#
GEOMETRÍA DESCRIPTIVA
Es la ciencia , o método matemático gráfico, que tiene por objeto obj eto la representación sobre UN PLANO, PLANO DEL DIBUJO, de las figuras o cuerpos del espacio , resolviendo el problema de las tres dimensiones, mediante el empleo de la geometría plana. Para establecer las relaciones entre las formas de tres dimensiones o del espacio y las de dos dimensiones o formas planas, es necesario realizar una operación denominada PROYECCIÓN, que consiste en referir mediante un dibujo el cuerpo del espacio sobre un plano. Toda representación ha de ser reversible, es decir decir,, que partiendo de la proyección se pueda reconstruir el cuerpo del espacio. Para ello se utilizan diversos métodos llamados l lamados SISTEMAS DE REPRESENTACIÓN. #
PROYECCIÓN
El proyectar una figura o cuerpo del espacio, desde un punto sobre un plano , consiste en trazar semirrectas imaginarias que, partiendo del punto F, foco, pasen por todos los puntos del objeto o figura ABC, prolongándose hasta cortar cor tar al plano del dibujo, para obtener con sus intersecciones, la correspondiente proyección abc. ELEMENTOS necesarios para realizar la proyección: CENTRO DE PROYECCIÓN: es el punto F desde el cual parten todas las semirrectas que, pasando por los puntos del objeto, inciden sobre el plano. punt os del $ RECTAS PROYECTANTES: son aquellas que conteniendo al centro de proyección, pasan por los puntos objeto e inciden sobre el plano. $ PLANO DE PROYECCIÓN: es aquel sobre el que inciden las rectas proyectantes, dando lugar a dibujo o proyección. $
#
CLASES DE PROYECCIONES
PROYECCIÓN CÓNICA: todas las rectas proyectantes parten del centro de proyección F, que es un punto
propio. Recibe el nombre de de cónica por formar las rectas proyectantes una superficie cónica cuyo vér tice es el centro de proyección y su base se encuentra en el plano. SISTEMA CÓNICO CÓNI CO PROYECCIÓN CILÍNDRICA: cuando el centro de proyección es un punto impropio, situado en el infinito, y las
rectas proyectantes por tanto, son paralelas entre si. Llamada también paralela, la proyección cilíndrica se subdivide en dos clases: $ PROYECCIÓN CILÍNDRICA ORTOGONAL: cuando las rectas proyectantes son PERPENDICULARES al plano de proyección. SISTEMA DIÉDRICO, SISTEMA AXONOMÉTRICO Y SISTEMA DE PLANOS P LANOS ACOTADOS. PROYECCIÓN CILÍNDRICA OBLICUA: cuando las rectas proyectantes son oblicuas al plano de proyección, pero paralelas entre si. SISTEMAS OBLICUOS: PERSPECTIVA CABALLERA. $
F
F A
∞
∞
F
∞
F
A
∞
B
a
B
b
PROYECCIÓN CÓNICA
B
a c
plano de proyección
b
PROYEC PRO YECCIÓ CIÓNN CILÍND CILÍNDRIC RICAA ORTOG ORTOGON ONAL AL
∞
F
∞
C
C c
plano de proyección
F
C
A a
F
c plano de proyección
b
PROYEC PRO YECCIÓ CIÓNN CILÍND CILÍNDRIC RICAA OBLIC OBLICUA UA
#
SISTEMA DIÉDRICO
Este sistema, llamado también de doble proyección o de Monge es el mas ma s generalizado de todos. Gaspard Monge, geómetra francés publica en 1799 su Geometrie Gescriptive . $
Es un sistema de proyecciones cilíndricas ortogonales : emplea exclusivamente la proyección ortogonal.
Está constituido por dos planos de proyección, uno vertical (V) y otro horizontal ( H) , perpendiculares entre si. Estos planos se consideran ilimitados y dividen al espacio en cuatro ángulos diédricos (Iº, IIº, IIIº y IVº) $
La intersección de ambos planos es una línea, llamada línea de tierra ( LT), representada por dos trazos situados por debajo de ella en sus extremos. $
Cada uno de los planos queda dividido en dos semiplanos, separados por la línea de tierra: vertical superior (svs), vertical inferior (svi), horizontal anterior (sha), horizontal posterior (shp). $
Para representar sobre un único plano, el del papel, el dibujo de las dos proyecciones que en el espacio proporciona el Sistema Diédrico, hay que conseguir que ambas queden situadas sobre ese ú nico plano, el plano del dibujo. Para ello realizamos la siguiente operación: Suponemos que el plano del dibujo está en posición vertical y lo hacemos coincidir con el plano vertical de proyección (V). Permaneciendo el plano de proyección vertical (V) fijo, abatimos el plano de proyección horizontal (H)alrededor de la línea de tierra (LT), de modo que el semiplano horizontal anterior a nterior baja y coincide con el semiplano vertical inferior, mientras que el semiplano horizontal posterior sube por detrás y coincide con el semiplano vertical superior. $
svs(shp) V
H
sha (svi)
#
NOTACIÓN
LÍNEA DE TIERRA (LT): trazo fino. LÍNEAS DE REFERENCIA: trazo fino. PROYECCIONES RESULT RESULTANTES: trazo tr azo grueso. gr ueso. PARTES PAR TES OCUL OCU LTAS: líneas de trazos tr azos PUNTO: se usarán preferentemente las vocales y, en su defecto, los números naturales. Para nombrar el punto en el espacio se emplearán las mayúsculas ( A ). La proyección horizontal se nombrará con las minúsculas (a). La proyección vertical vert ical con el apóstrofe(prima) ( a´). El perfil o tercera vista se definirá con el doble apóstrofe (segunda) (a’’). RECTA: RECT A: Se usarán preferentemente las la s consonantes. Para nombrar la recta r ecta en el espacio se emplearán las l as mayúsculas ( R ). La proyección horizontal se nombrará con las minúsculas minúscula s ( r ). La proyección vertical con el apóstrofe (prima) (r´). El perfil o tercera vista se diferenciará diferenciará con el doble apóstrofe (segunda) ( r’’). PLANO: Se usarán preferentemente las consonantes. Para nombrar un plano en elespacio se utilizarán las mayúsculas ( P ). La traza horizontal se nombrará con la mayúscula ( P ). La traza vertical ver tical se diferenciará con el apóstrofe (prima) (P´). En los cambios de planos, y por consiguiente en terceras t erceras vistas se usará el doble apóstrofe (segunda) (P’’).
#
EL PUNTO
La proyección ortogonal or togonal de un punto del espacio (P), es el pié de la perpendicular trazada por el punto punt o al plano de proyección. proyección. En el Sistema Sistema Diédrico Diédrico un punto queda queda totalmente totalmente definido definido cuando cuando se conocen sus dos dos proyecciones, proyecciones, puntos también, que son los pies de las perpendiculares trazadas por el punto dado a los planos de proyección: P (p, p’). Al ser las rectas proyectantes( P-p) y ( P-p’) perpendiculares a los planos de proyección, el plano que determinan es también perpendicular a los planos de proyección y a la línea de tierra. Al abatir el plano de proyección horizontal (H) que contiene a la proyección horizontal ( p) del punto dado ( P), esta describe un arco de 90º hasta situarse en el semiplano vertical inferior, por tanto, la condición que deben reunir las proyecciones diédricas de un punto es que el segmento que las une sea perpendicular a la línea de tierra. COTA Y ALEJAMIENTO Se llama cota u ordenada de un punto a la l a distancia del mismo al plano horizontal (H) . El alejamiento es la distancia al plano vertical (V). Tanto las cotas como los l os alejamientos pueden ser positivas, nulas o negativas: $
Puntos situados por encima del plano horizontal (Iº y IIº): cota positiva. Puntos situados por debajo del plano horizontal (IIIº y IVº): cota negativa. Puntos situados por delante del plano vertical (Iº y IVº): alejamiento positiva. Puntos situados por detrás del plano vertical (IIº y IIIº): alejamiento negativo. P (x=referencia, y=alejamiento, z=cota) COORDENADAS DE UN PUNTO: P (x, y, z) x = referencia o distancia a un plano de perpendicular a los dos de proyección. Iº cuadrante (x, +y, +z) proyecc ión. IIº cuadrante ( x, -y, +z) Se suele poner en el borde izquierdo de la LT en la que se va a desarrollar desar rollar el ejercicio. y = alejamiento con el signo correspondiente. IIIº cuadrante (x, -y, -z) z = cota con su signo. IVº cuadrante (x, +y, -z) $
PLANO BISECTOR Se denomina plano bisector de un ángulo diedro al plano, que pasando por la arista (LT), contiene a la bisectriz del ángulo rectilíneo correspondiente al diedro. En el Sistema diédrico sólo existen dos planos bisectores, que se denominan primer bisector (B1: Iº-IIIº) y segundo bisector (B2: IIº-IVº). El primer bisector atraviesa del primer al tercer cuadrante y el segundo del segundo cuadrante al cuar cuarto. to. Los planos bisectores dividen a los diedros en dos partes iguales llamadas octantes, luego los dos bisectores junto con los planos de proyección dividen al espacio en ocho octantes (1º, 2º, 3º, 4º, 5º, 6º, 7º, 8º) $
ALFABETO DEL PUNTO Se denomina Alfabeto del punto a las l as diversas posiciones (17) que puede ocupar un punto en el espacio respecto a los planos de proyección y a los bisectores. PUNTOS SITUADOS EN LOS PLANOS DE PROYECCIÓN / PUNTOS SITUADOS EN LOS PLANOS BISECTORES / PUNTOSS SITUADOS EN LOS OCTANTES / PUNTOS SITUADOS EN LA LT PUNTO LT. $
V p’
IIº
y=alejamiento
a t o c = z
svs(shp) P
p’
Iº
a t o c = z
a t o c = z
H a i a n c r e f e r e =
o
y=alejamiento
p
x
o
nci a x=refe re nc o t n e i m a j e l a = y
p
p I IIº
IVº
sha (svi)
#
EL PUNTO. ALFABETO DEL PUNTO
Se denomina alfabeto del punto a las diversas posiciones (17) que puede ocupar un punto en el espacio respecto a los planos de proyección y a los bisectores. PUNTOS SITUADOS EN LOS PLANOS DE PROYECCIÓN PUNTOS SITUADOS EN LOS PLANOS BISECTORES PH (sha): H(x, +y, 0) PV (svs): V(x, 0, +z) B1 (Iº): (x, +y +y,+z) ,+z) B2 (IIº): (x, -y,+ -y,+z)z) (svi): V(x, , -z) 0 (IIIº): (x, -y, -z-z) (IVº): (x, +y, -z-z) (shp): H (x, -y, 0)
V
B1 B2
(y=z)
H
PUNTOS SITUADOS EN LOS OCTANTES Iº (1º, 2º) : (x, +y, +y, +z) IIº (3º, 4º : ( x, -y, +z) IIIº (5º, 6º) : (x, -y, -z) IVº (7º, 8º) : (x, +y +y,, -z)
PUNTOS SITUADOS EN LA LT : (x, 0, 0)
Dibujar las proyecciones diédricas de los puntos siguientes: A(5,20,0); B(15, 20, 10); C(25, 20, 20); D(35, 10, 20); E(45, 0, 20); F(55,-10,20); G(65, -20, - 20, 20); H(75, -20, 10); I (85, -20, 0) J(95, -20, -10); K(105, -20, -20); L(115, -10, -20); M(125, 0, -20); N (135, 10, -20); Ñ(145, 20, -20); O(155, 20, -20); P( 165, 0, 0) #
0
$
$
Describir brevemente la situación espacial de la secuencia de puntos:
Indicar que puntos se encuentran en: LOS PLANOS DE PROYECCIÓN / LOS PLANOS BISECTORES / EN LOS OCTANTES / EN LA L A LT/ LT/
Qué ocurre con todos los puntos situados en: Iº cuadrante (x, +y, +z): IIº cuadrante ( x, -y, +z): IIIº cuadrante (x, -y, -z): IVº cuadrante (x, +y, -z):
$
1. PROYECCIONES DE UNA RECTA La proyección de una recta sobre un plano es la proyección sobre dicho plano de todos los puntos que componen la recta, aunque para hallar las proyecciones de una recta sobre sobr e un plano es suficiente saber cuáles son las proyecciones de dos puntos de la recta. #
En el SD, la recta se proyectará en cada uno un o de los planos de proyección que componen el sistema.
2. POSICIONES PARTICULARES DE UNA RECTA CON RESPECTO RESPECT O A UN PLANO PARALELA. Si una recta (R) es paralela a un plano de proyección, su proyección sobre dicho plano (r) será otra recta paralela a la dada, ya que todos sus puntos punt os tienen igual distancia al plano. la proyección tiene t iene igual medida que la recta. $
PERPENDICULAR. Si una recta (S) es perpendicular a un plano de proyección, todos sus puntos se proyectan en el mismo punto (s), ya que la dirección de proyección es ortogonal al plano. $
proyecc ión, su proyección sobre dicho plano es otra o tra recta (t), OBLICUA. Si una recta (T) es oblicua a un plano de proyección, pero de menor magnitud que la recta dada s’ r’ m’ T B S B R A A r s $
B a
b
A t b
a s=a=b
m (R, S) se cortan r’
PP
3. RECTAS QUE SE CORTAN Y RECTAS QUE SE CRUZAN C RUZAN
m’ r m
p’ s’ p’ s
m p (R, S) se cruzan
Si dos rectas se cortanen cor tanen el espacio, las proyecciones del mismo nombre han de cor tarse en dos puntos contenidos en la misma perpendicular a la línea de tierra, que son las dos proyecciones del punto de intersección de las rectas del espacio. Cuando el punto de intersección aparente no tiene sus proyecciones en en la misma perpendicualr la línea de tierra, se trata de rectas que se cruzan. h #
4. TRAZAS DE UNA RECTA #
$
$
Son puntos donde la recta corta cor ta a los planos de proyección. horizont al de proyección: TRAZA HORIZONTAL HORIZONTAL:: puntos situados en el plano horizontal SEMIPLANO HORIZONTAL ANTERIOR: H (x, +y, 0 ) SEMIPLANO HORIZONTAL POSTERIOR: H (x, -y, 0 ) LÍNEA DE TIERRA: H (x, 0, 0 ) TRAZA VERTICAL: puntos situados en el plano vertical de proyección: SEMIPLANO VERTICAL SUPERIO: V (x, 0,+z ) SEMIPLANO VERTICAL INFERIOR: V (x, 0, -z) LÍNEA DE TIERRA: V (x, 0, 0 )
h’
-y h’
h=h’
+y h v’ +z v v -z v’
=v’ v =v’
b1’
b1
+z
-y
TRAZA CON EL PRIMER BISECTOR (B1): puntos situados en primer bisector PRIMER CUADRANTE:: B1 (x, +y, +z ) siendo y=z TERCER CUADRANTE: B1 (x, -y, -z ) siendo y=z LÍNEA DE TIERRA: B1 (x, 0, 0 )
+y
-z
b1
b1’
TRAZA VERTICAL: puntos situados en el plano vertical de proyección: SEGUNDO CUADRANTE:: B2 (x, -y, +z ) siendo y=z CUARTO CUADRANTE: B2 (x, +y, -z ) siendo y=z LÍNEA DE TIERRA: B2 (x, 0, 0 )
+z=-y
5. TRAZAS CON LOS BISECTORES #
$
$
Son puntos donde la recta corta cor ta a los planos bisectores.
b1=b1’
b2=b2’ b2=b2’ -z=+y b2=b2’
6. PARTES VISTAS Y OCULTAS OCULTAS Suponemos que el observador se encuentra siempre situado en el primer diedro, por lo que sólo se consideran vistas las figuras situadas en él. #
7. REPRESENTACIÓN DE UNA RECTA # Dibujar la representación diédrica de la recta R dada por los puntos: A(25, 7, 18) y B (55, 15, 5) RECTA: PH( r ) = a U b, ; a. PROYECCIONES DE LA RECTA: PV( r’ )= a’ U b’ ; b. TRAZAS: H (x, +y, 0 ); H ( , , 0 ) V (x, 0,+z ); V ( , 0, ) c. TRAZAS CON LOS BISECTORES: B1 (x, +y, +z ) siendo y=z; B1 ( , , ) B2 (x, -y, +z ) siendo y=z; B2 ( , , )
ATRAVIESA:: d. CUADRANTES QUE ATRAVIESA VISTOS Y OCULTOS OCULTOS (visto Iº, ocultos IIº, IIIº y IVº): e. CLASIFICACIÓN( alfabeto de la recta):
#
Dibujar la representación diédrica de la recta R dada por los puntos: A(40, 11, 18) y B (80, 48, 18) 18)
.................................................................... ........................................................................ ......................................................................... ....................................... a. PROYECCIONES ................................ ........................................................................ ......................................................................... ......................................................................... ............................................ ........ b. TRAZAS: .................................... .................................................................... ......................................................................... ................................................... .............. c. TRAZAS CON LOS BISECTORES ................................ TRAVIESA.......................................................... ......................................................................... .............................................................. .......................... d. CUADRANTES QUE ATRAVIESA..................... VISTOS Y OCUL OCULTOS TOS ................................ ..................................................................... ......................................................................... ................................................................... ............................... ..................................................................... ........................................................................ ......................................................................... ..................................... e. CLASIFICACIÓN .................................
0
#
Dibujar la representación diédrica de la recta S dada por los puntos: C(45, -8, 18) y D (80, -35, -10) -10)
.................................................................... ........................................................................ ......................................................................... ....................................... a. PROYECCIONES ................................ ........................................................................ ......................................................................... ......................................................................... ............................................ ........ b. TRAZAS: .................................... .................................................................... ......................................................................... ................................................... .............. c. TRAZAS CON LOS BISECTORES ................................ TRAVIESA.......................................................... ......................................................................... .............................................................. .......................... d. CUADRANTES QUE ATRAVIESA..................... VISTOS Y OCUL OCULTOS TOS ................................ ..................................................................... ......................................................................... ................................................................... ............................... ..................................................................... ........................................................................ ......................................................................... ..................................... e. CLASIFICACIÓN .................................
0
#
Dibujar la representación diédrica de la recta R dada por los puntos: A(45, -8, 18) y B (80,9, -19)
.................................................................... ........................................................................ ......................................................................... ....................................... a. PROYECCIONES ................................ ........................................................................ ......................................................................... ......................................................................... ............................................ ........ b. TRAZAS: .................................... .................................................................... ......................................................................... ................................................... .............. c. TRAZAS CON LOS BISECTORES ................................ TRAVIESA.......................................................... ......................................................................... .............................................................. .......................... d. CUADRANTES QUE ATRAVIESA..................... VISTOS Y OCUL OCULTOS TOS ................................ ..................................................................... ......................................................................... ................................................................... ............................... ..................................................................... ........................................................................ ......................................................................... ..................................... e. CLASIFICACIÓN .................................
0
#
Dibujar la representación diédrica de la recta S dada por los puntos: C(35, -5, 9) y D (100, -36, -7)
.................................................................... ........................................................................ ......................................................................... ....................................... a. PROYECCIONES ................................ ........................................................................ ......................................................................... ......................................................................... ............................................ ........ b. TRAZAS: .................................... .................................................................... ......................................................................... ................................................... .............. c. TRAZAS CON LOS BISECTORES ................................ TRAVIESA.......................................................... ......................................................................... .............................................................. .......................... d. CUADRANTES QUE ATRAVIESA..................... VISTOS Y OCUL OCULTOS TOS ................................ ..................................................................... ......................................................................... ................................................................... ............................... ..................................................................... ........................................................................ ......................................................................... ..................................... e. CLASIFICACIÓN .................................
0
#
Dibujar la representación diédrica de la recta R dada por los puntos: A(45, 23, -23) y B (80, 23, 23) 23)
..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ......................................................................... ......................................................................... .............................................................. .......................... e. ....................................
0
#
Dibujar la representación diédrica de la recta S dada por los puntos: C(45, -15, 25) y D (110, 40, -7)
..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ......................................................................... ......................................................................... .............................................................. .......................... e. ....................................
0
1.Representacion diédrica de la recta “S” que pasa por los puntos: A(60, -10, 19), 19), B( 60, -38, -38, -9).
..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ......................................................................... ......................................................................... .............................................................. .......................... e. ....................................
0
2.Representacion diédrica de la recta “R” que pasa por los puntos: M(70, 19, -6), N( 122, -15, -40).
..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ......................................................................... ......................................................................... .............................................................. .......................... e. ....................................
0
8. ALFABETO DE LA RECTA # Son las distintas posiciones que una recta puede ocupar en el espacio, respecto a los planos de proyección y a los bisectores. En total 53 posiciones. 8.1. PARALELAS A LA LT (17 posiciones) punto , por cada uno de los cuales pasa una recta. $ Ocupan las 17 posiciones que constituyen el alfabeto del punto, $
Toda recta paralela a la LT tiene sus proyecciones paralelas a la LT
8.2. PERPENDICULARES A LOS PLANOS DE PROYECCIÓN (6 posiciones) PERPENDICULARES AL PLANO HORIZONTAL $
Situadas por delante del vertical, contenidas en él y por detrás del mismo
$
Sólo tienen traza horizontal, su traza vertical es un punto impropio.
PERPENDICULARES AL PLANO VERTICAL $
Situadas por encima del horizontal, contenidas en él y por debajo del mismo
$
Sólo tienen traza vertical, su traza horizontal es un punto impropio.
8.3. PARALELAS A LOS LOS PLANOS DE PROYECCIÓN (6 posiciones) PARALELAS AL PLANO HORIZONTAL (RECTA HORIZONTAL) $
Situadas por encima del horizontal, contenidas en él y por debajo del mismo
Sólo tienen traza vertical, su traza horizontal es un punto impropio. $ Sus proyecciones verticales son paralelas a la LT a una distancia igual a la cota de cualquier cu alquier punto de la recta. Su proyección horizontal forma con la LT un ángulo igual que la recta del espacio forma con el plano vertical. $
PARALELAS AL PLANO VERTICAL (RECTA FRONTAL) $
Situadas por delante del vertical, contenidas en él y por detrás del mismo
Sólo tienen traza horizontal, su traza vertical es un punto impropio. $ Sus proyecciones horizontales son paralelas a la LT LT a una distancia igual a la cota de cualquier punto de la recta. Su proyección horizontal forma con la LT un ángulo igual que la recta del espacio forma con el plano horizontal. $
8.4. OBLICUAS A LOS PLANOS DE PROYECCIÓN QUE PASAN POR TRES DIEDROS (4 posiciones) ( 2º-3º-4º), (1º-4º-3º), ( 2º- 1º-4º). $ Las rectas pasan por los cuadrantes: ( 1º-2º-3º),
8.5. OBLÍCUAS A LOS LOS PLANOS DE PROYECCIÓN QUE CORTAN CORTAN A LT LT (4 posiciones) $
Sólo pasan por dos diédros, ya que sus trazas son puntos de la LT LT
PERPENDICULARES A LA LT LT Y OBLÍCUAS A LA LT
8.6. PARALELAS A LOS PLANOS BISECTORES (6 posiciones) PARALELAS AL PRIMER BISECTOR $
Su traza con el primer bisector es un punto p unto impropio
Sus proyecciones han de formar el mismo ángulo con la LT y una de sus proyecciones tiene que ser paralela a la simétrica de la otra con respecto a la LT. $
8.6. PARALELAS A LOS PLANOS BISECTORES (6 posiciones) PARALELAS AL SEGUNDO BISECTOR $
Su traza con el primer segundo es un punto impropio
$
Sus proyecciones son paralelas entre sí, por lo que han de formar el mismo ángulo con la LT .
8.7. RECTAS DE PERFIL (10 posiciones)
Las proyecciones de las rectas se encuentran siempre en una misma perpendicular a la LT, al estar contenidas en un plano de perfil. PERPENDICULARES AL PRIMER BISECTOR PERPENDICULARES ALSEGUNDO BISECTOR OBLICUAS A LOS BISECTORES $
TRAZAS DE UNA RECTA DE PERFIL Dada una recta por dos puntos A (15, 4,17) y B (15, 14, 7) , se refieren las proyecciones de estos puntos sobre un plano auxiliar de perfil, para obtener sobre él una tercera proyección.
1.Representacion diédrica de la recta “S” que pasando por el punto: M(40, 10, 20) sea:
HORIZONTAL a. PERPENDICULAR AL PLANO HORIZONTAL
b. PERPENDICULAR AL PLANO VERTICAL
c. PARALELA AL PLANO HORIZONTAL Y OBLICUA 30º CON EL VERTICAL
d. PARALELA AL PLANO VERTICAL Y OBLICUA 30º CON EL HORIZONTAL
B ISECTOR e. PARALELA AL PRIMER BISECTOR
f. PARALELA AL SEGUNDO BISECTOR
1.Representacion diédrica de la recta “S” que pasando por el punto: M(80, -10, 30), sea: A. PERPENDICULAR AL PLANO VERTICAL DE PROYECCIÓN ..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ........................................................................ ......................................................................... ............................................................... .......................... e. ....................................
0
B. PARALELA AL PLANO HORIZONTAL DE PROYECCIÓN PROYECCIÓN Y OBLICUA 3º CON EL VERTICAL
..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ......................................................................... ......................................................................... .............................................................. .......................... e. ....................................
0
1.Representacion diédrica de la recta “S” que pasando por el punto: M(20, -20, 20) sea:
HORIZONTAL a. PERPENDICULAR AL PLANO HORIZONTAL
b. PERPENDICULAR AL PLANO VERTICAL
c. PARALELA AL PLANO HORIZONTAL Y OBLICUA 30º CON EL VERTICAL
d. PARALELA AL PLANO VERTICAL Y OBLICUA 30º CON EL HORIZONTAL
B ISECTOR e. PARALELA AL PRIMER BISECTOR
f. PARALELA AL SEGUNDO BISECTOR
1.Representacion diédrica de la recta “S” que pasa por los puntos: M(40, -15, 15) y N (40, -40,-10)
..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ......................................................................... ......................................................................... .............................................................. .......................... e. ....................................
0
2. Representacion diédrica de la recta de perfil “R” que pasando por el punto A (40, 45, -15) sea paralela al al segundo bisector.
..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ........................................................................ ......................................................................... ............................................................... .......................... e. ....................................
0
NOMBRE RECTAS AS PERPENDICULARES 1. RECT
AL PLANO HORIZONTAL HORIZONTAL
$
............................................................................................................................................
$
............................................................................................................................................
2.Representacion diédrica de la recta “S” que pasando por el punto: M(15, 20, -20) sea:
2.b. PAR PARALELA ALELA AL SEGUNDO BISECTOR
2.a. PARALELA AL PLANO VERTICAL Y OBLICUA 30 º CON EL VERTICAL
3. Describir la recta “R” dada por sus proyecciones y completar los datos que faltan. $
........................................................................
$
........................................................................
$
........................................................................
$
........................................................................
$
........................................................................
1.Representacion diédrica de la recta “S” que pasa por los puntos: M(40, 15, -15) y N (40, 40,10)
..................................................................... ........................................................................ ......................................................................... ................................................................ ........................... a. ................................. .................................................................... ......................................................................... ......................................................................... .................................................................. .............................. b................................. ........................................................................ ......................................................................... ......................................................................... ............................................................. ......................... c. .................................... ....................................................................... ........................................................................ ......................................................................... ................................................................ ........................... d. ................................... ........................................................................ ......................................................................... ......................................................................... .............................................................. .......................... e. ....................................
0
2.Representacion diédrica de la recta “S” que pasando por el punto: M(15, 20, 10) sea: 2.a. PARALELA AL PLANO VERTICAL Y OBLICUA 30 º CON EL HORIZONTAL
2.b. PAR PARALELA ALELA AL SEGUNDO BISECTOR
3. Describir la recta “R” dada por sus proyecciones y completar los datos que faltan. r’
r
$
........................................................................
$
........................................................................
$
........................................................................
$
........................................................................
$
........................................................................
NOMBRE
. RECTAS .......................................................................................................................................... $
............................................................................................................................................
$
............................................................................................................................................
. RECTAS .......................................................................................................................................... $
............................................................................................................................................
$
............................................................................................................................................
. RECTAS .......................................................................................................................................... $
............................................................................................................................................
$
............................................................................................................................................
1. TRAZAS DE UN PLANO
Son las rectas de intersección del plano con c on cada uno de los planos de proyección. Plano( P): traza horizontal P y traza vertical P’. $ Estas rectas serán siempre rectas contenidas en los planos de proyección y de las que se prescinde de las proyecciones situadas en la LT $ En caso de tener dos trazas, éstas cortaran necesariamente a los planos de proyección según dos rectas concurrentes en un punto de la LT LT. #
RECTA CONTENIDA EN UN PLANO DADO POR SUS TRAZAS: para que una recta esté contenida en un plano, las trazas de la recta han de ser puntos de las trazas del plano. plano . #
PUNTO CONTENIDO EN UN PLANO : para que un punto esté situado en un plano, ha de estar contenido co ntenido en una de las rectas que pertenecen per tenecen al plano. #
2. DETERMINACIÓN DE PLANOS. Un plano queda determinado por: $
DOS RECTAS QUE SE CORTAN (R,S)
TRES PUNTOS NO ALINEADOS (A, B, C) L A RECTA (R, A) $ UNA RECTA Y UN PUNTO QUE NO PERTENEZCA A LA $ DOS RECTAS PARALELAS (R S) $
3. RECTAS PA PARTICULARES RTICULARES DE UN PLANOS 3.1. RECTA HORIZONTAL DE UN PLANO
Recta paralela al plano horizontal de proyección contenida en un plano, por tanto es paralela a la traza horizontal del plano. $
Su proyección vertical es paralela a la LT y su proyección horizontal paralela a la traza horizontal del plano.
3.1. RECTA FRONTAL DE UN PLANO
Recta paralela al plano vertical de proyección contenida en un plano, por tanto es paralela a la traza ver tical del plano. $
Su proyección horizontal es paralela a la LT y su proyección vertical paralela a la traza vertical del plano.
3.3. LÍNEA DE MÁXIMA PENDIENTE
Recta contenida en el plano que forma el mayor ángulo posible con el plano horizontal de proyección, por tanto es perpendicular a la traza horizontal del plano. Su proyección horizontal es perpendicular a la traza horizontal del plano en la proyección horizontal (h) de su traza horizontal (H). $
3.4. LÍNEA DE MÁXIMA INCLINACIÓN
Recta contenida en el plano que forma el mayor ángulo posible con el plano verticall de proyección, por tanto es perpendicular a la traza horizontal del plano. Su proyección vertical es perpendicular a la traza vertical del plano en la proyección vertical (v’) de su traza vertical (V). $
1. Determinar las trazas del plano “P” dado por los puntos: M(40,-9,23), N(68, 23,23) y P(92,21,-7)
0
2. Determinar las trazas del plano “Q” determinado por las rectas dadas “R” y “S”.
s’
0
s
r=r’
4. ALFABETO DEL PLANO #
Posiciones de un plano respecto a los planos planos de proyección y a los bisectores.
4.1. PLANOS PROYECTANTES (2 posiciones)
Todos los planos que sean perpendiculares a un plano de proyección y oblicuo a otro.
#
PROYECTANTE HORIZONTAL: perpendicular al plano de proyección horizontal y oblicuo al vertical. Su traza ver vertical tical será perpendicular a la LT y la horizontal formará con la LT cualquier ángulo excepto recto. PROYECTANTE VERTICAL: perpendicular al plano de proyección vertical y oblicuo al horizontal. Su traza horizontal será perpendicular a la LT LT y la ver tical formará con la LT cualquier ángulo excepto recto. $
$
4.2. PLANOS PARALELOS PARALELOS A LOS DE PROYECCIÓN (6 posiciones).
Tienen sólo una traza t raza paralela a la LT LT, ya que al ser paralelos a un plano de proyección su traza con el otro es impropia. $ PLANO PARALELO AL HORIZONTAL DE PROYECCIÓN. $ PLANO PARALELO AL VERTICAL DE PROYECCIÓN. #
4.3. PLANOS PARALELOS PARALELOS A LOS LOS BISECTORES (6 posiciones). # $ $
Son además paralelos a la LT LT. Sus trazas son paralelas a la Lty a igual distancia.
PLANOS PARALELOS AL PRIMER BISECTOR PLANOS PARALELOS AL SEGUNDO BISECTOR V
B1 H
V
B2 H
4.4. PLANOS PARALELOS PARALELOS A LA LT LT (4 posiciones).
Son paralelos a la l a LT LT pero no a los bisectores $ Planos que atraviesan los diedros (1º, 2º y 4º); (1º, 2º y 3ª; (2º, 3º y 4º); ( 1º, 4º y 3º) #
4.5. PLANOS QUE PASAN POR LA LT (2 posiciones). # $
Tienen sus trazas confundidas con la LT LT y se representan por por un punto
Planos que atraviesan del primer al tercer cuadrante y planos que van del segundo al cuarto. V
H
4.5. PLANOS PERPENDICULARES PERPENDICULARES A LOS BISECTORES (3 posiciones).
PLANOS PERPENDICULARES AL PRIMER BISECTOR: sus trazas equidistan de la LT, es decir, son simétricas simét ricas con c on respecto resp ecto a la LT, LT, por lo que q ue forman for man ángulos ángul os iguales igual es con la LT. LT. PLANOS PERPENDICULARES AL SEGUNDO BISECTOR: sus trazas están confundidas. PLANOS DE PERFIL: plano perpendicular a los dos bisectores y a los planos de proyección $
$ $
1. Determinar las trazas del plano “P” dado por los puntos: M(40,-9,23), N(68, 23,23) y P(92,21,-7)
0
2. Determinar las trazas del plano “Q” determinado por las rectas dadas “R” y “S”.
s’
0
s
r=r’
1. Determinar las trazas del plano “P” dado por la recta “S” y el punto A
s’
a
0
a’
s
1. Determinar las trazas del plano “Q” dado por los puntos: A(50, 0, 0), B(78, -12, 52) y C(97, 9, 24)
0
1. Determinar las trazas del plano “P” dado por la recta “S” y el punto A
s’
0
a’ s a
1. Determinar las trazas del plano “P” dado por la recta “S” y el punto A
s’ a’
0
a s
1. Determinar las trazas del plano “P” que conteniendo a la recta “S” sea:
a. PROYECTANTE HORIZONTAL
b. PROYECTANTE VERTICAL
s’
0
s’
0 s
s
c. PERPENDICULAR AL SEGUNDO BISECTOR
d. PERPENDICULAR AL PRIMER BISECTOR
s’
0
s’
0 s
d. PARALELO A LA LT s’
0 s
s
1. Determinar las trazas del plano “P” que conteniendo a la recta “S” sea:
a. PROYECTANTE HORIZONTAL
b. PARALELO AL PLANO HORIZONTAL
s’ 0
s’ 0
s
s
c. PERPENDICULAR AL SEGUNDO BISECTOR
d. PERPENDICULAR AL PRIMER BISECTOR
s’ 0
s’ 0
s
s
e. PROYECTANTE VERTICAL
f. PARALELO AL PLANO VERTICAL s’
0
s’ 0
s
s
g. PERPENDICULAR AL SEGUNDO BISECTOR
h. PERPENDICULAR AL PRIMER BISECTOR
s’ 0
s’ 0
s
s
1. Trazarle al plano dado “P” una:
a. LÍNEA DE MÁXIMA INCLINACIÓN P’
b. LÍNEA DE MÁXIMA PENDIENTE P’
0
0
P
P
c. RECTA HORIZONTAL
d. RECTA FRONTAL
P’
P’
0
0
P
P
e. LÍNEA DE MÁXIMA PENDIENTE
f. LÍNEA DE MÁXIMA INCLINACIÓN P’
P=P’ 0
0
P g. RECTA FRONTAL
h. RECTA HORIZONTAL P’
P=P’ 0
0
P
1. Trazarle al plano dado “P” una: d. RECTA FRONTAL
a. LÍNEA DE MÁXIMA INCLINACIÓN P’
P’
0
0
g. RECTA FRONTAL
P h. RECTA HORIZONTAL
P
P’
P=P’ 0
0
P 1. Determinar las trazas del plano “P” que conteniendo a la recta “S” sea:
a. PROYECTANTE HORIZONTAL
b. PARALELO AL PLANO HORIZONTAL
s’ 0
s’ 0
s
s d. PARALELO A LA LT
c. PERPENDICULAR AL SEGUNDO BISECTOR
s’
s’
0
0 s
s
2. Determinar las trazas del plano “Q” cuya LMP es la recta dada por los puntos A( 80,35,25) y B( 125, 125, -15, -40) a. Dibujar por el punto A una recta horizontal y una recta frontal del plano hallado.
0
un a recta horizontal que forma 45º con el plano vertical ver tical y que pasen 2. Dibujar las trazas de los planos que contengan a una por el punto M( 40, -12, 23 ). a.- Dibujar las líneas de máxima inclinación de dichos planos que pasen por el punto M
a. PERPENDICULAR AL 2º BISECTOR
0
b. HORIZONTAL
0
1. Dibujar las proyecciones diédricas de las rectas que conteniendo al punto A( 40, -15, 10) sean: a. HORIZONT HORIZONTAL AL que forme 30º con el plano ver tical.
a. FRONTAL que forme 30º con el plano horizontal
Contener esta recta en un plano perpendicular al 2º bisector
Contener esta recta en un plano proyectante ver tical.
0
0
un a recta horizontal que forma 45º con el plano vertical ver tical y que pasen 2. Dibujar las trazas de los planos que contengan a una por el punto M( 40, -15, -15 ). - Dibujar las líneas de máxima inclinación de dichos planos que pasen por el punto M. a. PROYECTANTE VERTICAL
0
b. PLANO FRONTAL
0
0 c. PERPENDICULAR AL 2º BISECTOR
0
0
d. PERPENDICULAR AL PRIMER BISECTOR.
0
1. Determinar las trazas del plano “P” dado por los puntos: A ( 50, -25, 25), B ( 65, 25, -25) y C ( 115, 25, 25). a. Dibujar por el punto C una línea de máxima pendiente (LMP) y una línea de máxima inclinación (LMI) del plano hallado.
0
2. Determinar las trazas del plano “Q” cuya LMP es la recta dada por los puntos A( 80,35,25) y B( 125, 125, -15, -40) a. Dibujar por el punto A una recta horizontal y una recta frontal del plano hallado.
0
1.Representacion diédrica de la recta “R” que pasa por los puntos: A( 45, 45, 30, -11), B( 123, -11, 22). a. b. c. d. e. 2. Hallar las trazas del plano que determinan la recta R y el punto C (80, 30, 22). 3. Clasificación del plano hallado:
0
1.Representacion diédrica de la recta “R” que pasa por los puntos: A( 40, -40, -15), B( 120, 15, 15, 40). a. b. c. d. e. 2. Hallar las trazas del plano que determinan la recta R y el punto C (93, 15, 20). 3. Clasificación del plano hallado:
0
1.Representacion diédrica de la recta “S” que pasa por los puntos: A( 50, -17, -10 ), B( 75, -17, 6 ). a. b. c. d. e. 2. Hallar las trazas del plano que determinan la recta S y el punto C ( 151, 16, 20 ). 3. Clasificación del plano hallado:
0
1.Representacion diédrica de la recta “R” que pasa por los puntos: A( 55, 30, 10), B( 135, 3, -17). a. b. c. d. e. 2. Hallar las trazas del plano que determinan la recta R y el punto C (126, -28, 20). 3. Clasificación del plano hallado:
0
1.Representacion diédrica de la recta “S” que pasa por los puntos: A( 35, -34, 5), B( 143, 10, -35). a. b. c. d. e. 2. Contener dicha recta en un plano “Q” perpendicular al segundo bisector 3. Trazar por el punto A una recta horizontal de dicho plano “Q”
4. Trazar por el punto B una línea de máxima pendiente del mismo plano
0
1.Representacion diédrica de la recta “S” que pasa por los puntos: A(60, -10, 19), 19), B( 60, -38, -38, -9). a. b. c. d. e.
0
2.Representacion diédrica de la recta “R” que pasa por los puntos: M(70, 19, -6), N( 122, -15, -40). a. b. c. d. e.
0
Hallar las rectas de intersección de los siguientes planos a. PLANOS P y Q
P’
CUYAS TRAZAS SE CORTAN FUERA DE LOS LÍMITES DEL PAPEL
Q’
P’
0
Q’
0
P
Q
P
a. PLANO P CON EL PRIMER BISECTOR Y BISECTOR Y CON EL SEGUNDO BISECTOR
Q
B. PLANOS P Y Q CUYAS TRAZAS SE CORTAN EN LA LT
P’
P’
0
Q’
0
Q
P
P
c. PLANO P CON UN PLANO Q QUE PASA POR LA LT
P’ a’
0 Q
Q’ a
P
1. Hallar las trazas del plano que determinan los puntos A( 55, 30, 10), B( 135, 3, -17) y C (126, -28, 20). a. Hallar la intersección del plano hallado con un plano Q que pasa por la l a LT LT y el punto D (145, -20,10)
0
1.Dibujar las trazas del plano P dado por los puntos: A(35, -22, 22), B( 40, 22, -22) y C (80, 22, 22) a. Hallar las trazas de un plano Q paralelo al plano P por el punto M(125, 22, 13) b. Determinar la perpendicular común MN.
0
punto s A(40, -25, 54) y B(100, 52 , -10). 2.Dibujar las trazas del plano P cuya LMI es la recta dada por los puntos a. Trazar por el punto M ( 53, 40, 65) un plano Q perpendicular al plano P que sea perpendicular al segundo bisector (Q) b. Hallar la intersección de ambos planos.
0
diédricas de la pirámide oblícua de base ABC y vértice D: 1. Dadas las proyecciones diédricas a. Hallar los puntos (1, 2, 3) de intersección de las aristas AD, BD y CD con el plano dado P. b. Vistos y ocultos de la sección de pirámide con respecto al plano P.
d’ P’
a’
0
c’
b’
c b
a
P
d
diédricas de la pirámide oblícua de base ABC y vértice D: 1. Dadas las proyecciones diédricas a. Hallar los puntos (1, 2, 3) de intersección de las aristas AD, BD y CD con el plano dado P. b.Verdadera magnitud de la sección (1, 2, 3). c. Desarrollo de la pirámide.
’ d
d
P
’ b b
’ P
’ c
’ a 0
c
a
1.Dibujar las trazas del plano P dado por la recta dada R y el punto: A(20, 20, - 40) 40) a. Hallar las trazas de un plano Q paralelo al plano P por el punto M(145, 12, 30) b. Determinar la perpendicular común MN.
r’
0
r
punto s A(73, 40, 35) y B(90, 15 , -15). 2.Dibujar las trazas del plano P cuya LMP es la recta dada por los puntos a. Trazar por el punto M ( 60, 40, 50) un plano Q perpendicular al plano P que sea proyectante vertical (Q). b. Hallar la intersección de ambos planos.
0
1. Hallar las trazas del plano P que determinan los puntos A( 60, -10, 30), B( 100, 30, 30, 30) y C (140, 30, -10). a. Hallar las trazas del plano Q que pasa por los puntos C( 110, -20, -23), D( 135, 0, 0) y E (155, 23, 25). b. Hallar la intersección de ambos planos P y Q.
0
cont enido en el plano P 1. Hallar las proyecciones diédricas del hexágnono regular contenido
h c P
o B
o A
o ’ P
0
1. Sabiendo que el ángulo entre las trazas del plano P es de 60º, hallar las proyecciones diédricas del pentágno regular contenido en el plano P
h c P
o B
o A
0
cont enido en el plano P 1. Hallar las proyecciones diédricas del hexágnono regular contenido
’ P
h c P
o B
o A
0
pentágono regular contenido en el plano P 1. Hallar las proyecciones diédricas de una pirámide recta cuya base es un pentágono y su altura es de 60 mm.
’ P
h c P
o B
o A
0
diédricas de la pirámide oblícua de base ABC y vértice D: 1. Dadas las proyecciones diédricas a. Hallar la verdadera magnitud de las aristas b. Desarrollo de la pirámide.
’ d
d
P
’ b b
’ P
’ c
’ a 0
c
a
1. Hallar las trazas del plano que determinan los puntos A( 55, 30, 10), B( 135, 3, -17) y C (126, -28, 20).
0
2. Hallar el plano Q que pasa por la LT y el punto D (145, -20,10)
0
PROCEDIMIENTO GENERAL La intersección de dos planos P y Q es una recta AB per perteneciente teneciente a ambos planos. Para hallar dicha recta AB se utiliza el procedimiento general que consiste en utilizar dos planos auxiliares cualquiera, elegidos convenientemente. #
Para hallar la intersección de dos planos P y Q se eligen como planos auxiliares dos planos paralelos T1 y T2.
A (P)
R1
(Q)
S1
$ $
La intersección de S1 con R1 es el punto A
(T (T 11 ) )
B R2
$
S2
$
La intersección de T2 con P produce una recta S2 La intersección de T2 con Q produce una recta R2 La intersección de S2 con R2 es el punto B
(T 2 ) (T 1 )
#
La intersección de T1 con P produce una recta S1 La intersección de T1 con Q produce una recta R1
INTERSECCIÓN DE DOS PLANOS OBLICUOS CUALQUIERA
La intersección de dos planos P y Q es una recta I que pert pertenece enece a ambos planos. Para hallar dicha recta I se utiliza el procedimiento general y se eligen como auxiliares los planos horizontal y ver tical de proyección. Las intersecciones de sus trazas homónimas nos determinan los puntos h y v’, trazas de la recta de intersección de los planos. Basta referir dichos puntos a la LT LT para determinar en dicha línea su otra proyección h’ y v, respectivamente. Obtenidas las proyecciones de las trazas de la recta de intersección, basta unir h-v y h’-v’ para determinar las proyecciones i-i’ de la recta de intersección de ambos planos. $
Q’ P’ Q’ V (Q)
P’
(P)
I
H
P Q
P
Q
#
INTERSECCIÓN DE UN PLANO OBLICUO CUALQUIERA CON UN PLANO HORIZONTAL P’ H’
(P) P’
(H)
H’ P P
#
INTERSECCIÓN DE UN PLANO PL ANO OBLICUO CUALQUIERA CON UN PLANO PL ANO PARALEL PARALELOO AL VERTICAL P’
(F)
(P) P’
F
P
F P
#
INTERSECCIÓN DE UN PLANO PL ANO OBLICUO CUALQUIERA CON UN PLANO PL ANO PROYECTANTE PROYECTANTE HORIZONTAL Q’ Q’
P’
(Q) (P)
P’
P
Q
P
Q #
INTERSECCIÓN DE UN PLANO OBLICUO CUALQUIERA CON UN PLANO PROYECTANTE VERTICAL VERTICAL Q’ (P) Q’
P’
(Q)
P’ P
Q
P
Q
#
INTERSECCIÓN DE UN PLANO PROYECTANTE HORIZONTAL HORIZONTAL CON OTRO PROYECTANTE PROYECTANTE VERTICAL Q’
(P)
P’
(Q)
P’
Q’
Q
Q P #
P
INTERSECCIÓN DE PLANOS PROYECTANTES HORIZONTALES Q’
(P) P’
(Q)
Q’
P’ P
Q
Q
P #
INTERSECCIÓN DE UN PLANO OBLICUO CUALQUIERA CON UN PLANO PL ANO PARALELO PARALELO A LA LT LT P’ (P)
P’
Q’
Q’ (Q) Q
P Q #
P
INTERSECCIÓN DE PLANOS PARALELOS A LA LT Q’ (Q)
P’
Q’ P’
(P)
Q P
Q P
Hallar las rectas de intersección de los siguientes planos a. PLANOS P y Q
P’
CUYAS TRAZAS SE CORTAN FUERA DE LOS LÍMITES DEL PAPEL
Q’
P’
0
Q’
0
P
Q
P
Q
B. PLANOS P Y Q CUYAS TRAZAS SE CORTAN EN LA LT
a. PLANO P CON EL PRIMER BISECTOR Y BISECTOR Y CON EL SEGUNDO BISECTOR
P’
P’
0
Q’
0
Q
P
P
c. PLANO P CON UN PLANO Q QUE PASA POR LA LT
P’ a’
0 Q
Q’ a
P
1. Hallar las trazas del plano que determinan los puntos A( 55, 30, 10), B( 135, 3, -17) y C (126, -28, 20). a. Hallar la intersección del plano hallado con un plano Q que pasa por la l a LT LT y el punto D (145, -20,10)
0
1. Hallar las trazas del plano P que determinan los puntos A( 60, -10, 30), B( 100, 30, 30, 30) y C (140, 30, -10). a. Hallar las trazas del plano Q que pasa por los puntos C( 110, -20, -23), D( 135, 0, 0) y E (155, 23, 25). b. Hallar la intersección de ambos planos P y Q.
0
1. Hallar las proyecciones de la recta horizontal “R” que pasa por el punto A (50, -35, 35) y forma -45º con el plano vertical. ver tical. Hallar las trazas del plano P que conteniendo a esta recta sea perpendicular al segundo bisector. bisector. 2. Hallar las trazas del plano Q, proyectante vertical que contiene a una recta frontal que pasa por el punto B(156, 25, 35) y forma 45º con el plano horizontal 3. Hallar la intersección de ambos planos P y Q.
0
P’ H’ P’ Q’
Q
P P
P’ P’
Q’
P
F
Q
P
P’ Q’
Q’
P’
Q
P
Q P
Q’
Q’ P’
P’
P
Q
Q P
1. Hallar la intersección de la recta R con el plano P. Vistos y ocultos de la recta con respecto al plano.
r’
P’
r P
1. Hallar la intersección del plano Q con el plano P
P’ a’
0 Q
Q’ a
P
PROCEDIMIENTO GENERAL La intersección de una recta R y un plano P es un punto A pert perteneciente eneciente a ambos. Para hallar dicha punto A se utiliza el procedimiento general que consiste en: $Contener la recta R en un plano auxiliar cualquiera Q elegido convenientemente. $Se halla S, recta de intersección de ambos planos P y Q . $La intersección de la recta S con la recta R es el punto A. #
VISTOS Y OCULTOS DE LA RECTA CON RESPECTO AL PLANO. P LANO. r’
P’
S (P) R A
r
(Qaux)
P
P’
r’
P’ r P
r’
r P
diédricas de la pirámide oblícua de base ABC y vértice D: 1. Dadas las proyecciones diédricas a. Hallar los puntos (1, 2, 3) de intersección de las aristas AD, BD y CD con el plano dado P. b. Vistos y ocultos de la sección de pirámide con respecto al plano P.
d’ P’
a’
0
c’
b’
c b
a
P
d
diédricas de la pirámide oblícua de base ABC y vértice D: 1. Dadas las proyecciones diédricas a. Hallar los puntos (1, 2, 3) de intersección de las aristas AD, BD y CD con el plano dado P. b.Verdadera magnitud de la sección (1, 2, 3). c. Desarrollo de la pirámide.
’ d
d
P
’ b b
’ P
’ c
’ a
0
c
a
1.Dibujar las trazas del plano P dado por la recta dada R y el punto: A(20, 20, - 40) 40) a. Hallar las trazas de un plano Q paralelo al plano P por el punto M(145, 12, 30) b. Determinar la perpendicular común MN.
r’
0
r
punto s A(73, 40, 35) y B(90, 15 , -15). 2.Dibujar las trazas del plano P cuya LMP es la recta dada por los puntos a. Trazar por el punto M ( 60, 40, 50) un plano Q perpendicular al plano P que sea proyectante vertical (Q). b. Hallar la intersección de ambos planos.
0
1.Dibujar las trazas del plano P dado por los puntos: A(35, -22, 22), B( 40, 22, -22) y C (80, 22, 22) a. Hallar las trazas de un plano Q paralelo al plano P por el punto M(125, 22, 13) b. Determinar la perpendicular común MN.
0
punto s A(40, -25, 54) y B(100, 52 , -10). 2.Dibujar las trazas del plano P cuya LMI es la recta dada por los puntos a. Trazar por el punto M ( 53, 40, 65) un plano Q perpendicular al plano P que sea perpendicular al segundo bisector (Q) b. Hallar la intersección de ambos planos.
0
1. Dibujar las proyecciones diédricas de las rectas que conteniendo al punto A( 40, 10, 15) sean: HORIZONTAL AL que forme a. HORIZONT
30º con el plano ver tical. Contener esta recta en un plano perpendicular al 2º bisector
0
a. FRONTAL que forme 30º con el plano horizontal
Contener esta recta en un plano proyectante ver tical.
0
2. Dibujar las trazas de los planos que contengan a una recta frontal que for ma 45º con el plano horizontal y que pasen por el punto M( 40, 20, -10 ). a.- Dibujar las líneas de máxima pendiente de dichos planos que pasen por el punto M a. PROYECTANTE VERTICAL
0
0
c. PERPENDICULAR AL 2º BISECTOR
0
B. PLANO FRONTAL
d. PERPENDICULAR
0
AL PRIMER BISECTOR.
1. Dibujar las proyecciones diédricas de las rectas que conteniendo al punto A( 40, -15, 10) sean: HORIZONTAL AL que forme a. HORIZONT
30º con el plano ver tical. Contener esta recta en un plano perpendicular al 2º bisector
0
a. FRONTAL que forme 30º con el plano horizontal
Contener esta recta en un plano proyectante ver tical.
0
2. Dibujar las trazas de los planos que contengan a una recta horizontal que forma 45º con el plano vertical y que pasen por el punto M( 40, -15, -15 ). - Dibujar las líneas de máxima inclinación de dichos planos que pasen por el punto M. a. PROYECTANTE VERTICAL
0
0
c. PERPENDICULAR AL 2º BISECTOR
0
b. PLANO FRONTAL
d. PERPENDICULAR
0
AL PRIMER BISECTOR.
1. Determinar las trazas del plano “P” dado por los puntos: A ( 50, -25, 25), B ( 65, 25, -25) y C ( 115, 25, 25). a. Dibujar por el punto C una línea de máxima pendiente (LMP) y una línea de máxima inclinación (LMI) del plano hallado.
0
2. Determinar las trazas del plano “Q” cuya LMP es la recta dada por los puntos A( 80,35,25) y B( 125, 125, -15, -40) -40) a. Dibujar por el punto A una recta horizontal y una recta frontal del plano hallado.
0
1.Representacion diédrica de la recta “R” que pasa por los puntos: A( 45, 45, 30, -11), B( 123, -11, 22). a. b. c. d. e. 2. Hallar las trazas del plano que determinan la recta R y el punto C (80, 30, 22). 3. Clasificación del plano hallado:
0
1.Representacion diédrica de la recta “S” que pasa por los puntos: A( 50, -17, -10 -10 ), B( 75, -17, 6 ). a. b. c. d. e. 2. Hallar las trazas del plano que determinan la recta S y el punto C ( 151, 16, 20 ). 3. Clasificación del plano hallado:
0
1.Representacion diédrica de la recta “R” que pasa por los puntos: A( 55, 30, 10), B( 135, 3, -17). a. b. c. d. e. 2. Hallar las trazas del plano que determinan la recta R y el punto C (126, -28, 20). 3. Clasificación del plano hallado:
0
1.Representacion diédrica de la recta “S” que pasa por los puntos: A( 35, -34, -34, 5), B( 143, 10, -35). a. b. c. d. e. 2. Contener dicha recta en un plano “Q” perpendicular al segundo bisector 3. Trazar por el punto A una recta horizontal de dicho plano “Q”
4. Trazar por el punto B una línea de máxima pendiente del mismo plano
0
1.Representacion diédrica de la recta “S” que pasa por los puntos: A(60, -10, 19), B( 60, -38, -38, -9). a. b. c. d. e.
0
2.Representacion diédrica de la recta “R” que pasa por los puntos: M(70, 19, -6), N( 122, -15, -15, -40). a. b. c. d. e.
0
La perpendicularidad no se reproduce en proyecciones, solamente en un determinado caso: cuando los elementos son rectas con planos o planos con rectas. # La perpendicularidad entre rectas y entre planos no se manifiesta directamente en las proyecciones de estos elementos, sino en posiciones muy particulares. TEOREMA DE LAS TRES PERPENDICULARES : si dos rectas R y S son perpendiculares en el espacio y una de ellas, R por ejemplo, es paralela a un plano de proyección, las proyecciones r y s de ambas rectas sobre el plano son perpendiculares entre si. rec ta R, perpendicular a un plano P lo es asimismo a las infinitas rectas S,T, etc. que pertenezcan al plano #Toda recta #
1. RECTA PERPENDICULAR A UN PLANO POR UN PUNTO DADO
2. PLANO PERPENDICULAR A UNA RECT RECTAA POR UN PUNTO DADO
P’
r’
m’
m’ 0
0
m
m
P
r
RECTAS PERPENDICULARES ENTRE SI. No se manifiestan en sus proyecciones salvo posiciones paralelas a los planos de proyección. Toda recta contenida en un plano perpendicular a una recta dada R, es perpendicular a la recta dada, pase o no por su punto de intersección. #
Se traza un plano que sea perpendicular a la recta dada y cualquier recta contenida en este plano es directamente perpendicular a R, luego el problema tiene infinitas soluciones. Será necesaria una condición para determinar una recta única. $
r’
m’
R M
0
P
m r
PLANOS PERPENDICULARES ENTRE SI. Este problema también tiene infinitas soluciones, puesto que para que un plano Q sea perpendicular a otro dado P basta que contenga a una recta R que sea perpendicular a P. P. #
La determinación de un plano determinado se consigue añadiendo una condición adicional. Poe ejemplo que el plano sea proyectante horizontal y que contenga a un punto. $
P’
Q
m’ R 0
M
m P
P
Las proyecciones ortogonales de las rectas paralelas sobre un plano de proyección son siempre paralelas. Siendo dos planos de proyección en el sistema diédrico, las rectas paralelas en el espacio han de tener necesariamente ambas proyecciones homónimas paralelas entre si. #
La condición necesaria y suficiente para que dos planos sean paralelos es que sus trazas diédricas sean respectivamente paralelas. #
TRAZAR POR UN PUNTO DADO UNA RECTA PARALELA A OTRA DADA
TRAZAR POR UN PUNTO UN PLANO PARALELO PARALELO A OTRO DADO
m’
r’
P’ m’
0
0
m r
P m
Toda recta paralela a un plano es paralela a una recta en él contenida. Como son infinitas las rectas que puueden tomarse en un plano, son asimismo infinitas las rectas que pueden trazarse paralelas a un plano por un punto #
PLANO PARALELO A UNA RECTA PASANDO POR UN PUNTO
RECTA PARALELA A UN PLANO PASANDO POR UN PUNTO
m’
r’
P’ m’
0
0
m r
P m
En caso de indeterminación de paralelismo entre rectas de perfil se precisan que sus sentidos sean iguales, así como sus proyecciones directamente proporcionales. $Se comprueba facilmente proyectándolas sobre un plano de perfil donde el paralelismo ha de subsistir si las rectas son paralelas. #
DETERMINAR DETERMI NAR EL PARALELISM PARALELISMO O DE LAS RECTAS R: A(35,10,15) y B(35,25,5) B(35,25,5) y S: C(55,4,10) C(55,4,10) y D(55,11,5) D(55,11,5)
0
1. Dadas las proyecciones diédricas de la pirámide oblícua de base ABC y vértice D: a. Hallar los puntos (1, 2, 3) de intersección de las aristas AD, BD y CD con el plano dado P. l a sección de pirámide con respecto al plano P. b. Vistos y ocultos de la
d’ P’
a’
0
c’
b’
c
b
a
P
d
1. Hallar las trazas del plano P que determinan los puntos A( 60, -10, -10, 30), B( 100, 30, 30, 30) y C (140, 30, -10). a. Hallar las trazas del plano Q que pasa por los puntos C( 110, -20, -20, -23), D( 135, 0, 0, 0) y E (155, 23, 25). b. Hallar la intersección de ambos planos P y Q.
0
1.Dibujar las trazas del plano P dado por su LMI (línea máxima inclinación) R a. Hallar las trazas de un plano Q paralelo al plano P por el punto M(75, 12, 35) b. Determinar la perpendicular común MN.
r’
0
r
2. Dibujar una recta horizontal R que pase por el punto A(65, 20, 25) y forme -45ºcon el plano vertical. Dibujar una recta S paralela a R por el punto B (90, 40, 40). a. Hallar las trazas del plano P determinado por las rectas R y S bisector. b. Hallar la intersección del plano P con el primer bisector y con el segundo bisector.
0
1.Dibujar las trazas del plano P dado por la recta dada R y el punto: A(20, 20, - 40) a. Hallar las trazas de un plano Q paralelo al plano P por el punto M(145, 12, 30) b. Determinar la perpendicular común MN.
r’
0
r
2.Dibujar las trazas del plano P cuya LMP es la recta dada por los puntos A(73, 40, 35) y B(90, 15 , -15). a. Trazar por el punto M ( 60, 40, 50) un plano Q perpendicular al plano P que sea proyectante vertical (Q). b. Hallar la intersección de ambos planos.
0
1. Hallar la intersección del plano del plano P con el plano el plano Q que pasa por la L la LTT
P’ a’
0 Q
P
Q’
a
2.Dibujar las trazas del plano P cuya LMP es la recta dada por los puntos A(73, 35, 40) y B(90, -15 , 15). a. Trazar por el punto M ( 120, 50, 40) un plano Q perpendicular al plano P que sea perpendicular al segundo bisector (Q). b. Hallar la intersección de ambos planos.
0
DETERMINAR R EL PARALELISMO PARALELISMO DE LAS LA S RECTAS R: A(35,10,-15) y B(35,25,5) 1.DETERMINA B(35,25,5) y S: C(55,4,10) y D(55,11,-5) D(55,11,-5)
0
2.Dibujar las trazas del plano P cuya LMP es la recta dada por los puntos A(40, 20, -20) y B(110, 20 , 40). a. Trazar por el punto M ( 60, 40, 50) un plano Q paralelo al plano P b. Determinar la perpendicular común MN.
0
c. PLANO PLANO P P CON UN PLANO Q QUE PASA POR LA LT P’ a’
0 Q
Q’
a P
2.Dibujar las trazas del plano P cuya LMI es la recta dada por los puntos A(40 , -20, 20) y B(110, 40 , 20). a. Trazar por el punto M ( 120, 40, 50) un plano Q paralelo al plano P b. Determinar la perpendicular común MN.
0
Se llama abatir un plano a hacer coincidir a éste con otro plano, particular y fijo, que en la práctica es uno de proyección. El abatimiento de un plano se efectúa girando el mismo sobre una de sus trazas, traza s, que recibe el nombre de charnela. #
Todos los elementos contenidos en el plano móvil se sitúan tras el abatimiento sobre el plano de proyección pr oyección elegido, por lo que se proyectan sin deformación alguna, con lo que se obtienen sus verdaderas #
magnitudes.
ABATIMIENTO DE UN PLANO PROYECTANTE VERTICAL
ABATIMIENTO DE UN PLANO PROYECTANTE HORIZONTAL HORIZONTAL P’
P’
P
P ABATIMIENTO DE UN PLANO PROYECTANTE VERTICAL CONTENIENDO A UNA FIGURA PL ANA
P’ch P’
Pch
P
ABATIMIENTO DE UN PLANO PROYECTANTE horizontal CONTENIENDO A UNA FIGURA PL ANA P’ch
P’
Pch
P
ABATIMIENTO DE UN PLANO PROYECTANTE VERTICAL
ABATIMIENTO DE UN PLANO PROYECTANTE HORIZONTAL HORIZONTAL P’
P’
P
P
ABATIMIENTO DE UN PLANO PROYECTANTE VERTICAL CONTENIENDO A UNA FIGURA PL ANA P’ch P’
Pch
P
ABATIMIENTO DE UN PLANO PROYECTANTE horizontal CONTENIENDO A UNA FIGURA PL ANA P’ch
P’
Pch
P
1. Hallar las proyecciones diédricas del hexágnono regular contenido en el plano P
’ P
h c P
o B
o A
0
Se llama abatir un plano a hacer coincidir a éste con otro plano, particular y fijo, que en la práctica es uno de proyección. El abatimiento de un plano se efectúa girando el mismo sobre una de sus trazas, traza s, que recibe el nombre de charnela. #
Todos los elementos contenidos en el plano móvil se sitúan tras el abatimiento sobre el plano de proyección pr oyección elegido, por lo que se proyectan sin si n deformación alguna, con lo que se obtienen sus verdaderas magnitudes. #
ABATIMIENTO DE UN PUNTO CONTENIDO EN UN PLANO
P’ch
a’
A
a . .
Ao
a’
a
. .
Ao
a
A1 Pch
ABATIMIENTO ABATIM IENTO DE UNA RECTA HORIZONTAL HORIZONTAL CONTENIDA EN UN PLANO P’
v’
P’ch
r’
v
v’
r’
v
r Pch
ABATIMIENTO DE LAS TRAZAS DE UN PLANO
r P
ABATIMIENTO DE UNA RECTA CONTENIDA EN UN PLANO P’
Pch
P’
Pch
1. Hallar las proyecciones diédricas del hexágnono regular contenido en el plano P
h c P
o B
o A
o ’ P
0
1. Sabiendo que el ángulo entre las trazas del plano P es de 60º, hallar las proyecciones diédricas del pentágno regular contenido en el plano P
h c P
o B
o A
0
ÁNGULO ENTRE DOS RECTAS QUE SE CORTAN
ÁNGULO ENTRE DOS RECTAS RECTAS QUE SE CRUZAN
m’ s’
s’
r’
r’
s m
s r
r
ÁNGULO ENTRE RECTA Y PLANO M
r’
P’
â R
S
á P
á = 90º - â r
P
ÁNGULO ENTRE DOS PLANOS M R
P’
Q’
â
S
á P
á = 180º - â
P
Q
#
En este este procedimiento, procedimiento, los planos de proyección permanecen fijos, siendo la figura del espacio la que se desplaza,
girando alrededor de una recta tomada como eje de giro. # Para definir un giro es necesario conocer: qué es lo que gira, alrededor de qué gira y cuantos grados gira. #
Sólo estudiaremos los giros en los que el eje se toma perpendicular a los planos de proyección, proy ección,
GIRO DE UN PUNTO Cuando un punto P gira alrededor de un eje E, describe una circunferencia cuyo plano es perpendicular al eje tomado. El centro de esta circunferencia es el punto de intersección del eje con el plano, siendo el radio de giro la distancia del punto P al eje. En la figura, se ha girado el punto P hasta la posición P1 tras describir un arco á determinado. #
Eje r r
P1
á
P
e’
H1’ p1 ’
H 1
r r
p’
P1
á
P Zp Zp e r
Si adoptamos un eje vertical, en el Sistema Diédrico la circunferencia que describe un punto dado P, estará contenida en un plano H1, que por ser perpendicular al eje de giro será paralelo al plano horizontal; por tanto se muestra en verdadera magnitud en su proyección horizontal, proyectándose sobre el vertical por un segmento que es su diámetro, perpendicular a la proyección ver tical e’ del eje dado. #
Eje
Si el punto ha girado desde la posición P a P1 recorre el arco correspondiente á sobre dicha circunferencia, conservando su cota (Zp) constante, siendo sus proyecciones antes del giro ( p, p’) y después del giro ( p1, p1’). #
r
p1
á
p
p’
p’ e’ e’
e p
e p
1º CASO: LA RECTA ES CORTADA POR EL EJE. Giro de una recta R alrededor de un eje vertical E que corta al eje en el punto A. Este punto A, por pertenecer al eje de giro no sufre desplazamiento, luego basta girar otro punto, B por #
ejemplo, para que la recta r ecta quede definida.
SITUAR LA RECT RECTAA R FRONT FRONTAL. AL. VERDADERA MAGNITUD MN=50 mm. r’
r’
e’ a’
e’=a’
r
r e=a
e=a
2º CASO: LA RECTA Y EL EJE SE CRUZAN . Como la recta R queda definida por dos de sus puntos, basta girar dos puntos cualesquiera de la misma( A, B) para obtener sus nuevas proyecciones. Sea la recta R que se desea girar un determinado ángulo alrededor de un eje ver tical. Es conveniente elegir uno de los puntos ( A )en el pie de la perpendicular trazada a r desde e. #
SITUAR LA RECT RECTAA R FRONT FRONTAL. AL. VERDADERA MAGNITUD MN=50 mm. r’
r’ e’
r
e’
e
r
Situar el segmento MN perpendicular al plano horizontal m’
e
Situar el segmento MN perpendicular al plano vertical m’
n’
m
n’
m
n
n
GIRO DE UN PLANO. Giro de un plano Q alrededor de un eje vertical E . Giramos una recta horizontal R del plano Q . La nueva traza horizontal Q1 del plano será paralela a la nueva proyección horizontal r1 de la recta después del giro. La recta R1 quedará contenida en la nueva posición del plano Q1. #
c’ Q’
e’ a’ b’ c e a
Q b
SITUAR EL PLANO Q PROYECTANTE VERTICAL c’ Q’
e’ a’ b’ c e a
Q b
VERDADERA MAGNITUD DEL TRIÁNGULO ABC c’
a’ b’ c a
b
#
CAMBIOS DE PLANO. Los cambios de planos se utilizan en Geometría descriptiva para lograr que una figura quede
situada respecto a los planos de proyección, proyección, en situación conveniente que que nos permita una solución más fácil.
MÉTODO. Sin variar la figura del espacio, se sustituye uno de los planos de proyección por otro, elegido entre los que son perpendiculares al plano de proyección que se conserva. conser va. De este modo se obtiene un nuevo sistema diédrico de planos ortogonales. La figura del espacio permanece fija, pero uno de los planos de proyección cambia, luego las proyecciones sobre el mismo también variarán. El método consiste en ha llar las nuevas proyecciones con respecto r especto a los nuevos planos de proyección. Los dos planos de proyección no pueden sustituirse al mismo tiempo, sino que es necesario efectuar el cambio de uno de ellos y a continuación el del otro, pudiendo repetir estas sustituciones escalonadamente,pero para casi todos loss cas lo casos os ba bast staa con con do doss cam cambi bios os,, uno uno pa para ra ca cada da pl plan ano. o. #
CAMBIO DE PLANO VERTICAL V a’ a1’
V1
A
a’
Za Za
a1’
Za
a’
a
a=a1
H
Situar el plano Q proyectante vertical c’ Q’ a’ b’
a
b Q c
#
CAMBIOS DE PLANO. Los cambios de planos se utilizan en Geometría descriptiva para lograr que una figura quede
situada respecto a los planos de proyección, proyección, en situación conveniente que que nos permita una solución más fácil.
MÉTODO. Sin variar la figura del espacio, se sustituye uno de los planos de proyección por otro, elegido entre los que son perpendiculares al plano de proyección que se conserva. conser va. De este modo se obtiene un nuevo sistema diédrico de planos ortogonales. La figura del espacio permanece fija, pero uno de los planos de proyección cambia, luego las proyecciones sobre el mismo también variarán. El método consiste en ha llar las nuevas proyecciones con respecto r especto a los nuevos planos de proyección. Los dos planos de proyección no pueden sustituirse al mismo tiempo, sino que es necesario efectuar el cambio de uno de ellos y a continuación el del otro, pudiendo repetir estas sustituciones escalonadamente,pero para casi todos loss cas lo casos os ba bast staa con con do doss cam cambi bios os,, uno uno pa para ra ca cada da pl plan ano. o. #
CAMBIO DE PLANO HORIZONT HORIZONTAL AL V a’=a1’ Y Yaa
Yaa Y
a’
a
a1’ H a
H1
Situar el plano Q paralelo al plano horizontal. Verdadera magnitud. c’ Q’ a’ b’
a
b
Q c
Situar el segmento AB de punta (perpendicular al horizontal)
Situar el segmento AB frontal. b’
b’
a’ a’
a
a
b
b
Situar el segmento AB de punta (perpendicular al horizontal) Situar el segmento AB perpendicular al vertical b’
b’
a’
a’
a
a b
b
Verdadera magnitud del triángulo ABC c’
a’ b’
a
b c
Situar el plano Q proyectante vertical c’ Q’ a’ b’
a
b Q c
Situar el plano Q paralelo al plano horizontal. Verdadera magnitud. c’ Q’ a’ b’
a
b
Q c
Verdadera magnitud del triángulo ABC c’
a’ b’
a
b c
DISTANCIA entre dos puntos
DISTANCIA de un punto a un plano A
b’
P’
a i c n a t s i d
a’
a’ B
P
a
DISTANCIA de un punto a una recta R
P
a
b
DISTANCIA entre dos rectas paralelas R
r’
S
A
B
A
distancia
P
distancia
r’
s’
P
B
a’
r a s r
MÍNIMA DISTANCIA entre dos rectas que se cruzan (perpendicular común)
DISTANCIA entre dos planos paralelos R
a i c n a t s i d
R
A r’
P
s’
B Q
P’
Q’
s r P
Q
(1 p.) 1. ABATIMIENTO de un punto contenido en un plano
(2 p.) 2. DISTANCIA de un punto a un plano P’
a’
a’
a
Pch
(2 p.)3. ÁNGULO que forma la recta R con el plano P
P’
P
a
(2 p.) 4. DISTAN DISTANCIA CIA entre dos planos paralelos
r’
Q=Q’
P=P’
r
P
(1 p.)6. MÍNIMA DISTANCIA entre dos rectas que se cruzan
(2 p.) 5. Verdadera magnitud del segmento AB a’
r’
e’
s’ b’
a
e
s r
b
Los puntos dados A(80, 59,0), B(82, 19, 18) y C(103, 51, 36) son los vértices de un triángulo equilátero que forma parte de un hexágono regular. (3 p.) 1. Dibujar las proyecciones diédricas de dicho hexágono (3 p.) 2. Por el centro del hexágono trazar una perpendicular de 60 mm de altura (por la par te vista) (2 p.) 3. Dibujar la pirámide que tiene como base el hexágono y vér tice el extremo de la perpendicular (2 p.) 4. Verdadera magnitud de las aristas de la pirámide
0
1. CONTENER UN TRIÁNGULO EQUILÁTERO EN EL PLANO DADO
2. ABATIMIENTO DE UNA RECTA HORIZONTAL HORIZONTAL CONTENIDA EN UN PLANO
(2 puntos)
(2 puntos)
P’ch
P’ v’
r’
v
r Pch
P
3. SITUAR EL PLANO Q PROYECTANTE VERTICAL a. POR GIRO (2 puntos) c’
b. POR CAMBIO DE PLANOS (2 puntos) c’
a’
a’ b’
b’
c
c
a
a
b
b
4. VERDADERA MAGNITUD DEL TRIÁNGULO TRIÁNGULO ABC (4 puntos)
c’
a’ b’
a
b c
PRISMA RECTO
PRISMA OBLICUO
a r u t l a
a r u t l a
o’
o’
o o
PRISMA RECTO CON BASE EN UN PLANO OBLICUO. Base: pentágono regular. Altura: 50 mm. P’
(A)
(B)
Pch
PRISMA RECTO
P’
PRISMA OBLICUO
P’
a r u t l a
o’
o’
o o Pch
Pch
PRISMA OBLICUO. SECCIÓN RECTA por el punto medio del eje. Base: pentágono regular radio r=20 mm. Arista: 80 mm.
o’
o
PRISMA RECTO. INTERSECCIÓN CON RECTA
r’
o’
PRISMA OBLICUO. INTERSECCIÓN CON RECTA
r’
o’
o o
r DESARROLLO DE UN PRISMA RECTO
r DESARROLLO DE UN PRISMA OBLICUO
CILINDRO RECTO
CILINDRO OBLICUO
a r u t l a
a r u t l a
o’
o’
o o
CILINDRO RECTO CON BASE EN UN PLANO OBLICUO. Base: radio 15 mm. Altura: 50 mm. P’
(A)
(o) Pch
CILINDRO RECTO
P’
CILINDRO OBLICUO
P’
a r u t l a
o’
o’
o o Pch
Pch
CILINDRO OBLICUO. SECCIÓN RECTA por el punto medio del eje. Base: radio r=20 mm. Generatriz: 70 mm.
o’
o
CILINDRO OBLICUO. SECCIÓN RECTA por el punto medio del eje. Desarrollo
a r u t l a
o’
o
CILINDRO RECTO. INTERSECCIÓN CON RECTA
r’
o’
CILINDRO OBLICUO. INTERSECCIÓN CON RECTA
r’
o’
o o
r DESARROLLO DE UN CILINDRO RECTO
r DESARROLLO DE UN CILINDRO OBLICUO
PIRÁMIDE RECTA
PIRÁMIDE OBLICUA
a r u t l a
a r u t l a
o’
o’
o o
PIRÁMIDE RECTA CON BASE EN UN PLANO OBLICUO. Base: pentágono regular. Altura: 50 mm. P’
(A)
(B)
Pch
PIRÁMIDE RECTA
P’
PIRÁMIDE OBLICUA P’ a r u t l a
o’
o’
o o Pch
Pch
PIRÁMIDE OBLICUA. SECCIÓN RECTA por el punto medio del eje. Base: pentágono regular radio r=20 mm. Altura: 70 mm.
o’
o
RECTAA PIRÁMIDE RECTA. INTERSECCIÓN CON RECT r’
o’
PIRÁMIDE OBLICUA. INTERSECCIÓN CON RECTA
r’
o’
o o
r DESARROLLO DE UNA PIRÁMIDE RE R ECTA
r DESARROLLO DE UNA PIRÁMIDE OBLICUA
CONO RECTO
CONO OBLICUO
a r u t l a
a r u t l a
o’
o’
o o
CONO RECTO CON BASE EN UN PLANO OBLICUO. Base: radio 15 mm. Altura: 50 mm. P’
(A)
(O)
Pch
CONO RECTO
P’
CONO OBLICUO P’ a r u t l a
o’
o’
o o Pch
Pch
CONO OBLICUO. SECCIÓN RECTA por el punto medio del eje. Base: radio r=20 mm. Generatriz: 70 mm.
o’
o
CONO RECTO. INTERSECCIÓN CON RECTA
r’
o’
CONO OBLICUO. INTERSECCIÓN CON RECTA
r’
o’
o o
r DESARROLLO DE UN CONO RECTO
r DESARROLLO DE UN CONO OBLICUO
CIILINDRO OBLICUO. INTERSECCIÓN CON RECTA
PRISMA RECTO. BASE PENTÁGONO REGULAR.
Sección y verdadera magnitud de la sección que produce el plano P P’
r’
a r u t l a
o’
a r u t l a
o’
o o Pch
CONO OBLICUO situado sobre el Plano Horizontal. Proyecciones y desarrollo Base: radio r=20 mm. EJE: 70 mm.
o’
o
r
TETRAEDRO situado sobre el Plano Horizontal. Proyecciones. ARISTA AB = 50 mm
a’
b’ b
a
HEXAEDRO situado sobre el Plano Horizontal. Proyecciones. ARISTA AB = 50 mm
a’
b’ b
a
OCTAEDRO OCTAE DRO con una diagonal perpendicular al Plano Horizontal. Proyecciones. ARISTA AB = 50 mm
b
a
AB es una arista de un TETRAEDRO situado sobre el Plano Horizontal. (3 p.)1º. Hallar las proyecciones diédricas del TETRAEDRO. (2 p.)2º. Determinar los puntos de intersección de la recta R con el TETRAEDRO.
r’
b a
r
AB es una arista de un HEXAEDRO situado sobre el Plano Horizontal. (2 p.)1º. Hallar las proyecciones diédricas del HEXAEDRO. (1 p.)2º. Dibujar las trazas de un plano pl ano P que produzca una sección hexágono regular. (2 p.)3º. Dibujar dicha sección hexágono regular y su verdadera magnitud.
b
a
AB es una arista de un HEXAEDRO situado sobre el Plano Horizontal. (2 p.)1º. Hallar las proyecciones diédricas del HEXAEDRO. (1 p.)2º. Dibujar las trazas de un plano pl ano P que produzca una sección hexágono regular. (2 p.)3º. Dibujar dicha sección hexágono regular y su verdadera magnitud.
a’
b’
b
a
CONO OBLICUO. DESARROLLO Base: circunferencia de radio r=20 mm. Altura: 70 mm.
’ o
o
PRISMA OBLICUO. SECCIÓN RECTA por el punto medio del eje. Verdadera magnitud de la sección. Base: hexágono regular radio r=20 mm. Altura: 70 mm.
o’
o
CILINDRO OBLICUO. Intersección de la recta dada conelcilindro. Base: pentágono regular radio r=20 mm. Arista: 80 mm.
r’
o’
o
r