PROPOSAL TEKNIS PC I GIRDER POSTENSION NONSEGMENTAL
AnalisaTeknis Jembatan Ngrame Mojokerto PC - I Girder L – 16.6 m; H – 90 cm; CTC – 180 cm No. Job: 08004 No. Rev: 00
Innovation and Trust
HEAD OFFICES Jl. D.I. Panjaitan Kav. 3-4 JAKARTA – INDONESIA Telp : (+62-21) 8192808, 8508640, 8508650, 85905570 (Direct to Marketing) Fax : (+62-21) 85903872 Web : www.wika-beton.co.id Email :
[email protected]
PROPOSAL TEKNIS PC I GIRDER POSTENSION NONSEGMENTAL
AnalisaTeknis Jembatan Ngrame Mojokerto PC - I Girder L – 16.6 m; H – 90 cm; CTC – 180 cm No. Job: 08004 No. Rev: 00
MENYETUJUI
(
)
Proposal ini berlaku apabila telah mendapat persetujuan dari konsultan/Owner. Proposal ini berlaku hanya untuk produk-produk Wika beton DISETUJUI : TANGGAL :
Ir. M. Zulkarnain,MM,.IPM Manajer Teknik
DIPERIKSA : TANGGAL :
Ir. Gambiro Kabag Teknik
DIBUAT : TANGGAL :
Verly Widantoro, ST. Staf Teknik
PROPOSAL TEKNIS
BALOK POST TENSION NON SEGMENTAL JEMBATAN NGRAME MOJOKERTO PROSPEKTUS Proposal teknis ini dibuat untuk konstruksi Proyek Jembatan Ngrame Mojokerto yaitu pada bagian konstruksi balok jembatan. Balok I girder dirancang menggunakan sistem post tension monolith (non segmental) yaitu merupakan balok yang terdiri dari satu segmen yang kemudian distressing atau diberi gaya prategang pada kondisi kekuatan beton balok telah mencapai kuat tekan yang ditentukan(post tensioning). Hal ini dimaksudkan agar saat balok distressing, balok telah mampu menahan gaya prategang. Sistim pabrikasi balok I girder precast memiliki keuntungan dari segi waktu pelaksanaan proyek yang lebih cepat dan terkontrolnya mutu dan kualitas produk balok sesuai spesifikasi yang direncanakan. Proposal ini dapat dilaksanakan setelah disetujui oleh konsultan atau owner. PROYEK Nama Proyek Lokasi
: Jembatan Ngrame Mojokerto : Mojokerto, Jawa Timur REFERENSI DISAIN
Referensi disain yang digunakan dalam menyusun analisa ini adalah : - Pembebanan berdasarkan Bridge Management System (BMS). - Material berdasarkan standar Japan Industrial Standard (JIS) dan American Society for Testing and Material (ASTM). SPESIFIKASI DISAIN Pelat Jembatan : - Mutu Beton - Tebal pelat Pelat Deck : - Mutu Beton - Tebal Pelat Deck Aspal : - Tebal Aspal Balok : - Post tension Girder Konfigurasi Balok - Tulangan -
Strand
= K-300 = 27 cm (termasuk Pelat dek) = K-350 = 7 cm = 5 cm = H-90cm. = L=16.6m; Ctc balok 1,85m; K-500 = D-13 fy = 400 MPa (tulangan deform). φ 10 U-24 (tulangan polos) = φ 12,7 mm (grade 270, low relaxation)
ANALISA TEKNIS Analisa yang dilakukan adalah perhitungan teknis untuk perencanaan balok I girder Pretension nonsegmental terhadap beban kerja rencana berdasarkan pembebanan Bridge Management System (BMS). Analisa teknis meliputi penentuan konfigurasi tendon dan jumlah strand yang dibutuhkan balok, penulangan balok terhadap gaya dalam yang bekerja dan analisa lendutan yang terjadi. Penggunaan konfigurasi tendon dengan konfigurasi strand pada posisi tertentu yang diberi jacking force akan mengakibatkan tegangan pada penampang balok, tegangan tersebut di check terhadap tegangan yang diijinkan pada kondisi saat transfer dan saat service balok. Pada analisa teknis juga dilakukan kontrol lendutan yang terjadi terhadap lendutan yang diijinkan baik pada saat service. KESIMPULAN Kesimpulan analisa teknis adalah sebagai berikut : PC I Girder Non Segmental Post tension L16,6m Mutu Beton : K-500 Dimensi Balok : Standar Wika Beton H=90 Rancang Jembatan : Panjang Balok 16.6m ctc185cm Jumlah Segmen : 1 Segmen (16.6m) Skiew Jembatan : 0° Strand : φ 12,7 mm (grade 270, low relaxation) Jacking Force : 75% dari Ultimate Tensile Strength (UTS) Kekuatan Beton saat jacking force : 80% dari fc’ Konfigurasi tendon & Strand Tendon
Jumlah Strand
1 2
10 12
Posisi tendon (mm) Tepi Tengah 500 200 250 100
Dari hasil analisa Teknis : φ Mn : 326.38 ton.m Mu : 276.53 ton.m Rasio φMn / Mu = 1.18 Balok mampu menahan beban rencana. Lendutan akibat gara prategang (chamber ) sebesar 2.26 cm ( ↑ ke atas) Lendutan akibat beban hidup 0.78cm < lendutan ijin syarat L/800=2.0cm (↓ ke bawah) Lendutan saat service 1.48cm < lendutan ijin syarat L/360=4.44 mm ( ↑ ke atas )
Post L16.6-I90-185 MONOLITH
RESUME OF PC I GIRDER TECHNICALLY CALCULATION 1. BEAM SPECIFICATION Span Beam Height ( H ) Distance ctc of beam ( s ) Slab thickness Beam Compressive strength Slab Compressive strength
= = = = = =
Segment Arrangement Beam Segment 1 Length (m) 5.00 Additional length at the end of beam Total length of the beam Total beam weight 2. STRESSING Nos of PC Strand = Strand configuration
22
16.00 90.00 185.00 27.00 KK-
m (beam length = cm cm cm (include RC Flat) 500 300
2 6.00 = = =
3 5.00 0.3 16.60 11.20
m m ton
strand φ
12.7
mm (PC Strand 270 grade, low relaxation)
No.
number
H strand bottom (cm)
Tendon
strand
edge
mid
1
0
0
0
2
0
0
0
3
0
0
0
4
10
50
20
5
12
25
10
total
22
36.36
14.55
4 0.00
Jacking Force UTS of Strand Total Losses fc initial
5 0.00
16.60 m)
= = = =
6 0.00
75%
7 0.00
UTS
19000.00 kg/cm2 23.12% 80.0%
fc'
3. LOADING 1. Dead Load a. Precast Beam = 0.64 t/m b. Slab = 1.20 t/m Slab thickness = 27.0 cm (include RC Flat) c. Asphalt = 0.20 t/m Asphalt thickness = 5.0 cm d. Diaphragm = 0.42 ton for 1 diaphragm No. Diaphragm 3 pcs equivalent load = 0.08 t/m 2. Live Load Taken from "Bridge Management System (BMS)" D load a. Dynamic Load Allowance (DLA) = 1.4 for span length <= 50m b. Knife Edge Load (KEL) = 4.40 ton/m' c. Distribution Factor (DF) = 1.00 d. Distribution Load q= 0.80 t/m2 which : q = 0,8 t/m' For Span <= 30m q = 0,8 x (0,5 + 15/span) t/m' For Span > 30m e. Live Load Distribution load : q' = DF x q x s = 1.48 ton/m' Line Load : p' = DF x DLA x KEL x s = 11.40 ton
CALCULATION RESUME
Post L16.6-I90-185 MONOLITH
4. BEAM SUPPORT REACTION ultimate total = 1,2*Beam + 1,3*Slab + 2*Asphalt + 1,2*Diaphragm + 2*LL ( Bridge Management System, Vol.1-Page 2-6 ) Beam support reaction : a. Dead Load = 5.15 ton b. Additional Dead Load = 11.85 ton c. Live Load = 23.24 ton Ultimate support reaction =
69.13
5. CONTROL OF BEAM STRESSES 1. Initial Condition Middle span position top stress = bottom stress = 2. Service Condition Middle span position top stress = bottom stress = 6. CONTROL OF BEAM DEFLECTION Deflection at the middle of beam span 1. Chamber due stressing initial erection final 2. Deflection due live load 3. Total deflection at service
ton
2 13.47 kg/cm 2 171.84 kg/cm
required required
> <
2 -14.88 kg/cm 2 190.21 kg/cm
2 147.80 kg/cm 2 -8.58 kg/cm
required required
< >
2 172.92 kg/cm 2 -33.06 kg/cm
= = = = =
-1.58 -2.41 -2.26 0.78 -1.48
cm cm cm cm, required < L/800 = cm, required < L/360 =
2.00 cm 4.44 cm
7. MOMENT CAPACITY OF BEAM Mult = 1,2*Beam+1,3*Slab+2*Asphalt+1,2*Diapraghm+2*LL φ Mn Ratio, φ Mn / Mu (>1)
CALCULATION RESUME
= = =
276.53 t.m 326.38 t.m 1.18
Post L16.6-I90-185 MONOLITH
TECHNICAL CALCULATION OF SEGMENTAL PC I BEAM FOR BRIDGE SPAN (ctc) L = 16.00 M I. DATA
0.3
L=
Beam length Beam spacing (s) Concrete Slab thickness Asphalt thickness RC Flat thickness
16.00 M 16.60 185.00 27.00 5.00 7.00
= = = = =
0.3
m ( edge anchor to edge anchor : 16.3 cm cm (include RC Flat) cm A cm
m)
tfl-1 tfl-2 Cross Section
H A B tweb
= = = =
90 35 65 17
cm cm cm cm
tfl-1 tfl-2 tfl-3 tfl-4
= = = =
7.5 7.5 10 12.5
tweb
cm cm cm cm
H
tfl-3 tfl-4 B
II. MATERIAL 2.1 Concrete Beam
Slab
Compressive strength 500 300 at service * fc' = (0.76+0.2*log(σbk/150))*σbk = 432.3 246.1 at initial ( 80% ), fc'i = 345.8 196.8 Allowable stress at initial ………..(AASHTO 1992, Chapt. 9.15.2.1-Design) Compressive 0.55 * fc'I = 190.2 108.3 0.80 * Sqrt(fc'I) = Tensile 14.9 11.2 Allowable stress at service ………. (AASHTO 1992, Chapt. 9.15.2.2-Design) Compressive 0.40 * fc' = 172.9 98.4 1.59 * Sqrt(fc') = Tensile 33.1 24.9 Modulus of elasticity Ec = 313952.2 236864.0 Eci = 280807.3 Modulus rupture fr = 41.2 31.1 Note : * Pedoman Beton 1988, Chapter 3
[kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2] [kg/cm2]
2.2 Prestressing Cable [Uncoated stress relieve seven wires strand] ( ASTM A 416 Grade 270 Low Relaxation or JIS G 3536 ) dia : - Diameter strand 12.7 [mm] 2 - Eff. Section area Ast : 0.9871 [cm ] 2 - Modulus of elasticity Es : 1.96E+06 [kg/cm ] 2 - Ultimate tensile strength fu : 19000 [kg/cm ] 2.3 Steel Reinforcement - Diameter - Eff. Section area - Modulus of elasticity - Yield stress
dia Ast Es fy
: 13 [mm] 2 : 1.267 [cm ] 2 : 2.10E+06 [kg/cm ] : 3900 [kg/cm2]
page 1 / 13
Post L16.6-I90-185 MONOLITH
III. SECTION ANALYSIS 2
Remark : Ep 1 = 313952 Ep 2 = 236864
2
kg/cm kg/cm 2
5
[Girder] [Slab]
4 Ya
n = Ep 1 / Ep 2 n= 1.33
Ya' 1
3
Yb
2
base line
Yb'
1
PRECAST BEAM
COMPOSITE BEAM
3.1 Precast Beam [ in cm ]
Zone Section
6 5 4 3 2 1 Total
Width
Area
Yb
cm
cm
cm
0.00 262.50 195.00 892.50 410.00 812.50 2572.50
90.0 82.5 75.0 22.5 12.5 0.0
90.0 86.3 79.2 48.8 16.5 6.3 36.3
0 22641 15441 43509 6775 5078 93444
0 1230 878 204996 3026 10579 220710
0 654306 358187 137805 160732 734867 2045897
Area
Level
Yb
Area*Yb
Io
Area*d
Bottom
Upper
cm
0.0 7.5 7.5 52.5 10.0 12.5 90.0
65.0 35.0 17.0 17.0 65.0 65.0
35.0 35.0 35.0 17.0 17.0 65.0
2
Area*Yb
2
Level
Height
3
Io cm
Area*d 4
cm
4
Ix cm
4
0 655537 359065 342801 163758 745446 2266607
3.2 Composite Beam [in cm ] Zone Height
2 1 Total
3.3
Width
2
3
2
4
4
cm
cm
97.0 90.0 0.0
107.0 93.5 36.3 73.4
298690 7078 93444 399212
Area (cm )
Ya (cm)
Yb (cm)
Ix (cm )
Wa (cm )
Wb (cm )
2572.50 5439.70
53.7 43.6 16.6
36.3 73.4
2266607 9078357
42228 208165 546515
62400 123702
Bottom
Upper
cm
20.0 7.0 90.0 117.0
185.0 19.0 65.0
185.0 19.0 35.0
2791.50 75.70 2572.50 5439.70
cm
cm
93050 410 2266607 2360067
Ix cm4
cm
Section
3153620 30620 3534050 6718290
3246669 31030 5800657 9078357
Resume [in cm ] 2
Description
Precast Beam Composite Beam
[composite] [precast]
4
3
3
IV. Loading 4.1 Dead Load Design Carracteristics……. Bridge Management System ( BMS ), Vol.1 Chapter 2.3.1 1. Specific Gravity of Precast Beam = 2.5 ton/m3 ( γPB ) 2. Specific Gravity of Slab = 2.4 ton/m3 ( γS ) 3. Specific Gravity of Asphalt = 2.2 t/m3 ( γasp ) 4. Specific gravity of Diaphragm = 2.4 ton/m3 ( γdiaph ) a. Precast Beam
q1 = Area x γPB x
2.5
=
0.6431
[t/m']
b. Slab
q1 = 0.2573 q2 = Hslab x s x γs q2 = 0.2700 x 1.85 q3 = tasp x s x γasp
x
2.4
=
1.1988
[t/m']
c. Asphalt
q3 = 0.05 1.85 x x p = Volume of diaph. x γdiaph
2.2
=
0.2035
[t/m']
d. Diaphragm
0.15 2.4 x q4 (q ek = p*n/span)
=
0.4234 0.0794
[ton] [t/m']
p = no. diaph.
1.68 3
x 0.7 pcs
x
=
page 2 / 13
Post L16.6-I90-185 MONOLITH
4.2 Live Load Taken from "Bridge Management System (BMS)" D load a. Dynamic Load Allowance [DLA]
b. Knife Edge Load (KEL) c. Distribution Factor (DF) d. Distribution Load q = 0.80 t/m2
…… Vol.1, Chapter 2.3.2-Traffic Loads
DLA = 1 + 0,4 = 1.40 DLA = 1 + (0.0025*span+0.175) DLA = 1 + 0,3 = 1.30 = 4.40 = 1.00
which :
q = 0,8 t/m' q = 0,8 x (0,5 + 15/span) t/m'
e. Live load - Distribution load q' = DF x q x s x = 1.00 0.80 x 1.85 - Line load p' = DF x DLA x KEL x s 1.00 1.400 x 4.400 x x
1.85
Span <= 50 m 50 < Span < 90 m Span >= 90 m ton/m'
for
Span <= 30 m Span > 30 m
=
1.48
ton/m'
=
11.40
ton
Sec 3-3 11.00 17.69 17.69 32.97 5.60 2.18 40.75 40.70 39.17 79.87 138.31 237.64
Sec 4-4 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sec 5-5 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sec 6-6 8.00 20.58 20.58 38.36 6.51 2.54 47.41 47.36 45.58 92.94 160.94 276.53
V. MOMENT ANALYSIS [in ton-meter ] Type
Description
DL
Precast beam Subtotal Slab ADL Asphalt Diaphragm Subtotal LL Distribution load Line load Subtotal Total (DL + LL) Ultimate total
Mid span 20.58 20.58 38.36 6.51 2.54 47.41 47.36 45.58 92.94 160.94 276.53
Sec 1-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sec 2-2 5.00 17.69 17.69 32.97 5.60 2.18 40.75 40.70 39.17 79.87 138.31 237.64
(m)
Ultimate total = 1,2*Beam+1,3*Slab+2*Asphalt+1,2*Diaphragm+2*LL ( Bridge Management System, Vol.1-Page 2-6 ) Note : DL = Dead Load ADL = Additional Dead Load LL = Live Load
VI. SHEAR ANALYSIS [in ton ] Type
Description
Precast beam Subtotal Slab Asphalt ADL Diaphragm Subtotal Distribution load LL Line load Subtotal Total (DL + LL) Ultimate total DL
span
Sec 1-1 0.00
Sec 2-2 5.00
Sec 3-3 11.00
Sec 4-4 16.00
Sec 5-5 16.00
Sec 6-6 8.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.70 5.70 5.70 11.40
5.15 5.15 9.59 1.63 0.64 11.85 11.84 11.40 23.24 40.23 69.13
1.93 1.93 3.60 0.61 0.24 4.45 4.44 7.83 12.27 18.65 33.05
-1.93 -1.93 -3.60 -0.61 -0.24 -4.45 -4.44 -7.83 -12.27 -18.65 -33.05
-5.15 -5.15 -9.59 -1.63 -0.64 -11.85 -11.84 -11.40 -23.24 -40.23 -69.13
-5.15 -5.15 -9.59 -1.63 -0.64 -11.85 -11.84 -11.40 -23.24 -40.23 -69.13
0.00 0.00 0.00 0.00 0.00 0.00 0.00 -5.70 -5.70 -5.70 -11.40
Mid
(m)
ultimate total = 1,2*Beam + 1,3*Slab + 2*Asphalt + 1,2*Diaphragm + 2*LL ( Bridge Management System, Vol.1-Page 2-6 )
page 3 / 13
Post L16.6-I90-185 MONOLITH
VII. PRESTRESSING CABLE 7.1 Cable Profile [in: cm ] ten-
Nos
don
strand
edge
middle
cm
1 2 3 4 1
0 0 0 10 12 22
0.00 0.00 0.00 50.00 25.00 36.36
0.00 0.00 0.00 20.00 10.00 14.55
0.987 0.987 0.987 0.987 0.987
total
profile
Asp 2
fu
%
Jacking Force
75% 75% 75% 75% 75% 75%
0.00 0.00 0.00 140661.75 168794.10 309455.85
2
(kg)
kg/cm
19000 19000 19000 19000 19000
Parabolic curve : Y = AX Y= A= B= C=
2
+
BX +
C
Average of Strand's position vertically from the bottom of beam ( Value for Y axis ) Constanta : ( (Ymiddle + Yedge)/(L/2)2) Constanta : ( L x A ) Average of strand's position when the parabolic curve reach the Y axis X + 0.3636364 A = 0.003285 Y = 0.003285 X2 + -0.05354 B = -0.05354 tg o = 0.00657 X + -0.05354 Eccentricity [e] Yb - Ys = 21.78 cm Note : Jacking Force = Nos x Asp x Fu x (Tension Persentation) Nos = Number of Strand Yb = Distance of Neutral Axis from the bottom of non composite beam ( Chapter 3.3 - Resume ) Ys = Distance of tendon from the bottom of the beam at the middle span ( Chapter 7.1,Cable Profile-middle)
7.2 Initial Jacking Force Check for two condition at initial for mid span Top stress
σ top = Pi/Ac - Pi.e/Wa + Mbs/Wa Pi
Bottom Stress
σ bot = Pi/Ac + Pi.e/Wb - Mbs/Wb Pi Result :
at service for mid span Top stress σ top = Bottom Stress σ bot =
Pi
<=
Pe/Acp - (Pe.e-Mbp)/Wap + Mbh/Wac Pe Pe/Acp + (Pe.e-Mbp)/Wbp - Mbh/Wbc Pe Result : Pe >=
-14.88 500.82 190.21 302.53
kg/cm 2 ton kg/cm 2 ton
>= <= <= <= 302.53
ton
[3]
<= >= >= <= 197.72
172.92 161.07 -33.06 197.72 ton
kg/cm 2 ton kg/cm2 ton [6]
(
-14.88
)
-33.06
)
[1] [2]
[4] [5]
Assumption : Loss of Prestress assumption long term 23.117% (must be = 23.117% ) From eq. [3] and eq. [6], gradually stressing is not needed used prestressing cable φ 12.7" Pi = = 309456 kg Pe = 76.9% 309455.85 = 237918 kg Note : Pi = Initial Prestress Force Wa = Modulus Section for Top section of Precast Beam Mbs = Moment due to Self Weight e = eccentricity Wb = Modulus Section for Bottom section of Precast Beam Pe = Effective Prestress force Wac = Modulus Section for Top section of composite Beam Mbp = Moment due to concrete Weight (Precast Beam + Slab + Diapraghm)…(Chapt. V-Moment Analysis) Wbc = Modulus Section for Bottom section of composite Beam Wap = Modulus Section for Top section of Precast Beam Wbp = Modulus Section for Bottom section of Precast Beam Mbp = Moment due to additional Load ( Asphalt + Live Load )…… (Chapter 5-Moment Analysis) page 4 / 13
Post L16.6-I90-185 MONOLITH
7.3 Losses of Prestress 1. Losses of Prestress (Short Term) a. Friction Friction cable and duck caused tensile at initial is not same tensile in ending section, which the deferential of tensile can be calculated as follow : -( μ *α + k *x) where : Px = Po * e ……………. ( AASHTO 1992, Chapt. 9.16.1 ) Px = Prestress force at section distance x from tensile point. Po = Jacking force ( tensile force at anchor, initial) μ = friction coefficient = 0.20 (for grouting tendon in metal sheating, 7 wire strand) α = Change of cable angle from tensile point to x section = 2 * arctg ( 0.00657 x + -0.05354 ) = 0.111 rad k = Wobble coefficient =0.003 (for grouting tendon in metal sheating, 7 wire strand) x = Distance from tensile point to x section 16.60 m If tensile of strand is taken 75% from Ultimate Tensile Stress, Po (Jacking Force) = 75% 0.9871 19000 = 14066.18 kg and value of tensile strand at end beam as follow : Px = 13089.24 kg b. Anchor slip Slip is occur after anchoring of pc strand is being held/restraint in the end of beam. Because of this friction, losses can not evenly distributed at the overall length of beam. It can calculated by formula : x = @sqrt(d*As*Es/m) where: d = draw-in, assumption = 8 mm 2 As = eff. Section area = 0.9871 cm m = loss of prestress per length m = (Po-P) / L = 0.59 kg/cm' So, x = 16.22 m Tensile force at distance 16.22 m as : P =Maximum tensile force = 13094.21 kg c. Elastic Shortening ( ES ) Losses due elastic shortening ES = (Kes*Es*fcir/Ec)*As ……………( ACI 318-95, Chapt. 18.6 ) where: Kes = 0.50 (for postensioned) As = 0.9871 cm2 fcir = concrete stress at centre gravity of prestressing force immediately after transfer 2 fcir = (fbottom-ftop) * (H-ed)/H + ftop = 146.25 kg/cm ES = 450.62 kg 2. Losses of Prestress ( Long Term ) a. Shrinkage ( SH ) SH = 8,2*e-6*Ksh*ES*(1-0,06*V/S)*(100-RH) = 198.91 kg ….. (ACI 318-95, Chapt. 18.6) Ksh = 0.68 (without moist curing) 2 V/S = 3.81 (ratio area/perimeter) Area = 2572.50 cm perimeter= 675.43 cm RH = 80.00 b. Creep
( CR ) CR = Kcr*(Es/Ec)*(fcir-fcds)
……… ( ACI 318-95, Chapt.18.6 )
Where :
Kcr = fcir = fcds = fcds = Msd = Ig = CR =
1.60 (for postensioned member) stress at center point prestress force, initial condition stress at center point prestress force, permanent dead load. 2 Msd (e) / Ig fcds = 45.56 kg/cm Moment due to all superimposed permanent dead loads applied after prestressing Moment of inertia of gross concrete section at the cross section considered. 992.79 kg
page 5 / 13
Post L16.6-I90-185 MONOLITH
c. Steel Relaxation ( RE ) RE = [ Kre - J*(SH+CR+ES) ] *C
…………… ( ACI 318-95, Chapt. 18.6 )
where :
Kre = J = C =
5000 0.04 0.57
RE =
162.91
(for 270 grade, low relaxation strand) (for 270 grade, low relaxation strand) (to refer fpi/fpu, fpi=stress after friction and anchor slip) fpi = 12620 kg fpi/fpu = 0.66
kg GRAPHICS OF LOSS OF PRESTRESS STAGE
1. Due Friction 14066
13089 2. Due Slip (chek effect of prestress losses at mid span, wheather of not) 14066 13094 12122 12620 13578 16.22
m
8.30
m
13089
3. Due Elastic Shortening 14066 13094 12122
13089 12620
11672
12169 8.30
13578 12644 13127
12639
m
4. Long Term Losses 14066 13094 12122
13089 12620 12169
11672
13578 12644 13127
10814
12639
11772 11284
10317
16.22 m 8.30 m Stress force at X =
8 22 - Initial = 22 - Service = 22 Total losses for long term - Jacking Force =
m (mid span) total : x 14066.18 x 12619.69 x 10814.46 23.12 %
= = =
309455.9 kg 277633.3 kg 237918.2 kg
( ( (
75.00% ) 67.29% ) 57.66% )
page 6 / 13
Post L16.6-I90-185 MONOLITH
7.4 Effective Stress Force Effective Prestress = Initial prestress - losses stress Resume Prestressed Force Asp
Condition
2
Tranfer Service
Cable
P
stress
% tensile
2
[cm ]
[ton]
[kg/cm ]
21.72 21.72
277.63 237.92
12785 10956
67.3% 57.7%
IIX. STRESS AND DEFFLECTION ANALYSIS Beam Segment Length (m)
1
2
3
5.00
6.00
5.00
Additional length at the end of the beam =
0.30
4
5
6
m
7
Total Length =
8
16.60
m
8.1 Stress at initial Description
Moment DL Pi e (eccentricity) Pi.e Moment Net. Pi / A M / Wa M / Wb Initial Stresses [kg/cm2]
Middle
SEC 1-1
SEC 2-2
SEC 3-3
SEC 4-4
SEC 5-5
x - [m]
Span
0.00
5.00
11.00
16.00
16.00
8.00
[ton.m]
20.58 277.63 0.22 -60.46 -39.88 107.92 -94.45 63.92 13.47 171.84
0.00 277.63 0.01 -2.10 -2.10 107.92 -4.97 3.36 102.95 111.29
17.69 277.63 0.19 -52.26 -34.57 107.92 -81.87 55.40 26.05 163.33
17.69 277.63 0.19 -52.26 -34.57 107.92 -81.87 55.40 26.05 163.33
0.00 277.63 0.01 -2.10 -2.10 107.92 -4.97 3.36 102.95 111.29
0.00 277.63 0.01 -2.10 -2.10 107.92 -4.97 3.36 102.95 111.29
20.58 277.63 0.22 -60.46 -39.88 107.92 -94.45 63.92 13.47 171.84
[ton] [m] [ton.m] [ton.m] [kg/cm2] 2
[kg/cm ] 2
[kg/cm ] top ( σT ) bottom ( σB )
8.2 Stress at service > Load of precast, slab, diaphragm and prestress by PC Beam > Live load and asphalt by composite Description Middle SEC 1-1 SEC 2-2 x - [m] Span 0.00 5.00 Moment DL + ADL [t-m] 67.99 0.00 58.43 P [t] 237.92 237.92 237.92 P.e [t-m] -51.82 -1.80 -44.78 [t-m] Moment --- M1 16.18 -1.80 13.65 [t-m] Moment --- M2 92.94 0.00 79.87 P/A 92.49 92.49 92.49 [kg/cm2] 2 M 1 / Wa 38.31 -4.26 32.33 [kg/cm ] M 1 / Wb -25.93 2.88 -21.88 [kg/cm2] M 2 / Wa' 17.01 0.00 14.62 [kg/cm2] 2 M 2 / Wb' -75.14 0.00 -64.57 [kg/cm ] Stress at Service slab ( σS ) 44.65 0.00 38.37 [kg/cm2] top ( σT ) 147.80 88.22 139.43 bottom ( σB ) -8.58 95.37 6.04 Note :
Moment DL = Moment Bal = Moment Net = Pi = P= M= A= Wa = Wb = Wa' = Wb' =
SEC 3-3 11.00 58.43 237.92 -44.78 13.65 79.87 92.49 32.33 -21.88 14.62 -64.57 38.37 139.43 6.04
( = M1 ) ( = M2 ) SEC 4-4 SEC 5-5 16.00 16.00 0.00 0.00 237.92 237.92 -1.80 -1.80 -1.80 -1.80 0.00 0.00 92.49 92.49 -4.26 -4.26 2.88 2.88 0.00 0.00 0.00 0.00 0.00 0.00 88.22 88.22 95.37 95.37
SEC 6-6
SEC 6-6 8.00 67.99 237.92 -51.82 16.18 92.94 92.49 38.31 -25.93 17.01 -75.14 44.65 147.80 -8.58
Allow. stress
-14.9 190.2
Allow. stress
98.4 172.9 -33.1
Moment due to dead load ( Chapter V - Moment Analysis ) Moment due to uniform load in balance condition ( Chapter 7.4 - Effective Stress Force ) ( Moment DL + Moment Bal ) Initial Prestress ( at transfer condition - chapt. 7.4. Effective Stress Force ) Prestress at service condition….. ( Chapter 7.4 -effective Stress Force ) Moment Net. Total Area of Precast Beam ( Chapter 3.1 - Precast Beam) Modulus Section for Top section of Precast condition Modulus Section for Bottom section of Precast condition Modulus Section for Top section of composit Condition……. ( Chapter 3.3 - Resume ) Modulus section for bottom section of composite condition ……. ( Chapter 3.3 - Resume ) page 7 / 13
Post L16.6-I90-185 MONOLITH
Stress - strain diagram at center span : 1. STRESS - STRAIN DIAGRAM AT INITIAL
σ top =
M/Wa = -94.45 kg/cm2
Pi/A = 107.92 kg/cm2
13.47
kg/cm2
+ +
-
-
= -
Pi/A = 107.92 kg/cm2
M/Wb =
63.92
kg/cm2
σ bottom =
171.84 kg/cm2
2. STRESS - STRAIN DIAGRAM AT SERVICE 2 M2/Wa' = 17.01 kg/cm 2
Pi/A = 92.49 kg/cm
2
M1/Wa = 38.31 kg/cm
σ slab = 44.65
-
-
-
2
kg/cm σ top = 147.80 kg/cm2
-
+
+
= +
+
+ 2
σ bottom =
2
Pi/A = 92.49 kg/cm2 M1/Wb = -25.93 kg/cm
M2/Wb' = -75.14 kg/cm
-8.58 kg/cm2
8.3 Deflection l
Note : P = Prestress force e' = Distance between c.g of strand at end and
P
c.g of strand at lowest point.
P
l = length of anchor to anchor
e'
w = Equivalent loading for prestress force Ix = Inertia of beam Ex = Modulus of Elasticity
l/ 2
l/ 2 w=
8 . P . e' l2
Reference : PCI Design Handbook : Part 11.1.4 page no. 11-12
w Condition
at initial at aDL (total) at service (total) due to Live Load
q (t/m)
p (ton)
w (t/m)
0.64 1.48 3.60 1.48
0.00 0.00 11.40 11.40
-1.82
4
-1.56
3
deflection = (5q*L /384EI) + (pL /48EI) No.
due load
1 2
prestress wd
3
w ad
4
w LL
based : PCI handbook 4.6.5 Long-Time Chamber Deflection (1) release multiplier (2) erect. multiplier (3) final descibtion Allowable L/800 (cm) (cm) (cm) (cm) (cm) (cm) -2.45 1.8 x (1) -4.40 2.45 x (1) -5.99 ( - ) up 0.86 1.85 x (1) 1.55 2.7 x (1) 2.40 (+ ) down -1.58
-2.85 0.44 -2.41
3 x (2)
-3.59 1.33 -2.26 0.78
2.00
-1.48 page 8 / 13
Post L16.6-I90-185 MONOLITH
IX. MOMENT CAPACITY….. PCI Design Handbook, Chapt. 4.2.1-Strength Design First Analysis There are two thickness flens which t-slab and t-flens of beam. slab (t1) = 20.00 cm bslab = 185.00 cm tflens (t2) = 7.50 cm bflens = 35.00 cm Aps = 21.72 cm2 fps = 0,9 * fu kg/cm 2 = 17100 kg/cm 2
must <=
337
cm
φ = 0.9
So There is analyzed as T beam or square beam. To analysis as T Beam : C3 C2 C1 d
T
T C1 C2 C3 a
= = = = =
Aps * fps = 371347 kg 0.85*fc'beam*tweb*(a-tslab-tflens) 0.85*fc'beam*A*tflens = 96454 kg 0.85*fc'slab*bslab*tslab = 1044717 kg ((T-C2-C3)/(0.85*fc'*tweb))+tslab+tflens = -88.7 cm -- Check, if a < (tslab+tflens), so must analyse as T beam or square beam. (tslab+tflens) = 34.5 cm C1 = -769824 kg d = (H+tslab-ed) = 102.45 cm Mn = C1(d-(a-tslab-tflens)/2)+C2(d-tslab-tflens/2)+C3(d-tslab/2) = -264.60 ton.m φ Mn = -238.14 ton.m Analysed as T beam, for a < (tslab+tflens) or at flens of beam : a = ((T-C3)/(0.85*fc'*A))+tslab = -25.4 cm -- Check, if a < (tslab), so must analyse as square beam. (tslab) = 27 cm C2 = 0.85*fc'beam*A*(a-tslab) = -673370 kg Mn = C2(d-tslab-((a-tslab)/2))+C3(d-tslab/2) = 244.95 ton.m φ Mn = 220.45 ton.m Analysed as square beam, for a < tslab a = Aps*fps/(0.85*fc'slab*bslab) Mn = T*(d-a/2) = 362.64 ton.m φ Mn = 326.38 ton.m
=
9.6
Momen Ultimate Calculation(Mu) Ultimate Moment = 1,2*Beam+1,3*Slab+2*Asphalt+1,2*Diaphragm+2*LL ( Bridge Design Manual, Vol.1-Page 2-6 ) Ratio (φMn / Mu), (>1) = Cracking Moment: Mcr = Requirement = (initial) (service)
= =
cm
276.53
ton.m
1.18 ( Fr + Peff / A + Peff * e / Wb ) * Wb φMn > 1.2 * Mcr 1.2 * Mcr φMn 180.9417 ton.m < 191.8638 260.576 ton.m < 326.3782
ton.m (Ok!) ton.m (Ok!) page 9 / 13
Post L16.6-I90-185 MONOLITH
X. SHEAR ANALYSIS 10.1Shear calculation by rebar φ =
WEB SHEAR
bw =
Description Vu = 1.3[Vdl+5/3Vll] Mu = 1.3[Mdl+5/3Mll] dp > 0.80 h [Vu*dp]/>1 Vc min Vc Vc max Vc taken Vu/φ Vs = Vu/φ - Vc --STIRRU, nos stirrup Dia. fy Av S Smax Smax Smax S using S
x - [m] [ton] [t-m] [cm] [kg] [kg] [kg] [kg] [kg] [kg]
[mm] [kg/cm2] [cm2] [mm] [mm] [mm] [mm] 1565 [mm] [mm]
0.85 17 Sec 4-4 16.00 69.13 0.00 54.43
bwu=
Mid Sec 1-1 Sec 2-2 Sec 3-3 Sec 5-5 span 0.00 5.00 11.00 16.00 11.40 69.13 33.05 33.05 69.13 276.53 0.00 237.64 237.64 0.00 75.45 54.43 72.50 72.50 54.43 0.03 3.76E+100 0.10 0.10 3.76E+100 3.76E+100 14135.03 20993.5 13581.2 13581.2 10196.9 10196.9 199715.46 3.5E+107 6.1E+05 6.13E+05 1.7E+107 1.71E+107 35470.92 52681.9 34081.2 34081.2 25588.3 25588.3 35470.92 52681.9 34081.2 34081.2 25588.3 25588.3 13407.06 81331.3 38878.6 38878.6 81331.3 81331.3 0.000 28649.4 4797.4 4797.4 55742.9 55742.9 2 4 2 2 13 13 13 13 3900 3900 3900 3900 2.65 5.31 2.65 2.65 7.8E+16 393.4061 1564.547 1.6E+03 15816.62 38551.21 15503.7 15503.7 450.00 450.00 450.00 450.00 15816.62 1183.21 1218.01 1218.01 450.00
2 2 13 13 3900 3900 2.65 2.65 1.0E+02 101 13433.8 13433.79 450.00 450.00 1218.01 1218.01
393.41 450.00 450.00 101.10 150 200 300
Reference (ACI) : Vc min = 0.53*sqrt(f'c)*bw*dp …….. (1) Vc = (0.16*sqrt(f'c)+49*vu*dp/Mu)*bw*dp …..(2) Vc max = 1.33*sqrt(f'c)*bw*dp …….(3)
S S min
= = = =
101.10
35 Sec 6-6 8.00 11.40 276.53 75.45 0.03 14135.0 199715.5 35470.9 35470.9 13407.1 0.0 2 13 3900 2.65 7.8E+16 15816.62 450.00 15816.62 450.00
10*Av*fy*dp/Vs 10*Av*80*fy*dp/(Aps*fps*sqrt(dp/bw) d/2 atau 24 in (=60.96 cm) 10*Av*fy/(50*bw) ……if only Vu/φ > Vc/2
Note : Formula (1),(2) and (3) are adapted from the ACI formula for Shear Design Conversion Factor From Psi to Kg/cm 2 is 0.0703 ( 1 Psi = 0.0703 kg/cm 2 ) ACI standard states : Vc min = 2x(fc')^0.5………… ( Psi ) Vc min = 2x(0.0703x fc')^0.5 …….. ( kg/cm2 ) 10.2Shear Connector Slab K- 300 Distance ctc beam (be) = Thickness of slab = Height of compression stress (a) =
2
f'c = 246.06 kg/cm 1.85 m 27.00 cm 9.60 cm (see moment capacity section)
Hu = 3.7E+05 kg Avf total of 1/2 span = 112.02 cm2 Average stirrup space = 196.69 mm Number of stirrup for 1/2 span = 43 pcs.
( = 0.85*f'c*be*(minimum value between tslab or a)) ( = Hu/(0.85*fy*μ) , with μ =1)
page 10 / 13
Post L16.6-I90-185 MONOLITH
XI. END BLOCK DESIGN
Centre of gravity sheat at end beam = a = 22 cm b = 35 cm Bursting steel calculation 0.75 Tensile assumption = 75%, P = [Pi max] = Fx = Fy = F prefer = 25.00 As = 25.00 / ( 0.87 x Number of bursting steel needed
36.36
cm
12 0.9871 3/8 P (1 - a/b) = 3/8 P (1 - a/h) = ton 3900 ) = 4 D13
19000 = 23.51 ton 25.00 ton 7.37 cm
168794.1 kg
2
XII. SEGMENT'S JOINT CONTROL
200 100
Ya'[c] Ya
φ 225
Y'b[c] 36.3
Yb
73.4
100 275
27.00 cm 0.00 cm
Check top point = Check bottom point = Keterangan x [m]
Ya = Yb =
Middle Span
Vn = Vdl + Vll
[ton]
tg φ Vp = P tg φ
[ton]
Vs = Vn - Vp
[ton]
SEC 1-1 0.00
33.68 cm 8.82 cm SEC 2-2 5.00
Ya' = Yb' =
SEC 3-3 11.00
SEC 4-4 16.00
-3.39 cm 45.89 cm SEC 5-5 16.00
SEC 6-6 8.00
5.70 0.000 0.00 5.70
40.23 -0.053 12.50 27.73
18.65 -0.020 4.69 13.96
18.65 0.020 4.69 13.96
40.23 0.053 12.50 27.73
40.23 0.053 12.50 27.73
5.70 0.000 0.00 5.70
0.79 67.99 92.94 -51.82 116.18 81.49
3.84 0.00 0.00 -1.80 89.81 93.19
1.93 58.43 79.87 -44.78 112.47 83.13
1.93 58.43 79.87 -44.78 112.47 83.13
3.84 0.00 0.00 -1.80 89.81 93.19
3.84 0.00 0.00 -1.80 89.81 93.19
0.79 67.99 92.94 -51.82 116.18 Allow. 81.49 stress
116.18 -0.01
89.98 -0.16
112.50 -0.03
112.50 -0.03
89.98 -0.16
89.98 -0.16
116.18 172.9 -0.01 -33.1
81.50 -0.01
93.34 -0.16
83.18 -0.04
83.18 -0.04
93.34 -0.16
93.34 -0.16
81.50 172.9 -0.01 -33.1
Joint's shear stress V =Vs/(Concrete Area)
2
[kg/cm ]
M(dl+adl) resissted by precast
[t-m]
M(ll) resissted by composite [t-m]
P.e
[t-m]
Top stress
[kg/cm2]
Bottom stress
[kg/cm2]
Top point σ max
[kg/cm2]
σ min
[kg/cm2]
Bottom Point σ max
[kg/cm2]
σ min
[kg/cm2]
Calculation : Top stress = P/A + Mdl/Wa + Mll/Wa' Bottom Stress = P/A + Mdl/Wb + Mll/Wb' P max = Teg./2 + [ (teg./2)^2 + V^2 ]^(1/2) P min = Teg./2 - [ (teg./2)^2 + V^2 ]^(1/2) page 11 / 13
Post L16.6-I90-185 MONOLITH
Note : P= A= Mdl = Mll = Wa =
effective Prestress Force Area of Precast beam Moment due to dead load Moment due to live load Section Modulus for top section
Wb = teg. = V= Vn = Vp = s=
Section Modulus for bottom section Stress due to moment Stress due to shear force Shear force due to dead load and live load Shear force due to Prestress force Stresses due to shear force and moment
XIII. SHEAR KEY DESIGN A'B
Ae
h'
h
AB
A'e
Av
Av' H
Calculation of Shear Key Reinforcement
(ton) (mm) (mm) (mm) (mm) (kg/cm2) (kg/cm2)
Sec 2-2 5.00 18.65 100 50 425 300 3900 1950
Sec 3-3 11.00 -18.65 100 50 425 300 3900 1950
Sec 4-4 16.00 -40.23 100 50 425 300 3900 1950
Sec 5-5 16.00 -40.23 100 50 425 300 3900 1950
( mm2 )
265.46
265.46
265.46
265.46
( mm2 )
140.64
-140.64
-303.43
-303.43
0.53
0.53
1.14
1.14
2 35.16
2 -35.16
2 -75.86
2 -75.86
Number of stell Needed
0.13
0.13
0.29
0.29
Number of steel Used
2
2
2
2
478.18
-478.18
-1031.65
-1031.65
Number of stell Needed
1.80
1.80
3.89
3.89
Number of steel Used
2
2
4
4
199.24
-199.24
-429.86
-429.86
0.75 2 49.81 0.19 2 478.18
0.75 2 -49.81 0.19 2 -478.18
1.62 2 -107.46 0.40 2 -1031.65
1.62 2 -107.46 0.40 2 -1031.65
Number of stell Needed
1.80
1.80
3.89
3.89
Number of steel Used
2
2
4
4
Description x [m] S ( DL + LL ) H a h h' fy σsa Steel of reinforcement 2D - 13 Area Male Section Ae Number of stell Needed Number of steel Used AB
Av
( mm2 )
2
( mm )
Female section A'e
( mm2 )
Number of stell Needed Number of steel Used A'B
( mm2 )
Number of stell Needed Number of steel Used Av'
( mm2 )
page 12 / 13
Post L16.6-I90-185 MONOLITH
Formula for Shear Key Design according to Japan Road Association :
Ae = AB = Av =
Sxa 0.8 x h x σsa
A'e =
Ae 4 S 2 x σsa
Sxa 0.8 x h' x σsa
AB =
A'e 4
Av' =
Av
Ae, A'e = Area of reinforcement AB, A'B = Area of stirrup reinforcement Av, A'v = Area of stirrup reinforcement
S = Total Vertical Load σsa = Allowable stress for reinforcement a=H/2
XIV. LIFTING CONTROL Lifting at stock yard : Lifting at instalation :
Beam Segment Length (m) a b Precast beam weight Segment beam weight Dynamic load factor Force at lifitng point Safety Factor No. legs for lifting point MDL middle Wx σbotom fr' conc.at stock yard fr' conc.at instalation Stress control
fc at lifting = 50% fc' = frupture = 0.8 sqrt(fc at lifting) = fc at install = 80% fc' = frupture = 0.8 sqrt(fc at instal) = 2 3 5.30 6.00 5.30 1.10 1.24 1.10 3.11 3.52 3.11 0.6431 0.6431 0.6431 3.4 3.9 3.4 1.4 1.4 1.4 2.4 2.7 2.4 2 2 2 1 1 1 5.44E+04 6.97E+04 5.44E+04 6.24E+04 6.24E+04 6.24E+04 0.87 1.12 0.87
2
216.1439 [kg/cm ] 2 11.76147 [kg/cm ] 2 345.8303 [kg/cm ] 14.87721
1
11.76 14.88 OK
11.76 14.88 OK
a
0.00
0.00
0.00
0.00
m m t/m ton ton leg kg.cm cm3 kg/cm2 kg/cm2 kg/cm2
11.76 14.88 OK b
Unit
a
Lifting Point
Lifitng beam design Strand lifting beam = Ast = UTS = Allowed tension = Tension strength =
φ 12,7 0.987 19000 75% 14.06
mm
Beam Weight =
cm2
Dynamic Load Factor = Force at lifitng point = SF = No legs for lifting point =
kg/cm2
UTS ton for 1 leg of strand
12.2038 ton 1.4 8.54266 ton 2 3 legs
page 13 / 13