Calculation of Water Demand
Expected Population after
30
Average Rate of Water Supply / apita
=
61400
=
13!
Water re"uired for a#ove purpo$e$ for %&ole to%n = ' 61400 x 13! ( = =
ndu$trial eand
)*+), -. 0*6 -.
Fire Requirement :
It can be assumed that city is a residential town ( Low Rise Buildings ) Water for 2ire
100
= 100 x
! 10
61*4
10
3
-3
-. = 0*) -.
Average aily ily raft =
' )*+), 0*6 ( =
)*)), -.
-ax -axiu iu ail aily y raft raft =
' 1*! 1*! x )*)), *)), ( =
13*3 13*334 34 -. -.
oincident raft = -axiu aily raft 2ire eand = ' 13*334 0*) ( = 14*114 -. ( Considering Draft < Maximum ourly Draft ) Design Capacity For Various Components
nta5e nta5e Struc Structur turee aily aily raft raft = 13*334 13*334 -. -. Pipe Pipe -ai -ain n = -axiu -axiu ai aily ly raf raftt = 13*3 13*334 34 -. -. 2ilter$ and t&er t&er 7nit$ 7nit$ at 8reatent 8reatent Plant 9 = = .ift Pup 9
= =
+ x Average aily eand ' + x )*)), ( =
1*) -.
+ x Average aily eand ' + x )*)), ( = 1*) -.
Physical & Chemical tandards !f Water Water S.No.
Characteristics
Acceptable
Cause for Rejection
1 +
8ur#idity ' 7nit$ on :*8*7* Scale ( olour ' 7nit$ on Platinu o#alt Scale (
+*! !
10 +!
3
8a$te ; dour
7no#
7no#
4 ! 6
P 8otal i$$olved Solid$ ' g / . ( 8otal ardne$$ ' g / . a$ Ca C! 3 (
) , 10 11 1+
600
&loride$ ' g / . a$ C * ( Sulp&ate$ ' g / . a$ ! + (
+00 +00
1000 400
2luoride$ ' g / . a$ F ( >itrate$ ' g / . a$ , ! 3 (
1
1*!
4!
4!
! 30
+00 1!0
0*1 0*0! 0*0!
1 0*! 1*!
!
1!
0*001 0*+
0*00+ 1
0*01
0*3
0*0! 0*01 0*0! 0*0! 0*1 0*01 0*001 0*+
0*0! 0*01 0*0! 0*0! 0*1 0*01 0*001 0*+
3 30
3 30
16 1 1)
P&enolic opound$ ' g / . a$ Phenol ( Anionic etergent$ ' g / a$ %. (
1, +0 +1 ++ +3 +4 +! +6 + +) +,
6*! to ,*+ 1!00
+00
alciu ' g / . a$ apacity ( -agne$iu ' g / . a$ %g ( ron ' g / . a$ Fe ( -angane$e ' g / . a$ % n ( opper ' g / . a$ C u ( ?inc ' g / . a$ n (
13 14 1!
*0 to )*! !00
-ineral il ' g / . ( "!#$C % % "'R$( Ar$enic ' g / . a$ s ( adiu ' g / . a$ Cd ( &roiu ' g / . a$ exavalent Cr ( yanide$ ' g / . a$ C / , ( .ead ' g / . a$ P 0 ( Seleniu ' g / . a$ e ( -ercury ' g / . a$ 1g ( Polynuclear Aroatic ydrocar#on$ ' g/. ( RD$! C"$V$") @ro$$ Alp&a Activity in pico urie ' i / . ( @ro$$ Beta Activity ' i / . (
Comparison of 2ien Data & tandard Data and "reatment Proposed S.No.
Particulars
Actual Standard
Difference
1
p
*!
+
8ur#idity
!0
+*!
4*!
larifier ; Rapid Sand 2iller
3
8otal ardne$$
!!0
+00
3!0
Softening
4
&loride$
+00
+00
0
D
! 6
ron -angane$e
+*! 3*!
0*1 0*0!
+*4 3*4!
Aeration Aeration
ar#onate
110
0
110
Softening
)
-P>
3*!
0
3*!
&lorination
*0 to )*! 0*+! ence C*
Treatment Proposed
>ot >ece$$ary
Design of $nta4e Well
e$ign riteria 9 S*>o* 1
Particular$ etention 8ie / Period
+
iaeter of Well
3 4
ept& of Well elocity of 2lo%
!
>u#er of 7nit$
6
2ree Board
alue$ !*0 to 10 inute$ !*0 to 10
' -axiu =
4*0 to 10 0*6 to 0*, / $ec* 1 to
3
' -axiu =
!
e$ign A$$uption$ 9 @iven 2*S*.* -iniu R*.* @iven invert of gravity ain
= = =
+ +) +4
etention 8ie
=
10 inute$
e$ign alculation$ 9 2lo% of Water Re"uired = =
1! (
13*334 -. / 3600 x +4 0*1!43 3 / $ec*
olue of Well = 0*1!43 x 10 x 60 = ,+*!) F ro$$D$ectional Area of nta5e Well = ' ,+*!) / 4 ( = +3*1! G iaeter of nta5e Well = +3*1! x 4 H d= !*43 I 10 ' *C* ( ence iaeter of nta5e Well = !*43 J Suary 9 S*>o* 1 +
Particular$ >u#er of nta5e Well$ iaeter of nta5e Well
alue$ 1 7nit !*!
3 4
eig&t of Wall R*.* of #otto of Well
4*0 +4
!*!
4 (
Design of Pen toc4 & .ell %outh trainer
a( Pen toc4 8&e$e are t&e Pipe$ provided in nta5e Well to allo% %ater fro %ater #ody to inta5e %ell* 8&e$e pen $toc5$ are provided at different level$K $o a$ to ta5e account of $ea$onal variation in %ater level 'a$ *2*.K W*.*K .*W*.*(* 8ra$& rac5$ of $creen$ are provided to protect t&e entry $iLea#le t&ing$ %&ic& can create trou#le in t&e pen $toc5* At eac& level ore t&an one pen $toc5 i$ provided to ta5e account of any o#$truction during it$ operation$* t&e$e pen $toc5$ are regulated #y valve$ provided at t&e top of inta5e %ell$*
#( Design Criteria elocity t&roug& Pen Stoc5 iaeter of eac& Pen Stoc5
= 0*6 to 1*0 / $ec* = .e$$ t&an 1
>u#er of Pen Stoc5 for eac& nta5e Well
=
+ no$*
=
1 no$*
>u#er of Pen Stoc5 for eac& .evel
=
+ no$*
elocity / S area of eac& Pen Stoc5
= 0*! / $ec* = 0*1!43 / ' 0*! x + ( = 0*103 5
c( Design Calculation >u#er of nta5e Well
iaeter
d
"rea 4
0*103 x 4 H
=
0*36++ J 0*4 'Say(
d( ummary S*>o* 1 + 3
Particular$ >u#er of Pen Stoc5 / Well At Eac& .evel iaeter of Pen Stoc5
Design of .ell %outh trainer : a( Design Criteria elocity of 2lo% ole iaeter Area of Strainer
alue$ + 7nit$ 1 0*40
= = =
#( ssumptions elocity of 2lo% ole iaeter
0*+ to 0*3 / $ec* 6*0 to 1+*0 +
= 0*+! / $ec* = 10*0
c( Calculation Area of Eac& ole =
d
4
+
' 10 x 10 ( x H 4
= 0*, c 5
Area of ollection = Area of Pen Stoc5 0*1!43 = 0*)!0 x > ' 0*+! x + ( 0*1!43 1 > = ' 0*+! x + ( 0*)!0 Area of Strainer = + = + x 3,31*+ x 0*)! iaeter of Bell -out& Strainer =
d +
4
iaeter = d = Provide iaeter of
0*,0
=
3,31*+
=
611*,)
H x d +
4
=
611*,) c 5
' 611*,) x 4 ( = ))*6 c H for Bell -out& Strainer* Regulating #al$es
Manhole
%&'&L& +*0 Bell Mouth 'trainer
3*0 L&&L& +6*0
*ra$ity Main !*! Bottom R&L& +4
ection
Plan
Design of 2raity %ain
a(
2raity %ain
8&e @ravity -ain connect$ t&e nta5e Well to t&e :ac5 Well ; %ater flo%$ t&roug& it #y gravity* 8o $ecure t&e greate$t econoyK t&e diaeter of a $ingle pipe t&roug& %&ic& %ater flo%$ #y gravity $&ould #e $uc& t&at all t&e &ead availa#le to cau$e flo% i$ con$ued #y friction* 8&e availa#le fall fro t&e inta5e %ell to t&e
u#er of @ravity -ain = >u#er of nta5e Well A$$uption elocity c( Design Calculation R*** ircular Pipe i$ u$ed* 2or t&i$ onduit elocity ' A$$ued ( Area of onduit re"uired
n=
+
N
# n ' R
ere R =
#
+
+
4
3
3
Area Perieter
R
n
+
+
1
n
0*0 / $ec*
= 0*++04 5
0*++04 x 4 H
iaeter = d =
0*6 to 0*, / $ec* 1 no$*
= 0*1!43 / ' 0*0 ( = 0*++04 5 4
#
= =
0*013 = 0*0 / $ec*
H x d +
7$ing -anningO$ 2orula D
0*3 to 1*0
=
'A = M / (
iaeter of t&e conduit N
=
R
3
= 0*!3 J
1
' +
0* x 0* x 0*013 x 0*013 ' 0*!! / 4 (
Hxx 4
100 = 0*11 )! R*.* of @ravity -ain = ' + D 3 ( = R*.* of @ravity -ain at :ac5 Well = d( ummary S*>o* Particular$ 1 >u#er of @ravity nta5e + iaeter of @ravity nta5e 3 nvert .evel at nta5e Well 4 nvert .evel at :ac5 Well
0*!!
+63
1 Hx
=
=
0*00116
=
11*66)4 x 10
S = 1 9 )! 0*!! = 4 4
ead .o$$ =
+4*0 ' +4 D 0*11 ( = alue$ 1 7nit$ 0*!! +4*0 +3*))
+3*))3
-+
Design of 7ac4 Well
a(
7ac4 Well
8&i$ $tructure $erve$ a$ a collection of t&e $up %ell for t&e incoing %ater fro t&e inta5e %ell fro %&ere t&e %ater i$ puped t&roug& t&e ri$ing ain to t&e variou$ treatent unit$* 8&e unit i$ ore u$eful %&en nu#er of inta5e %ell$ are ore t&an oneK $o t&at %ater i$ collected in one unit and t&en effected* 8&e :ac5 %ell i$ generally located a%ay fro t&e $&ore lineK $o t&at t&e in$tallation of pup$K in$pection aintenance i$ ade ea$y* #(
Design criteria
etention 8ie = 0*! x ' etention tie of inta5e Well ( = 0*! x 10 inute$ = ! inute$ Suction ead = ' I ( .e$$ t&an 10 iaeter of Well = ' I ( .e$$ t&an +0
' 3*0 to 1!*0 in* (
c( Design Calculations etention 8ie = ! inute$ A$$uing Suction ead =
)*0
Botto learance = 1*0 8op learance = 0*! -axiu dept& of %ater t&at can #e $tored in condition %&en %ater i$ iniu in river * -iniu ept& of Water = ' +6 D ++*))3 ( = 3*1+ apacity of Well = 0*1!43 x 10 60*0 = ,+*!) 8 / S Area of Well = ' ,+*!) / 3*1+ ( = +,*0 5 iaeter of t&e Well N
H x d + 4
= +,*0 5
+,* x 4 = 6*1! H R*.* of Botto of :ac5 Well = ' +3*))3 D 1 ( = ++*)) R*.* of Botto of :ac5 Well %&en full = ' ++*))3 ( = iaeter = d =
d( ummary S*>o* 1 + 3 4 ! 6
Particular$ iaeter of :ac5 Well R*.* of Botto of :ac5 Well R*.* of 8op of :ac5 Well Suction ept& 8op learance Botto learance ead re"uired ' h d (
alue$ 6*1! ++*)) +,*)) +*1+ 0*!0 1*00 4*))
+,*))
= ' ) D +*1+ D 1 (
Design !f Pumping ystem
a(
Pumps
n t&e %ater treatent plantK pup$ are u$ed to #oo$t t&e %ater fro t&e
=
Econoical iaeter ' d (
=
' 0*, to 1*++ (
ence Provide d =
= = = =
' 0*, to 1*++ ( x ' 0*1!43 ( ' 0*, to 1*++ ( x ' 0*3,30 ( ' 0*3)1 to 0*4) ( 0*43 Say J 0*4!
0*1!43 3 / $ec*
-
c( Design Criteria Suction &ead $&ould not #e greater t&an ' ( 10 * elocity of flo% lengt& = 0* to 1*1 / $ec* 8op learance = 0*!0 Botto learance = 1*00 d( Design Calculation 2rictional .o$$e$ in Ri$ing -ain D elocity ' A$$uing ( ead .o$$
h f
ere 9
= 0*, / $ec* + 0*0+ x 1,0 x ' f L $ + x ,*)1 x + g d f . g
= 0*0+ = 1,0 = ,*)1 / $ec*
0*, x 0*, ( 0*4!
= 0*34,
N h f 9 0*34, Say J 0*3! ead .o$$ -inor .o$$e$ $&ould #e a$$uing = 1 ence 8otal ead of Puping = ' h s h d h f inor lo$$e$ (
A$$uing
= ' +*1+ 4*)) 0*3! 1 ( = )*3! in Parallel i$ %or5ing
+
) * * !
B* * !
) *-*
1000 x
3!
) * * !
e( ummary S*>o* 1 +
0*1!43 x !
1*1) = ++*,0 *P 0*! f T = ! U
Particular$ Pup$ apacity iaeter of Pipe
alue$ +! *P 0*4!
)*3! Say J
= 1*1, *P +! *P
Design of Rising %ain
a( 2eneral 8&e$e are t&e pre$$ure pipe$ u$ed to convey t&e %ater fro
Design Criteria
Peri$$i#le elocity in -ain$
=
0*, to 1*! / $ec*
-ain$ iaeter $&ould #e le$$ t&an ' I ( of 0*, 8otal i$c&arge in -ain$ = 0*1!43 3 / $ec* c( Design Calculations Econoical iaeter ' d (
=
' 0*, to 1*++ (
-
' 0*, to 1*++ ( ' 0*, to 1*++ ( ' 0*3)1 to 0*4) ( 0*43 Say J
x ' 0*1!43 ( x ' 0*3,30 (
ence Provide d =
= = = =
d( ummary S*>o* 1
Particular$ iaeter of -ain$ Pipe
alue$ 0*4!
0*4!
"reatment ;nits - Design !f eration ;nit eration unit
Aeration i$ nece$$ary to proote t&e exc&ange of ga$e$ #et%een t&e %ater ; t&e ato$p&ere* n %ater treatentK aeration i$ practiced for t&ree pupo$e$ 9 i( 8o add oxygen to %ater for iparting fre$&ne$$K e*g* %ater fro under ground $ource$ devoid of or deficient in oxygen* ii( Expul$ion of C! <= 1 < ; ot&er volatile $u#$tance$ cau$ing ta$te and odourK e*g* %ater fro deeper layer$ of an ipounding re$ervoir* iii( 8o precipitate ipuritie$ li5e iron and angane$eK in certain for$K e*g* %ater fro $oe under ground $ource$* 8&e oncentration of ga$e$ in a li"uid generally o#ey$ enryO$ .a% %&ic& $tate$ t&at t&e concentration of eac& ga$ in %ater i$ directly proportional to t&e partial pre$$ure or concentration of ga$ in t&e ato$&ere in contact %it& %ater* 8&e $aturation concentration of a ga$ decrea$e$ %it& teperature ; di$$olved $alt$ in %ater* Aeration tend$ to accelerate t&e ga$ exc&ange* 8&e t&ree type$ of aerator$ are 9 i( Water 2all or -ultiple 8ray Aerator$ ii( a$cade Aerator$ iii( iiffu$ed Air Aerator$ Design Criteria For Cascade erators >u#er of 8ray$ Spacing of tray$ eig&t of t&e Structure Space Re"uireent Design Calculations i$&arge ' M ax* (
Provide Area at 8ray iaeter of #otto o$t tray Ri$e of eac& 8ray 8read of eac& tray
= = = =
= = = = =
4 to , 0*3 to 0*! / +*0 0*01! D 0*0! + / 3 / &r*
0*1!43 3 / $ec* 1*0 5 !*0 0*4 !0*0 c = 0*!
V 1 = 1*0 V + = +*0 V 3 = 3*0 V 4 = 4*0 V ! = !*0
nlet
R*.* 31*0 R*.* 30*6 R*.* 30*+ R*.* +,*) R*.* +,*4 R*.* +,*0
Design !f Chemical 1ouse & Calculation !f Chemical Dose lum Dose for Coagulation
8&e ter$ coagulation ; flocculation are u$ed indi$criinately to de$cri#e t&e proce$$ of reoval of tur#idity cau$ed #y t&e $u$pen$ion colloid$ ; organic color$* 8&e coagulant do$e in t&e field $&ould #e
Alu re"uired in particular $ea$on i$ given #elo% 9 -on$oon = !0 g / . Winter = +0 g / . Suer
=
! g / .
lum required
.et t&e average do$e of alu re"uired #e -on$oon Winter
Suer
!0 g / .K +0 g / .K ; ! g / . in t&e
$ea$on$ re$pectively*
2lo% of Water Re"uired ourly = 0*1!43 x ' 60 x
60 (
=
!!!*4) 3 / &our
Per day alu re"uired for >orst season for interediate $tage !0 x !!!*4) x 1000 x +4 = 1000000 = 666*!) Cg / ay 2or 6*0 ont&$ ' 1)0 ay$ ( = ' 666*!) x 1)0 ( = 11,,)4*40 Cg >u#er of Bag$ %&en 1 #ag i$ containing = !0*0 Cg 11,,)4*40 = = +3,,* Bag$ !0*0 = +400 Bag$ f 1! #ag$ in eac& &eep = ' +400 / 1! ( = 160*0 no* of &eep$ 0*+ 5 = t&en total area re"uired = 3+*0 G
(ime - oda Process oftening
A %ater i$ $aid to #e &ardK %&en it doe$ not for leat&er readily %it& $oap* 8&e &ardne$$ of %ater i$ due to t&e pre$ence of alciu and -agne$iu ion$ in o$t of t&e ca$e$* 8&e et&od generally u$ed are .ieDSoda proce$$* Softening %it& t&e$e c&eical$ i$ u$ed particularly for %ater %it& &ig& initial &ardne$$ ' !00 g / . ( and $uita#le for %ater containing tur#idityK colour and iron $alt$* .ie DSoda $oftening con not reduce t&e &ardne$$ to value le$$ ' I 40 g / . (*
Design Criteria For (ime-oda Process
30*0
to +00 g / .
.ie ; Soda Re"uired 9D Q .ie re"uired for al5alinity* -olecular Weig&t of Ca C !3 -olecular Weig&t of Ca !
total &ardne$$ #y t&i$ proce$$*
=
' 40
1+
16 x 3 (
=
' 40
1+
4) ( =
=
' 40 16 ( =
100 g / . of Ca C !3 al5alinity re"uire$ =
!6 g / . of
100
!6 Ca !
110 g / . of Ca C !3 al5alinity re"uire$ = ' !6 / 100 ( x 110 = Q .ie re"uired for -agne$iu -olecular Weig&t of -agne$iu ' - n ( 9 +4*0 g / . of -agne$iu ' - n ( re"uire$ = 1*0 g / . of -agne$iu ' - n ( re"uire$ = 3*! g / . of -agne$iu ' - n ( re"uire$ = =
61*6 g / . of
Ca !
+4 !6 g / . of
Ca !
g / . of
Ca !
g / . of g / . of Ca !
Ca !
' !6 / +4 ( ' !6 / +4 ( x 3*! )*+
enceK t&e total pure lie re"uired = ' 61*6 )*+ ( = 6,*) g / . Al$o !6 Cg of Pure .ie ' a ( i$ e"uivalent to 4 Cg of &ydrated lie* ence &ydrated .ie i$ re"uired = ' 6,*) x 4 ( / !6 = ,+*+4 oda ? ,a < C ! 3 @ Soda i$ re"uired for non D car#onate &ardne$$K a$ follo%$ D -olecular Weig&t of Soda ' >a + 3 ( = ' + x 11 1+ 16 x 3 ( = ' ++ 1+ 4) ( = )+ ,a < C ! 3 100 g / . of >on ar#onate ardne$$ ' > ( re"uire$ 106 g / . of 61*6 g / . of > re"uire$ = ' 106 / 100 ( x 61*6 = 6!*30 g / . of ,a < C ! 3 8otal Muantity of .ie = =
,+*+4 x
!!!*4) x 1)0 x 1000000 ++134!*),0 Cg
+4 x 1000
' ne Bag contain$ = !0*0 Cg ( >u#er of Bag$ re"uired =
++134!*),0 Cg !0*0 Cg
= 44+6*, Bag$ Say 44+ Bag$
f 1! #ag$ in
eac& &eep = ' 44+ / 1! ( = 0*+ G K t&en total area re"uired =
8otal Muantity of Soda re"uired for 6 ont&$ =
+,!*1 no* of &eep$ !,*030 5
6!*30 x
!!!*4) x 1)0 x +4 x 1000 1000000 = 1!66,)*6, Cg 1!66,)*6,0 Cg >u#er of Bag$ re"uired = = 3134*0 Bag$ Say 3134 Bag$ !0*0 Cg f 1! #ag$ in eac& &eep = ' 3134 / 1! ( = +0)*, no* of &eep$ 0*+ G K t&en total area re"uired = 41*,0 5
8otal Area for all &eical$ = ' 3+ !,*03 41*, ( = Add 30 U for c&lorine $torageK c&lorine cylinder$ etc* &ence total Area = ence Provide roo ien$ion 9 Roo Area = Area re"uired i$ ' I ( @reater t&an
13+*)+ 5 1+*6 5
.engt& = 1!*00 Widt& = 1+*00 ' 1! x 1+ ( = 1)0*00 5 Roo Area providedK &ence 5*
Chemical Dissoling "an4s : 8otal "uantity of AluK .ie ; Soda
= ' 11,,)4*4 ++134!*), 1!66,)*6, ( = 4,)0+)*,)0 Cg 4,)0+)*,)0 Cg 8otal "uantity of AluK .ie ; Soda / ay = = +66*) Cg 1)0 +66*)30 Cg >u#er of Bag$ re"uired = = !!*3 Bag$ Say !6 Bag$ !0*0 Cg f 1! #ag$ in eac& &eep = ' !6 / 1! ( = 3*33 no* of &eep$ 0*+ G K t&en total area re"uired = 0*!0 5 ence Provide roo ien$ion 9 .engt& = 1*!0 Widt& = 1*!0 Roo Area = ' 1*! x 1*! ( = +*+! 5 Area re"uired i$ ' I ( @reater t&an Area providedK &ence 5* Chemical olution "an4s : 8otal "uantity of AluK .ie ; Soda / ay = +66*) Cg ence Solution re"uired per day ence Solution re"uired per day
= +66*)3 x +0 = !!336*6 .iter / ay = !!336*6 = 3)*43 .iter / -in +4 x 60 Muantity of $olution for )*0 our$ = 3)*43 x 60 x ) = 1)446*4 .iter$ 1)446*4 = = 1)*4! 8 1000 A$$uing ept& of 8an5 = 1*+0 ; 2ree Board 0*30 ien$ion of Solution 8an5 = 4*!0 x 3*!0 x 1*!0 olue of Solution 8an5 = +3*6+! 8 ummary S*>o* Particular$ alue$ 1 + 3
Per ay Alu Re"uired ydrated .ie Re"uired Soda re"uired
4 !
SiLe of &eical i$$olving tan5$ SiLe of &eical Solution tan5$
666*!) Cg / ay ,+*+4 6!*3 1*!0 x 1*!0 4*! x 3*! x 1*!
Design Criteria for %echanical Rapid %iA ;nit
etention 8ie
=
elocity of 2lo% ept&
= =
Po%er Re"uired
=
peller Speed
=
30 to 60 Sec* 4 to , / $ec* 1 to 3 0*041 1000 100 to +!0 rp
3
6 Day
.o$$ of ead = 0*4 to 1*0 -ixing device #e capa#le of creating a velocity gradiend =
300 / $ec / dept&
Ratio of ipeller diaeter to tan5 diaeter = Ratio of 8an5 eig&t to diaeter =
0*+ to 0*4 9 1
1 to 3 9 1
Design Calculations
e$ign 2lo%
= 0*1!43 x ' +4 x 60 x 60 ( = 13331*!+ 3 / ay = 30 Sec*
etention 8ie
Ratio of 8an5 eig&t to diaeter = Ratio of ipeller dia* to tan5 dia* = peller Speed = A$$ue 8eperature
=
i( Dimension of "an4 : olue iaeter
= =
eig&t of 8an5
=
8an5 free #oard 8otal eig&t of 8an5
= = =
ii( Po>er Requirement : Po%er Spend
1*! 9 1 0*3 9 1 1+0 rp +0 0
4*6+, 8 1*6 4*6+, 1 = +*30 'H/4( 1*6 x 1*6 +*3 'Say( 0*+3 ' +*3 0*+3 ( = +*60
= !*4 CW
iii( Dimensions of Flat .lade & $mpeller : iaeter of peller = 0*6! elocity of 8ip peller ' V " ( = 4*0) / $ec* . Area of Blade = Po%er Spent .et = N
!*4 x
N
. 9
1 +
C D r o " B # R
1*) '2lat Blade(9 1000 = 1*,, 5
1 x 1*) +
and R = x 1000 x
3
' 3/4 ( x 8 A B x ' 3/4 ( x
4*0)
ence Provide ) Area of Blade Provided = Provide
4 nu#er$ of
Provide nlet ; utlet Pipe$ of iv( ummary S*>o* 1 + 3 4 ! 6
Blade$ of ' 0*!0 x 0*!0 ( ' 0*! x 0*! ( x ) = +*00 5 lengt& 1*!0 and
pro
0*+
+!0 diaeter*
Particular$ etention 8ie Speed of ipeller eig&t of 8an5 ' 0*+3 free #oard ( Po%er Re"uired >u#er of Blade ' 0*!0 x 0*!0 (
alue$ 30 Sec* 1+0 rp +*60 !*4 CW )
>u#er of Baffle$ ' lengt& 1*!0 ( iaeter of nlet ; utlet Pipe$
4 +!0
Design !f Clariflocculator Clariflocculator
8&e coagulation ; $edientation proce$$e$ are effectively incorporated in a $ingle unit in t&e lariflocculator* Soetie$ clarifier ; lariflocculator are de$igned a$ $eparate unit$* All t&e$e unit$ con$i$t$ of + or 4 flocculating paddle$ placed e"uidi$tantly* 8&e$e paddle$ rotate on t&eir vertical axi$* 8&e flocculating paddle$ ay #e of rotorD$tator type* Rotating in oppo$ite direction a#ove t&e vertical axi$* 8&e clarification unit out$ide t&e flocculation copartent i$ $erved #y in%ardly ra5ing rotating #lade$* 8&e %ater ixed %it& c&eical i$ fed in t&e flocculator copartent fitted %it& paddle$ rotating at lo% $peed$ t&u$ foring floc$* 8&e flocculated %ater pa$$e$ out fro t&e #otto of t&e flocculation tan5 to t&e clarifying Lone t&roug& a %ide opening* 8&e area of t&e opening #eing large enoug& to aintain a very lo% vel ocity* 7nder "uie$cent condition$K in t&e annular $etting Lone t&e floc e#edding t&e $u$pended particle$ $ettle to t&e #otto ; t&e clear effluent overflo%$ into t&e perip&eral launder*
Design Criteria : ? Flocculator @
ept& of 8an5 etention 8ie
= =
3 to 4*! 30 to 60 in*
elocity of 2lo% 8otal Area of Paddle$ Range of perip&eral velocitie$ of #lade$ elocity @radient ' @ ( ien$ion .e$$ 2actor @ t
= = = =
0*+ to 0*) / $ec* 10 to +! 0*+ to 0*6 / $ec* 10 to !
Po%er on$uption utlet elocity
= =
10 to 36 CW / -. 0*1! to 0*+! / $ec*
= = = = = = = = =
40 3 / + / ay 3 to 4*! 300 3 / + / ay +! U 1 in 1+ or ) U for ec&anically cleaned tan5 1*+ 9 1 ' 9 ( 1 4! to )0 in* 40
=
10 4
to 10
!
Design Criteria : ? Clarifier @
A$$uing a Surface verflo% rate ept& of Water Weir .oading Storage of Sludge 2loor Slope Slope for Sludge opper Scraper elocity elocity of %ater at outlet c&a#er ssumption
Average utflo% fro clariflocculator
=
Water .o$t in de$ludging
=
!!!*4) 3 / &our +U
e$ign Average Period
= =
!!!*4) + U of !!!*4) 11*11
=
!66*!, 3 / &our
etention Period
=
Average alue of elocity @radient
=
!!!*4)
30 in* 30*0 $ec D 1
Design !f $nfluent Pipe
i$c&arge ' M (
0*1!43 3 / $ec*
=
A$$uing elocity ' ( = 1*0 / $ec* - " # "
- N d # 4 # -
d
+
- 4 #
0*1!43 x 4 *6< 1 H 4!0 diaeter*
ence iaeter ' d ( = Provide an influent pipe$ of
= 0*4434
Design !f Flocculatior : Wall
olue of flocculator =
!66*!, x 30 = +)3*3 8 60 3*!0 +)3*30 = )0*, 5 3*!0
Provide a Water ept& = Plan Area of flocculator = iaeter of 2locculator ' (
d + d " 4
)0*,4 x 4
" 4 =
iaeter of nlet Pipe$ ' P ( Provide a 8an5 iaeter of 10*+0
*6<
H
=
= 10*1!
Say 10*+0
0*4!
ien$ion f Paddle$ 9 ere 9
! *
+
P = =
#
Po%er di$$ipated in %att$ i*e*
>* / $
A#$olute or ynaic i$co$ity of Ra% Water in >*$ / +
@ = 8eporal -ean elocity @radient in ' $ec D1 ( = olue of ra% %ater to %&ic& P i$ applied in 3 = ' H / 4 ( x ' 10*+ x 10*+ ( x 3*! = +)!*)! 8 = 30 x 30 x
0*), 1000 1
Po%er nput =
+
d =
x +)!*)!
C
d
=
" ! $
++)*, 3
1*)
= ,,! Cg /
3
' +! B (
v = elocity of tip of #lade = 0*4 / $ec* X = elocity of %ater tip of #lade = ' 0*+! x 0*4 ( =
0*1 / $ec*
N
++)*,
= ' 1 / + ( x 1*) x ,,! x ' 0*4 D 0*1 ( 3 x A P N AP = ,*40 5
Ratio of Paddle$ to / S of 2locculator ' A P ( x ' 10*+ D 0*! ( x 3*! x 100 = ,*4 / ,*11 ' 10*0 to + ! U ( Provide A P = 10*! 5 A P = 10*! / H x ' 10*+ D 0*! ( x 3*! x 100 = 10*1+ U ' W&ic& i$ Accepta#leK &ence *C* ( Provide ! no$* of paddle$ 3*! &eig&t 0* 1 ' ne ( S&aft %ill $upport ! Paddle$* 8&e Paddle$ %ill rotate at an rp of 4 = +xHxrx> = + x 3*14 x r x ' 4 / 60 ( = 0*4 60 N r = 0*,!! Say 1 r = i$tance of Paddle fro 1 of vertical $&aft* .et velocity of %ater #elo% t&e partition %all #et%een t&e flocculator ; clarifier #e Area = !!!*4) / 0*3 x 60 x 60 = 0*!14 5 ept& #elo% partition Wall = 0*!1 / 'Hx 10*+0 ( = 0*016 +! ' 0*+! x 3*! ( = 0*)! Provide Slope for Botto = )U 8otal ept& of 8an5 at Partition Wall = =
0*3 / $ec*
0*+, $ay ' 0*3 3*! 0*016 0*)! ( 4*6,1 $ay 4*
Design !f Clarifier
A$$uing a Surface verflo% rate Surface f lariflocculator
= =
cf = iaetre of lariflocculator H x ' cf + D 10*+0 x 10*+0 (
40 3 / + / ay !!!*4) x +4 = 333*+, 5 40
= 333*+,
4 cf
.engt& of Weir Weir .oading
1333*1!+ 104*04 *6< = H = ++*,,+ Say +3 = H x cf = ' 3*14 x +3 ( = =
!!!*4) x
+*++
+4 = 1)4*60 3 / ay / +*++ According to anual of govt* of indiaK if it i$ %ell clarifierK t&en it can #e exceed upto 1!00
ummary S*>o* 1 + 3 4 ! 6 ) , 10 11
Particular$ etention Period iaeter f nfluent Pipe$ verall ept& of 2locculator iaeter of 8an5 >o* of Paddle$ i$tance of S&aft fro *.* of 2locculator Paddle$ Rotation 'RP-( i$tance of Paddle fro *.* of vertical S&aft Slope of Botto ' U ( 8otal ept& of Partition Wall iaeter of lariflocculator
alue$ 30 in* 0*4! 3*! 10*+0 ! no$* 4 1*0 )U 4* +3*0
Design !f Rapid 2raity Filter
a( Design Criteria 9 ' Rapid Sand 2ilter ( Rate f 2ilteration -axiu $urface area of ne Bed
= =
3
/ + / ay
! to
-iniu verall ept& f 2ilter 7nit ncluding a 2ree Board of
0*!
Effective $iLe f Sand
= =
+*6 0*4! to 0*
7nifority oDefficient 2or Sand
=
1*30 to 1*
gnition .o$$ S&ould >ot Exceed ' ( 0* U percent #y %eig&t Specific @ravity = +*!! to +*6! Wearing .o$$ i$ not greater t&an ' ( 3*0 U -iniu >u#er f 7nit$
=
+
ept& f Sand Standing ept& of %ater over t&e filter
= =
0*6 to 0*! 1 to +
= =
!!!*4) 3 / &our +U
2ree Board i$ le$$ t&an
' ( 0*!
#( Pro0lem tatement : >et 2iltered Water Muantity of Bac5%a$& %ater u$ed 8ie .o$t uring Bac5%a$& e$ign Rate f 2ilteration .engt& ; Widt& Ratio 7nder rainage Sy$te SiLe of Perforation$
= 30 in* = ! 3 / + / ay = 1*+! to 1*33 9 1 = entral -anifold Wit& .ateral$ = 13
c( Design Calculations Water 2lo% Re"uired e$ign 2lo% for 2ilter
= !!!*4) 3 / &our = !!!*4) x ' 1 0*0+ ( x = !)*64 3 / &our !)*64 = 11!* = !
Plan Area 2or 2ilter 7$ing
+*0
= . x 1*+! . N .engt& .
Provide
+ 2ilter$
/
116 5
7nit$
ence Plan Area of ne 7nit .engt& x Widt& =
5
+4 +3*!
= =
116 + !)*0 5 !)
= !) 5
*6<
1*+! = 6*) Widt& = ' 1*+! x 6*) ( = 7nit$K eac& %it& a dien$ion of = )*6 x
)*! 6*)
Say )*6
E$tiation f Sand ept& 9 t i$ c&ec5ed again$t #rea5 t&roug& of floc* 7$ing ud$on 2orula D M x d 3 x & = B x +,3++3 W&ere A$$ue
B= &= M= d=
N
. 3 MK dK & ; Y are in / + / &rK K and re$pectively 4 ' Poor Re$pon$e ( I Average degree of preDtreatent 10000 +*! ' 8erinal ead .o$$ (
!x+ 0*6
3
/ + / &r
' A$$uing 100 U overload of filter (
' -ean iaeter (
0*6 x 0*6 x 0*6 x +*! 4 = x +,3++3 10000 = 46*04 c Z or ' ( greater t&an [ ence provide dept& of $and #ed = 60*0 c 10 x
E$tiation f @ravel ; SiLe @radation 9 A$$uing $iLe gradation of +*0 to
40*0
at #otto u$ing epirical
forula 9
P = +*!4 x R x ' log d ( W&ere 9 R = 1+ ' 10 to 8&e 7nit$ of ( ; d are c ; K re$pectively* SiLe + ! 10 +0 40 ept& 'c ( ,*+ +1*3 30*! 40 4, ncreent ,*+ 1+*1 ,*+ ,*! , ence provide !0*0 c dept& of gravel* E$tiation f 7nder rainage Sy$te 9 Plan Area of eac& filter 8otal Area of perforation
= )*6 x 6*) = !)*4) 5 3 = x !)*4) 1000
14
(
= 0*1!44 5
= 1!4*40 c 5 8otal ro$$ Section Area of .ateral$ = ' 3*0 x Area of perforation ( = ' 3*0 x 1!4*4 ( = !+63*+0 c 5 Area of entral -anifold = ' +*0 x Area of .ateral$ ( = ' +*0 x !+63*+ ( = 10!+6*40 c 5 iaeter of entral -anifold = 10!+6*4 x 4 = 11!*)0 c H Providing a coercially availa#le diaeter of = 100*0 c A$$uing $pacing for lateral$ = +0 c )*6 100*0 >u#er of .ateral$ = = 43 on eit&er $ide +0 61*+ x 4 = = )*) c $ay ,0 H >u#er of perforation$ / lateral$ = )6 7nit$
.engt& of ne lateral =
' 1 ( %idt& of filter D ' 1 ( diaeter of anifold + + 6*) ( D ' 1 x 1*0 ( = +*, = '1 x + + .et n #e t&e total nu#er of perforation of 13*0 diaeter 8otal Area of perforation N nxH x ' 1*3 ( 5 9 1!4*40 4 N n = 13++*43 $ay 13++ 13++*0 >u#er of Perforation or .ateral$ = = 1!*3 $ay 16 )6*0 +*,0 x 100 Spacing of Perforation = = 1)*13 c / 16*0 Say 1)0*00 / Provide 16 perforation$ of 13*0 diaeter at 1)0 c / oputation f Wa$& Water 8roug&$ 9 Wa$& Water Rate = 36 3 / + / &our Wa$& Water di$c&arge for one filter = ' 36 x !)*4) ( = +10!*+) 3 / &our = 0*!)4) 3 / $ec* A$$uing a $pacing of 1*)0 for %a$& %ater troug& %&ic& %ill run parallel to t&e longer dien$ion of t&e filter unit* 6*) >u#er of troug& = = 3*) $ay 4 1*) 0*!)4) i$c&arge per unit troug& = = 0*146 3 / $ec* 4*0 2or a %idt& of 0*40 t&e %ater dept& at upper end i$ given #y : 3
- 1*36 b h + 0*146+ = &
Provide
4*0
troug&$ of
=
1*36 x
0*40 x ' & ( <63
0*146+
1*36 x 2ree#oard = 0*1 0*! Wide ;
36<
0*40 0*!0
= 0*41
$ay 0*!
deep in eac& filter*
8otal ept& f 2ilter Box 9 ept& of filter #ox = ' dept& of under drain gravel $and %ater dept& free #oard ( = ' ,00 !00 600 ++00 300 ( = 4!00 e$ign f 2ilter Air Wa$& 9 A$$ue Rate at %&ic& air i$ $upplied = 1*! 3 / + / in* uration of Air Wa$& = 3*0 in* 8otal Muantity of air per unit #ed = 1*! x 3*0 x )*6 x 6*) = +63*16 8
ummary S*>o* 1 + 3 4 ! 6 ) , 10 11 1+ 13 14 1!
Particular$ >u#er f 7nit$ SiLe f 7nit ept& f Sand Bed ept& f @ravel iaeter f Perforation iaeter f entral -anifold Spacing 2or .ateral$ >u#er f .ateral$ iaeter f .ateral$ >u#er f Perforation$ >u#er f 8roug& SiLe f 8roug& 8otal ept& f 2ilter Box uration of Air Wa$& 8otal Muantity f Air Re"uired Per 7nit Bed
alue$ + in* )*60 x 6*) 60*0 c !0*0 c 13 100*0 +0 c )6 7nit$ ,0 16 4 0*40 x 0*! 4!00 3 in* +63*+ 8
Design !f Disinfection ;nit
a( Chlorination i$infection $&ould not only reove t&e exi$ting #acteria fro %ater #ut al$o en$ure t&eir iediate 5illing even after%ard$K in t&e di$tri#ution $y$te* #( Design Criteria ? Chlorination @ Q &lorine o$e
Q Re$idual &lorine Q ontact Period
= =
1*4 g / . ' Rainy Sea$on ( 1 g / . ' Winter Sea$on (
= = =
0*6 g / . ' Suer Sea$on ( 0*1 to 0*+ g / . ' -iniu ( +0 to 30 in*
c( Design Calculations Rate of &lorine re"uiredK to di$infect %ater #e = &lorine re"uired Per ay
=
13*33 x
+ p*p** 1000000 x
1*40 x
1 1000000
= 2or 6 -ont&$ = >u#er of ylinder ' ne ylinder contain
1)*66+ Cg ' 1)*66 x 1)0 ( = 33!,*16 Cg 16*0 Cg ( = ' 33!,*16 x + ( = 41,*),! 16
>u#er f ylinder$ u$ed per day d( ummary S*>o* 1 +
= + ylinder$ of 16*0 Cg
Particular$ &lorine re"uired per day >u#er f ylinder$ re"uired per day
alue$ 1)*66+ Cg + ylinder$ of 16*0