Wrocław University of Technology
Business Information Systems
Jacek W. Mercik
BUSINESS STATISTICS Six Lectures on Statistics Developing Engine Technology
Wrocław 2011
Copyright © by Wrocław University of Technology Wrocław 2011
Reviewer: Tadeusz Galanc
ISBN 978-83-62098-33-0 Published by PRINTPAP Łódź, www.printpap.pl
Introduction 1. A e age ( ea ) a e , a iabi i
2. Ra d
a iab e
3. The
a di
4. Di 5. C
ib i
a d he di
ib i
fee e
i a a
e
ib i f
a i ic .
fide ce i e a
6. Pa a e ic e
3
General description Year of Study
:1
Number of Credits
: 3 credits
Duration in Weeks
: 8 weeks
Contact Hours Per Week
: Lecture and Computer Laboratory (2 hours)
Pre-requisite Course(s)
: Probability theory
The c
e ai
:
1. 2.
provide a quantitative foundation in statistical analysis for business; equip students with knowledge in various statistical techniques applicable to business problems; 3. enable students to interpret analytical and statistical results; and 4. give students an overall appreciation of the role and benefit of computers in statistical analysis.
U
c 1. 2.
ei
f hi c
e, he
de
h
d be ab e
:
de a d he ech i e f e ec i g, c ec i g a d ga i i g da a; de a d a d a he ech i e f a i i g, a a i g a d e e i g a i ica da a i ab i e e i e ; 3. de a d a i ica ea e a d i fe e ce a d a he b i e be ; 4. i e e a i a i e a d a i ica a a i .
4
1. a
2.
A e age ( ea ) a e , a iabi i e
a d he di
ib i
fee e
i a
f da a
2.1 F e
e c di
ib i
2.2 C
a i ef e
e c di
2.3 G a hica
ea
2.4 E
da a a a
Mea
a
e
f ce
f
ib i
e e ai i
a e de c a d di e i
3.1 Mea 3.2 Media 3.3 M de 3.4 Ra ge 3.5 Va ia ce a d
3.
a da d de ia i
3.6 C efficie
f a ia i
Di c e e a d c
i
5.1 Bi
babi i
ia
5.2 P i 5.3 N
a
5.4 N
a a
babi i di
ib i
ib i
babi i
di
ib i
babi i
di
ib i
i ai
di
fhe bi
ia a d P i
di
ib i
5
4.
Estimation 6.1 Distribution of sample means 6.2 Estimators 6.3 Confidence intervals for means 6.4 Confidence intervals for proportions
5.
Te
fh
he e
7.1 E ab i hi g h
he e
7.2 H
he e
ega di g
7.3 H
he e
ega di g
e
ea
e
i
The c e i be a gh ia ec e a d c e ab a ie . S de i d ced ea i ic be a adi a i a i e ech i e ed. E e
ha i
i e de e
i be
eai a de
Fi a E a i a i
aced
f e e
he ca c a i a f i a i e . The c
a iai e
e ab a eh d f
ie
ea i be
i be a
e a d he ed
f
he
b e i g.
100%
Principal Reading: Aczel, Sounderpandian, Complete Business Statistics, 7th edition, McGraw Hill, 2009.
6
Supplementary Reading: 1. Levine, Statistics for Managers Using Excel and Student CD Package, th 5 edition, 2008, Prentice Hall. (ISBN-10: 0136149901) th
2. Aczel, Complete Business Statistics, 6 edition, McGraw Hill, 2006.
1) MS E ce 2) O e Office: h
://d
3) S a i ica
:
h
://
ac
ad.
cef ge. e /
4) SPSS: he e i
f
ec / de
The ec
e
he a
e
e
a e ia f ca e c e g
Ac e d
ac
/fi e /OO %20S a i ic /
ia e ec
a i ic ab a
e he ba ic b
.C
317, b i d. B 1.
a e i e ded e ich de begi d i g he b e f ef
.I
a e ia f
hi
'
a i ica Ac e b
he ci .
e e ed he e ade e ig ed
he i
ffice. g/
ca be b ai ed f
The ec e e e ed i hic i edge. S i , i i ad i ab e a d he
e
g
i h ed he ca i
ega d, he
he ab a
bi ed eadi g f a
he e
,b
a
e f
he e
i i ad i ab e
a e ia
h
d e
i a
edge f a i ic .
7
Lec
e I: A e age ( ea ) a e , a iabi i
a
a d he di
ib i
fee e
i a
e
The ba ic c
e i
d be
he a a
ed
e
ha a a
e
ie e
f
b e ai be
h
h
d
he e i
15
i
i
a 15 i
e a
e ,
e
ea
a e e,
ei e a a d
a ib e (i
e,
ha e a
ee
) i h he ac a
e b e ed he f
i g i e
a i g ha he a
ha he hi a i i h e ic a e age ( ea ) f
, i.e.
e he
he e b e a i
a .F
e ): 13, 17, 16, 16, 14, a d 14. B
x=
de
ega di g
e i ahe ic
be i c
f he a i a a e. F
he e b e a i
he e
ei
d a i eaace ai
eg a i
ee a i a (i e e
i ga a
cha ac e i e he e i e a
x1 + x 2 + ... + xn 1 = n n
b e ai
, a d x de
e ie
cha a
n
∑x , i
i =1
e
hea i h e ic
ea
f
.
Le ' cha ac e i e he
f
e:
n
1) nx = ∑ xi , ha i ,
gi he a e age a e a d he
be f b e a i
i
i =1
a a I
e
e ca de e
he e a
i e he
e f he a
,
f he b e ed a e .
e ha be e 6 ai
+14 +14 = 90 . The a e age a e (a i x = 15 . Th ei
, 6 i e 15 i e ih
hi
e ha e i PLN 10, he c h
8
e
ec e i
a
i g ab e
f hi
90. Thi iigi ? F
ec ea
, he e , a
e e a
ge a PLN 1000 i gi
a
; he
ca ed he e
a
he i
ec
i 13 +17+16 +16 ec ed a e f
i b i
h
e)
fe d
e, if he a e age e fi f
ai e age f a e, ce .
,b
he a
100 ha e . The e hich, a
e
2) xmin ≤ x ≤ xmax . Thi i a ee
e
b i
he cha ac e i ic f hea e age f he a (13, 17, 16, 16, 14, 14) = 13,
.
a e a ee
a
i .The ef e, e
hich
(13, 17, 16, 16, 14, 14)
a i f 13 < x < 17 , b
= 17. S , he a e age a e
e,
e f he b e ed
e e be : he
ea
a e
a
e e be
b e ed! n
3) ∑ ( xi − x ) = 0, i.e. he a e age a e i
ce
a"
ih e
ec
a
b e ai
i =1
a d hi "ce
i g" i
he be
ib e. n
I i ea
h
ha he f
ci
∑ ( x − a) a 2
a
ai
i
i
i i
a e
i =1
a* = x :
f
∂
(∑
n i =1
(x
i
− a* )
2
∂a ∂
(∑
n i =1
(x
) =0
− 2 xia * + a *2 )
2 i
∂a
) =0
−2∑ i =1 xi + 2na = 0 n
a* =
4) The
ea
he
ai
e
e ec
e
i
=x
i +1
ei ag
i
fe
ed
ca ed a b
i g
a fge
he be
ch a a g
e ded i e a
ei
da
f if
e ha e a e e e a i e a
5) The a i h e ic S
∑x
i ai
f he a e age i
.
be ie e ha he a e age i he
n
*
n
fea e e a i e a
N e ha hi beca
1
e a
e i
hich e
e . He e,
ac ica ea
i g:
i h a gi e a e age a e, he
ai ,
hei g
i i a . U de e
ha
i g hi
ed
e efe he i
ea
c
i i i e eade
e i gi
i a he
e.
ea i
e
ii e
e f he a
e
e e a e .
ha heee f a
ca e a
9
i
edia e af e he
c
, i
hich
e i
ei e
a
had ef he
cc
he a
( he he
e
f a
a ce f a e ge ,). S
da a
i e hi : 0, 17, 16, 16, 14, 14,
he
ea
a ef
hi
e i x = 12,83 , a dec ea e f 15%. Thi i a e
a
adica cha ge! F
he ab
e
e ie ,
e
ec ed a e i
he
ec
d i agi e ha
ai
d be m1* =
he e m1* de i a d b
e
he e i a ed e
ha hi e
e i
a i
). He ce,
ch e i a e a e
i gf
a
e
he e m2* de
e
a d xmax −1 , de he e e
he
ii e
ai
h . O e ca
e he 2
a e
e e a e af ehe
ee
h
ha
be e e i a e:
xmin1− + xmax1− , 2
hee i a ed e ec ed a e i he d
. We ca
he e e e a e ( i i
e ba aiig ifica m2* =
e i a e he
e:
ec ed a e f
i e
a
xmin + xmax , 2
edia e
i g he f
e
a d2 i i
d
a ge
a d
ai ,
b e ai a i
, e
xmin −1
ec i e , i.e.
a e ha beee
de e ed. I
he e a
e f he a
a x = 15 . De e i 16, 14, 14. I
eff ec
10
e
a i )i .U f e da i
, he e
ec ed a e f
f he e e e ea
ec ed a e (a d h i 15,a h gh a e , ed i
e
he a
ha he a
e
he e i a e f he e
e ha e achie ed hi e a a ge ch g d e
ch a e i a e
he
e a f
:
ec ed a e i ih e . He ce, he
fa e ,aea a
a
16,
he
b ai
e
. Ob i
, he a ge he a
e, he be e he e i a e
b ai ed.
Le
e
he a E a
c
e a ed
a
C?
he e ec ed a e (a e age) f
ide he f
i ge a
f h ee e A:
e
2
i
a
e
e C 6 i . Wha i
#1 f he a i h e ic a
h
d
392.73 e e e
eigh h
a ai eg e c
e B 3 a id , a e a i ie g ?e
x=
ea , e b ai e b ai
d ce 480 :
11 3
e e ,h
2+ 3+ 6 3
hahif i (480 e
= 130, 91 i e a c
e #1
d ced 240 i e
(480 / 2 = 240).
e #2
d ced 160 i e
(480 / 3 = 160).
W
e #3
d ced 80 i e
a i h e ic
i ab e f i
, e c.). He e
i
. We h
e i a i g he e h
e
e
ee
e
e
d ced i
ec i e
ea i ?
(480 / 6 = 80).
d ced 480 e e e
ea ) 392.73 e e e
ea i d ci i
h
i g
3
i .) a " a i ica "
e
W
e
2
= 3 . Th
, a d h ee
W
The h ee
:
e ,
ea ,
.H
b e ed f
he a e age i e eeded
Ca c a i g he a i h e ic
h
e:
e.
The W
ide a i
e. D e i a
, eff
e a diffe e
i
,a
d i fe f
b ai ed ( i g he hi
ha he a i h e ic
ea a e f f a e ( ch aab i
e
ea
xH =
a d
e aeed, i
e, a e
he ha
i
e e ic
e ea :
n n
1
∑x i =1
i
11
Le
c
d c
e i ae
i g he ha
ic
he
d ci
,a
e
h ee
e
E a
480 c
e
d ci
+ +
3 1
1
2
3
6
= 3.
, e
e
ai e, e
fa
i
ec i e . N e ha hi
e
h ee c
i i
i e
ih
Th
he a e age
ai
ai 6500 5000
ee
he he hi
e
i c ea e ea
= 1, 3
g
x2 =
i c
1,3 + 1,147 2
a he a e age a e f 1.2230, i.e. f
f
6115 acc
N e ha if i
6500
= 1,147
5000 he ec
he effec
, hi
,
7450
e ha i b h ea
1.223 i e 6115=7479 i
ai
fa
i ai
hich i 7,450 e
6115 i
e ic
he
he fi
ai ea a d
d ea . We ee ha e e e
d e
a i g
gi e he ac a i e
e.
ead f he a e age (a i h e ic) a e f
e he ca ed ge
?
= 1,2230
ec ? A
ge
f he
ai
ea :
hi : x=
Le '
ec i e e i 5,000, d i 6500, a d 7450
ec i e . Wha i hea e age e a i e i c ea e i
x1 =
ai
ea :
xG = n x1 x2 ...x n = n
n
∏x
i
i =1
12
hif (480 / =3 160) a d
.
We ca c a e he e a i e
i
agai , b
e.
The e
1
d ce a a e age f 160 ee e
hei ac a
e
ea , xH =
Th
f he e h ee
,
g
h,
e
hi
e
i a
We b ai
e ac .
he ge
ai
ge
ea xG = 1,3 ⋅1,4 7 = 1,2 206. A
e ic
a he ge
ea f 5000 6103 a d i he ec 7450. Thi i he c ec e . We ee he e ha he ge ai
g
a
a be
e i
ee e
ea i
i
f he e
diffe e
a
ha hi i a
b h a
e ic
d ea f
ea i, i.e. he fi
6103
i ab e, f
1.223 i e 6103 =
e a
e,
d
he f ae
e, e
ahe he
h.
A he e d f di c he e
e ha he
e ic a e age a e f 1.2206 e
e : e i
ec ed a e f e
ib e. F
e a
= (2, 2) a d
he a e a d e
a a
i h he a e e, c
ea
a e. The b i
ide he f
i g
i ia
= (1000000, 1000000). The a e age a e f
a0. .
O e f he ba ic e ea ch a iabi i . Va iabi i ha if he e i
a ia i
i h ce ai Of c
ha
i
ade
a f
he f
he
e
be
( ea
a ,a
a be ie . E i ii e ha e
e
a be ie
e i f ada ad i f
ha i ca e e be a ed i ge e a
e ed
ai
,i
be
f ide ica "
ca
, ega d e
b e ai
,
f he he
ab e cha ac e i ic )
a ed
ea ea
e
edge i
igh a d
e ge
(i.e. a ea
95% ce ai
a be ie , i a
fie d, fie d f ca if
i
ed i .F
a
), ha hi ia fie d f
if e ha e a ead ha e 1000 a be ie ! H
e fee ha c fide ce i ig ifica a be ie (beca e i igh be ha
ai
a a ca eg i a i
a da
he edge f a c
be
g ea e ) ha he e
i h ce ai ecia
a
a i ba i hef b e ed da a.
ha " i h 95% ce ai
e, if e ic a c
e ca
a
hi
ch b e a i
f
ega di g a a i
e, if e ha e aa ge
( a i icia
e a
e i
i da a i
e e,
ed ced if, f e a e, e e fa e a ed f a bed e ),
e i
13
ha
he
a ea
e ha e 10
f
ai e. Le
ca e (a
a i
a be ie
e
f ge ha
igh fie d, a f e, a ca if i
ac ice), i.e. e ca
edge i gi e i
e hi
ee he fie d! We
ec g i e hi
fie d bef e ha e i g he f i . Le '
hi
ab
ha cha ac e i e
e a
e
1) (a
e, a
e, ... , a
e) (i
2) (a
e, a
e, ..., a
e, ea ) a(
3) (a
e, ea , ea , a
he a iabi i a
f ae. He e a e
f h ee da a e :
Of c
e, he e e a
a i
a d
ei
he
d ,a a
e )
e a d a ea ), a d
e, ..., ea (a ) i e ca a
e fa
be
e b
e e ed i
e a d ea ). he f
ef f
be ,
a i ic :
1) (1, 1, ..., 1), 2) (1, 1, ..., 1, 0), 3) (1, 0, 0, 1, ..., 0). If e hi a e
a fiabi i , i '
fc
a
e
hi d e . The ef e, a c
i e f
i i e ha
ih
i
a ii
hi hee ec
f
ea
e ca
d e i
a
ha heafi
ch e
ei
a i e ha
he
i g he a iabi a ei h f d be
a d "ab e
" di i g i h be
ee
he e e
i
e
a ii .
The i
i
(fi ed) a e ,
ba ic, ea
ca c a e,
he a ge, R, defi ed af
ea
e f he a iabi a i e ff
R=x he e x max de i i
e he
a ei
N e ha , i
e
di i g i he
he fi
e
14
gh
hi
be
:
a i
ax
− xmin ,
aei a e f
be , a d
x minde
e.
f a ia i
, hi
f he h ee e
di i g i h he ec
d e f
ea a iabi e fi ab
ef
fficie he
he , b
he hi d. The a ge f
ie
ii e
hee fii 0
e
he
(a d hi i
ef a i
ge e a , R > 0 f he
a ia
a
e ) a d 1 0=1f
ei
hichhe e i a ea
d a d hi d e
eee e
ha diffe
(i
f
he ).
Th
he a ge i a
hich he e i a ia i
e h
b e ai
he
e
a iabi i
i
ha i ca ab e f de ec i g a f e di i g i h be ee
ae
i hi a gi e
e f he a ge he af
ea a
ea
ee
he e
d
he a iabi i
hich a
f
he a
a e
f
hi
ea i gf
e a ia ce,
n
∑ (x n
a
i
he
be
f b e ai
i
( a
, e ca de e
i e he a
s2 =
− x)2
n
∑x n i =1
Agai , e
e ha he a
a a e a d ha f
diffe e
f
he
e a ia ce i a e
f
he , he a
e
be
2 i
f
:
x=
ee e 1
n
f hi
n
∑x
.
i
i =1
i g:
− x2 . he ba e he ai
i
i
,
ae f
hich a ea e e e e
e a ia ce i
i
i i e. S , he a
e
d e
he a ge. M e
e , he a
e a ia ce i ca ab e f di i g i hi g he
i e
i
hich ca
be
a
e. C
ide he f
i ge a
ide ed ab
e f
ef
f e
he
he
e a ia ce
ca di i g i h he fi
f a iabi i ,
f he h ee c
, e
e i e), x i he
ae ia ce
1
i
f he i e
e a d x he a i h e ic a e age f he e be : i ae
f e
e.
de c i i
i =1
he e
ea
i
ha
e e .E e
. I i defi ed a f
1
he i e
e a fiabi i
2
s2 =
e i
a ge.i The f ai
edge f diffe he e ce be
a a
ea
ea iabi f i
a ia i b , ca
he d
A
ea
he a
b ai f
E
he ec
,a
a ge he f a = (0, 0, 0, 1), a d
= (1, 0,
15
1, 0). Y
e
i
ice ha he e
i cha ac e i ed b a g ea e
a iabi i
ha
he
.
The a ge f e
i
b h e
e
i 1,
ed he defi i i
i 0.25. The c
e
ih
1he i de
i a
he e B i
e
bia ed a ia ce). Th ii e
de
i i
be
ih
hichi i
a ia ce ha i i He ce, if he f he a e
ea
ea
he e
he e
i 0.33 ( e
ca c a e he e i i a i e ha
i g he a
he a e age he f
i
f
ea
ca ed
he e A (acc di g
i
ae
2
ie
a di g hef a i be
ac ice, e f e
he
i.e.
e
e
he a i h e ic
g.a e ie.e , ea , e c., he
a he e ef
i
he defi i i he f a
a ed di a ce f
de
e . The ef e, i hich i
e a aia ea ce a e f a iabi i
e e
e a ia ce a e he
,
di g a ia ce f
ed. I ca be ee f
ec i e ). Thi di
de ia i
ee
a di g f a iabi i ).
O e f he he
di i g i h be
f a iabi i .
The a ia ce f e
i
he a ge d e
2
ea
ee
e he a
he
ea . i
,
ch e
a da d
f he a ia ce: n
x n∑ 1
s2 =
σ =
2 i
− x2 .
i =1
The a
e
a da d de ia i
cha ac e i ic a e a
e, f
he ab
σ B = 0,58 . The e
e
(a
he a ia ce, b e e i
e i e de i i
he e
he diffe e ce be
ee
he a iabi i b f h e .
ea
he e a
hich
i g a iabi i . Defi e he f
100). The e a
16
e,
a da d de ia i
i a
.F
a iabi i
bab ade
e e g ea e
i g e :
e a echa ac e i ed b
he a e
σ A = 0,5 a d
a d , e b ai e, ec i e :
ee
ide a
) ha
e he e
he ef e cha ac e i ed b g ea e
i g a i be
C
ed a
ch ea iei e
a d he ae
eci i
= (0, 0, 0, 1)a d
he a e a ia ce (
ef ec
i = (99, 99, 99,
e e e ediffe
f
b 1; σ C = σ D = 0,5), b
he e hi
a iabi i
ae
ch
a e f
e c ea he e
he "c
ei
he c
he a e diffe e ce if he efe e ce
a ed
he
ea
c efficie
e f a iabi i
f a ia i
a
ha
: a diffe e ce f
a
i
ee ha he "c
if he
a e i
, ,(
a
acc
he e
c
ec
N
c
ea
a d ,i i
e
ei e
e ce " f
hee
f efe e ce i 99
hi a
i
100
i 1.0 The ef e,
ec . Thi he i
σ
x
.
ec i e : VC = 200% a d V D = 0,5%. Thi i
e f he a iabi i
ide a e
e
e ce " f
gi e a a e ce age): V=
F
i
e
f he e a
i
he
e .
i g he a a
i
f9 a
e i ef 12 ( ee
Tab e 1) Tab e 1 De c i i e a a e e
I
Descriptive parameters Minimum Maximum Range Mean value Sample variance Standard deviation Variability coefficient
f
ee
II III 1 2 1 1 1 1 1 1 111111111 111111111 111111111 111111111 1 1 1 1 1 1 1 1
IV 0.99 1.01 0.99 1.01
0.99 1.01 0.99 1.01
ei e
.
Data in individual experiments V VI VII 0.98 0.97 0.96 1.02 1.03 1.04 0.98 0.97 0.96 1.02 1.03 1.04
0.98 1.02 0.98 1.02
1 1 0.99 0.98 1 2 1.01 1.02 0 1 0.02 0.04 11.083333 1 1 1 0 0.083333 7.27E-05 0.000291 0 0.288675 0.008528 0.017056 0.00% 26.65% 0.85% 1.71%
0.97 1.03 0.97 1.03
0.97 1.03 0.06
0.96 1.04 0.96 1.04
0.96 1.04 0.08
VIII 0.92 1.08 0.92 1.08
IX 0.88 1.12 0.88 1.12
0.75 1.25 0.75 1.25
0.92 1.08 0.92 1.08
0.88 1.12 0.88 1.12
0.75 1.25 0.75 1.25
0.92 1.08 0.16
0.88 0.75 1.12 1.25 0.24 0.5 1 1 1 1 0.000655 0.001164 0.004655 0.010473 0.045455 0.025584 0.034112 0.068224 0.102336 0.213201 2.56% 3.41% 6.82% 10.23% 21.32%
I he fi e e i e , e b e ed he a e 1 f 12 eachcca i . Wha ca e a ab he he e , hich ha bee b eheed f i f e e
e ? Ac a ,
hi g
ea i gf , e ce
he a
i
ha hi i a
17
c
a
a e. H
ce ai
f hi
i ai
e e, ih a e e . Of c
d be
b e ai i
a gi , a b
He ce he a c
i
ead: e ch H
e
i
fb
he ec
e a
de
a g ef
a
a e
i
ha
ch c
d ch
ch
da
e
c
ai
a.
e h
d
i e e e ,
i
ai
e
,
e e
. Thi c
e 12
hi e a i a
ce ai .
h be d
e ed ( he
f chi d e ),
ih
hich hi
addi i
e
ch
?U i g gh
a i f
ea
e a d
ide a i
e ha e f
.C
d
ea
ha i i
i h ece ai e
a d 90% gi
ecific i
c de ha he
? C ea
he a
ab d
ec
d
bab c e
e hi (a
e
agai
gi
f
i e
e i ef
.A f
ei e
18
2 diffe
f
e
ei e
1i
ha
he e
e e
i
f
i e). N e f e
ae
he hi g, de
a i g
a iabi i
i ha
i cg, f e, ha
ha he b e a i
ai
e
i haa e a e a
he "2" ec ded i
ha i 100%f
ec
ab. I ehe
d 11 gi
), b , e
e af e a , hi ha
cha
e
a i ica i ef e ce,
ai
i high
e
ha
c
he i
achea e
a ! E
ch
edge e
d be
e i i a1 i 2
he e b cha ce, i i i g hii e ,
f he e da a, ca
10% b
hi
e b e ed 11
e i
he c di g beca
de ba i
g
a i f
i he
hi ca e (a h ea
he b
ha he e
e e a d
af i ica i fe e ce) i
gia ' ch
ei e ,
i a gi
ca
edge, e
ed c di g che e: 1
e hi i a e ai
a d gi
g he 12 a d
ce ai
he d
he
ib e.
e, he c
a
e f
a e
a e
e
e e
a ce f addi i
i fe e ce i
,ca e
e,
a
e ge
i f
e e , he i
f(ae
a d gi
ha
(a d hi i
ai
d be e e e ed b 2).Ge e a
fb
babi i
f gi
i a e 0.000244. Beca
c
I
c
i
e a
he fac ha a a
ed e i e
ha he
a i f
e, if e had e addi i
i e diffe e . F
e e e
a c
e e e
addi i
b e ed i
f i
e
ei e
2 a d, i a i
e
ei e
II a e
a iabi i
e
ge de
i
f
i
ei e
III IX,
f
f he
a e i c ea e
ei e
f a iabi i a ia i
a
e
f
be
a ic
i f
ai
IX, i a i e
de
he a i fe ed f f a ia i
ha he e a e
ha i ee
i e
i
f he b e a i
ha
e
ha i a a ge a
e. C
g
ed b
f
he
he c ea i
h
he
d ci
gh he c efficie i
hich he c efficie
e
f ha
f a ia i
he ea chhe f ca a fac iece f i f a i beca f a ia i ie
he
ef
i h addi i
a i f
ih ai
a ii
ie he
ea
e
ide he da ia he f
a
de e de f
). The ef e, i
de ed da a. I addi i
de ia i
ae
. .I i
a da d de ia i fhe
i,
ide ed
i gi i g he e e a da haa
a
i e
f ch e, acc di g
ha 10%a e c
i
( hi a
he cha ac e i ic eac
ac h
a be ca
diffe e
e, he c efficie a iaf i
e a ge, a ia ce a d
e ca
i i g ha he e
II.
e e a
f
ea
a ii ,
i a e 5 e ce age
ei e
ide ed ha da a f
he d
e
a ab e, e e
a , a d he ef e
he
be
cha I ' ge .
g di
IX i c
. O ce agai , hi i
ide a
he i
e f he b e ed a ia i
e b e ai
hich he c efficie
de i ab e, a
i b he e ed
? Thi i a
f he Sda a.e
f ch a
ei e
ha 10% d e d he a iabi i . Thi i a e i
he
he h
ea d
a ii
d ci
ei e
ac ice, i i c
C
I. B
acce ahe, ica
de
f a iabi i
II) ca c ea e
i e
f
eb e e
ea
a e f hi c efficie
da a e
ei e
i
a ii .
i h he
i e
he
ge de
he fac ha he i
I
e ca c c de ha he b e a i
a i e ha i e
i ?O
he a a
he a e
(e
a ,
a ge ha i a eada
he " e e ce" f
I e
ii e
a i i , i.e. a e ca be
, he c efficie
g he da a ia a a i ge a
e
e:
19
Data strings of different lengths 4
8
12
16
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
0
0
1
1
0
0 1 0 1 0
=
The ab
e
di c
i
Le
e
e a C i
e i i
ea
ea a
he
be
106,90%
e f a iabi i e he ca fa a
he a e f
a
e :
b h a ee
hi e f
i be he baf i fhe b e ed.
a
e
i h he a e
he ea
a e.
= (1000000, 1000000).The a e age a e
e a ed a
e A i σ A = 2,8284 ,
103,28%
i g he a ehe agea f e. Reca
= (2, 2) a d
he e a
104,45%
ehe fa iabi i
e ega di g he e i e ce f
diffe e ia e be
20
ed
hich
ide he a
f
115,47%
0. We a ead
ha
e i heia iabi i : he a
e B he
ha
a da d de ia i
a da d de ia i
i
σ B = 1414214, i.e. 500,000 i e
a e a d he a e ide ica ? U f hi i E a C i
a ge . Ma be a
a da d de ia i a e , he a
he f
i ge a
(e
e i
e
ha ha e he a e
a a iabi i ) a e hi
e i
i a
. We
i
h
e.
e. ide a ici , a
d
f he h
age a eh ee i diffe e
e ha he e
he a e
c
be
a ie , F fe
Pe ce age f e H
age
C
.I
. II
C
. III
5
10
20 30
20
35
25
30 40
40
25
25
40 50
20
25
35
50 60
10
10
5
100
100
100
A e age:
35
35
35
Va ia ce:
120
120
120
a d he a e a iabi i
a
e ,
hich ha e he a e a e age a e (35)
(120). B he e a e diffe e
e ca be ee e e be e
e.
ee
10
e ha e h ee 100 e e e
he e a
C
ee : 100 e
10 20
T a:
S
ea
he
a
ed a
e . The di e i hei hi
ga
f
.
21
45
40
40
40
35
35
35
30
30
30
25
25
25
20
20
20
15
15
10
10
15 10
5
5
5
0
0 12345
12345
0 12345
Th
, i addi i
a
c
c
ide he a
igh
he a e age (e e
f he di
I ( ef cha ) i e ed. The hi
f
fid a
a
ec ed) a e a d he a iabi i h, ib i
af a e. The hi
e ic. The hi ga
f
f de e
c
a
e
f
c
ga
a
f
II ( idd e cha ) i
III ( igh cha ) i ef e ed. I e ai
i i g he
di i g i hi g i f
ga
ed
e fa
e
( e
e )a d
.
.
I ha a
e bee i gi e
a ge
e i
ed b
acc di g
( a i
)
ch a a a ge e
hei
he i ef
i a
a
a
e be
ee
( i i
ide a a i
hich he a e age a e i f
ib i a i
de i g acc di g
a
e (a
a
e ie ( he
ab
22
e he
i i
ca ed he
a d
edia ) i
e f he f
ii
ai
ab
he
he a
, a ge (i c di g he
e, c
e ef he e
ii
e: i
i
he
de ed ide he
i
he
i
. S , he 50 h e ce i e f he
he a e be
i g di i i e a
a :f
ice e a. N e ha
a ei
he gi e
edia , de e di g
edia ). F
e
d), e c.
ca ed e ce i e , i.e. acc di g
defi ed a
ea h f i f
,
f a e i g he di
he
e. Thi i
)ee e ,
he
i i
d adea a a
a e . Thi ca be d ei
a e
he b e ed a e f he
The
e h
de ed e ie ,
hich 50% he f
he e ac defi i i : 50% f b e a i ide he f
hich "di ide "
de ed
f e ce i e, i a e be
i g defi i i
f he 100 λ th
e ce i e: he [ nλ ] + 1 i ea d f
de
he a
e
he i ege
e a
16 , 16, 17) i
b e ai
e (af e
i
a
he
f ,
de ed i ,
e fi d ha he
de i g he a i a i e
he a e f he i e
i
ii
6⋅
he ba i
Thi
e, he i
ae
e fi d f
f a
hich a
ece a i
he
b e ai ha i
16 ha i
fe i
e: i
he a
The ef e, e h ee c
ca ed i
e i gi e b he a
da a e f
ib e
da a ee (f a
e
he e a
a ie . We ha e f
c
e
e K
(I) = 35, di g
he igh i ), f ,8] + 1 = 5 .
ce i g he a i a
he
da a e, he hich i
he e a e
he defi i i he a
(II) = 34, a d
,
e, i ca c a i c
he e a
de
ed
e a e he i g E ce ).
e f he h
he age
f
e ha e he a e a e age
(III) = 36. We a a
ed, i i a
e ie i
ed a
e e , a e he
edia
ee ha he ): 35, 27.5 a d 42.5,
ec i e . i g he
edia ,
ega di g he F F
e ce i e (80% fhe
[ 60⋅
f a
e f he
d ha a
da a e a e (
= 16
c
a e (35) a d he a e a ia ce (120 ). Wha diffe , h a e :
),
e. N e ha he a e i da
e f he a ii ae
f b h 14 a d 16.De e di g
f he
ed
e .
f he a
hi ca e he e i
a e
h
ega di g he 80
d 20%hef b e a i
e
e
ai i g he i e af
ii
ea i
20% f he
he a ehe fe e e
ae
edia (de
+ 1 = ,4i.e.
ae
he cha ac e i a i
a e
e i
he a
f hea ea13, 14, 14,
he ef a d 20%f he b e a i
a e i 16, i
i e A
ega di g he
f he a
b e ai hich
e i
1
i
2
N e ha he
he e
igh
e
da a d a e age a e e ab e f he di
ib i he f a
e ica di
ib i
: x = Me = Mo ,
e ed di
ib i
: x > Me > Mo, a d
e
e he
be
e. He ce,
23
F
ef
e ed di
We b ai I de
f
x < Me < Mo .
ib i
he f
i ge e a
i dica
( ea
e ) fa
e
:
e : x − Mo ,
e
S a da di ed
e
x − Mo
a i : AS =
e
a d
s
C efficie
fa
e
A he e d f di c ca ed "3 ig a" a
ed
(
1 m3 n Aas = 2 = s
i
he
e. Thi
a ha f
e di ec
ec
f
a da d de ia i
a
ei
a e age he
a a
1
f
fficie
fficie
ai
i e
f a
,
a ge,
e ha 20
ia
a ge a )
he
e (ge e a
e 90% he f
ai
e ed
(f
i
a e,
ai
i gf
i
he " h ee ig a"
he a i a i e ed
e a
ici
e, b x = 15 a d
ha he e
e ha 90% f he e
f a
a hhe e ha
ha e ai f
e .
One can find a br ief description of the life and the work of Chebyshev at http://en.wikipedia.org/wiki/Pafnuty_Chebyshev
24
e
ea e ead he
ac ica ig ifica ce. F
ea i g, 90%hef i e i
e e
he a ge [10,35; 19,65 ] . Thi
, a d he ef e
e. C
e
e ha fi d he a e age a e i
e fi d f di
e,
[ x − 3s, x + 3s ] . The " h ee ig a"
( ig a) s = 1,55 . A
ai i g i e a e f
h e
i
e fa a
e) a d ha a e
i g he a i a i e
he
.
s2
ahege 1
Cheb he
e ded i e a
a a
!) i i
3
i
be g ea e ha 30 b e a i he b e a i
c
c
∑( x − x )
a
ie
Lec
e II. Ra d
Ih
e
aiab e .
ha e a ee
he begi
hich ea
i
decide c i i a h
e
i g fa
a
a d fai
he
he efe ee
ha fhich f he i ch. We a
e ha he
dge. B
a ch
he fai e
ide ha e he a e cha ce f fa i gai i g e i ai e e
i a
ef
a
a
e .N
gi e i b ac e . We h
he f c i , . Le '
, e (.) P de
a
e
e ac i
ea
ha i
e e
e he
he
babi i
f he
e ha :
P(head)=P( ai )= Beca c
e he e a e
e ie
ca a
cce
f
ba
i
ha :
a
ch ce a i
a ab a d
cce
ha
a ch hi c
e ca a fai d
ea
N e ha if he cha ce f fai he ab
e
ae e
i ha e If
d e
e, i
i be
e decide i
i g a head i a
i hbehi he d
)
a
e ha
e
cce
(i a
i
e)=P( cce )=
ei
i e g ea e ha
he cha ce f
cce ,
d diffe e : P( cce )=1/3, P(fai
a d hi c ea
i iaa
e, a d he c
e. S , if h
a i g
P(fai
he
ha f
a d fai
de c ibe a c i
e)=2/3,
( he e
ee
ec fai
ea d
cce
a cha ce).
e c de fai a he a ica e
ea d e i
,
cce i g hich
ca i a e e a he e d f he a habe , he f
i g
he
ca ed c i
a
e : 1 if a cce
e ica a e ,
e ca a a d
cc
e b ai a
a iab e,
ch X.aE c di g ed, 0 if a fai
cce
e cc
a
de
a d fai ed,
ed b a ei
e b ai
a e :
25
P ( X = 1)=
1
P (=X = 0)
2
,
e ge e a :
= P ( X = 1) Ob i
=− 0) 1 <
, c di g he a e
a
a bi a , a h
e a
f
gh, a
cce e
a d fai
i
h
ib e a a e f 1,000,000
he e
1
a d
2,
e e e i g I
h
cce
d be
a iab e
a e he
cce
a d 3.14
a di i
e ica a e (ge e a
ed ha he a d i
di
a d eca
Th
, if a e e
(
ei e
fai c i ), de
a e
he ba i a cf i
fai c i
che e. Thi c ea
e
, i ce
Le
e
ha a
i
be )
i
di
babi i
di
ib i
gh i i i ge e a a
ib i
. N e ha if a
ec a
f ce
ii e
f
a i ic e a i a i
,a a
e acc di g
de
he c
ib i
e b
i
a iab e.
che e, a h
a
e
di
a
ch a
i
e be ie e ha hei
he
e
d gi e he c
highe . We ha
ch
p 1,
gi e he e i
f aa d
f a i g he
d e
P ( X = 1) =
26
hei
he c i
he cha ce
gi e
ig ifica
i
ace acc di g
e aha he e e
a ed ab
fai . Ie ge e a ,
he e a e ea
. The de c i i
a defi i i
e a acc di g
a
a iab e de c ibed ab cae ed i a a d
ib i
he f
de
ec i e .
gge ed ha he eade
babi i
S
e, e
0a d1i ec
:
p; P=( X=− x2 ) 1< < p, for 0
a d fai
i ha
i g hebe
ac e , e ie . B
a che e, he ef e, ca be defi ed a f P ( X = x= 1)
e
p 1
fB i e cce
i
he
I f
:
p; P=( X=− 0) 1 <
p 1.
he ai
a i ic e a
f ig ifica ce a e .
e
i
The c
e ie ce f
e defi e Y a i
he
he
Y =
ch a defi i i
ie , a
f0 1 a d
be
f
g
he hi g , i
a iab e defi ed i
cce e . F
e a
heha fac if
ch a
a , he Y i
e, if e a e dea i cg i i h e ,
n
∑X
i be he
i
f he e i g
ea d e
(i.e.
he
e a) d
i =1
he ce h
ec
he
be
f
cce e (if
e de
e a
cce ). F
i g a c i 10 i e , if ai i c ded a 1 ( cce ), he i a i ai ( Y = 0 )
e e h
igh
cc
ai ( Y = 10 ). Of c
h ai i
a he
i
e i e
ib e. S if i ,
he di
Bef e
ib i
hi
f hi
.I
he eade Re
i g
i de e de
e ie ce,
: head
he e e f head a d
a e
a e f
0
ec
e gi eede he
he
ef e hhei
i g
defi i g Y a a a d ic gi a. A
fi e h
,
e)? We
ea
e i
:
ib e,e fa
e, if
hai fa i
ha he e
f
i ca ied i
ac
f
e
a e ca ed i de e de . Agai , hi
ea
b ec .
e ee ahae dea e i g he e
a iab e each f
a iab e, e
ab e eade ,
ae
i gec i
b ai ed ha e
ch e e edge
he a iab e Y,
babi i
e he f
i ag ee ha i i
he fi
a ead ,
a
f
ai ( ccefai
a d he e babi i
a iab e, i.e. Y i a
a iab e?
a e i de e de : e e
a d
fY
di he ib i he a
e hab eai ed i
cce i e h a e
a d
af a
heife e
ha
he i h h
e
gh he a e
a iab e i i e f a a d
e e he defi i i
a e i
e
cc
ha a i
ia , he
ib e a e f , i.e. e
e gi e he f
ba ed
,a h
fcce e i
f a d
a iab e. T c
ha i
hi
e,
hich
i e a k = 0,1,..., n .
hich i
f b ai i g each
e
be
e e i ai
ec
ha e che e e
he
I i c ea ha he a d
a he d e
e, e c
e a
i
i h he
he a e 0 1 di
ib i
f . The
27
di
ib i
bi
f he a d
ia di
ib i
a iab e ca Y i ed he Be
) a d f e de
i di
ib i
ed B( , , I ) .defi i i
(
i a f
:
n P (Y = k ) = p k (1 − p )n − k , 0 < p < 1, k = 0,1,..., n . k I
he
d ,
f b ai i g
e ha e a cce e i
N e ha hi
e i
i de e de
ide a ge e a
a iab e . Y i e ih
e ed he
ecif
ide ica
a e
he a e
f
a e
a iab e
) each
ca
ih
a e
babi i
(
f a d
ib i
f hi
(
2,
e,
ei e
a be fi i e
he e
e a di c e e
i fi i e):
m
∑p
P ( X = xi ) = pi , 0 ≤ pi ≤ 1 a d
babi i
ca a iabae e a d he
a di 1,
he
ia .
ha a a d
a e
ha i
he defi i i
d f each f he e a Se , .ge e a
he a d
ega di g
i
, i = 1,2,...
i =1
Each i e ge e a di
e
di
e d
i
e
2
ib i
e,
ih
i ia bei g he
eadi g
i g hi
i di
i gi
ib i
i
ef
2
.I c babi i
f
he f
be
de e
ae ,
ahe bi
i
f a d
i i g he
f ia eeded X each ia .
One can find a br ief description of the life and work of Jacob Bernoulli at http://en.wikipedia.org/wiki/Jacob_Bernoulli
28
ch
.I ia
a e babi i
cce be ef i achie ed i a be
cce
.F ib i
. The de c ibe he
ic a a
i he de i ed
ch a a iab e, i
(a
he
he ec
a e
a da d di
ib i
e gi e a fe
cc
ia di
e
e f aefe f
a d Be
f ia ca ied
e ce f Be cce e
i
) defi ed ab f di
The ega i e bi be
he a iab e
be a e a
he
ib i a
e a d
e ca defi e he a d
ib i
addi i
i
achie e
. f he
k − 1 s (k −s) p (1 − p ) s −1
P( X = k ) =
E a
e:
S
e ha he
ie
i 0.001 ,
babi i a fa
hich
defec i e ( ife e
a d ie
ef
fa
he
a ce: P ( X
i
Th
i e,
ce
d ci g a defec i e
e h ai
ai
a d ea
fa
ai
ffice
he
fac
ed i d ci
e i ei dei e de
c
ha i
a
, idea
babi i
e ec
i
f he
ie
a
ha defec he fi i e
e ec ed.
He e = 10, = 1, a d
F
ei e
d ced. If a
d ci
he 10 h i e
i g
ha f
he ha he
he i e
f i
ha
e ie ce e
ib e). S ai
ea
fac
= 0.001.
10 − 1 ==10) − 0.0011=(1 0.001)(10−1) 1 − 1
0.000991 .
,
P ( X ≤ 10) = 0.008955 , hich i a e a i e e e ,
a
e ei he be idea f he e e
he e h i e i
be . Thi g
ea
a " cg "
f deficie cie d e
i defec i e. C f defec i e i highe ha
e
,
ha
e a e dea i g
hich e c
e
a
i ha
i e
i e e e ,
ef ec ea i , i ce he a ead e dic a e he dec a ed
ha i i i eha he ei e
d ced i 1000.
29
.
Wi hi
he c
e
i de e de
f a bi
ia e
e i e ,i
ia ca be c a ified a a
a iab e c
he
be
f ia
hich he
cce a fai
c
e, a ge
e f each f e ic a d
i he ficce
P(k ) = pqk −1 f
=1,2,3, .,
he e =1 E a
e.
F
da a f
U i e i
heDe a f Tech
a ea. A c
a
e
g ,i i
ch a hi f
ca dida e f e ce. Wha i
a
e
a egi de
e Scie ce a d Ma age e , W c a ha 83% f
i e e ed i de e
a d
i
fC
? Wha
h c
de
he
babi i
f e ec i
c
a egi
a a ea . S
be
e f
i g
ef
e ha
de
ha he fi de h
a
ba
ha e ab i hed a
d be e
a e ch
e a
e ec ed i f
ec ed bef e fi di g a
a a a ea? Le ' ca c a e hec
e
di g
babi i ie : Pic i g a
de
f
a
a a ea a
he fi
e
P(1) = 0.17 ⋅ 0.831−1 = 0.17 , Needi g
e ec i
fi d
ch ea
P(2) = 0.17 ⋅ 0,832−1 = 0.1411 Needi g h ee e ec i
bef e fi di g a
de
f
a
a a ea
P (3) = 0.17 ⋅ 0,833−1 = 0.1171 The
babi i ie f
f
, fi e, i , e e a d eigh
e ec i
bef e fi di g a
a ca dida e a e 0.0972, 0.0806, 0.0669, 0.0555 a d 0.0461 e
30
ec i e .
I i
ac i cide ce ha
i a e
ed ha a e. F e
ha
e ca ied
e ge e a e
hi
e
i
eed
cha ce
f
ch a c
c
he e eigh ca c a i
a e he
babi i
a e i 0.05. The ef e,
aae a a
i i
e fe e
e e
(ai
fe
e
a i ic , i
e ee e
ec
i ha
i h he fac
e ec i
a i icia
.I
a ea
he
a ) ig ifica .
.
The h
e ge
babi i c
e ic fa
he ai
be f
babi i
be f
f cc
di
ib i
e ce
cce e ( ) i
ee e
,
i
ef
f de e
hei g a i h e ec i
f hich a e
i i g he
e ace e I .
, ih
cce e a d (
e ace e , f
a
) f hich a e faie .
s − s k n − k P(k ) = n E a S
e (Ac e , 2006): e ha a
e
ce c
ae a d be
bi e a i e a a dea e hi i
ide a i ch
e f
a da d f be i
ec ed
,
5 he 10
he If 2.
ha i
hebabi i
afe ,
i be f
f each 10 a e i
d
ee
afe
f 10 a d ha f ec ed f f he 10 ca
ha a ea
1
i ea d
afe The . 5 ca he
ae
hef 5 ca
a da d ?
2 (10 − 2 ) 2 8 2! 8! 1 ( 5 − 1) = 1 4 = 1!1! 4! 4! = 5 = 0.556 P (1) = 10! 9 10 10 5 5 5!5!
P (2) =
10 2 2 8 2 ( − ) 3 1 ( 5=− 2 ) = 1= = 10 10 5 5
2! 8! 1!1! 3!5! 10!
2 9
0.222
5!5! 31
i.e. he e e i
i ed
ab e f
c
i P (1) + P (2) =
babi i
(i.e. he ca
e
a
0.556 + = 0.222
fac
e
)
i
i acce ab e, i ce he e i a ig ifica
0.778. I i
f ie
ha
high i e ih
ch a d f
fi di g ei he defec i e ca . (
F
af
e
i
f ie ( he
e ce f a d
a iab e
{ X n },
i g
e
( , , )
a
i h he f
ib i
de e
. T c
di
a e (k
ib i
he e ), c
he e each
ide he
ha a B e
: n ⋅p = const
for → ∞n
i di
ib i
. Le X
= lim X n .
= 0,1,.... We a ha X ha a P i
e e he defi i i
i e he a e
babi i
ca ed P i
a iab e a i g a e k
Xi a a d di
).
f hi
a d
= 0,1,...) a d hei
i defi ed a f
a iab e i i
ece a
babi i ie . The P i
:
P( X = k ) =
λk
e−λ
k! he e ei
he ba e f he a
i he he f c i !i
be ab
he fac
f cc e ia
a e ce
ga i h
(e = 2.71828...)
fa e e
he
babi i
gif e hich b i
f
λi a i i e ea be , e a he e ec ed be f cc e ce e e ha cc d i g a gi e i e a . F i a ce, if he e e cc a e age 5 i e e i ea d a e i e e ed i he babi hei e ef cc i g i e i a 10 i ei e a, d e a P i di ib i i h λ = 10 5 = 50 a de .
32
fa
Re
i ed c
di i
f
he P i
di
ib i
be a
ied:
The probability that an event occurs in a short interval of time or space is proportional to the size of the interval. The
babi i
ha
The
babi i
ha a gi e
i de e de The
e e
cc eI a
be
fe e
a i e a i c
e
e .
cc i i a gi e i e a i
f he e he i e a begi .
babi i
f a gi e
i de e de
f he
The P i
di
e
bee e f be
ib i
ecified i e a c
i
cc
fe e
ca a
be
i g
ha
cc
edf
he
ch a di a ce, a ea
ai i g f
e ice i f
de ed a a a d
a iab e
e a gi e i e a i ed
i be
e. F
fa iP h ai
e di
ha i e a . fe e e a
i
he
e, he
be
f
a e ca h egi e ca be ib i
i hi e
i
e
a
λ. The a d
a iab e e a i ed
f he e a d
di c e e a iab e . B de c ibed a
a
ea i ed a
be
f cc Th
,f
e ca
be
i
ha he a e e e e ca a
a
ee ha
fa a d
gi e he e
e, a
: he ea i a i f ehia e ca ed
e he ea
e a ca
ab e he
he e de
d , e c.)
e e
The ). e e ia cha ac e i ic f ea e. Thi
he ea
a iab e gi e ab
f a ea ad
be
e aa e
ed i ce i e e , ec
fi a d
a
e hi cg i
be . Va iab e
( ea
( ch a
be
e ce f
a
be . F e a
be
i h he defi i i ece a
c ea
a
i i e ea
ega i e ea
ea
fa ha e
a iab e a e a
a iab e ca
ea
ha be
be . Th
ee a
he a e ib e
e, acc di g
i hich i
a e a d he i e ih
d
each f he e a e .
a , a di c e e a iab e a i fie
he f
i g:
33
Ha a c
ab e
be
Ha di c e e (di c Ha a
ea
i
ab e
C
f
ib e a e ,
) babi i
be
ee c
feach
e di c e e a iab e a e c
cc
e ce
f a e e ).
I c
a
di c e e a d
diffe e
Ta e a
c
The
ci
ea
ed a d
ab e ( h
babi i
P babi i
f
a iab e , c
i
c
f chi d e ,
a d
ed (e.g. heigh ,
i fi i e)
ib e a e cha ge i ca
N
i
(i.e. be
be
f
a iab e ha e
cha ac e i ic :
S ch a iab e a e
C
ec i e a e
ib e a e.
i a c ibed a
be
i
f e,
i ge a e
bea c ibed
a d
a iab e a e defi ed b a f
he f
eed, e c.)
aib ee ,
a
ca
. I ha
eigh ,
a ge
f a e . ( ), ca ed he de
ci
i
i g cha ac e i ic :
1) f ( x ) ≥ 0 , +∞
2)
∫
f ( x ) dx = 1 .
−∞
Th
, he <
2
(
2
, ha i
1
babi i )c
2
e
ha d
e a d
a iab e X aae eabe
he i eg a
f he cf i
( )
ee
∫ f ( x)dx
a1
F e N
34
he e i ec
e ie i
f i eg a ca c ega i e a d e
ide a a d
a iab e
,
ea e
ha i hifa
e
e ha hehia e f
a1. di
ib i
a d
e he i e a [ 1,
a2
P( a1 < X < a2 ) =
1
he i e a
[a, b] (Fig. 1).
( )
1/(b a)
a
Fig e 1 U if
The de f
i
babi i
f
ci
i ga a
b
de
i
, ( ), f he
ica f
f
if
ci
di
he i e a [a, b].
ib i
he i e a b], [a,ha
he
:
1 for ∈ [a , b] f[ a ,b ] ( x ) = b − a for x ∉ [a, b] 0
I i ea
h
ha hi i ade
i
f
ci
, i.e., ha
he
e ie :
( x ) > 0, beca e a < b, a d
1) f [ a ,b ]
35
∫
2)
b
a
f[ a ,b ] ( x )dx =
1 b a−
1
b
∫ =dxb a
−= ( b a) 1 . −
a
N e ha if e ha e i e a [c, d] a d [e, f]
ch ha b h a ei he a ge
[a, b] a d ha e he a e e g h, he
he
X a e a a fe
he a e ahe
a ei
he i e a [c, d] i
be
e ie
fc
he e
i
di
e ie ). F
i
di
he
ib i
e ai
e ia di
S
be
e he
I
ib i de
i
a iab e
babi i
fi a i ga
i
ci
if f
(a
ci
,
i h di c e e di
ha a e
ef
be
a
ff
a
ci
ib i
, he be
de i g ec
ic a d
e de c ibe
ib i
ih f cia
e f he .
.
e ce
fa e e
ee
i a f
f
i .
e ca defi e i
he e a e a
a e ,a
f cc
. The i e be f
f de ib i
ha big. Be
O e ided e
di
haa a ch d
he i e a [e, f].Thi i ca ed
U i g he e
c
babi i
cc
i a i e aa Phai
e ce ha a e
e ia di
ib i
.
:
λ e − λ x for λ , x > 0 for x ≤ 0 0
f ( x) =
E a
e
The i e f be ih
hich a a ic a
ee b ea d
achi e
he ef e, he
i babi i
e a e bef e b ea i g d
ha e a
a a e e λ = 2 ( he e he
ha he
36
achi e
)i
c
i
i
e ided e
e ia di
f i e a e h). Wha i f
a ea eh
? We e
ha a iab e i h a e ided e
he
(i e ib i babi i
i e,
e ia di
ib i
i h a a e e λ = 2, a e aa e g ea e ha 1, h
he
i ei
ea
ed i
.
Th
, +∞
P( X ≥=1)
Thi i
ae
high
cha ce ha he
2
−2 x
∫
babi i . We
achi e b ea
−2
e= =dx
1
e
d a
d
0.1353 .
ha ha eea
i hi a h
i ce i he c
e e
e he e i
e he f a a e e λ. If he a a e e
he
he he
e
aa ee
Bef e a
e
e i g he
e ia di
a
e. The e
a e
hich
e i
ib i
,
e
de
e( a i ia
he a
e. Gi e
igh a
ch a di
ib i
ib i
The
i
i a
ca ed he Ga ib i
e
ia di
a
ai he
e ic
e
ea
e
a ia ce. M e
i a f he c ib i
, he
e?
he a a e e λ i
f he e
he
ec ed a e f a e, he
e e be ha he a ia ce b e ed i
e ca e ihea a e ge f a eha
i he
ec ed a e a d a ia ce i
a di
ea
a ed b ce
a e age . We a
a a
h e. A babi i
. The e f hea i
ai
ec ed a e
e ei e e a i e, he
e a ea
he
ec ed a e a ad ia ce f e
e , if a a
ec ed a e a d a ia ce f he a
he e
di
e,
f hi ,
e ica cha ac e i ic f he e i e a
a e ,
ae ai
a eλ
e) i cha ac e i ic f he a iabi i
de c ibe a a d
( ea ) a d e
he c
ec ea
he e
ea i a a
ib i
he
ec ed a e i a
fa a
di
ab
e e
babi i
died, i 1 0.1353 = 0.8647). The
P( X ≥ 1) = 0.6065. Wha , he , d e hi
e
ch g ea e
( he
i ai . The i
(e i a
) f
e f he a a e e
f
e . i
di
. We
i de
ib i
i
he
e ae a a e ec
a di e
ib i
,a
hi
.
37
.
A
he i
di
ib i
a .I
c
de
i i
f
babi i ci
−
f ( x; r, c ) = x
A e a i e , he ga
a di
a a e e α= a da i
e
r −1
i a
ib i
de e di g
38
i he ga
a
:
for x ≥ 0 and r, c > 0
ca be a a e e i ed i
e
f a ha e
e e ca e a a e e β = 1/c, ca ed he a e a a e e :
i i e i ege , he
B h aa eei ai
ib i
x c
c r Γ( r )
g ( x; α , β ) = If
di
(PDF) i defi ed a f
a ec
he i a i
.
βα
Γ(α )
xα −1e− β x for x ≥ 0
Γ()n = ( n − 1)! . , beca
e ei he ca be
ec
e ie
Fig. 2. I
ai
f he Ga
a PDF f
ai
aa ee
=
a e
a d
c =θ . I ca be h ga
a di
ha he ib i
e ided e
e ia di
i ha a e e
a
,
a e
x=
ch a e
x
in
a di
a i
he PERT
+ 4 xsp +
ae e
ica i
N
, i
f hi The
i idea f
e h d,
ec i e
eh
e e
a di
he c
f ie , he e
he ba i e f e ec ed a e i e i a ed a
2 xmax − xmin , he e 6
i e
i e a d e i ic i
. The e e i a e a e he e ib i
ce
de c ibe he d a i
f he a a e e
ec ed a e a fda
,
s2 =
i i ic i e,
d ai
f he ga
de i g he i cae
he e he e
a d he a ia ce a xmax
i e f a gi e ac i i
ecia ca e f he
λ
f he d a i ac i f i ie
6
a d
a
ib i
he e i a i
i a
1
r = 1, c = N e ha he ga
ib i .
f a di
ib i
f he i e acf ai i . f. F
a iab e i ca ed he fi
a a e
a iab e. di a
a e f he
e h
f e
( = 1, 2, ...) f a a d
de f hi
mk =E X(
ec ed
a iab e.
∞ k
a iab e i he e
) =xdF ∫ x k
−∞
∑ xik pi i ( )=∞ ∫ x k f ( x ) dx −∞
(1) (2)
where: X - random variable, E(X) - expected value of the random variable X, p - the probability function, f - a density function. Patterns (1) and (2) should be used for a random variable with probability distributions of discrete and continuous type, respectively. For k = 1, we obtain the formula for the expected value, so the expected value can
39
be treated as the ordinary first moment m1.
Similarly, the variance can be presented as a special case of a socalled central moment of a random variable. The central moment of order k (k = 1, 2, ...) of the random variable X is the expected value of the function k
[ X − E ( X )]
he e: X he
, i.e.:
Pa e di
f ci
, f a de
(1) a d (2) h
ib i
d ce ea
e
d
a
e
e
hi e
ae e I
e
he e a e e ha hi e a
40
he a ia ce a d, he ef e, he
a
ib i
babi i
e
i a
. The f
c
a da
h ce
a
e
i
ef
i ge
a iab e ca be e e i
f heec
ef : µ 2 di a
ib i
e ed b
d
de ce
eadi a f a
e
= m2 − m The eade i e c
a d ce
2 1
a
a da
e
c
e a
di i g i h be
aged
he b e ie
ee di
chec fa
ib i
ha
igh diffe e .
ac ica a he
fa a d
a ic a
di
af
ih
ec i e .
i .
a i . I fac ,
babi i
a iab e
e,e
f a di
a iab e ,
.
a a d
i he f
e
. The f
( a ia ce) i
ci
e . The hi d ce
e he a
a
ec ed a e f he a d
f
d be ed f
i ca c a i g he Ce
i
f di c e e a d c
The ca e = 2c ec
a iab e, ( ) e
a d
babi i
e f
ica i fa babi i
f a ec de a d di
a ead ch a di
ib i di
ib i
ic a d ea
a
,f ib i i
ciaa
e, i ca be a
e i .hi B i
ge a ea
hich he e a e f
he hich ei
he Ca ch di
ib i
e
e
ed ha ai : .I
a ic a ,
ec ed a e. O e ( i h de
i
f
ci
( )=1/(π(1+ 2)). I i
e
. I i
e ha
ecifie a a d c
e
f
h ai i g a
he a ec
edge f he
f ea
a iab e? The ge e a a
e i
di c
i
edge f he fi
: he
ac ica i
f
e
he
e
f
de e
E ce ca fi d he e hich ca be ai e
ha
ed a a
e
ic a
a i g ha if heae i
i ai
he a
i
gh i
he
e,
e
f
e i . U i g he "de c i i e
f
, a d e ce
he e
f he e a e
. P ea e efe
de
f
fficie ecif a a d
ec ed a e, di e i
. Ca c a i
ibi
ega i e, a h
ae cif ec
i
a iab e. N e ha he e i a he e a
f he di
e
de
,
a i ic "
e
a a
e
i f
,
ec i e a e he i
ie
edge f he fi
ia e defi i i
f
he ec
f e ded
eadi g. A he e d f hiec i c
ed
di
ib i
di
ib
i
,f
he c
e
f
babi i
f
e ie ce f he eade
he af e e i
e
a e he
ed di c e e a d c
i
.
Ma
c i
de
i
E (
ec ed a e Va ia ce (ce e
f fi
f ec
d
a de )
de )
P ( X = x=1 )
T
x2 )
ia
(Be
n P (Y = k ) = p k (1 − p ) n − k , k
i )
0 < p < 1, k = 0,1,..., n
The ega i e bi
1
+ 2(1 )
(1 )(
1
)2
2
1 − p , for 0 < p < 1
i Bi
p; =P ( X =
k − 1 s (k −s) P ( X = k ) = s − 1 p (1 − p )
(1 )
p s1− p
s (1 − p )2
ia
41
e
Ge
P (k ) = pq k −1
e
1
1− p
p
p2
ic H
s − s P (k ) = k n − k n
e ge e ic
P i
P( X = k ) =
[a, b]
e− λ
λ e − λ x for λ , x > 0
e
f ( x) =
a
( − 1)
λ
λ
a+b 2
(b − a ) 2
1
1
λ
λ
12
2
for x ≤ 0
0
ia Ga
k!
ns ( −n )( s− ) 2
1 for x ∈ [a, b] f[ a ,b ] ( x ) = b − a 0 for ∉ [a , b]
U if
E
λk
ns
g ( x;,α β ) =
βα
Γ(α )
xα −1e− β x
α
α
β
β2
for x ≥ 0
A he e d, f a d de ia i
ei
d ce e a
a iab e . A σ
a be
he
a d
a ic a
a iab e
a da di ed
i g he f
Y = Thi
eai
a e0a d
42
a
f
a d
a da d de ia i
fea
e f he
ec ed a e
i g
a d
eai
X −m σ
a eYi 1.
ef
i he
a a d
a ee ec i hed
e a da d
Lec
e III. The
The
adi
a di
ib i
a ea . I i a
ib i
.
i a e
e e i
ca ed he Ga
ia di
e gi ee i g. I fac , hi i a fa i
di
( ca e). The
ib i
ih
a di
ib i
c
e. A a ead
c
i
di
ib e f
ea
a d
i
f
e i ib i
a
he
di
ca i
a da d
e
de
babi i
, a ic a
f i fi i e
a a e e : he a e age ( e a da d de ia i
a
ib i
ib i
a di
ib i f
a di
ib i
i
a
, defi ed b ib i
i a
)a d a
e. Si ce hehe ga h f
e e b e a be , i i
ed, he
ib i
h ic a d
f he di
a da d de ia i
ci
di i
f e ca edhe be
be
g
he c a
f
.
Hi he
a di
( e i ed i fa f
ib i
he ec
a fi
i a i g ce ai bi he de e
P babi i
i
a
ib i
e h d f ea
i
a e a
a d di
ec
c
i
ed i
e
he
i
.
ei e
he
,
.
a
h c ai ed ha he had ed hi
he be c e fJ a
g i
di e
i
i ge
a di
ib i he (
he
a di
f
a i ).
a di
ib i
ib i
fe ,
a
had a
,
h c i ed he
a di
di a ib i
he be , beca
e a i dica e ha
ib i
fa
f
f i e
babi i
b Cha e S. Pei ce, F a ci Ga
cha ac e i ic
Pa a e e
he a a ei
. The a e f he
f hi g ha e a cia
,
e f
i1872 f e
ea 1875. Thi
ee
.
face f a be
i de e de
i
e
e
ica The
ade g ea ad a ce i 1809 b a
The a e f he c e
a ge . Thi
The A a
ae ,
d ced b Lege d e i 1805. Ga ib i
f
ca ed he de M i e La ace a e i a di
e h d i ce 1794, a di
ib i
ed b La ace i hi b
ed he
The i
f The D c i e f Cha ce , 1783) hei c ia di
(1812) a d i
La ace
e e ed b de M i i ae a ic e i 1773
d edi i
a d Wi he ei
gge
hi e ece
ib i
a i
ih
d ced Le i a
d he
ha he a ec die
f ic
e a ha e a a he diffe e ab
20%da fa e
h
he
:
43
The e
μ
ec ed a e
2
σ
Va ia ce M da a e (
μ
de)
μ
Media S e K
e i
The de
0 0 i
f
ci
X
~
f
ci
σ (e
de ia i
.T
f he
ica , he
(µ,σ ) (
aa ee
ai
i g de
X
ei e
f
ci
ha e i
44
h
be
ih
.
ead μaa da d
e f a Ga a iab i de eX
(m, σ ) ,( he hich
ea
1 σ 2π
fe h
d a a e he e i
ha he a d
( x − µ )2 2σ 2
exp −
ia ed
he a e
e he he he ec
:
f ( x) = I
~
he a ia ce), i
ib i
f he a d
a e gi e be ca ef
a da d de ia i he f
a di
: a ia ce σ2) i a e a
i ae
a iab e X ha
A
a de
di
ib i
i hi
i
f
. Ab e
ci
a da d de ia i
a da d de ia i ig a a
ae
a d ab
he
ea
de he g a he h de f
ff
he a e age, ab
99.7%
e). N e ha he de di e
e ic ab
68% f he a ea
i
f
i hi ci
h ee f
a e f he i
f
ci
95.5%
i
i hi
a da d de ia i
he
a di
( he h ee
ib i g ea i e
ec ed a e.
The i f ec i
i
i
i hi
e
a da d de ia ihe fea .
.
We ha e defi ed a d di c e e a d a iab e .) The c e f
ci
de he i
a i e di
f a d
B defi i i
a iab e b
a iab e )
i g he f
ib i
ci f
babi i
(f
ci
c
a
i
f
ci
(f
a d
(cdf) ca be
ed
defi e b h
a iab e.
, hec
a i e di
) fa a d
ib i
a iab ei Xa f
f
ci
ci
( fe
h
e ed
di
ib i
x∈R :
f heea a iab e
FX ( x ) = P( X < x ) Ac
a i e di
ib i
f
ci
F( ) ha
he f
i g cha ac e i ic :
1) lim x →−∞ F ( x ) = 0 , lim x→∞ F ( x ) = 1 2) The f
ci
F( ) i
a
dec ea i g f
ci
x1 < x2 ,
, i.e. if
he
F ( x1 ) ≤ F ( x2,)a d 3) F( ) i a ef c
i
3
Thi
c
e a i e di
i c
f
e
ib i
ci
(he e
e efe
e a ed f
ci
heic i e .I i
h
ai
he ec
f he di
ib i
f
ci
ed i
he defi i i
i g ha ef ha ded c
igh ha d c i i if e cha ge hi ic i e a i he f i g defi i i f he c a i e di ib i f S ch a defi i i
he eade
e
i )3.
a he a ica a a
ca be f
i a ci di
ic
f he i
i
i
e,, i.e.
e
FX ( x ) = P( X ≤ x ) a
e b
e
a i ic .
45
E a
e.
Le
de e
di
ib i
P( X = 1) =
i e he c
a i e di
ib i
f
ci
f he
i
01
. p; P=( X=− 0) 1 <
p 1 . Thi i i
a ed b
he f
i g
fig e.
( )
1
1
0
N e ha i
hi di
1
ib i
f
ci
ha
i
f di c
E a
e.
Le
de e
i e he c
a i e di
he i e a [0, 1]. I i defi ed
ib i i g he f
f
c i f he i g de
1 for ∈ [a , b] f[ a ,b ] ( x ) = b − a 0 for x ∉ [a, b]
46
i
i , a e
= 0 a d = 1.
if i
f
di ci
ib i
he
The ef e, i
c
a i e di
ib i
f
ci
i a f
:
( )
1
0
N e ha he c di c
i
, he h
he c di
ib i
The c ci
ib i
ci e
i gac
a i e di
babi i
di
ib i
ib i f
fa
=1i
b ai
ib i
e ed b
he f
he f
af
he c
a di ib i ( adi i a hi ge e a f a.
ib i ib i
ha f
i
ci
f
i
babi i di ib i . e ie )1)i ed 3 ab e i
babi i
di
ib i
ha i
f
. Th i
ci
e
, if i babi i
e ca c ea e he
.
ci
f he
ha he a iab e X a e aa e e
i e
f hi di a i e di
died b
a di ha
ib i
a d ie
i defi ed a f he de
he
i
a
F ( µ ,σ ) ( x ) = T
ci
haa if c
f
a i e di
babi i
f
a
e, ha a he ,b
ia e
ib i
e ca
e a e dea i g i h a c i i g ha a f c i hich ha
a i e di e a
a
f
a i e di
i . I ge e a ,
c i I i a ,f
1
1 σ 2π
a i e di de
x
∫e
−
( u − µ )2 2σ 2
du
−∞
ib i
ed b Ф),
f e i
ci
f he b i
a da d eμ= a 0d σ
47
1. If X
N (μ, σ2) ,
2
(aσ) ). Th di
ib i
he e a a d b a e ea
, a i ea
a
gi e a
f
ai
he a d
2
a iab e
a iab e ai h
a di
i ha
a
ib i
.
2
2. If X1
N (μ1, σ1 ), X2
X1 + X2
N (μ1 + μ2, σ12 + σ22), i.e. he
a iab e a
N (aμ + b,
be , he aX + b = Y
fa d
N (μ2, σ2 ), a d X1 a d X2 a e i de e de , he
ha a
a di
ib i
i fde e de
a a d
.
3. If X1, ..., X a e i de e de a d a iab e i h a a da d di ib i , he X12 + ... + X 2 ha a chi a ed di ib i ih f eed
. We
The c
e
i
e
e ce f
di
ib i
ca be a
di
ib i
.
If X i
i dih ib i
a
di
e f
ib ed
i
1i
ha aa d
a iab e
i ha
a a d
a iab e
i h he
ih
C
a iab e
e e , if Z i a a d
ih
X −µ σ
a iab e
a di ih
ib i
a da d
X =σZ + µ ,
48
a a da d
ea μ a d a ia ce σ2, he :
a da d
f
e.
ed i
Z= Zi a a d
he f
a deg ee
N(0, 1). a di
ib i
a d
a
he X i a The di a d di
ib i he
ib i
a
di
f
ci
a di .I
hi
babi i ie c
e
E a
ib ed a d f he ib i
a ,
a da d
ae i
e ca
di g
a iab e
a di
e a
e a di a
ib i
f
ib i
a di
2
ea μ a d a ia ce σ .
ih
ha bee
ab a i ed
ai
f he
a da d
ab e
de e
i e
ib i
.
e.
Le
fi d he a e f a (a> 0), f
hich a a d
a iab e X
ih
a
X (0, σ ) a e a a e i he i e a [ a, a] i h babi i 1,− α 0 < α < 1 . We a e i g, he ef e, f he a ea de he c he e f
di
ib i
de
i
f
ci
be
ee
a d
be e
1 α, ee be
a
.
( )
1−α
α 2
α 2
a
S a da di a i i he
a
0
a
f
ec ed a e 0 a d
he
a a d
a da d de ia i
a iab e X i 1( i
a a d
a iab e
a ). S ,
49
,
N (0, 1)
Whe e: uα
Le
=
ca c a e:
S e I: P (Y
50
a−µ σ
P −uα< =Y
< uα ) = 1 −
α 2
X −µ < = −uα 1 α σ
S e II: P (Y
< − uα ) =
α 2
51
S e III: P ( − uα<
Le
52
e he
e
f hedi
ib a i
:
FY (u )
FY ( u )
P( −uα< <αY =u )α< P− (Y α < u − =) αP(Y< − =Y α u ) > P( = P(Y< −uα−) [1 < P=(Y
u ) P (Y
u )
The ef e,
P( −u< α < Y = uα ) <2−P (Y A
e
f
ci
c
, he e a
α
a i e di
P(Y < uα ) i he a e f he c
e i
. If a a d ib i
uα ) 1
a iab e Y ha f
ci
i de
he ed
a da di ed
f he di
ib i
ab a i ed. The ca a F
α
e
a
1.36, f
f
ci
be ead he Ece
f
ib i
ib i
,i
Φ ( x ). Th :
P ( − uα< <αY =u ) α <2 P(Y − =α Φu ) −1
The a e
a i e di a di
he0,N1) ( di
2 (u ) 1
ib i
ae
i g a ead hee . ead hee
53
E a e • Le X N(5, 4). • Ca c a e P( 3
, ea da di e:
P(-3 < XN(5,4)< 20) =
Fi a , f
ci
e
ie
= P (-2 < YN(0,1) < 3,75)
hi
, Ф (3.75)
a
he diffe e ce be
ee
Ф ( 2) :
Ф(3.75) Ф( 2) = Ф(3.75) [1 Ф(2)] = Ф(3.75) + Ф(2) 1 = 0.9999 + 0.977 N e
e fi d Ф (2)f
1 ≈ 0.977. he ab e a f
0 0.01 0.02 0.03 0.04 1.9 0.971 0.972 0.973 0.973 0.974 2.0 0. 0.978 0.978 0.979 0.979 2.1 2.2 2.3
54
0.982 0.983 0.983 0.983 0.984 0.986 0.986 0.987 0.987 0.987 0.989 0.990 0.990 0.990 0.990
:
a da di ed c
ai e
2.4 0.992 0.992 0.992 0.992 0.993 2.5 0.994 0.994 0.994 0.994 0.994 2.6 0.995 0.995 0.996 0.996 0.996 2.7 0.997 0.997 0.997 0.997 0.997 2.8 0.997 0.998 0.998 0.998 0.998 2.9 0.998 0.998 0.998 0.998 0.998 3.0 0.999 0.999 0.999 0.999 0.999
The a e ca c a i
i ca ied
i
he E ce
ead hee a f
:
Le X N(5, 4). Ca c a e P( 3
55
Fi a e a The fi
.
c
e
N( , σ) i
c
ce
he
ide acce ed
a e age μ a d
a da d de ia i
he a ia ce i
f e gi e i.e. X
The ec di
d e a
ib i
hi
.I
fe
c
ce i
de
e a e dea i g
b ai
he a e f he di
0.5, he ib i
1a i
If (C
ci he
a
56
di
he E g i h ed
f ab e f he di
a di g , i i
he
f
ci
f
ci
a da d f
ci
ha
a da d ab e. Y
i g E ce . A
ca a
e ha
he b
ci
a
. Si ce
ab e
a 0. If hi
). Ifa he e f he f
d,
.
dified ab e (a d he ef e ha e
ib i
.X
ih
ea i g
ai
ib i
h chec i g ib i
ib i
ib ed
e ae a ei 0
add 0.5
a
e
i
ead he a e f he
e ab e gi e P(Z> ), i.e. 1
f he ab e
i be c
e
0, a d
a da d ab e.
ea
i
f
ci
f
e e e ai
he
a di
f fa e) i
ib i
he a
,
ia e b
a i e).
a fe
ac ed f
iha
0 ( he B
N e 3. The a i
ci
b
ca c a e he de
d i
a di a
e e ,i
he c
hi ca e he a e a
e
h
f
he
2
i h he
e' e dea i g
Ф( ). I c
σ a d. H
i h b fi di g he a e f he di
he
di
ed f
ha he a iab i eX
N ( , σ)i c
e ab e 0.5i
ead
dea i g
ai
ea
f
efe ed
ic a
ac ica
a a ce
e ie i
f he
a di
f ie . I
a i i he e
he i e a .
ib i
ae
e, hi
he
a ic a e
i
F
h N e. Le a da di ed
di
ib i
[ 2, 2]. Thi e e f i ca ed h a di
e e
e
, he e
he a d ea
ea
ha gi e
a a e fa i he i i g) ha ib i
e i i .If
e
i a he a e
e c b e ai ce ai f he
e ed c c be c
ai ed i
a da di ed
he ab e a ge, e ca e he a e b e ed c e f
ce
e f
f he a
a he i e a ia d
e (i a i ic hi a a i ae
.
57
.
Ba ic c
ce
Ge e a
: ai
cha ac e i ic a d
:
ai
i be i
e iga ed. T
ai
E a
e. The heigh
S
hich
ed a
a d
ica , a cha ac e i ic i de e
a be fi i e ( ia h a
h
e
i ed a a
e
e
a
e a i e, beca ea
a ge
be e e fe
e i a e he a e age heigh
ei
)
i fi i e.
fa h e e .
fi di g ca be ba ed
58
f
a iab e X, Y, Z, W,...
A
ab e
fee e
a e ec ed (i
e
e iga i g a a h e e i
e he heigh
aa
f a h e e . Of c
e,
he ) g fea ib e. I agi e ha
f fi e a h e e a d b ai ed he f
i g e
e
ee
M A
Mi
B
192 c
165 c
M C
Mi
183 c
D
M E
170 c
Mea
175 c
177
S a da d E
4,785394
Media
The observed values x1, x2, x3, x4 and x5 are realizations of the same variable: X – height of statistical athlete
175
S a da d De ia i
10,70047
Statistical Athlete: Sa
e Va ia ce
114,5
K
i
0,84205
S e
e
0,5142
De c i i e a i ic i E ce
S
e he
di
ib i
i h di di
f i e
f
ci
ib i
ib i
A a d
ai
f a
hich ha e ed a
f ci
ha di a
ib i
de e
F( ), i.e. hefea ci
e
F( ). Thi di
i
i ed b hi
ib i
he c ai
ai e haa di
ib i
i ca ed he he e ica
.
e i gi e ba ec he a ebabi i he heigh
di
f a d ib i
. I
a iab e hi e a
a h e e bef e e
ea
( X 1 , X 2 ,..., X n ), each e, he
ca be
ed he .
59
A a d
a
i de e de e a
e,
ei a d
e ca
he heigh
aid
a iab e a
i h he di a eib i
ha he heigh
f he f
ba
aed
he
.C
i g
a e ha
ac ica i e
i e, he a
i
e c
f
bea i g
eai
f
ide ed he e
i be
e.
A ea i a i
f ai
e a
ei
( X 1 , X 2 ,..., X n ) , de
ec
he e
ed b
X
X1
X2
M A
Mi
The a
e di
The e ci
gi e a ai
60
a d
1
f he
, x2 ,..., xn .
a i ica heigh f a a h e e
B
he
a i ic i a f
f bhee ed a e
X3
ib i
cha ac e i ic X i
f
f he h cicee
a e . Thi he i
i de e de ce. U e i
e if ( X 1 , X 2 ,..., X n ) i a ec
be i
X4
M C
a i ica
Mi
ic
e f he di
X5
D
M E
ib i
f he
a a h e.
edai a
e
e
e: a
a i icai a bi a
a iab e . S a i ic a e he ef e a d
a iab e , a d a
ch ha e a F
e a
babi i
di
ib i
e, ha i g a a d
ea
a i ic (a
, e ac
a
e ( X 1 , X 2 ,..., X n ) ,
a
abe ed a X ) a f
a
a
eha i h e ic f a d
babi i
di
a ia ce, Of c a
ea
n
,
e, he e i
a d
The a e age f
a iab e. Th ha
i g ea i
e
a iab e f
e
X a
,
,
ch a
di g
hi be
ee
he
ai
ha a
he e
ec ed a e,
a i ic X f
The a e age f
e: x
he a
ai e
a i ic X
f he
ea d
he
aa ee :
be !).
Rea i a i
he a
, e c.
he f
e a d he c
(
fhe
hich i
a da d de ia i
i
i =1
a iab ei ie f a a d ib i
ca e c ea e he
:
∑X
X =1 n X i i
i a e.
he
:a a a e e ca ed he
ec ed a e
f he
a i ic X
N e ha
e ha e a ead
di
ca be e
ib i
each f hich ha a be ha
f
he
We
a
ea
babi i
ee a
e f a ch i ic. a A bi
he
f
0 1 di
ib i
e f ei f
i de e de
. If
e de
ha a bi
cce , a d he e
ia a d
e a ia di
d de e e d
a iab e ,
cce , he ib i
he
. Each ia
he e
ia . ee
de c ibe hei he
i
ecc e i a a
he a e
f
e
e ed a
e f
a i a i ic (f babi i
a e fa a
di
ib i
ci .F
f a d e a
e,
a iab e ), i ha i
he di
de ib i
f
e?
61
S
e he
e
ai
ec ed a e a d a ia ce f he a
1
E( X ) = E
n
n
∑=Xn
i
i =1
a d σ2. Le ' ca c a e he
ea a d a iaa ece e
ea :
11 n 1 n En=n∑ X i ==⋅ ∑ E ( X ) i =1 i =1
1 n ∑=X i n i =1 n
D2 ( X ) = D2
1 2 2 D=n
n
∑X i =1
1
i
n m
m
n
1
==⋅ 2 ∑ D 2 ( X i )
n
n σ2
2
ni=1
σ2
I de e de c
The ef e, If ( X 1 , X 2 ,..., X n ) ha e ( he a e) i
e a
a di
e (i.e. hea e i de e de ), he
a d X ~ m,
be ib i
ib i
Di
ib i
h a d
62
di
ib ed
.
σ, he a
ei he
f i de e de ), ha a
he eade ' a e i di
a
n
30), he ba ed
di
X i a
σ
If ( X 1 , X 2 ,..., X n ) ha e he a e di de ia i
( ,σ) a d de c ibe a
ib i
i
ib i
i h a e age
(ie de e de c !) a d he a
ca ed ce a d
a i hei e
a iab e ha a
i ae
he a e di
he fac ha hi d e
( he
a d
e i a ge (i.e. > f a a ge
i ae a ib i e
a da d
a
a gi e ab ie
e. We d a
edge f he
f he cha ac e i ic ! f
a i ic
a a ce
he e ), a d he ef e a iab e .)
e
i
a
e ai i ica i fe e ce ( e ie
e
ef
i ga d e
a i ic (f
ci
f
χ2 If
,
1
4
,
hei
a e i de e de ,
a da d
a a d
a iab e , he
he
f
ae
χ 2 (k ) =
k
∑X
2 i
i =1
i di
ib ed acc di g
Tab e f
hi di
a d he f
ci
hechi
ib i
ia i
i i c ded i
Fig. De The χ f eed
2
di ),
ib i 0
a df
i
a e di c
a
i
ab a i ed f
σ = 1. O e
ib i a i ef
ead hee
f
ih
ci diffe e
afi d he
deg ee ae
2
ac age .
ib i
.
(ca ed he babi i :
.
ide a ai ab e
a d aa i ica
f he χ di
f f eed
be
f deg ee
P ( χ ≥ u0 ) f 2
4
Those readers who are interested in the srcin of the names used in mathematics are encouraged to have a look at the following page http://jeff560.tripod.com/c.html.
63
f
ch a ab e. F ab
diffe e
a e
f he
(
≠ 1, he f
e, i.e. σ
χ2
P ( χ 2 ≥ z0σ 2 ) = P
2 σ
a P χ
2
≥ u0 ) h
f hei e he
d be e aced b
≥ z0 .
e 5)
(G
a da d de ia i
c.
S a i ic:
X −m n −1 S
t= i ca ed he
de
Ge e a , he
a i ic
a i ic
ih
1 deg ee
ih
1 deg ee
f f eed
f f eed
X ~ 0,
.
i a
e
e he i
fe
σ
n
Y ~ χ 2 with (n-1) df n −1 The e : The e he S de
S , he di he he
he a da d
di
ib i
e ce F ( ) ib i
c
be deg f ee a di
ih
f di
ib i
f
1 deg ee
( )=
e ge
hea da d
ib i
f a d a i fie
t 1 e dt 2π −∞
lim n→∞ Ft
f f eed
ci
f f eed
∫
−
ai
ih :
t2 2
a di
e ceed 30, he
a d he S de
a iab e he e
di
ib i
.I
ac ice,
he diffe e ce be ib i
ee
i
5
The derivation was first published 1908 William Sealy Gosset, while he workedof at the the t-distribution Guinness brewery in Dublin. He in was not by allowed to publish under his own name, so the paper was written under the pseudonym Student. We encourage the reader to become familiar with his biography http://en.wikipedia.org/wiki/William_Sealy_Gosset
64
i ig ifica . Thi e di
ib i
de
i
ai
h i
e b
a 30 deg ee
f he S de
di
f f eed
ib i
he ab he e f S de
. Thi e i ide
f
he g a h f he
.
Fig. De
i
f
ci
f he S de
e
e ce if de e de
di
ib i
.
.
Le X 1 , X 2 ,... X n1 , Y1 ,..., Yn2 be f
he ( m,σ ) di
X =
S 12 =
The
ea
1
n1
1
n1
ib i
k =1
n1
∑ (X k =1
k
Y =
k
− X)
a i ic ha e he f
a iab e
:
n1
∑X
a d
2
S 22 =
i g di
ib i
1
n2
1
n2
n2
∑X k =1
n2
∑ (Y k =1
k
k
−Y )
2
:
65
σ
X ~ ( m,
Th
n1
Y ~ ( m,
)
σ
n2
)
:
X −Y σ
Z=
n1n 2 ~ (0,1) n1 + n2
a d
W = The U
n1S 12 +n S2 σ2
2 2
~ χ 2 ith n1 + n2 − 2 df
a i ic i defi ed a :
Z
U=
U ha a S de
U=
di
i h n1 + n2
ib i
X −Y σ
n1n 2 n1 + n2
= nS n+S 2 2 1 1
W n1 + n2 − 2
2 2
− 2 df
X Y−
nn
− + nS nS + 2 22 2 1 1
1 2
n1 + n2
( n1
n2
2)
2
σ n1 + n2 − 2 N e: i i a
ed ha he
Si ce he di
ib i
a da d de ia i
i a
U
a i ic i a
ica
di
ib i
a i ic i a
66
f he U
ica
hef a,
a . Thi
ea
i ae
a d he ec
c de f
ha fa ge a a
a ee hi
a.
ha he
e ( > 30), he
(
).
I ca be h
1
p=
ha he
a i ic haS a ga
n
( n − 1) a d b =
2
a di
ib i
ih aa ee
.
2σ 2 .
a i ic i defi ed a Z
The Z di
ib i
ih aa ee
2
he χ di
ib i
= nS 2 . O e ca h p=
i h1 deg ee
6
1 2
( n − 1) a d b = f feed
1 2σ 2
,
hich i e
a i ae
.
.
Le X 1 , X 2 ,... X n , Y1 ,..., Yn be e e ce 1
he ( m,σ ) di A a d
ha i ha a ga
if de e de
a d
a iab e
ih
2
ib i
a iab e
.
i h a F di
ib i
a i e he a ai
f
chi
a ed
a iab e :
F= i h ( 1= N e: (d e
6
1
1,
2
a
i i a
he f
=
2
1) deg ee
f f eed
ed ha he
fa da d ab e f
S12 S22 . e a a ige ha
he F di
ib i
he de
i a
).
To find out more about t he author see: http://en.wikipedia.org/wiki/George_W._Snedecor
67
Fig. De
i
If he cha ac e i ic X ha a e ec ed Di
ib i
X
a i ic a egi e i
ci a he f
f he F S edec babi i
di
ib i
E
ec ed a e
if X
~
(0, σ )
2 i
i =1
if X
X −m n −1 S
X −Y
68
2 2
~
Va ia ce
n
(0,1) n −1 f n−3
0
if
X
nS +n S2
f
2
k
2 1 1
ib i
σ
i
i =1
∑X
a iab e.
, he di
0
n
∑X
a d
i g ab e:
Defi i i
1 n
χ2
f
n1n 2 ( n1 + n2 − 2) n1 + n2
0
if
~
( m,σ ) n1 + n2 n1n 2
>3
X 1
n
∑(X n i =1
i
− m)2
~
n −1 2 σ n if X
nS 2
if X
2
~
n2
2(n − 1)σ 4
(m,σ )
~
n2 − 1 n2 − 3 f
2( n − 1)σ 4
(m,σ )
~
( n − 1)σ 2 if X
S12 S22
( m,σ )
2(n2 − 1) 2 ( n1 + n2 − 4) ( n1 − 1)(n2 − 3) 2 ( n2 − 5)
>3
f
2
>5
(0,1)
69
Lec
e V. C
fide ce i e a .
The fac ha i i
ib e, ba ed
aa ee gi e
e
b ai i g a
he
aa ee C
a
ea a
i agi e ha
ia di
he
e i
ib i ih
,
ef
i
i ai
(ca i
6 i e i 01 h
a ee
a
i e .H
x = 0.4 , hi e he ea f ca be e
ed
a iab e
a
i e ,a di
ha ca he e
ai
i h a high S
he
ea i i i h
ib i
i
f
P( X = xk ) = pk (Qi)
70
h
ha head
he
babi i
he
ea f
ai
ae
ea . I i
he a ge [0.4, .6] a0 d
ha
, each fhe e a
eeI b ai
= 0.6. N e ha b h a
i ai
ef
ie ea
he
ea
i ibea e i .S , ab ce ai
ch a e i a e i g
hich i c de
e
! B h a ae e
ai
ha
d ea
babi i .
e he di
f he de
i x
ai
defi ei a e a
f
a a e e Q (e.g. he f
he a e a
e II). Th
ec ed a e i he e
e a ie a i
gh, i.e. e
e
f
be he
. The babi i
e I) i
( a
a
ii e
a
e e , ca c a i g he
e i a e he e
f4
babi i
i e a if1
. Defi e he a d
4 i e i 10 h
babi i
he
= 4)= P (=X = 6) 0.205078 .N
a c i 10 i e a d each e
head a e h
eb
ca c a ed a e.
d ha he
= 0.5 ihe a e a
i di id a a iab e , each de c ibi g a i g e c i h
a a e e , beca
he e i a ed a e f ha
f
e, i.e. P ( X
ch a a
head , a d 0 if ai a e h
i
e i a ea
fide ce i e i.e. a . e ca a gi e
ai
e f 10 ee e
e
e fec
e.
ed he bi
cce e i
fc d
bediffe e
i ge a
e,
ce e
he
ce ai
cce e i a a i
he c
hich c
ef
i a
ide he f
Whe
de ie
e ica a e
a a
e ai Xa i ai
f ( x, Q )
ci .
ai
a e age a d/ babi i
i de e de a ia ce). I i a f
ci
e ed ha he
Let E be a vector of observations:
( X 1 , X 2,..., X ) . E is an n - dimensional n
random variable dependent on the parameter Q. Let U (E ), U (E ) UE
()
be functions of the random variable E such that
≤ UE
. () Let α be a real number 0 < α
< 1.
If the following holds:
PU ( E( ) Q ≤
≤UE
≥ (− )) 1
α
(for continuous random variables = 1 - α), then the interval U (E)U, E( )
is
called a confidence interval for Q, and 1 − α the confidence level. Theoretically, you can build a confidence interval for each parameter of the trai t’s distribution, but in practice they are used to construct confidence intervals for the population average (Q = m) and variance (Q = Var(X)). Below we show the corresponding confidence intervals for both parameters.
Confidence interval for the population mean (Q=m) Model I. Suppose a trait in some population has a N(m, σ) distribution. Let’s assume that m - is unknown, σ is known, and the sample is small (n < 30). The estimate of the population average is the sample mean statistic X . Given these conditions, X has a N ( m,
σ
n
) distribution.
Thus, the standardized random variable U
=
X −m σ
has a N(0, 1) distribution.
n 71
( )
1α
α
α
2
2
− uα He ce, he a d
a iab e U a i fie :
P ( −u<α F
U <
a gi e α, he a e uα ca be ead f a di
ib i
uα
0
u=α−) 1 α eh ab e
f he
:
Φ (uα ) = 1 −
Si ce U ha a (0, 1) di
ib i
a d
α 2
e ha e U
=
X −m : σ n
P −u< α
72
X −m < =−uα 1 α , σ n
a da i ed d
PX u−
σ α
<
=−
σ
α
1
n
α
.
Thus, for example for α = 0.05, the confidence interval is as follows (from the uα
table
= 1.96):
X
−
1, 96σ n
,X
1, 96 σ
+
.
n
This means that in 95 cases out of 100, the estimated „m” is in this range. In other
1,96σ words, the error in estimation is not greater than
n
in 95% of cases.
Example. The waiting time for a tram has been studied and the following values obtained (in minutes): 12, 15, 14, 13 , 15. Suppose that the waiting time for a tram has a normal distribution with unknown mean value (m) and a known standard deviation σ
=
2.
Construction of the confidence interval for the mean involves finding the appropriate values in tables and some simple calculations . In our example, we find that x
= 13.8 .
read the value u
α
Assuming that the confidence level is 0.95 (i.e.
= 1.96
formula, we obtain x
α
=
0.05 ) , we
from the table. Substituting these values into the
− 1.753; x + 1.753 =
probability of not less than 1 − α
=0.95
12.0469;15.5530 . Thus with a
, the desired population average lies in
this interval. M de II.
73
The trait X has a N(m, σ) distribution in some population, where neither m nor σ are known. To build a confidence interval for m, we will use the t-statistic with n-1 degrees of freedom:
t
=
X
−m
n −1
S
()
1α
α
α
2
2
− tα The a e deg ee
tα
i
f f eed
ead f
he ab e f
he S de
di
ib i
:
P ( −tα<
P −t< α
74
tα
0
=tα − ) 1 α
X −m < = −tα 1 α , S n −1
ih
1
PX t −
α
S m< < X +t n −1
=− α
S
1
n −1
α
.
Thus, for example for α = 0.05, the confidence interval is as follows ( t is read α
from the table for the Student distribution); e.g. for n = 26, this value is 2.056):
X−
2, 056 S 5
;X +
2, 056 S 5
.
This means that in 95 cases out of 100, „m” lies in this range. In other words, the error in estimation is not greater than
2.056 S 5
in 95% of cases.
Note: this length of this interval is variable, since it depends on the value of S.
Example. Suppose that in the previous example, o n the average waiting time for a tram, there was no information on the standard deviation in the population. Again, we calculate the average value x , which is 13.8. We calculate the standard deviation for the sample s tα =
= 1.3038 :
and read the value
2.7764 for α= 0.05 from the tables. We thus calculate the confidence
interval to be: x − 1.618931187; x + 1.618931187 =
probability of not less than 1 − α
=0.95
12.18107;15.41893 . Thus with a
, the desired population mean lies within
this confidence interval
M de III. F
a ge a
e ( > 30), he ce
a i i he e
ae
ha
75
σ
X → ( m,
n
n→∞,
)f
hi e he a
f a ge be
ae
ha
S →σ . The ef e, b b i i g he he a e a da d de ia i
s
P X − uα
E a
e. S
e ha i
f
a a
he e
b
e
a aged ed x
c
ai f
ai a da d de ia i e ge :
,
< < m+ X ≅u−α
n
he a a
i
ai
he
ga he
ch
f he e a
α i
s 1 α. n
ehe a e age
a da d de ia i
e da a:
i
= 34. F
ha 1 − α
= 0.95, he de i ed
f b e ai
e i a e bec
M de IV (c
e
cha ac e i ic (e.g. a d
he e he a d
76
ai
ih
,
e
i
ii
ea
i ha ie i
,a ac
babi i hi c
e
f
fide ce
e ce f he a ge
he e g h f hi i e a ha dec ea ed ig ifica
ai ai
a
i
acc di g c
he
, i.e.
d c
). e e ce c a ed a g
e , e c.), i ca be de c ibed b a
P ( X = 1) =
e e .
ai
e acc a e.
fide ce i e a f
If e e a i e a
e
he
= 13.9411 , s = 1.1791. He ce, he e i ed c fide ce i e a i
i e a . N e ha , i acc da ce be
ai i g i e
he e da a
x − 0.41142; x + 0.41142 = 13.5297;14.3525. Th e
de I i h
a iab e X a e
d a d bad, i
p, P=( X=− 0) 1 he aif ehe 1 fea
ab ecece aif a
ei
di
ib i
p, e e
a d if0
:
Th f
, if a fea
ei
i gi e b X
We fi d ha f
1 n
=
n
∑X
i
i =1
i e i a
=
ee e
p
f he e ce age f
e
a
be f
m 600 = = 0,333 , n 1800 he f ac i
f
e, a a
i ai
0.05 < <0.95 a d > 100:
m m nmn u−α≈
e, he
a
m ) = p. n
m m 1− m n n <+ P − uα nnnn E i ai a
b e ed
e
g
de
. I a 1800 e e e
α = 0.95, uα
= 600. F 1
m m 1 − n n ≅ 0,011 . Th n
de
1 α
1−
= 1,96. Th ,
he 95% c
fide ce e e f
i gi : 32,19% < < 34,40%.
σ).(
The ec
d
c
a i i . De e di g a da d de ia i a da d de ia i
ed e
e
ai
ie e
. I ge e a , de i i g a c i
ea . H
aa ee i a
, hi ea i
e e , if
ed
fide ce i e a f a
ea
e
f i
i g he a ia ce
e ha
he a ia ce
he fea
e
ha a
77
a di di
ib i
ib i
,
a ea
a
i ae
, a ead
a,
2
e he χ a d Z
e ca
.
M de V: S
e ha he
ai
ea
a d
ai
a da d de aiae i 2
a d di
he a
ib i
e i a ge (
i h deg 1 ee
f f eed
> 30). The
a i ic
1/2α
c1
c2
P c1 <
{ <} c=
78
2
1
1
nS ha a σ2
:
1/2α
he e: P χ
Z=
{2 α }≥P =χ
2
nS 2 < c=2 − 1 α σ2 c2
1 2
α .
χ2
N e: M
ab e
gi e
de i a i
f he a e f
We b ai
he f
a e i
1
i gc
e
nS 2
< σ <2
c2
e. C
ide agai
We ca c a e he a a da di ed χ
2
ie
e a
fide ce i e a f
P
E a
P {χ 2 ≥ a} a d he ef e he
f he f
he da a
f
he a ia ce:
de III.
e a ia ce: =1.3903. Th ea
.
nS 2 = − 1 α . c1
ed i
a i ic ( he
ai
he b e ed a e f he
f he e
ai
) i gi e b 1.3903 * 34
= 47.2727. We e
ca c a e he a e i ed c
f c 1 a d c2: c 1= 19.0466 a d c2=50.7251. He ce, he
fide ce i e a f
he a ia ce i :
47.2727 ; 47.2727 ≡ 0.9319; 2.4819 50.725 19.0466
M de VI. A
e ha
he a
e i
b ai ed f
he
ai
fi e e
he f
i gf
P
1 +
he e: uα i
ha a
a
c
e
a ge, i.e. > 30. I e a e i a i
ead f
ab e f
a di
f he
ib i
a da d de ia i
a d i
a
s <σ < uα
1−
2n he a da d
s ≈− 1 α uα
2n a di
ib i
, N(0, 1).
79
E a
e. Agai ,
e
e he da a f
34, s = 1.1791. The a e uα Th
e b ai
he f
he e a
= 1.96 (f
i gc
ef
de I hi III. ca e,
he ab e f
fide ce i e a f
=
he N(0, 1) di
he
ai
ib i
).
a da d
de ia i [0.9527; 1.5467]. N e ha he c ed
a i g he f
fide ce i e a
b ai ed i
b ai a i e a e i a e f ae
i gc
he
he
e i
f b h e dhe fi e a . I
hi ca e,
fide ce i e a : [0.96535, 1.5754]. A
e i a e b ai ed i
i ia
e a
a da d de ia i
e b ai
ca
he i e a gi e ab
e ca a
be
. Thid i e b he
ee, he i e a
e.
.
A a ead aa ee
e i
ed, he
fa
ai
a ai ab e ab ai e he
he
.I i a eci i
e fc
ai
e e ,i
g ea e a
ei i f da a i
80
ee e
ec a i
i gf
e
a
ea
cia ed i h
eci i
i
de i ab e i
e he a gehe fi e a , he be e a
e i e. F
ai a
a ge. I hi ca e,
a e i ei g ea e ha acc ac f he e i a e.
he e i e
ecif i g a e e c f fide ce,
ib eb ai a a ge
N e ha i each ca e
e i a e he
e a ed i f he a i
be e e be ed ha he " ice"
acc ac i a i c ea ed a e.g. beca
ai
b ea e ae a he ha ea
e fi a e a d h
e . Ad i ed , he a
e i a ei .H
c
: e
ed ha , a
b ai i g a acc a e e i a e. L c
fide ce i e a
i d e
e
e gi ehe e
i ed f
ea e, e he a
,
e a ea
he c c a
e a f
hi
e ,
ec f i ga
a e
he e ha
ed ec e fide f ce a d
i ed e g h f he i e a , a
he
hi
diffe e ce be
ee
he igh a d ef e d f he c
edge a
de e
i e a e i ae We c
i e he ece a
i h a ede e
d i e, he ef e, fide ce i e a
i ed c
de e
f agi e
fide ce i e a . Thi a
e i e,
fide ce e e a d
i e he a
ha eci i
ia e a
e ca gi e .
e i e
e g h (acc ac ) i h he ch
e c
b ai a 1
fide ce e e
α. Le 2 be he e g h f ihee a .
M de VII U i g he f
af
he c
fide ce i e a f
2d = 2
e fi d ha he e g h f hee i a i
i ei : n F
e a
f
=
acc ac ee e ac ea
uασ n
ai
ea i I,
. He ce, he e
de
i ed a
e
uα2σ 2 . d2 e,
i g
he ab e f e i
he
de I, i ai he
σ = 2 . The a e uα = 1.96i ead
ed ha
a da d
a di
ib i
f he he e i a i g he a e age f, e.g. 30 ec . Ca c a i g
fide ce e e
ib e
= 0.5,
f
f 95%, i i
i h a acc ac
i e f 62 b e a i
d ,i
f 1i
i g he a
e fi d ha n ib e f
e. F
. We ca
ai i g i e f
hi
e
=
he ef e a a a ,
e ha e, i.e. f 5
1.962 ⋅ 2 2 0.52
= 61.47 . Th
e i a e he e,
e he
i ha
e eed a
ih
ai i i
a
e
.
81
M de VIII Si i a
, ca c a i g he e g h f he i e a f
he
=
,
hi
e
he da a f
,
i ed
e e , gi e
e) f i e bea
ef
de
ai i g f
a a
e i e,
b e ai
he ab e he a e f tα
he he i i
30ec
de
he
. We ca c a e he a e age
e
a da d de ia i
:
= 2.7764 f α = 0.05. A f he
d ( = 0.5)? Ca c a i g he e
= 53.41. He ce, i i
(54 5),i
he ea e
30 ec
e a ea
0 , he
ibee i a e he a e age d a i
heea e
e b ai
>
0. If
ed.
hich i 13.8. The , e ca c a e he a
ea
ha e d
e eed a e i a e. He ce,
a
he e a
s = 1.3038 a d ead f bef e,
t s + 1. H d
a da d de ia i
ee e
0
i g
a
: n
. Th
e ( i ca c a ed f
e ai i g
a e
n −1
ai
i i ia a
Re
tα s
=2
: 2d
f
de II, ceed e a
2 2 α 2
ece a
e i a e he a e age
da
49
i ed
e
ai i g i e f
a a
d .
M de IX: U de acc ac
de III, he de e i
de III. We a i ic c
i ai
a aged
ae c
de II. Le '
c
ed,
ec
he he i i he ea e
82
i ed a e f ib e = 30 ec
ch
i ed a
e i ef
e he da a f e da a:
0
= 34. Fi
a gi e
e e
he e a
ef
i g
ha
he
= 0.05), e ead he a e uα = 1.96f i
h
n=
uα2 s 2 + 1. Agai , a bef e, d2
e i a e he a e age d a i
f he
f
, he ece a
x = 13.9411 a d s = 1.1791 . A
fide ce e e i 0.95 (i.e. α
ab e. The e
f he e
he a e a i
ai i g f
d ( = 0.5)? We ca c a e he a e f
he ea a
a
= 22.36. Th
,
i
hi ca e i i ec
d )f
ie
ib e
ih a
fide ce e e ( α
a gi e c
, a d he e
e i ae
i ed a
ede e
i ed
eci i
(
= 0.05), beca e e ha e a a
e i ei
= 30
e f 34
23.
M de X: I a e i g he a ca
e he f a) if
e i e e
i g
i ed
i
e
he
e i a ea
ai
i
,
e
: ag i de
f
,
he
e
i ed
a
e
i e i
uα2 p (1 − p ) : d2
n=
b) If we do not know the order of magnitude of p, we use the inequality
p (1 − p ) ≤
Le ' a hi e ce age f a
1 4
=
. Thus: n
u2 α
4d 2
.
i g he da a f he e a ef e a g de . We b e ed
de WeIV. e i a ed he = 600 e i he
e f 1800. F
1 α= 0.95 uα ei m
n
= 1.96 . He ce, he e i a e f he
=
he ea e If e
600 1800
(e.g. f
322.69. S
he a h
i.e. 33.3%. I i
ib e
fa
de
h
e i a e hi
i
5%?
e ce age f
If
= 0,333
i
die b de
he a
d
e i e1800 f
he e e he ec
he a h i g, f
e a de
) he e
ec ed a e f he
e, 30%, he de i ed a ed i
fficie
ec ed a e f he e ce age f
df
gh i i g ea e ha
aa d he
e
e b ai e i
f
hi
=
e.
de
= 384.16. The e ca c a ed,
e i ei
i g, i g a
i i dica e
e i e,
ha he
83
a
e f 1800
I b h i ai ai e a 385 e e e
84
de ,
i fficie
f
achie e he e i
e . i ed
(5%) i h a 95% c a
e. C
eci i
f
he e i a e f he
fide ce e ei ia
ec i g da a f
1800
de
a i c ea
ib e ed
da !
6.
A
c ai
.
ega di g he
a i ica h
Ah
di
ib i
f a cha ac e i ic i ca ed a
he i .
f
aa ee
he di
he i ib i
f a cha ac e i ic i ca ed a a a e ic h
he i . I
e if
ch h
he e , e aea e ic e
Ah i
hich
he i
ecifie
ega di g
he
he fea
a a e e ) i ca ed a e
e
he i
e i gi
c
ide ed
be
he be c
h
If
eh he he hi h ch a e
The f
be
decide
ib i
f a cha ac e (i c di g
he i . T
e
e if
he he a gi e h ecifi i aia h
a ea a e a i eh
e if i ic
he i fi
c ded ha he h
a ed a d he b ec
he i i
i ca eda e
f he di
fa e. He ce,
he i ) a d f
ide ed
de
ch h
he e ,
.
ece a e
e
f
.
a a e ic h
a a e ic e
H
e ica a e
e
a dd
fa
e chec
he i ca be
he i (ca ed H
0
he i (ca ed H 1),
hich
he i H
e.
0
i
i
a i ica e chec i he h
he e ,
f ig ifica ce.
i gi a ag i h
f
e i g a a a e ic h
he i ( ig ifica ce
e i g): 1.
We formulate the hypothesis H0: (Q = Q 0).
2.
We set the significance level α.
3.
Next, we observe an n - element simple sample.
4.
Calculate the realization u of the relevant U statistic (significance test).
85
5. We
f
he c i ica
a i f i g he f
a e
i gi e
0
f he
he e ec ed ≠
a i ic U f
ai :
P ( U ≥ u0 ) ≤ α
≥
0, he i H u u0 , he eeec heh u < u 0 , he e i If ea e ec he h he i H
6. If
N e: F a E a
a
e
a
e
he i i i g di
e ib i
e he e ac di f he e
ib i a i ic i
af i heic U; f
0.
a ge
ed.
e.
Let Xbe a trait with a normal distribution N ( m,1) in the population of interest, where m is unknown. We believe that the unknown average value is 0, i.e., we test the hypothesis H0: m = 0 against the alternative hypothesis H1: m ≠ 0. The only way to test our hypothesis is to compare it with a sample from the general population. Hence, a random sample of 10 items was chosen and the following results obtained: -0.30023 -1.27768 0.244257 1.276474 1.19835 1.733133 -2.18359 -0.23418 1.095023 -1.0867
86
We eed
a e
10 e e e c
f ic
he he he a
e, i a ge e
i h he h
ha if he
f b ai i g
ee
a d = 1.2924. Th
e
ea a d
h
ig ifica
he i ? T a e
(i
a )
t=
ed
de H 0 ha
h
e
e e ec H 0.
x = 0.04649
a d b ai
he a
be ie e ha
hi fac he
aa
he a e age a e f
he i a d he a e age a e ca c a ed f
diffe e ce
ha hi d e
e e e
ee
ecifici a e , a
a ce , i i
a da d de ia i
, he diffe e ce be
ch
c ai
a ci c
ha 0.05( he ig ifica ce e e ), he
We ca c a e he a
h
f b ai i g
gh be ab e
he i H0. I
babi i
b e ed i e
babi i
he
e i 0.04649. I hi
e
e ec he
a i ic i ed.
X −m n −1 S
he e:
x = 0.04649 , =1.2924, = 10, =0. The ea i a i babi i ha
hi
ha he ab
a e
each af a
de H0 i 0.912. We i e
he i i a
e, he
f f eed
i e
e a e f he ea i a i
a e (i.e. ha he
0.04649) h
f he i aic 9 deg ee
ei f
e hi a
he cha ce ( ea
a
0.114. The
e f hea i ic i g ea e he a a f
0 ha
ea i g ha if he
e f he i e ih
d) f b ai i g
0.912. Q i e a , if e e e be ha he
e i i i
ch e
1. Tech ica , he a e f hi a ec
e
1d e
a
babi i
i cahe ed
he e ec i
a eO
f he
h
i
ii
i
he i . B
ha a ha
87
h
d be he
a ee e
e
ha
be
e .F
e a
e, h e e,
i e d ha
e
hich accee
f head a d ai . H
dc 10:0 c
i
.I
ibi i
ce ai
e !I i
d ha
e .I
a e 8 head ,
e a
e h
10 ai i.e. e ai , he ce
he e iabi i c
ac ice, i i a
e
h
=2*(1+10+45)/1024≈0.11, b =2*11/1024≈0.02. Th
ai 0.05 e a d hi i
ha c e ci
ge he
acce
fa ehi
babi ei i hef 8,9
afa a a f
e ec head if 8 (
he
be
e ec H0 ( ha he c i i fai ). If he e
gi e
ha hi he e
8,9
ec ed 5 head a d 5
ea
e ec if 9 head (
, if he
e
10head
he e
ai ) a
a
a d
he i H 0 af e a a e e e , gi e de
ha a e a ea
ec a e
he e e
ee ce ai
e
ea
ee
ee
f he c i ? 7:3? 8:2? B
ed ha hi
e, i
he i ? Af e a ,
i e be
d ca c a e he
ed
h
i g a c i 10 i e ,
ab
ece a
f e ec i g a
he
ha i ba a ce be
f ig ifica ce= α 0.05. Thi
ca ed he e e
c
a ef
ai ) a
ea
f head ( ai ) a 8,e e e9
10 head (
d ai ),
e
d
e ec H0. T ei e a e: he e e f ig ifica ce a ci i e acce ed b ac i i e . The ig ifica ce e e ca be cha ged: i fac , he e e a e af aid f e ec i g H0, he hi e e h
e
he
h
h
he e he i i
fide ce i e a f
e d
i
a d
eaffi
ed ha
ha he i i a i
fide ce i e a f
ea i g
he
ai
ai
a a a e e ca a
i , he
a e age i
e
fide ce i e a . If b h e d
e a
ai
ea ba ed hi
e
be
e,
= 0, a d he
a a ae
ae ha ega i e ef ha i i
(i.e. e d e ec H i
a
α i ed, a d e
b
he a e af ahi e e . If, f
ha he a e age a ehe i
i i e igh e d
ib e ha he i i ide he c
88
ide a i
i cide a . The a e
he a e a e f 0.05. The c
ed
c
,c
f1 αi
fide ce e e fe
d be. i aI
d be i he a ge [0.02, 0.1].
A he e d f hiec i c
e he ig ifica ce e e h
fhe c
0)
ie , beca
fide ce i e a f
e0
he
ai
ea ha e he a e ig , i f α = 0.05 (i.e. i i
H0 a a ig ifica ce e e ea i
F
e
ea i g H0 a
be
eca ifhae acce
ea
g
d f
ga
f he
h
g a d e.g. he
e e
c edib e ha he
i
babi i
he
e ec i
e ca
ia
c
h
he i , i
a d i hi be i e
fi d
he i i
di ide he e
e e
be ed b e a i
he ec igi a a
d a
g e ide ce c
di i
a.H
e ed a adic i g i .
e e , i b h ca e ,
e
e i gi e b α
f e ec i g H 0 he i
a
ei i
a
he fi
e. S ch a
e. If i i h
a da d de ia i e ha e he f
a
a he
) i he i g a
)b a i ce di g he
ea d dd
e h d ca be
ge e
(
ed e
be ed b e a i
he h
, he a a ee (e.g.
e a e :
e
h
d
X
Le
e e ec
f ig ifica ce.
Le
i
a
ha he e a e
Re ec i
i i ,a d
a hi g iifica ce e e ).
he ec d, e ea
ha 0 i
ea
ge ei ea
f he
a ea d
ig ifica
Th diffe .
Y
0.30023
1.27768
0.244257
1.276474
1.19835
1.733133
2.18359
0.23418
1.095023
1.0867
e a i e he he b h a e c ef ai i h he a e ai ea ( hich h d be he ca e a he c f e he a e ai
), i.e. m X
= mY . We i
e he
a i ic
89
X −Y
= U
n1n 2
nS +n S2 2 1 1
We ca c a e he a
ia e
+
n1 + n2 ( n1
2 2
− n2
2)
a i ic : 1
Mea Va ia ce
2
0.010762
0.0822094
1.888100953
1.866891821
5
5
Ob e a i
The ea i a i di
ib i
a
ea i a i i h he
e ec i
f he U
a i i ic0.08244548. Thec i ica a e f
i h 8 deg ee fUc h
f f eed
ai ed i
he i
f
he i e a [ 2.306, 2.306] i
a ed ab
he S de
= 2.306. Th ,
he ab e i tα
di
e. The e a e, he ef e,
ic
i e
g
d f
i
.
De e di g
he c
(Q = Q0)) ca ha e
e , he a e a i e h e he f f
i gf
he i ( he
h
he i H
0:
:
H1 : (Q ≠ Q0 ) , H1 : (Q > Q0 ) , H1 : (Q < Q0 ) . The fi e
90
i a
ca e i ca ed a ided e . The
ided a e a i e a d he c he
caaee ca ed igh
e
di g a a e ic
ided a d ef
ided
a e ai e , e F
e a
f
e a
ig ifica
a ic a di ec i
he a e
e, he ea i g
. Thi h f
b) O e ided (di ec i i
f
ide ed ab
e a d
e
e
ee e
ided e
a f
.
a e he
he e :
ided, f
diffe
e c
e, e a i i g he ea i g
i gh
a)
ec i e . The e a
b. Thi h
he i i
f
e a d ided, beca
he e ia e e
ii
e did a
ea
he diffe e ce. a ), f
e a
he i i
e, ie
e ea
ig ifica
he di ec i
e ha
f diffee,e hc
i i
e e
ided. The
e
f
e ided e
i g
a i ic a e i
a ed be
:
H1 : (Q > Q0 ) ( )
1−α
α
0
Q0
91
H1 : (Q < − Q0 ) ( )
1−α
α
Q0
Re
i g
e hi ha he
he e a
ec
ha he a
e
he a e age i he h he i m X
ea i a i di
0
f he U
ib i
ce ed i h ahe c
e f ai
a
e
a d ,
ai
i h aea
e e e ed b he a e .S ef ae he a e a i e h he i m X < mY. The
= mY agai
a i ic i= 0.08244548. The c i ica a e f
i h 8 deg ee
f f eed
(
e ided e ) f
tα = 1.8595 . S , he ef e, he e i
ea
T fi i h, he da a a e
he e : a c
ih
a
a
ed i
e . We
a ea
ie he F S edec
F=
i h(
1
We ge :
92
1=4,
2
1=4) deg ee
e ha a e g ea e
f eed
S12 S22 .
di
e ec he
e :
ai
he S de he ab e i h
he i .
f a ia ce
1
2
Mea
0.010762
0.0822094
1.888100953
1.866891821
Ob e a i
5
5
Df
4
4
Va ia ce
F
1.011360665
P(F<=f)
e ai
F C i ica
0.495763859
e ai
We ee ha he a ca
e ec he h ai
f
i
f he e
ai
f a iia ea ce
he i
f he e
ai
f he a ia ce he i
hich he e a
i 1.01136 a d i
E a
6.388232909
ch
e c
a e ha
e. The ea i a i
f he F
a i ic
he c i ica a e 6.3882.
e.
A fac
d ce
hi cha ac e i ic h e if
ee e ai f
he
ai
. The
ie e
ea
ha he
ib i
a de da d ia i
i ha f
d be 4. f
d ci
, ae ia
a da d de ia i f
he ech ica e
We he ef e h
(m,σ ) di
d c A. Cha ac e i ic X ha a
a e f σ. Tech ica e
T
ab e:
ie e
he i e H 0 (σ
We ca c a e he ea i a i
hi
e a
a ei
a e
ih
= 20
= 4.4. D e
d ci
?
= 4) .
f he
a i ic Z ,
hich ha a χ 2 di
ib i
ih
σ2 1 deg ee
f f eed
:
93
Z 20 ⋅ (4.4) 2 = ≅ 24.2 2 σ 42 Le
e α=0.01. We
a
f
he a e f
P
Z
>z
σ 2
0
hich a i fie :
0
= 0.01
2
F
he χ di
he ab e f
0
ib i
,
ef
d ha f
19 deg ee f eed f
= 36.19.
Th
,a
i g ha he h
he i H0 i
e, he
Z 24.2 i > 2 σ
P
babi i
g ea e ha α=0.01. C e
c
i
: he e i
ie e
α = 0.01
f
30.1435, a d i
E a
ea
e ec he h
he i
a e a i fied.N e ha e e a cha ge i
α = 0.05 d e
affec hi
e
ha he ech ica he e e
f ig ifica e c
: he c i ica a e i
=
i g ea e ha 24.2.
fa f
agi e
h
a e ei he g
f a iece bei g f a ed i iece
e ef
f a ed i e We
f
.A a
d
be defec i e. The
i 10%. I
hi dec a a i
a d he h
he i
d
f a ed. The
e f 30 iece h
dec a e
a
babi i
a e a d4
ha he
H 0 ( p = 0,1) . The a e a i e i igh ided, i.e.
e:
,
X =
30
∑X k =1
If he h
he i i
e, he :
P ( X = r=) We b e e = 4 . The
i
ea i ic?
( >0.1).
94
0
e.
Piece
De
he
30 r⋅ ⋅ 0,1r 0, 930−r
a e i ig e b :
k
.
f
3 30 ≥ 4) = 1 − P ( X < 4) = 1 − ∑ ⋅ 0.1 ⋅ 0.9 30− = 1 − 11.134 ⋅ 0.9 27 = 0.3527 =0 r r
P( X
r
r
C
c
ie
i
: he e i
ea
A he e d f hiec he
ai
f
e, e
he i
a
e a i ea e a
d ced
a a e ic e , i.e. a e di
e ec he h
ha he
i
f
ed
e
ha a e f a ed i 10%.
ib i
e
d c ,
ed
fc
. S che
a ibi i
f he e
a e ca ed
i ica
a a e ic
ia ce.
We a e e a i i g he ae a e f
ib i
e
hich ca be ega ded a a
e a i e he c
i h a he e ica di
e
e f he e ie
a
ai
d ci
f
a
fac ed c
e
i e a d c a ied if a g
Le g h f e ie
6
1
C a ified
DDDDDD
Z
1
2
8 DDDDDDDD
. 50
cce i e i e
d (D) defec i e (Z):
1
2
Z
DD
4
5
1 Z
13 DDDDDDDDDDDDD
ee e N
be
f
3
6
7
e ie
2 ZZ
13
1
DDDDDDDDDDDDD
8
Z
9
hich defec
ae
e i e
ha
50
11
11
D 10
H he i H0: g d a d bad c e The a e a i e h he i H1: he ech
1
ae gica
d ced i a a d ce ead
a . b e e ce i
Acce a . a ce f he a e a i e
95
h
he i
ea
ha he e
e ab e he ide ifica i F
he da a a i ic ha
a be a
f a
e e ed he e, he f
i e
i gf
e he
ea e
> 20ha a a
he e: U
he
g
he
a i d cf i
ce ,
hich
a
be
f
.
ca ed hee e ,ie h
e e
:
Z= hich f
e a ic e d i
U − µU , σU
i ae
be e fie ,
a di be
1
ib i
.
f bad ee e
,
2
he
de e e Mea
a e: µU
S a da d de ia i I
ea
e: = 50,
=
2n1n 2
n
σU = 1=
6,
+1 , 2(nn 1
2n 1 2n− ) 2 n n 2 (n − 1)
2=
44, U = 11 :
2n1n 2
U − Z=
2(nn 1
+ 1
n
= −0,39
n2n 1 2n− ) n ( n − 1) 2
2
Zα =0,05 = − 1,645 C
c
i
d ci
96
(a ef ided e ).
: he e i he e a e
ea
e ec he h e a ic cha ge i
he i
fh
he i e ih
ge ei d fe
f .