~ 2 ·zt,=(~+o(~)·~
~3·~,== (~+~~-t~~)·~
='+2.(3 +)(=o
~3·~i.= (~-t e~+o':f)• (~-3!f)
: (, _') + ~ (2.-') + l{ ( 1- I 2.) ©~®~
o..k.o) ex= -3,
=7
=-~ p- ll if =0
@
p=-l'>'f-/3S-) "t=l4/5. ~.
=~ =<1,2,0) a)>
~'Z.
= ~-3~:: (-2,2.)-3 ,-2.)
¥3 =~-~sq.~+-~~= ct,-~,-•,-t)
(d)
~:
(l >2.) /
~: ( o,?..) , Jff: (Ir I )
VJ"'"'Jl~ ~·~=S") ~·~=4,~·~=2. ~ •~ ='f) ~. ~ =-I , t;£. '!! =-2. ¥i·~1:: (~+d~)· ~
=
S-+ 4c{
=0
) ot:-S/4
~3·~·= c~-+~~-t"¥~)·~= 5+4(.3a-~ =o ~·~t- (~t~~+a'~)·(~-{ff)
©
= =(S--5)-t-~(4-S-)+
= -f+~?J=O ·©~
@
~ (3=-3/2., ~=-I. a.k>, c:t=-5"/ll-) ~. ~ (1,2-) ,u~ u.-E.f\r : (I , - ~2..) "- 4M3. ::: ).J.,-~~-Mr: (O,O) M~ '<.tl\.O~)
®
= =
=
"'
""
2.. -
-
o- -
Section 9.5
129
+;.!l
CAlt"-~ 4~ D.M.. o"CfJr~.1. ,~. 7. (A.) ~-~= (-l,"3,-4,-t) , ll~-~ll = ~t+~+l" +I :: tf2?i =:3.(3 AO )Art_
(c)
8. (~)
*u ~
H
=.1. fort. ~ ~=t:Q ·
11
--
flM+tV}fz.t lll.\-fV"ll?. ,.,.,,-
-- ---1- -- -- -- --
=(.U.+l'f)• (u.+l\f) + (.u.-~)·(.U-1\r) --
+ .U • M. - 2 U• l\J + t\r• l\r = 2 ll.U. !l t. + 211 f\J l\2. ... ~ ~. (J,) ~ • (2,1, I)= 2.U, +.U2. + .l.(3 :: ~ ~ ~· ~ .U3: 3
1
~· (1,0,2)
+2M3 =o
= i.u.
(~) ~·(2,V·\)= 2.U,+.U.z.-.U 3 =0
=
~· (J) 1,1) = M.,+ .Uz. + A..l3 0 ~ • (3,'l,t):: 34, +~ + u.3 =O
10.
(~)
.U. ~
=.lt +.ll.z. = w
1
-
o(tV'" + -
Mz. ~
I)[·~: olll~llz.+~ 0 ,. .u.
.AO Ma
-
=
1
~ ~.
.. . ... ~ fk ~ ~. o/,=ol.z.=ol.3-:.0
r
~ ~=Q.
r
A
ol= ~·~/ll~lli. =~·~/"~II ,,. " olrv :: ':[• - ~ ::: (/\f·M.) At ~ ..Uz.= .u.-u., .
=
l\i\ri1,..,,
~
rp~ ~
=
-N~
LJ.cl ~ ~ fort
(f) M (2,1, 0,0,3) 1 ;o... f\f": (.l'D I oI I1 -2. ) I) ,._A
~= Jt (0,0,1,-2.,1), &-·~ = -a/,Z
AO
""'-...-
2-
~ 3-~,
~· =<~·~)&= ~
OJNl ~2. =};d.-~·
11.(a.) («~)·~ o{(~·~)
Mfcn. n-~
t
(n~2).
(0,0,1,-2,1) = (o,o,t ,-1,-t)
= (2,1,-t, l,t).
=(«.t.t r .. ,A-tn)·(rv;, ... ,l'Vn) =OlU.,l'J,+···+ct.U.r/vn )ikt~v 1
= ol(.U 11\r,+···+ .LtnN';,)
Cb) (~+~)·~
= olU,Afi+···+
=(.U. +NjJ ... , .Un+Af"n)• (MJi>... >~ J
ciUn~
1
=
(.U 1+1\fa')A>J\+···+(Un+N;,.)WV\.
(C.) (~+ ~~f)·~
= AA1 MJ&+···+Ltn~
-
+ fViMJj+···+ ~~ = AA•Mr+N"'•W --... "' ,...,
=ct(~y ~) :r (3(~f-¥)
ol=p::.1 ~~~Wt,~ (~+£r)·~:::g·~+![·~
r=o ~ iL.. ~ ~ N~~ii.t~:
{o(~)e.!t1' = ol(~·Jtr)
(ol~+P>~)·~= {ol~)·~+(~t;t)·~ f"\ ~ :::
M°'4
o{(~·~)+(?,(~·¥) ~ ~ ~
-
v
12. Ctt) ! 1== epct. =u,/n~l\ =Ll, /4°.uf-+Ml+.u~ .Qz. =cr.:>fb .u2. /n~ll = ,u:z. I if " ..Q.3 ::: ep(f = U3/l\~ \l = J.J.3/ ,[ " c&.> ~ = l't,0,-3) ~ .e. 1=4/S", ~z. =o, 13 =-3/s (e) .Q, +R~ +Q~ =(.u,/,f u~+M~+u~ )'+(u2./f.u~+M~+..u~)i.+ ( M3 /.[Ll~~JJ.;+.uf)-z.
=
'!l
::: (.ur-f:'.ll~+l.t~'/(.u~+Mi+.u:)
=l
Section 9.6 \3. No. Fen..~.J
14. rs.
Cb) (b)
No
'1
130:
~::~=0,0) ~&.~-==(O,l)>~~·~:::.O,t;(•r.f::O, ~~·~=l~O.
~> Y~
c~) 'I~
+x2. ==o) ~ ~. ~ x3 =ol,x.z.=ct,:>G1=-oL ~ ~=oc.(-1,1,1) x 1 -xL+2x.3 =O j ll ~ ~ ~ -ti-.:t 1-:.t 1-~ ~ 3 (-1,1.1). cc) x,-~a..-s-~3 ~ ~. ~ x 3 =ct, x2.:=-~+~, x,- G+«. ~2.+4X3=6 AO ~=("+~,,-4c<.,ol).~ o<.X, L ~i/\l,.4.~~~~,2t-~ ~o ?t
1
±J
=01
~~-#...~1~JitM>~-t4
~~~~{~,~~~. ~ ~ ~ J-t(A, ~ : ("+ ~) C,-4ol,ol) (,,,Jo)+Cl (l,-4-, I) a ~o + cX ~.
"-S~
1
= • rr~~ ~~ L ~ c
l.
\l_-~1
,..., oC :2..
z
~,Nor(.~ ~ 4- ~ J.,,.~ L ~ ~~ :iO ~ ol'r;,,. ~o'l f/X.) 1
d:: (8,-2,2)-(7,2)1)=<1,~4,l).~,~:io ~o.A_~i"l.. ~ + J...!.ttu_ ·- ~ -. () ···--d-.. . d . (1,-q., 1)) ~ ,,... -~- -- .
;..., ol=I
-is
NOTE: I believe this simple problem is a good one to assign and discuss. The common error is to simply take the resulting x vector and scale it to unit length, whereas the x vector is not along the line L (unless the two equations happen to be homogeneous). The key to understanding is a simple sketch, like the one above, and it is important for the student to understand that it does not even need to be to scale, but only schematic. Generally, students do not use sketching and visual aids enough, and this example offers strong encouragement for them to do so.
Section 9.6
•
Section 9.6
131
(c)Y~
Cd.) No,~~~~~ it~~~ ~~a.et C~J-~~~!): (l)
fa.k, ~ ~+!f =(1..ti-..rl) ' ' ' I
.Jl\-N"',,)
~
>n.t~ ~
J.;,.. ~
~-~= (rJ;-u,' ... > l'JV\-J..(.Y\) ~ ~ (~+~)+~ = (JJ. 1-TV; , ... >Un-~)+ (A.>Jl, •••
(2.)
=
~
(.U,-1'1'"-Mlj
>
> MrYl)
... ' .Un-N"r\-.W-n)
~+{~+~)=~+(~-w{, ... ,~-~)
Mtk~,~~a.t
::. ( .ul-N;"+~) ... ) ilY\ -rs-Y\ + w-V\.)
t
a.k,~~·~ ~~~(4-))~~J ~ ~+(-~)= (.U 1-(-A.l,)>···, Ltn-l-.Un))
.
(O{+~)Ltn.) . ~ cl~+~~: (dll 1 -~, >... , clUn-~"'-). (3) ~ ~ u+O = LJ ~
a.Joo)(')µ (e)
No:
~ (oi+~)~ = ( (ct+~)J..l 1 ,
= (2U.,··· ,2Lln)
aioo, ~ ~
... ,
1..u. ·
;;t~a. ~ ~ -~ ~~ 1Q .i.o..c.o.. ~ ~
tk.t ~+(-~)=Q) ~ ~+~=~ fd1. ~ ~ r;f
~' (&,)
-
µ
~ ol~+f>~= ~.
.
2. YwfAJ, ~ ~
~ (~+~)~= ((ol+(!>)U,, ···, (ot+ts)Ltn)
(2)
~ (~+~)+~: (..u 1+21\f"1J."> .UW\+2~ )+ (A>Ji, .•• , >..Un)
= ( .u, +2~ +2...vJj )
=
... ) .u)\+ ~ + 2.W~ )
~ ~+(~-+ ~) ~+(~+2~,. .., ~+2~) = (.u,+2~+~~, ... , .u.W\+2~-+4W'"r\) a.!Ao, -~=c-u,, ... ,-.u~) ~ ~~ ~+C-~)=~ ~ ~+(-~): ( U 11-2(-U 1) ,
••• ,
.U.n+2(-.U\'\))
1 , ...
,-Mn.):-~
=((ol+~)u 1 , (ol+~)Un) o<.~ + ~~ = (olU +2.fY-ta) ... ) oC.Ll.n +2~.UY\.)
~ J (') ~ ~ (ot+f3)~
~
= (-.u ... ,
1
7
'It.};,~.
Section 9.6 .
i]
.
132
.,.
tMAt~ fo't ~-- : Wj fdt t'r~ ~~tJA, fVNl -"-'1 -fol~ ·'ef ~~~ . Pf. ~ ~ ~ ~ ~ ~ ~·~ = ':!·~ (t,o.) ~·!f- > 0 fit oJl ~t~ :: 0 fo"l. M :0
w
Ct
0..
J)
-
--
(o{~ +~~)·~:: Ol(J~:t)/J°)-t
1\~ ~ Jl~ll = ~~·y., ~ IJ cl~ 11 ~(al~)· (o<~) = ~ ol [~· (oi~)] ~ (IC.c)
=
f-' (r;[·Jff)
(l(.C.)
r
=4o( Jtotg)·'*J
(lkll) fWl (l4'C..).
:: 1o(l (~·~)
=JctHM·~ = lot\ l\Mll v N~t, Jl~ u=4y.·J;J > o ·~ ~:f~ "'rn (1'1->' ../ ::: 0 .M. =CJ " ,, F~, 11~+~11~ = (~+~·(~+~) =~-~+ ~·!!+!!·~+!:f·i::!
= 11~1\t+ ~~·tr+ ll~\\'° ~ (IC,tt)
~ llUl{Z.+
2-fU•/\r} + 11~1\L ·
~ l\~ll>z1i~1ii1~11+-~l~llv. t':S~ ~
~
a
ll~+~U
.
=(l\~11+ ll!ll)t.
~ 11~11+ 11~11,
(13)
AM
S.-.C · ~$
~ .v.rt'/\.l ~. v'
.
·
.
U.t~~~~~iEx~7~i4.~~Mi M ~ ~ ~. N""'", 11~11 = IA.t.1+···+1.u,..1 ~ lfol~ll = Jol.U,\+···+lol..Un\ = lolll.U,l+···+lttll.Un\ lOltJl~ll V N~ l\Ml\ >o (~:/=~) ~ ~ ~1;,i ~ ~1u·1 ~o. 0 ( ~ =Q) - --- - J ~ ~-.. a-
'f
=
) .. =
=
~ > ll~+![ll 11 (.U1+Nj, ···) wUn+~ )}l :: IM,+l'Ji\ +··· + l.uY\+~ l . Naw-, ~ ~ ll,b it'~ ~ ~ iU Jll+l:>l~ ltJ..I +l!?J) ~ II~+~}( ~ l.Utl + 1N& l +··· + l.Unf + l~ l l.Ud+ ··· + l.u.1\ \ + 11\fi I+··· +I /\Jn\ \
=
<}. (a.) J,o, 11 ~ 11 ::
= ngn+ u~u. v ~ 1JJ.~ l ~""1 ~
1~a~n
s~tk ~~ 1.u.~1 llMllik ~1ct.u;1 at:<.Wt a:tik ~~~,Ao llol.U..l\ = mo/X- l~u.; l = lOll ~ 1.U.41 = led Jl.U. U. / -
t~a~n
" >0
'~~~n
f'I\ ~ M*() NJ.4X' 11.Y.ll ='~~1n 1u; I ::: o f ~= Q
·
,
-
~ ~uA-
Nv -
--ll :-
---r-- ...;
F.W..~, 11~+(!11 = ~ (u~+41 ~ ;¢n. (tu;t~tr.i;·t) ~ la.+lol!ii 10.1+11o1 ,
~
~
~ t~n. . a- lU~ l
c-----.
+ 1~ . . ~ . . n IN":;\,
= ll~ll + lltf 11
Section 9.6
133
-~d~t~ ~tJ.;¥~·~. N~t!'4t~ ~~ ~ ®~© ~ M~'L ..:t i4_ ~ ~ ~ ) t<-6t Afl(, ""- dL ~ ~ 1lA- ~ -rkt. ~ "-A.
1
~NV\-@.
=l~r\ IU~I
~ ~ ~ (l'lh) w (l7C) OJU.. M. F01. L;t ~ ~ :: (2., I, 5') o.,,.,.iJ. t;f: ( O, ?. 2.). 'T'"""" 11~1\ =I > 11~11 =0, Jl~+~ll l\(2,4,'7)ll 2 IX) JJ~U=o .~th.tv.~ t! :f:Q, ~ ~ ~ fl7h), ~a
~ JJ~ll ~,
(b)
.=
~
z
(174)
1
=
2.~0+l ~~ (l?C)~~>~~.l')(~J~~.
JI. ~
s;
+ ~ (tr, W) 12. (a,) (~·!!I= 13+2.-S} =0, Jl~ll =4'3+t+l ={ii', Jl~Jl= 41+q~25 +1' =~) O~,Ji\~ (b) I ~·~n;:: fUo) +S(B) + 3(4) + 2(-3)( = "'") ll~ll =~I (l) + 5(4)-f- 3(1b)+2.(g) = "'87 J :
=~ 1(0)+5(1') +3(
=
v
~ 95 J 4b~ ~87~ 85.~9 l~·~l: IJ(2.)+2(2.)+3{2.)+lJ(2)+5(2))= 30, ll~fJ=~1(1)+2.(1)+3(1)f4(1)+5"(1)
I) t;fll {C)
ol
l ) f 2.( I ) :
=
=
u~n ~ 1(4)+2(q)+3(4)+4t4)+ 5(4) Wo > 30 ~ (IS ~'o (cl) u~u = ~ s~ (2+x)'L tM< =~ 1,/.3) U!!JI =~ s~ (3~t.)t. d4.. = ~,;5 KMl.J/l 1 s~ c2+x).3?C,,~# 1 = 1114 ~ tfiWf,15
=
IS. 1"]1-lct ~ ~
1-f-4 ~
~.?5 ~ 3.3?'
=415,
V'
,
v
an ~ 1 + ··· + 4'1~ x.n =o :
=so
v
!
©
t{rr.,X1 + ... + amn X.n =0
1pk .c.J:,.2~, 1J1~~ ~ ~ ~ ~ ~1~0.N-l ~
o.nt
1
~ (!)~~AO~+![~ Dn
..
.:
lJcn1(.U,+~,')+···-+ a.Mn{ Un+~)= (a.l'Y'al~1+··· + a,M.Un)+ (a,"'
..
flfi+··· t
aD\n~)=O+O=O ..!
Qk 1 ·.t~.i'4 ~ ~ ¥=Co, ... ,o). ~ ~·~~~~ ~ ~ ~ AMJj ~.+~=CM,, ... ,)..(,,)~(!)~-~:~=. ,
(-~ 1 > ••• ,-u.,,,) ~~~· ~~Ml~ MM.~~ ~~-f ~ cu,, ... ,.u't\) ~ © ~ ~ ~ 0\'~=(~4,,. .. )cl.t.t") ~ l\n {olU 1) + ·• • + Qan (cl.Ur.) :::: ol (all U, + ··· -t- ain Lln) = ol lO) =0
=
.
Section 9. 7
134
Section 9.7
r.
~=ct,~,+
(b)
tJi
=
Ol*
Ni=
Ol3 4- ol.IJ.
= ol2.-\- ol.3 + ol4 N""' = «, + ct~+ ol3 + Olq.
~3
.
.
.
'5'~, ~ ~ 1>~ ~4.
(c.) ~:.~,~a+···+ °'S'~S'
r ""=
+ 2a'z. "'2. = 2a, + 3olz. + o13 /\13 = ct,
/\Ji
2. 3 I 0 I nfz
........,.
Ao~ M:t
+ Ols-+
~5
+ 20/. 5" + 30{4.
0-1 l 0 -t /\f2.-2.f'Vi O 0 t 0 I f'J3+N;.-2.tJi 0-2 g N4-'rv~+i4rJi
o
0 -~ I 0 ... , tv4 -tfl'Jj
[R;'
f'Jl
t2.00 I
OI002.N"'3
OI002./\J3 4 -I 1 0 3 t-rq.
.
=
12.00IC'Ji 0 ... l I 0 -I tr2.-2f'Jj
_..,,
da
rV;a. 4ol,- ol2- + ~
~~.~ 12.001
~ fdl. ~ ~ ~
Q1\t.
4
o
12.00lrv. 0 -t l 0 -1 l'f2.-2rJl
0 0 l 0 l
l'J3-+ r-.rz.-2Ni
0 0 0 0 '" N"q..t' gAfj-1\)2.- 2.Nj (e)
~ =d, ~· + olz. ~z. +
ol3 ~.3
r
"'2. =
oCt, + 2d3
~~. ~ [~ ~-s~ ~1~r~~I;:~l~ [: ~ ~ ~~ -3-' oo o s 5
3
I
o N"3-rr, l\f3 + rv2.- rV; ~ ~ ~~-~ AS3+3~-N;=O. 'f1~ ~' ~,/;j 2 ,~.3 tlo NOT~ fR 3_; ~ '1'tNvt~ ~ ~3~ f~ ~ f'J3+3N;-N;=O (f) YJA(ft.) Y~ li.) Y.io, c~ > No l -k) No Ci) No (M) Y.14 en) No .
l -l
-ttu,
1
ceJ> Y~ 2..
(4.)
rU"3
L
Cf) Y~ Cb)
cv Y.u:v 0
(G)
)!_
3. (b) No, j: ;,o ~ ~ MN--cluL ~ ~-. Fdl~~, ~+~=~>-0~~~~:
(c)No 1 :t~J~~~~~
~i ~a_ ~~-~~-J:
Section 9. 7 4.
135
(b) ?G 1+ x2. + x, 3 - x. 4 =o. x." = ot., ~ 3 =p, ~z= i, ~.=of-~-~, /;>O ~: (o( ... ~-?I, 'lf,(3,ot.): Ol(l,O,O,l)+ ~(-1,0Jl,O)-+ 2'(-1,l,0,0)
rr.i.u:, ~ ~ ~ (~ ~ tt "~",.,;,.. IR 4 ) ~ ~ f (1,0,0,I)) (-J,0,1,0)} (-1,1,0,0))
(C)~~.:
rl
.
~~z.=0,~3=ol,~ 1 =-ol,~~=(-oL,OJol.) . ~~~Na. ~f(-1,0,l)°j,
-1I0]-+[\-110]
I
I
ce) ~ ~.: [l ..,
I 0
02.00
. J . I • I '• ~A.a. A.~
o]_..[ I -I
·
ID!
/..M, ' " •
I -2 0 OJ ~ Xs=Ol, X.4=~, x.3 =20l+3(1) I -J 0 I 2 0 0 0-1 .3 2. 0 'X,2. =?I> X. 1 2P> ... (2Dl.+3~)+ ~ = -.2ct-{:>+~ ~ ~ = (-2ei-(l+tf) Cf) 20l+3~, ~, ot) . oc(-2/),2.,C,l)+t9(-1J0,3,l,O)+ ~(1,1,0,0,o)) AO~ ~ ~«.ct. i.o ~ (-2,0,2,0, I), (-J,0, 3,1,0), (J,1,0,0,0)}
=
I -2 0
=
f
(1> s~ ~ ~ ~ f c-3,2,0,1),(2,-1,1,o>J S: Cb) ~s=a, x 2 (3, x. 1 = 3«- i (3 Mt ~= (3ol- ~~, ~' ol.,) = ct (3_,o, 1)+(3(-~,1,0)
=
(3,0,l)~cl (-t,l,O) ~~~.
M
·
NO'l'E : W.W: {=th ~~ k- ~~) ~ .2.~,+ ~i.-b~ =lf '?
T~ X3 =ol) ~2.=~>
AO~ ~
Ao~= (Z,O,O)+CX.(3,D,1)+(3(-f,l,O)
X, 1 : 24-3o{-t(3
A.o-'f4 ~:
(3,0,l)
~(-~>I,~)~ tJ-t ~· T-k
~ (2,0,0) ~ ~ ~t4 ~ f)(( )
+ ~( ) ~
)A(1,
~ ~ :10 ~
~ p~ ~+kt~)·~~
µ,
rr- ~ ~ ~.
This variation might make a nice examination question.
~. (b) ~ A
.
~
.
~ ~ (..t.e., ~) fo"t, ot,{3 -f-crt ~ ~ ?1) $ ~ ~ ~. LX Mo- ~ ct;,~~-) o(+ 2~
2.ol.-
3ol. : ~
..
= "g+ 36
P' =
2(5 + ~
=3 i! + Sb
~
~~o/,f>.~J {itAO~:k>,ka.~~~i-4 ~
ol.,~>
M' uo ~fen ~' S. ~: ~+3~ 2 ~+3Sl
l 2 [ 2. -1
3
I
l
[I
2~+~ ~ 0 -5 3~+5b 0 -5
[I
-SS
2. ~ 0 -5
-4S
O
~
o
1!+3~] ~,~~~ ~~. -s~ ~
~AM~)w ~ { ~=o. 7'~) l't;:9,~ ~
~AA(,~~.
(c)S~~~~(b).F~,M~~({~) 4~+(2>= ~+2S } ~+(3= ?f-&
f = i$-2s
~ ot,(2>. G~:
*
-
Section 9. 7
136
s..rr~ ~ ~, ~ ~ ~ ct) s~tkt .R· =~ H.1., . . ,~1t 1 ~ .i.w-.A..ti. ~. >JtL~ l!=«d:fr+···+ clR~*~ y =~·~·~···+ f>t-'*t k ~ ~ ~ ~ J'. 'T'~ . V+Y = co<,~,+···+~k~-tt)+(@>d~la-t-···+~k,~) = c~,~ts·)~,+·.. +c~~+~1t)~t) ~ ~ ~ i' ~ it AA, °'- ~ ~ 1' Mi, ... , ~t: . v OJl{_
=
.
Ml
.J' ~
~ ~}}NJ~~ 0~ 1 +···+O~*:: 0~ 1 + (0~2.+···+o.g*J = (} ~ ( .. )
11
{15A)
~ Su:..9.,
+··· + O~-fc- 1J l3) ~ S.tc.. ~.c, =···1j~t4~=~i=~. /
=
* 'l'o ~tkt ~,
O~z.
(2!:!-+3!:f")+ts~+4~) =~+[3£f+(s~+4!f')] ~ c2) J.M. S.t.e. '}., .
= 2~+[3~+(4~+5~)] ~(I)
''
= ~+[(3!J+4~n+s~J
..
: 2~+ ('7~+S~)
= ~+ (s~+~!f)
=(~... Szl)+ 1~
= '7~+ryi~ rp~~> (.2~+3~)+(S~+L\-~) ~~= (2+S)~4- (3+Lf)~.
~(2..) ~ {')
"
t;
ll)
..
~
(2.)
IC
~ {')
..
Section 9.8
137
cm) i'~~· °' -~ U _a____ ~ -U -U - .fcrt ~ U~-9'~ r
,.,,..
\
I
,.-.,,
"*
'
(cc'a-!d-1+···+a'k~ic)+ {-ct 1 1-···- dk.~'k)
= (ol,-ot,)~,-+···+ (ol1t-OC.ft. )~-k. = o.u., + ....... o.u,.._ k. :: 0-t-··· .. O ::! CJ v
-
[AA~(.\)]
civ)i'~cW ~~ ~~.-~ ~ · olTJ = «. ( ~ ~ 1 +··· + oq~~-.) = c£, [ o( I~ I + (ol2 ~ 2. 4- ••• + oc't. ~~ ) ] = ol(ct1 ~,)+ ot(otd!z.+···+ ol-t.~~) c1)~ S.tc..~.'- ~ (olol, )_g, +cl L (o{2.~2 )+ (Gt3~3+···+ ~~«)] ~(5) AM S.ac. ~.Gt = coeot,)~,+ ct(a2 yi.)+ «(ot3 ~ 3 +··· +ct-k.~-1c.J ~ ci)~S~·'·" :: Cota,)~ 1-" {olot2. -i:{t) + .. ~ £5') ~ SJ.C · '·'
-'?
=
. =... =
(olOi,)~·
~~~~ J~
+··.
../
* {Ola!*)~*-
)
Section 9.8 2.. (b) g'"j ~ (a., g)::: ~(1,4) +0(3,,-1). Cc)
..
eel.) S.J;
=-3(1,-1) + Q('t, 2.). a.(1,2,'3)+b(s,2 1 1)-t-cCs;S,~) = ~ ,dl.> ·•
a.+ Sb+ SC= 0 2.4-t-2.b+s-c=o 3a.,+ b + sc = o
(-3, 3)
[ I 3 5" 0]
d. =lf, ~, ~ s~ fen. c1,'2., 3))
J...J
.s. Cb) a.c1, 3,
[J3 5 0 ]
[I 3 S 0
1
so-+ 0-4-so-+ o-4-5 o 3 1 s- o o -B-ro o o o o o
~= 2. 2.
=
=
AC C Ci, h -S'a/4, q_::-5«-3(-5«~4)
=-.sot/Lf- 1 ,(K)
wt
~ -sc1,2,'3)-5'(3,2,l)"'"4l5',S',s)= ~. ~ -e,<~, n,2,3) = ~ (s,S", s)- cs,2, 1) . + bC2,o>-+ c.(1, 2.) + tt.c-1,s-> = S2 G\.+2b+ c -a =o 3Cl+ 2.C-+ S"cl. =0
o..:-5",b=-s, c:::4
F
cit)~~~·)('
2 l-1 0)
o-,-1 '
0
.
,t.(j
tl= cc!) c =~, b =- t(-3 + «.) a.= O{-f?'+
.tca-2a.
=-C{,-t~· L..toc=o~~=,,~.lk cl=o,c=,,b=-1>tt=-4- A-O. -4Cl,3)-C2,o>+'c',2.)+oc-1,s)::~. s~~ +rz, c2>0))~~~, ~ {2,0):: -4(1,3)4-G.l1,2)+ 0(-1,<5). L'D. Cc.) Ce)
N~~~ ~.o.c-·~ ~
~LI.
L1? ~) ~ ~,
1-+4 .:tb.
2.a..+h+3C=O }
2h-+ 2C.
=0
?'P-4.9.e.2., ~
CO,D,2):-j-(o,0,3)+0(2,-1,s)+O(l,2,Lf-)+0(7,,9.,l)+0(2,°'-q.)
w~ cA.(~,3,o,o)+l:>C•J-s,o,2.)+c.cs,1,2.,2.)=~
sa.-sl:>+c.=o 2c=o
l>l:J,
,o'l.,
~ ~ c.=b=tt=o,AO ~~ "'4.
.
LI.
l[ 4 l 4
Section 9.8
138
(~) \J~ tt(f,3,2,0) +h(4, l,-2,-2)+ c(0,2.,0, '3 )+ d.. (4)1,I,2.) = ~ , d't J U.:t· 11-h +4d =0 sa.+ b+2.c +'7Gl.=O 20..-2.l> + tl -2b +3C + 2.d.. M>
(~)
=o
~
[Io-n40 -so 40 2.
~
o -loo -'7 o
=0
l
4 0
0
o -n 1 s o o o ·irto -~II o 0 0 ~ ~ 0 ll &I
0 -2 3 2. 0
a.=b=c=4=o, ~LI
~
J
o-n oo
0 4 0 220
0 0 2.'J
I 4 0
4 0
s o . .,. o ..u 2. so 2.7 o o o 20 2.7 o 32.
0
0 0 0 l 0
rn+
~ fdt. ~ ~: ~(~): A:= ~re (a.,1,4 ], r:o,2,-4 J, [1,o, s], (-J,3,-'J, ro,1,-a.J J )i
Ld'.(l,
b:= ~ (Co,o,o,o,o]); ~, fdl. ~ ~ a..(21 0,l ,-l,O)+ b(1,2,o,3,l)+C.{4,-Zf-,3,-,,-2.) = ~ J ert, 2.ct +h+ l#C:: 0 Ott +21:>-Jic =O 1a. +oh-r3c=O
1-
=o oa.+ 1b-2c=O,
-J0..+3b-~c
tht. ~
.
,-r.
(-3_t 1 , 2_:t 1 ]». 'VJ~ ±1=1, ~' lr.rl. ~ a.=-3,h-= 2.,C=I, .o-0 . -3(2,0,1,-1,0)+2(1,2.,0,3,l)-1-1(4,-LJ-,3,-C},-2) =~) rn) ~ ~ ~ ~ ~, (4-,-4,3,-~,-2) .3(2p,1,-1,o)-2(1,2,o,3,1). Cl) Ll> ~ 0(1,3,a )-t 0(0,1,-1)-1- 5lo,o,o)= ~- C9n, co,o,0)=0(1,3,o)+oco,1;1). cc
=
fdt
~ ~ ~d..ot > l~ >, trte>, (<'), (~)
Ar.e.
Cl), (.R.),
4. (C)
-itt.~ 2..C,~J +0.8.y_3
LI; LD.
AAt.
LD
-
Section 9.9 Section 9.9
139
(G)
!:t:(2>5,l,·3)=
= ~~ 1 +0~z.+f-~3 +~~4 =~~l+5~3~~~4·
a•
Jt ~ ~~~~Ml. •
5.
" •
p
LI ( Nv-~,-wt.~~ ~ ~
~) 4Md.~ o.nt ~ (2.') !o ~ fl...r l 0 -2. -2. 4
d. Hf.v..c(. (~~.s.s-> ~OJI(
•
~~ ~
41 ~,Ao~ crvJl.
~~ ~
1 0 -2. -2 4
~ ~ ·~~ ~~ fRP. GA.ts, M .u..o, c..M
(2.5):
I 0 -2. -2. Lf-
0 l 0 0 3-+ 0 I 003_.01 0 03 2 O l l .. 3 o O 5 5 -ll o o 5' 5" -II
~ol4 =-l7/c,,ol 3 =1~/30)
=
o o 5 -I &, o o 5 -1 ' o o O-b 11 ~.. (o.) y.lA, ~ ( 1- o.,..J. ~ ~) ~~ =-Ii:.. Cb) Y~
.,. ~ ~ .s~ ~-~ ,~tk ~ ~ t~ k.~~~cz. ~~ ~ J U' .J: ~ 4. LI Mt (ML'l'kC}.S.1) ~ ~.~=~ ~ i a,*o. tt
8.
(b) 2..
(c)
9.
(b) 2.
(c) 2.
3
ce)
2..
(e) 2.
C-5-) 3 (f) 2..
c')
2.
C-h)
2.
(') I
Ct)
3
11. Lit~ ~(11.1)fdli4~~~-k.=s.
Section 9.10 142
Section 9 .10 N
1.
N
ug n"' = ~cc~ - ~i)'Z. + n~nt. - t~I M
dl\~ll"th~ck =2.(C~-Ol1t,) =0
~ Ct= a*=±}.·~{?_ . ./
Section 9.10
143
Section l 0.2 144 CHAPTER 10
Section 10.2 I.
8= (H)' !?=(5i), ~= (t), ~:: (-1,2) 2}<. l
2 x2.
3)( 2.
l X2..
8~= (~-~\(~1) =(~~i), ~8 ~M ~, 8~=(~~)(~) =(-~) > ib~not~J I 10} 5 I' 2><13~2. l 10 34 Bx=(5"0 1Y~)=( 17)
""-
A
IO
J
~B~J~, M6=(-1,21(b'i)= ~
!?t= (g-ng-i) =(2g-~),
-o-
1><2
2'1<.2.
(-5,s),
1~2.
Ai.~~MC~, ""'
z~ Mo-t ~) ~= (~}c-1,1> =(:H), ~z= r-1,2>(~) =2.
Section 10.2 145
Section 10.2 146 ~~ ~ I;) (4- 3 \ + ffe; (~ I
A= (o °'
bXo b) =(o oa.c) (o cbyo oa.c.) =(ooo) =Q, A3='i·'°' o~ oo oo.. clb ec1oo oa.. ctb c) e =(o o o o oe-1-1' ctf 1) , Pi :..:t:.: (oo ooooo.d.f) o , A=e.
~ 0 0 c 0 0A.. c, ""000000
A'Z.._ (0
~-
0 0 0 000
Cl 0 0 0 000000
)
0 0
0 00
AO
3
0 0
T
0000
00 0 -.f 0000
0 0 0 00 0
0 0
0 0
q..
0 00 0 000 0
,..,
0
"J
000
0
N
-
Section 10.2 147\ 1G>. (d)
.)H'" . ;
~ (J:~')(p
e) == (t-8n>d!·b) a I.-A + C!-t-H)A)A - ,.., - - = I-f\ +IA t(c-nAXA) --
_,..
= I-A+A - At..
,..
=--:r.:Ai..- =i-I. = ~·.;
--
- -
-
.
-
Section 10.2 148 f2
(
2. 3
xa.. d.,1' ) :
( b) A ..... ~ -: o C c
(2A:+3C. \ Ol
0
2b-t-3d.) 0
f31
i
~, ~ = (-~~ -}~) (C)
~= (~ ~)
(ci)
@=
(-~C(
-!f?')
2.ll..-t 3C
A<>
:o
=
= n_
2.
--' _
~b + 3tl. 0 ..0-0 C tt."1..0: :: - 3 ol.) ~ · I ~ Q.::: ct ·
~tid.=a.ntr.=-~@'~',oob=(3
Section 10.3 149
f = (2.)
1I
(
/2.
o o
Al
0 0 I 0 0 0 0 \ ( I 0 0 0 0 \ /'l 1o o Yz. o Yz. o o ) = Y2. Y4 o Y4 o ) '12.. o /z. O o Y2. o Yz. O Y4- o V2.. o Y4 o Ve. o Yt- o o 112. o Yz. 0 ~4 o t/4 1/2.
0 1
0
o
00001
pl3)
OOOOJ
00001
I0
= pC2.) p<•> = •/z. •/4 0O 0Y4 OAIOOOO) o llz_ o Yi. o o =
(o
V40Y2.o~
IV,...
'V
Y4 o Y4 '12.
0000 I
oYz.oYt.O
o o 112.. o
1/z.
00001
(I()
0 ~Vq.o 114•14 1/8 o V~ O 5/8 0
0
000
O
5/8 0 V4 O YB I
rp~)~~ ik1 A~.b.Jtn4"~3~eo.,~~-a21~f;~ =114) II
~"
2.4.
II
••
"
"
rrkt 'fr)+. ~~
••
"
II
" ..
"
II
''
"
"
"
••
..
..
"
••
~(~~):
A:=
~ (EC2.,-tJ,[3,oJ,[1}tJJ)j
B: = ~ ( [[5,3)2.SJ) [2,0.1,-" J] ); C: = ~ ([[9,1,-1],[2>0,1],[o,4,"J1); ~ ( (fS& &• B)"3 + StC&w C); ~~~ [
2'tl2.4.0 3b,, ~. 5
JS83C,.5
l lOS'zt.35
'7201'7.0
1'1&, 33. 5' S-453.10
102501.S 1'014.5'
l
Section 10.3
7. (e)
11~ a,.t)J ---·J
(232.l ~i) = tf(i ;_i)~+t[(Z32.~J)-(~; 1)] l 3-2.~4)-+(~ l 74 I 1 l '74 l = ( ''7 '15" ·35) + (0 -I 0l 2.) I 1
· S' 3
I
-2. -l 0
:li3 "
-bl3)
r'TI
=1/8
J
~1 "~C3) :5/8. ,-2.l
Section· 10.4 150
8.
Fo1.. n=2,
(b)
(tl.n Aa2. x:t, \ )(a.n-X-1 +a.,2. 'X.z. ) a.,:_ a.u. \x2. J :: ( 'X,, %i.. a:-L~, +ltn ~, : an ?G~+ a1t. ~ 1 Xz. + a,1 'Xi,Xz, + °'n ?l~ =Qn X~+2~ 1 , 'X,' 'X-2..+ Q.u. 'X.~
:'fA
~ "'~ == (X,: Xi.)
't~-t{j a.u=i,a.u=-3, (C)
f~~ ~~Cb)
Mrt
= ?l"f- - 3 X.t + '"Ix.
a,z.=3 (~c.),/).08=(V3)·
2..
~,fat rt=3, tW'
(: au ?l~-t t\u_X~+ a33X~ + 2.~12. x,x, + 2a..,! -x.,x.3+ 2..lta.3'X--i. 'X., ::: 4~f t "~ -'<:~ + 8%.,X.2. + 3X,1X.3-2.~'Xt3 3 ~ au=Lf,a.2z.=l,a33=-1, a.,2.=4, ~.'3= 3/'1..) ll.23=-1 '°O ~=(4i -f1 ) ~TB
312-l -I
Section 10.4 .
alruj1t?t~17~ ~l=
2.. (b)
-G,
~ 31\J. ~
2.(IS)-C-3X1i)+0(2S)
.2t = C-'1)(-C>)-(1)(4)+ S"(ll) =87 v
~ 3.rul ~it= 0(25)-2(-IC,)+5(11) (~)
-G, I
~I= -j -"~~1 5~ \-= -\b~1 ~q. \ =-\ 0~ _t0 -~I =-(1)(-n){ ~) =8'7 0 2S l'1 87
S'
2 0 I0 0 3 J -I
0 4
5.<~>T~
= 8'1v
cLt = a.f (he-eel)
4. Cb) ] f-~ (~)
= 81
I 5
s0
1 2. 3 '
¥
Tf
=_ 00I 42.3 s3I -I"0 2. o 1
~~
o
I 2. 3 '
=_ O 3
l
-l
1-L _
0 4 5' 0 o-lf-s-12
l 2.. 3 ' l 2 '3 ' 0 3 l -I __ o 3 l -1 'f vllx 1\ 0 0 ~ ~ 0 0 ')3 4/3 =-(I 3.\"3-. -l2.; o o-•Jj-~ :: 132. 0 0 0 -t2.
3
.waltt~): . A:=~ (t[~,o,1,oJ,[o,3,l,-1] [o,t+,5,0] 1 [1,2,3,"]1); \ clt:tfA); ~ 132, a..o. ~ed.~ 4(}>· J
Section 10.4 151
a..
0 0 0
o '= (tl)J~~J(f)::: ll(l>e-ccl)f o ci e o 0 0 0 f o b c
rp~
Cb)
= -i-+2e-4-e+i = e..
Pn =Ncn) =n~ Qn.
'V
fo't ~
en~
~ n-+o0.
v
~ rr~tM.t~ Ml( ~ 2n{n-1) ~; -fc't ~ ~ Awf. ~ . 2.(n-1Xn-2) > ~ Aa ~. 1
'1'~) to ~~ Nf1'l)
~
.!
~ oJ..o fort.
'll =I
hl-Ll
2.nln-1)+ 2.(n-1Xn-2)+···+ o ~ (n't.-l) ""' 2.~3 o..o, n-+ oO..
* R~ tk ~~ ·
J.l.Jt
.
n+l
v ·
.
=l+-X,+~2-+···-+ ~n-1+x,n ~ -LlAo. -fort~ 'X.=t:I ~Pu<- I- 'X,MAt. i' 11 ~ >~ n...L_ -?t tk 0/0 . 'T'~/:J/M. ' l-X,
~ t>.Mtl ~ ~ ~=I
Jri:h ~
1
(AAAti. tk ~ i'H~''° ~ fo'lth.t ~~ ~) ~ ~ nv.w..,tt n(d·-1)/s =0+2:1+ .. ·+Cn-1Xn-:z.)+n{n-1) ~~ ~~t4 MlNT. _ · (/V\
NOTE: This application of difference equations, studied in Chap. 6, might be suitable for discussion in class. The result is striking, that the number of calculations should grow asymptotically proportional to the transcendental number e.
Section 10.5 154 Section 10.5 l.(b) st=l, ~=2.) tLI~:::l>ftLI.~=t (C) J7.. = 2. , ~ 0, ,. : 2., =2.. r&.) .n.:: l, " = 2. > " =I , " :. I
=
2..
=I, =I,
(f)
n.=2.>
"
C~) (.1t.)
5?.=2.)
"
JL= I)
II
(~)
J't
=3)
11
=2)
&i
= o,
(-k.,) (t)
J7_:3)
(M)
Sl= 4)
11
=Q
ln)
SL :: 3,
"
== I,
(cl)
II
= l)
II
II
.n ::' .2.)
" ..
II
=2
11
=2.>
··
=2.,
"
=2.
"
=I
=I ) :,
3)
II
= 3) = 2.) '' ::: 4 J =3 ) " ~(~~): I\
J
II
>
" 11
Jh,_ ~ ~DwNl
•t
=2.
=3 = .s = 2.. =4
=3
A: =~(([4,s,o],(3,,,oJl)i ~CA);
~ 1.. 3. C.P) <123~~~)= (1).
cc> (!~X~)= U)· C
(i
st(t\)=IJ rt{~l~)=I, Yl--'l'.=3-1=2.-~~1~
sic~)=2, sic~t~)=2, n-si.=
2:-2=0
.oo
~ gX~i) =(I). Jl!8l= I) si
b;,.., ~
Ao IT\.()
~-j ~e..t
7JY~)= (:). Jl(~)==2, Sl(~~)= 3. Jt(B)t-Jtl~lf) ~; ~ A .. ,, . c~' (§ g~ Y~~)= (:), JHB>= 2, 5lf~l~)=3. " o o Ax. c;) (~ ~ ~ ~ \(~~) =(:). su~)=3, n
Cf) (:. I
'+ ~
2.
I 0
AO fY\-0
'X..3
I
3
1
I )
Xiq.
4. No. Fdt ~~, (1 o) ~d. (t I)~~~~ ~,~.v.rt ~ ~N~~ ~1't~·~·
s. (~ ~ -; ~)~(~ ~~3~ )-(i ~-~ ~)~ (! ~ ~ :)
2.
0 1------
3
0 0
J.------''
·. -k o o o I ------.. 0 0
0000
m,
0 0 0
0
...
%*
~ -R~m.*T~-t-4 ~~.k1if..t ~
a.o,fn f4~ ~ (13) ~ E~' ~ n=" 1\. .. . c~.,~2,···,zn~J = X'X•••
X
x x
n-l 2.
0 () ... t
.: .: ... 0.
0 I
:
I 0 ... 0
z. I
~~-~ct.,. .. ,~n--l ,, •• •• " ...
..
:!
..
••
••
(+1
cln-k
%11.
ocl
~ k= 3. T~
.:
..
l'-. co.)
~.
oz.-
H~+ 2.0H = o H2.-t-~l5z.-~o =o
H+OH-H2.-0 =o
=o
H2.- 2H
H,_ 02. OH Hz.O H O dl.,
Oa-20 =o
'W.t
O
O O O O I -1
-l -1 0 I 0 100 0-20 0 I 0 0 0 -2. I
Y2
0
~ d.o ~ ~~ ~ ~) ~ )it°M6 ~ ~,fo't ~: ~(~): J A:= ~ c'to,1,-2,0, o. oJ,D, 1/2.,o ,-1,~, 01,r-1,o, 1,o, 1,-11, (1,cf,0,0,-2,0 J, [0,1,0,0,0,-2.Jl)) ~(A);
~
I 0 0 0 -2. 0 0 I 0 0 0 -2 o o I 0 -l -I
ao, ~(~), H2. I I 0
H2 ~2H
H2 -2H =o r:1t> &z. -2(J =o
O o o I -2 -1 000000 (b)
l -2.
I
0
l
0
02. "¢ 20
~H-H-{j=o
OH~H+cr
HJ'-2\-\-B:o
Hi'~ 2H+O
ct~ Hcr CQ H I -2. 0 0 I -1 0 -l 0
cit>
0 -2. -2.. 0
I 0 0 0 :-2. ~
o
I 0-2 0 o O I -I -I 0 0 0 0 0
AO
,..:.e,~4 LI~
H2. ~ 2H . ct2.~ 2ct Hct~ e.t+H w~3
LI::.a~
Section 10.5 158 (cj s~~~=
~2 cH 3 I l 0 -I
-I I
0 l
o
o
o
o
o
-t
o
10
0
1 I
H2. \::J
0
O
O
O
0
-I
O
O
0
o
o
-I -2. -I o o o I -J
-I
0000
~i-l...:o ~ ~ 4~ ~
MS"""
1
.
1'7. S.u.k
rrw
~H
C(J
CH 300' CH4 CH305H
I O -I -2. -l o 0 l 0 -I 0 0 0 -l I 0 0 l O 0 -I -2. -2. I 0 0 C) 0 l -l -2. -l 0 l
~
oo
000000000
t):L+ c~, ~ OOHH2.+CJ CH3 tOH ~ CH4 +cr
CHiX1 +OH-:::. ce +2.l-\2.-'" 2LJ . CH300H ~ CO' -t 2112. -t- c:r ~
.
Rcl v
~lL~~»~ ~ ~ 1t4 fo1M>)
b
~ ~ ~f~ 4,b,c)e,f,~,.i,~ ~tk:t
err
(L)tt(L)i.(L'f1tfML3 )e(Mr1•f'yt(L'l'-,.);f-CdCMLT°i.)} = M MJ M: e +f 0 A b c. e f 0
+a ::
L: ~+b+c.-3e-f+l+.t+~ =O rp: -c -:f - 2! -2~ =0
e.
e 1 ~ .i.
f)A ~ AD.
0 •
~ .iv }
ell, [ 1 1 ' -3 -1 1 l 1 0 0 l 0 l 2. 0 2 OOOltOO 1
-rt,-ot,,.,
1= ol.,
~
l
.i..= ctz. >-It= o13 , cf= oi
H~
I
Cl.
-2.
b
0 -2.
c e f ~
. h
~
::: ol, -I 0 0 0
l
.., i I
+
-I
0
0
0
01
-2..
-(
o{~ 0
+ol3
0
0
0
0 l 0
I
+
ol.q. -l I 0
0
0
0
0
+«s
-1 I 0 0
0 0 0 0
1
Section 10.6 159 Section 10.6 cLt A
"' = -2,
(\-l
~ ~
I
(2. -'f-1 =(.3h_1 -'512. 2... )
= =l -3 5
,.,~: ' ~"-'A- = (-13/2. -S/21' 2. Vs'+) (1 o) v 3 2. = o I ·
Section 10.6 160
r-
A
:t
Ii. ( b)
I 00\ (I0 O 0}-(0 0 0 I 0 - 3 0 0
(
-3 ' 0 ) 2. 1 I
0 0 I
..2 -7 0
.40(1 .. A)-l :T+B-t-A'l. ,..,
(cl)
.
=:;:
l'J
-
;...
I ( 0 3 2. I
0
0 I 0 b I
I
-7
A'2, =
0 0
~
0 g) f\3 - O 0 0 I) Q - - ) A-z. =(O~IO
oo) +(o3 0o0o) + (o0 0o00) = ( 3I 0I 0) =(I010 0 . oO -2. 0 O -23 -1 I
o o o) =r. - (000018 4 0
1 -4
Section 10.6 161
0 -3 0 0 -2.-1 -'1 o
.
,.,.
-21
0
ioooo) 0 0 0 0 -12. 0 0 0 -4 18 0 0
)
A3 = IV
(oooo) 3 0 C> 0 0 0 0 12. 0 0 0
0
A,,.= 0
, ....
- )
f
(0
IO 0I O) ()3 oo O )+ ~o-l2.0000 0o Oo ) + oO 0ooo C> 00) = 4I 0 0I 0o0 ) (I.-A)'=I-+A+A'+A3= 0100 + (04000 1,0 "" -..; - - ,._ o o O o .. o 0 0 0 ·12. -3 (
.40
000 1
.
12.(b)F~tkHt>JT..lN\~(4):
-2-1-, 0
-4 18 0 0
12. 0 0 0
"
1'7
1
- ,
'
(34-2.0 o o )-1=I(3o-2.0 o o ~, o o ) -. = {' o 0 -,(~ o o) -210 o-~o oo 2
10 0 2.
5' 0 I
1
-210 5" 0 l
1
o 0
~
l )-1=I+A= (l 0) •oo) =I - (ooorfi Ae=O o { ~ -SO ' 5' o o o (2. 00 x!-'3 0y2. 0 ) =( 1/3 -112. 0 ) 3 0 0 )•I = 0 ( 4 -2. o -5 0 oo -&lg o Y2.
Naur:
I
2. 0 0
-
•
•5
I 0
1
0 2.
10
13.
-2. l 0
0 ..
0 ~
1
-
2/3
- '
0 0 f:}()-210
So I
,.,.
0 2.l
#V
I
0
~ =5-1£ :: ( ·~~ ·~~ ·~ )-·(~ ) = (-ic,-~ ~~ y~ )=(~~2. \ M> ~A.ct~.
(t:l)
1/3 V4
Vs
2.
so -1so 1so A2-
30)
~tt ~11'~ IW\~'~) ~
(b)
~=(.~ :~ ··~)-1(~)= (~;J;,~' -,~~ :1~;~2.x~ )=(~~~.1) ~ ~ ~ .'33 .'25 .2
25'5:S"b -134,.2 12.'"· B
2.
l&.tfl I/~~~ Qi~·
=
,,.8
2.
21~ 0 /11..,.,s =0.00032a
(1tt "lk
fi ~..;.... <13.n)
..I
(C)
14.
X::
""
(.~ :~i~~) (l) ;: (-i;~~J -;l~.i~ !r~~~ \(~) : (-:.~~~l k, ~ .wL_ :m :is .2 2. '33.28 ~1%.~ 1,S".'7'7 A2 30:,2.) ..tn.t ~...;;, ~
( ff 1)""1 ...,
J
K =I. PnX-~~ lru 1
-
,.J
..,I
8 ~ C6(A-1)-1 f 8-I fl ==A~~) -cA· r-=A...., "' - 1 1
1
1
)
~.
(C.)
(
~8
AO
[
Jx~~ \= (-~ID )•
2. 2.
'X.3 )
Lln:: 2.
.u,, =5' ..U.13::
I
=
.Q,_, .ull 2.
.4cr
111 Mti. +.Uu.::
S
121=1 AO
..Uzt
=3
=
121 Ltr3 + Lt2.1 = O MJ .Uz3 -r 13( J..tll = s .Ao J'!.\ 4 ..231 l.t,2. t .Q!2. .Uu. 2. 132. =_,
=
=
"'°
1.3, .t..l13+ 1.i2. ..u.2s+ Ll33 = 2.
rrk k~ ~ ~ ~
Ao
.U33
=- 8
(4l _,z ~1 A v1~) =L~) ,~ F '<'·=o, "a2-=-7,) ,., 3=-32.. "j3 ~ 10
Section 10. 7 164
Section 10.8 165
Section 10.8
Section 10.8 166 !b) (c)
fra~+f~)-otfC~)-[Jfr~)~ (J.i~~+t.';~J-Ol (~~1;.l,.)-~(~~~a)::: Q', ~ ~· +~N', ){olMi +~Ar-2' )) (M, Uz.) (f\f& Nz.) ot.u3+@>rV3 -()(. ~3 -fl tJ"3 JJ 1M.z.+ olt'(.U 1'1f2. .+Mz.IJ'l) + ~t.,V. N"L - otill.Ui -P>N'il\1'"2.\ oW3+@>Nj-
f (ol~+~~)- olfr~) -~E<~) == o<."' =( (
- (
-
(a.U,
~)
0
~~JAO~~.
Cd.) L~ (e)
Cf)
N~~
fCo1.g+~ff)-olff~)·f'fl!}
(.u +1) =(ot.u,+~tJ;-4-1) otilz.+~N'2.+l -ct. 1
A(f\J""+1) ('-"'. . ~)
U.t.+l - \ ru-2.+1
::
1-o<-~
;:CJ,
~~,PO~· 3.(tl) ~ ~ ~~V Mrt ~ ~~ ~= ci,~+···+
Cb)
~( 't) :: A~ = ~ ~ A=(101 ••o. , ) . ("'.• xn) #'V
,.,
~-
,...,
-
f=I. #\J
-
1t
(?? f )(~) =(~). (ff H~ )-.(fit i:c~IJ~(g~ l ~:~1c3 +c, ) l 2 3
3
t 2. 3 C4
C4
0 0 3 Cz.
0 0 0 Cq.-2c -ct+C1
F~~ ~-~~fdvwtJ.Nf. Aet.~ ~R:: .ncA):: 3
3
~K=O ~ £=Qr~tk~~~~=~ ~v = ~fR :: 3 ----{) \) 3
E~ ~ ~ ~ ~R=3 ~ ~W=~fR'i°==4
E~
N-to~""- ~ ~~=z ~ ~ ~~ ~- -fdl ~- £ ~ RJ M
4. ~ ~ - ~ ~ ~ ~ O\.t-=l-0-~ -,,.X ~ ~ ~. ~=~% 1fkt cJ..- ~ ~ ~j i-M. nC~)=3, ,._ ~~ R .o ~
i.t- Ab
~ ~ K~ ~
1 fi: £(2,0,1, If> C:l,0,1,2.)"I', (t,3,1,3 )TJ.
kk
~ 4:A<)~~~~-
~. (0.) M:!:2, n: 2..
rr'o .k tM.t·fo ..
"'i'2. N;" N'"i. tJi rv; rt;_'l.
NJ ·Ni Ni (\f2. 8.,
(ct)
A IM~ ""
Section 10.8 170
cc.)
oo2.][
F(x) - [001 0I ,..
N
-
=
oIo o-1 al[J ·l/4'i Y,ft va o
0 I l ...3 0001
o 0o 0 0t -l 0 0 -I 0 0001
0 I 0 0 1 0 0 0 000 l
T
B~
8~
•/,.fi 0
0 0
1x
0~ ][ :1
0
I 0
0 0
l
-
Er:
[-~:~~-~HI= [~~3 1
=i,fi,,..__ f~, Mt{~~~~ (0,0,.ri,1),~ R R RX -....."--.. " .a~:=1,~=1,Lic.=-3, ~~~f~a! ""x ... ..... '\ P ('X1 1j 1~,I )- (I,-aI, '12-3, I). ~
t~
~
--.
\
\ J /
I
I
RRX
-""!:"!"'~-c"-1
-Ji (ct)
0 0 .S,'I{, ~01 00~ ] [o:l ~1,87 o0 j-[.~5"53 o 0l ~2.~5'5 o 0o ][•S2.53 -.5"'% ·S253 _ [ or 0t 0o 3I ][ o' .-,so o o 1 1 o .1-,s1 .~ao o .2.~SS" o .'~553 o o o
F(x _ _ r) -
0001
0
0
O
I
o
o
O
t
0
0
l
Section 10.8 171
f(Xhe ) = N
A l'\J
[?] 0 I
(\ ·~·~I ~
F~
rll.S3~41 3.'1'751 1:32?5 I
=ll (O,I, I):T-(0,1 0)~ \\ =\\ (0 0,l)l\ =.1. 1
1
T
= n (l.2.Lf3~ ,3J:i85,,2.2.' 3'7f- (r.S3,~, 371'7S'7, \:32'75 f I\
= ,( (\.243,-\.S3,tt)i.+ (3.S85,-3.~75'7)i.+ (2.2&,31-1.'32'75)-z. ~I ;l()t4 ~a\-~~~. v'
Not J-0 ~:
r, p
= o.~~a>
Section 11.2 172 CHAPTER 11
Section 11.2 J.
~ :: Wll I a-'>-1; I =l'i>.
(Q.)
1!A \ :: (HS·-q.
=0
r "-::
-1, 3.
) (o) ~ ~ . (01 -2.0 o0) MJ ~~=Ol, ?la= ;.a' (e-3f )~ =(-2.I -2.4 ytx., A~z.1 = 0 A. =-l: Ao e, =
A1 :: g:
0
·
At
cl:>) ~ ~ x.o.:> =b• e ' , dct)
· • =ti.eA2.t ~ (•Sf ~
(A,-l)
t' e/'
1
-4 ~2. e
>-.
2
t
=o
e>.,t - C>-2-1)i e"r.t =o © ~ i\., =t: l..:z. t4v. e>-,t ~ e>--zt o.rJ LI .b-0 CD ~ (A,-•)t•::: o ~ t:z. =o CJ.Mel ®. ~ \i =0 ~ (Az-l ) i'-:. 0 'P~, ~=tz. =o ~ W<. ~ ~ -tR.e, ~ ~ 'Xf:l:)=O, "3r*)=O. q,
2. NOTE: This problem makes an important point, one that is worth emphasizing in class in connection with the Markov population example.
Section 11.2 173
-i-A ; I:: o o 4'-A
Cit) 1 2~>-.
Section 11.2 174
/\.:: 2~-s, 4. ~ (g _;; g)_,,(gb ~ g)_,?<3=0,X2.=0,~,=oc.
(2:-A.)(-s-A.'14 ... A.')=o
Ai=~: (8-2.t):f=Q
0020
!t'•=
/J()
(g): ot{g ),
y~
0000
l
~fat~~~~ (g).
ll.
1 l ' O) (7 I ' 0) ('l lo O)
I) ~--r -O · ( n Az= ... 5: ( JJ+5....,
_ _
f>. 0 0 3 0 - + 001o-t0010 ..ltX3-0,'X.z.-r' o o Ho ooo o oo0 O X, 1: 1'7
f'
~ f~=rr)=f(T), ~ ~ffl~~~~ (~),~· cB-Lft )z =~ ~ (-;-~ ;
=
A3 4=
g).. ,. x.3=9i,
-X,2.=
'&13,
x. =1t ~
0 0 0 0
~ ~3 =c~~') =¥('~'),°'~tot~~ ~(D,~· 4-A Lt- 't 4 4-A 4
. (~)
I
"2. • :it:..=XC12-!l) ~A.=0,0,\2..
>-,= ~: \a~~i)~ =Q ~1=ri.(!))
A-0
Az=A 3 =o:
4 4 -8 0
0.
-2 I t 0
0 3 -3 0 }
~ -fo-t~ ~ ~ (\).
0 0 0
0
X\-:: C(.
(8-ot)~=Q ~ (HH)~(g&gg)-tx.3=~,~=0',%,.:-~-'t
w1
~ = (-~j~) =~mt'im, ~ka
·L (-1::)
r (-i!at 6)-.Jt(:-~~ g)...,. (~~3-i g\-+(b ~:~ g)~ ~32~~
l
'2.
•
(~-3t)~=Q'F
A\=3:
\
:-5-~~~~;~~gf~g-5~g~ 'X-,=a.,
~· =ol(!) d~-frn-~ ~ ~ (\). A1::A3=0 gggg) -+ ?l3= (!, ~=
J
= ..., {
/>()
°'~flt .w-U ~~ ~ { (.2)
-~_cs.\ I
l
2!o't~
l=-A(A+l)(A-2)=0rA=01 -l,2.
l-A
A,= 2.: (8- 2 t)~=Q. ~ I)
AO
rn m1.
(-2.. o l o) (1 l-1 0) ( l l -l 0) (l l -1 o) ?..t-'1 g ~ ~i~ ~ g -} g£-'1 g ~ ~-; ~ g
~ 1 =ol ( i, a.~ fdt ~~~
( l )
~ ·
'X.3 --'1
=tt.>
x~=ct, IC.1: Ol
~. (b)
(£-29f
. ['I }:t =~ ~ -I t 2.l l 2. OJ 0 ~ [l0 2.121 3 3 OJ 0 ~ [112.lO] o 2. 3 3 0 -+ ~4= Ol, X.3=P>1 0 2.
3 3 0 4 0
I 3 5
3 3 0
0 0 0 0 0
~
0 2. 3 3 0
0 000 0
=(-30l-3f> )/';;.,
IV
-
0 2.
J..~ ,...,,--c::t2. 2. I
Section 11.2 176
NOTE: This problem gives a nice graphical feeling for eigenvectors and eigenvalues, and you might wish to discuss it in class at the beginning of the discussion of the eigenvalue problem. Even if the space is more than 3-dimensional, the figures hold in a schematic sense.
Section 11.2
fe't )N(. ~ Jl~-2 Jl.?.:: 0 > /"t$ Jl.: O, O, +Ji, -.J2. . ~ ~ ~ o ~ ~ ~ ~ 1>-0 ~ ~ xct) =A~ot: ...., Be-Ii~: Cent o.r.-cl ~~ ¥i. 1)(*=) • \J.(, ~ -.R.o.ul ~ dk ~:I.~ - ~ otJun. ~ 1 ~ .J: M ,.,:);, +k ~ ext - ~ ~ -tW-
o.,yJ_ "aC"t) : e'nt MJl,
1
0
xlt) = CA+'Dt)e t+8eat4(f)
u~ ~ (-~
ce-ur
fJ.X\i) = JL(~)
OM"'
o(t)=~-
~a~~ ~~ c~ A.~;i)
A.,=o,
~·=Ol(! );
.\z=1,
~?. =(2>(~);
A3
=2, ~s= '1!(7)
~ (~¥i)= Ol(\)eot+~(~)et+¥(T)e2t,~iotk~~.
180
(c)
l ;..k~ l = .2. Ai.- ">.. ~ 3 =0
l ~-A~ l = ~t''
r8-~~)~=e ~ =
cct) u~ ~ "-1:
,
~ A. :: ( 3±'5 )12. • 1 A,= (3+~)12.) ~. = 0( (- ~.a)
Az. =(3-4!)12.., ~2. = @(-l~.J!)
if, ~ 1 =ci (:); "-1.=-":3: I, ~ =f{b)H (~)
{~)
X.' = x,+ 2~
'd'= 3X.+4'}) rr~,
Section 11.3
183
Section 11. 3 1. (b)
I8-'-~ I =1 ~:>.. o~.>.. I = ,:-.z).-t :: o, 7t.,= l+./2.1 ~. =~(J-1
2
CLn ~tm& ~
1 !Rz. X
ol=~=1, ~, ~w-+4
(c)
L\ =l-./2:,fz.=f>(-J.-1)
. ( } _ • ~~l..w~ ,.~ t(,d_,),(-.n:_ )1 ~
1
l~-At I = \~"-} -~' = ->..(X-t) ~ 'A,=o, ~·= ~ (~ LAz= r, ~\ =r(bL A3=-t, ~3 = lf(i) ~ ~· ~ f fR 3 ~ f (fl. (i), H)J 1a-"f1 =1r· "~>.. "~>..! =->-3+•2).t.- 3G.,\ ""3'2. =.:.(>--ax >..-2J = o -i-~ ~ g) (1- -t g)-+ (b ~3 -~ g)+ A=8: ( 2. -4 o ~ o o -3 o g6:to 0) g Mx2.=~, x.=~) llN\
ce)
1
2
1 2 -2 1 l
(I l
X3= C(,
3
°'
~' =
(:)
~L=A.3=2= a~ H)~(H gg)-. ~!~(&~,~.=-~-~, ~=r~ti= tsC?)+«W 10µ~~~~i4~~~,bt f z = (°?) a,,..J. Lt ~3 =(!>( ~) + {b) ~ +kt f'z. •r3 = ¥ + ~ =o . W:
e=1~11=-2,~: ~ ~3
= (-:1.). it..o.,
~- ~+n-~3
m,m,rn f1JN
.
(~~~~ 1 ~) ~ fo't (f)J {~),(L),(i> cl'll ~ ~: (2.) (-2.) 2 C:f) A. =-'3, ~1 =0(,(-~); .>.. =A3 =~.. !JC= (3 b H ? . Lit ~z. =(h) ~ ~.3 =f (!) H C4°) .-eh tkt ~z.. ~3 S~-4'1( =0. L.J: e-:it AMtl. ~=S,---a, 1
2
::
AO
~3=(-~)-~,~~.~~
m,m.(1J.
1
Section 11.3
~,=~;.=OJ ~=
(i)
:fl)+f!'m·
(4 akc,,
k.~ ~~ ~ f.4~ ~·
~ ~,= fb) ~ ~~=(!) A3=~4=,, ~= ({(*)+~m1 ~~~~ (~)AM
~ ~.~~ l~i)t)i(~),(:}
Tk,ik Cil
~,= ~;.= A
3
=OJ
~=ol(~ )+~\i)H(!); · ~4 =2, ~4 =b
m
Ao~ ~ ~· k6 ~ (~ H~).(!H~) · 2..(b) A,=4,
~.=DG(1L "-2=-2., ~,_=f ("1).
i =
No,~~ ( G)
3.
A. 1:: A2.: 0, ~
(Cl.) !11.b>-.
=
d~>.I
~ d-(1,...}; ~'1M. ~· ko.4
fot !Rz.
ct ( I )
A.= ~+d. ±,J«t+<1.t- 4
=X--
184
Section 11.3 185 4. F~~ ~ ~ :tc> E~.t,~ 3(CL) wt. ~ it-.o:t ?.. ~ k 1- ~~ 2 /l_ =cl ~d. b = 0 J .w.. ~ C44(. 8= (~ ~ ), ~ ?..,= A.z. =Q. D.M4. u ~ = (~) = ~(6)-t ~ l~L ~ ~ 2-~~~.
1\
'°· I
f)
(A-0,
tk
=
II
I
+ 2.~ 1 - X.:z. 0 j X.1Co) = X 10 , X 1fO): 'X.~ 0 II I ~2. - X 1 + 2.tx,2. = 0 ) XafO) = %20 > ~2.(0) ~~o
Ke· V>'~
~,
=
~- ~ ~ 'X.~ .u.. ) x, £0) 'X.10
=
=
M..': -2.~ t + X.2.) 'X..~
M(O)
= 'X{
x:z. co) =~20
= rv;
rv '= x,-2. 'X.1.;
0
x2 rr-1um~~~ 1'~ 3.~~1tW tk ~ c~~~~, :to .wlv4 ~~ ~~) ~
-eo
/. (b)
= Ol~(t+ cP1)+ ~~(,f3 t+ cp2)
Xi.Ct)= cl~ Ct+ cl>,)-~ A
x:rol=O::
=
(!)+@ 9 l Q.ol ~4>1 ®+®~ -3 =Q..ct~¢J
cf>l
(!)
® ©
©-@ =9 I = '2.~ ~Q:>z. (1) ®-®~ 3= 2~~C£.>cf>2. ® 'f'~ > @-z.+©i. ~ 4oc-z.::: lO ~ cl= if0/2.
® =}
®
=l.5'8l *
=~ ( /2.
@-z.+®~=9 4~-z.=10, ~=~/2.~1.sst~ 1 _ _ _{i) =* cpz.. ~ 1 (1/2f>)_:: ~ 0.~l"2.::: 0.32.\7 ~ rp-lu_ ~ ~~ ~ :wJ.Q. YLct ~ ~~ ~.
*
=
Section 11.3 186 1~>
~,(t)
=l.58L~v,(;t+0.321''1) + 1.59l~(43t+0.32\'7)
Xa.(t)'=
(c)
u
~ ~ ( h),
%1(0)
"
= 0 = !X~
?l2.(0)::; 0
= o<. ~
~ '°4M
=o = ol Cf.,)ti>, +.[3 eca:>4>z.
~
AO
.
~ ~~~·:~
(a.)
5 = ol Cr.:>cp1 -
~ B ~£t>z.
>
-t
f.
= "
Fo;- ~)
+k
x," =-x,- (x,-.x2.)
l-
> - --Y2113
2f.: ~q,2.:: 0 ~ 2.{3 eoctiz. =-s't'z. - o' ~ X/t): ~'t ~1{3:t X2 (t)
8.
~: (0) :;l~ (0) :
s:
'
~ il..c.t
«.,>X:1,>X...3
=-2x. +x.z.
.-,k ik
,_,.1 ~ ~
1
~ = + ( x.-x2.) - (~z.-X-3 ) = ~. - 2.~ + ~.3
(b)
xf = cx.cx.3)- ~3 = x2.- 2.~3 ~ s~} x~=~~{CJt+4') 1 ~ (~~~i~ Yt\=~(K\ 'fn~
0
r
~ ~
I
+d{~}
'{,!)
"-1= 2-.(2 =0.5"8C.) ~.=c<.(1,12.,1)-r, w,=../X,= 0.1C.S" ·A.~= 2, ~2.. ~ (J,o,-t c.J2. =,.r>:z. = I-414 A.3 2.+'2 3.'tl4, ~3 = ~ (1,-a, l )': LJ!r = ~ :: 1.·94g Ao ~/t): O{ ~(O.Tf,5 t+
=
=
=
'X,2.(t)= ~c{~(
X.3 tt)=
(d.)
II
·•
)
+ 0(3 ~(
_)- ~~(
iN. ~ f~ ~ ~ 1ra ~·, ~1., ~~. ' X. 1(0)=1
)1:
It
"
GJ,,"';i.,t.l3
)-Ji (J ~ ( )+CS~(
ti
"
)
)J
~~ ~ ~ ~
=Ol~
'X.io):O= '12~~4>1 -.[2.'lf ~cP3 'XviO)=O= Ol~d>1 -f?'"*"cP~ +Cs' ~cP.3 ~:co)=o= o.'7,S'«Cr.>¢1 + r.lf1tt~C4:>cf>2. + 1.B481 - \.9'f8~ '(/ CDcP3 ?C,3(0) =o 0.'1,_5Cl C(.)d>1 - 1_.41~~ <¥>4>z + t. 848 ~ eo4>3
=
.
•
.
~ ~~ ~ ol,fl,1',t\>,,d>~,cf>3, M~ Ant.~~~ ~ ~ ~~ o(.Al.Md>. > f~
T-L._
M't,
hJV(.
t.1tn
de<.>~.= 0
kot 3~- ~~Cf>~= ~ coct>3
0
=o
"2J ~ 43
=t/4
Section 11.3 187
q,I : 42.. ~ ¢3 = 'IT/2- ) ot. =l/+)
rr~v.e )
f?i ::
\~
l/2) ~ = 1/4
A(J
•
X1 (:t) ::: ~ ~(0~'5 t +1T/z.) + .Y2. ~ ( lAl4t+1T/2.) + V4 ~(l.948::t+1\"/2.) o. 25 Cr.> o.7,5t + o.s Cd:) \.4l4t + o.25C{:) 1.848±
=
Xi Ct) 2
= ,rz.;4 ~(0.7,5:t+1T"/2)- tJi/4 ~(l. 848t ~1T/2.) =o. '35Lf-C<.:> o.ri,5:.t -o.35Lf- e<.:>0.1,~.t
X3Ct) :::; 0. 2.5'4:>0.7,St -o.Sep1.~'tt
10.
~ =(:11 ;:\), 12.~j>. ii~x]
="7-42M 440 =o A, 1 =22.
,4()
X(t)=
"'
+ o.25'ep l.846t ( ,)
(CJ,= (22.), ~ 1 : cX- -I j
"-2. =20 ( cJ:l. =,/20), ~~ =~ 0)> (cx.,ct) )- oc.(~Cfflt+ ct>,))+ 8 (~(.Jrot+cP?.)) Xit) -~ ( " ) \- ~ (>/2o t + cp2.)
-
t=.Lgr( 4 O.ll
.
Section 11.3 188
l Ao ~oI r2.-1 ~-2.A "r-JO) 3 -S" tl ~
0 -1 ( l 3 lf...14 3
I
o -I
l
-3
5
-I J
~CS') _,~~ ~~ (-10) -~11 J ~ ~ ~(q.). - c'ttcc4-> = ~ •~
=-t.~8
Section 11.3 190 e2.. ~ ' "·2.. - .: 1. M. µ~~ a.. ~~>-:u~. G.v..t o.. jl~ ~ ~ ~~ ~ AO tW . ,--tk ~~-~I~);;;, ~L -.--..~-. ~--.H ,, ' . -- ~~() dJ~f~ (1,0~0). ~) ~~ ~ - -n-- ----.. ~c!1 = a, (7)-K ~· + a2. (-2 )* ~-z.-+ a3 <1) ~ 3 ~a.I J..,~·· ~ "'-~ ),.,.t ~ ~- 'fk... ~C-it) _...,;il ~ Q.z(-2)-l;:~Z. ~ ~ ~ia0 .J:, dk.;.t ~ tk (7)~ ~ MnU. ~ a, 17)* :to ~~) ~~ x,0'.} ~ ,k ~ k>, ~ ~~, ~··
*
(~) NOTE:. 'r~ 6"' ~ ~ Mt°~· N~) ~~~a:! ~ ~ ~ ~ 8 ~ 4 LI~~~'~ ~~'.o ~ GI.~ (~ r4: llM. ~ ~) .l>-0 (12.-1) All~- J;.,...f..4,
'fr\+~~~~
~= ( ~ (ti)~ ~.=4,~·=(~ );
Nott;t~+k ~j'/.)
Az=2,
~z=(i ); ~~vo} ~='i )+~~-!)
4. ~· ~ ~.·fi.:/:O. rp~ ~~ ~r-~~j(, ~·· JS.
AS\(
~31~
~4>~
LI J,,x
NOTE: In Exercise 13(g), above, we noted that the power method works if the eigenvectors of A are LI (thus, the method can work even if A is not symmetric), so that we can expand the initial vector as in (12.7). Likewise, for the eigenvector expansion method to work we merely need the eigenvectors of A to be LI so that they provide a basis; then we can indeed expand x and c in terms of them, as we've done in Section 11.3.2. The only difference is that the ci 's cannot be calculated conveniently by the formula ci = (c·ei)/ (ei ·ei) since that formula is for orthogonal bases; we need to use Gauss elimination or other such method. We will need to do that in Exercises 15(d)-(i).
Cd.) B~~-,o:t~~' J,,.:t~~- ~ ~ "-,=4 1 ~,=(1,o,o,1)T; A.z.= 2, ~2. = (1J-1,-1)1)T j A,3 =A.4 =o, ~ = ot(1,o,o,-1) -t-f(o,1,-1,o)T '60 J.N(. ~ ~ ~3 :=- (1,0,0,-1 )T D.IV\a ~ 4 = { 0,1,-1, o)T. Nott.~ ik ~,'° aJ\t. LI. .u M ~· ~ e.·ez. .... "'" :po. ~);toT UP~ -, f =(3,-1,l,O) = c 1~ 1 + c2.~2. -t C3 ~3 + Cq. tt<1~ C1 + C2. + C3 =3
/\:1
- Cz.
+ C
- Cz.
- C4
c 1 + C2. -
C3
=-I
=I
c,= 3/2.) c2. =C, c3 = 3/2., C4 =-I
::: 0
.
J..O ~ ~ ~ ~~,"°'' ~ (33) ~ ~~
""x. =
31
2..
(-f)
e + 0 ~2.'Q-T~3-0-i-4=2.~·-~~3 3/t.. 1 e J.. e 3 + 1. ~A ~cs.,~= -J.
4-=T~·
>0
.l..
IO
•
Section 11.3 (e)
~
~
A.'.c. a.,y.J,
"-.,::'+
~'A>
:I}
-C2. C 1+ Ci.
-c3
5'"2 ~ M.uJ.
c~ ~t. +
C3 =-1, Cq.
=3
=1 •
f
c, =o.
.
.
.
S~ Ca =t:O ~ J.6,, ~d ~ NU)~.
(li.. ),
~ ce>, ,t,j --tk ~ C1+ C2. + C3 : 2 -c2. + C4 = o c1 V2., c2. -•12., -c2. -cq. =I c3 =2,c4 =-l/2-. 6~c 1 *0~~)~j~
ruw-.(.
=
C1 +Cz.
<~)
~
c! ~3 + c,. ~ 4
c, =.3, c2. =-1)
+ c"" = 2 - Cq. = 0
- c2.
~=4 ~
CAM.
~ ~ llL)
M))
~ C1+C2.+C3
S
e~ 'j-~...:...CMff -pantc.t). ~ ~ :10
£- =(I) 2' 0, 3) = cI ~I -+
-
(f)
'
191
=
=-2.
-c3
CU),~~.
T-k ~ A=o ~ ~ 'A.3 =A-t1-=o t:>o, ~ ~ tuq, ~~kt. M.Q~ C3~ Cf~ ~Jnth~> ~~ 2.-~~ 1~ ~~~1fM· ~)~~
1:
£:
O't 1
c, +C2. +C3
(1,3 1 3,I )'::
=I
-Cz.
+cq. =3
-C2..
-Cq. = 3
c1 +Cz -c3
c, ~1 +··· + C4~4
c1= Lh c2. =-3) C3
=O, C4=0
=I
1
.
AO,~ :to (35), AN<.~ tk 2.-~ ~ ~ ..1_ e 1 - ,..3 e + Ol e3 + Be#f_ = e 1- 3 e .. -+ o{e.3 + ~e4 (o1.,r:J ~) ""~ = 4-0 ..- 0 -i. l- _ -r ,.., 2. .... -...... '"" \ ~~ d
=(~~)+Cl(~)+~(~)
Section 11.3 192
!,. NOTE:
The point made in this exercise is an important one, and one which is not confined to this single example, namely, that it is generally true that the basis that is most convenient, in a given application, is the one that is generated by the matrix (or, in other cases, differential) operator that is contained within the given problem. Other examples of this "principle," within this text, are the following: investigation of the stability of the equilibrium population vector in Example 4 of Section 11.2; proof of convergence of the power method in Exercise 12; the eigenfunction expansion of u(x,t) and F(x,t) in Exercise 17 of Section 18.3; and the derivation of the stability condition r < 1/2 for the explicit finitedifference solution of the diffusion equation in Exercise 13 of Section 18.6. You may wish to emphasize this point if any of these examples are discussed in class.
17. (ct)
Section 11.4 193
Section 11.4
Section 11.4 194
'X.Ct)) ~Ct)= ( ~(t)
..,
= Qz =
( 1 4 \{Ci CC>.f2 :t+ C2. ~~ t ) -1 l AC3cr.J,A3't+C4~13t
'X.Ct)= c,~'12t+ c2.~(i:t +4C3~,/3t +4C4~"3t
~(t)= -C 1 Cr.>1°2t-c 2 ~~t+ C 3 ~St+ Cq.~f3t
Section 11.4 195
( _.L_J..)
"2.'
a
F'2. "-'
Section 11.4 196
=*2. (~en+ x )?. + (:Ji +i;1 y -1) -c ~ +x.)t -
~(;tz+x,yi·+(t+~y-
tz
-c Y.(2'. + )~ cY,.rz + ~sP ~
"' .«.2. (H+ f?: x.+ ! + ':! - ')
?(,
-
~;j-: + t£~ + t ~it~
=-k2.( 1- o+ ,Ji(~-t~>r.!t. ) c- ch+ x. )~ - (;h + '(1) aJ ""' *2. (1- [1-1 cx.+'~P J) l .. J ""' "*2. ;Ji cx.+':P(-ti t-H) = -!~ x.1~ (i-t,S) F3
A
A
= ~3 ( ~ x,'2.+ (\+~)'" -1) -~.L- C1+~)j ~ ~t.+ ( \+ "() )~
"'
"-' 1~A I- ( 1+2~ t'-)(- x.t-O+"j)j)
"'
d't)
x'.' 'd ,== -_~i x.% _- ~~~~
,
<11..
2..42.)
CW\cl A.z.%-l.53, ~2..~ ( l
~ Qi''= AQx
dL
A
%: , =_~ wk..n.t. 4o ~ ~=
X.'' = Q1AQ x. = (;\'
Q
_~
0
3/8 -5'/8
t
~
-
v§)
Q
.. =
(-.LfIl4
A,::: - o.q 10, ~,
2..'f2.) I
=(..o~'Lf) ·, ,
.
AO
.
- -- o >-2. A":l ) .
FAN.~) _
rw
-- -
~
"W
-3/s) k e=(-111s _
r
('X.(t))- ,. , _ (-.Lfl4J
~(t) = ~rt) - ~~ -
-
2.42. x~l er,,O."S't + ~2.~0."B"t) I C3 Ctr.:>1.24:t + Cq. /:Wv\. l.24t
-.
-
-
-0.414C 1 CfJ0.'8"t-o.414C2.~o.,sc,t+2.LJ2C3 ~1.24t +2.Lf2.Cq.~1.24t ~ct)~ E, en~.'B':t + c2.~o.'s't + E3 ~1.2ttt + E4 ~1.2£4t. To N.M.~ ~ ~ ~ ~ ~ M ~ ~-~p~.d:- ~ %Ct)=
1'
z<* i = ( ;~;) "
(-
0
t )(c 4
,Cf:> o.c.
~t + Ez ~ o. '-8'. t) +(2 f2 )cc3 Cr.>1.24t +c4 J:i<.;,•.1.2'1t).
Section· 11..4 197
dn.1 ;,.,,_
~j; o,.,.i;l C'Ju,.l'LUL f1!fl;w-~ J
a,,,._
~ct)= (;~m = cs- (- 0 ; 14 )~
.Th Law-y~~ N'\nlt..
'~
'
~~
I
HU;f rt\~
G. ~~~-~.::to_~ o..a- Q= (~.,- .. ,%.i) ik, L;) ~ ~ /W'-~ ~~, ~~IW 8Q= ~li,, ... ,1.~) = C~i,>···,ftin) '7. E~: J{r Q""'AQ =D, ~ ~{J"'f\G =91» AQ= QD, .......... ....
i-
......
AQQ-• =QDQ-1
,._
A.
,....
..........
,.,,,,,,,
,
A= QDQ-~
4-0
rr~ A =QDQ- QDQ.., =QDI])a-· ~ -aD~~-· 83 = 88.?_ ~ ~1x~r1 9p:z.9-i = Qmb~ct = G~?Q\-rlMC! A-0 o'Yt-. 1
2
'f~
Q:= ~([[-2,-l,1],[t,O,l],[0,1,l]])j P:= ~(Q);
G[' = Ii' L -
~)
(Ab
D"° = -
11° ( 00
*-,• -i -1)~ -1 2.
(
00
0 0 ) i 1000 0 1000 0 5
~~ -(dL 5 1000 •
=l {
0
0 \ . 0 0
0 a.. ) ~ J:- ~
0 )
F,v;~ , . = ~ C[[1,0,0), (0,1,0), [o,o,Gt]]),;
R: ~(Q~~R&•P)_;
I N(.
,. _ . - - ~ -
+ -r_
'"'9'~
PiJ
J.AAl
rt
a..,,
Section 11.4 198
~, +-~~~'14, (3+0.. o A1000 =.!. - i-+ a..
-2.+ia..
4- -I+ a.. -2.+ 2.a..
N
-l+'l.)
2.-+ 2 a.. -l+d.
3+a..
~~; ~ ~ ~ .2_lCOO( II 22.. lI ) . 4-
- ":
-4~
',4
~-~-·.
--··
. ·-·
. ~
-z.
l 2. l
AO
..
,, ~ _: -
J.. ;c_x_ :
127
J "jj =i21 er/1z.,
. . . - --
·,
-------~~ - -
~~~:: Co2.0'/3.
z.
1- iv.-J. ~ 0 Jd =(Ig) dt,),, ~~~~)
10. (b) WjA A,)~· ~...... ~
•If :12. g 0~~~~1 O g ( 0
(
~+
1 -3 3
o0 ...I, -I2. o0 0 l -l o
0 I -3 3
)
(I0-2.)
I\ •
•
(10.1)) (lo.'#)
~
•
0
I) { o -l 2. o I ) ( 0 -l 2. O I ) 0 -+ 0 0 I 0 I _..,. 0 0 I 0 I O O 0 I 0 I 0 0 -l 3 I
o
Section 11.4 199
O 0 -1 3 I
~(
o o ooo
·(~:
O -t 2. O I oO l O I o O O S 2.
J~ -
X - I Xlf - 2./3 > 3 - J X~: I, X 1 -: ~
o o o oo
-I2. o 0 o 1 1 o 0 I -3 5
ix
1
X.t ) ~3 • X4
(l0.t2.)
Section 11.5 200
6
Ck.~~(10.2.) ~~~4 LI~~~~~ ~~. N~,14 ~ ~=P~ ~ Cto.12.) toi4 ~ ~~,"J~)-fc'k .
~.ct)= (C4 + t c2.tz.+ c3 t) ert ~2. (t)= (C3 + Cz.:t + 2C.z) e2t ~it)= (c3 + c2.t + c2.) e2 r X-4 rt) = ( fc2.+ ~C 3 + ~ c2.t) ear+
~
c1 er;
Section 11.5 201
Section 11.5 202
ti
+ Ao
"
~ ~,M.
= C3e:t- C,.e 3 t + 2t +{et- e3 t)h. ~(;:) = C3et + C4 e3 t -1+ t +
'i.lt)
~
hit {C,-tCi.)hECJ (- c,-+ c2. )h, =c4
Section 11.5 203 at)
tit)= (c3 +-£)et-{cq.-t-t) e 3 t +2t
~Ct)= (C3 + 1: )et+ (C 4 +t) e3X + t-1
5" o)
:: Cs-e~+Ce,e 3x+2.t
=Cs-et - c, e:tt+.:t-1
5 e .A. = ( eo o) 1
eA . =I+ A+ t, A+ ... =r. + (o4 • "" ,.., I 1.
I
oo oo o)o + (oo oooo oo) + J. (oo oo oo o)o + o,.a. =·( o ooo) o
3 0 O 2. I O
.1..
2.1 12. 0 0 0 • ' 3 o 0
31 0 0 O O . 12. O 0 O
...,
4t
1
1 3
I 0
!i2. 12. I l
Section 11.6 204 Section 11. 6 1. (b)
8=(f? \)
(C)
5= Y'2. Vz.) (
l
I
•1a o o
Q- -
0 I 1/,/2. 0 0 0
(o
l
o
~~· ~: "-"~=,,2.,3.~
Section 11.6 206
''
'
''
.....
I -
'~"j=-3X,
Section 11.6 207
,._
x, = X-1+ ~2. CC)
f
=~r. .
= ('X.~+4X 1 X.:z. +4X~) - 4X.~ + x,:z.x.3 = (?(.·~ ;~s:. Lff~~ -t~!;:.3 +tit?(.~)+ ft<~- i ".3 )t. = ~J 4 'X.z. + rl; X.3
~
(cl.)
~2. = ~.3- ~ x., i_, = ~l lf x.,x.t. ... :ic.2. x, 3
-
Section 11. 6 208:
Section 11.6 209
0
( ·~..e.-r ~1 fc£A~)--'I ), ~\...
~
y- L
~
('2..
\0
= ~1=1:L
lV) £1) "~ =~\;
ott, -I -;_
ea.=(.\). 'PW ~, i.r<. ~ -tk ~ ~
i\. 1 1, A-2=3, ~ «,=-1=0 ~ P\.=lcn3;
i\=l ~
P=1eL
fA..M.J..
A-3~
~~~~~~AO PCft,::-kL/3) ~ ~ ~ . . ~ ~ +4 ~ ~ (")= ct(~1))
P= 1!.L/3.
~ dtdnw.. •
.
~ ~ -t4
•'(1 ~
...,;..~ ~ ~ ?,:...-t4 ~ ~- "'f~~~AAl.-t 0..0.
~
P.,
~~"VP
A,O,
I
Mr{
'X.-+O AANt
~-.o.
NOTE: You might consider expanding on Example 4 in class. For example, the physical significance of the eigenvectors is not discussed in the text in Example 4, nor is the final note, above, that relates the potential approach to the force equilibrium approach.
i
Section 12.2 210 CHAPTER 12
Section 12.2
Section 12.2 211 ~~ ~ ~.=cA.)1,0), e2..=C2.,:z..t,1), f 3 = Cl,.i,-4). (el) .u.. = (2+q.i, -3L 2.)= (2.+4.<.X...i.)+ ~3.LXl)+(2.:xo) e + (2+qA.)(2.)+C-~l)(-2.i.)+<2X1) ~
'
'
CLX-.L)+(1:(1)+(0YO)
+
....,,
(2.){2.)+(tl.)C-1l)+C1X1)
(2+4'.X1)+ (... 3,t)(... i)+ C~(-4),
e
C1Y1)+C.i.'J(-l)+(-4)(-4)
= (b)
cc> (cl.) (e)
e- t + ~ e -9 - ~
4-5".i.
* 2.
11=(o,o,1) = ~~,+
~~-:
1s ~3
C3-t.fi IB
.... 3
e
- 3
•
=(l 1 1) = t-.\, e + e + ~ 18 e ~= (L>2.l,31) = t-4-21. e + 4+5.l e + 2-11~ e JS
.u. ""
, )
s-2...t
~ _,
2.
-
~
_t.
1
~ .... 2.
3
-3
~= (o,.L,o) = L e - ~ e +-1 e 2. - •
(~) .t.t. = (l-.l., o, o) = -
'
1A. e 1 + .2-2.t. et.+ ~ e 3
1
-
'· ~·~ =
18 -.3
""2.
.....
M1 ir,+···+..un..UY\
'
-
18 ""
j .u,, ...,.u1'\. o.ru. ~ &
= lLl,1'2.+···+1.Unl-z. >o
=0
~ ~ CS"b). N~, (~ -t ~~) • ~ : [ O(,l(I + ~r-J'j ' ... '
-{
.'
llJ'\.l
ol.l 0 ,
-
+ ~/\JY\.} (-tJi'>•• • >,urn.) = (ot.u,+ (3t.s; ) Wt + ... + (~.Un+ ~~) Mrn. = ot ( .u,MS-, + ... + ..U.nM-ri) + ~ (Ml'Wj + ··· ~ ~ W-"')
= 7. u.Q,~ ~
at(~·~) -t
tk
d,U n.
(S(!:!9· ~)
Mr~~~
c~+ol~) • c~+a.~n ~o u~nz. +oL !r·~ ;.~·~
+ + Ol«- n~ni. ~ o l\ .U.1( 2- + Ol rr.:;::r + Ci M • l\T' + lCX \'2. l\ /\j it '2. ~ 0 Lit 01. =a.+:h D-Mtl. ~~ = c+:cf. ~ . . n"'.......q\t. + (lt+ibxc-icl)-+ (Q.-,.ib)(c+A.d)-+ 1ct1t nl\jnt. ~o ..... 11~1\-z. + 2.o..c+ 2.hl + (0:+ b'l.) \\~I\~~ O S.it ahtt 2c+2tt H~l\'2. = 0 ~ ~ ~ = -c/U~l\2. SAt ~hb 2cl+~l\~l1'2.= o ~ b -
=
rcJ.
=
=
M>~~~' !. :JS1:. 2A.'2. c'Z..+ cl'l. 'Z. 11-\6 11 - II ~II?. - n~nt. + II !l!" II"" 11 ~ II ~ 0 J 11~11'2-n~ui..- 2.(c.'2.+ ct..2·) c~-+a'Z. ~ -
+ cc.'"+cl..~)
11.u. u't-n l\rll't. """'
#OJ
1~·~1 ~ n~n n~n
v
~o,
O
e
.... z.
Section 12.3 212
Section 12.3
ce> ff'~ m...t ~ ~
l
3. Cb) J8-~"J; l = l+fA
MB=o. (T-kt 3>'41. J\4W"~o.. ~ 1ik1At.)
2=.i.~>J = A.?..- 3A + (3-2.i) =0
.AO A.= (3± ,/-3+ g A., )/2.
Section 12.3 213
e :
/:JC
_.I
s~~,
Tk
Ol
(2.l-J+~-3+8..(. l )T 2. )
i\.2.=
ez: ~(2..t-1-2.~)
~ ~ ~
rn.ot H~~
j,l
I)
+r>-<> ~ -.f'!OI)
Ao;{.e. "-,~ ~ ~ .k ~ (~, ~
~ ~) ~~ ~ ~,'°' ~ ~ .l.tt ~"'4 (~,~ ~ ~ ~ ~1 .. ~2. =0(~(0.115-2.~'~.t):t:o). FAM~ th..~~~~ ~(,.nt(-3+8•.t)); ~ l 0 bb4~ + 2.'f02.5..t.J AO. . ~ i\. 1 z ~.'3'32.-t1.201.t > ~· ::::-c:i(0.'332.+2.2.0IA., l) ~ ~ 0.,,,8-1.201.A..,
4. (c) rr~ ~ ~
~t.~ ~(-l.3'32.-0.2.0ll.,l)T
~(~~): A:.=~ (tC 3, t+I ], t 1-I ,2..J] )j ~(A)j
r
~, =*, ~, =c1) t- -t :x: )T T A. 2.=I , e2. =(-t - t I, l ) ~~ ~ ~-- ~ r\~~ ~)~ ~) ~ /\.>,Q.,a/l.f.~ ~ ~. •fz. =
=
(rJ..)
A.t=l, ~1=(1,0,0{ A.2. =2, ~2 (4+.i.; t, 1-.i. ~ 3 = l+i, ~.3 =. (I, j,,/3 > 0 )T i.o Mt.. H~~ MJ~ "->;;:, ~ 4~ ~ ~£ti4 ~'.o ~ ~ ~ ~
=
l
6
~f-.ct, ~~~A-''° AA.t ~, A.No.&.~ ~,'° ce) >-. 1 =0, ~ 1 =(2.-2..i.,o,1f
OJU.
4
~~
ce.d.,
~.·r3=1).
=(-
i\. 2. =- 3 > ~ 2l/3 , I , - ~ + ~ l )T A..3= 3, ~3:(.l/3Jl, i--f-A.)T
~
N:,
H~ ~) ~ ...t.M~, ~ ~,/.)
~~:
AAL
.nuJ. ~ +k ~~ ~
f!,•f?.. =(2-2.l)(i-~+O+(l)(-i-~l) = O ./ ~' • ~3 =(2-2i)(- ~) +o + (1) ( ~ +; l) =o v' ~2.. ~3
=(-.i/3)(-i/3)+ I +(-j4-~lX~ + ~ l.) =0 v
Section 12.3 214 A1=-l, ~1=(-1,1f j Az.=2,~z.=(2>1? · ~ = (-A.,J) · T ) A. =2-A-) · ~2.:{..t,I) · T Cb) A1=2-TJ.., 2 1 cc) A..1 cs+m )/2, ~ 1 1, C3+ffl)/4 )T.; .Az. ~ (s-ffl )/2, ~z = ( i, (3-l-33 )/4 )T (ti) "-• t3+4.l)/2) e,:: (1J cs-q.t)/10 )-ri 1\.2.= (3-q-.i.)/2, ~2. 1, cs+q.t)/10),.
S. Ctt)
=(
=
=
""'
=(
Section 12.3 215
NOTE: You might consider discussing exercises 13, or 14 and 15 in class.
14. 8~= !2.· \J~ ~ ~ ~tk:t ~·% =O.W.Ji, c· r: = (A'X.,)· ~ = ~· (f\-r) = x·o =o ..; ,..__,....
-....-...
"""'
.,,,,,._
~
,._,'W
~~~
fi'"E =(H Xt) =(g) ~ (i~) = o(.(!1)
15. (Cl.) en,
/c,-ci=O.\
J ll-0
~ ~ £:. (~1) =0
~,~~~~.:to~~~~
(i ~ ~~)-i> (~b ~~-c,) ~Mr<.~ c~-c,=o. v
l
~,1d~(~~-~tk~
(f)
I 3 2 J c1 ) l 3 2 t c, 2 -I I 0 Cz. -+- 0 -7-3 -2 Ca-2.C1
)
( l 3 2.. I Ca _,,. 0 -1 -3 -2. Ca,-2.C1
ff*f: = (t-~ i-LY'!~)=Q .~(~O _;_lO ~o -~o ~) ~ I -3-2.t. -4 -::. ~ ~ . o 2z.:? (30l+3~)/(-2.-l),~ J.A ~ (2-1-.i)ct, ~ 3 = ~2+l)~, ~2.
4=
,c.o
1
0 0 0 0 C3-C1-Cz..
0 -7-3-2. C3""3C 1
3 2. 3 f C3
Ao w<, ~ Cf C -Cz.
:0
../
%=0l,%:3=f, 'I-
.
~)'°° M ~ ~, ~)
=-3~-3(3, %! =(1-l)Ol-(l-t~L) f) s= \(l-i.>_c;i~~r'l3) =ot (~L l+ ~(-~i.L) = r., + ~ 1:2.. 0. (2.+~)~
(2.tA,)ot
rk,
1
Au(
1'1\..1.Ul
2..+~
2+~
-+-
~ not.~~
0
£·~.==o ~ ~·E:t=o;
J.. I 2i-3 Ci ~ I 2.. -4 C3 I 2. -4 c3 2. I I c1 -I 1 -5' c4 .i, t U.-3 c2.
o{
.A.e., (1t)c1-3C2. +cJi)cq.=O I ~ (-l+2l)C 1-3Gz. +(2.-.i )C3 =0 ·I
0 3 _,
Cq.-t-C3
0 3
-<}
2.Cf.~CJ
o ..i.+1
..3.t,-3
c*.t+c2.
~
0 1 -3 0 0
o
0
o o
(Cq. +C3)/3
C4-c3 +c 1
s(c2.+4~)
-(1+.iX°C3+Cq.)
Section 12.3 218 \f'7. C
=
-
-
Section 13.2 219 CHAPTER 13
Section 13.2 1. Cb) el(P, P')
:=
~ (1-o)t. + c-r-4 f + (5"-3)?. + (o-z. )?.
=~
ct(P,P') = 1(1-' )t. + (-~-S)'2. = ~10&, 3. dCP,Po) = ~(4.3 -4.z)2"+C1.1-t)t. =~0.02. =O.lt.ll < Jt> kl f AO~ N. 4. cl. (~fo) = ~ (2-3)?.+ (5"-4)2..+ ('7-S)?. =~ ~ 2H5' < Jt, ~ p ~ ~ N. 5. c:l (P, fo) =~ (.01)4+ (.04)1·+(.05)4 + (.03)1- = ~.OOS\ ~ 0.071 >-'Z.) ~pk MA AM N. Cc)
~. (b) ~~ ~ fl1l.l- -3,S j ~) ~ (C) ~~Mt. X=Oj ~j ~ (ci)~~~X=Oj ~~ ~
(e)~~
~
)l
~
Cm) ~ ~ tV\t. flx,>x. 2 ,x 3 1~ x.7+x.~~2) X-2..=oJ; ~; ~ C<') B~ ~ ~ f cx..,. .. ,x'+')l~ 1 =01 o~x.2.~1 1 o~x3 ~1, o~~~ 1J, {C " )(x. 1 =1, .. '' " JJ
l( " t( f( II
)IO~Xi 1 ~t,x..2.=0JO~X.3 ~1JO~X.4 ~l}> I ,, , x, =I , J) ti
)
)l
II
)
0 ~ x. 2, ~ l ) x J =0 J 0 ~ ~'t ~ l
J)
Section 13.2 220
~
7.
x I ~ I ) 0 s xz. ~ I ) XJ = I ) 0 ~ X.4 ~ I J )
{(x I)' . ') x.4- )\
0!
fC
o~x.~1)o~"z~1)0~~3 ~1, x4 =0], •• •• ,X 4 =lJj~_)~
)\
[(
11
)}
(b)
(a.)
3"-
15+E 15
4+€----1 Lt- - - 4-Ei---
(C)
~1+€~
~~
~l
JS-E
~t-€ /' )f
l
/
·-1, . ) Av<\ \-€ +rwv... I ~ ~ ~(€) = ~4-t€ -2
Cot~).
~~~(E) : IS+E -5: E ( dt 3
3
~~
'\
r
-1
"'
•
AvA:(E-tAw\.\)
&(E)=
~1 (E+~l)- l
(o'l~).
~)
e-~
(f)
(cl) ~2+€
.
/:Nf\2.
'1---...,.....:::=::::...... ~-...,..c;------+-~ /
~2-E -+---___..--L"-'-S-- "
f
2
\_~ 1 (-E+~2.)
x.
.1'
-~(1+€)
~ ~ ~f)=~ (-f+~2.)-2
~~ ~(E)=k(HE)
(dt~).
(dl~~).
1
{!~ ·:,.:
-3
-2
-1
x
2
3
Section 13.2 221 ~.eel) F~~~:
I [fC'X.)+d(X.)]-CA+B)I =I [f(X)-A] + [~CX)-8]1 ~ <
+ J ~cx.1-BI + E =2€ s. €',
Iftx.)-A\ €.
~
.
S~ l[f~-x)+~lx))-(~+6)!< E' J fen ~.i.-.M.t'i ~ 1-X.-ctl < ,rY\AH\f b1> ~ t, it ~ 'tko.:t {9.4) N:> ~ • .., 8
(e)
.
Ll: ~ ftx) =A. 'rk; fo'1. anJ~ ---- -- - ()_ ~ € >O ~ ~ I fCx)- A I< f f