EUROCODES Background and Applications
EN1997-1: Anchora Anchorage ges s and Reta taining ining structure structures s
Brussels, 18-20 February 2008 – Dissemination of information workshop
EN 1997-1 Eu r o c o d e 7 Section 8 – Anchora Anchorage ges s Secti ction on 9 – Reta taini ining ng struct str ucture ures s
Bria Br ian n Simp Simpson son Arr u p Geo A Geott ec ech hnics
1
EN 1997-1 Geot ote ech chni nica call de desi sign gn – Gene nera rall Rul ule es 1 Gen er al 2 B as i s o f g eo t ec h n i c al d es i g n 3 Geo t ec h n i c al d at a 4 Sup upe erv rvis isio ion n of o f con c onst stru ruct ctio ion, n, mo moni nito tori ring ng and ma main inte tena nanc nce e 5 Fill ill,, de dewa wate terin ring, g, gr grou ound nd im impr prov ove eme ment nt and re rein info forc rce eme ment nt 6 Sp r ead f o u n d at i o n s 7 Pi l e f o u n d at i o n s 8 An A n c h o r ag ages es 9 Ret ai n i n g s t r u c t u r es 10 Hy d r au l i c f ai l u r e 11 Ov er al l st s t ab i l i t y 12 Em b an k m en t s BP111.5
A
BP112.6
di
BP124-T1.31
At J
BP106.9
EN 1997-1 Geot ote ech chni nica call de desi sign gn – Gene nera rall Rul ule es 1 Gen er al 2 B as i s o f g eo t ec h n i c al d es i g n 3 Geo t ec h n i c al d at a 4 Sup upe erv rvis isio ion n of o f con c onst stru ruct ctio ion, n, mo moni nito tori ring ng and ma main inte tena nanc nce e 5 Fill ill,, de dewa wate terin ring, g, gr grou ound nd im impr prov ove eme ment nt and re rein info forc rce eme ment nt 6 Sp r ead f o u n d at i o n s 7 Pi l e f o u n d at i o n s 8 An A n c h o r ag ages es 9 Ret ai n i n g s t r u c t u r es 10 Hy d r au l i c f ai l u r e 11 Ov er al l st s t ab i l i t y 12 Em b an k m en t s BP111.5
A
BP112.6
di
BP124-T1.31
At J
BP106.9
8
A n c h o r ag es BP124-F3.6
8.1
Gen er al
8.2
L i m i t s t at es
8.3
Des i g n s i t u at i o n s an d ac t i o n s
8.4
Des i g n an d c o n s t r u c t i o n c o n s i d er at i o n s
8.5
Ul t i m at e l i m i t st s t at e d es i g n
8.6
Ser v i c eab i l i t y li l i m i t st s t at e d es i g n
8.7
Su i t ab i l i t y t es t s
8.8
A c c ep t an c e t es t s
8.9
Su p er v i s i o n an d m o n i t o r i n g
8
Anchorages • Section depends on EN1537 - Execution of special geotechnical work - Ground anchors • Not fully compatible with EN1537. Further work on this is underway. • BS8081 being retained for the time being.
EN1537:1999
EN1537:1999 Execution of special geotechnical work - Ground anchors
EN1537:1999 Execution of special geotechnical work - Ground anchors - provides details of test procedures (creep load etc)
Partial factors in anchor design
Partial factors in anchor design
EUROCODES Background and Applications
EN1997-1: Anchorages and Retaining structures
Brussels, 18-20 February 2008 – Dissemination of information workshop
EN 1997-1 Eurocode 7 Section 8 – Anchorages Section 9 – Retaining structures
Brian Simpson Arup Geotechnics
16
EUROCODES Background and Applications
EN1997-1: Anchorages and Retaining structures
Brussels, 18-20 February 2008 – Dissemination of information workshop
EN 1997-1 Eurocode 7
Section 9 – Retaining structures Fundamentals – Design Approaches Main points in the code text Examples: Comparisons with previous (UK) practice Comparison between Design Approaches
17
EUROCODES Background and Applications
EN1997-1: Anchorages and Retaining structures
Brussels, 18-20 February 2008 – Dissemination of information workshop
EN 1997-1 Eurocode 7
Section 9 – Retaining structures Fundamentals – Design Approaches Main points in the code text Examples: Comparisons with previous (UK) practice Comparison between Design Approaches
18
Genting Highlands
BP87.59
BP 106.30
BP111.22
BP112.43
BP119.43
BP124-F3.9
BP130.33
BP145a.8
Genting Highlands
BP87.60
BP 106.31
BP111.23
BP112.44
BP119.44
BP124-F3.10
BP130.34
BP145a.9
FOS > 1 for characteristic soil strengths BP87.61
BP119.45
BP124-F3.11
BP106.32
BP111.24
BP130.35
BP145a.10
- but not big enough
BP112.45
The slope and retaining wall are all part of the same problem. BP119.46
BP87.62
BP106.33
BP124-F3.12
BP130.36
BP111.25
BP112.46
BP145a.11
Structure and soil must be designed together - consistently.
ISGSR2007 - First International Symposium on Geotechnical Safety and Risk
Approaches to ULS design – The merits of Design Approach 1 in Eurocode 7 Brian Simpson Arup Geotechnics
BP145a.1
EUROCODES Background and Applications
EN1997-1: Anchorages and Retaining structures
Brussels, 18-20 February 2008 – Dissemination of information workshop
EN 1997-1 Eurocode 7
Section 9 – Retaining structures Fundamentals – Design Approaches Main points in the code text Examples: Comparisons with previous (UK) practice Comparison between Design Approaches
24
EN 1997-1 Geotechnical design – General Rules 1 2 3 4 5 6 7 8 9 10 11 12
BP106.9
BP111.5
BP112.6
General Basis of geotechnical design Geotechnical data Supervision of construction, monitoring and maintenance Fill, dewatering, ground improvement and reinforcement Spread foundations Pile foundations Anchorages Retaining structures Hydraulic failure Overall stability Embankments
Appendices A to J
BP124-T1.31
9 Retaining structures 9.1 General 9.2 Limit states 9.3 Actions, geometrical data and design situations 9.4 Design and construction considerations 9.5 Determination of earth pressures 9.6 Water pressures 9.7 Ultimate limit state design 9.8 Serviceability limit state design
9.2 Limit states
9.2 Limit states
9.3.2 Geometrical data
9.3.2 Geometrical data
100%
10 %
100%
10 %
9.4 Design and construction considerations
9.4 Design and construction considerations
9.4.2 Drainage systems
9.5 Determination of earth pressures
9.5 Determination of earth pressures
9.5.3 Limiting values of earth pressure
Annex C also provides charts and formulae for the active and passive limit values of earth pressure
Annex C Sample procedures to determine limit values of earth pressures on vertical walls
• Based on Caquot and Kerisel (and Absi?). • No values for adverse wall friction, which can lead to larger K a and much smaller K p.
Wall friction
Adverse wall friction may be caused by loads on the wall from structures above, inclined ground anchors, etc.
C.2 Numerical procedure for obtaining passive pressures • Also provides Ka • Programmable formulae (though not simple) • Incorporated in some software (eg Oasys FREW, STAWAL) • Precise source not known (to me), but same values as Lancellotta, R (2002) Analytical solution of passive earth pressure. Géotechnique 52, 8 617-619. • Covers range of adverse wall friction. • Slightly more conservative than Caquot & Kerisel when φ and δ/φ large – but more correct?
Ka, Kp charts in Simpson & Driscoll
Comparison with Caquot & Kerisel Ka(C&K) / Ka(EC7) %
Kp(C&K) / Kp(EC7) %
9.7 Ultimate limit state design
9.7.2 Overall stability
9.7.3 Foundation failure of gravity walls
9.7.4 Rot ota at io ional nal f ai lu lurr e of emb embe edd dde ed wall walls s
9.7.5 Ver ti tical cal fail failur ure e of emb embe edd dde ed wall walls s
9.7.6 Str truc uctur tura al design of reta retain ining ing struc str uctur ture es
9.7.6 Structural design of retaining structures
9.7.7 Failure by pull-out of anchorages
9.8 Serviceability limit state design
9.8.2 Displacements
EUROCODES Background and Applications
EN1997-1: Anchorages and Retaining structures
Brussels, 18-20 February 2008 – Dissemination of information workshop
EN 1997-1 Eurocode 7
Section 9 – Retaining structures Fundamentals – Design Approaches Main points in the code text Examples: Comparisons with previous (UK) practice Comparison between Design Approaches
52
8m propped wall
BP87.71
BP111.33
BP112.49
8m propped wall - data BP112.50
BP119.50
BP78.26
BP111.34
BP124-F3.15
CASE: Unplanned overdig (m)
DA1 DA1 -1 -2 0.5 0.5
EC7 SLS 0
Dig level: Stage 1
-8.5
-2.5
-8.5
Stage 2
-8.0
Characteristic φ' ( )
24
24
24
γ (or M) on tan φ'
1
1.25
1
Design φ'
24
19.6
24
δ'/φ' active
1
1
1
δ'/φ' passive
1
1
1
0.34
0.42
0.34
1
1
1
Design K a
0.34
0.42
0.34
K p
4.0
2.9
4.0
1
1
1
4.0
2.9
4.0
K a Factor on K a
Factor on K p Design K Excd. side
8m propped wall - length and BM BP111.35
BP112.51
BP119.51
BP78.28
BP124-F3.16
CASE: Unplanned overdig (m)
DA1 DA1 -1 -2 0.5 0.5
EC7 SLS 0
Design φ'
24
19.6
24
Design K a
0.34
0.42
0.34
Design K p Excd. side Retd. side γQ
4.0
2.9
1
1.3
4.0 1.0 1
Computer program
STW STW
Data file Wall length (m)
PROP11
Max bending moment (kNm/m)
PROP1
15.1 17.9 * * 1097 1519
Factor on bending moment
1.35
1
ULS design bending moment (kNm/m)
1481 1519
F BCAP3A
17.8 ** -236 +682 1 -236 +682
Redistribution of earth pressure BP119.52
BP124-F3.17
BP87.75
BP111.36
BP112.52
Compare CIRIA 104
BP87.2
BP111.54
BP112.54
BP119.53
BP124-F3.18
10kPa (13kPa) 0
-8m (-8.5m)
φ′ = 24° (19.6°)
0 .
630kN/m 0 0 0 . 4 -
t n e m o m g n i d n e B : 7 0 2 0 1 2 8 2 : 1 1
0 0 0 . 8 -
1 t n e m e r c n I 3 n u R 3 t n e v E c 7 0 b e F 5 p a c b x
0 . 0 0 4
0 0 . 2 1 -
) m 0 0 0 5 . 0 = x ( e t a n i d r o o c y
0 0 . 6 1 -
0 . 0 0 2
0 .
0 . 0 0 2 -
0 . 0 0 4 -
0 . 0 0 6 -
Bending moment [kNm/m]
0 . 0 0 8 -
. 0 0 0 1 -
. 0 0 2 1 -
1 8 6 3 1 : 1 y 1 0 1 : 0 1 x 0 . e 0 l 2 - a c S
8m propped wall - length and BM BP111.38
BP112.55
BP119.54
BP124-F3.19
CIRIA Fs
CIRIA Fs
0
0
BS DA1 DA1 8002 -1 -2 0.5 0.5 0.5
Design φ'
16.5
24
20.4
24
Design K a
0.49
0.36
0.41
Design K p Excd. side Retd. side γQ
2.1
3.4
1
Computer program Data file Wall length (m)
CASE: Unplanned overdig (m)
Max bending moment (kNm/m) Factor on bending moment ULS design bending moment (kNm/m)
BP78.32
EC7 SLS 0
DA1 -1 0.5
DA1 -2 0.5
DA1 -2 0.5
DA1 -2 0.5
19.6
24
24
19.6
19.6
19.6
0.34
0.42
0.34
0.34
0.42
0.42
2.8
4.0
2.9
4.0
1
1
1
1.3
4.0 1.0 1
2.9 1.0 1.3
2.9 1.0 1.3
STW
STW
STW
STW
STW
FREW FREW FREW FREW
PROP4
PROP5
PROP1
BCAP3A BCAPBA BCAP1A BCAP4A XBCAP5
20.4 ** 1870 ##
14.1 ** 776
17.9 15.1 17.9 * * * 1488 1097 1519
17.8 ** -236 +682
17.8 ** -241 838
17.8 ** 1359
17.8 ** -308 1158
17.8 ** -229 1131
1.5
1.0?
1.35
1
1.35
1
1
1
-236 +682
-325 1131
1359
-308 1158
-229 1131
PR1B-03 PROP11
1
1164 1488? 1481 1519
1
1.3 SAFE
8m excavation - comparison of methods BP111.39
BP112.56
BP119.55
BP124-F3.20
35 30 25
Leng th (m)
20
BM/50
15
Prop F/50
10 5 0
4 0
2 0
W
7 W
7 E F
BP78.34
Redistribution of earth pressure BP119.56
BP124-F3.21
BP87.75
BP111.36
BP112.52
German practice for sheet pile design - EAB (1996) BP119.57
BP124-F3.22
BP87.39
BP111.37
BP112.53
Weissenbach, A, Hettler, A and Simpson, B (2003). Stability of excavations. In Geotechnical Engineering Handbook, Vol 3: Elements and Structures (Ed U Smoltczyk). Ernst & Sohn / Wiley.
2m
SAFE Grundbau2
BP116.24
BP119.58
BP124-F3.24
q=80kPa
3.32m k
=35°
22.4
γ= 17 kN/m3
8m
/ = 2/3 (active) Ka = 0.224 30.5 15.3
= 20 kN/m3 ? Weissenbach, A, Hettler, A and Simpson, B (2003) Stability of excavations. In Geotechnical Engineering
Grundbau in STAWAL
BP119.59
BP124-F3.25
Bending Moment [kNm /m ] -60 0 .0 2.000
-40 0 .0
-2 0 0 .0
.0
.0 .0
2 00.0
4 00 .0
6 00 .0
199.3kN/m
[1 ]
-2.000
-4.000 R e d u c e d L e v e l [ m ]
-6.000
.0 -8.000
.0
-8.000
[2]
[2]
-10.00
T oe -10.59m
-12.00
-14.00
Shear Moment Wa ter Pres sure Ac tua l Pr ess ures
-24 0 .0 -16 0 .0 -24 0 .0 -16 0 .0 Scale x 1:128 y 1:128
-8 0 .0 0 -8 0 .0 0
.0 .0
8 0.0 0 8 0.0 0
1 60 .0 1 60 .0
2 40 .0 2 40 .0
Grundbau: DA1 and DA2
XBP119.60
BP124-F3.26
400 350 300
L=10.7
L=10.6
250 Penetration cm 200
BM
kNm/m
Strut force kN/m 150 100 50 0 Char
DA1-1
DA1-2
DA2
EUROCODES Background and Applications
EN1997-1: Anchorages and Retaining structures
Brussels, 18-20 February 2008 – Dissemination of information workshop
EN 1997-1 Eurocode 7
Section 9 – Retaining structures Fundamentals – Design Approaches Main points in the code text Examples: Comparisons with previous (UK) practice Comparison between Design Approaches
68
Eurocode 7 Workshop Dublin, 31 March to 1 April 2005
Organised by
European Technical Committee 10 Technical Committee 23 of ISSMGE GeoTechNet Working Party 2
Retaining Wall Examples 5 to 7
BP130.1
Example 5 – Cantilever Gravity Retaining Wall Surcharge 15kPa
• 20
6m 0.4m
Fill
Design situation -
o
• •
6m high cantilever gravity retaining wall, Wall and base thicknesses 0.40m. Groundwater level is at depth below the base of the wall. The wall is embedded 0.75m below ground level in front of the wall. o The ground behind the wall slopes upwards at 20
Soil conditions -
0.75m
BP130.2
o
Sand beneath wall: c' k = 0, φ'k = 34 , γ = 19kN/m 3 o Fill behind wall: c'k = 0, φ'k = 38 , γ = 20kN/m 3
Actions - Characteristic surcharge behind wall 15kPa
Sand
B=?
•
Require -
Width of wall foundation, B Design shear force, S and bending m oment, M in the w all
Example 5
BP130.3
Surcharge 15kPa
20o
6m
Fill
20o
0.4m
Ka z 0.75m
Sand
B=?
Example 5
BP130.4
Surcharge 15kPa
20o
6m
Fill
20o
0.4m
Ka z 0.75m
Sand
B=?
Example 5 – Cantilever Gravity Retaining Wall Examp le 5 - Gravity wall 6.0 5.0
1 b
1
1=3
N N
N
m
2 N
4.0
H T D I 3.0 W E S 2.0 A B
3 N
1
3
1 N
1
N 2
2=N
2 b b
2 N
1 , 2 or 3 – EC7 DA1, DA2 or DA3 b – EC7 DA1 Comb 1 only
1.0
N – national method 0.0 0
0
1
1
1
2
2
C:\BX\BX-C\EC7\Dublin\ Dublin-results.xls
2
2
2
3
3
3
5
5
5
8
8 16 16 17
G
C
C
Contributor
C
C
C
C
C
BP130.5
Example 5 – Cantilever Gravity Retaining Wall •
Surcharge 15kPa
• 6m
Fill 0.4m
6m high cantilever gravity retaining wall, Wall and base thicknesses 0.40m. Groundwater level is at depth below the base of the wall. The wall is embedded 0.75m below ground level in front of the wall. o The ground behind the wall slopes upwards at 20
Soil conditions -
-
•
B P 14 2A. 6 .1
Design situation -
20o
B P 1 3 0 2.
o
Sand beneath wall: c'k = 0, φ'k = 34 , γ = 19kN/m 3 o Fill behind wall: c'k = 0, φ'k = 38 , γ = 20kN/m 3
Actions - Characteristic surcharge behind wall 15kPa
0.75m
• Sand
B=?
Require -
Width of wall foundation, B Design shear force, S and bending mom ent, M in the wa ll
Additional specifications provided after the workshop: 1 The characteristic value of the angle of sliding resistance on the interface between wall and concrete under the base should be taken as 30º. 2 The weight density of concrete should be taken as 25 kN/m3. 3 The bearing capacity should be evaluated using to the EC7 Annex D approach. 4 The surcharge is a variable load. 5 It should be assumed that the surcharge might extend up to the wall (ie for calculating bending moments in the wall), or might stop behind the heel of the wall, not surcharging the heel (ie for calculating stability).
Example 5 – Cantilever Gravity Retaining Wall
BP124.A6.12
Examp le 5 - Gravity w all 6.0 5.0
1 b
1
1=3
N N
N
m
N
2 N
4.0
3 N
1
H T D I 3.0 W E S 2.0 A B
3
1
1
N 2
2=N
2 b b
2 N
1.0 0.0 0
0
1
1
1
2
2
2
2
2
3
3
3
5
5
5
8
8
16 16 17
E
C
C
C
C
C
C
C
Example 5 – Cantilever Gravity Retaining Wall
E
E{
F
Frep ; Xk /
M;
ad } = Ed
Rd = R{
F
Frep ; Xk /
M;
ad }/
R
BP130.5
Example 5 – Cantilever Gravity Retaining Wall Column no. Base width
1
2
3
4
5
3.75
3.75
3.75
3.75
3.75
Column no. 1
Column no. 2 Eccentricity (m)
0.57
0.57
0.57
0.79
0.79
Effective width B' (m)
2.61
2.61
2.61
2.17
2.17 Column no. 3
Vertical force kN/m
690
941
690
941
690
Horizontal force kN/m
207
285
285
285
285
0.30
0.30
0.41
See note
0.41
Inclination H/V
R (kN/m)
1392
1373
879
659
659
1
1.4
1.4
1.4
1.4
Rd (kN/m)
1392
981
628
471
471
Rd/Vd
2.02
1.04
0.91
0.50
0.68
γ(R)
Column no. 4
Column no. 5
BP130.5
Characteristic values of all parameters. Characteristic eccentricity and inclination; forces and resistance factored. Characteristic eccentricity; unfavourable (horizontal) force and resistance factored. Favourable (vertical) force not factored in deriving inclination or for comparison with resistance. Unfavourable (horizontal) force and resistance factored. Favourable (vertical) force not factored in deriving inclination or eccentricity, but factored for comparison with resistance. Unfavourable (horizontal) force and resistance factored. Favourable (vertical) force not factored in deriving inclination or eccentricity, or for comparison with resistance.
Example 5 – Cantilever Gravity Retaining Wall
BP124.A6.12
Examp le 5 - Gravity w all .
1200
m1000 / m N k
1
800
T N E 600 M O M 400 G N I D 200 N E B
1
1=3 b
N N 2
1
2=N N N
N
0
b b 1 2
3
2 0
0
1
1
1
2
2
2
2
2
3
3
3
5
5
5
8
8 16 16 17
G
C
C
C
C
C
C
C
Example 5 – Cantilever Gravity Retaining Wall
BP124.A6.14
Exam pl e 5 - Gravity w all 300
.
2=N 1
250
m / N k 200 E C 150 R O F R 100 A E H 50 S
1
N
b b b
1
1 2
3
N N
N N
0
2 0
0
1
1
1
2
2
2
2
2
3
3
3
5
5
5
8
8 16 16 17
E
C
C
C
C
C
C
C
Example 5 – Cantilever Gravity Retaining Wall
BP130.8
• Serviceability: – – – –
No criteria in the instructions Mainly ignored ½(Ka + K0) ? Middle third ?
• Very large range of results • Importance of sequence of calculation and factoring – this is the main difference between the design approaches for this problem
• Factors of safety must allow for errors and misunderstanding
Example 6 – Embedded sheet pile retaining wall •
10kPa
1.5m 3.0m
•
BP130.9
Design situation - Embedded sheet pile retaining wall for a 3m deep excavation with a 10kPa surcharge on the surface behind the w all Soil conditions Sand: c'k = 0, φ'k = 37 o, γ = 20kN/m 3
-
•
Actions - Characteristic surcharge behind wall 10kPa - Groundwater level at depth of 1.5m below ground surface behind wall and at the ground surface in front of wall
•
Require - Depth of wall embedment, D - Design bending mom ent in the wall, M
Sand D= ?
Example 6 – Embedded sheet pile retaining wall •
10kPa
• 1.5m
Sand
Design situation - Embedded sheet pile retaining wall for a 3m deep excavation with a 10kPa surcharge on the surface behind the wall Soil conditions o 3 Sand: c'k = 0, φ'k = 37 , γ = 20kN/m
-
•
Actions - Characteristic surcharge behind wall 10kPa - Groundwater level at depth of 1.5m below ground surface behind wall and at the ground surface in front of wall
•
Require - Depth of wall embedment, D - Design bending moment in the wall, M
3.0m
BP130.9
D= ?
Additional specifications provided after the workshop: 1 The surcharge is a variable load. 2 The wall is a permanent structure.
Example 6 – Embedded sheet pile retaining wall • Huge range of results • Values of Kp ? •
C&K / EC7 / Coulomb ??
• What about overdig? • 2.4.7.1(5) Less severe values than those recommended in Annex A may be used for temporary structures or transient design situations, where the likely consequences justify it.
Kp(C&K) / Kp(EC7) %
BP130.14
Example 7 – Anchored sheet pile quay wall 10kPa
1.5m
Tie bar anchor
•
Design situation - Anchored sheet pile retaining wall for an 8m high quay using a horizontal tie bar anchor.
•
Soil conditions o - Gravelly sand - φ'k = 35 , γ = 18kN/m3 (above water table) and 20kN/m 3 (below water table)
•
Actions - Characteristic surcharge behind wall 10kPa - 3m depth of water in front of the wall and a tidal lag of 0.3m between the water in front of the wall and the water in the ground behind the wall.
•
Require - De th of wall embedment D
8,0m
GWL
Water 3.3m
Sand
3.0m
D=?
BP130.16
Example 7 – Anchored sheet pile quay wall 10kPa
•
Design situation - Anchored sheet pile retaining wall for an 8m high quay using a horizontal tie bar anchor.
•
Soil conditions o - Gravelly sand - φ'k = 35 , γ = 18kN/m3 3 (above water table) and 20kN/m (below water table)
•
Actions - Characteristic surcharge behind wall 10kPa - 3m depth of water in front of the wall and a tidal lag of 0.3m between the water in front of the wall and the water in the ground behind the wall.
•
Require - De th of wall embedment D
1.5m
Tie bar anchor
8,0m
GWL
Water 3.3m
Sand
3.0m
D=?
BP130.16
Additional specifications provided after the workshop: 1 The surcharge is a variable load. 2 The wall is a permanent structure. 3 The length of the wall is to be the minimum
Example 7 – Anchored sheet pile quay wall
BP130.23
Examp le 7 - B end ing m om ents . 600 m / m500 N k T 400 N E M300 O M200 G N I D 100 N E B 0
- not the end of the design 1
2
3 b
2 1
b
b
N
b N
1
1
3
3 3
3
1
3 2
b N
1 1 b
1*
N
N b
b
b
N
N c 1 N N b
N
N N
2 N N
0 0 0 0 0 0 0 A A 2 2 2 2 2 2 3 3 3 3 5 5 5 7 7 7 7 8 9 D 12121213141616 B C C C C C
N
1515151515
Eurocode 3, Part 5 BP87.78
BP130.26
Economies of up to 30% due to plastic design
The significance of yield in structural elements
BP114.32
BP116.50
BP130.27
Example 7 – Anchored sheet pile quay wall
•
Large range of results
•
SSI important
•
Optimise: length, BM, anchor force?
•
Design doesn’t end at the bending moment
•
Nobody considered SLS
BP130.28
The wall must be 12m long. What tie force is required? BP99.90
BP130.37
BP87.114
As a cantilever, length would be about 14m. BP130.38
BP87.115
91
BP99.
DA1 Comb 2 gives a tie force of 75kN BP99.92
BP130.39
BP87.116
But characteristic calculation gives zero tie force, for 12m length. 93
BP99.
BP130.40
BP87.117
EUROCODES Background and Applications
EN1997-1: Anchorages and Retaining structures
Brussels, 18-20 February 2008 – Dissemination of information workshop
EN 1997-1 Eurocode 7
Section 9 – Retaining structures Fundamentals – Design Approaches Slopes and walls all one problem Design Approaches matter!
Main points in the code text
Good basic check lists Values of Ka and Kp Overdig Not enough attention to SLS (by users, at least)
Examples:
Results broadly similar to existing practice DAs: big effect on gravity walls; small effect on embedded
Lessons from the Dublin Workshop
Very wide range of results Effect of DAs for gravity walls and Kp for embedded Human error important – partly offset by safety factors
94