3.4 Design of Base Plate 3.4.1 Design of Base Plate C1
Portion Considered for plate design Mx (-)
X (+)
Z (+)
Mz (-)
CHECK FOR SIZE OF BASE PLATE C1 Node No. 964 Axial Load P Factored Moment about X-axis, Mpx Factored Moment about Z-axis, Mpz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
112 1150 kN 380 kNm 15 kNm 15.6 kN 85 kN
Length of base plate along X-axis, Lbp
1200 mm
Width of base plate along Z- axis, Bpb
1200 mm 800 mm 800 mm 100 mm
Depth of column along X-axis , Dx Depth of column along Z-axis , Dz Distance betn. edge of base pl.& cl. of bolt, e d Ultimate stress of bolt in tension stf
470 N/mm2
Yield stress of bolt fyb
295 N/mm2
Characteristic compressive strength of concrete,fck
25 N/mm2
Permissible stress in conc. in bearing, scc
14.06 N/mm2
No Increase in permissible stress in LSD Max Bearing Pressure, smax =P/A+6xMx/(Lbp2 x Bbp )+6xMz/(Lbp x Bbp2)
1 2.18 N/mm2
smin =P/A-6xMx/(Lbp2 x Bbp )-6xMz/(Lbp x Bbp2)
-0.58 N/mm2
Min Bearing Pressure, Remarks
2 X 660MW LANCO VIDARBHA TPP Design of UCB
Base Plate Size is O.K.
LITL-008-CVE-104-R-0101 Sheet
PART1
#REF!
REV
B
DESIGN OF BOLT
P Mx
t
Bpb Y1/3
100 mm Y1
con
T C
Calculation of bolt along Z- axis Node No. 964 B Axial force,AP Moment about X-axis, Mx Moment about Z-axis, Mz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
112 1150 kN 380 kNm 15 kNm 15.6 kN 85 kN 2.12 N/mm2
smax =P/A+6xMx/(Lbp x Bbp2 ) Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) Max Bearing Pressure,
-0.52 N/mm2
Distance Y1 = smax x Bpb/ (smax + smin)
963.64 mm
Distance betn. cl. of base pl. & cg. of comp. Force, Y 2 = B / 2 - Y1 / 3
278.79 mm
Lever arm, Y3 = Bpb - ed - Y1 / 3
778.79 mm
Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y 2) / Y3 Remarks
78.01 kN bolt required
Dia of bolt Gross area provided Net area provided Tensile capacity of each bolt based on tensile strength Tensile capacity of each bolt based on concrete break out failure So, Effective Tensile capacity No. of bolt per side
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
40 mm 1257 mm2 1006 mm2 337105 N 10872949 N 337105 N 1.00 nos
REV
B
LENGTH OF BOLT Length of bolt provided
2700 mm
DESIGN OF STIFFNER PLATE The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte Fy 325 N/mm2 Ts Gusset outstand Outstand length 200 mm D/Ts 8< 11.93 Average height of the stiffner plate should be less than
298.20 mm
Smaller height Higher height So average height
298.20 mm
250 mm 325 mm 287.5 mm
<
25 mm
OK
The stiffner is semi compact section 200 mm distace between flange to edge of base plate distance between stiffner plate 288 mm The shear on the stiffner plate 62784 N 62.78 KN Shear capacity 1385969 N 1386.0 kN 0.6*Vd 831.58 > 62.78 KN So the moment capacity will not get reduced by the effect of shear. Bending moment 0 Nmm Bending capacity 130030776.515152 Nmm Hence the size of the stiffenr plate is satisfactory.
OK
0.00 KNm 130.03 KNm
OK
Weld connecting column-gusset-base plate Load on weld 593.75 KN Assuming an 6 mm weld Weld size 10 mm Length of the weld 5026 mm Load per mm 0.12 kN/mm Weld capacity 1519.59 1.52 kN/mm OK Thickness of the base plate Three sides fixed Thickness of the base plate 40 mm for stiffner plate connected to flange Plate dimension (three edge fixed)a 288 b cofficient from roarks b beta 3 1.01 2 From Roark's chart (Table 11.4) str 55.045 N/mm a/b 2 Strength of the base plate 354.55 N/mm
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
200 1.44 OK
REV
B
for stiffner plate connected to web Plate dimension (three edge fixed)a 169 b cofficient from roarks b beta 3 0.19 a/b From Roark's chart (TablStress 19.64868 N/mm2 Strength of the base plate 354.55 N/mm2
275.5 0.61343013 OK
Shear capacity of Bolt 218386.2 N 218.39 KN when the bolts will be in compression, they will be eefective in shear Total capacity 218.39 KN > 85 OK Bolt subjected to cobined shear and tension Vsb Factored shear force acting on the Vdb Design shear capacity Tb Factored tensile force acting on th Tdb Design tension capacity So, Interaction ratio
2 X 660MW LANCO VIDARBHA TPP Design of UCB
10.63 kN 218.39 kN 19.50 kN 337.10 kN 0.01 <
LITL-008-CVE-104-R-0101
Sheet #REF!
1 OK
REV
B
3.4 Design of Base Plate 3.4.1 Design of Base Plate C1
Portion Considered for plate design Mx (-)
X (+)
Z (+)
Mz (-)
CHECK FOR SIZE OF BASE PLATE C1 Node No. 990 Axial Load P Factored Moment about X-axis, Mpx Factored Moment about Z-axis, Mpz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
129 4503 kN 514 kNm 2430 kNm 600 kN 724 kN
Length of base plate along X-axis, Lbp
1200 mm
Width of base plate along Z- axis, Bpb
1200 mm 800 mm 500 mm 100 mm
Depth of column along X-axis , Dx Depth of column along Z-axis , Dz Distance betn. edge of base pl.& cl. of bolt, e d Ultimate stress of bolt in tension stf
470 N/mm2
Yield stress of bolt fyb
295 N/mm2
Characteristic compressive strength of concrete,fck
25 N/mm2
Permissible stress in conc. in bearing, scc
14.06 N/mm2
No Increase in permissible stress in LSD Max Bearing Pressure, smax =P/A+6xMx/(Lbp2 x Bbp )+6xMz/(Lbp x Bbp2)
1 13.36 N/mm2
smin =P/A-6xMx/(Lbp2 x Bbp )-6xMz/(Lbp x Bbp2)
-7.11 N/mm2
Min Bearing Pressure, Remarks
2 X 660MW LANCO VIDARBHA TPP Design of UCB
Base Plate Size is O.K.
LITL-008-CVE-104-R-0101 Sheet
PART1
#REF!
REV
B
DESIGN OF BOLT
P Mz
t
Bpb Y1/3
100 mm Y1
con
T A
C
B
Calculation of bolt along Z- axis Node No. 990 Axial force, P Moment about X-axis, Mx Moment about Z-axis, Mz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
129 4503 kN 514 kNm 2430 kNm 600 kN 724 kN 11.54 N/mm2
smax =P/A+6xMx/(Lbp x Bbp2 ) Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) Max Bearing Pressure,
-5.28 N/mm2
Distance Y1 = smax x Bpb/ (smax + smin)
823.31 mm
Distance betn. cl. of base pl. & cg. of comp. Force, Y 2 = B / 2 - Y1 / 3
325.57 mm
Lever arm, Y3 = Bpb - ed - Y1 / 3
825.57 mm
Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y 2) / Y3 Remarks
1179.26 kN bolt required
Dia of bolt Gross area provided Net area provided Tensile capacity of each bolt based on tensile strength Tensile capacity of each bolt based on concrete break out failure So, Effective Tensile capacity
337105 N
No. of bolt per side
2 X 660MW LANCO VIDARBHA TPP Design of UCB
40 mm 1257 mm2 1006 mm2 337105 N 10872949 N 4.00 nos
LITL-008-CVE-104-R-0101
Sheet #REF!
REV
B
DESIGN OF STIFFNER PLATE The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte Fy 325 N/mm2 Ts Gusset outstand Outstand length 200 mm D/Ts 8< 11.93 Average height of the stiffner plate should be less than
298.20 mm
Smaller height Higher height So average height
298.20 mm
250 mm 325 mm 287.5 mm
<
25 mm
OK
The stiffner is semi compact section 200 mm distace between flange to edge of base plate distance between stiffner plate 263 mm The shear on the stiffner plate 613009 N 613.01 KN Shear capacity 1385969 N 1386.0 kN 0.6*Vd 831.58 > 613.01 KN So the moment capacity will not get reduced by the effect of shear. Bending moment 64291811.1111111 Nmm Bending capacity 130030776.515152 Nmm Hence the size of the stiffenr plate is satisfactory.
OK
64.29 KNm 130.03 KNm
OK
Weld connecting column-gusset-base plate Load on weld 7111.50 KN Assuming an 6 mm weld Weld size 10 mm Length of the weld 4976 mm Load per mm 1.43 kN/mm Weld capacity 1519.59 1.52 kN/mm OK Thickness of the base plate Three sides fixed Thickness of the base plate
40 mm
for stiffner plate connected to flange Plate dimension (three edge fixed)a 263 b cofficient from roarks b beta 3 0.71894 From Roark's chart (Table 11.4) str 240.126 N/mm2 a/b 2 Strength of the base plate 354.55 N/mm
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
200 1.315 OK
REV
B
for stiffner plate connected to web Plate dimension (three edge fixed)a 169 b cofficient from roarks b beta 3 0.213 a/b From Roark's chart (TablStress 135.2489 N/mm2 Strength of the base plate 354.55 N/mm2
275.5 0.613 OK
Shear capacity of Bolt 218386.2 N 218.39 KN when the bolts will be in compression, they will be eefective in shear Total capacity 873.54 KN > 724 OK Bolt subjected to cobined shear and tension Vsb Factored shear force acting on the Vdb Design shear capacity Tb Factored tensile force acting on th Tdb Design tension capacity So, Interaction ratio
2 X 660MW LANCO VIDARBHA TPP Design of UCB
90.50 kN 218.39 kN 294.82 kN 337.10 kN 0.94 <
LITL-008-CVE-104-R-0101
Sheet #REF!
1 OK
REV
B
3.4 Design of Base Plate 3.4.1 Design of Base Plate C1
Portion Considered for plate design Mx (-)
X (+)
Z (+)
Mz (-)
CHECK FOR SIZE OF BASE PLATE C1 Node No. 983 Axial Load P Factored Moment about X-axis, Mpx Factored Moment about Z-axis, Mpz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
129 4076 kN 1657 kNm 12 kNm 10 kN 412 kN
Length of base plate along X-axis, Lbp Width of base plate along Z- axis, Bpb
1200 mm 1200 mm 800 mm 800 mm 100 mm
Depth of column along X-axis , Dx Depth of column along Z-axis , Dz Distance betn. edge of base pl.& cl. of bolt, e d Ultimate stress of bolt in tension stf
470 N/mm2
Yield stress of bolt fyb
295 N/mm2
Characteristic compressive strength of concrete,fck Permissible stress in conc. in bearing, scc
25 N/mm2 13.125 N/mm2
No Increase in permissible stress in LSD 1 2 2 Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp )+6xMz/(Lbp x Bbp ) 8.65 N/mm2 -2.99 N/mm2 Min Bearing Pressure, smin =P/A-6xMx/(Lbp2 x Bbp )-6xMz/(Lbp x Bbp2) Remarks Base Plate Size is O.K.
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101 Sheet
PART1
#REF!
REV
B
DESIGN OF BOLT
P Mz
t
Bpb Y1/3
100 mm Y1
con
T
A
C
B
Calculation of bolt along X- axis Node No. 983 Load Case Axial force, P Moment about X-axis, Mx Moment about Z-axis, Mz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp2 ) Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 )
129 4076 kN 1657 kNm 12 kNm 10 kN 412 kN 8.57 N/mm2 -2.91 N/mm2
Distance Y1 = smax x Bpb/ (smax + smin)
895.82 mm
Distance betn. cl. of base pl. & cg. of comp. Force, Y 2 = B / 2 - Y1 / 3
301.4 mm
Lever arm, Y3 = Bpb - ed - Y1 / 3
801.4 mm
Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y 2) / Y3 Remarks
542.91 kN bolt required
Dia of bolt Gross area provided Net area provided Tensile capacity of each bolt based on tensile strength Tensile capacity of each bolt based on concrete break out failure So, Effective Tensile capacity No. of bolt per side
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
40 mm 1257 mm2 1006 mm2 337105 N 3632593 N 337105 N 2.00 nos
REV
B
DESIGN OF STIFFNER PLATE The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte Fy 325 N/mm2 Ts Gusset outstand Outstand length 200 mm D/Ts 8< 11.93 Average height of the stiffner plate should be less than
298.20 mm
Smaller height Higher height So average height
298.20 mm
250 mm 325 mm 287.5 mm
<
25 mm
OK
The stiffner is semi compact section 200 mm distace between flange to edge of base plate distance between stiffner plate 138 mm The shear on the stiffner plate 211968 N 211.97 KN Shear capacity 1385969 N 1386.0 kN 0.6*Vd 831.58 > 211.97 KN So the moment capacity will not get reduced by the effect of shear. Bending moment 22089200 Nmm Bending capacity 130030776.515152 Nmm Hence the size of the stiffenr plate is satisfactory.
OK
22.09 KNm 130.03 KNm
OK
Weld connecting column-gusset-base plate Load on weld 4109.25 KN Assuming an 6 mm weld Weld size 10 mm Length of the weld 4726 mm Load per mm 0.87 kN/mm Weld capacity 1519.59 1.52 kN/mm OK Thickness of the base plate Three sides fixed Thickness of the base plate
30 mm
for stiffner plate connected to flange Plate dimension (three edge fixed)a 138 b cofficient from roarks b beta 3 0.1644 From Roark's chart (Table 11.4) str63.20267 N/mm2 a/b 2 Strength of the base plate 354.55 N/mm
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
200 0.69 OK
REV
B
for stiffner plate connected to web Plate dimension (three edge fixed)a 188 b cofficient from roarks b beta 3 0.34 a/b 2 From Roark's chart (TablStress 130.7111 N/mm Strength of the base plate 354.55 N/mm2
200 0.94 OK
Shear capacity of Bolt 218386.2 N 218.39 KN when the bolts will be in compression, they will be eefective in shear Total capacity 436.77 KN > 412 OK Bolt subjected to cobined shear and tension Vsb Factored shear force acting on the Vdb Design shear capacity Tb Factored tensile force acting on th Tdb Design tension capacity So, Interaction ratio
2 X 660MW LANCO VIDARBHA TPP Design of UCB
51.50 kN 218.39 kN 135.73 kN 337.10 kN 0.22 <
LITL-008-CVE-104-R-0101
Sheet #REF!
1 OK
REV
B
3.4 Design of Base Plate 3.4.1 Design of Base Plate C1
Portion Considered for plate design Mx (-)
X (+)
Z (+)
Mz (-)
CHECK FOR SIZE OF BASE PLATE C1 Node No. 1956 Axial Load P Factored Moment about X-axis, Mpx Factored Moment about Z-axis, Mpz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
129 -3215 kN -172 kNm -0.484 kNm 6.633 kN 44.882 kN
Length of base plate along X-axis, Lbp
1200 mm
Width of base plate along Z- axis, Bpb
1200 mm
Depth of column along X-axis , Dx Depth of column along Z-axis , Dz Distance betn. edge of base pl.& cl. of bolt, e d
800 mm 400 mm 100 mm
Ultimate stress of bolt in tension stf
470 N/mm2
Yield stress of bolt fyb
295 N/mm2
Characteristic compressive strength of concrete,fck
25 N/mm2
Permissible stress in conc. in bearing, scc
14.0625 N/mm2
No Increase in permissible stress in LSD Max Bearing Pressure, smax =P/A+6xMx/(Lbp2 x Bbp )+6xMz/(Lbp x Bbp2)
1 -2.83 N/mm2
smin =P/A-6xMx/(Lbp2 x Bbp )-6xMz/(Lbp x Bbp2)
-1.64 N/mm2
Min Bearing Pressure, Remarks
2 X 660MW LANCO VIDARBHA TPP Design of UCB
Base Plate Size is O.K.
LITL-008-CVE-104-R-0101 Sheet
PART1
#REF!
REV
B
DESIGN OF BOLT Calculation of bolt along X- axis Node No. 1956
Load Case
129
Axial force, P Moment about X-axis, Mx Moment about Z-axis, Mz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz Max Bearing Pressure, smax =P/A+6xMx/(Lbp x Bbp2 ) Min Bearing Pressure,
-3215 kN -172 kNm -0.484 kNm 6.633 kN 44.882 kN -1.64 N/mm2
smin =P/A-6xMx/(Lbp x Bbp2 )
-2.84 N/mm2
Assume No. of bolt per side
4.00 nos
Tension in one side single bolt due to moment
-43000 N
Tension in single bolt due to Axial tension in column
-267916.7 N
Tension on each bolt
310916.67 N
Dia of bolt Gross area provided
40 mm 1257 mm2
Net area provided
1006 mm2
Tensile capacity of each bolt based on tensile strength Tensile capacity of each bolt based on concrete break out failure So, Effective Tensile capacity of each bolt Remarks
337105 N 9687500 N 337105 N
Bolt capacity satisfied
DESIGN OF STIFFNER PLATE The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte Fy Gusset outstand Outstand length D/Ts
325 N/mm2
8<
Ts
25 mm
200 mm 11.93
Average height of the stiffner plate should be less than Smaller height 250 mm Higher height 325 mm So average height 287.5 mm <
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
298.20 mm
298.20 mm
Sheet #REF!
OK
REV
B
The stiffner is semi compact section 283.5 mm distace between flange to edge of base plate distance between stiffner plate 169 mm The shear on the stiffner plate -128855 N -128.85 KN Shear capacity 1385969 N 1386.0 kN 0.6*Vd 831.58 > -128.85 KN So the moment capacity will not get reduced by the effect of shear. Bending moment -18583374 Nmm Bending capacity 130030777 Nmm Hence the size of the stiffenr plate is satisfactory.
OK
-18.58 KNm 130.03 KNm
OK
Weld connecting column-gusset-base plate Load on weld 2037.50 KN Assuming an 6 mm weld Weld size 10 mm Length of the weld 4639 mm Load per mm 0.44 kN/mm Weld capacity 1519.59 1.52 kN/mm OK Thickness of the base plate Three sides fixed Thickness of the base plate 30 mm for stiffner plate connected to flange Plate dimension (three edge fixed)a 169 b cofficient from roarks b beta 3 0.224 2 From Roark's chart (Table 11.4) str -56.73 N/mm a/b 2 Strength of the base plate 354.55 N/mm for stiffner plate connected to web Plate dimension (three edge fixed)a 169 b cofficient from roarks b beta 3 0.22448325 a/b From Roark's chart (TablStress -56.7328 N/mm2 Strength of the base plate 354.55 N/mm2
283.5 0.596 OK
283.5 0.60 OK
Shear capacity of Bolt 218386.2 N 218.39 KN when the bolts will be in compression, they will be eefective in shear Total capacity 873.54 KN > 44.882 OK Bolt subjected to cobined shear and tension Vsb Factored shear force acting on the Vdb Design shear capacity Tb Factored tensile force acting on th Tdb Design tension capacity So, Interaction ratio
2 X 660MW LANCO VIDARBHA TPP Design of UCB
5.61 kN 218.39 kN 310.92 kN 337.10 kN 0.85 <
LITL-008-CVE-104-R-0101
Sheet #REF!
1 OK
REV
B
3.4 Design of Base Plate 3.4.1 Design of Base Plate C1
Portion Considered for plate design Mx (-)
X (+)
Z (+)
Mz (-)
CHECK FOR SIZE OF BASE PLATE C1 Node No. 990 Axial Load P Factored Moment about X-axis, Mpx Factored Moment about Z-axis, Mpz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
128 1491.1 -2.4 1196.3 260.5 0.8
Length of base plate along X-axis, Lbp
900
Width of base plate along Z- axis, Bpb
1400 800 500 100
Depth of column along X-axis , Dx Depth of column along Z-axis , Dz Distance betn. edge of base pl.& cl. of bolt, e d Ultimate stress of bolt in tension stf
470
Yield stress of bolt fyb
295
Characteristic compressive strength of concrete,fck
25
Permissible stress in conc. in bearing, scc
15.03
No Increase in permissible stress in LSD Max Bearing Pressure, smax =P/A+6xMx/(Lbp2 x Bbp )+6xMz/(Lbp x Bbp2)
1 7.49
smin =P/A-6xMx/(Lbp2 x Bbp )-6xMz/(Lbp x Bbp2)
-5.12
Min Bearing Pressure, Remarks
2 X 660MW LANCO VIDARBHA TPP Design of UCB
Base Plate Size is O.K.
LITL-008-CVE-104-R-0101 Sheet
PART1
#REF!
REV
DESIGN OF BOLT
P Mz
t
Bpb Y1/3
100 mm Y1
con
T A
C
B
Calculation of bolt along Z- axis Node No. 990 Axial force, P Moment about X-axis, Mx Moment about Z-axis, Mz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
128 1491.1 -2.4 1196.3 260.5 0.8 5.24
smax =P/A+6xMx/(Lbp x Bbp2 ) Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) Max Bearing Pressure,
-2.88
Distance Y1 = smax x Bpb/ (smax + smin)
903.45
Distance betn. cl. of base pl. & cg. of comp. Force, Y 2 = B / 2 - Y1 / 3
398.86
Lever arm, Y3 = Bpb - ed - Y1 / 3
998.86
Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y 2) / Y3 Remarks
606.47 bolt required
Dia of bolt Gross area provided Net area provided Tensile capacity of each bolt based on tensile strength Tensile capacity of each bolt based on concrete break out failure So, Effective Tensile capacity No. of bolt per side
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
40 1257 1006 337105 4059698 337105 2.00
REV
LENGTH OF BOLT Length of bolt provided
1400
DESIGN OF STIFFNER PLATE The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte Fy 325 N/mm2 Ts Gusset outstand Outstand length 200 mm D/Ts 8< 11.93 Average height of the stiffner plate should be less than
298.20 mm
Smaller height Higher height So average height
298.20 mm
250 mm 325 mm 287.5 mm
<
25 mm
The stiffner is semi compact section 300.5 mm distace between flange to edge of base plate distance between stiffner plate 188 mm The shear on the stiffner plate 346685 N 346.69 KN Shear capacity 1385969 N 1386.0 kN 0.6*Vd 831.58 > 346.69 KN So the moment capacity will not get reduced by the effect of shear. Bending moment 55918587 Nmm Bending capacity 130030777 Nmm Hence the size of the stiffenr plate is satisfactory.
55.92 KNm 130.03 KNm
Weld connecting column-gusset-base plate Load on weld 3138.22 KN Assuming an 6 mm weld Weld size 10 mm Length of the weld 5429 mm Load per mm 0.58 kN/mm Weld capacity 1519.59 1.52 kN/mm OK Thickness of the base plate Three sides fixed Thickness of the base plate 30 mm for stiffner plate connected to flange Plate dimension (three edge fixed)a 188 b cofficient from roarks b beta 3 0.20560067 From Roark's chart (Table 11.4) str154.5086 N/mm2 a/b 2 Strength of the base plate 354.55 N/mm
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
300.5 0.62562396 OK
REV
for stiffner plate connected to web Plate dimension (three edge fixed)a 169 b cofficient from roarks b beta 3 0.317 a/b 2 From Roark's chart (TablStress 80.75676 N/mm Strength of the base plate 354.55 N/mm2
175 0.97 OK
Shear capacity of Bolt 218386.2 N 218.39 KN when the bolts will be in compression, they will be eefective in shear Total capacity 436.77 KN > 260.55 OK Bolt subjected to cobined shear and tension Vsb Factored shear force acting on the Vdb Design shear capacity Tb Factored tensile force acting on th Tdb Design tension capacity So, Interaction ratio
2 X 660MW LANCO VIDARBHA TPP Design of UCB
0.10 kN 218.39 kN 151.62 kN 337.10 kN 0.20 <
LITL-008-CVE-104-R-0101
Sheet #REF!
1
REV
128 kN kNm kNm kN kN mm mm mm mm mm N/mm2 N/mm2 N/mm2 N/mm2
N/mm2 N/mm2
Size is O.K.
B
128 kN kNm kNm kN kN N/mm2 N/mm2 mm mm mm kN
mm mm2 mm2 N N N nos
B
mm
OK
OK
OK
B
OK
B
3.4 Design of Base Plate 3.4.1 Design of Base Plate C1
Portion Considered for plate design Mx (-)
X (+)
Z (+)
Mz (-)
CHECK FOR SIZE OF BASE PLATE C1 Node No. 990 Axial Load P Factored Moment about X-axis, Mpx Factored Moment about Z-axis, Mpz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
129 1150.0 kN 380.0 kNm 15.0 kNm 15.0 kN -85.0 kN
Length of base plate along X-axis, Lbp
900 mm
Width of base plate along Z- axis, Bpb
1400 mm 800 mm 500 mm 100 mm
Depth of column along X-axis , Dx Depth of column along Z-axis , Dz Distance betn. edge of base pl.& cl. of bolt, e d Ultimate stress of bolt in tension stf
470 N/mm2
Yield stress of bolt fyb
295 N/mm2
Characteristic compressive strength of concrete,fck
25 N/mm2
Permissible stress in conc. in bearing, scc
15.03 N/mm2
No Increase in permissible stress in LSD Max Bearing Pressure, smax =P/A+6xMx/(Lbp2 x Bbp )+6xMz/(Lbp x Bbp2)
1 2.28 N/mm2
smin =P/A-6xMx/(Lbp2 x Bbp )-6xMz/(Lbp x Bbp2)
-0.46 N/mm2
Min Bearing Pressure, Remarks
2 X 660MW LANCO VIDARBHA TPP Design of UCB
Base Plate Size is O.K.
LITL-008-CVE-104-R-0101 Sheet
PART1
#REF!
REV
B
DESIGN OF BOLT
P Mx
t
Bpb Y1/3
100 mm Y1
con
T A
C
B
Calculation of bolt along Z- axis Node No. 990 Axial force, P Moment about X-axis, Mx Moment about Z-axis, Mz Horizontal Force along X- axis , Fx Horizontal Force along Z- axis , Fz
Load Case
128 1150.0 kN 380.0 kNm 15.0 kNm 15.0 kN -85.0 kN 2.21 N/mm2
smax =P/A+6xMx/(Lbp x Bbp2 ) Min Bearing Pressure, smin =P/A-6xMx/(Lbp x Bbp2 ) Max Bearing Pressure,
-0.39 N/mm2
Distance Y1 = smax x Bpb/ (smax + smin)
765.00 mm
Distance betn. cl. of base pl. & cg. of comp. Force, Y 2 = B / 2 - Y1 / 3
195 mm
Lever arm, Y3 = Bpb - ed - Y1 / 3
545 mm
Tension (Taking moment about Compression line) T=((Mx+Fzxt - P x Y 2) / Y3 Remarks
283.29 kN bolt required
Dia of bolt Gross area provided Net area provided Tensile capacity of each bolt based on tensile strength Tensile capacity of each bolt based on concrete break out failure So, Effective Tensile capacity No. of bolt per side
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
40 mm 1257 mm2 1006 mm2 337105 N 4059698 N 337105 N 1.00 nos
REV
B
LENGTH OF BOLT Length of bolt provided
1400 mm
DESIGN OF STIFFNER PLATE The stiffner palte is first checked against local buckling assuming a 25 mm thick stiffner palte Fy 325 N/mm2 Ts Gusset outstand Outstand length 200 mm D/Ts 8< 11.93 Average height of the stiffner plate should be less than
298.20 mm
Smaller height Higher height So average height
298.20 mm
250 mm 325 mm 287.5 mm
<
25 mm
OK
The stiffner is semi compact section distace between web side stiffner to edge of base plate 175 mm distance between stiffner plate 169 mm The shear on the stiffner plate 59552.55 N 59.55 KN Shear capacity 1385969 N 1386.0 kN 0.6*Vd 831.58 > 59.55 KN So the moment capacity will not get reduced by the effect of shear. Bending moment 5440636 Nmm Bending capacity 130030777 Nmm Hence the size of the stiffenr plate is satisfactory.
OK
5.44 KNm 130.03 KNm
OK
Weld connecting column-gusset-base plate Load on weld 1335.00 KN Assuming an 6 mm weld Weld size 10 mm Length of the weld 4638 mm Load per mm 0.29 kN/mm Weld capacity 1519.59 1.52 kN/mm OK Thickness of the base plate Three sides fixed Thickness of the base plate 30 mm for stiffner plate connected to webstiffner Plate dimension (three edge fixed)a 169 b cofficient from roarks b beta 3 0.31685714 From Roark's chart (Table 11.4) str24.58283 N/mm2 a/b 2 Strength of the base plate 354.55 N/mm
2 X 660MW LANCO VIDARBHA TPP Design of UCB
LITL-008-CVE-104-R-0101
Sheet #REF!
175 0.96571429 OK
REV
B
for stiffner plate connected to flange Plate dimension (three edge fixed)a 169 b cofficient from roarks b beta 3 0.317 a/b From Roark's chart (TablStress 24.58283 N/mm2 Strength of the base plate 354.55 N/mm2
175 0.97 OK
Shear capacity of Bolt 218386.2 N 218.39 KN when the bolts will be in compression, they will be eefective in shear Total capacity 218.39 KN > 15 OK Bolt subjected to cobined shear and tension Vsb Factored shear force acting on the Vdb Design shear capacity Tb Factored tensile force acting on th Tdb Design tension capacity So, Interaction ratio
2 X 660MW LANCO VIDARBHA TPP Design of UCB
10.63 kN 218.39 kN 70.82 kN 337.10 kN 0.05 <
LITL-008-CVE-104-R-0101
Sheet #REF!
1 OK
REV
B
Design of Anchor Bolt
Sheet 1
PART1
Design of Anchor Bolt: Rectangular bearing stress
REV
A
A
distribution is considered in this analysis
a
Calculation of Maximum Anchor Bolt Tension & Identification of Governing Load Case:
B Anchor Bolt (AB) Dia. d = No. of Anchor Bolt/side N = Size of Column: l= b= Length of Base Plate L = Width of Base Plate B = C/C of Anchor Bolt A = Grade of concrete: fck =
25 mm 3 Nos. 600 mm 210 mm 900 mm 500 mm 750 mm
L
25 Mpa
Max. bearing stress concrete pmax
11.25 N/mm2
Maximum Anchor Bolt Tension Tmax
103.33 kN
L/C Maximum Effective Shear for Anchor Fmax Bolt/ Shear Key Design kN L/C Governing Load Case for Base Plate Design : Load Case On compression side: On Bolt Tension Side: Table 1: Node
L/C
FX (kN)
Vertical Load FY (kN)
1001
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-35.59 -6.02 11.80 4.75 0.32 0.04 -0.01 -0.03 -32.53 -32.52 32.51 32.52 -1.01 -1.00 0.99
-165.23 -130.88 248.85 118.24 6.03 0.87 -0.18 -0.51 -93.66 -93.64 93.57 93.59 -22.55 -22.53 20.40
Bearing Moment M Contact FZ (kN) Length (Y1 (kNm) in mm)
0.58 -37.21 2.19 0.66 0.02 0.52 0.10 0.22 0.14 0.14 -0.15 -0.15 -9.40 -9.39 6.16
2.48 -175.10 5.11 1.52 0.05 1.22 0.23 -0.37 0.56 0.56 -0.58 -0.57 -36.20 -36.19 28.92
0.00 0.00 858.92 874.31 883.41 0.33 0.00 0.00 0.00 0.00 900.00 900.00 0.00 0.00 7.92
Refer Table 1 below
Anchor Bolt Tension T (kN)
28.64 99.63 0.00 0.00 0.00 0.34 0.13 0.25 15.86 15.86 0.00 0.00 19.85 19.84 8.04
Moment at Effective column face due to Shear (Fi) bearing compressio (kN) n (kNm)
0.00 0.00 2.65 2.60 2.58 5.06 0.00 0.00 0.00 0.00 2.53 2.53 0.00 0.00 5.04
Design of Anchor Bolt 16 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
0.99 17.70 25.34 25.29 25.27 0.76 0.77 39.79 39.79 19.68 19.68 20.87 20.87 0.71 0.71 39.74 39.74 19.62 19.63 20.82 20.82 0.69 0.69 39.71 39.72 19.60 19.61 20.80 20.80 -1.45 41.25 16.29 23.52 -1.50 41.20 16.24 23.46 -1.52 41.18 16.21 23.44 -18.77 -18.77 59.27
20.43 373.28 560.59 559.49 559.14 392.45 392.47 504.79 504.81 435.12 435.14 460.89 460.91 391.35 391.37 503.69 503.71 434.02 434.03 459.79 459.81 391.00 391.02 503.34 503.36 433.67 433.69 459.44 459.46 342.28 540.56 362.89 519.95 341.18 539.46 361.79 518.85 340.83 539.11 361.44 518.50 335.81 335.83 560.48
PART1 Rectangular bearing stress 6.16 28.92 7.92 distribution is considered in this 3.29 7.67 858.93 analysis
4.86 4.42 4.54 4.08 4.08 3.91 3.91 -1.64 -1.64 7.70 7.70 3.64 3.64 3.46 3.46 -2.09 -2.08 7.25 7.25 3.76 3.76 3.59 3.59 -1.96 -1.96 7.37 7.38 4.32 3.63 -18.35 26.30 3.88 3.18 -18.79 25.85 4.00 3.31 -18.67 25.98 3.89 3.90 3.54
11.30 10.26 9.63 9.64 9.64 8.95 8.96 -12.42 -12.42 26.65 26.65 8.59 8.60 7.91 7.92 -13.46 -13.46 25.61 25.61 7.96 7.96 7.28 7.28 -14.10 -14.09 24.97 24.98 10.73 7.75 -95.82 114.30 9.69 6.71 -96.86 113.26 9.05 6.07 -97.49 112.62 9.34 9.34 7.97
859.67 863.32 865.56 850.90 850.89 864.52 864.51 900.00 900.00 784.36 784.36 856.09 856.07 868.58 868.57 900.00 900.00 788.62 788.61 859.28 859.28 871.08 871.07 900.00 900.00 791.29 791.28 837.31 871.33 51.58 69.58 843.21 875.13 51.73 69.24 846.87 877.47 51.84 69.06 844.40 844.38 871.55
Sheet 1
REV
8.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -24.24 -42.85 0.00 0.00 -23.60 -43.13 0.00 0.00 -23.27 -43.35 0.00 0.00 0.00
5.04 2.65 2.64 2.63 2.63 2.67 2.67 2.63 2.63 2.53 2.53 2.86 2.86 2.65 2.65 2.62 2.62 2.53 2.53 2.84 2.84 2.65 2.65 2.61 2.61 2.53 2.53 2.84 2.84 2.71 2.61 4.92 4.87 2.69 2.60 4.92 4.87 2.68 2.59 4.92 4.87 2.69 2.69 2.61
A
Design of Anchor Bolt 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
59.28 19.05 19.06 21.44 21.45 -18.80 -18.80 59.25 59.25 19.03 19.03 21.42 21.42 -18.81 -18.81 59.24 59.24 19.01 19.02 21.40 21.41 -22.82 62.59 12.65 27.11 -22.85 62.56 12.63 27.08 -22.86 62.55 12.62 27.07 -31.09 -31.08 66.47 66.48 16.19 16.20 19.18 19.19 -35.68 71.08 8.67
560.51 421.14 421.17 472.69 472.71 335.25 335.28 559.93 559.95 420.58 420.61 472.13 472.16 335.07 335.10 559.75 559.78 420.41 420.44 471.95 471.98 242.69 639.25 283.91 598.03 242.13 638.69 283.36 597.47 241.96 638.52 283.18 597.30 232.78 232.82 513.63 513.67 339.45 339.49 403.88 403.92 125.43 621.13 176.96
PART1 Rectangular bearing stress 3.55 7.98 871.53 distribution is considered in this -7.55 -34.77 900.00 analysis
-7.54 11.12 11.12 3.67 3.67 3.32 3.32 -7.77 -7.77 10.89 10.90 3.73 3.73 3.38 3.39 -7.71 -7.71 10.96 10.96 4.40 3.01 -40.94 48.35 4.17 2.79 -41.17 48.12 4.23 2.85 -41.11 48.19 3.50 3.50 3.06 3.07 -10.80 -10.80 12.53 12.53 4.16 2.43 -52.52
-34.77 43.36 43.37 8.81 8.82 7.45 7.45 -35.30 -35.29 42.84 42.84 8.49 8.50 7.13 7.13 -35.62 -35.61 42.52 42.52 11.58 5.62 -201.51 218.72 11.06 5.10 -202.04 218.19 10.74 4.78 -202.36 217.87 8.51 8.51 6.80 6.81 -46.63 -46.62 51.04 51.05 11.39 3.94 -254.98
900.00 716.53 716.52 847.45 847.42 873.40 873.38 900.00 900.00 718.55 718.53 849.33 849.30 874.53 874.51 900.00 900.00 719.83 719.82 804.54 882.41 69.27 101.73 808.66 884.04 69.35 101.55 811.24 885.03 69.41 101.45 826.92 826.88 873.51 873.48 900.00 900.00 647.26 647.25 718.37 887.31 72.42
Sheet 1
REV
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.25 -8.60 0.00 0.00 35.58 -8.75 0.00 0.00 35.75 -8.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 76.81
2.61 2.53 2.53 3.05 3.05 2.68 2.68 2.61 2.61 2.53 2.53 3.04 3.04 2.67 2.67 2.60 2.60 2.53 2.53 3.04 3.04 2.80 2.58 4.87 4.78 2.79 2.58 4.87 4.78 2.78 2.57 4.87 4.78 2.74 2.74 2.61 2.61 2.53 2.53 3.24 3.24 3.04 2.57 4.86
A
Design of Anchor Bolt 188 189 190 191 192 193 194 195 196 197 198 199 200
26.74 -38.17 -38.16 59.39 59.40 9.11 9.12 12.10 12.11 -42.76 64.00 1.59 19.66
569.60 83.47 83.51 364.32 364.35 190.14 190.18 254.57 254.61 -23.88 471.82 27.64 420.29
PART1 Rectangular bearing stress 59.10 270.31 111.86 distribution is considered in this 2.18 5.44 769.68 analysis
2.19 1.74 1.75 -12.12 -12.11 11.21 11.22 2.84 1.11 -53.83 57.78
5.45 3.74 3.74 -49.70 -49.69 47.97 47.98 8.33 0.88 -258.04 267.24
769.57 879.49 879.45 26.50 26.50 31.51 31.52 0.00 896.29 60.02 97.29
Sheet 1
REV
19.87 0.00 0.00 0.00 0.00 -13.69 -13.70 -25.77 -25.78 7.68 0.00 103.33 42.32
4.75 2.90 2.90 2.59 2.59 4.99 4.99 4.97 4.97 0.00 2.54 4.89 4.79
A
Design of Anchor Bolt
PART1 Rectangular bearing stress distribution is considered in this analysis
Sheet 1
REV
A
Design of Anchor Bolt
PART1 Rectangular bearing stress distribution is considered in this analysis
Sheet 1
REV
A