El Sistema de los Números Reales y la Recta Real
1~PHURV5HDOHV (O&iOFXOR'LIHUHQFLDO\HQJHQHUDOWRGRVORV&iOFXORVKDFHQXVRGHORVQ~PHURV UHDOHV 6L UHXQLPRV D ORV Q~PHURVQDW QDWXUDOHV h HQW HQWHURV t UDFLRQDOHV k H LUUD LUUDFL FLRQ RQDO DOHV HV ²c³ HQXQ HQXQVR VROR ORFR FRQM QMXQ XQWR WRHV HVHH HHVH VHOG OGHO HORV RVQ~ Q~PH PHUR URVU VUHD HDOH OHV V²l³ (VG (VGHF HFLU LU l ~ t r kÁ SRUTXHh t 3RU 3RUOR ORD DQW QWHU HULR LRU US SRG RGHP HPRV RVG GHF HFLU LUS SRU RUH HMH MHP PSOR SORTX TXH HÁ \ VRQ VRQQ Q~P ~PHU HURV RVU UHD HDOH OHV V
!
!
!
l
*UiILF *UiI LFDD R JHRP HRPpWUL pWULFD FDPH PHQW QWH H KDEO KDEODDQGR QGR HO FRQM FRQMXQ XQWWR GH ORV ORV Q~PH Q~PHUR URV V UHDO UHDOHV HV HV UHSU UHSUHHVHQWDGRPH PHGLD GLDQWH QWH XQD XQD UHFWDTX TXH VH OODPD DGLYLQHQ UHFWDUHDO
3URS 3URSLH LHGD GDGH GHV VGH GHO OD DDG DGLF LFLy LyQ QHQ HQ l
³ &ODXVXUD
D Á l Á b l
O RV Q~ Q ~PHURV UH U HDOHV \ (MHPSOR 6HDQ OR WDPELpQXQQ~PHURUHDO
³ &RQPXWDWLYD
HQ H QWRQFHV VX V XFHGH TX T XH b HV
D Á l b ~ b
3DUDOR ORVQ VQ~P ~PHU HURV RVUH UHDO DOHV HV \ VH VHF FXP XPSO SOH HTXH TXH b ~ b (MHPSOR 3DUD
³ $VRFLDWLYD
!
!
D Á Á l Á b b ~ b b
&RQVLG LGHU HUHHPRV PRVOR ORV VQ~ Q~PH PHUR URV VUH UHDO DOHHV Á (MHPSOR &RQV TXH
8 b 9 b
~
\ S SDU DUD DOORVF RVFXD XDOOHVV HVVH HFFXPSO XPSOHH
b
8 b 9
³ (OHPHQWR1HXWUR E[ l WDO TXH D l
b~b~
6HDHOQ~PHURUHDO RUHDO HQWRQFHVVX HQWRQFHVVXFHGHTX FHGHTXH H b ~ b ~ (MHPSOR 6HDHOQ~PHU
!
! !
³(OHPHQWR,QYHUVR$GLWLYRE[ c l WDOTXH b c ~ c b ~ 3DUDHO HOQ Q~P ~PHU HURU RUHD HDO O VH VHFX FXPS PSOH OHT TXH XH (MHPSOR 3DUD
b ² c ³ ~ ² c ³ b ~
ÉÉ
Cálculo Diferencial
³ /D6XVWUDFFLyQ VHGHILQHFRPRODRSHUDFLyQLQYHUVDGHODDGLFLyQGHQ~PHURV UHDOHVHVGH UHDOHVHVGHFLUSD FLUSDUD UD FXDOTXLHU FXDOTXLHU Á l
!
c ~b c
VQ~PHURVU VUHDOHV \ VH VH WLHQH TXH (MHPSOR 6HDQ ORVQ
!
c ~ b c
3URSLHGD 3URSLHGDGHV GHVGH GHOD ODPX PXOWLS OWLSOLFD OLFDFLy FLyQHQ QHQ l
D Á Á l VHFXPSOH ³ &ODXVXUD
D Á l Á h l
3DUDORVQ~PHURVUHDO RVUHDOHV HV \ VHFXPSOH VHFXPSOHTXH TXH h HVWiHQOR HVWiHQORVUHDOH VUHDOHV V (MHPSOR 3DUDORVQ~PHU
³ &RQPXWDWLYD
D Á l h ~ h
'DGRVORVQ~PHURVUHD URVUHDOHV OHV \ VHFXPSOH VHFXPSOH h ~ h (MHPSOR 'DGRVORVQ~PH
³ $VRFLDWLYD
!
!
D Á Á l Á h h ~ h h
(MHPSOR 6HD 6HDQ ORVQ VQ~PHURVU VUHDOHV
Á \ HQWR QWRQFH QFHV VXF VXFHGH TXH h h ~ h h
8 9
8 9
³ (OHPHQWR1HXWUR E[ l WDO TXH D l h ~ h ~ 6HDHOQ~P Q~PHUR HURUHD UHDO OHQWR HQWRQFH QFHVVX VVXFHG FHGHTX HTXH H h ~ h ~ (MHPSOR 6HDHO
³ (OHPHQWR,QYHUVR0XOWLSOLFDWLYR
D lÁ £ E[ c ~
c h ~ h c ~
l WDO TXH
(MHPSOR 3DUD 3DUDHO HOQ Q~P ~PHU HURU RUHD HDO O VH VHFX FXPS PSOH OHT TXH XH
h
~ h ~
³ /D'LYLVLyQ 6HGHILQHFRPRODRSHUDFLyQLQYHUVDGHODPXOWLSOLFDFLyQGHORV Q~PHURVUHDOHVHVGHFLUSDUD FXDOTXLHU Á l ~ h c ÉÉ
el sistema de los números reales y la recta real
VQ~PHURVU VUHDOHV \ VH VH WLHQH TXH (MHPSOR 6HDQ ORVQ
~ h c
3URSLH 3URSLHGDG GDG' 'LVW LVWULE ULEXWL XWLYD YDHQ HQl
D Á Á l VHFXPSOH
b ! h ~ h ! b h ! h b ! ~ h ! b h !
6HDQO ORV RVU UHD HDOOHV \ HQ HQWR WRQF QFHV HV (MHPSOR 6HDQ
b ! h ~ h ! b h ! h b ! ~ h ! b h ! $XWRHYDOXDFLyQ
6LQUHVROYHULGHQWLILFDODVSURSLHGDGHVGHORVQ~PHURVUHDOHV
³ b ~ b
³
h
8 b 9 ~ 8 h 9 b 8 h 9 ³ h c ~
³ b ~ b
! ! ³ b c ! ~ c
! !
³ b b ~ b b
³
h ~ h ~
³ h c ~ c h
³ h ~ h
!
!
³ c b ~ b c ~
5HVSXHVWDV ³ 3URSLHGDGFRQPXWDWLYDGHODDGLFLyQ
³ 3URSLHGDGGLVWULEXWLYD ³ 3URSLHGDGGHOHOHPHQWRQHXWURDGLWLYR ³ 'LYLVLyQRSHUDFLyQLQYHUVDGHODPXOWLSOLFDFLyQ ÉÉ
Cálculo Diferencial
³ 3URSLHGDGDVRFLDWLYDGHODDGLFLyQ ³ 3URSLHGDGFRQPXWDWLYDGHODPXOWLSOLFDFLyQ ³ 6XVWUDFFLyQRSHUDFLyQLQYHUVDGHODDGLFLyQ ³ 3URSLHGDGGHOHOHPHQWRQHXWURPXOWLSOLFDWLYR ³ 3URSLHGDGGHOHOHPHQWRLQYHUVRPXOWLSOLFDWLYR ³ 3URSLHGDGGHOHOHPHQWRLQYHUVRDGLWLYR
,QWHUYDORV 5HDOHV
3URSLH 3URSLHGDG GDGHV HVG GH HOD ODV VUH UHOD ODFLR FLRQH QHV VGH GHRU RUGH GHQ Q
(OFRQMXQWRGHORVQ~PHURVUHDOHVHVXQFRQMXQWRRUGHQDGRSXHVH[LVWHODUHODFLyQ GHR GHRUUGHQ PD\RU TXH TXH TXHF XHFXP XPS SOH FRQ
!
³ 7ULFRWRPtD D Á l VHFXPSOHXQD\VyORXQDGHODVVLJXLHQWHVUHODFLRQHV Á
~ Á
(MHPSOR 6HDQ ORV UHDOHV c \ HQWRQFHV VyOR VH FXPSOH XQD GH ODV WUHV UHODFLRQHVDQ UHODFLRQHVDQWHULRU WHULRUHV HV
c ³ 7UDQVLWLYLGDG D Á Á l (MHPSOR 3DUD Á
w ¬
\ c VH WLHQH TXH w c ¬ c
³ $GLFLyQ D Á Á l (MHPSOR 'DGRV \
¬ b b
VH FXPSOH ¬ b b
³ 0XOWLSOLFDFLyQ D Á Á l w ¬ h h
ÉÉ
el sistema de los números reales y la recta real
(MHPSOR 6HDQ Á c \ WDOHV TXH
c w ¬ h ² c ³ h 2WUDVUHODFLRQHVGHRUGHQVRQ 0D\RURLJXDOTXH
¯ v ~
(MHPSOR
¯ v ~
0HQRUTXH
¯
(MHPSOR
¯
0HQRURLJXDOTXH ¯ (MHPSOR
¯
/RV VtPERORV Á Á Á GHQRWDQ OD H[LVWHQFLD GH GHVLJXDOGDGHV
3URSLHGD 3URSLHGDGHV GHVGH GHOD ODV' V'HVLJ HVLJXDO XDOGDGH GDGHVV
³ 7UDQVLWLYD 6L w Á HQWRQFHV (MHPSOR 6L w Á HQWRQFHV
³ $GLWLYD 6L w HQWRQFHV b b (MHPSOR 6L w HQWRQFHV b b
³ 6L w l HQWRQFHV b b (MHPSOR 6L w l HQWRQFHV b b
³ 6L w l HQWRQFHV c c (MHPSOR 6L c w l HQWRQFHV c c c
³ 6L w HQWRQFHV h h (MHPSOR 6L c w HQWRQFHV ² c ³ h h
³ 6L w HQWRQFHV h h
! c ! ! c !
(MHPSOR 6L c w c HQWRQFHV c
ÉÉ
Cálculo Diferencial
³ 6L \ HVWi HQWUH \ HQWRQFHV w HV GHFLU (MHPSOR 6L w HQWRQFHV
³ 6L HQWRQFHV c c (MHPSOR 6L HQWRQFHV c c
,QWH ,QWHUY UYDO DORV RV5 5HD HDOH OHVV
8QLQWHUYDOR 8QLQWHUYDORUHDO UHDOHVFXDO HVFXDOTXLHU TXLHUVXEFRQM VXEFRQMXQWRGH XQWRGH l 7LSRVGHLQWHUYDORV
³ ,QWHUYDORDELHUWR
Á ! ~ µÁ´ ~ ¸%
l° % ¹
(MHPSOR ² c Á³ ~ µ c Á´ ~ ¸% ¸% l° c % ¹¹
³ ,QWHUYDORVHPLDELHUWR ´Á ´Á ³ ~ ´Á´ ´Á´ ~ ¸% ¸% l° % ¹ ¹
²Á µ ~ µÁ µÁ µ ~ ¸¸% % l° % ¹
¹ (MHPSOR ´ Á ³ ~ ´ Á ´ ~ ¸% l° % ¹
ÉÉ
el sistema de los números reales y la recta real
²Á µ ~ µÁµ µÁµ ~ ¸% l° % ¹ (MHPSOR ²Á
³ ,QWHUYDORFHUUDGR ´Á ´Á µ ~ ¸% ¸% l° % ¹ ¹
(MHPSOR ´Á ´Á µ ~ ¸% ¸% l° % ¹
³ 2WURVLQWHUYDORVUHDOHVLQILQLWRV ² c BÁ µ ~ µ c BÁ µ ~ ¸% ¸% l° % ¹
µ ~ µ c BÁ c µ µ ~ ¸% ¸% l° % c ¹ (MHPSOR ² c BÁ c µ
² c BÁ ³ ~ µ c BÁ ´ ~ ¸¸% % l° % ¹
(MHPSOR ² c BÁ c ³ ³ ~ µ c BÁ c µ µ ~ ¸% ¸% l° % c ¹
ÉÉ
Cálculo Diferencial
´Á ´Á b B³ ~ ´Á ´Á b B´ B´ ~ ¸% ¸% l° % ¹
(MHPSOR ´Á ´Á b B³ B³ ~ ´Á ´Á b B´ ~ ¸% l° % ¹ ¹
²Á ²Á b B³ ~ µÁ µÁ b B´ B´ ~ ¸% ¸% l° % ¹
²Á b B³ B³ ~ µÁ µÁ b B´ ~ ¸% l° % ¹ ¹ (MHPSOR ²Á
2EVHUYDFLRQHV ³ l ~ ² c BÁ b B³ ~ µ c BÁ b B´ ~ ¸%°% HVXQQ~PHURUHDO`
$Vt
µÁ b B´ ~ ¸% ¸% l° % ¹ lb ~ µÁ
¸¹ ~ ´Á ´Á b B´ B´ ~ ¸% ¸% l° % ¹¹ lb r ¸¹
¸% % l° % ¹¹ lc ~ µ c BÁ ´ ~ ¸
lc r ¸¹ ¸¹ ~ µ c BÁ µ ~ ¸¸% % l° % ¹¹
³
´Á µ µ ~ ¸¹
³
²Á ³ ~ J
²(OVtPEROR (OVtPERORJUHSUHVHQWDH UHSUHVHQWDHOFRQM OFRQMXQWRYD XQWRYDFtR FtR³À
ÉÉ
el sistema de los números reales y la recta real
$XWRHYDOXDFLyQ
,À c 'LEXMHHOL 'LEXMHHOLQWHUYD QWHUYDORTXH ORTXHUHSUHV UHSUHVHQWDO HQWDODH[SUH DH[SUHVLyQGD VLyQGDGD GD
³ %
³ %
³ c %
³ % c
³ % c ,,À c
w
%
(VFUL (VFULED EDOD ODGHVL GHVLJXD JXDOGD OGDGT GTXHU XHUHSU HSUHVH HVHQWD QWDHO HOLQ LQWHU WHUYDO YDORG RGDGR DGR
³
³
³
³
³
5HVSXHVWDV ,À c
³
³
ÉÉ
v
%
Cálculo Diferencial
³
³
³
,,À c
³
c %
³
% °
³
% c °
³
% c
³
c % c
,QHFXDFLRQHV 6LPSOHV
,QHFXDFLRQHV
v
% c
6RQGHVLJXDOGDGHVFRQXQDLQFyJQLWDTXHVHYHULILFDQSDUDFLHUWRVQ~PHURVUHDOHV /DVROXFLyQGHXQDLQHFXDFLyQFRUUHVSRQGHDXQLQWHUYDOR (MHPSORV
³ % b % c c % c % ³ %
3DUD UHVROYH UHVROYHU U XQD LQHFXD LQHFXDFLy FLyQ Q VH SURFHGH SURFHGH HQ IRUPD IRUPD VLPLODU VLPLODU D ORV SURFHG SURFHGLPL LPLHQW HQWRV RV XVDGRVHQODUHVROXFLyQGHHFXDFLRQHVSHURFRQVLGHUDQGRODVSURSLHGDGHVGHODV GHVLJXDOGDGHV
,QHFXDFLR DFLRQH QHVV VLPSO LPSOHHV
²³ 5HVXHOYDOD 5HVXHOYDODLQHFXD LQHFXDFLyQ FLyQ ¢ % c c %
É É
el sistema de los números reales y la recta real
6ROXFLyQ
% c c % % c % % %
° b % °b ° ¢
6ROXFLyQJUiILFD
H I 6 Á b B7 È
6ROXFLyQ GH FRQMXQWR
6RO % l°%
6ROXFLyQ GH LQWHUYDOR
6RO
²³ 5HVXHOYD OD LQHFXDFLyQ ¢ c c 6ROXFLyQ
c c c
° b °b °¢
6ROXFLyQJUiILFD
6ROXFLyQ GH FRQMXQWR
6RO¸ l° ¹
6ROXFLyQ GH LQWHUYDOR
6RO ² c BÁ ³ È
,QHF ,QHFXD XDFL FLRQ RQHV HVF FRQ RQS SDU DUpQ pQWH WHVL VLVV
²³ 5HVXHOYDODLQHFXDFLyQ ¢ % c ²% c ³ c % c b ² c %³ 6ROXFLyQ
% c ²% ²% c ³ c % c b ² c % %³³
É É
°VHHOLPLQDSDUpQWHVLV
Cálculo Diferencial
% c % b c%b % b %
c % c b c % c % c c c % c
% c 6ROXFLyQJUiILFD
°VH UHGXFH UHGXFHQ Q WpUPLQ WpUPLQRV RV VHPHMD VHPHMDQWH QWHVV ° b % °c °¢
H I A c BÁ c A È
6ROXFLyQ GH FRQMXQWR
6RO % l°% c
6ROXFLyQ GH LQWHUYDOR
6RO
5HVXHO HOYD YD ¢ & b ²³ 5HVX
! c & c ! & b !& c ! b
6ROXFLyQ
& b ! c && c ! & b !& c ! b
& & b & & b c & & b & & c b
°VHUHVXHOYHQ ORVSURGXFWRV °VH UHGX UHGXFH FHQ Q WpUPLQRVVHPHMDQWHV
& b c & c & c
° c ° ¢
6ROXFLyQJUiILFD
6ROXFLyQ GH FRQMXQWR
6RO¸& l°& c ¹
6ROXFLyQ GH LQWHUYDOR
6RO ² c BÁ c ³ È
,QHF ,QHFXDF XDFLRQ LRQHV HVF FRQ RQGH GHQRP QRPLQ LQDGR DGRUQ UQXP XPpU pULFR LFR
²³ 5HVXHOYD ¢
! ! ! !
b b c c b c
É É
el sistema de los números reales y la recta real
6ROXFLyQ
! ! ! ! b ! b c ! c ! b c ! b b c c b c
b b c c b c
°0&0 ~ °VHUHVXHOYHQORVSURGXFWRV °VHUHGXFHQWpUPLQRV VHPHMDQWHV
b c c b c c c
° c °c °h c ° ¢
!
6ROXFLyQJUiILFD
H
6ROXFLyQ GH FRQMXQWR
6RO l°
6ROXFLyQ GH LQWHUYDOR
6RO
²³ 5HVXHOYD ¢
I
A c BÁ AÈ
% b % c c % c % c c b b%
6ROXFLyQ
% b % c c % c % c c b b%
!
!
!
°0&0 ~
!
% b c % c c c % b c % b % % °VHUHVXHOYHQ ORVSURGXFWRV % b c % b c b % b c % b %°VHUHGXFHQWpUPLQRV VHPHMDQWHV
% b % c % c % % %
É É
° c % ° h ² c ³ ° ¢
Cálculo Diferencial
6ROXFLyQJUiILFD
H
6ROXFLyQ GH FRQMXQWR
6RO % l° %
6ROXFLyQ GH LQWHUYDOR
6RO
I
A Á b B@ È
$XWRHYDOXDFLyQ
(QFXHQW (QFXHQWUH UH OD VROXFLy VROXFLyQ Q GH FDGD FDGD LQHFXD LQHFXDFLy FLyQ Q HMHUF HMHUFLFL LFLRV RV GDQGR GDQGR ODVROXFLyQ ODVROXFLyQ HQ VXVWUHVIRUPDVYLVWDVHQORVHMHPSORV
³
% b c %
³
% % b c
³
² c % %³³ ² b % %³³ c ²% ²% b ³ ²% ²% b ³ ² c %³
³
² c %³ c ² c %³ % c ² c %³
³
²% b ³ b ²% c ³ ²% b ³ ² c %³ b %
³
²% b ³²% ³²% c ³ c ² b % %³³ %² b % %³³ c %² c % %³³
³
' b ² c ' ³ ²' b ³ c
³
²' b ³ ²' c ³ 'b ²' b ³ b b
³ (Q XQ H[SH H[SHUL ULPH PHQW QWR R TXtP TXtPLF LFR R XQD XQD VRO VROXFL XFLyQ GH iFLGR FLGR FORU FORUKt KtGU GULF LFR R VH YD D PDQWHQHU HQWUH & \ & HV H V GH G HFLU & ¢&XiO HV H V HO H O UD U DQJR GH GH WHPSHUDWXUDHQJUDGRV)DKUHQK WHPSHUDWXUDHQJUDGRV)DKUHQKHLWVLODIyUPXODGHFRQYHUVLy HLWVLODIyUPXODGHFRQYHUVLyQ Q&HOVLXV &HOVLXV)DKUH )DKUHQKHLW QKHLW HV & ~
²) c ³"
³ (Q DO SHUI SHUIRU RUDU DU HO SR]R SR]R PiVSU PiVSURI RIXQ XQGR GR GHOPX GHOPXQG QGR R VH HQFR HQFRQW QWUy Uy TXHOD TXHOD WHPSHUDWXUDD% NLOyPHWURVGHSURIXQGLGDGGHOD7LHUUDHVWDEDGDGDSRU ; ~ b ²²% c ³ %
É É
el sistema de los números reales y la recta real
GRQGH GRQGH; HVODWHPSH HVODWHPSHUDW UDWXUD XUDHQJUDG HQJUDGRV&HO RV&HOVLXV VLXV¢$TXpSUR ¢$TXpSURIXQ IXQGLGD GLGDGODWH GODWHPSH PSHUDW UDWXUD XUD HVWDUi HQWUH \ & HQ WRWDO"
5HVSXHVWDV
6ROXFLyQ*UiILFD6ROXFLyQGHFRQM 6ROXFLyQ*UiILFD6ROXFLyQGHFRQMXQWR6ROXFLyQGH XQWR6ROXFLyQGHLQWHUYDOR LQWHUYDOR
³
H%
l° %
I
@ Á b B@
³
H%
l° %
I
A c BÁ @
³
H%
l° %
I
A c BÁ A
³
% l° %
H
I
@
³
H%
l°%
I
A c BÁ A
³
H%
l° %
³
H'
l° '
³
H'
l° '
c
@
I A c BÁ c A
I
@ Á b B@
I
A c BÁ @
(O UDQJR GH OD WHPSHUDWXUD HV GH - D - HQ HQ WRWDO
É É
Á bB
Cálculo Diferencial
³
3DUDXQUD XQUDQ QJRGHWH GHWHP PSHUDWXUDHQW HQWUH \ &ODSU ODSUR RIXQGLGD GLGDG GGHO GHOSR] SR]R
HVWDUi HQWUH
.P \ .P
,QHF ,QHFXD XDFL FLRQ RQHV HVF FRQ RQG GHQ HQRP RPLQ LQDG DGRU RUD DOJ OJHE HEUD UDLF LFR R
7DEOD )UDQFHVD
(VWHPpWRGRVHXVDSDUDUHVROYHULQHFXDFLRQHVGRQGHHVSRVLEOHIDFWRUL]DU\DVHD QXPHUDGRUFRPRGHQRPLQDGRURDPERV&RQVLVWHHQFRQIHFFLRQDUXQDWDEODTXH UHVXPHODLQIRUPDFLyQGHODLQHFXDFLyQDUHVROYHU
c BÁ YDOR YDORU U
YDOR YDORU U
YDOR YDORU UY YDO DORU RU
YDOR YDORU U
YDOR YDORU U b B
H[SUHVLyQGHOQXPHUDGRU H[SUHVLyQGHOGHQRPLQDGRU IUDFFLyQ
2EVHUYD 2EVHUYDFLy FLyQ Q (Q HO FDVR FDVR GH ORVLQWHUYDOR ORVLQWHUYDORV V FHUUDG FHUUDGRV RV KDEUi KDEUi TXH FRQVLG FRQVLGHUD HUDU U VL ORV H[WUHPRVGHFDGDLQWHUYDORQRLQGHWHUPLQDQODIUDFFLyQ(QFDVRTXHDOJXQRGHORV H[WUHPRVLQGHWHUPLQHODIUDFFLyQÁ pVWHVHGHMDIXHUDGHODVROXFLyQ
,QHF ,QHFXDF XDFLRQ LRQHV HVF FRQ RQGH GHQRP QRPLQ LQDGR DGRUD UDOJ OJHE HEUD UDLFR LFR
(MHPSORV ¢
²³ 5HVXHOYD ¢
c c % %
6ROXFLyQ
c c % %
°c
b %
b % b % % +DFLHQGRFH +DFLHQGRFHURHOQ URHOQXPHUDG XPHUDGRU RU +DFLHQGR FHUR HO GHQRPLQDGRU
É É
b % ~ %~
¬
%~ c
el sistema de los números reales y la recta real
8 c BÁ c 9 b % % b % %
6RO
c
8 c Á 9
²Á b B³
c c
c
b c
b
b b
b
c
!À
b
8 c BÁ c 9 r 4 Á b B5 È
²³ 5HVXHOYD ¢
% c c %b
6ROXFLyQ
% c c %b
% c c %b
°c
% c c % c %b c % c %b
c % c ~
¬
% ~ c
%b ~
¬
%~ c
c % c %b c % c %b
c BÁ c ! b c
c c
c
É É
c Á c ! c c
c c
b
!À
c Á b B! c b
c
Cálculo Diferencial
4
6RO c BÁ c µ r
4 c Á b B5 È
²³
5HVXHOYD ¢
c% %c
6ROXFLyQ
c% %c
°c
c% c %c c % c % b %c c % b %c c % b ~
¬
%~
%c ~
¬
%~
c BÁ !
c % b %c c % b %c
b c
c
c
Á ! c c
c
b
!À
Á ´ 6RO ~ ´ Á
²³
5HVXHOYD ¢
%c %b
È
6ROXFLyQ
%c %b
É É
Á b B! c b c
el sistema de los números reales y la recta real
%c c %b % c c % c % b % c % b % c ~ ¬ % ~ % b ~ ¬ %~ c c BÁ c c c Á % c c c c % b c b % c b !À c % b
!
!
b
Á b B! b b
b
´ 6ROµ c Á ´
È $XWRHYDOXDFLyQ
³
b %
³
% c b c%
³
% c c %
³
% b %c
³
% b c %
³
c% % c
³
%b c%
³
% c % c
³
c
³
% b c%
c %
b% %
5HVSXHVWDV
³
@ c Á @
³
A c BÁ @
r
A Á b B@ É É
Cálculo Diferencial
³
A Á @
³
A c BÁ @
³
A c BÁ
³
A Á @
³
@ Á @
³
A c BÁ c A
³
A c BÁ @
³
@ c Á @
,QHF ,QHFXD XDFL FLRQ RQHV HVG GH HVH VHJX JXQG QGR RJU JUDG DGR R
,QHF ,QHFXDF XDFLRQ LRQHV HVGH GHV VHJ HJXQG XQGRJ RJUD UDGR GRVL VLPS PSOH OHVV
²³
c
@ Á b B@
r
@
r
r
5HVXHOYD ¢ % c %
A Á b B@
A Á b B@
6ROXFLyQ
% c % % c % c %b %c
° c °IDFWRUL]DQGR
! ! %b ~ %c ~
¬ ¬
%~ c %~
É É
el sistema de los números reales y la recta real
%b %c % b ³ ²% c ³
c BÁ c ! c c b
c c
c Á ! b c
c
b
Á b B! b b b
Á µ 6RO ´ c Á
È
! !
²³ 5HVXHOYD ¢ c % % b 6ROXFLyQ
c %!% b ! c%~ %b ~
c% %b c% %c
! !
¬ ¬
%~ %~ c
c BÁ c ! b c c
c b
c Á ! b b
b
b
Á b B! c b c
6RO@ c Á ´
È
,QHFXDF ,QHFXDFLRQH LRQHVG VGHV HVHJXQ HJXQGRJ GRJUDG UDGRFR RFRQG QGHQRP HQRPLQDG LQDGRU RUDOJ DOJHEU HEUDLFR DLFR
²³ 2EWHQJDORV 2EWHQJDORVYDORUH YDORUHVGHOD VGHODLQFyJ LQFyJQLWD QLWD% TXHVDWLVIDJ TXHVDWLVIDJDQOD DQODLQHFXD LQHFXDFLyQ FLyQ
% c !% b ! % c ! c %! 6ROXFLyQ
% c !% b ! % c ! c %! É É
Cálculo Diferencial
%c ~
¬
%~
% b ~
¬
%~ c
% c ~
¬
%~
c%~
¬
%~
8 c BÁ c 9 %c % b % c c% % c % b % c c %
! ! ! !
A
6RO c BÁ c
c c c b
c c b
c
c
8 Á 9
ÁÁ !
Á b B !
c b c b
c b b
c b b b
b b b
b b b b
b b b
b b b c
b
!À
c
b
!À
c
8 c Á 9
A A A
r Á r µÁ b B´
È % c % b ²³ 5HVXHOYD % c c % 6ROXFLyQ
% c % b ¬ % c c %
²% c ³²% c ³ % c c %
% c c % ~ ¬ % c % b ~ ¬ % ~
f
l c ¬ % ~ f ¬ % ¤ l
&DGDYH]TXHREWHQJDPRVUDtFHVFRPSOHMDVVLJQLILFDUiTXHODH[SUHVLyQFXDGUiWLFD DVRFLDGDDODHFXDFLyQFXDGUiWLFDTXHUHVROYHPRVHVVLHPSUHSRVLWLYDRVLHPSUH QHJDWLYD SDUD HO H OOR ED E DVWD FR F RQ HY H YDOXDU OD O D H[ H [SUHVLyQ % c c % HQ H Q % ~ Á SRU HMHPSORÁ DVt % c c % ~ c À /XHJR SRGHPRV FRQFOXLU TXH % c c % HV VLHPSU VLHPSUH H QHJDWL QHJDWLYD YD /XHJR /XHJR QHFHVL QHFHVLWDP WDPRV RV TXH HO QXPHUDGR QXPHUDGRU U VHD SRVLWLY SRVLWLYR R R FHUR FHUR SDUDTXHVHFXPSODODFRQGLFLyQLQLFLDOGHOHMHUFLFLRHVGHFLU
²% c ³²% c ³ ³ %c ~
¬
%~ É É
el sistema de los números reales y la recta real
%c ~
%c %c % c c % ²% c ³²% c ³ % c c %
¬
c BÁ ! c c c
c c
c
%~
Á ! b c c
b c
b
Á b B! b b c
c
6ROµ c BÁ µ r ´Á b B´
È % c % b ²³ 5HVXHO 5HVXHOYD YDOD ODLQH LQHFXD FXDFLy FLyQ Q¢ % c % b 6ROXFLyQ
% c % b ¬ % c % b
% c ! ~ ¬ % c !
% c !
²% c ³²% c ³
%~
3HUR VLHPSUH HV QR QRJDWLYR HV GHFLU SRVLWLYR R FHUR /XHJR QHFHVL QHFHVLWDP WDPRV RV TXH HO GHQRPLQ GHQRPLQDGR DGRU U VHD SRVLWLY SRVLWLYR R SDUD SDUD TXH VH FXPSOD FXPSOD OD FRQGLF FRQGLFLyQ LyQ LQLFLDOGHOHMHUFLFLRHVGHFLU
²% c ³²% c ³ ³ %c ~
¬
%~
%c ~
¬
%~
%c %c ²% c ³²% c ³
c BÁ ! c c
c
b
Á ! b c c
6ROµ c BÁ ´ r µÁ b B´
É É
b
Á b B! b b
b
Cálculo Diferencial
È $XWRHYDOXDFLyQ
³
% b % c
³
²% c ³
³
²% b ³
³
% c
³
% c % c
³
b % c %
³
% b ²% b ³² c %³
³
²% c ³²% c ³ ²% b ³² c %³
³
²% b ³ ² c %³ ²% c ³
³
²% b ³ ² c %³ ²% c ³ ² c %³
5HVSXHVWDV
³
A c BÁ c A
³
@ c Á A
³
A c BÁ c @
³
@ c Á A
³
A c BÁ c @ r A Á b B@
³
@
³
A c BÁ c @ r A Á b B@
³
A c BÁ c @
c Á
r
r
@ c Á b B@ A Á b B@
A
r
AÁ @ r A Á b B@ É É
el sistema de los números reales y la recta real
³
@ c Á @
³
A
9DORU $EVROXWR
c BÁ c
r
@ Á b B @
@
r
A @ r A Á b B@ Á
'HILQLFLyQ
**
(OY (OYDO DORU RUD DEV EVRO ROXW XWR RGH GHX XQ QQ~ Q~PH PHUR UR Á GHQR GHQRWD WDGR GR Á HVWi VWiGH GHIL ILQL QLGR GRF FRP RPR R¢
* * ~ H c
Á Á
2%6 TXH VL VL HV HV QH QHJDWLYRÁ H HQWRQFHV c HV HV SR SRVLWLYR /X /XHJR Á SDUD ³ 2EVHUYH TX WRGR WRGRQ~ Q~PH PHUR URUH UHDO DO $GHP $GHPiVSR iVSRGH GHPRV PRVGHF GHFLU LUTXH TXH UHSUH UHSUHVHQ VHQWD WDODGL ODGLVW VWDQ DQFL FLDGH DGHVGH VGHHORU HORULJ LJHQ HQ ² SXQW SXQWR R³ DO SXQWR Á \ c ~ c UHSUHVHQWD OD GLVWDQFLD HQWUH ORV SXQWRV \ À
**
** * * * *
* * l ³ * * ~ À
³ ~
(VWDSURSLHGDGSHUPLWHHOLPLQDUHOYDORUDEVROXWRGHXQDLQHFXDFLyQHOHYDQGRDO FXDGUDGRORVHOHPHQWRVGHODLQHFXDFLyQ
É É
Cálculo Diferencial
3URSLHGDGHVGHO9DORU$EVROXWR 6XSRQJ 6XSRQJD DTX TXH H \ VRQ VRQQ Q~PH ~PHURV URVUH UHDO DOHV HVFX FXDO DOHV HVTX TXLH LHUD UD\ \ HVXQ HVXQH HQW QWHU HUR R
* * * * * * e h ² c ³e ~ **e c e ** ³ d d ~ * * Á £ e e ~ * * ** ³ * * ~* * * * ~* * ³ * b * * * b * * ² * b ² c ³ * * * b * c * ³ h ~
(MHPSOR
(MHPSOR
c
c
(MHPSOR
'HVLJXDOGDG7ULDQJXODU ³
(MHPSOR
$O UHVR UHVROY OYHU HU LQHF LQHFXD XDFL FLRQ RQHV HV FRQ FRQ YDOR YDORU U DEVR DEVROX OXWR WR RFXS RFXSDU DUHP HPRV RV FRQ FRQ IUHF IUHFXH XHQF QFLD LD ODV ODV SURSLHGDGHVVLJXLHQWHVTXHVRQYiOLGDVSDUD FRQVWDQWH\ % YDULDEOHUHDO
**
³ % ~ ¯ % ~ f
**
:À ~ ¸ c Á ¹ (MHPSOR % ~ ¯ % ~ f ¯ :À
** *%* ¯ c % ¯ % c w % ³ * % * ¯ c % ¯ % c w % ¯ ³ % ¯ c % ¯ % c w %
(MHPSORV
:À ~ ² c BÁ BÁ ³ q ² c Á b B³ ~ ² c Á Á ³
**
³ % ¯ c % ¯ % c w % ¯
= <
<
: À ~ ² c BÁ q c Á b B³ ~ c Á
É É
=
² w ~ \³
el sistema de los números reales y la recta real
** ²v ~ ³ *%* ¯ % v % c ³ * % * ¯ % v % c ¯ : À ~ ² c BÁ c ³ r ² Á b B³ ³ * % * ¯ % v % c ¯ :À :À ~ ² c BÁ c = r <Á b B³ ³ % ¯ % v % c
(MHPSORV
y
(MHUFLFLRV5HVXHOWRV
*
*
²³ 5HVXHOYDOD 5HVXHOYDODLQHFXD LQHFXDFLyQF FLyQFRQYDOR RQYDORUDEVRO UDEVROXWR XWR ¢ % c 6ROXFLyQ
*% c * ¬
3URS³
c % c ¬ % c c w % % c
²i³
5HVROYDPRV 5HVROYDPRVÁ HQSULPHUO HQSULPHUOXJDU XJDUÁ ODLQHFXDFL ODLQHFXDFLyQ yQ% c c ¢
% c c ¬ % % c b ¬ % % ¬ % ¬ % ¬ : ~ ²Á ²Á b B³ 5HVROYDPRVDKRUDODLQHFXDFLyQ% c ¢
% c ¬ % % b ¬ % % ¬ % ¬ % ¬ : ~ ² c BÁ ³ /D VROXFLyQ ILQDO : VHUi OD LQWHUVHFFLyQ GH : \ : ² 2EVHUYH HO w HQ OD H[SU [SUHVLyQ
²i³³ ¢ : ~ : q : ~ ²Á ²Á b B³ q ² c BÁ³ ~ ²Á³ È
* *
²³ 5HVXHOYD % c ~ 6ROXFLyQ
*% c * ~ ¬
7À³
% c ~ f ¬ % c ~ y% c ~ c ¬
% ~ b y % ~ c b ¬ % ~ y % ~ c ¬ : :À ~ ¸ c Á ¹ È
É É
Cálculo Diferencial
$XWRHYDOXDFLyQ
³ ³ ³ ³
*%* ~ *%* *% c * À f cb %% f
³ ³ ³ ³
5HVSXHVWDV
³
¸ c Á ¹
³
¸ c Á c ¹
³
= c Á <
³
² c BÁ c
³ ³ ³ ³
= r < Á b B³ < À Â À= 6 c BÁ c 7 6 c BÁ c ? r > c Á b B 7 < c Á c = r < Á =
É É
f %% bc f ~ *%* *%* *% b * *%*
GEOMETRÍA ANALÍTICA
6LVWHPDGH&RRUGHQDGDV&DUWHVLDQDV
(O VLVWHPDGH FRRUGHQDGDVFDUWHVLDQDVR FRRUGHQDGDV FDUWHVLDQDVRUHFWDQJXODU UHFWDQJXODU HVWi IRUPDGR SRU GRV UHFWDV UHDO UHDOHV HV SHUS SHUSHQ HQGL GLFX FXOD ODUH UHV V HQWU HQWUH H Vt FX\D FX\D LQWH LQWHUV UVHF HFFL FLyQ yQ HV HO RULJ RULJHQ HQ 6 GH WDO WDO VLVWH VLVWHPD PD (VWRV HMHV SHUSHQGLFXODUHV GLYLGHQ DO SODQR l d l ~ l HQ FXDWUR UHJLRQHV LJXDOHV GHQRPLQDGDV FXDGUDQWHV (O HMH KRUL]RQWDO VH GHQRPLQD HMH GH ODV DEVFLVDV ? \ HO HO HM HMH YH YHUWLFDO UH UHFLEH HO HO QR QRPEUH GH GH HM HMH GH GH OD ODV RUGHQDGDV @ 6H 6H FRQYLHQHKDELWXDOPHQWHHQFRQVLGHUDUODVDEVFLVDVSRVLWLYDVGHVGHHORULJHQKDFLD ODGHUHFKD\ODVRUGHQDGDVSRVLWLYDVGHVGHHORULJHQKDFLDDUULED
!
!
(MH< (MH< RUGHQDGDV
(MH; (MH; R
DEVFLVDV
/RVHOHPHQWRVGHHVWHVLVWHPDVHGHQRP /RVHOHPHQWRVGHHVWHVLVWHPDVHGHQRPLQDQSDUHVRUGH LQDQSDUHVRUGHQDGRV&DGD QDGRV&DGDSDURUGHQDGR SDURUGHQDGR ²%Á ²%Á &³ WLHQHXQRUGHQHVWDEOHFLGRODSULPHUDFRPSRQHQWHGHOSDUHVXQDDEVFLVD\ ODVHJXQGDFRPSRQHQWHGHOSDUHVXQDRUGHQDGDÀ 3URSLHGDGHV ³ 7RGRVORVSXQWRVGHOHMH;TXHWLHQHQRUGHQDGDQXODHVGHFLU (MH; ~ ¸²%Á &³ l°& ~ ¹ ³ 7RGRVORVSXQWRVGHOHMH<TXHWLHQHQDEVFLVDQXODHVGHFLU (MH< ~ ¸²%Á &³ l°% ~ ¹ ³ (Q HO VLVW VLVWHP HPD D GH FRRU FRRUGH GHQD QDGD GDV V UHFW UHFWDQ DQJX JXOD ODUH UHV V R FDUW FDUWHV HVLD LDQD QDV V H[LV H[LVWH WHQ Q FXDW FXDWUR UR FXDGUDQWHV ¢
É É
Cálculo Diferencial
& ~ ¸²%Á & ³ l° % & ~ ¸²%Á & ³ l° % & ~ ¸²%Á & ³ l° % & ~ ¸²%Á & ³ l° %
\ \ \ \
& ¹ & ¹ & ¹ & ¹
'LVWDQFLDHQWUHGRVSXQWRVGHOSODQRl 6HDQ (²% Á & ³ \ ) ²%Á & ³ GRV SXQWRV GHO SODQR
(* ~ % c %
)* ~ & c &
() ~
$Vt VL VL (²% Á & ³ \ ) ²%Á & ³ VRQ GGRRV SSXXQWRV GGHHO SSOODQR HQ HQWRQFHV OD OD GGLLVWDQFLD HQWUH ( \ ) GHQRWDGD SRU ²(Á ) ³ HV ¢ ²(Á )³ )³ ~
É É
m % c % ! b & c & !
geometría analítica
(MHPSORV
²³ &DOFXODU OD GLVWDQFLD HQWUH HO SXQWR (²Á ³ \ ) ²Á ³ 6ROXFLyQ
m c ! b c ! ~ l b ~ l ~ Ü
²(Á ) ³ ~
²³ /RV Yp YpUWLFHV GH XQ XQ FXDGULOiWHUR VR VRQ (²Á ³Á )² c Á ³Á * ² c Á c ³ \ &DOFXODUHOSHUtPH SHUtPHWUR WUR 7 GHOFXDGULO GHOF XDGULOiWHUR iWHUR +²Á c ³À &DOFXODUHO 6ROXFLyQ
7 ~ ²(Á ²(Á )³ b ²)Á ²)Á *³ b ²*Á ²*Á +³ b ²+Á ²+Á (³
m c c ! b c ! ~ l b ~ l ²) Á * ³ ~ m c b ! b c c ! ~ l b ~ l ²* Á +³ +³ ~ m b ! b c b ! ~ l b ~ l ²+Á (³ (³ ~ m c ! b b ! ~ l b ~ l 7 ~ ²(Á ²(Á )³ b ²)Á ²)Á *³ b ²*Á ²*Á +³ b ²+Á ²+Á (³ ~ l b l b l b l ~ l b l b l Ü
²(Á )³ )³ ~
3HQGLHQWHHQWUHGRVSXQWRV 6HDQ (²% Á & ³ \ ) ²%Á & ³ GRV SXQWRV GHO SODQR
*) & c & ~ VH GHQRPLQD SHQGLHQWH VH VLPEROL]D SRU \ UHSUHVHQWD (* % c % HO JUDGR GH LQFOLQDFLyQ GHO WUD]R () ²UHFWD 3³ FRQ HO HMH ? $Vt VL VL (²%Á & ³ \ ) ²%Á & ³ VRQ GGRRV SSXXQWRV GGHHO SSOODQR HQ HQWRQFHV OD OD SSHHQGLHQWH HQWUH ( \ ) HV ¢ & c & ~ % c %
/D UD]yQ
É É
Cálculo Diferencial
/D SHQG SHQGLH LHQW QWH H HV HO YDOR YDORU U GH OD WDQJ WDQJHQ HQWH WH WULJ WULJRQ RQRP RPpW pWUL ULFD FD GHO GHO iQJX iQJXOR OR HV GHFL GHFLU U (OiQJXOR XOR VHPLG VHPLGHG HGHVGH HVGHOD ODSD SDUWH UWHSR SRVLW VLWLYD LYDGH GHOH OHMH MH? DOWU DOWUD]R D]R () À ~ ! À (OiQJ /tQHDUHFWD 8QDUHF 8QDUHFWDH WDHQ Ql HVXQFR HVXQFRQMX QMXQWR QWRGH GHSDUH SDUHVRU VRUGHQD GHQDGRV GRVTXH TXHWL WLHQH HQHQO QODF DFDUD DUDFWH FWHUtVW UtVWLFD LFDTXH TXH FXDOTXLHUSDUHMDGHSXQWRVGLVWLQWRVWLHQHQODPLVPDSHQGLHQWH 'LVWLQWDVIRUPDVGHUHSUHVHQWDUXQDOtQHDUHFWD D)RUPD3XQWR3XQWR
6L (²%Á & ³ \ ) ²%Á & ³ VRQ GGRRV SSXXQWRV FR FRQRFLGRV GGHH XXQQD UH UHFWD HQ HQWRQFHV VX VX HFXDFLyQHV ¢ & c & ~
8 %& cc &% 9% c % !
E)RUPD3XQWR3HQGLHQWH
6L (²%Á &³HV HVXQ XQSXQ SXQWRFR FRQRFLGRGH GHXQ XQDUH UHFWD\ VXSH SHQGLHQWHHQ HQWRQFHVVX VX HFXDFLyQHV ¢
& c & ~ % c %
!
F)RUPD,QWHUFHSWR3HQGLHQWH
6LUHSU UHSUHVH HVHQW QWDH DHOL OLQW QWHU HUFH FHSW SWRF RFRQH RQHOH OHMH MH @ \ ODSH ODSHQG QGLH LHQW QWHG HGHO HODU DUHF HFWD WDH HQW QWRQF RQFHV HVVX VX HFXDFLyQHV ¢ & ~ % b G)RUPD*HQHUDO
6L ( £ y ) £ Á HQWRQFHV OD HFXDFLyQ JHQHUDO GH XQD UHFWD HV ¢ (% b )& b * ~
GRQGH (Á ) \ * VRQ FRQVWDQWHV UHDOHV (MHPSORV
²³ 'HWHUPLQH OD HFXDFLyQ GH OD UHFWD TXH SDVD SRUORV ORV SXQW XQWRV (² c Á ³ \ ) ²Á ³ 6ROXFLyQ
&c~
8 c c² c ³ 9% c ² c ³! ¬ & c ~ % b ! ¬ & c ~ % b ¬
&~%b Ü
É É
geometría analítica
²³ 'HWHUPLQHOD ODHF HFXDFLyQGH GHOD ODUH UHFWDTX TXHSD SDVDSR SRUHO HOSX SXQWR (² c Á c ³ \W \WLLHQH SHQGLHQWH c 6ROXFLyQ
!
& b ~ c % b ¬ & b ~ c % c ¬ & ~ c % c Ü
5HFWDVSDUDOHODV\SHUSHQGLFXODUHV
6HDQ 3 & ~ % b \ 3 ¢ & ~ % b GRV HQWRQFHV
UHFWDV
FXDOHVTXLHUD
³
3 HV SDUDOHOD D 3 ²3 3³ VL \ VyOR VLÁ ~
³
3 HV SHUSHQGLFXODU D 3 ²3 3 ³ VL \ VyOR VLÁ h ~ c
(MHPSORV
²³ 'HFLGDVLODVVLJXLHQWHVSDUHVGHUHFWDVVRQSDUDOHODVRSHUSHQGLFXODUHV ³
3 ¢ % c & ~ 3 ¢ % % c & ~ c
6ROXFLyQ
3DUD 3 VH WLHQH
% c & ~ ¬ % c ~ & ¬ % c ~ & ¬ & ~ % c ¬ / ~
3DUD 3 VH WLHQH % c & ~ c ¬ % b ~ & ¬
% b ~ & ¬ & ~ % b ¬ / ~
&RPR / ~ / HQWRQFHV 3 P 3 À Ü ³
3 ¢ % c & ~ 3 ¢ % % b & ~ c
6ROXFLyQ
3DUD 3 VH WLHQH % c & ~ ¬ % c ~ & ¬
% c ~ & ¬ & ~ % c ¬ / ~
3DUD 3 VH WLHQH
% b & ~ c ¬ & ~ c % c ¬ & ~ c % c ¬ / ~ c ~ c HQWRQFHV 3 3 À Ü &RPR / h / ~ h c
8 9
É É
Cálculo Diferencial
²³ 6L OD GLVWDQFLD GH XQD UHFWD 3 ¢ (% b ) & b * ~ D XQ SXQWR TXH QR HVWi HQ HOOD 7 ²% Á &³ HVWi GDGD SRU ¢ (% b )& b * 7Á3 ~ ( b )
! d l
d
\ G
3 [ \
/$ / $[ [ %\ & [
R
HQWRQFH QFHVG VGHWHUPLQHOD ODGL GLVWD VWDQFL QFLDTX TXHH[L H[LVW VWHHGH GHVGHHO HOSX SXQWRD QWRD7 ² c Á ³ OD UHF UHFWD 3 ¢ % ~ & c 6ROXFLyQ
3 ¢ % % c & b ~ ¬ ( ~ Á ) ~ c Á * ~ 7² c Á ³ ¬ % ~ c Á & ~ ²7 Á 3³ ~
d(% b )& b * d ~ d c ! b c ! b d ~ d c d ~ ¬ l( b ) l b
²7 ²7 Á 3³ ~ À À Ü
(MHUFLFLRV3URSXHVWRV À³ /RVYpUWLFHVGHXQWULiQJXORVRQ\ (² c Á ³ Á ) ²Á ³
'HWHUPLQDU\JUDILFDU ³ (FXDFLyQGHVXVODGRVHQIRUPDSULQFLSDO\JHQHUDO ³ 3HUtPHWURGHOWULiQJXOR() * ³ (FXDFLyQGHODVWUDQVYHUVDOHVGHJUDYHGDG
É É
* ²Á ³
geometría analítica
³ (FXDFLyQGHODVDOWXUDV ³ (FXDFLyQGHODVPHGLDQDV ³ $UHDGHWULiQJXOR() * À³ 'HWHUPLQDUH 'HWHUPLQDUHOYDO OYDORUGHO RUGHOSDUiPH SDUiPHWUR WUR ³ SDUD TXH HO WULiQJXOR GH YpUWLFHV (²Á c ³Á ) ²Á c ³Á * ² c Á ³ VHD UHFW UHFWiQ iQJJXOR XORHQ HQ * ³ SDUD TXH OD UHFWD TXH SDVD SRU ORV SXQWRV (²Á c ³ \ ) ²Á ³ VHD Á³À SHUSHQGLFXODUDODUHFWDTXHSDVDSRU*² c Á c ³ \+²Á³À ³ SDUDTXHODUHFWD 3 ¢ % c & ~ VHDSDUDOHODD3 ¢ % b c & b ~
!
!
À³ +DOODU HO YDORU GH SDUD TXH OD UHFWD % b b & b ~ VHD ³ SDUDOHODDODUHFWD% b & b ~ ³ SHUSHQGLFXODUDODUHFWD% c & c ~ ³ SDVHSRUHOSXQWR²Á c ³ À³ +DOODU OD GLVWDQFLD GHO SXQWR 7 ²Á ³ D OD UHFWD 3 ¢ % b & ~
ODV HF HFXDFLRQHV GGHH OD O DV UH U HFWDV SSDDUDOHODV D D OD OD UH U HFWD % b & ~ \ TTXXH À³ +DOODU OD GLVW GLVWDQ DQ GHH GHHOO OOD D À³ 8Q GHSDU GHSDUWD WDPH PHQW QWR R GH SROLF SROLFtD tD KD DYHU DYHULJ LJXD XDGR GR TXH HO Q~PH Q~PHUR UR GH FUtP FUtPHQ HQHV HV R
GHOLWR GHOLWRV V JUDYHV JUDYHV TXH RFXUUHQ RFXUUHQ SRU VHPDQD VHPDQD HV XQD IXQFLy IXQFLyQ Q GHO Q~PH Q~PHUR UR GH RILFLD RILFLDOHV OHV DVLJQDGRV D OD YLJLODQFLD SUHYHQWLYD /D IXQFLyQ PDWHPiWLFD HV ~ ²³ ~ c À Á GRQG GRQGHH HV HO Q~PH Q~PHUR UR GH FUtP FUtPHQ HQHV HV SRU SRU VHPD VHPDQD QD \ LQGLFDHOQ~PHURGHRILFLDOHVDVLJQDGRVDODYLJLODQFLDSUHYHQWLYD ³ ¢&Xi ¢&XiOHV OHVHOQ~ HOQ~PH PHUR URHVS HVSHU HUDG DGRGH RGHFUt FUtPH PHQH QHVVL VVL RILF RILFLD LDOH OHVVR VVRQDV QDVLJ LJQD QDGR GRVDOD VDOD YLJLODQFLDSUHYHQWLYD" ¢&XiQWRV RILFLDOHV KDEUtD UtD TXH TXH DVLJQDU QDU VL VH TXL TXLVLH VLHUD UHGXFL XFLU D HO QLYHO ³ ¢&X VHPDQDOGHFUtPHQHV" F¢&XiQWRVRILFLD F¢&XiQWRVRILFLDOHV OHV KDE KDEUtD UtD TXH DVLJQD DVLJQDU USDU SDUD DUHG UHGXFL XFLU UD DFHU FHUR RHOQLYHO HOQLYHO VHPDQDO VHPDQDO GH FUtPHQHV" À³ /DXWLOL DXWLOLGD GDG G WRWD WRWDOGH OGH SODQ SODQWD WDU U % DFUH DFUHVHQOD VHQOD JUDQ JUDQMD MD VH H[SU H[SUHV HVDPH DPHGL GLDQ DQWH WH OD % b % % c À À IXQFLyQ7 ²%Á %³ ~ % ³ ¢&XiO ¢&XiOHVO HVODXW DXWLO LOLG LGDG DGWRW WRWDO DOVLH VLHQOD QODJUD JUDQM QMD D VHSOD VHSODQW QWDQ DQ DFUH DFUHV\ V\HQ HQOD ODJU JUDQ DQMD MD VH SODQWDQ DFUHV" 6LHQODJ DJUD UDQM QMD DVHSOD VHSODQW QWDU DURQ RQ DFUH DFUHV¢& V¢&~D ~DOG OGHE HEHV HVHU HUOD ODPt PtQL QLPD PDFD FDQW QWLG LGDG DGGH GH ³ 6LHQO DFUHVSODQWDG DFUHVSODQWDGRVHQO RVHQODJUD DJUDQMD QMDSDUDTXHH[LV SDUDTXHH[LVWDXWL WDXWLOLGDG" OLGDG" ³ ,GHQWL ,GHQWLILT ILTXH XH XQD FRP FRPELQD ELQDFLy FLyQ Q GH SODQWD SODQWDFLR FLRQHV QHV TXH SURGX]F SURGX]FDQ DQ XQD XWLOLG XWLOLGDG DG GH
FHUR À +DOODU ORV YDORUHV GH % c & ~ HV
WDOHV TXH OD GLVWDQFLD GH ² c Á ³ D OD UHFWD
É É
Cálculo Diferencial
À³ +DOODU OR ORV YYDDORUHV GGHH WDOHV TTXXH OD OD UH UHFWD % b & ~ GHWHUPLQH FR FRQ OR ORV
HMHVFRRUGHQDGRVXQWULiQJXORGHiUHD À³ +DOODU HO SXQWR GH OD UHFWD % b & ~ c TXH HTXLGLVWD GH ² c Á ³ \ ²Á ³ 6ROXFLRQHV
À³
³ 3HUtPHWUR ²(Á )³ )³ b ²)Á * ³ b ²(Á *³ *³ ~ b
³ (FXDFLyQGHODVWUDQVYHUVDOHVGHJUDYHGDG
É É
l b l
geometría analítica
³ (FXDFLyQGHODVDOWXUDV
³ (FXDFLyQGHODVPHGLDQDV
³ $UHD " () * ~
É É
Cálculo Diferencial
À³
³ ~ Â ~ c
À³
l ³ ~ Â b l ³ ~ Â
l ~ l c ~
b
³ ~ À³ 'LVWDQFLD
c
À³
À³
³ ~ FUtPHQHVÀ ³ ~ RILFLDOHV ³ ~ RILFLDOHV
À³
³ < ~ À ³ DFUHV ³ *UDQMD ¢ DFUHV *UDQMD ¢ DFUHV
À³
~
H cc
À³
~
H cb
³ ~ c
À À³³ ² c Á ³
É É
³ ~
geometría analítica
&yQLFDV
(QSULPHUOXJDUHVQHFHVDULRGHILQLUXQFRQFHSWRTXHRFXSDUHPRVUHLWHUDGDPHQWH HQ HVWH FDStWXOR D VDEHU HO FRQFHSWR GH OXJDUJHRPpWULFR DVRFLDGR D XQD HFXDFLyQ \TXHHVHOFRQMXQWRGHSXQWRVTXHVDWLVIDFHQODHFXDFLyQGDGD /DV VHFFLRQHVFyQLFDV VH OODPDQ DVt SRUTXH WRGDV HOODV VRQ VHFFLRQHV SODQDV GH XQ FRQR FLUFXODU UHFWR (VWDV VRQ OD FLUFXQ FLUFXQIHU IHUHQF HQFLD LDÁ SDUiERO SDUiEROD DÁ HOLSVH HOLSVH H KLSpUE KLSpUEROD ROD &LUFXQIHUHQFLD
(VHO (VHOOX OXJD JDUJ UJHR HRPp PpWU WULF LFRG RGHW HWRG RGRV RVOR ORVS VSXQ XQWR WRVG VGHO HOSO SODQ DQRF RFX\ X\D DGL GLVW VWDQ DQFLD FLDOO OODP DPDG DGD DUDGLR D XQ SXQWR QWRIILMRO ROODPDGR FHQWUR HVF VFRQVWD VWDQWH
6HD * ²Á ³ HO FHQWUR GH OD FLUFXQIHUHQFLD 7 ²%Á &³ XQ SXQWR GH OD FLUFXQIHUHQFLD \ HOUDGLRHQWRQFHVODHFXDFLyQGHODFLUFXQIHUHQFLDHVWiGDGDSRU ¢ ²% c ³ b ²& c ³ ~ ³ ~ ² Á Á ³Á HV 6L * ²Á ³ HV GGHHFLUÁ HO HO FH FHQWUR FR FRLQFLGH FR FRQ HO HO RRUULJHQ GGHHO VL VLVWHPD GGHH FRRUGHQDGDVÁ HQWRQFHVODHFXDFLyQGHODFLUFXQIHUHQFLDHV ¢ % b & ~
É É
Cálculo Diferencial
\ U
3 [ \
U
U
&
[
U
U 5DGLR & &HQWURGHOD [ \ \ U U
(MHPSORV
²³ 'HWHUPLQHODHFXDFLyQGHODFLUFXQIHUHQFLDVL ¢ ³ FHQWUR ~ ²Á ³  UDGLR ~ ³ * ² c Á ³  ~
l
6ROXFLyQ
! !
³ % c b & c ~ Ü ³ ²% ²% b ³ b & ~ Ü ²³ *UDILTXHODHFXDFLyQGHVHJXQGRJUDGR% b & b % c & b ~ 6ROXFLyQ
% b & b % c & b ~ ¬ ²% b %³ %³ b ²& c &³ ~ c ¬
! "
²% b % % b ³ b ²& ²& c && b ³ ~ c b b ¬ ²% b ³ b ²& c ³ ~
&RPSDUDQGRFRQODHFXDFLyQJHQHUDOGHXQDFLUFXQIHUHQFLDYHPRVTXHHOFHQWUR * ~ ² c Á ³ \HOUDGLR ~
l
É É
geometría analítica
Ü À(MHU (MHUFL FLFL FLRV RV3U 3URSX RSXHV HVWR WRVV
³ +DOODU OD HFXDFLyQ GH OD FLUFXQIHUHQFLD FRQ FHQWUR HQ * ²Á c ³ \ TXH HV WDQJHQWH QWH DO HMH @ ³ +DOODU OD HFXDFLyQ GH OD FLUFXQIHUHQFLD FRQ FHQWUR HQ * ²Á c ³ \ TXH HV WDQJHQWH QWH DO HMH ? ³ 8QD FL FLUFXQIHUHQFLD SD SDVD SR SRU OR ORV SX SXQWRV ² c Á ³ \ ²Á ³ \ \ VX VX FH FHQWUR HV HVWi VREUH OD UHFWD % c & c ~ +DOODU VX HFXDFLyQ ³ 8QD FXHUGD GH OD FLUFXQIHUHQFLD % b & ~ HVWi VREUH OD UHFWD FX\D HFXDFLyQ HV % c & b ~ +DOODU OD ORQJLWXG GH OD FXHUGD ³ 2E 2EWH WHQH QHUO UODH DHFX FXDF DFLy LyQG QGHO HODF DFLU LUFX FXQI QIHU HUHQ HQFL FLDV DVLW LWLH LHQH QHFH FHQW QWUR URHQ HQHO HOSX SXQW QWR R²Á ³ \ HV WDQJHQWH D OD UHFWD TXH FRQWLHQH ORV SXQWRV ²Á c ³ \ ²Á c ³ ³ 'HWHUPLQDUODHFXDFLyQGHODFLUFXQIHUHQFLDTXHSDVDSRUORVSXQWRV 7 ²Á ³Á 8²Á ³ \ 9² 9²Á c ³ ³ ¢3DUD TXp YDORUHV GH SDVD OD FLUFXQIHUHQFLD ²% b ³ b ²& c ³ ~ SRU HO SXQWR ²Á³" ³ +DOODU HO YDORU GH WDO TXH % b & b % c & b ~ VHD OD HFXDFLyQ GH XQD FLUFXQIHUHQFLDGHUDGLR 6ROXFLRQHV
³ ³
% b & c % b & b ~ % b & c % b & b ~ É É
Cálculo Diferencial
³ ³ ³ ³ ³ ³
% b & c % b & c ~ /RQJLWXGFXHUGD % b & c % c & c ~ % b & c % c & ~ ~ Á ~ c ~ c
l
3DUiER 3DUiEROD OD
(VHOOXJDUJHRPpWULFRGHORVSXQWRVGHOSODQRTXHHTXLGLVWDQGHXQSXQWRILMR OODP OODPDG DGR R IRFR\G \GH HXQ XQD DUH UHFW FWD DIL ILMD MDO OOD ODPD PDGD GD GLUHFWUL]
6L - ²Á ³ HV HO IRFR GH OD SDUiERODÁ + ¢ & ~ c HV OD HFXDFLyQ GH VX GLUHFWUL] \ 7 ²%Á &³ HVXQSXQWRGHHOODHQWRQFHVODHFXDFLyQGHODSDUiERODHV ¢ % ~ &
(O SXQWR = ²Á ³ VH GHQRPLQD YpUWLFH GH OD SDUiEROD OD UHFWD % ~ VH OODPD HMH GHVLPHWUtDGHODSDUiEROD (OWUD]RSHUSHQGLFXODUDOHMHGHODSDUiEROD\TXHSDVD SRUHOIRFRVHGHQRPLQDODGRUHFWR \VXORQJLWXGHV À 6L HQWRQFHV OD FXUYD TXHGD VLWXDGD VREUH HO HMH ? HV QR QHJDWLYD \ VLPpW VLPpWUL ULFD FDU UHVS HVSHF HFWR WRD DO OHM HMH H@ VLWL 6L HQ HQWR WRQF QFHV HVO OD DFX FXUY UYD DTX TXHG HGD DVL VLWX WXDG DGD DED EDMR MRH HO OHM HMH H? HV HVQ QR RSR SRVL WLYD YD\ \V VLP LPpW pWUL ULFD FD UHVS UHVSHF HFWR WRD DO OHM HMH H@
d d
É É
geometría analítica
6L - ²Á ³ HV HO IRFR GH OD SDUiERODÁ + ¢ % ~ c HV OD HFXDFLyQ GH VX GLUHFWUL] \ 7 ²%Á &³ HVXQSXQWRGHHOODHQWRQFHV VXHFXDFLyQFDQyQLFDHV ¢ & ~
%
¢ = ²Á ²Á ³ 9pUWLFH ¢ -²Á³ )RFR ¢ + ¢ % ~ c 'LUHFWUL] ¢&~ (MHGHVLPHWUtD ¢ /RQJ ODGR UHFWR 6L HQW HQWRQFHVOD VODFXU FXUYDTX YDTXHHGDVLW VLWXDGDDODGH DODGHUUHFKDGHO GHOHMH HMH @ \HVV \HVVLLP pWULFD UHVS UHVSHF HFWR WRD DO OHM HMH H? 6L HQW HQWRQ RQFH FHVO VODF DFXU XUYD YDTX TXHG HGDV DVLW LWXD XDGD GDDO DODL DL]T ]TXL XLHU HUGD GDGH GHOH OHMH MH @ \HV \HVVL VLPp PpWU LFDD WULF UHVS UHVSHF HFWR WRD DO OHM HMH H?
d d
(MHPSORV
²³ 'HWHUPLQHYpUWL 'HWHUPLQHYpUWLFHIRFRGLUHFW FHIRFRGLUHFWUL]ORQJLW UL]ORQJLWXGGHOODGRUHFWRHMHGHODSDUiE XGGHOODGRUHFWRHMHGHODSDUiEROD\ ROD\ JUiILFRSDUD ¢ ³ % ~ & ³ & ~ c % 6ROXFLyQ
³ % ~ & & ¬ ~ ¬ ~ ¢ = ²Á ²Á ³ 9pUWLFH ¢ -²Á³ )RFR ¢ + ¢& ~ c 'LUHFWUL] (MHGHVLPHWUtD ¢%~ ¢ /RQJODGRUHFWR
É É
Cálculo Diferencial
Ü ³& ~ c % ¬ ~ c ¬ ~ c
9pUWLFH )RFR 'LUHFWUL] (MHGHVLPHWUtD /RQJODGRUHFWR
¢ = ²Á ²Á ³ ¢ - ² c Á ³ ³ ¢+¢%~ ¢&~ ¢
Ü
6L = ²Á ³HVHO HVHOYp YpUUWLFH\HO \HOHM HMHHGHVL GHVLP PHWUtDGHOD GHODSD SDUUiERODHVSD HVSDUUDOHORDOHM DOHMHH @ HQWRQFHV
É É
geometría analítica
¢ ²% c ³³ ~ ²& ²& c ³ (FXDFLyQ ¢ = ²Á ²Á ³ 9pUWLFH )RFR ¢ - ²Á ²Á b ³ ¢ + ¢ & ~ c 'LUHFWUL] (MHGHVLPHWUtD ¢ % ~ /RQJOUHFWR ¢ 6L HQ HQWR WRQF QFHV HVO OD DFX FXUY UYD DHV HVF FyQ yQFD FDYD YDK KDF DFLD LDD DUU UULE LED D 6L HQ HQWR WRQF QFHV HVO OD DFX FXUY UYD DHV HVF FyQ yQFD FDYD YDK KDF DFLD LDD DED EDMMR
d d
6L = ²Á ³HVHO HVHOYp YpUUWLFH\HO \HOHM HMHHGHVL GHVLP PHWUtDGHOD GHODSD SDUUiERODHVSD HVSDUUDOHORDO DOHMH HMH ? HQWRQFHV
É É
Cálculo Diferencial
¢ ²& c ³ ~ ²% ²% c ³ (FXDFLyQ 9pUWLFH ¢ = ²Á ²Á ³ ¢ - ² b Á Á ³ )RFR ¢ + ¢ % ~ c 'LUHFWUL] (MHGHVLPHWUtD ¢ & ~ /RQJODGRUHFWR ¢ 6L HQ HQWR WRQF QFHV HVO OD DFX FXUY UYD DHV HVD DEL ELHU HUWD WDK KDF DFLD LDO OD DGH GHUH UHFK FKD D 6L HQ HQWR WRQF QFHV HVO OD DFX FXUY UYD DHV HVD DEL ELHU HUWD WDK KDF DFLD LDO OD DL] L]TX TXLH LHUG UGD D
d d
(MHPSORV
²³ 'HWHUPLQHYpUWL 'HWHUPLQHYpUWLFHIRFRGLUHFW FHIRFRGLUHFWUL]ORQJLW UL]ORQJLWXGGHOODGRUHFWRHMHGHODSDUiE XGGHOODGRUHFWRHMHGHODSDUiEROD\ ROD\
JUiILFRHQ ³ % b % b & b ~ ³ & c % % c & & b ~ 6ROXFLyQ
! !
³ % b % b & b ~ ¬ % b % ~ c & c ¬ % b % b ~ c & c b ¬ %b ~ c &b ¬ ~ c ¬ ~ c
9pUWLFH )RFR
¢ = ² c Á c ³ ¢ - ² c Á c ³³
É É
!
!
geometría analítica
¢ + ¢& ~ c 'LUHFWUL] (MHGHVLPHWUtD ¢ % ~ c /RQJODGRUHFWR ¢
Ü ³ & c % c & b ~
! ! ! !
¬ & c & ~ % c ¬ & c & b ~ % c b ¬ &c ~ %c ¬ ~ ¬~
9pUWLFH ¢ = ²Á ²Á ³ ¢ - ²Á³ )RFR ¢+¢%~ 'LUHFWUL] (MHGHVLPHWUtD ¢ & ~ /RQJODGRUHFWR ¢
É É
Cálculo Diferencial
Ü À(MHU (MHUFL FLFL FLRV RV3U 3URSX RSXHV HVWR WRVV
³ +DOODUHOYpUWLFHIRFRGLUHFWUL]ORQJLWXGGHOODGRUHFWR\JUiILFRGH ³ & b % ~ ³ & c % ~ ³ % b & ~ ³ +DO +DOODUO ODUODH DHFX FXDDFLyQ FLyQGH GHOD ODSD SDUi UiER EROD ODFX FX\\RYpU RYpUWL WLFH FH\ \IR IRFR FRVR VRQO QORV RVSX SXQW QWRV RV ²Á ³ \ ²Á ³ UHVSHFW UHVSHFWLYD LYDPHQ PHQWH WH +DOODU +DOODU DGHPiV DGHPiV ODHFXDFLyQ ODHFXDFLyQ GHVX GLUHFW GLUHFWUL]\ UL]\ ODORQJLWXG ODORQJLWXG
GHOODGRUHFWR ³ +DOODU OD HFXDFLyQ GH OD SDUiEROD GH IRFR HQHO SXQWR ²Á c ³ \ GLUHFWUL] OD UHFWD% ~ À ³ 'DGD OD SDUiEROD GH HFXDFLyQ & b & c % b ~ Á KDOODU ODV FRRUGHQDGDV
GHOYpUWLFHGHOIRFR\ODHFXDFLyQGHODGLUHFWUL] ³ 'HWH 'HWHUP UPLQ LQDU DUOD ODHF HFXD XDFL FLyQ yQGH GHOD ODSD SDUD UDER EROD ODFR FRQY QYpU pUWL WLFH FHHQ HQHO HOSX SXQW QWR R²Á ³\GLU \GLUHF HFWU WUL] L] %~
É É
geometría analítica
³ +DOO +DOODU DU OD HFXD HFXDFL FLyQ yQ GH OD SDUi SDUiERO ERODFRQYpUW DFRQYpUWLF LFHHQ HHQ HO RULJ RULJHQ HQ HMH HMH & FRPR FRPR HMHGH HMHGH ²Á ³³ VLPHWUtD\TXHFRQWHQJDDOSXQWR²Á ³ 'HWHUPLQDUOD HFXDFLyQ GH OD SDUiEROD FRQ YpUWLFH HQ ²Á ³Á HMH GH VLPHWUtD SDUDOHORDOHMH&FRQWLHQHDOSXQWR²Á ³
+DOODU DU OD HFXD HFXDFL FLyQ yQ GH OD SDUi SDUiER EROD OD FRQ FRQ HMH HMH GH VLPH VLPHWU WUtD tD SDUD SDUDOH OHOR OR DO HMH HMH ? TXH ³ +DOO FRQWLHQHORVSXQWRV²Á ²Á ³Á ³Á ²Á ²Á ³Á ³Á ²Á ²Á ³ ³ 6L HO ODGR UHFWR GH XQD SDUiEROD HV HO VHJPHQWR TXH XQH ²Á ³ FRQ ²Á ³ GHWHUPLQDUODHFXDFLyQUHVSHFWLYDVLODSDUiERODSDVDSRUHOSXQWR²Á ²Á ³ ³ 6LX 6LXQD QDS SDU DUiE iERO ROD DSD SDVD VDS SRU RUO ORV RVS SXQ XQWR WRV V²Á ³ \ ²Á ³ FR FRQ QHM HMH HGH GHV VLP LPHW HWUt UtD DYH YHUW UWLF LFDO DO \ YpUWLFH VREUH OD UHFWD % c & ~ GHWHUPLQDU VX HFXDFLyQ 6ROXFLRQHV
³
³ 9pUWLFH
= ²Á ³ )RFR - ² c Á ³ 'LUHFWUL] % ~ /RQJODGRUHFWR ~
d d
³ 9pUWLFH
= ²Á ³ )RFR -
6 7
É É
Cálculo Diferencial
'LUHFWUL] & ~ c /RQJODGRUHFWR
~
d d
³ 9pUWLFH
= ²Á ³ )RFR - Á c 'LUHFWUL] & ~ /RQJODGRUHFWR ~
8
9
d d
É É
geometría analítica
³
³ ³
% c % b & c ~ (FXDFLyQ &~ 'LUHFWUL] /RQJODGRUHFWR ~ (FXDFLyQ & b & c % b ~ 9pUWLFH = ² c Á c ³
d d
8
9
)RFR - c Á c 'LUHFWUL] % ~ c ³ ³ ³ ³ ³ ³
& ~ ²% c ³ % ~ & ²% c ³ ~ ²& c ³ ²& c ³ ~ c ²% c ³ ²% c ³ ~ c ²& c ³ ²% c ³ ~ ²& c ³ ²% c ³ ~ ²& c ³
(OLSVH
(V HO OXJD OXJDU U JHRPp JHRPpWU WULF LFR R GH ORV ORV SXQ SXQWR WRV V GHO GHO SODQ SODQR R FX\D FX\D VXPD VXPD GH GLVW GLVWDQ DQFL FLDV DV D GRV GRV SXQWRVILMRVHVFRQVWDQWH/RVSXQ SXQWRVILMRV HVFRQVWDQWH/RVSXQWRVILMRVGH WRVILMRVGHOODPDQ OODPDQ IRFRV\ODGLVWDQFLDFRQVWDQWH VHGHVLJQDSRU
É É
Cálculo Diferencial
6HDQ - ²Á ³ \ -² c Á ³ OR ORV IR IRFRV OD OD GL GLVWDQFLD FR FRQVWDQWH \ 7 ²%Á &³ XQ SXQWRGHODHOLSVHHQWRQFHVODHFXDFLyQGHODHOLSVHHVWiGDGDSRU ¢ %
& b
~
% 6L & ~ Á HQWRQFHV ~ ¬ % ~ ¬ % ~ f & 6L % ~ Á HQWRQFHV ~ ¬ & ~ ¬ & ~ f ²Á ³ \ = ² c Á ³ VH GHQRPLQDQ YpUWLF /RV SXQWRV = ² YpUWLFHV HV GHO HMH PD\RU PD\RU \ ORV SXQWRV) ²Á ³ \ ) ²Á c ³ VHOODPDQYpUWLFHVGHOHMHPHQRU/RVIRFRV- \ - TXHGDQVLHPSUHXELFDGRVVREUHHOHMHPD\RU
/DORQ /DORQJL JLWX WXGGH GGHOHM OHMHPD HPD\R \RUHV UHV ODORQ ODORQJL JLWX WXGGH GGHOHM OHMHPH HPHQR QRUHV UHV \ODOR \ODORQJ QJLW LWXG XGGHO GHO HMH IRFDO HV
/D UD]yQ ~ VH GHQRPLQD H[FHQWULFLGDG \ VHxDOD HO JUDGR GH PD\RU R PHQRU DODUJDPLHQWRGHODHOLSVH &RPR HQWRQFHV 6L ORV IRFRV GH OD HOLSVH VRQ - ²Á ³ \ -²Á c ³ \ OD GLVWDQFLD FRQVWDQWH HV HQWRQFHVVXHFXDFLyQHV ¢ %
b
É É
&
~
geometría analítica
&HQWUR
*²Á³
9pUWL pUWLFH FHV VHM HMH HPD PD\\RU
=²Á³  = ²Á c ³
9pUWLFHV HMH PHQRU
²Á ³ )² c Á³ )²Á
)RFRV
-²Á³  - ²Á c ³
([FHQWULFLGDG
~
(MHPSORV
²³ 'HWH 'HWHUP UPLQ LQH H FHQW FHQWUR UR YpUWL YpUWLFH FHV V GHO GHO HMH HMH PD PD\\RU \ PH PHQR QRU U IRFRV IRFRV H[FHQ H[FHQWU WULF LFLG LGDG DG \ JUiILFRGH ¢ ³ % b & & ~ ³ % b & ~ 6ROXFLyQ
³ % % b & & ~ ° ¢ % b & ~
É É
Cálculo Diferencial
% & b ~
&HQWUR 9pUW 9pUWLF LFHV HVH HMH MHP PD\ D\RU RU 9pUWLFHV HMH PHQRU )RFRV ([FHQWULFLGDG
¬ ~
¬~ f
¬ ~ ¬ ~
¬~ f ¬~ f
l
*²Á³ = ²Á³  = ² c Á³ ²Á ³ )²Á ²Á c ³ )²Á ³  -² c Á ³ ³ - ² Á ³
l l l À ~
Ü ³ % b & ~ % b & ~
° ¢
% b & ~ % & b ~
&HQWUR 9pUW 9pUWLF LFHV HVH HMH MHP PD\ D\RU RU 9pUWLFHV HMH PHQRU
¬ ~
¬ ~ f
¬ ~ ¬ ~
¬ ~ f ¬ ~ f
*²Á³ ²Á ³  = ²Á ²Á c ³ = ²Á )²Á ²Á ³ )² c Á ³
É É
l
geometría analítica
)RFRV
l³  - ²Á c l ³ l À ~ - ²Á
([FHQWULFLGDG
Ü 6L * ²Á ³ HVH VHOFH FHQWURGH GHOD ODHO HOLSVH\H \HOOHM HMHIRF IRFDDOHV HVSD SDUDOHORDO DOHM HMH ? HQ HQWR QFHVOD OD HFXDFLyQUHGXFLGDHV ¢ ²% c ³
²& c ³ b ~
&HQWUR
*²Á³
9pUWLFHV HMH PD\RU
³ = ² b Á ³
=² c Á ³ ³
9pUWLFHV HMH PHQRU
) ²Á b ³
) ²Á c ³
)RFRV
³ Â - ² b Á ³
- ² c Á ³ ³
([FHQWULFLGDG
~
É É
Cálculo Diferencial
6L * ²Á ³ HVH VHOFH FHQWURGH GHOD ODHO HOLSVH\H \HOOHM HMHIR IRFDOHV HVSSDUDOHORDO DOHM HMH @ HQ HQW RQFHVO VOD HFXDFLyQUHGXFLGDHV ¢ ²% c ³
²& c ³ b ~
&HQWUR
*²Á³
9pUWLFHV HMH PD\RU
= ²Á b ³ Â
= ² Á c ³
9pUWLFHV HMH PHQRU
³ ) ² b Á ³
) ² c Á ³ ³
)RFRV
- ²Á b ³ Â
- ² Á c ³
([FHQWULFLGDG
~
É É
geometría analítica
(MHPSORV
²³ 'HWH 'HWHUP UPLQ LQH H FHQW FHQWUR UR YpUW YpUWLF LFHV HV GHO GHO HMH HMH PD PD\\RU \ PH PHQR QRU U IRFRV IRFRV H[FHQ H[FHQWU WULF LFLG LGDG DG \ JUiILFRGH ¢ ³ % b & & c % % b & & b ~ ³ % % b && b % % b & & c ~ 6ROXFLyQ
³ % b & & c % b && b ~
% c %! b & b &! ~ c % c %! b & b & ! ~ c ! b & b & ! ~ c b % c % % c % b ! b & b & b ! ~ % c ! b & b ! ~ ° ¢ % c ! b & b ! ~ % c ! b & b ! ~ ¬ ~ ¬ ~ f
b
b
b
¬ ~ É É
¬ ~ f
Cálculo Diferencial
¬ ~
&HQWUR 9pUWLFHV HMH PD\RU 9pUWLFHV HMH PHQRU )RFRV
²Á c ³ * ²Á = ²Á c ³ ) ²Á ³ - ²Á c ³ Â
([FHQWULFLGDG
~
¬ ~ f
=² c Á c ³ ) ²Á c ³ - ² c Á c ³
~ À
Ü ³ % % b && b % % b & & c ~ % b & & b % b & c ~ %! b & & b & &! ~ % b % % b %! b & b & ! ~ ! b & b & ! ~ % b % % b % b ! b & b & b ! ~ % b ! b & b ! ~ ° ¢ % b ! b & b ! ~ % b ! b & b ! ~ ¬ ~ ¬ ~ f
b
b
b b
É É
geometría analítica
¬ ~ ¬ ~
&HQWUR 9pUWLFHV HMH PD\RU 9pUWLFHV HMH PHQRU )RFRV
³ * ² c Á c ³ = ² c Á ³ ) ²Á c ³ - ² c Á ³
([FHQWULFLGDG
~
~ À
Â
¬ ~ f ¬ ~ f =² c Á c ³ ) ² c Á c ³ -² c Á c ³
Ü (MHUFLFLRV3URSXHVWRV
³ 'HWHUPLQHFHQWURYpUWLFHVHMHPD\RU\PHQRUIRFRVH[FHQWULFLGDG\JUiILFRGH & ~ ODHOLSVH% b & ³ 'HWHUPLQH HQ FDGD FDVR FHQWUR YpUWLFHV HMH PD\RU \ PHQRU IRFRV
H[FHQWULFLGDG\JUiILFRGHODHOLSVH ³ % % b & b % % c & & c ~ ³ % b & c % b & & b ~
+DOODUODHFXDFLyQGHODHOLSVHFX\RVYpUW HFX\RVYpUWLFHVVRQORVSXQWRV LFHVVRQORVSXQWRV ²Á ³  ² c Á ³ ³ +DOODUODHFXDFLyQGHODHOLSV \ FX\RV IRFRV VRQ ORV SXQWRV ²Á ³ \ ² c Á ³ ³ (QFDGDFDVRGHWHUPLQHODHFXDFLyQGHODHOLSVHFHQWUDGDHOHORULJHQVDELHQGR
TXH ³ 8Q IRFR HV ² c Á ³ \ XQ YpUWLFH HV ²Á c ³
É É
Cálculo Diferencial
³ 8Q IRFR HV ²Á c ³ \ OD H[FHQWULFLGDG HV
³ 8QIR QIRFR FRH HV V²Á ³ \H \HOOVHP VHPLH LHMH MHP PD\ D\RU RUH HV VGH GHO ORQ RQJL JLWX WXG G ³ &RQWLHQH ORV SXQWRV ²Á ³ \ Á \ HO HMH PD\RU HVWi HQ HO HMH @
l 6 l 7
6ROXFLRQHV
³
&HQWUR 9pUWLFHV HMH PD\RU 9pUWLFHV HMH PHQRU )RFRV ([FHQWULFLGDG
³
* ²Á ³ = ²Á ³  =² c Á ³ ) ²Á ³  )²Á c ³ - ² Á ³Â -² c Á ³ ~ À
l
l
l
³
&HQWUR *² c Á ³ ³  =² c Á c ³ 9pUWLFHV HMH PD\RU = ² c Á ³ ²Á ³  ) ² c Á ³ 9pUWLFHV HMH PHQRU ) ² ³  -² c Á c ³ ³ )RFRV - ² c Á ³ ([FHQWULFLGDG ~
~ À
É É
geometría analítica
³
³
&HQWUR 9pUWLFHV HMH PD\RU 9pUWLFHV HMH PHQRU )RFRV ([FHQWULFLGDG
*² Á c ³ =² Á c ³  =² c Á c ³ ) ²Á ³  ) ²Á c ³ - ² b Á c ³  -² c ~ À
l l
É É
l Á c ³
Cálculo Diferencial
³ ³
(FXDFLyQ % b & ~ ³ (FXDFLyQ % b & ~ ³ (FXDFLyQ % b & ~ % & ³ (FXDFLyQ b ~ % & ³ (FXDFLyQ b ~
+LSpUEROD
(VHOOXJDUJHRPpWULFR (VHOOXJDUJHRPpWULFRGHORVSXQWRVGHOSODQRFX\ GHORVSXQWRVGHOSODQRFX\DGLIHUH DGLIHUHQFLDGHGLVW QFLDGHGLVWDQFLDV DQFLDVDGRV DGRV SXQWRV ILMRV HV FRQVWDQWH /RV SXQWRV ILMRV VH GHQRPLQDQ IRFRV \OD \ OD GLIHUHQFLD FRQVWDQWHVHGHVLJQDSRU
É É
geometría analítica
6L - ²Á ³ \ -² c Á ³ VRQ ORV IRFRV HV OD GLIHUHQFLD FRQVWDQWH \ 7 ²%Á &³ XQ SXQWRFXDOTXLHUDHQWRQFHVODHFXDFLyQGHODKLSpUERODHV ¢ %
c
&
~
% 6L & ~ Á HQWRQFHV ~ ¬ % ~ ¬ % ~ f & 6L % ~ Á HQWRQFHV c ~ ¬ & ~ c ¬ 1R H[LVWH LQWHUVHFFLyQ FRQ ORV
HMHV
/RV SXQWRV = ² ²Á ³ \ = ² c Á ³ VH GHQRPLQDQ YpUWLFHVGHOHMHUHDO \ ORV SXQWRV ) ²Á ³ \ ) ²Á c ³ VH OODPDQ YpUWLFHVGHOHMHLPDJLQDULR /RV IRFRV - \ - TXHGDQVLHPSUHXELFDGRVVREUHHOHMHUHDO /DORQ /DORQJLW JLWXGG XGGHOH HOHMH MHUHD UHDOHV OHV ODORQ ODORQJLW JLWXGG XGGHOH HOHMHL MHLPDJ PDJLQD LQDULR ULRHV HV\OD \ODOR ORQJL QJLWXG WXGGHO GHO HMH IRFDO HV /D H[FHQWULFLGDG
8 ~ 9 HQ OD KLSpUEROD LQGLFD OD DEHUWXUD GHO iQJXOR
GHWHUPLQDGRSRUODVDVtQWRWDV\HQFX\RLQWHULRUVHHQFXHQWUDODKLSpUEROD &RPR HQWRQFHV /DV DVtQWRWDVVH VHRE REWL WLHQ HQHQ HQK KDF DFLH LHQG QGR RLLJXDO JXDOD DF FHHURO UROD DHF HFXD XDFL FLyQ yQG GH HOD ODK KLS LSpU pUER EROOD &~ c
%
v
É É
&~
%
Cálculo Diferencial
²Á ³ \ - ² ²Á c ³ \ OD 6L OR ORV IR IRFRV GGHH OD OD KKLLSpUEROD VR VRQ - ² OD GGLLIHUHQFLD FR FRP~Q HV HV HQWRQFHVVXHFXDFLyQHV ¢ &
9pUWLFHV HMH UHDO
c
%
~
=²Á³  = ²Á c ³
²Á ³ )² c Á³ 9pUWLFHV HMH LPDJLQDULR )²Á
)RFRV
²Á ³  -²Á ²Á c ³ -²Á
([FHQWULFLGDG
~
$VtQWRWDV
& ~
%
Â
&~ c %
(MHPSOR
²³ 'HWHUP 'HWHUPLQH LQH FRRUGHQ FRRUGHQDGD DGDV V GH ORV HMHV HMHV UHDO UHDO H LPDJLQ LPDJLQDUL DULR R IRFRV IRFRV H[FHQWU H[FHQWULFL LFLGDG GDG DVtQWRWDV\JUiILFRGH % c & ~ 6ROXFLyQ
É É
geometría analítica
% c & ~
° ¢
% c & ~ % & c ~
9pUWLFHV HMH UHDO
¬ ~
¬ f
¬ ~
¬ f
¬ ~
¬f
= ²Á³  = ² c Á³
9pUWLFHV HMH LPDJLQDULR
²Á c ³ )²Á³ )²Á
)RFRV
²Á ³  -² c Á³ -²Á
([FHQWULFLGDG
~
~ À
$VtQWRWDV
& ~
%
Â
&~ c %
Ü
É É
Cálculo Diferencial
(MHUFLFLRV3URSXHVWRV
³ 'HWHUPLQDUYpUWLFHVÁ HMHUHDOHLPDJLQDULRÁ IRFRVÁ H[FHQWULFLGDGÁ DVtQWRWDV\
JUiILFRGH ³
% & c ~
& % ³ c ~ ³ 2EWHQHU OD HFXDFLyQ GH OD KLS KLSpUERO EROD VL XQ YpU YpUWLFH HVWi VWi HQ ²Á ³ \ XQ IRF IRFR HQ ²Á ²Á ³ ³ 'HWHUPLQHODHFXDFLyQGHODKLSpUERODFHQWUDGDHQHORULJHQVL ¢ ³ 8Q IRFRHVW HVWDD HQ ²Á ³ OD ORQJLWXGG GGHO HMH LPDJLQDULRHV HV ³ (MHGH GH VLPHWUtD HO HMH ? \ FRQWLHQH ORV SXQW XQWRV ²Á ³ \ ² c Á ³ ³ 9pUWLFH HQ ²Á ³ \ XQD DVtQWRWD HV & ~ ³ 6XV DVtQWRWDV VRQ & ~ f
%
l % \ FRQWLHQH DO SXQWR ²Á ³
& ³ 'HWHUPLQDU VL OD KLSpUEROD GH HFXDFLyQ % c ~ LQWHUVHFWD D OD UHFWD ³ & ~ % ³ & ~ % %
6L HV DVt Vt HQFXHQWUH HQ FDGD FDVR ODV FRRUGH UGHQDGDV GH WRGRV ORV SXQWRV QWRV GH LQWHUVHFFLyQ ³ ¢3DUDTX TXpYD YDORUHVGH GH ODUH UHFWDFR FRQHF HFXDFLyQ& ~ % LQWHUVHFWDOD ODKL KLSpUEROD % & c ~" 6ROXFLRQHV
³
³ 9pUWLFHV HMH UHDO
9pUWLFHV HM H MH LPDJLQDULR )RFRV ([FHQWULFLGDG $VtQWRWDV
=²Á ³   ) ²Á ³ - ² Á ³ Â
l
l
= ² c Á ³ )²Á c ³ - ² c Á ³
l
~ À Â &~ c % & ~ %
~
É É
geometría analítica
 =²Á c ³ HMH UHDO = ²Á ³  )² c Á ³ 9pUWLFHV HM H MH LPDJLQDULR ) ²Á ³ -²Á c ³ )RFRV - ²Á ³ Â
([FHQWULFLGDG $VtQWRWDV
l ~ l
& ~ %
É É
l
~ À Â
&~ c %
Cálculo Diferencial
³
³ (FXDFLyQ
³
³ (FXDFLyQ ³ (FXDFLyQ ³ (FXDFLyQ ³ (FXDFLyQ
& % c ~ % & c ~ % & c ~ % & c ~ & c % ~
³ ³ /D LQWHUVHFWD HQ ORV SXQWRV ³ 1RODLQWHUVHFWD
6n Á n 7 \ 6 c n Á c n 7
³ 3DUD ORV YDORUHV TXH FXPSOHQ OD GHVLJXDOGDG c
dd
HV GHFLU
(FXDFLyQ*HQHUDOGHODV6HFFLRQHV&yQLFDV
/DIRUPDJHQHUDOGHXQDVHFFLyQFyQLFDHV ( % b ) %& b * & b + % b , & b - ~
GRQGH GRQ GHÁ DO DOPH PHQR QRVVÁ XQDG XQDGH HOD ODV VFRQ FRQVW VWDQ DQWH WHV V( R * HVGL HVGLVWL QWD DGH GHFH FHUR UR VWLQW 3DUD 3DUD FODV FODVLI LILF LFDU DU ODV ODV FyQL FyQLFD FDV V GDGD GDGDV V HQ IRUP IRUPD D JHQH JHQHUD UDO O VH KDFH KDFH XVR XVR GHO GHO VLJX VLJXLH LHQW QWHH WHRUHPD ³ ) c (* ¬ (/,36( ³) c (* ¬ +,3e5%2/$ ³) c (* ~ ¬ 3$5È%2/$ ³ ( ~ * \ ) ~ ¬ &,5&81)(5(1&,$ ³ ( ~ ) ~ * ~ ¬ /Ë1($5(&7$
É É
LÍMITE Y CONTINUIDAD DE FUNCIONES
/tPLWHGHXQD)XQFLyQ 6HD OD OD IX IXQFLyQ UH UHDO ²%³ ~ % c À 6H HV HVWXGLDUi TX TXp VX VXFHGH HQ HQ OD ODV SU SUR[LPLGDGHV À 6H GH /D JUiILFD GH ²%³ ~ % c HV OD VLJXLHQWH ¢
2EVHUYDUODVLJXLHQWHWDEOD ¢
% %
Á Á
!
Á Á
Á Á
"
Á Á
Á Á
Á Á
!
'HODWDEO 'HODWD EODVH DVHGHG GHGXF XFHOR HORVLJ VLJXL XLHQ HQWH WH ¢ FXDQ FXDQGR GR% VHDFHU VHDFHUFD FDD D SRUODL SRUODL]TX ]TXLH LHUG UGD D % VH DFHUFD D \ FXDQGR % VHD VHDFFHUFD D SRU OD GHUHFKD % WDPELpQ VHDF DFHUFD D c (VWR VL VLJQLILFD TX TXH VL % ª Á HQWRQFHV ²%³ ~ % c ª \ VL % ª Á HQWRQFHV % ~ % % c ª
!
!
'HHVWDVLWXDFLyQVHSXHGHFRQFOXLUORVLJXLHQWH ¢
!
OLP % ~
%¦
OLP ²% c ³ ~
%¦
DEFINICIÓN DE LÍMITE: (VFULELUHPRV VLPEyOLFDPHQWH
OLP ²%³ ~ 3 ² OtPLWH GH ²%³ FXDQGR % WLHQGH D
%¦
HV LJXDO D 3³ VL ORV YDORUHV GH OD IXQFLyQ ²%³ VH DFHUFDQ D 3 WRGR OR TXH TXHU TXHUDP DPRV RVD DP PHG HGLG LGD DTX TXH H% VH VHDF DFHU HUFD FDD DO OYD YDOR ORU UÁ SHUR SHURQ QXQ XQFD FD % HVL HVLJX JXDO DOD D
É
É
Cálculo Diferencial
3URSLHGDGHVGH/tPLWHV 6XSRQJDPRV TXH HV XQD FRQVWDQWH \ TXH OLP ²%³ ~ 3 \ %¦
OLP ²%³ ~ 3
%¦
(QWRQFHV
³ OLP
%¦
³ OLP
%¦
³ OLP
%¦
³ OLP
%¦
³ OLP
%¦
³ OLP
%¦
³ OLP
%¦
> ²²%%³ b ²%³ ? ~ ²²%%³ b > ²²%%³ c ²%³ ? ~ ²²%%³ c > ²%³ ? ~ ²%³ ~ 3 > ²²%%³ h ²%³ ? ~ ²²%%³ h ~ Á > ?~ OLP
%¦
OLP ²%³ ~ 3 b 3
%¦
OLP ²%³ ~ 3 c 3
OLP
%¦
OLP
%¦
OLP ²%³ ~ 3 h 3
OLP
%¦
OLP ²%³
²%³ ²%³
%¦
OLP ²%³
%¦
> ²%³ ? ~ @ l ²%³ ~ m
%¦
%¦
3 3
FRQ3 £
A ~3 Á ²%³ ~ l 3 Á
OLP ²%³
%¦
OLP
%¦
GRQGH GRQGH HVXQ HVXQHQW HQWHUR HURSRVL SRVLWLY WLYR R
FRQ 3 \ HQWHUR SRVLWLYR
³ OLP ~ %¦
³ OLP % ~ %¦
(MHPSORV ³ &DOFXOHORVVLJXLHQWHVOtPLWHV
³ OLP %¦ 6ROXFLyQ
5HFR 5HFRUG UGDQ DQGR GR TXH TXH HO OtPL OtPLWH WH GH XQD XQD IXQF IXQFLy LyQ Q FRQV FRQVWD WDQW QWH H HV OD PLVP PLVPD D FRQV FRQVWD WDQW QWH H WHQHPRV OLP ~ Ü
%¦
³ OLP ²% c ³ %¦ 6ROXFLyQ
É
É
límite y continuidad de funciones
!
OLP ²% ²% c ³ ~ c ~ Ü
%¦
³ OLP ² c % b % c ³ %¦ 6ROXFLyQ OLP ² c % b % c ³ ~ c
! b ! c ~ c Ü
%¦
% c ~ %b
³ OLP
%¦c
6ROXFLyQ
% c ~ %b
OLP
%¦c
3HUR 3HUR HV LQGH LQGHWH WHUP UPLQ LQDG DGR R (VWR (VWR QRV QRV REOL REOLJD JD D HQIU HQIUHQ HQWD WDU U HVWH HVWH SURE SUREOH OHPD PD FRQ FRQ RWUD RWUDVV KHUUDPLHQWDVHQHVWHFDVRSDUWLFXODUHVQHFHVDULRIDFWRUL]DUHOQXPHUDGRU OLP
%¦c
% c ~ %b
OLP
%¦c
% b !% c ! ~ ²% b ³
OLP ² % c ³ ~ ² c ³ c ~ c
%¦c
% c 3RUORWDQWR 3RUORWDQWRÁ OLP ~ c Ü %¦c % b %c
l % c l
³ OLP %¦ 6ROXFLyQ
OLP
%¦
%c
l % c l
~
3DUDHOLPLQDUODLQGHWHUPLQDFLyQVHGHEHUDFLRQDOL]DUHQHVWHFDVR
l% b l % ¦ l% c l l % b l ²l % b l ³ ~ l %¦ OLP
%c
h
~ OLP %¦
OLP
3RUO 3RUOR RWD WDQW QWR R
~ l Ü l % ¦ l % c OLP OLP
%c
É
É
l l ³ ~
²% c ³ ² % b %c
Cálculo Diferencial
(MHUFLFLRV3URSXHVWRV6HFFLyQ ²³ &DOFXODUORVVLJXLHQWHVOtPLWHV b%c ³ OLP % %¦
l
l
³
l% c l l% c l
%
OLP
%¦
% c ³ OLP % ¦ %c ³
%c%c %c
OLP
%¦c
/tPLWHV/DWHUDOHV
DEFINICIÓN DE LÍMITES LATERALES: ³ (O OtPLWHODWHUDOSRUGHUHFKD OLPb ²%³ H[SUHVD TXH OD YDULDEOH % VH DFHUFD DO %¦
YDORU YDORUSRUOD SRUODGH GHUHF UHFKD KDGHp GHpVWH VWHH HVGH VGHFLU FLUF FRQVL RQVLGHU GHUDQGR DQGRYD YDORU ORUHVG HVGH H% PD\R PD\RUHV UHVTXH TXH
³ (O OtPLWHODWHUDOSRUL]TXLHUGD OLPc ²%³ H[SUHVD TXH OD YDULDEOH % VH DFHUFD DO %¦
YDORU YDORUSRUODL]TXLHU SRUODL]TXLHUGDGHpVW GDGHpVWHHVGHF HHVGHFLU LUFRQVL FRQVLGHU GHUDQG DQGRYDOR RYDORUHVGH UHVGH % PHQRUHVTXH PHQRUHVTXH
TEOREMA: OLP ²% ²%³ ~ 3 ¯ OLPb ²% ²%³ ~ 3 ~ OLPc ²% ²%³
%¦
%¦
%¦
2%6 (OWHRUHPDDQWHULRU (OWHRUHPDDQWHULRUVHxDODTXHHOOtPLW VHxDODTXHHOOtPLWHGHXQDIXQFLyQH[LVW HGHXQDIXQFLyQH[LVWHVLORVOtPLW HVLORVOtPLWHV HV ODWHUDOHVH[LVWHQHQHOSXQWRFRQVLGHUDGR\DGHPiVVRQLJXDOHV (MHPSORV
²³ 'DGD OD IXQFLyQ OLP
%¦
!
%
~% %! ~ % c
% %~ %
GHWHUPLQH VL H[LVWH
6ROXFLyQ (QHVWHHMHUFLFLRHVQHFHVDULRFDOFXODUOtPLWHVODWHUDOHVSRUTXHHOSXQWRHQTXHVH FDOFXODHOOtPLWHHVXQSXQWRGHTXLHEUHSDUDODIXQFLyQ
OLP
% ¦ c
!
% ~
OLP
% ¦ c
%~
É
É
límite y continuidad de funciones
OLP
b
%¦
!
% ~
OLP
%¦
b
²% c ³ ~
2EVHUYDPRVTXH
!
!
% ~ £ ~ OLP % % ¦ b
OLP
% ¦ c
OXHJR OLP
%¦ GLVWLQWRVÀ Ü
!
%
QR H[ H[LVWH SR SRUTXH OR ORV Ot OtPLWHV OD ODWHUDOHVÁ DX DXQTXH H[ H[LVWHQÁ VRQ
! H %% bc % c Á Á
²³ 'DGD OD IXQFLyQ % ~ H[LV [LVWH
!
c % c c%
GHWHUPLQH VL
%
OLP
%¦c
6ROXFLyQ
! % ! ~
OLP c % ~
%¦c
OLP
%¦cb
OLP c ² % c ³ c
%¦c
OLP ²% b % c ³ ~ c
%¦cb
2EVHUYDPRVTXH OLP
%¦cc
!
% ~ c ~
!
OLP %
%¦cb
!
OXHJR OLP % ~ c Á HV GHFLUÁ HO OtPLWH H[LVWH \ HV LJXDO D c À Ü %¦c
(MHUFLFLRV3URSXHVWRV6HFFLyQ
~ l c % b % %! ~ % c % c % b
³ 'DGDODIXQFLyQ
% %
%
'HWHUPLQHVLH[LVWHQORVOtPLWHV
³ ³
! %! %¦ OLP
%¦
%
²9 ¢ ³ ²9 ¢ QRH[LVWH³
OLP
! d d
!
%c " ³ ¢ ([LVWH OLP % SDUD OD IXQFLyQ % ~ %c %¦
É
É
²9 ¢ QR H[LVWH³
Cálculo Diferencial
&RQWLQXLGDGGH)XQFLRQHV
!
6HD & ~ % XQD IXQFLyQ UHDO HQWRQFHV VH GLFH TXH HV FRQWLQXD HQ % ~ VL \ VyOR VL OLP ²%³ ~ ²³ %¦
6L QR HV FRQWLQXD HQ % ~ Á HQWRQFHV GHFLPRV TXH HV GLVFRQWLQ XD HQ % ~ Á R GHFLPRVTXHSR GHFLPRVTXHSRVHHXQD VHHXQDGLVFR GLVFRQWLQXL QWLQXLGDGHQ GDGHQ
2%6 ³ 1RWHPRV TXH OD GHILQLFLyQ GH FRQWLQXLGDG GDGD DQWHULRUPHQWH UHTXLHUH WUHV FRQGLFLRQHV HVWpGHILQLGDHVGH HVGHFLUT FLUTXH XH HVWHHQHO HVWHHQHOGRPLQL GRPLQLRGH RGH À ³ ²³ HVWpGHILQLGD ³ OLP ²%³ H[LVWD %¦
³ OLP ²% ²%³ ~ ² ²³ %¦
8QDIXQ XQFL FLyQ yQHV HVFR FRQW QWLQ LQXD XDHQ HQXQ XQLQ LQWH WHUY UYDO DOR R²Á ³ VLHV VLHVFR FRQW QWLQ LQXD XDHQ HQFD FDGD GDSX SXQW QWRG RGHH ³ 8QDI HVHLQWHUYDOR *HRP RPpW pWUL ULFD FDPH PHQW QWH H KDEO KDEODQ DQGR GR XQD XQD IXQF IXQFLy LyQ Q HV FRQW FRQWLQ LQXD XD HQ FDGD FDGD SXQW SXQWR R GH XQ ³ *H LQWHUYDORFXDQGRVXJUiILFRQRWLHQHVDOWRVRTXLHEUHVHVGHFLUHOJUiILFRVHSXHGH GLEXMDUVLQOHYDQWDUHOOiSL]GHOSDSHOHQHOLQWHUYDORFRQVLGHUDGR
³ &XDOTXLHU IXQFLyQ SROLQRPLDO ²%³ ~ b % b % b ÀÀÀÀ b %
HV
FRQWLQXDHQWRGRVORVUHDOHV
³ &XDOTXLHUIXQFLyQUDFLRQDOHVFRQWLQXDHQVXGRPLQLR 3URSLHGDGHVGHOD&RQWLQXLGDGGH)XQFLRQHV 6XSRQJDPRV TXH \ VRQ FRQWLQXDV HQ % ~ Á \ VXSRQJDPRV TXH HV XQD FRQVWDQWHHQWRQFHVODVVLJXLHQWHVIXQFLRQHVWDPELpQVRQFRQWLQXDVHQ% ~ ¢
³ b ³ c ³ ³ h ³ Á VL²³ £ 3URSLHGDGHV$GLFLRQDOHV ³ ²%³ ~ % HV FRQWLQXD HQ Á B VL HV XQ HQWHUR SRVLWLYR SDU HVFRQWLQXDHQWRGRV QWRGRVORVUH ORVUHDOHVVL DOHVVL HVXQHQWHUR HVXQHQWHURSRVLWLY SRVLWLYRLPSD RLPSDU U ³ ²%³ ~ % HVFRQWLQXDH
l l
< 5
³ 6L HV FRQWLQXD HQ \ OLP ²%³ ~ Á HQWRQFHV %¦
É
É
límite y continuidad de funciones
OLP ²²% ²²%³³³ ~ ²³ ~ ² OLP ²%³³ ²%³³
%¦
%¦
³ 6L HV FRQWLQXD HQ \ HV FRQWLQXD HQ ²³Á HQWRQFHV ² k ³²%³ ~ ²²%³³ HV FRQW FRQWLQ LQXD XDH HQ Q IXQFLy LyQ Q LQ\ LQ\HFWL HFWLYD YD GHIL GHILQL QLGD GD HQ XQLQWHUY XQLQWHUYDO DOR RÁ HQWR HQWRQF QFHV HV VXLQYHUVD VXLQYHUVD ³ 6L HVXQD IXQF c WDPELpQHVFRQWLQXDHQHVHLQWHUYDOR
(MHPSORV ²³ $QDOLFH OD FRQWLQXLGDG GH HQ % ~ \ % £ GRQGH
~ % c % c %! ~ %c
%£ %~
6ROXFLyQ 3XQWRGHDQiOLVLV ¢ % ~
!
³ ~
!
³ OLP % %¦
% c % c ~ OLP ~ %c %¦
! !
% c % c % b % c OLP ~ OLP %c %c %¦ %¦
LQGHWHUPLQDFLyQ£
~
% c % c ~ % c %¦
3RUORWDQWROLP
! ! %!
³ OLP % £ %¦ /XHJR
HV GLVFRQWLQXD HQ % ~
3DUD 3DUD % £ ODIXQ ODIXQFL FLyQ yQHV HVVLH VLHPS PSUH UHFR FRQW QWLQ LQXD XDSR SRUT UTXH XHQR QRVHS VHSUR URGX GXFH FHQSU QSURE REOH OHPD PDVGH VGH LQGHWHUPLQDFLyQHQODIXQFLyQUDFLRQDOGDGD (QHVWHFDVRHVSRVLEOHUHGHILQLUODIXQFLyQGHPRGRGHKDFHUODFRQWLQXD
~ % c % c %! ~ %c
%£ %~
(VWHWLSRGHGLVFRQWLQXLGDGUHFLEHHOQRPEUHGHGLVFRQWLQXLGDGHYLWDEOH (VWHWLSRGHGLVFRQWLQXLGDGUHFLEHHOQRPEUHGH GLVFRQWLQXLGDGHYLWDEOH Ü
É
É
Cálculo Diferencial
~ ² ³ %! ~ % c !
%£
%~
6ROXFLyQ 3XQWRGHDQiOLVLV ¢ % ~
!
³ ~
! ~ % ¦ % c !
³ OLP % %¦
OLP
~ 3RU OR WDQWR
1RHVSRVLEOHHOLPLQDUODLQGHWHUPLQDFLyQ
%c
!
OLP
%¦
QR H[LVWH
!
!
&RPR QR VH FXPSOH OD FRQGLFLyQ GH FRQWLQXLGDG VH FRQFOX\H TXH % HV GLVFRQWLQXDHQ% ~ (QHVWHFDVRQRHVSRVLEOHUHGHILQLUODIXQFLyQGHPRGRGHKDFHUODFRQWLQXDÀ (VWH WLSR GH GLVFRQWLQXLGDG UHFLEH HO QRPEUH GH GLVFRQWLQXLGDGLUUHSDUDEOH Ü
! H %%bc
% %
²³ % ~
6ROXFLyQ 3XQWRGHDQiOLVLV ¢ % ~
!
³ ~ b ~
! ~ %! ~ % c ~ %¦ %¦ %! ~ %! E %! ~ %¦ %¦ %¦ ³ %! ~ ! %¦ %! % ~ Ü
³ OLP c % ~ OLP c % b %¦ %¦ OLP
OLP
OLP
b
c
OLP
b
b
SRUORWDQWR
OLP
/XHJR
HV FRQWLQXD HQ
É
É
OLP
límite y continuidad de funciones
(MHUFLFLRV3URSXHVWRV6HFFLyQ
~ % b % c % £ c %! ~ %b c % ~ c ~ % c % £ %! ~ % c % ~ % b % %! ~ H %c %
$QDOLFHODFRQWLQXLGDGHQORVVLJXLHQWHVFDVRV ¢
³
³
³
³ 'HWHUPLQH HO YDORU GH SDUD TXH OD IXQFLyQ VHD FRQ WLQXD HQ WRGR VX GRPLQLR GRPLQLRÁ GRQGH GRQGH
~ %! ~ % b % b
%~ %£
6ROXFLRQHV
³
³ ³
² c ³ ~ c OLP ²%³ ~ c % ¦ c ³ OLP ²%³ ~ ² c ³ % ¦ c /XHJR ²%³ HV FRQWLQXD HQ % ~ c ³
³ ³
³
³ ³
²³ ~ OLP ²%³ ~ %¦ ³ OLP ²%³ ~ ²³ %¦ /XHJR ²%³ HV FRQWLQXD HQ % ~ ²³ ~ OLP ²%³ ~ % ¦ c OLP ²%³ ²%³ ~ c % ¦ b 1RH[LVWHOLP ²%³ %¦ /XHJR ²%³ HV GLVFRQWLQXD HQ % ~ ³ ~
É
É
DERIVADAS DE FUNCIONES
'HULYDGDV DEFINICIÓN DE DERIVADA: 6L & ~ % HV XQD IXQFLyQ HQWRQFHV OD GHULYDGD GH HQ HO SXQWR Á TXH VH HVFULEH Z ²³Á HV ¢
!
Z²³ ~
! !
b c ¦ OLP
VLHOOtPLWHH[LVWH
1RWDFLyQ
! !
b c ¦ OLP
~ Z ²³ & Z²³
e
e
& % %~ % %~
2EV 6L HVFULELPRV % ~ b Á HQWRQFHV ~ % c  DGHPiV VL ¦ Á HQWR HQWRQF QFHV HV % ¦ / /XHJR XHJRÁ WHQ WHQHP HPRV RVX XQD QDG GHI HILQ LQLF LFLy LyQ QDO DOWH WHUQ UQDW DWLY LYD DGH GHO OD DGH GHUL ULYD YDGD GDG GH H HQ HQ HOSXQWR% ~ ¢ ²%³c²³ %c %¦
Z²³ ~ OLP
/D'HULYDGDFRPRXQD)XQFLyQ 6L UHHP UHHPSO SOD] D]DP DPRV RV SRU SRU % HQ OD GHIL GHILQL QLFFLyQ LyQ GH GHUL GHULYD YDGD GD REWH REWHQH QHPR PRV V OD IXQFLyQ GHULYDGD ¢ ²%b³c²%³ ¦
Z²%³ ~ OLP
TXHUHSUHVH TXHUHSUHVHQWD QWDXQDQXHYD XQDQXHYDIXQFLy IXQFLyQDGLIHU QDGLIHUHQF HQFLDGH LDGH Z²³ TXHUHSUH TXHUHSUHVHQW VHQWDXQQ~PH DXQQ~PHUR UR UHDO
1RWDFLyQ
! !
%b c % ¦ OLP
~ Z ²%³ & Z
É É
& + ²% ²%³ + % ²% ²%³ % %
derivadas de funciones
DEFINICIÓN: 8QD IX IXQFLyQ HV HV GHULYDE H[LVWH /D /D IXQFLyQ HV GHULYDEOH OH HQ VL Z ²³ H[ ²Á ³ y ²Á b B³Á B³Á ² c BÁ³ y ² c BÁ b B³ VL GHULYDEOHHQXQLQWHUYDO GHULYDEOHHQXQLQWHUYDOR R DELHUWR DELHUWR ²Á HVGHULYDEOHHQFDGDSXQWRRQ~PHURGHOLQWHUYDOR VGHULYDEOH HQ Á HQWRQFHV HV HV FRQWLQXD HQ TEOREMA: 6L HVG )yUPXODVGH'HULYDFLyQ 6XSRQJD 6XSRQJDHQ HQOR ORTXH TXHVL VLJXH JXHTX TXH H \ VRQIXQ VRQIXQFLR FLRQHV QHVGHU GHULYD LYDEOH EOHV\ V\TX TXH H HVFRQ HVFRQVWD VWDQWH QWH
³ 6L HV XQD IXQFLyQ FRQVWDQWHÁ HV GHFLUÁ ²%³ ~ Á HQWRQFHV Z²%³ ~ ³ ²% ²%³ ~ % ¬ Z ²%³ ~ % cÁ l ³ ²%³ ~ ²% ²%³³ ¬ Z²%³ ~ ²%³ ²%³ Z ³ ²%³ ²%³ ~ ²% ²%³³ ¬ ²%³ ~ c ² ²%³ %³ % Z % ³ ²%³ ²%³ ~ ¬ ²%³ ²%³ ~ ³ ²%³ ²%³ ~ ² ²%³ %³ ¬ Z²%³ ~ %
> >
? ?
Z
³ ² b ³Z ²%³ ²%³ ~ ²%³ ²%³ b ²%³ ²%³ ~ Z²%³ ²%³ b Z ²%³ ²%³ Z
³ ² c ³Z ²%³ ²%³ ~ ²%³ ²%³ c ²%³ ²%³ ~ Z²%³ ²%³ c Z²%³ ²%³ ³ ² ² ³Z²%³ ²%³ ~ ²²%³³ ²²%³³ Z ~ Z²%³
> ? 67 > ? < = Z
Z
³ ² h ³ ²%³ ²%³ ~ ²%³ ²%³ h ²%³ ²%³ ~ Z²%³ h ²%³ ²%³ b ²%³ ²%³ h Z²%³ ²%³ Z
³
²% ²%³ Z
²%³ ~ ²%³
~
Z ²%³h²%³ c ²%³hZ ²%³ ²%³
Á ²%³ £
,QWHUSUHWDFLRQHVGHOD'HULYDGD *HRPHWUtD$ *HRPHWUtD$QDOtWLFD QDOtWLFD
& UHSUHVHQWD OD SHQGLHQWH GH OD UHFWD % WDQJHQWH D & ~ % HQ HO SXQWR %Á % À (O SXQWR %Á % GHEH SHUWHQHFHU D OD IXQFLyQ & ~ ²%³ SDUD VHU HO SXQWR GH WDQJHQFLD 6L % Á & HV SXQWR GH WDQJHQFLD GH OD FXUYD & ~ % Á HQWRQFHV HV SRVLEOH HVWDEOHFHUODV HFXDFLRQHVGHGRVUHFWDV ¢ ³ 6L & ~ ²% ²%³ H QW QWRQFHV OD G HU HULYDGD
!
!
!!
!! !
5HFWD7DQJHQWH
!
& c & ~ Z²%³ % c % 5HFWD1RUPDO
& c & ~ Zc ²%³ ²% c % ³ 2EV /D UHFW UHFWD D WDQJ WDQJHQ HQWH WH \ OD UHFWD UHFWD QRUPD QRUPDO O VRQ SHUS SHUSHQ HQGL GLFX FXOD ODUH UHV V HQ HO SXQW SXQWR R GH WDQJHQFLD
É É
Cálculo Diferencial
³ 6L & ~ ²%³ HQWRQFHV UHVS UHVSHF HFWR WRD D %
& UHSUHVHQWD OD UD]yQLQVWDQWiQHDGHFDPELR GH& FRQ %
)tVLFD )tVLFD
!
9HORFLGDGPHGLD 6L ~ ! HV OD IXQFLyQ GH SRVLFLyQ GH XQ REMHWR HQ PRYLPLHQWR UHFWLOtQHR HQWR HQWRQF QFHHVOD VODY YHO HORF RFLG LGDG DGG GHO HOR REM EMHW HWR RHQ HQH HO OLQ LQWH WHUY UYDO DOR R²!Á z! z !³HV HV ¢ " "!
~
! !
! b "! c ! "!
! ! ! d d ! ! !
9HORFLGDGRYHORFLGDGLQVWDQWiQHD 6L ~ ! HV OD IXQFLyQ GH SRVLFLyQ GH XQ REMHWR HQ PRYLPLHQWR UHFWLOtQHR HQWRQFHVODYHORFLGDGGHOREMHWRHQHOWLHPSR !HV ¢
# ! ~ Z ! ~
! !
! b "! c ! "! "! ¦ OLP
#²!³ 5DSLGH] ~ #²!
$FHOHUDFLyQ 6L # ~ # ! HV OD IXQFLyQ YHORFLGDG GH XQ REMHWR HQ PRYLPLHQWR UHFWLOtQHR HQWRQFHVVXDFH HQWRQFHVVXDFHOHUDF OHUDFLyQHQ LyQHQHOLQV HOLQVWDQWH WDQWH! HV ¢
! ~ #Z ! ~
! !
# ! b "! c # ! "! "! ¦ OLP
(MHPSORV ²³ 'HWHUPLQH Z ²%³ SDUD
!
²³ % ~ c ²³ ² ²%³ ~ ²% ²% c ³ ²³ ²³ ²%³ ²%³ ~ ²² ²²%³ %³ b ³²% ³²% c % %³³
²³ ²%³ ~ % c % b % ² ³ ² ²%³ ~ cb% ²³ ²%³ ²%³ ~ ² ²%³ %³ b ² ² c % ³² ³² b % ³
6ROXFLRQHV
²³ ²³ ²%³ ²%³ ~ c ¬ Z²%³ ²%³ ~ ² c ³Z ~ Ü ²³ ²³ ²%³ ²%³ ~ % % c % b ¬ Z²%³ ~ ²% ²% c % b ³ Z ~ ²% ²% ³ Z c ²%³ ²%³ Z b ²³ ²³ Z ~ ²%³ Z c ²%³ ²%³ Z b ²³ ²³ Z ~ ² ²% % ³ c h ²³ ²³ b ~ % % c Ü
É É
derivadas de funciones
>
?
Z ²³ ²% ²%³ ~ ²% c ³ ¬ Z²%³ ~ ²% c ³ ~ ²% c ³ Z ~ ²%³ ~ % Ü
²³ ²%³ ~
% b c%
Z
¬ ²%³ ~
²% ³Z h²c h²c%³c %³c ²% b³h b³h²c ²c³ ³ ²c%³
< =
~
@ A %b c%
Z
²% b³Z h²c%³ h²c%³ c ²% b³h²c b³h²c%³ %³Z ²c%³
~
% h² h²c% c%³³ b ²% b³ b³ ²c%³
< =
< = < = Ü
~
% % ~ c% b
²c%³
<
=
Z
²³ ²³ ²%³ ²%³ ~ ²² ²²%³ %³ b ³²% ³²% c % %³³ ¬ Z²%³ ~ ²² ²²%³ %³ b ³²% ³²% c % %³³ ¬ Z ²%³ ~ ²²% ²²%³³ b ³Z ²% c %³ b ²²%³ ²²%³ b ³ ²% c %³ Z ¬ Z ²%³ ²%³ ~ % ²% c % %³³ b ²² ²²%³ %³ b ³ ²% ²% c ³ ¬ Z ²%³ ²%³ ~ % c b % ²%³ ²%³ c ²%³ ²%³ b % c ¬ Z ²%³ ²%³ ~ %²%³ ²%³ c ²%³ ²%³ b % c Ü ²³ ² ³ ²%³ ~ ²%³ ²%³ b ² ² c % ³² b %³ ¬
< = < < < < <
=
Z
Z
<
Z ²%³ ²%³ ~ ²% ²%³³ b ² ² c % ³² b % ³ ~ c ² ²%³ %³ b ² c % ³² b % ³
=
=
Z
~ c ² ²%³ %³ b ² c %³Z ² ² b % ³ b ² c % ³² ³² b % ³ Z ~
=
c ² ²%³ %³ b ² c %³² %³² b %³ b ² c %³²%³ ³²%³ ~
=
c ² ²%³ %³ b ² c % c % % ³ b ²% c % % ³ ~
=
c ² ²%³ %³ b c % c % b % c % ~ c ² ²%³ %³ b ² c %³ ~ c ²%³ c % Ü
!
!
²³ 'HWHUPLQH OD HFXDFLyQ GH OD UHFWD WDQJHQWH \ QRUPDO D OD IXQFLyQ % ~ % b % HQ HO SXQWR GH WDQJHQFLD 7 Á 6ROXFLyQ
²% Á & ³ ~ ²Á³
!
% ~ % b % ¬ Z ²%³ ²%³ ~ % b ¬ Z²%³ ~ Z²³ ²³ ~ ²³ ²³ b ~
É É
Cálculo Diferencial
3RU 3RUOR ORW WDQ DQWR WRO OD DSH SHQG QGLH LHQW QWH HGH GHO OD DUH UHFW FWD DWD WDQJ QJHQ HQWWHHV HHV ; ~ \OD ODSH SHQG QGLH LHQW QWH HGH GHO OD DUH UHFW FWDD QRUPDOHV5 ~ c
5HFWD WDQJHQWH
5HFWD QRUPDO
&c ~ %c
&c~ c
!
!
%c Ü & ~ c %b
& ~ % c
!
²³ /D DOWXUD HQ HO LQVWDQWH ! GH XQD PRQHGD TXH VH GHMD FDHU HV ! ~ c ! b FRQ PHGLGD PHGLGDHQ HQSL SLHV HV\ \! PHGLGR PHGLGRHQ HQVHJ VHJXQGR XQGRV+ V+DOO DOODU DU ¢ ³ YHORFLGDGPHGLDHQHOLQWHUYDOR´ Á µ ³ YHORFLGDG LQVWDQWiQHD HQ ! ~ \ ! ~ ³ ¢FXiQWRWDUGDHQOOHJDUDOVXHOR" 6ROXFLyQ
³ YHORFLGDGPHGLDHQHOLQWHUYDOR´ Á µ
!!
!!
~ c b ~ ~ c b ~ " "!
~
c ~ c c
/DYH YHORFL RFLGDG GDGP PHGLD HV GH c SLHVVHJ
³ YHORFLGDG LQVWDQWiQHD HQ ! ~ \ ! ~
! !
# ! ~
~ c ! !
# ~ c
!
# ~ c
/D YHORFLGDG LQVWDQWiQHD HQ ! ~ HV c SLHVVHJ \ HQ ! ~ HV c SLHVVHJ
³ ¢FXiQWRWDUGDHQOOHJDUDOVXHOR"
!
! ~¬
c ! b ~ ~ ! ! ~ ! Á
n
(QO (QOOH OHJD JDU UDO DOV VXH XHOR ORW WDU DUGD GDD DSU SUR[ R[LP LPDG DGDP DPHQ HQWH WH Á VHJ VHJXQ XQGR GRVVÀ Ü
É É
derivadas de funciones
(MHUFLFLRV3URSXHVWRV6HFFLRQHV\ (³ 2EWHQHU Z ²%³ SDUD ¢
!
³
% ~ % c % b % c % c
³
²% ²%³ ~ ²% b % c ³ ²% c ³
³
% c % b ²%³ ~ % b
³
²% b ³ ³ ²% b % % b ³ ²%³ ~ ²% c ³
³
²%³ ²%³ ~ ²% b %³ ²% c % ³ ²% b %³
)³ 'HWHUPLQHODHFXDFLyQGHODUHFWDWDQJHQWH\QRUPDODODIXQFLyQHQHOSXQWRGH WDQJHQFLDGDGR
! !
³
% ~ % b %
³
% ~
! !
7 Á
% b c%
7 c Á c
!
*³ ³/D SRVLFLyQ GH XQ FXHUSR HVWi GDGD SRU ! ~ ! c ! FRQ P HGLGD HQ PHWURV \ ! PHGL PHGLGR GRH HQP QPLQ LQXW XWRV RV +D +DOO OODU DU ¢ ³ YHORFLGDGPHGLDHQHOLQWHUYDOR´ Á µ ³ YHORFLGDG LQVWDQWiQHD HQ ! ~ \ ! ~ ³ ¢HQTXpWLHPSRHOFXHUSRYXHOYHDSDVDUSRUHORULJHQ" YHORFLGDG GH GH XQ XQ WU WUHQ TX TXH SD SDUWH GH GHO UH UHSRVR HV HV #²!³ ~ ³ /D YH +DOODUODDFHOHUDFLyQWUDV ³ KRUDV ³ KRUDV ³ PLQXWRV 6ROXFLRQHV
(³ ³ Z ²%³ ²%³ ~ % % c % % b % c ³ Z²%³ ~ % c % c % c
É É
! c # HQ NP NPKU !
Cálculo Diferencial
c % b % c % b % c ³ ²%³ ~ ²% b ³ % b % c % % c % % c % % c Z ³ ²%³ ~ ²% c ³ ³ Z ²%³ ~ ²% ²% b ³²% ³²% c %³²% ³²% b %³ b ²% b %³²% %³²% c %³²% %³²% b %³ b ²% ²% b % %³² ³²% % c %³²% ³²% b ³ ³ Z
)³ ³ 5HFWDWDQJHQWH 5HFWDQRUPDO
³ 5HFWDWDQJHQWH 5HFWDQRUPDO
*³ ³
³
& ~ % c &~ c %b %c & ~ c %c
&~
³ 9HORF PHGLD !° ³ 9HORF LQVWDQWiQHD ! ~ ! !° Â ! ~ ! !° ³ (OFXHUSRYXHOYHDSDVDUSRUHORULJHQGHVSXpVGHÁ À ³ /DDFHOHUD /DDFHOHUDFLyQD FLyQDODV ODV KRUDVHVGH KRUDVHVGHÁ ° À /DDFHOHUDFLyQD FLyQDODV ODVKRUDVHVGH KRUDVHVGHÁ ° À ³ /DDFHOHUD ³ /D DFHOHUDFLyQ D ORV PLQXWRV HV GH Á P° À
5HJODGHOD&DGHQD
!
!
³ 6L & ~ " HV H V XQ X QD IXQFLyQ GH G HULYDEOH \ " ~ % HV WD W DPELpQ XQ X QD IX I XQFLyQ GHULYDEOHHQWRQFHV ¢ & & " " ~ h % " % %
! !
!
HV XQ X QD IX I XQFLyQ GH G HULYDEOH " ~ # HV XQ X QD IX I XQFLyQ GH GHULYDEOH \ ³ 6L & ~ " HV # ~ % HVWDPELpQXQDIXQFLyQGHULYDEOHHQWRQFHV ¢
& & " # # ~ h h % " # # %
!!
³ 6L & ~ % HQWRQFHV
!!
(MHPSORV 2EWHQHU
!
& ~ % c h Z % %
& SDUD ¢ % É É
derivadas de funciones
³ & ~ " c " b "
Â
" ~ % c b % b
Â
" ~ c b % % %
6ROXFLyQ
& & " " h ~ % " % % & ~ " c " b " "
6
7
& ~ ²" c " b " ³ c b % Ü % % ³ & ~
l
% c % b
6ROXFLyQ
&~
l
% c % b ~ ²% c % b ³
& ~ ²% c % b ³c ²% c ³ ~ %
% c
l
% c % b
Ü
(MHUFLFLRV3URSXHVWRV6HFFLyQ & SDUD ¢ % & ~ " c " b "
&DOFXODU
³
 " ~ % c % b
³
& ~ c " b "c c "c  " ~ % c b % c %
³
&~
6ROXFLRQHV
l 4 6 l
% c % b
54
³
& ~ " c " b " % c % %
³
& ~ %
c " c "c b "c
³
& ~ %
% c %
76
% c % b
É É
5
c %c b % c
7
Cálculo Diferencial
'HULYDFLyQ,PSOtFLWD +DVWDHOPRPHQWRVHKDQGHULYDGRIXQFLRQHVH[SOtFLWDVHVGHFLUIXQFLRQHVGHOD IRU IRUPD & ~ ²%³ $KR $KRUDVH VHGHU GHULYDUiQ UiQIXQF IXQFLLRQHV QHVLPS LPSOtFLWDVH VHVVGHF GHFLUI UIX XQFL QFLRQHV QHVHQ HQ ODVFXDOHVOD ODVFXDOHVODYDULD YDULDEOHGH EOHGHSHQGLH SHQGLHQWH QWH& QRDSDUHFHG QRDSDUHFHGHVSHMD HVSHMDGD GD 6RQIXQFLRQHVH[SOtFLWDV ¢
³ & ~ % c % b
l
% c ³ & ~ c % ³ & ~
:n ;
% c ²% c ³ c %
6RQIXQFLRQHVLPSOtFLWDV ¢
³ % b & ~ % % c & b ³ %& c %& ~ % % c &
³ % c &
!
~ c %&
3DUD GHULYDU IXQFLRQHV LPSOtFLWDV VH XVD HO SURFHVR GH GHULYDFLyQ LPSOtFLWD TXH FRQV FRQVLV LVWH WH HQ GHUL GHULYD YDU U WDQW WDQWR R OD YDUL YDULDE DEOH OH % FRPR FRPR OD YDUL YDULDE DEOH OH & XVDQ XVDQGR GR ODVUHJ ODVUHJOD ODVGH VGH GHULYDFLyQ\DFRQRFLGDV\FDGDYH]TXHVHGHULYHODYDULDEOH GHULYDFLyQ\DFRQRFLGDV\FDGDYH]TXHVH GHULYHODYDULDEOH & HVGHFLUODYDULDEOH GHSHQGLHQWHVHGHEHDJUHJDU
& %
(MHPSORV
²³ ²³ % b & ~ % % c & b 6ROXFLyQ
% b & ~ % c & b ¬ % b & &
& & ~ c ¬ % %
& & & b ~ c % ¬ ²& b ³ ~ c % ¬ % % %
& c % Ü ~ % & b
É É
derivadas de funciones
²³ ²³ %& c % & ~ % c & 6ROXFLyQ &
&
%& c % & ~ % c & ¬ ²& b % % ³ c ²%& b % & % ³ ~ % c %
& & & c % & b ~ % c & b %& ¬ % % %
& & % c & b %& ²% c % & b ³ ~ % c & b %& ¬ ~ Ü % % % c % & b
(MHUFLFLRV3URSXHVWRV6HFFLyQ 2EWHQHU
& SDUD ¢ %
³
% b & b ~ % c &
³
% b & c ~ & c %c b
³
% & b % ~ %& c &
³
%&c c & b ~ %c & c %c
6ROXFLRQHV
³
& c % ~ % & b &
³
& %c c % ~ % c &c c
³
& % & c %& c % ~ % % c % & b &
³
& %c c %c & c & c ~ % c %&c c & c %c &
'HULYDGDGH)XQFLRQHV([SRQHQFLDOHV\/RJDUtWPLFDV
³ 6L & ~ " FRQ " ~ "²%³ HQWRQFHV & " ~ " h h % %
É É
& ¬ %
Cálculo Diferencial
!
³ 6L & ~ " FRQ " ~ " % HQWRQFHV & " ~ " h % % ³ 6L & ~ " FRQ " ~ "²%³ HQWRQFHV & " ~ h h % " % ³ 6L & ~ " FRQ " ~ "²%³ HQWRQFHV & " ~ h % " % % (MHPSORV
& SDUD ¢ % ²³ ²³ & ~ % c % 2EWHQHU
6ROXFLyQ & ~ % c %
¬
! !
& ~ % c % % c Ü %
6 l 7
²³ & ~ % b
%c
6ROXFLyQ
6 l 7 l l
& ~ % b
%c ¬
b
¬
l : l ;
& ~ b % % b % c
& ~ % % b
%c %c
Ü
²³& ~ ² c %³ 6ROXFLyQ
!
& ~ c % ¬ ¬
!4
& ~ % c %
& % ~ c Ü % c %
É É
c %
5
%c
derivadas de funciones
l
%b %b ²³ ²³ & ~ ²% b ³
6ROXFLyQ
l
l
%b &~ ~ ¬ % b ²²% b ³³
& ~ %
%b
! : l l ; !! 6 l 78 !
%b
h
%b
% b c
%b
% b h
²²% b ³³
%b
9
Ü
!!
'HULYDFLyQ/RJDUtWPLFD +DVWD HO PRPHQWR VH KDQ GHULYDGR H[SUHVLRQHV GH OD IRUPD & ~ % y & ~ % HVGHFLUH[SUHVLRQHVHQODVFXDOHVODEDVHRHOH[SRQHQWHGHXQDSRWHQFLD VRQYDULDEOHV$KRUD VRQYDULDEOHV$KRUDVHGHULYDUiQH[SUH VHGHULYDUiQH[SUHVLRQHVHQODVFXDOH VLRQHVHQODVFXDOHVWDQWRODEDVHFRPR VWDQWRODEDVHFRPRHO HO H[SR H[SRQH QHQW QWH H VRQ VRQ YDUL YDULDE DEOH OHV V 3DUD 3DUD HVWH HVWH WLSR WLSR GH H[SU H[SUHV HVLR LRQH QHV V VH XVD XVD OD GHULYDFLyQ (VWH HVWL HVWLOR OR GH GHUL GHULYD YDGD GD FRQV FRQVLV LVWH WH HQ DSOL DSOLFD FDU U D OD IXQF IXQFLy LyQ Q GDGD GDGD OD ORJDUtWPLFD (VWH IXQFLyQORJDULWPRQDWXUDO\UHFRUGDUODVLJXLHQWHSURSLHGDG ¢ % ~ % 'HVSXpVTXHVHDSOLFDHVWDSURSLHGDGVHGHULYDHQIRUPDLPSOtFLWD (MHPSORV 2EWHQHU
& SDUD ¢ %
²³ ²³ & ~ %% 6ROXFLyQ
& ~ %% ¬ ° & ~ %% ¬ & ~ % % ¬
!
& & % b & ~ % b % h ¬ ~ ¬ ~ & % b Ü & % % % % & ²³ % & ~ & % 6ROXFLyQ
%& ~ &% ¬ ° %& ~ &% ¬ & % ~ % & ¬
É É
Cálculo Diferencial
& & % & & % b ~ & b ¬ ~ % % & % %
& % % % c & & c
Ü
(MHUFLFLRV3URSXHVWRV6HFFLRQHV\ 2EWHQHU
& SDUD ¢ %
³
& ~ % c %
³
& ~
³
& ~ % c %
³
& ~ %
³
&~
6l 7 4 5 6l 7 l % b b %
%b
²% c ³ ³ % b
³
%& b & ~ % b &
³
²% b &³ b %& ~ & c %
³
! ! %b&
6ROXFLRQHV
&
~ &
%
!4
5 : 4l 5 ; : l 5 8 9 4 6l 7 !
³
& ~ % c % %
³
& ~ %
³
& ~ %
³
& ~ % %
% c
% b b %
% c %
% c %
% %b b %b
É É
;
b % % b
derivadas de funciones
³ & ~ %
³
³
³
!8
% c
% c
9l
! l : l ; 8 l 9
% b c % c
c & %& & % ~ % % %& b c & & ~ %
c
% b
c c & %& % %b&
!4 5 !
b % %& c & %b& & & c & %b& ~ & % % % b & b c %b& &
!
'HULYDGDGH)XQFLRQHV7ULJRQRPpWULFDV
³ 6L & ~ " Á FRQ " ~ "²%³ HQWRQFHV & " ~ " h % %
!
³ 6L & ~ " Á FRQ " ~ " % HQWRQFHV & " ~ c " h % %
!
³ 6L & ~ ! " Á FRQ " ~ " % HQWRQFHV & " ~ " h % % ³ 6L & ~ ! " Á FRQ " ~ "²%³ HQWRQFHV & " ~ c " h % %
!
³ 6L & ~ " Á FRQ " ~ " % HQWRQFHV É É
% b
% b
Cálculo Diferencial
& " ~ " h ! " h % %
!
³ 6L & ~ " Á FRQ " ~ " % HQWRQFHV & " ~ c " h ! ! " h % % (MHPSORV 'HWHUPLQH
& SDUD %
²³ & ~ % b % % c !% 6ROXFLyQ
& ~ % % b % % c !% !% & %
¬
! !
~ ² ²² ²%³ %³³³ c ² ²% %³³ c % % ¬
& ~ ²%³ ²%³ c ² ²%³ %³ c % % Ü % ²³ & ~ !²% !²% c ³ 6ROXFLyQ
4 !5 ! ! ! !
& & ~ ! % c ¬ ~ c % c % & ¬ ~ c % c % c Ü %
% c
(MHUFLFLRV3URSXHVWRV6HFFLyQ ³
& SDUD ¢ % & ~ % b % % b ! ! %
³
& ~ ²% c ³
³
& ~ !
'HWHUPLQH
l
b % b
l
% b %
6ROXFLRQHV
³
& ~ % c % % c % % %
É É
derivadas de funciones
³
4
5 4 54 5 rt 6 l 7 6 l 7 l : l ; s l
& ~ % % c %
& ³ ~ %
! % c
b % b%
% c
% b %
b
!
& ~ %
l
c "
h
" %
!
³ 6L & ~ ( ! " Á FRQ " ~ " % HQWRQFHV & " ~ h % b " %
!
³ 6L & ~ ( " Á FRQ " ~ " % HQWRQFHV & ~ % "
l
" " c % h
!
³ 6L & ~ ( " Á FRQ " ~ " % HQWRQFHV & ~ c %
l
c "
h
" %
!
³ 6L & ~ ( ! " Á FRQ " ~ " % HQWRQFHV & " ~ c h % b " %
!
³ 6L & ~ ( " Á FRQ " ~ " % HQWRQFHV
É É
% b % ²% b ³
% b %
'HULYDGDGH)XQFLRQHV7ULJRQRPpWULFDV,QYHUVDV
³ 6L & ~ ( " Á FRQ " ~ " % HQWRQFHV
uw v
Cálculo Diferencial
l
& ~ c % "
" " " c % h
(MHPSORV 'HWHUPLQH
& SDUD ¢ %
!
!
²³ ²³ & ~ ( ( % b ( (! ! % 6ROXFLyQ
!
!
& ~ ( % b (! % ¬ & ~ %
l
c %
²³ & ~ (
& ~ %
% Ü b %
b
l
% b ¬ b ²% ³ c ²%³
l
c % b %( ( ! %
6ROXFLyQ
l l n 6l 7 l
c % b % ( ( ! % ¬
& ~ ( & ~ %
%
c
c %
c %
c
& ~ c %
c %
b % ( ! % b
b % ( ! % b
% % b %
(MHUFLFLRV3URSXHVWRV6HFFLyQ ³
& SDUD ¢ % & ~ ( ! % % b ( ! % %
³
& ~ ( %
³
& ~ ( ( % c ! %
2EWHQHU
4
4 5
5
!
!
6ROXFLRQHV
³
% % b %
& % ~ c % b % b %
É É
!
!
Ü
¬
derivadas de funciones
4
³
& ~ ( % %
³
& ~ c %
5 : l ;
c
% c
%
c % c ²% ²% c ! %³
l
'HULYDGDVGH2UGHQ6XSHULRU
! !
/D IX IXQFLyQ & ~ % HV HV WD WDO T TX XH VVLL OD OD GHULYDPRV R RE EWHQHPRV R RWWUD IXQFLyQ Z ²%³ TXH GHSHQ GHSHQGH GH GH % SRU SRU OR WDQW WDQWR R VHSXHGH VHSXHGH YROYH YROYHU U D GHULY GHULYDU DU \DVtREWHQH \DVtREWHQHU U OD VHJXQGD GHULYDGD ¢
Z Z
& % ~ 3H 3HURDV DVX XYH YH] %
Z Z
!
% HVWD WDPELpQXQ XQDIX IXQFLyQOX OXHJR
HV SRVLEOH GHULYDUOD \ DVt REWHQHU OD WHUFHU WHUFHUD D GHULYDG GHULYDGD D¢
!
ZZ Z
!
& \ DV t % ~ %
VXFHVLYDPHQWH (Q JHQHUDO VL & ~ % WLHQH GHULYDGDV HQWRQFHV OD c pVLPD GHULYDGD R GHUL GHULYD YDGD GDG GH HRU RUGH GHQ QÁ VHUi VHUi ¢
!7
6 !
² c ³ % & ~ ²³ % ~ % %
(MHPSORV ²³ &DOFXOHKDVWD &DOFXOHKDVWDODGH ODGHULYDGD ULYDGDGHRUG GHRUGHQ HQ SDUD& ~ % c % b % 6ROXFLyQ
& ~ % c % b % ¬ & ~ % % c % b ¬ % & ~ % % c ¬ % & ~ % ¬ % & ~ ¬ % & ~ Ü %
É É
Cálculo Diferencial
& ²³ 2EWHQHU SDUD & ~ ²% c %³ % 6ROXFLyQ
& ~ ²% c %³ ¬ & ~ ² ²% % c %³²% ²% c ³ ¬ % & ~ ²% ²% c %³² %³²% % c ³ b ²% ²% c %³²% ²% ³ Ü %
(MHUFLFLRV3URSXHVWRV6HFFLyQ ³ 'HWHUPLQDUO 'HWHUPLQDUODVGHUL DVGHULYDGDVK YDGDVKDVWDGH DVWDGHRUGHQ RUGHQ GH& ~ % c % b % c % & ³ 2EWHQHU SDUD % ³ & ~ ²% c %³ ²%³
³ & b % ~ %&
6ROXFLRQHV
& ~ % c % b % c % & ~ % % c % % b % & ~ % % c % & ~ % % % ~ % % % ~ ~ % %
³
³ & ³ %
~ ²%³ c ²% c ³ ² ²%³ c ²% c %³ ²%³
& ³ ~ %
8 9 ! ! ! !
& %
c % c & c c %
$SOLFDFLRQHVGHOD'HULYDGD *UiILFRGH&XUYDV
É É
c
derivadas de funciones
&RQFHSWRV D9DORUHVH[WUHPRV
!
6HD & ~ % XQD IXQFLyQ GH G HILQLGD HQ XQ X Q FL F LHUWR LQ L QWHUYDOR , GRQGH % ~ , HQWRQFHV ¢
! !
! !
! ! ! !
³ HV HO PtQLPR GH % HQ , VL \ VyOR VL % Á D % , ³ HV HO Pi[LPR GH % HQ , VL \ VyOR VL % Á D % , E9DORUFUtWLFR
! ! !
!
!!
6L & ~ % HV HV XQ XQD IX IXQFLyQ TX TXH H[ H[LVWH SD SDUD % ~ HQ HQWRQFHV VH VH GL GLFH XQ XQ YDORU Z FUtWLFR GH % VL \ VyOR VL ~ (O SXQWR Á VH GHQRPLQD SXQWR FUtWLFR GH % À F ,QWHUYDORVGHFUHFLPLHQWR\RGHFUHFL ,QWHUYDORVGHFUHFLPLHQWR\RGHFUHFLPLHQWR PLHQWR
!
6L & ~ % HV XQD IXQFLyQ GHI GHILQLGD HQ XQFL FLHUWR LQWHUYDOR , HQWRQFHV ¢
! !
! !
³ HV FUHFLHQWH HQ , § VL \ VyOR VL Z % Á D % , ³ HV GHFUHFLHQWH HQ , ¨ VL \ VyOR VL Z % Á D % , G&RQFDYLGDG
!
6L & ~ % HV XQD IXQFLyQ GHILQLGD HQ XQ FLHUWR LQWHUYDOR , \ DGHPiV HV GHULYDEOHHQ,HQWRQFHV ¢
³ HV FyQFDYDKDFLDDUULED HQ , ² r ³ VL \ VyOR VL Z H V FUHFLHQWH HQ , ³ HV FyQFDYDKDFLDDEDMR HQ , ² q ³ VL\ VyOR VL Z H V GHFUHFLHQWH HQ , H9DORUGHLQIOH[LyQ
6L & ~ ²%³ HV XQD IXQFLyQ GHILQLGD HQ XQ FLHUWR LQWHUYDOR , TXH H[LVWH SDUD % ~ HQWRQFHV VH GLFH XQ YDORU YDORU GH LQIOH[ LQIOH[LyQ LyQ GHO JUiILFR GH & ~ ²%³ VL \ VyOR VL ZZ ~ (O SXQWR Á ²³ VH GHQRPLQD SXQWRGHLQIOH[LyQ GHO JUiILFR GH À
!
!
I,QWHUYDORVGHFRQFDYLGDGKDFLDDUULED\KDFLDDEDMR
!
6HD 6HD& ~ % HV HVXQ XQD DIX IXQF QFLy LyQ QGH GHIL ILQL QLGD GDH HQ QXQ XQF FLLHUWR HUWRL LQW QWHU HUYD YDOR OR, , HQ HQWR WRQF QFHV HV ¢
É É
Cálculo Diferencial
! !
³ HV FyQFDYDKDFLDDUULED HQ , r VL \ VyOR VL ³ HV FyQFDYDKDFLDDEDMR HQ , q VL \ VyOR VL J9DORUHVPi[LPRV\RPtQLPRV
!
! !
ZZ
ZZ
% Á D % ,
% Á D % ,
!!
6L % ~ HV XQ YDORU FUtWLFR GH % HQWRQFHV HO SXQWR Á
HV XQ ¢
ZZ
³ Pi[LPRUHODWLYR GH VL \ VyOR VL ²³ ZZ
VL\Vy VyOR ORVL VL ² ³ À ³ PtQLPRUHODWLYR GH VL\ (MHPSORV 'HWHUPLQH 'HWHUPLQHSXQWRV SXQWRVFUtWL FUtWLFRV FRV LQWHUYDORV LQWHUYDORVGH GH FUHFLPLHQWR FUHFLPLHQWR \GH \ GH GHFUHFLPLHQW GHFUHFLPLHQWR R SXQWRV GHLQIOH[LyQLQWHUYD GHLQIOH[LyQLQWHUYDORVGHFRQFDYL ORVGHFRQFDYLGDGSXQWRV GDGSXQWRVGHPi[LPRV\RPtQL GHPi[LPRV\RPtQLPRV\JUiIL PRV\JUiILFR FR GH ¢
²³ ²³ ²%³ ²%³ ~ % c % b 6ROXFLyQ
²%³ ²%³ ~ % c % % b i 3XQWRVFUtWLFRV ¢ Z ²%³ ~ % c Z ²%³ ²%³ ~ ¬ % c ~ ¬ % ~ ¬ % ~ ²³ ²³ ~ c b ~ c
!
3XQWRFUtWLFR ¢ Á c
i ,QWHUYDORGHFUHFLPLHQWR\GHFUHFLPLHQWR ¢ ,QWHUYDOR 9DORUGHSUXHED 6LJQRGH Z % &RQFOXVLyQ
cB% Z
% bB Z
GHFUHFLHQWH
FUHFLHQWH
! !
!
§ ¢ µ Á b B ´ ¨ ¢ µ c BÁ ´ i 3XQWRGHLQIOH[LyQ ¢ ZZ
²%³ ²%³ ~
É É
derivadas de funciones
ZZ
²%³ ~ ¬ ~ 1RWDPRVTXH £ Á SRUORWDQWRÁ QRH[LVWHSXQWRGHLQIOH[LyQ
i ,QWHUYDORVGHFRQFDYLGDG ¢ &RPR Z Z ²%³ ~ Á HQWRQFHV HV VLHPSUH FyQFDYD KDFLD DUULED
i 3XQWRGHPi[LPR\RPtQLPR ¢ ZZ
²³ ~
!
!
/XHJR Á c HV XQ PtQLPR GH %
Ü % ²³ ²% ²%³ ~ c % 6ROXFLyQ
% ²% ²%³ ~ c % i 3XQWRVFUtWLFRV ¢ Z ²%³ ~
% c
É É
Cálculo Diferencial
Z ²%³ ²%³ ~ ¬ ² ²³ ~
% c ~ ¬ % ~ ¬ % ~ f
c ~ c
² c ³ ~ c
b~
! !
3XQWRVFUtWLFRV ¢ Á c  c Á
i ,QWHUYDORVGHFUHFLPLHQWR\GHFUHFLPLHQWR ¢ ,QWHUYDOR 9DORUGHSUXHED 6LJQRGH Z % &RQFOXVLyQ
!
cB% c c Z ² c ³
c % Z ²³
% bB Z²³
FUHFLHQWH
GHFUHFLHQWH
FUHFLHQWH
§ ¢ µ c BÁ c ´ r µ Á b B ´ ¨ ¢ µ c Á ´ i 3XQWRGHLQIOH[LyQ ¢ % ZZ ²%³ ~ ¬ % ~ ¬ % ~ ZZ
²%³ ~
²³ ~ 3XQWRGHLQIOH[LyQ ¢ ²Á ²Á ³
i ,QWHUYDORVGHFRQFDYLGDG ¢ %¬% %¬% r ¢ µÁ b B´ q ¢ µ c BÁ´
É É
derivadas de funciones
i 3XQWRGHPi[LPR\RPtQLPR ¢ ZZ
²³ ~ /XHJR ²Á c ³ HV XQ PtQLPR GH À
ZZ
! !
c ~ c
/XHJR c Á HV XQ Pi[LPR GH À
Ü (MHUFLFLRV3URSXHVWRV6HFFLyQ ³ 'HWHUPLQHSXQWRVFUtWLFRVLQWHUYDORVGHFUHFLPLHQWR\GHGHFUHFLPLHQWRSXQWRV GHLQIOH[LyQLQWHUYD GHLQIOH[LyQLQWHUYDORVGHFRQFDYL ORVGHFRQFDYLGDGSXQWRV GDGSXQWRVGHPi[LPRV\RPtQL GHPi[LPRV\RPtQLPRV\JUiIL PRV\JUiILFR FR GH ¢
³ ²%³ ²%³ ~ % b % c ³ ²%³ ~ c % b % b ³ ²%³ ~ % c % 6ROXFLyQ
³ ³
² c Á c ³
3XQWRV&UtWLFRV
É É
Cálculo Diferencial
,QWHUYÀGHFUHFLPLHQWR\RGHFUHFLP § ¢
¨ ¢
³
==
c Á b B c BÁ c
<<
3XQWR GH ,QIOH[LyQ
1R H[LVWH SXQWR GH LQIOH[LyQ
,QWHUYDOR GH &RQFDYLGDG
VLHPSUH HV FyQFDYD KDFLD DUULED
3XQWR GH Pi[LPR \R PtQLPR
² c Á c ³ HV XQ PtQLPR GH ²%³
3XQWRV&UtWLFRV
²Á ³
,QWHUYÀGHFUHFLPLHQWR\RGHFUHFLP § ¢
¨ ¢
==
c BÁ Á bB
<<
3XQWR GH ,QIOH[LyQ
1R H[LVWH SXQWR GH LQIOH[LyQ
,QWHUYDOR GH &RQFDYLGDG
VLHPSUH HV FyQFDYD KDFLD DEDMR
3XQWR GH Pi[LPR \R PtQLPR
² Á ³ HV XQ Pi[LPR GH ²%³
É É
derivadas de funciones
³
²Á c ³  ² c Á ³
3XQWRV&UtWLFRV
==
< = <
,QWHUY GH FUHFLPLHQWR \R GHFUHFLP § ¢ c BÁ c ¨ c Á 3XQWRGH,QIOH[LyQ
²Á ³
,QWHUYDOR GH& GH&R RQFDYLGDG
r ¢ q ¢
3XQWR GH Pi[LPR \R PtQLPR
²Á c ³ HV XQ PtQLPR GH ² c Á ³ HVXQPi[LPRGH
É É
==
<
r Á b B
<<
Á b B c BÁ
Cálculo Diferencial
³ 2EWHQJD DVtQWRWDV SXQWRV
FUtWLFRV LQWHUYDORV GH FUHFLPLHQWR \ GH GHFUHFLPLHQW GHFUHFLPLHQWRSXQWRVGHLQIOH[LyQ RSXQWRVGHLQIOH[LyQLQWHUYDO LQWHUYDORVGHFRQFDYLGDG RVGHFRQFDYLGDGSXQWRVGHPi[LPRV SXQWRVGHPi[LPRV \RPtQLPRV\JUiILFRGH²%³ ~
% b %c
6ROXFLyQ
i $VtQWRWDYHUWLFDO ¢ + +²³ ~ l c ¸¹ OLP
% ¦ c
% b ~ cB %c
Â
OLP
% ¦ b
3RU 3RU OR WDQWR % ~ HV XQD DVtQWRWD YHUWLFDO
i $VtQWRWDKRUL]RQWDO ¢ % b ~ OL P % ¦ B %c %¦B OLP
% b % % % c % %
~
3RU 3RU OR WDQWR & ~ HVX VXQD DVtQW VtQWR RWD KRU KRUL]RQW RQWDO
É É
% b ~ bB %c
derivadas de funciones
i 3XQWRFUtWLFR ¢
! ! ! ! ! ! ! ! !
% c c % b ~ c %c %c Z % ~¬ c ~ ¬ c ~ %c Z
% ~
)DOVR
/XHJRQRH[LVWHSXQWRFUtWLFR
i ,QWHUYDORGHFUHFLPLHQWR\GHGHFUHFLPLHQWR ¢ Z
! ! ! %c
&RPR % ~ c
Z
¬ % Á D % l c ¸¹
3RUORWDQWR 3RUORWDQWR HVGHFUHFLHQ HVGHFUHFLHQWHSDU WHSDUDFDGD DFDGD %
l c ¸¹
i 3XQWRGHLQIOH[LyQ ¢
ZZ
ZZ
! ! !! ! ! ! ! ! ! % ~
%c
% ~¬
b % c % c ~ ~ %c %c %c
%c
~ ¬ ~
)DOVR
1RH[LVWHSXQWRGHLQIOH[LyQ
i ,QWHUYDORGHFRQFDYLGDG ¢ ZZ % ¬ %c
! ! ! ! ! !
&RPR D % l HQWRQFHV SD S DUD TX T XH HO H O FX F XRFLHQWH VH V HD SR S RVLWLYR GH G HEHPRV WHQHU % c
%c
ZZ
¬ %c ¬ %
% ¬
%c
!
&RPR D % l HQWRQFHV % c
²% c ³ ¬ % c ¬ %
! !
% r ¢ µ Á b B´ % q ¢ µ c BÁ ´ É É
Cálculo Diferencial
i 0i[LPR\RPtQLPR &RPRQRH[LVWHSXQWRFUtWLFRHQWRQFHVQRKD\SXQWRVGHPi[LPRQLGHPtQLPR
3UREOHPDVGH$SOLFDFLyQGH0i[LPRV\R0tQLPRV 3URFHGLPLHQWR ¢
³ 5HDOL]DUXQGLEXMRHVTXHPiWLFR ³ $VLJQDUYDULDEOHVDFDGDXQDGHODVFDQWLGDGHVPHQFLRQDGDVHQHOSUREOHPD ³ (VWDEOHFHUXQDHFXDFLyQTXHUHSUHVHQWHORTXHVHGHVHDPD[LPL]DURPLQLPL]DU À 7UDQVIR VIRUP UPDU DU OD HFXD HFXDFL FLyQ yQ DQWH DQWHUL ULRU RU HQ XQD HFXD HFXDFL FLyQ yQ TXH GHSH GHSHQG QGH H GH XQD XQD VROD VROD ³ 7UDQ YDULDEOHXVDQGRWRGDODLQIRUPDFLyQGHOSUREOHPD 'HWHUPLQD LQDUHO UHOSXQW SXQWRFU RFUtWL tWLFRG FRGHOD HODHFX HFXDFL DFLyQH yQHQFRQ QFRQWUD WUDGDH GDHQ Q²³ (VWH (VWHYDO YDORUV RUVHUi HUiXQ XQ ³ 'HWHUP Pi[LP Pi[LPR R VL HO SUREO SUREOHP HPD D HV PD[LP PD[LPL]D L]DU U R XQ PtQL PtQLPR PR VL HO SUREO SUREOHP HPD D FRQV FRQVLVW LVWH H HQ PLQLPL]DU
É É
derivadas de funciones
(MHPSORV ²³ 8QDFD 8QDFDMD MDFHU FHUUD UDGD GDFRQ FRQXQD XQDEDV EDVHFX HFXDG DGUD UDGD GDGHE GHEHWH HWHQH QHUXQ UXQYRO YROXP XPHQ HQGH GH P (O PDWH PDWHUL ULDO DO GH OD SDUW SDUWH H GH HQFL HQFLPD PD \ HO IRQG IRQGR R GH OD FDMD FDMD FXHV FXHVWD WD SRUP SRUP \ HO PDWHUL PDWHULDOGHORVODGR DOGHORVODGRV V HOP HO P &DOFXODU &DOFXODUODVGLPHQ ODVGLPHQVLRQ VLRQHVGHODFDMD HVGHODFDMDFX\RFRV FX\RFRVWR WR GHFRQVWUXFFLyQHVPtQLPR 6ROXFLyQ
= ~ %& ¬ ~ % & ¬ & ~
! ! 8 9
%
* ~ % b %& ¬ * ~ % % b %& %& ¬ * ~ % b % * Z ~ % % c
¬ * ~ % b %c ¬
%
* Z ~ ¬ % c
n
%
~ ¬ % c ~ ¬ %
l
¬ % ~ ¬ % ~ &~ ~ ¬ &~ %
%~
l
l
l
/DV GLPHQVLRQHV GH OD FDMD VRQ ¢ EDVH
l
P \ D DOWXUD
l
P Ü
²³ 8QLPSUHVRUUHFLEHXQSHGLGRSDUDSURGXFLUXQFDUWHOUHFWDQJXODUTXHFRQWLHQH FP GHLPSU GHLPSUHVLy HVLyQUR QURGHD GHDGRG GRGHP HPiUJ iUJHQH HQHVGH VGH FPD FPDFD FDGD GDODG ODGR R FPHQ FPHQOD ODSDU SDUWH WH VXSHULR VXSHULRU\ U\ FP HQODSDUWH LQIHUL LQIHULRU¢&Xi RU¢&XiOHVVRQODV OHVVRQODVGLPHQV GLPHQVLRQ LRQHVGHOFDU HVGHOFDUWHO WHOPiV PiV HFRQyPLFR" 6ROXFLyQ
É É
Cálculo Diferencial
! !
% c & c ~ ¬ %& c % % c & b ~ ¬ %& %& c & ~ b % ¬
&²% c ³ ~ b % ¬ & ~
b % %c
8 9 ! !
b % ( ~ %& ¬ ( ~ % %c
% b % ¬(~ %c
! !
b % % c c % b % ( ~ ²% c ³ % c % % c Z ( ~ ²% c ³ % c % % c (Z ~ ¬ ~ ¬ % c % c ~ ¬ % ~ b ²% c ³ Z
6 l 7 l
b b &~
b
c
¬ & ~ b
l
l
/DV GLPHQVLRQHV GHO FDUWHO VRQ ¢ ODUJR b
l
FP \ DQFKR b
l
FP Ü
(MHUFLFLRV3URSXHVWRV6HFFLyQ ³ 8QDFDMDFHUUDGDFRQXQDEDVHUHFWDQJXODUHQODFXDOODDOWXUDHVHOWULSOHGHXQ GHORVOD GHORVODGR GRVEDV VEDVDO DOHV HVGHEH GHEHWHQ WHQHUXQ HUXQYROX YROXPH PHQGH QGH P (OPDWHU (OPDWHULD LDOGH OGHODSD ODSDUW UWHGH HGH HQFL HQFLPD PD \ HO IRQG IRQGR R GH OD FDMD FDMD FXHV FXHVWD WD À SRU SRU P \ HO PDWH PDWHUL ULDO DO GH ORV ORV ODGR ODGRVV À HOP HOP &DOFX &DOFXOD ODUODV UODVGLPH GLPHQVL QVLRQ RQHVGH HVGHODFDM ODFDMDFX\ DFX\RFRV RFRVWR WRGHFRQV GHFRQVWU WUXF XFFL FLyQ yQHV HV PtQLPR
É É
derivadas de funciones
³ &RQXQDPDOO &RQXQDPDOODGH DGHPWÀVHGHVHDFRQV VHGHVHDFRQVWUX WUXLUXQFR LUXQFRUUD UUDODSUR ODSURYHF YHFKDQ KDQGRXQD GRXQDSDUHG SDUHG ¢&XiOHVGHEHQVHUODGLPHQVLRQHVSDUDTXHHOiUHDVHDPi[LPDVLHOFRUUDOWLHQH IRUPDUHFWDQJXODU"
³ &RQ &RQXQ XQD DSO SODQ DQFK FKD DGH GH FP FPSR SRU UFP FPVH VHF FRQ RQVW VWUX UXLU LUi iXQ XQD DFD FDMD MD ¢& ¢&yP yPR RGH GHEH EHQ QVH VHU U ORVFRUWHVSDUDTXHHOYROXPHQGHODFDMDVHDPi[LPR"
³ 8Q UHFW UHFWiQ iQJ JXORWL XORWLHQ HQHH XQ SHUt SHUtPH PHWU WURGH RGH PW¢4 PW¢4Xp Xp ODUJR DUJR \ DQFK DQFKRGD RGD HO iUHD iUHD Pi[LPD"
³ /DGLIH /DGLIHUH UHQFL QFLDHQW DHQWUH UHGRVQ~P GRVQ~PHU HURVHV RVHV ¢&XiO ¢&XiOHV HVVRQOR VRQORVQ~P VQ~PHU HURVGH RVGHPRGR PRGRTXH TXH VXSURGXFWRVHDHOPHQRUSRVLEOH"
³ 6HGHVHDFRQVWUXLUXQGHSyVLWRHQIRUPDGHFLOLQGURFRQFDSDFLGDGPi[LPDSDUD OLWURV'HWHUPLQDUODVGLPHQVLRQHVFRQHOILQGHHPSOHDUODPtQLPDFDQWLGDGGH PDWHULDO
³ (QFRQWUDUODVGLPHQVLRQHVGHOUHFWiQJXORGHiUHDPi[LPDTXHSXHGHLQVFULELUVH HQXQ HQXQD DFL FLUF UFXQ XQIH IHUH UHQF QFLD LDGH GHUD UDGL GLR R ³ 8QD 8QD YHQW YHQWDQ DQD D QRUP QRUPDQ DQGR GR WLHQ WLHQH H OD IRUP IRUPD D GH XQ UHFW UHFWiQ iQJX JXOR OR FRUR FRURQD QDGR GR SRU SRU XQ VHPL VHPLFt FtUF UFXO XOR R (QFR (QFRQW QWUD UDU U VXV VXV GLPH GLPHQV QVLR LRQH QHV V VL HO SHUt SHUtPH PHWU WUR R HV GH SLHV SLHV \ VX iUHD iUHD GHEHVHUODPi[LPDSRVLEOH
³ &DOFXODUHOiUHDPi[LPDGHOUHFWiQJXORTXHWLHQHVXEDVHLQIHULRUVREUHHOHMH ? \VXVRWURVGRVYpUWLFHVHQODFXUYD& ~ c % ³ &RQXQDODPEUHG &RQXQDODPEUHGH HFPVHFRQVWUX FPVHFRQVWUX\HX \HXQFXDGU QFXDGUDGR\ DGR\XQFt XQFtUFXOR UFXOR¢&yPRK ¢&yPRKDGH DGH FRUWDUVHHODODPEUHHQGRVSDUWHVSDUDTXHODVXPDGHVXVDUHDVVHDPi[LPD" 6ROXFLRQHV
n
n
³
/DUJR
³
/DUJR PW Â $QFKR PW
³
&RUWHV FXDGUDGRV GH Á FP d Á FP
³
/DUJR PW Â $QFKR PW
³
1~PHURV c &
$QFKR
É É
$OWR
n
Cálculo Diferencial
³
5DGLR ~
n
 $OWXUD ¢ ~
l
³
(VXQFXDGUDGRGHODGR
³
5DGLRVHPLFLUFXQIHUHQFLD /DUJR UHFWiQJXOR $QFKR UHFWiQJXOR
o 8 9
b ~ b ~ b
~
³
(Oi (OiUH UHD DPi Pi[LP [LPD DGH GHO OUH UHFW FWiQ iQJX JXOR ORH HV V ² XQLGDG XQLGDGHV HVGH GHi iUHD UHD³À
³
&RUWH SDUD FXDGUDGR
²³ b
)RUPDV,QGHWHUPLQDGDV
!
!
!
!
&RUWH SDUD FtUFXOR
!
b
!! !!
% ³ 6L OLP % ~ \ OLP % ~ HQWRQFHV OLP DGTXLHUH %¦ %¦ %¦ % ODIRUPDLQGHWHUPLQDGD À % ³ 6L OLP % ~ B \ OLP % ~ B HQWRQFHV OLP DGTXLHUH %¦ %¦ %¦ % B ODIRUPDLQGHWHUPLQDGD À B 5HJODGH/+RSLWDO
³ 6XSRQJD TXH HQWRQFHV
!!
%¦ % OL P %¦ %
³ 6XSRQJD TXH HQWRQFHV
OLP
OLP
!!
%¦ % OL P %¦ %
!
!
!!
!
!!
Z % % ~ Á OLP % ~ \ OLP ~3 Á %¦ % ¦ Z % Z % ~ OL P ~3 % ¦ Z %
!
!!
Z % % ~ B Á OLP % ~ B \ OLP ~3 Á %¦ % ¦ Z % Z % ~ OL P ~3 % ¦ Z %
!!
É É
derivadas de funciones
/D 5HJOD GH /+RSLWDO WDPELpQ HV YiOLGD VL % ª c B v % ª b B HV GHFLU
!!
\
!!
\ VL
% B ³ 6L OLP ~ %¦ cB % B ²%³ OLP ~3 % ¦ c B ²%³ % B ~ B %¦ bB % ²%³ OLP ~3 % ¦ b B ²%³ ³ 6L
OLP
VL
!!
Z % OLP ~ 3 HQWRQFHV % ¦ c B Z %
!!
Z % ~ 3 HQWRQFHV % ¦ b B Z % OL P
(MHPSORV
% c % ²³ &DOFXOH OLP % %¦
6ROXFLyQ
% c % OLP ~ % %¦ $SOLFDQGRODUHJODGH/+RSLWDO
89
% c % % c % 3Z/ OLP ~ OLP ~ c ~ % %¦ %¦
89
% c % 3RUOR 3RUORWDQ WDQWR WR OLP ~ % %¦
Ü
² b ³ c ²³ 2EWHQJD OLP ¦ 6ROXFLyQ
! !
b c OLP ~ ¦
!
b c 3Z/ b OLP ~ OLP ~ ¦ ¦ ~
!
b c 3RUORWDQWROLP ~ Ü ¦
É É
Cálculo Diferencial
2WUDV)RUPDV,QGHWHUPLQDGDV D h B Á B c B (QHVW (QHVWRVF RVFDV DVRVV RVVHW HWUD UDQVI QVIRUP RUPDO DODH DH[SU [SUHV HVLyQ LyQD D /+RSLWDO (MHPSORV
²³
&DOFXOH &DOFXOH OLP
%¦B
% h
B y \OX \OXHJ HJRV RVHD HDSO SOLF LFDO DODU DUHJ HJOD ODGH GH B
67
%
6ROXFLyQ
OLP
%¦B OLP
%¦B
67 67 67
% h % h
OL P
%
%¦B
~Bh
%
67
~
%
OLP
%
%¦B
%
Z
~ 3 / OLP %¦B
3RUOR 3RUORWDQ WDQWR WR OLP OLP
%¦B
% h
67
%
c
%
~
67
% %
c %
~
OLP
%¦B
67
%
~
~ Ü
²&DOFXOHOLP ² % c ! %³ %¦ 6ROXFLyQ
OLP
%¦
² ² % c ! ! %³ ~ B c B
² % c ! %³ ~ OLP %¦ %¦ OLP
8
% c % %
c % 3Z/ c % ~ OLP ~ c % % %¦ %¦ OLP
3RUOR 3RUORWDQ WDQWR WR OLP OLP
%¦
!
% c ! % ~ Ü
É É
9
~ OLP %¦
c % ~ %
derivadas de funciones
E Â B Â B Â B
3DUD 3DUD HVWR HVWRV V FDVRV FDVRV SULPH SULPHUR UR VH GHEH GHEH KDFH KDFHU U XVR XVR GH OD IXQF IXQFLy LyQ Q ORJD ORJDUL ULWP WPR R QDWX QDWXUD UDO O \ UHFRUGDUODSURSLHGDG ~ h (MHPSOR
²³ &DOF &DOFXO XOH H OLP OLP %¦
b% %
!
6ROXFLyQ
b % % ~ B
! !
OLP
%¦
6HD & ~ b % % OXHJR OLP & ~ OLP b % % %¦ %¦
3RU RWUR ODGR VL QDWXUDOVHWLHQH ¢
!
&~
b % % HQWRQFHV DSOLFDQGR OD IX I XQFLyQ OR O RJDULWPR
!
& ~ b% %
! ! ! !
°
& ~ b % % & ~ & ~
h b % %
b % %
!
3RUORWDQWR OLP & ~
%¦
b % ~ % %¦ OLP
!
b%
b % Z ~ 3 / OLP % %¦ %¦ OLP
~
& ³ ~ ¬ OLP & ~ ~ %¦ %¦
OLP & ~ ¬ ²OLP
%¦
3RUO 3RUOR RWD WDQW QWR R OLP OLP ² b %³ % ~
%¦
Ü
É É
Cálculo Diferencial
(MHUFLFLRV3URSXHVWRV6HFFLyQ &DOFXOHORVVLJXLHQWHVOtPLWHV
% c % ³ OLP % %¦
! l l l l l l l l ! 67 !
c &b ³ OLP & &¦ ³
³
³
OLP
%¦ OLP
%¦ OLP
%¦
c
%b
%
% c % % c %
c% % c
%
OLP % b ! % %¦ ³
³
³
³
OLP
%¦B
OLP
%¦
¦B
¦B
6ROXFLRQHV
³
³
OLP
%¦
%
% c ²% c ³
OLP
OLP
% h !
8 9 b
8
b b
9
% c %
%
~
89
c ²& b ³ OLP ~ c & &¦
É É
derivadas de funciones
³
³
³ ³ ³
³
³
³
OLP
%¦ OLP
%¦ OLP
%¦
l l l l l l l l c
%b
%
% c % % c %
l
%
~
OLP
² % b ! %³ %³ ~
OLP
% h !
%¦ %¦B
67
%
~
c% % c
~ c
~
OLP ²% c ³ ²% c ³ ~ %¦
OLP
¦B
OLP
¦B
~
8 9 l 8 9 l b
b ~ b
É É