RAIL VIKAS NIGAM LIMITED
DOUBLING OF KOTA - RUTHIYAI (164.206 Km) SECTION OF BINA - SALPURA - KOTA ROUTE (PACKAGE - II )
DESIGN OF MAJOR (
B RIDGE NO : 20 12 x 5.897 m RCC BOX
A ril-13
)
CONTENTS PAGE NO SR NO
DESCRIPTION
Fr o m
To
1
SOIL
0
0
2
LOAD CACULATION
1
6
3
STAAD REPORT
7
17
4
RCC DESIGN OF BOX
18
20
5
DESIGN OF WING WALL
21
35
5
DESIGN OF WING WALL
36
50
CONTENTS PAGE NO SR NO
DESCRIPTION
Fr o m
To
1
SOIL
0
0
2
LOAD CACULATION
1
6
3
STAAD REPORT
7
17
4
RCC DESIGN OF BOX
18
20
5
DESIGN OF WING WALL
21
35
5
DESIGN OF WING WALL
36
50
CENGRS GEOTECHNICA GEOTECHNICA PVT. L TD.
Job No. 211191B-I
Sheet No. 24
(R1)
Settlement analysis for open foundations has been done using classical theory, as sum of elastic settlement and consolidation settlement. Since the cohesive strata (clayey silt/silty clay) encountered is hard in consistency, consolidation settlement is not likely to occur. Reviewing the available borehole data, we recommend the following values of net allowable bearing pressures for open foundations at BH-1 location:
Bridge No.
20
Chainage, Km
19.030
Borehole No.
BH-1
Foundation Embedment Depth below EGL, m
Recommended Net Allowable Bearing Pressure, T/m2
3.0 (RL 252.8 m)
16
4.0 (RL 251.8 m)
20
5.0 (RL 250.8 m)
25
6.0 (RL 249.8 m)
30
The above values include a bearing capacity safety factor of 2.5. Total settlement of foundations bearing on soil is expected to be about 50 mm. Net bearing pressures for foundations at intermediate depths may be interpolated linearly between the values given above. Typical calculations are presented at the end of Appendix-D. 10.0 MINOR BRIDGE NO. 23 AT CHAINAGE 25.700 25.700 KM 10.1 Bridge Details A Minor Bridge No. 23 is i s planned at Ch: 25.700 Km in between Sri Kalyanpura and Bhonra railway crossings. One (1) borehole was drilled at this structure location to about 20 m depth. The existing bridge at this location is a Box Culvert with span arrangement of 8 x 4.99 m. The proposed structure details provided to us, as well as borehole details, are tabulated below:
Br no 20
Load
URS
DESIGN OF RCC BOX INPUT DATA
A
20 DOUBLING OF RUTHIYAI-KOTA X 5.897 12 x 6.54
BRIDGE NO. PROJECT PROPOSED SPAN
Nos
Horz.
256.216 252.720 256.136 254.936 25 t
PROPOSED F.L EXISTING B.L PROPOSED TOP OF BOX HFL Standard of Loading B
( 80 mm TH Wearing Course )
PROPERTIES Grade of Concrete Grade of Steel Clear Span Clear Height Thickness of Vertical Wall Thickness of Horizontal Slab Earth Cushion Ballast Cushion Nos of Track Track Centre ( In case of More than one Track ) Skew Angle Length of Box Formation Width
C
Vert
RUTHIYAI-KOTA
SECTION
M Fe
35 500 5.897 3.016 0.712 0.55 0.080 0.35 1 5.3 60 7.17 6.850
m m m m m m Nos m Degree m m
LOAD
3
1.8
t/m
Live Load Surcharge
13.7
t/m
Dead Load Surcharge Angle of Internal Friction of Soil
6.2 0.611
t/m radian
Density of Soil EDUL
35 Deg
=
2 2
Br no 20
Load
URS
Width of Distribution
Width of Distribution at Top
= =
3.000 + 3.000 m
0x
5.3
3.000 2 1 0.080
3.080
Distribution Width as per Cl 2.3.4.2 (b) Bridge Rule for RCC Slab 3.080
+
Length of Box =
0.5 x
5.897
=
6.0285 m
7.17 m
Final Width of Distribution =
6.0285 m
Width of Distribution / Track =
6.0285
Hen c e Fi n al Wi d t h o f Di s t r i b u t i o n / Tr ac k
/
1
=
=
6.0285 m
6.0285 m
1 Calculation of Load
1.1 1.1 Dead Dead Load Load 1.1 1.1.1
Due Due to Ea Earth Cusio Cusion n Top Width of Formation
=
6.850 m
Bottom Width of Formation
=
7.17 m
Weight of Soil =
6.850 +
7.17 0.080
x 1.800
=
1.00944 t
2 UDL due to Weight of Soil =
1.00944
/
7.17
=
0.15 t/m
Br no 20
1.1.2
Load
URS
Due to Track Weight Weight of Track / m Run = Width of Distribution
6.2 t
=
6.0285 m
UDL due to Track Weight =
Final Dead Load UDL
=
Ultimate Dead Load UDL =
6.2
/
6.0285
0.15
+
1.03
1.18
x
=
1.03 t/m
=
1.18 t/m
1.4 = =
1.652 t/m 16.52 kN/m
( Note :- Self Weight will be taken in STAAD with factor 1.4 ) 1.2 Live Load 1.2.1
Calculation of CDA
Nos of Span 1 2 3 4 5 6 7 8 9 10 11 12 1.2.1
CDA 0.15+ (8 / 6 + L) 0.785 0.567 0.46 0.397 0.355 0.326 0.304 0.286 0.273 0.261 0.252 0.244
Total Span (L) 6.609 13.218 19.827 26.436 33.045 39.654 46.263 52.872 59.481 66.09 72.699 79.308
CDA at BOX
Cusion
As per Cl 2.4.2.1 Br Rule
0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430
0.598 0.432 0.351 0.303 0.271 0.249 0.232 0.218 0.208 0.199 0.192 0.186
Calculation of CDA Distribution Width Ultimate Factor
Nos of Span 1 2 3 4 5 6 7 8 9 10 11 12
=
6.0285 m 2 As per CBC
= Live Load ( kN ) 1278 2095 2923 3679 4465 5266 6037 6828 7613 8398 9184 9969
CDA 0.598 0.432 0.351 0.303 0.271 0.249 0.232 0.218 0.208 0.199 0.192 0.186
LL with LL/m CDA Width 2041.5 338.6 2999.9 497.6 3949.0 655.1 4793.5 795.1 5675.4 941.4 6576.6 1090.9 7437.6 1233.7 8316.5 1379.5 9196.8 1525.6 10068.8 1670.2 10946.8 1815.8 11823.1 1961.2
Span ( m) 6.609 13.218 19.827 26.436 33.045 39.654 46.263 52.872 59.481 66.09 72.699 79.308
Ultimate UDL /m Width
UL T FA CT k N/m 2 2 2 2 2 2 2 2 2 2 2 2
103 76 67 61 57 56 54 53 52 51 50 50
Br no 20
Load
URS
1.3 Long Load
Ultimate Factor
2 As per CBC
Long Load ( kN )
Nos of Span 1 2 3 4 5 6 7 8 9 10 11 12
1.3
=
Dispersion 0 0 0 0 0 0 0 0 0 0 0 0
326.87 618.03 735.46 927.05 980.61 1236.06 1236.06 1236.06 1236.06 1236.06 1236.06 1275.3
l./m Ult. Long L. /m Width Net Long Long Width Load ULT FAC kN 326.87 54.221 2 108.442 618.03 102.518 2 205.037 735.46 121.997 2 243.995 927.05 153.778 2 307.556 980.61 162.662 2 325.325 1236.06 205.036 2 410.073 1236.06 205.036 2 410.073 1236.06 205.036 2 410.073 1236.06 205.036 2 410.073 1236.06 205.036 2 410.073 1236.06 205.036 2 410.073 1275.3 211.545 2 423.091
ACTIVE EARTH PRESSURE For Calculating the Active Earth Pressure COULOMB's theory is followed.
Where :Ka =
Coefficient of Active Earth Pressure
h = w =
Height of Soil Unit Weight of Soil 5.7.1
Sub Str
2
Ka =
2
Cos ()Cos( + )
Cos ( - ) Sin( - )Sin( - ) 1 + Cos(+ )Cos ( - )
2
Following values are taken for calculating the active earth pressure. Level Slope of Wall with Vert. Coeff. of internal friction of Soil Angle of friction bet. Wall & earth Angle of slope of fill with Horz.
FL
TOB
= = = = Ka =
Int. Chk & TOF 0.000 0.611 0.204 0.000
rad rad rad rad
0.251
256.216
t/m
Ultimate Load kN/m 0.0629 0.629
t/m
Ultimate Load kN/m 2.6843 26.843
0.037 ka * * h
256.136
3.496
BL
252.720
1.579 ka * * h Earth Pressure at Bottom =
1.579 t/m =
Ultimate Factor 1.7
Br no 20
1.4
Load
URS
EARTH PRESSURE DUE TO Live Load SURCHARGE (AS PER BRIDGE SUB-STRUCTURES & FOUNDATION CODE) Height = H = 3.496 m Length of BOx = L = 6.029 m Width Of Distribution = B = 3.000 m Net Live load Surcharge = S = Since
H CASE NO.=
Ultimate Factor =
= >
1.7
13.7
t/m
t/m =
Ultimate t/m kN/m 1.9482 19.482
(L-B) 2 w il l b e u sed As per CBC
S * Ka / B
5.8.2
=
1.146
t/m S * Ka / L
1.5
=
0.57
t/m =
EARTH PRESSURE DUE TO Dead Load SURCHARGE (AS PER BRIDGE SUB-STRUCTURES & FOUNDATION CODE) Height = H = 3.496 m Length of BOx = L = 6.029 m Width Of Distribution = B = 3.000 m Net Live load Surcharge = V = Since
H CASE NO.=
Ultimate Factor =
= >
1.7 V * Ka / B
V * Ka / L
Ultimate kN/m 0.969 9.69
5.8.2
6.2
t/m
t/m =
Ultimate t/m kN/m 0.8823 8.823
t/m =
Ultimate t/m kN/m 0.4386 4.386
(L-B) 2 w il l b e u sed As per CBC =
=
0.519
0.258
Br no 20
Load
Summary Of Load
Earth Pressure DL Surcharge LL Surcharge
d a o L e v i L
d a o L g n o L
Case DL Top Bottom Top Bottom Top Bottom 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Ultimate Load
16.52 0.629 26.843 8.823 4.386 19.482 9.69 103 76 67 61 57 56 54 53 52 51 50 50 108 205 244 308 325 410 410 410 410 410 410 423
kN/m KN/m kN/m KN/m kN/m KN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN kN kN kN kN kN kN kN kN kN kN kN
URS
7
STAAD INPUT STAAD SPACE START JOB INFORMATION ENGINEER DATE 17-Apr-11 JOB NAME Br No 45 ENGINEER NAME GEOTEST JOB CLIENT WR JOB REV R0 JOB PART 1/1 END JOB INFORMATION INPUT WIDTH 79 UNIT METER KN JOINT COORDINATES 1 -0.1 0 0; 13 6.509 0 0; 25 13.118 0 0; 26 -0.1 3.566 0; 27 6.509 3.566 0; 28 13.118 3.566 0; 29 26.336 0 0; 30 19.727 0 0; 31 26.336 3.566 0; 32 19.727 3.566 0; 33 32.945 0 0; 34 32.945 3.566 0; 35 39.554 0 0; 36 39.554 3.566 0; 37 46.163 0 0; 38 46.163 3.566 0; 39 52.772 0 0; 40 52.772 3.566 0; 41 59.381 0 0; 42 59.381 3.566 0; 43 65.99 0 0; 44 65.99 3.566 0; 45 72.599 0 0; 46 72.599 3.566 0; 47 79.208 0 0; 48 79.208 3.566 0; 49 0.9745 0 0; 50 2.049 0 0; 51 3.1235 0 0; 52 4.198 0 0; 53 5.2725 0 0; 54 7.5835 0 0; 55 8.658 0 0; 56 9.7325 0 0; 57 10.807 0 0; 58 11.8815 0 0; 59 25.0995 0 0; 60 24.025 0 0; 61 22.9505 0 0; 62 21.876 0 0; 63 20.8015 0 0; 64 18.4905 0 0; 65 17.416 0 0; 66 16.3415 0 0; 67 15.267 0 0; 68 14.1925 0 0; 69 31.7085 0 0; 70 30.634 0 0; 71 29.5595 0 0; 72 28.485 0 0; 73 27.4105 0 0; 74 38.3175 0 0; 75 37.243 0 0; 76 36.1685 0 0; 77 35.094 0 0; 78 34.0195 0 0; 79 44.9265 0 0; 80 43.852 0 0; 81 42.7775 0 0; 82 41.703 0 0; 83 40.6285 0 0; 84 51.5355 0 0; 85 50.461 0 0; 86 49.3865 0 0; 87 48.312 0 0; 88 47.2375 0 0; 89 58.1445 0 0; 90 57.07 0 0; 91 55.9955 0 0; 92 54.921 0 0; 93 53.8465 0 0; 94 64.7535 0 0; 95 63.679 0 0; 96 62.6045 0 0; 97 61.53 0 0; 98 60.4555 0 0; 99 71.3625 0 0; 100 70.288 0 0; 101 69.2135 0 0; 102 68.139 0 0; 103 67.0645 0 0; 104 77.9715 0 0; 105 76.897 0 0; 106 75.8225 0 0; 107 74.748 0 0; 108 73.6735 0 0; MEMBER INCIDENCES 1 1 49; 2 49 50; 3 50 51; 4 51 52; 5 52 53; 6 53 13; 7 13 54; 8 54 55; 9 55 56; 10 56 57; 11 57 58; 12 58 25; 13 68 25; 14 67 68; 15 66 67; 16 65 66; 17 64 65; 18 30 64; 19 63 30; 20 62 63; 21 61 62; 22 60 61; 23 59 60; 24 29 59; 25 73 29; 26 72 73; 27 71 72; 28 70 71; 29 69 70; 30 33 69; 31 78 33; 32 77 78; 33 76 77; 34 75 76; 35 74 75; 36 35 74; 37 83 35; 38 82 83; 39 81 82; 40 80 81; 41 79 80; 42 37 79; 43 88 37; 44 87 88; 45 86 87; 46 85 86; 47 84 85; 48 39 84; 49 93 39; 50 92 93; 51 91 92; 52 90 91; 53 89 90; 54 41 89; 55 98 41; 56 97 98; 57 96 97; 58 95 96; 59 94 95; 60 43 94; 61 103 43; 62 102 103; 63 101 102; 64 100 101; 65 99 100; 66 45 99; 67 108 45; 68 107 108; 69 106 107; 70 105 106; 71 104 105; 72 47 104; 73 1 26; 74 13 27; 75 25 28; 76 30 32; 77 29 31; 78 33 34; 79 35 36; 80 37 38; 81 39 40; 82 41 42; 83 43 44; 84 45 46; 85 47 48; 86 26 27; 87 27 28; 88 32 28; 89 31 32; 90 31 34; 91 34 36; 92 36 38; 93 38 40; 94 40 42; 95 42 44; 96 44 46; 97 46 48; DEFINE PMEMBER 1 TO 6 PMEMBER 1 7 TO 12 PMEMBER 2 18 17 16 15 14 13 PMEMBER 3 24 23 22 21 20 19 PMEMBER 4 30 29 28 27 26 25 PMEMBER 5 36 35 34 33 32 31 PMEMBER 6 42 41 40 39 38 37 PMEMBER 7 48 47 46 45 44 43 PMEMBER 8 54 53 52 51 50 49 PMEMBER 9 60 59 58 57 56 55 PMEMBER 10 66 65 64 63 62 61 PMEMBER 11
8
72 71 70 69 68 67 PMEMBER 12 DEFINE MATERIAL START ISOTROPIC CONCRETE E 2.17185e+007 POISSON 0.17 DENSITY 23.5616 ALPHA 1e-005 DAMP 0.05 END DEFINE MATERIAL MEMBER PROPERTY INDIAN 1 TO 72 86 TO 97 PRIS YD 0.55 ZD 1 MEMBER PROPERTY INDIAN 73 85 PRIS YD 0.55 ZD 1 MEMBER PROPERTY INDIAN 74 TO 84 PRIS YD 0.45 ZD 1 CONSTANTS MATERIAL CONCRETE ALL SUPPORTS 1 13 25 29 30 33 35 37 39 41 43 45 47 49 TO 107 108 FIXED BUT FX FZ MX MY MZ KFY 2000 LOAD 1 LOADTYPE Dead TITLE DL SELFWEIGHT Y -1.4 LIST 1 TO 97 MEMBER LOAD 86 TO 97 UNI GY -14.7 LOAD 2 LOADTYPE Dead TITLE EARTH PRESSURE MEMBER LOAD 73 TRAP GX 26.85 0 85 TRAP GX -26.85 -0 LOAD 3 LOADTYPE None TITLE DL SURCHARGE ON BOTH SIDE MEMBER LOAD 73 TRAP GX 4.5 9 85 TRAP GX -4.5 -9 LOAD 4 LOADTYPE None TITLE LL SURCHARGE ONE SIDE MEMBER LOAD 73 TRAP GX 9.9 19.9 LOAD 5 LOADTYPE None TITLE LL SURCHARGE ON BOTH SIDE MEMBER LOAD 73 TRAP GX 9.9 19.9 85 TRAP GX -9.9 -19.5 LOAD 6 LOADTYPE Live TITLE LL ON ONE SPAN MEMBER LOAD 86 UNI GY -109 LOAD 7 LOADTYPE Live TITLE LL ON TWO SPAN MEMBER LOAD 86 87 UNI GY -80 LOAD 8 LOADTYPE Live TITLE LL ON 3 SPAN MEMBER LOAD 86 TO 88 UNI GY -70 LOAD 9 LOADTYPE Live TITLE LL ON 4 SPAN MEMBER LOAD 86 TO 89 UNI GY -63 LOAD 10 LOADTYPE Live TITLE LL ON 5 SPAN MEMBER LOAD 86 TO 90 UNI GY -60 LOAD 11 LOADTYPE Live TITLE LL ON 6 SPAN MEMBER LOAD 86 TO 91 UNI GY -57 LOAD 12 LOADTYPE Live TITLE LL ON 7 SPAN MEMBER LOAD 86 TO 92 UNI GY -56
9
LOAD 13 LOADTYPE Live TITLE LL ON 8 SPAN MEMBER LOAD 86 TO 93 UNI GY -55 LOAD 14 LOADTYPE Live TITLE LL ON 9 SPAN MEMBER LOAD 86 TO 94 UNI GY -54 LOAD 15 LOADTYPE Live TITLE LL ON 10 SPAN MEMBER LOAD 86 TO 95 UNI GY -53 LOAD 16 LOADTYPE Live TITLE LL ON 11 SPAN MEMBER LOAD 86 TO 96 UNI GY -52 LOAD 17 LOADTYPE Live TITLE LL ON 12 SPAN MEMBER LOAD 86 TO 97 UNI GY -51 *Longtudinal Load LOAD 18 LOADTYPE Live TITLE LONG LOAD ON ONE SPAN JOINT LOAD 26 FX 110 LOAD 19 LOADTYPE Live TITLE LONG LOAD FOR 2 SPAN JOINT LOAD 26 FX 208 LOAD 20 LOADTYPE Live TITLE LONG LOAD ON 3 SPAN JOINT LOAD 26 FX 247 LOAD 21 LOADTYPE Live TITLE LONG LOAD ON 4 SPAN JOINT LOAD 26 FX 277 LOAD 22 LOADTYPE Live TITLE LONG LOAD ON 5 SPAN JOINT LOAD 26 FX 330 LOAD 23 LOADTYPE Live TITLE LONG LOAD ON 6 SPAN JOINT LOAD 26 FX 381 LOAD 24 LOADTYPE Live TITLE LONG LOAD ON 7 SPAN JOINT LOAD 26 FX 416 LOAD 25 LOADTYPE Live TITLE LONG LOAD ON 8 SPAN JOINT LOAD 26 FX 416 LOAD 26 LOADTYPE Live TITLE LONG LOAD ON 9 SPAN JOINT LOAD 26 FX 416 LOAD 27 LOADTYPE Live TITLE LONG LOAD ON 10 SPAN JOINT LOAD 26 FX 416 LOAD 28 LOADTYPE Live TITLE LONG LOAD ON 11 SPAN JOINT LOAD 26 FX 416 LOAD 29 LOADTYPE Live TITLE LONG LOAD ON 12 SPAN JOINT LOAD 26 FX 416 LOAD COMB 30 TRAIN ON APPROACH 1 1.0 2 1.0 3 1.0 4 1.0 LOAD COMB 31 TRAIN ON 1 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 6 1.0 18 1.0 LOAD COMB 32 TRAIN ON 2 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 7 1.0 19 1.0 LOAD COMB 33 TRAIN ON 3 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 8 1.0 20 1.0
10
LOAD COMB 34 TRAIN ON 4 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 9 1.0 21 1.0 LOAD COMB 35 TRAIN ON 5 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 10 1.0 22 1.0 LOAD COMB 36 TRAIN ON 6 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 11 1.0 23 1.0 LOAD COMB 37 TRAIN ON 7 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 12 1.0 23 1.0 LOAD COMB 38 TRAIN ON 8 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 13 1.0 25 1.0 LOAD COMB 39 TRAIN ON 9 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 14 1.0 26 1.0 LOAD COMB 40 TRAIN ON 10 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 15 1.0 27 1.0 LOAD COMB 41 TRAIN ON 11 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 16 1.0 28 1.0 LOAD COMB 42 TRAIN ON 12 SPAN 1 1.0 2 1.0 3 1.0 4 1.0 17 1.0 29 1.0 PERFORM ANALYSIS LOAD LIST 30 TO 42 START CONCRETE DESIGN CODE INDIAN FC 35000 ALL FYMAIN 500000 ALL FYSEC 415000 ALL DESIGN BEAM 1 TO 97 END CONCRETE DESIGN FINISH
6.61m
6.61m
6.61m
6.61m
6.61m
6.61m
6.61m
6.61m
6.61m
6.61m
6.61m
6.61m 3.57m
Y Z
X
DIMN
Load 1
11
86 73
87 74
88 75
89 76
90 77
91 78
92 79
93 80
94 81
95 82
96 83
97 84
85
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152 5354555657585960616263646566676869707172
Y Z
X
Load 0
Bean No
86 73
87 74
88 75
89 76
90 77
91 78
92 79
93 80
94 81
95 82
96 83
97 84
85
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152 5354555657585960616263646566676869707172
Y Z
X
Bending Moment Envelop
Load 0 : Bending Z
12
86 87 88 89 90 91 92 93 94 95 96 97 73 74 75 76 77 78 79 80 81 82 83 84 85 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 6 46566676869707172
Y Z
X
Load 0
Beam For Max Moment in TOP SLAB
Mz(kNm) 600 400 200 26 200 400 600
558 227 2.69
-29.1
2
4
-419
600 400 200
27 200 66.45 400 600
-2.83
Max Moment in TOP SPAB
Fy(kN) 600 400 200 26 200 400 600
388 1.68
-6.37
Max Shear in Top SLAB
2
4
600 400 200
27 200 66.45 400 600
-526
13
86 87 88 89 90 91 92 93 94 95 96 97 73 74 75 76 77 78 79 80 81 82 83 84 85 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 6 46566676869707172
Y Z
X
Load 1
Beam For Max Moment in Vert Outer Wall
400
Mz(kNm ) 398
400
227
200 1
200 26
1
200
2
3
-29.1 3.65
400
200 400
Max Moment in Vert Outer Wall
150 100 50 1 50 100 150
Fy(kN) 146 64.6
-34.6
max Shear in Vert Outer Wall
1
2
3
150 100 50
26 50 3.65 -75.2 100 150
14
86 87 88 89 90 91 92 93 94 95 96 97 73 74 75 76 77 78 79 80 81 82 83 84 85 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
Y Z
X
Load 0
Beam For Max Moment in INT WALL
Mz(kNm ) 600 400 200 13 200 400 600
341 63.8 -85.4
1
2
3
600 400 200
27 200 3.65 400 -481 600
Max BM in INT WALL
Fy(kN) 300 200 100 13 100 200 300
225
-40.9
MAX SHEAR in INt WALL
225
1
2
3
300 200 100
27 -40.9 3.65 100 200 300
15
86
87
73 1
88
74 2
3
4
5
6
7
75 8
9
89 76
90 77
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3
Beam For Max BM in Bottom Outer Corner
Mz(kNm) 400
400
200
95
1
49 0.25
200 400
200
0.5
0.75
1-64.8 1.07 200 400
-398
Max BM in Bottom OUTER CORNER
Fy(kN) 400
400
200 1
200
1.31 0.25
200 400
1.31
-305
Max Shear in Bottom Outer Corner
0.5
0.75
49
1 1.07 200
-324
400
16
86
87
73 1
88
74 2
3
4
5
6
7
75 8
9
89 76
90 77
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3
Beam For Max BM IN BOttom Center
Mz(kNm) 300 200 100 51 100 200 300
247
-15.6
Max BM in Bottom Cneter
191
0.25
0.5
0.75
300 200 100
52 100 1 1.07 200 300
-6.26
17
86
87
73 1
88
74 2
3
4
5
6
7
89
75 8
9
76
90 77
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3
Beam for MAx BM in Bottom INNER
Mz(kNm ) 600 400 200 53 200 400 600
56.7 -104
19
0.25
0.5
0.75
13 200 1 1.07 400 -460 600
MAX BM in Bottom inner
Fy(kN) 400
341
321
200 53 200
400 200 13
-12.6
400
Max Shear in Bottom Inner
0.25
0.5
0.75
600 400 200
-12.6 1 1.07
200 400
Br no 20
ReinForcement
URS
RCC DETAIL OF BOX Reinforcement Table No a1 a2 a3 a4 b c d1 d2 e f g
Dia 20 20 20 20 20 20 25 25 20 20 10
Sp 200 200 200 200 100 100 200 200 200 200 100
Area 1570 1570 1570 1570 3140 3140 2453 2453 1570 1570 785
No h1 h2 h3 h4 j1 j2 j3 j4
Dia 25 25 25 25 10 10 10 10
Sp 200 200 200 200 Acorss 200 200 200 200 200 200 200 200
RCC Design of BOX
FOR BENDING As per Cl 15.4.2.2.1 of IRS Concrete Bridge Code, taking it as Singly reinforced section Checking for effective depth, d =
Ast
=
0.5 f ck f y
1-
Mu 0.15 x b x fck
1-
4.6 Mu
E A L U M R O F E C N E R E F E R
bd
2
f ck bd
Checking of Mu as per Cl 15.4.2.2.1 of IRS Concrete Bridge Code
Lever Arm, z
Mur =
=
1.1 f y Ast
1-
f ck b d
d
Limited to 0.95d =
0.87 f As z
RVNL
WCR
Br no 20
18
ReinForcement
URS
Note
Moment has been taekn from STAAD & Calculation of reinforcement has been done in TUBULATED Form, Based on above Formula & Notation
b =
1000 mm
fck = fy =
35 500
Mu Location
Mark
Top Slab Outer Corner Top Top Slab Bottom Top Slab Inner Corner Top Bottom+Centre Top Bottom+Corner+Bottom Bottom+Inner+Bottom Vert + Outer Vert + inner
a1+a4 b a2+a4 c a1+d1 d1+d2 e f
Dd Ast Min Provide reqd reqd Steel mm mm kN-m mm mm 230.0 209 987 1100 550 430.0 286 1891 1100 550 558.0 326 2495 1100 550 250.0 218 1075 1100 550 400.0 276 1753 1100 550 470.0 299 2078 1100 550 400.0 276 1753 1100 550 481.0 303 2688 900 450
Max Ast 2
mm 1100 1891 2495 1100 1753 2078 1753 2688
Ast
p % 2
mm 3140 3140 3140 3140 4023 4906 3140 3140
0.571 0.571 0.571 0.571 0.731 0.892 0.571 0.698
z
Mur
Result
mm kN-m 550 751 OK 550 751 OK 550 751 OK 550 751 OK 550 963 OK 550 1174 OK 550 751 OK 450 615 OK
FOR SHEAR V= b= d=
Shear force in KN Width of Section Effective depth of Section
=
1000 mm E
Br no 20
ReinForcement
URS
Note
Moment has been taekn from STAAD & Calculation of reinforcement has been done in TUBULATED Form, Based on above Formula & Notation
b =
1000 mm
fck = fy =
35 500
Mu Location
Mark
Top Slab Outer Corner Top Top Slab Bottom Top Slab Inner Corner Top Bottom+Centre Top Bottom+Corner+Bottom Bottom+Inner+Bottom Vert + Outer Vert + inner
a1+a4 b a2+a4 c a1+d1 d1+d2 e f
Dd Ast Min Provide reqd reqd Steel mm mm kN-m mm mm 230.0 209 987 1100 550 430.0 286 1891 1100 550 558.0 326 2495 1100 550 250.0 218 1075 1100 550 400.0 276 1753 1100 550 470.0 299 2078 1100 550 400.0 276 1753 1100 550 481.0 303 2688 900 450
Max Ast 2
mm 1100 1891 2495 1100 1753 2078 1753 2688
Ast
p % 2
mm 3140 3140 3140 3140 4023 4906 3140 3140
0.571 0.571 0.571 0.571 0.731 0.892 0.571 0.698
z
Mur
Result
mm kN-m 550 751 OK 550 751 OK 550 751 OK 550 751 OK 550 963 OK 550 1174 OK 550 751 OK 450 615 OK
FOR SHEAR V= b= d= v = V/b.d v.max=
Shear force in KN Width of Section Effective depth of Section = Shear Stress Max Persmissible Shear Stress
Depth factor, s
=
500 d
=
1.25
fy =
415 mPa
0.75 f ck =
=
4.437 mPa
1/4
0.27 100 As 1/3 x Ym bd
E A L U M R O F E C N E R E F E R
As per Clause 15.4.3.1 of CBC
As per Clause 15.4.3.2.1 of CBC
or 0.7, whichever is maximum
Ultimate Shear Resistance of Concrete, vc =
Where Ym =
1000 mm
1/3
As per Clause (Cl 15.4.3.2.1) CBC
f ck
(Should Not be > 415 As per CBC )
RVNL
WCR
Br no 20
19
ReinForcement
URS
Shear Reinforcement Location
Max Shear
Top Slab Bottom Slab Outer Wall Inner Wall
V ( kN) 520 400 250 250
Thickness d ( mm ) 550 550 550 450
Stress v= V/bd mPa 0.945 0.727 0.455 0.556
Depth Fac
s 0.98 0.98 0.98 1.03
p % (Ast*10 0/bd) 0.571 0.731 0.571 0.698
Dia vc 0.586 0.636 0.586 0.626
svc 0.572 0.621 0.572 0.643
Leg In 1000 Width
10 10 10 10
5 5 5 5
Distribution Reinforcement Area Of Distribution Reinforcement =
Dia of Reinforcement Spacing Required = Hence Provided
= 1000 x 10 # @
0.12
x
1000 x 100
550
10 mm 78.5 = 660 100 mm c/c
118.9 mm (Bar No g )
c/c
=
660
2
mm
Sv Sv Pro mm 0.87*fy*As/b(v+0 .4-svc) Across Along 183 280 501 453
200 200 200 200
200 200 200 200
Mark no j1 j2 j3 j4
Br no 20
ReinForcement
URS
Shear Reinforcement Location
Max Shear
Top Slab Bottom Slab Outer Wall Inner Wall
V ( kN) 520 400 250 250
Stress v= V/bd mPa 0.945 0.727 0.455 0.556
Thickness d ( mm ) 550 550 550 450
Depth Fac
s 0.98 0.98 0.98 1.03
p % (Ast*10 0/bd) 0.571 0.731 0.571 0.698
Dia vc 0.586 0.636 0.586 0.626
Leg In 1000 Width
svc 0.572 0.621 0.572 0.643
10 10 10 10
5 5 5 5
Sv Sv Pro mm 0.87*fy*As/b(v+0 .4-svc) Across Along 183 280 501 453
200 200 200 200
200 200 200 200
Mark no j1 j2 j3 j4
Distribution Reinforcement Area Of Distribution Reinforcement =
Dia of Reinforcement Spacing Required = Hence Provided
= 1000 x 10 # @
0.12
x
1000 x 100
550
=
2
mm
660
10 mm 78.5 = 660 100 mm c/c
118.9 mm
c/c
(Bar No g )
RVNL
WCR
20
Br no 20
21
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
300
EARTH SIDE
TOW =
256.136
8 6 8b 8a
1 22 5416
1 22
1708
Curtail LVL =
5a
5b 5+8
254.428
Br no 20
21
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
300 TOW =
EARTH SIDE
256.136
8 6 8b
1
8a
22 5416
1 22
1708
Curtail LVL =
5a
254.428
5b 5+8 3708
6+7 4
TOF =
250.720
2b
3 0 0 5
3b
0 0 5
9
0 0 5
0 0 5
2a
2
1800
Bar No
Dia
247
Layer
1 2 2a 2b 3 3a 3b
20 12 12 12 12 12 12
4 5 5a 5b 6
16 10 10 10 16
7 8 8a 8b 9
16 10 10 10 10
300 5594
Spacing Leg 100 100 100 100 100 100 100 2
2
100 0 100 100 200 200 200 200 200 200
4
247
3a
3000
1
BOF =
249.720
Br no 20
22
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
DESIGN OF WING WALL Proposed Span Standard of Loading
12 x
5.9 m 25 t
RCC
BOX
Level (m) Top of Wing Wall 256.136 Formation Level Top of Foundation 250.720 R.L of Bed Level Bottom of Foundation 249.720 Deepest Scour Level 1 Height of Wall From T op of Foundation 2 Proposed Top W idth 3 Back Batter (Equivalent for existing ) (1H:?V) 4 Intermediate Front Batter (1H:?V) 5 Second Front Batter (1H:?V) 6 Horz Projection of Toe ( Front ) 7 Thickness of Toe At Wall Face 8 End Thickness of Toe 9 Horz Projection of Heel ( Back ) 10 Thickness of Heel At Wall Face 11 Thickness of Heel At End 12 Angle of Friction of Wall with Soil ( 11.67 Deg 13 Height of Second Batter (Intermediate Level) above Top of Foundation 14 Front Offset in Wall 15 Passive Height from Bottom of Foundation 16 Coefficient of Friction between Soil & Masonary ( 17 Distance form C/L of track to Back Face of Wall 18 Width of Sleeper 19 Depth of Ballast Cushion 20 Depth From Formation Level to Top of Wall 21
Live Load Surcharge
22 23 24
Dead Load Surcharge Angle of Repose of Soil ( Angle of Surcharge ()
25 26
Cohesion (c) Angle of internal friction of Soil (
27
Density of Front Soil
28
Density of Back Fill Seismic Parameter
29
256.216 252.720 250.720 5.416 0.300 22.0 22.0 22.0 3.000 1.000 0.500 1.800 1.000 0.500 0.204 3.708 0.000 3.000 0.550 3.125 2.750 0.350 0.080
III
35.00 Deg
32.00 Deg
2
1.800 t/m
0
Density of Masonry
31 32 33 34
Density of Submerged Soil F.O.S. for Passive Earth Pressure = 3 (0, IF PASSIVE IGNORED) Front Delta Angle of Back Batter (
35 36 37 38
Safe Bearing Capacity Type of Structure ( 1 = Mass CC or Masonary , 2= RCC ) Grade of Concrete fck = 35 Grade of Steel = Type of Foundation ( 1 =OPEN , 2= CAP )
Permissible Stress
At Intermediate Checking Level At Top of Foundation At Bottom of Foundation Stability Check Against Overturning Against Sliding
2
Maximum (t/m )
1
0
30
Description
m m m m m m rad m m m
m m m m 2 13.700 t/m 2 6.200 t/m 0.611 rad 0.460 rad 2 10.000 t/m 0.559 rad 2 1.000 t/m
Method of Seismic Calculation (1= IRS Coeff Method, 2= IRC Response Spectrum )
Zone =
m m
2
=
0 2 2.500 t/m 2 1.000 t/m 3 0.186 rad 0.045 rad 2 15.0 t/m 2
500 1
Minimum (t/m )
Remark
-13.8 -242.0 3.4
Stresses shown are maximum of (i) Normal (without seismic), (ii) W ith Seismic divided by 1.33
1750.0
22.6 270.6 14.2
Without Seismic Act ual Per Result 2.6 2.0 OK 3.04 1.50 OK Stability Check
Result
With Seismic Ac tual Per Result 2.6 1.5 3.04 1.50
OK OK OK
Over
Sliding
OK OK OK
2.57
3.038
Br no 20
23
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
RCC Design of Wing STEM
Default 70 Reqd Pro 316 722
Effective cover (m m) Depth (mm) At Top of Fou ndat ion (Up to INT LVL ) Dia mm Main Reinforcement (Back Side of Wall) Spacing mm c/c Reinforcement on Comp. Sdie (Front Side of Dia mm Wall) Spacing mm c/c Allowable Shear Check Actual Reinforcement From INT LVL to TOP
Reqd
Pro 16 117 100 10 128 100 0.420 0.340 No Any
Reqd
Dia mm Main Reinforcement (Back Side of Wall) Spacing mm c/c Reinforcement on Comp. Side (Front Side of Dia mm Wall) Spacing mm c/c Allowable Shear Check Actual Reinforcement
HT OK 100 OK OK
Pro
261 191 0.147 0.064 No Any
1 16 200 10 100
OK 100 OK
Toe SLAB Depth (mm) Dia mm Spacing mm c/c Dia mm Spacing mm c/c Dia mm No. of Legs Spacing mm c/c
Main R einforcement (Bottom) Reinforcement on C omp. Side Shear stirrups
Reqd Pro 454 Reqd Pro 20 112 12 132 10 4 246
930
OK
100
OK
100
OK
100
200
OK
Heel SLAB Depth (mm)
Main Reinforcement (Top Along) Reinforcement on C omp. Sdie
Dia Spacing Dia Spacing
mm mm c/c mm mm c/c
Reqd Pro 270 930 Reqd Pro 16 108 100 12 132 100
OK
OK 100 OK
Br no 20
24
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall DETAIL CALCULATION
1.0 ACTIVE EARTH PRESSURE For Calculating the Active Earth Pressure COULOMB's theory is followed. Pa
0.5Kawh (h+2h3)
=
Where :Ka = Coeff. of Active Earth Pressure h = w =
Height of Soil Unit W eight of Soil 2
Cos ( - ) Ka =
2
1 +
Cos ()Cos( + )
5.7.1
Sin( - )Sin( - ) Cos(+ )Cos ( - )
Following values are taken for calculating the active earth pressure. Level Int. Chk & TOF = Slope of Batter with Vert. 0.045 = Coff. of internal friction of Soil 0.611 = Angle of friction bet. Wall & earth 0.204 = Angle of slope of fill with Horz. 0.000 Ka = 0.269
BOF rad rad rad rad
(Effect of sloping Surcharge has been taken as per CL 5.8.4 of Sub Str. Code, So "
"
is taken = 0 for calculation of K a )
Horizontal Component of Active Earth Pressure Pah Pa Cos( + ) =
Acting at Y1= (h/3) above section considered
Vertical Component of Active Earth Pressure Pav Pa Sin( + ) = Pah
Acting at X1 = Y1Cot (90- ) from face of Wall
Y1 =h/3
Pa
Pav 1.1
At Intermediate Checking Level Height from Formation Level, h Pa =
0.5 x
0.269 x
FL =
1.800 x
h3 =
1.746 m 1.746 x 2.5703
0.412 m
1.085 t/m (Width)
=
Int. Lvl Horizontal Component Pah = 1.085 x Cos(
0.045+
0.204 )
Will act at Y 1 Vertical Component Pav = 1.085 x
=
0.582 m
TOF BOF
Sin(
Will act at X1 = Y1Cot(90-) 1.2
1.052 t/m (Width)
= 1.746 / 3
0.045+ =
0.204 )
0.268 t/m (Width)
=
0.582 x Cot(90 -
0.045 )
=
0.026 m
h3 =
1.296 m
At Top of Foundation Height from Formation Level, h Pa =
0.5 x
0.269 x
Horizontal Component Pah = 10.749 x Cos(
=
1.800 x
0.045+
5.496 m 5.496 x 8.08855
0.204 )
Will act at Y 2 Vertical Component Pav = 10.749 x Sin(
0.045+
Will act at X2 = Y2Cot(90-)
=
5.496 / 3
0.204 ) 1.832 x Cot(90 -
Sub Str
2
=
10.749 t/m (Width)
=
10.417 t/m (Width)
=
=
1.832 m
2.650 t/m (Width) 0.045 )
=
0.083 m
Br no 20
25
Name of work: 4/19/2013 Dat Revision No.: R0 1.3
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
At B ottom of Foundati on Height from Formation Level, h Pa =
0.5 x
0.269 x
Horizontal Component Pah = 15.016 x Cos(
=
1.800 x
0.045+
0.204 )
Will act at Y 2 Vertical Component Pav = 15.016 x Sin(
0.045+
Will act at X 2 = Y2Cot(90-)
h3 =
6.496 m 6.496 x 9.56027
6.496 / 3
0.204 )
15.016 t/m (Width)
=
14.553 t/m (Width)
=
=
2.165 x Cot(90 -
1.532 m
=
0.045 )
2.165 m
3.702 t/m (Width) =
0.098 m
2.0 EARTH PRESSURE DUE TO SURCHARGE As per Cl 5.8.3 of Sub Str. Code Earth pressure due to surcharge is assumed to be dispersed below formation level at an angle of 45°. P1 =
(S + V) x h 1 x Ka
Will act at h 1/2
(B + 2D)
2
13.700 t/m 2 6.200 t/m 2.750 m
Live Load Surcharge per m, S= Dead Load Surcharge per m, V = Width of Distribution, B = 2.1
At Intermediate Checking Level
3.125 1.672
0.078
2.750 B
Formation Level
D 45
1.672
8 8 7 . 1
h1
0.466 Checking Level
Height, h 1 =
0.466 m
Depth of Dispersion, D =
1.672 m
P1 = 2.2
13.700+
6.200 0.466 x 2.750+ 3.345
0.269
=
Will act at h 1/2
0.408 t/m
0.233 m
At Top of Foundation
3.125 1.504
0.246
2.750 B
Formation Level
D 45
1.504
6 9 4 . 5
h1
4.342 Top of Foundation
Height, h 1 =
4.342 m
Width of Distribution, B = Depth of Dispersion, D =
2.750 m 1.504 m
Br no 20
26
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA 13.700+
P1 = 2.3
URS
Straight Return / Wing Wall 6.200 4.342 x 2.750+ 3.008
0.269
=
Will act at h 1/2
4.032 t/m
2.171 m
At B ottom of Foundati on
3.125 0.000
2.046
2.750 B
Formation Level
D 45
0.000
6 9 4 . 6
h1
6.846 Bottom of Foundation
Height, h 1 =
6.846 m
Depth of Dispersion, D =
0.000 m
13.700+
P1 =
6.200 6.846 x 2.750+ 0.000
0.269
=
Will act at h 1/2
13.309 t/m
3.423 m
3.0 PASSIVE EARTH PRESSURE For Calculation Of Passive Earth Pressure On Substructure Coulomb Theory Is Used Pp
2
0.5 K p w h
=
2
Cos ( ) Kp=
2
Cos Cos( - )
Kp= Pph
0.559 rad
1-
2
Sin( + ) Sin( + ) Cos(- ) Cos ( - ) 0.186 rad
=
0.000 rad
4.678
=
0.000 rad
Factor of Safety for Passive =
Pp Cos( - ) Acting at (h/3) above section.
P pv
=
3
Pp Sin( - ) Acting at X=Y Cot(90 - )
Considering only Horizontal component because Vertical Component will be ineffective. 3.1
At Top of Foundation Passive Height = Bed Lvl or Scour Lvl T OF = 2 Pp = 0.5 x 4.678 x 1.000 x 0.000 Safe Passive Pressure = Ph = 0.000 x Cos( Resisting Moment =
3.2
0.000 0.1860.000 x
/ 0.000 ) 0.000 =
Resisting Moment =
2.339 0.1860.000 x
=
=
0.000 t/m
0.000 t/m
Will act @ h/3 =
0.000 m
0.000 t-m
250.72-
=
1.000 m
249. 72-
2.339 t/m
/3
=
0.000 t/m
0.000 )
=
0.000 t/m
0.333 =
0.000 m
250. 72-
0.000 t/m
3
At B ottom of Foundati on Passive Height = Bed Lvl or Scour Lvl BOF = 2 Pp = 0.5 x 4.678 x 1.000 x 1.000 Safe Passive Pressure = Ph = 0.000 x Cos(
250.72-
=
0.000 t-m
Will act @ h/3 =
0.333 m
Br no 20
27
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
4.0 SELF WEIGHT 4.1
At Intermediate Checking Level FL 0.080
5
Top of Wall
0.300 Back Fill
4
0.000 1
Passive 1.708 6
3 A
2
0.078 No.
6
0.000
0.078 Shape Factor
W1 l W2 l i F e W3 i v t c W4 A W5 Passive W6
Horz. (m)
1.0 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5 x
Vert. (m) Density
0.300 x 0.078 x 0.078 x 0.078 x 0.078 x 0.000 x
1.708 x 1.708 x 1.708 x 1.708 x 0.038 x 0.000 x
Sum CG of Total Mass from A = Moment/Weight = CG of Total Mass above Intermediate Level = FL
0.080
11 Back Fill
Weight W(t)
L.A. from Moment L.A. Moment A (m) W X (tm) above A W Y (tm) (t/m ) (m) 2.500 = 1.281 0.228 0.292 0.854 1.094 2.500 = 0.166 0.404 0.067 0.569 0.094 0.166 0.052 0.009 0.569 0.094 2.500 = 0.119 0.026 0.003 1.139 0.136 1.800 = 0.003 0.026 0.000 1.721 0.005 1.800 = 0.000 0.455 0.000 1.000 = 1.735 0.370 1.423 WX /W = 0.370 / 1.735 = 0.213 m WY /W = 1.423 / 1.735 = 0.821 m 3
Top of Wall
0.300 10
Passive
9
0.00 0
0.000
1
1.708 1
13
2
15
0.000
2 0.078
14
5
2.000
3
3.708
2.000
4 B
250.72 0.246
10a
0.169
16
6a
0.500 1.000
0.500 C
4.2
6
7 8
1.800 6b 2.592 5.592
1.000 0.500
249.72
3.000
At Top of Foundation No.
W1 W2 l W3 l i F e W4 i v t c W5 A W9 W11 W12 e i v W13 s l l a s i P F W14
Shape
1.0 x 0.5 x 1.0 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5 x 1.0 x 0.5 x
Horz. (m) 0.300 x 0.078 x 0.078 x 0.169 x 0.246 x 0.246 x 0.246 x 0.000 x 0.169 x 0.091 x
Vert. (m) Density 3
(t/m ) 5.416 x
2.500 =
1.708 x
2.500 =
3.708 x
2.500 =
3.708 x
2.500 =
5.416 x
2.500 =
5.416 x
1.800 =
0.122 x
1.800 =
0.000 x
1.000 =
0.000 x
1.000 =
2.000 x
1.000 =
Sum CG of Total Mass from B =
Moment/Weight =
WX
Weight W(t) 4.062 0.166 0.720 0.781 1.667 1.200 0.027 0.000 0.000 0.091 8.713 /W =
L.A. from Moment L.A. Moment B (m) W X (tm) above B W Y (tm)
0.396 0.572 0.585 0.680 0.164 0.082 0.082 0.624 0.708 2.562
1.609 0.095 0.421 0.531 0.274 0.098 0.002 0.000 0.000 0.233 3.263 3.263 / 8.713
(m) 2.708 4.277 1.854 1.236 1.805 3.611 5.457
=
11.000 0.709 1.334 0.966 3.009 4.333 0.147
21.498 0.375 m
Br no 20
28
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
CG of Total Mass above Top of Foundation = 4.3
URS
Straight Return / Wing Wall WY /W =
21.498 / 8.713
=
2.467 m
At B ottom of Foundation No.
l l i F e i v t c A
l l i F e i v s a s P
Shape
W1 W2 W3 W4 W5 W6 W6a W6b W7 W8 W9 W10 W 10a W11 W12 W13 W14 W15 W16
1.0 x 0.5 x 1.0 x 0.5 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x
Horz. (m)
Vert. (m) Density 3
(t/m )
0.300 x 0.078 x 0.078 x 0.169 x 0.246 x 0.792 x 1.800 x 1.800 x 3.000 x 3.000 x 0.246 x 1.800 x 1.800 x 2.046 x 0.000 x 0.169 x 0.091 x 3.000 x 3.000 x
5.416 x
2.500 =
1.708 x
2.500 =
3.708 x
2.500 =
3.708 x
2.500 =
5.416 x
2.500 =
1.000 x
2.500 =
0.500 x
2.500 =
0.500 x
2.500 =
0.500 x
2.500 =
0.500 x
2.500 =
5.416 x
1.800 =
5.416 x
1.800 =
0.500 x
1.800 =
1.014 x
1.800 =
0.000 x
1.000 =
0.000 x
1.000 =
2.000 x
1.000 =
2.000 x
1.000 =
0.500 x
1.000 =
Sum C.G. of mass from C = Moment/Weight = C.G. of Total Mass above Bott of Foundation =
WX WY
Weight W(t)
L.A. from Moment L.A. Moment C (m) W X (tm) above C W Y (tm)
4.062 2.196 8.921 0.166 2.372 0.393 0.720 2.385 1.716 0.781 2.480 1.937 1.667 1.964 3.274 1.981 1.296 2.568 1.125 1.200 1.350 2.250 0.900 2.025 1.875 3.592 6.736 3.750 4.092 15.346 1.200 1.882 2.258 17.548 0.900 15.793 0.810 0.600 0.486 3.734 0.682 2.547 0.000 2.424 0.000 0.000 2.508 0.000 0.091 4.362 0.397 6.000 4.092 24.554 0.750 4.592 3.444 48.509 93.745 /W = 93.745 / 48.509 /W = 125.397 / 48.509
(m) 3.708 5.277 2.854 2.236 2.805 0.500 0.667 0.250 0.667 0.250 4.611 3.708 0.833 6.754
15.062 0.875 2.054 1.747 4.676 0.990 0.750 0.563 1.250 0.938 5.533 65.067 0.675 25.218
1.625 0.066 0.288 0.312 0.667 0.792 0.450 0.900 0.750 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.350
125.397
= =
1.933 m 2.585 m
5.0 SEISMIC FORCE Earth Pressure Due to Seismic Effect x x h = h =
0.00 x
0.0 x
Final Value h = 0.000
5.12.6. 1
o
0.000 =
v =
b " e u h t l i a v W : " I I " e & s " a C
=
tan =
1+v
Int. Chk & TOF 0.045 0.611 0.204 0.000
= = = = -
-1
tan h
1 + 0.000
(1 + v) Cos ( - - )
=
2
-
-1
=
tan =
1-v
1 + 0.000
1 - 0.000
(1 + v) Cos ( - - )
=
1 +
Cos Cos Cos( + + )
Int. Chk & TOF 0.269
Ka =
0.269
Dynamic Increment (C a - Ka) =
0.000
With (+)
Pt I
0.737
Pt II
0.656
2
Sin( + )Sin( - - ) Cos(+ + )Cos( - )
Sin( + )Sin( - - ) Cos(+ + )Cos( - )
0.269
=
With (-)
0.000
1
x
2
At Final C a =
rad rad rad rad
0.000
2
Ca =
BOF
1
x
Cos Cos Cos( + + ) tan h
0.000
TOF 0.000
2
Ca =
0.00 / 2 =
0.000
Level Slope of Batter with Vert. Coff. of internal friction of Soil Angle of friction bet. Wall & earth Angle of slope of fill with Horz. a e h t i l u W a : v I " e + s " a & C " + "
v =
0.000
Pt I
0.737
Pt II
0.656
2
=
0.269
BOF (Max Value of above, i.e., a and b)
S ub St r
Br no 20
29
Name of work: 4/19/2013 Dat Revision No.: R0 5.1
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
At Intermediate Checking Level DESCRIPTION DUE TO SELF WT. OF W all SFH
FORCE L.A.
DUE TO SELF WT. OF W all SFV 2
5.2
Moment
0.000
0.821
0.000
0.000
0.000
0.000
Increment in Earth Pressure [0.5 h (Ca-Ka)]
0.000
0.854
0.000
Increment in Earth Pressure Surcharge Total Ver Load = 0.000 t T otal Horz Load = 0.000 t Total Moment = 0.000 t-m
0.000
0.310
0.000
At Top of Foundation DESCRIPTION DUE TO SELF WT. OF W all SFH
FORCE L.A.
DUE TO SELF WT. OF W all SFV
2.467
0.000 0.000
0.000
0.000
Increment in Earth Pressure [0.5 h (Ca-Ka)]
0.000
2.708
0.000
Increment in Earth Pressure Surcharge Total Ver Load = 0.000 t T otal Horz Load = 0.000 t Total Moment = 0.000 t-m
0.000
2.895
0.000
2
5.3
Moment
0.000
At B ottom of Foundati on DESCRIPTION DUE TO SELF WT. OF W all SFH
FORCE L.A.
DUE TO SELF WT. OF W all SFV 2
Moment
0.000
2.585
0.000
0.000
0.000
0.000
Increment in Earth Pressure [0.5 h (Ca-Ka)]
0.000
3.208
0.000
Increment in Earth Pressure Surcharge Total Ver Load = 0.000 t T otal Horz Load = 0.000 t Total Moment = 0.000 t-m
0.000
4.564
0.000
6.0 STRESS CALCULATION 6.1
At Intermediate Checking Level
S.No.
LOAD VERT HORZ.
DESCRI 1 Active Earth Pressure Horizontal Component P ah
1.052
Vertical Component P av 2
0.268
Earth Pressure due to Surcharge P h
3 Self Weight & Back Fill TOTAL - Without Seismic Due to seismic Effect Combined Load with Seismic
6.1.1
0.582
0.612
1.70
0.026
0.007
1.70
0.233
1.460 0.000 1.460
0.095
1.70
0.370 1.085 0.000 1.085
1.40 1.600
1.7882
1.04 0.45484
0.01
2.42835 2.883 0 2.88
0.52 1.733 0.00 1.73
0.69437 2.483 0 2.48
Mu
0.16
Stresses at Intermediate Checking Level Vert. Load (t)
Case Without Seismic With Seismic
Width of the section = Cover = Effective Depth = Mu
0.408 1.735 2.002 0.000 2.002
Ultimate Load Hu Vu
L.A. (m) Moment (t-m) Fac
=
Moment (t-m)
W 2.002 2.002
M 1.085 1.085
Z (m)
e (m) B (m)
M/W 0.542 0.542
0.455 m = 70 mm ( Effective ) 455 -
0.455
Z-B/2 0.314 0.314
2
2
Pmin (t/m )
Permissible (t/m )
W /B(1+6e/B) 22.61 22.61
W /B(1-6e/B) -13.81 -13.81
Comp Tension 1750.0 2333.3
455 mm 70
=
385 mm
17.3 kN-m
Checking for effective depth =
=
d =
17330216
Mu 0.15 x b x fck =
2
Pmax (t/m )
57.5
mm
Br no 20
30
Name of work: 4/19/2013 Dat Revision No.: R0
Ast =
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA 0.15 x
35
1 -
1-
.5 fck
x 1000 4.6 Mu
f y Here : f ck = f y
=
b = d =
URS
Straight Return / Wing Wall
f ck bd
bd
2
35 N /mm2
Mu =
500 N /mm2 1000 mm 385 mm
Ast =
Dia Of Main Bar = # Dia Of Bar on Comp Side = #
Min Steel Required = Steel to be Provided
0.2 % =
0.2 x
771 mm
=
Spacing of Main Bar required =
0.261
200 1004.8 1000 >
%
1000 x
16 10
mm mm
2
771 mm
385 / 100 =
2
200.96
So Provide Spacing = % of Steel Provided = p = =
17.3 KN - m 103.9 mm2
mm x x 0.20%
x 770.5
1000
=
< 3d = 1155.82 100 385.273 OK
261
mm
O.K
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C Leaver Arm = z
z =
final z
=
552640 13484545
1=
366 mm
Mur =
=
500
1.1 fy Ast fck b d
385
=
369
d
366
0.95 d =
=
*
159.978 kN-m
-
( Min of above )
0.87 * fy *As * z 0.87 *
1
1004.8 *
>
366 =
17 kN-m
159978181.5
N-mm
OK
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 411.164 78.5
= Required Spacing =
Provide Spacing
191 100
=
X
1000
X
Avg Width 342.6
2
mm x 411 mm mm
1000
1343.75 1793.75
Checking for Shear Stress
Ultimate Shear = Vu = b = d = Shear stress =
Depth factor =
24.8 kN 1000 mm 385 mm
v =
s =
24.8 * 1000 1000* 385 500 d
1/4
=
Ym =
1004.8 mm
2
N/mm
2
<
0.27
100 As
Ym
bd
vc =
0.27
vc =
1.25 0.138
1.25
x
1/3
0.75
0.75 fck =
or 0.7 whichever is maximum =
Ultim ate Shear Resistance of Concrete = vc = As =
0.06444
OK
1.06733
fck
x
100480 385273
1/3
1/3
( Cl 15-4-3-2-1)
x
1
1/3
Br no 20
31
Name of work: 4/19/2013 Dat Revision No.: R0 s * vc
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
=
v
URS
Straight Return / Wing Wall 1.06733
=
*
0.06444
0.138
N/mm
=
0.14736
N/mm
2
2
Hence NO Shear Reinforcement Required
6.2
At Top of Foundation
S.No.
DESCRI
LOAD VERT HORZ.
1 Active Earth Pressure Horizontal Component P ah
10.417
Vertical Component P av
2.650
Earth Pressure due to Surcharge P h
2
3 Passive Earth Pressure 4 Self Weight & Back Fill TOTAL Due to seismic Effect Combined Load with Seismic
6.2.1
1.832
19.084
1.70
0.083
0.221
1.70
17.7089
Mu 32.44
4.5044
0.38
4.032
2.171
8.754
1.70
6.85426
14.88
0.000
0.000 0.375
0.000 3.263 31.322 0.000 31.322
1.70 1.40
0
0.00 4.57 52.268 0.00 52.27
8.713 11.363 0.000 0.000 11.363
1.600
12.1985 24.563 16.703 0 0 24.56 16.70
Stresses at Top of Foundation Vert. Load (t)
Case
Width of the section = Cover = Effective Depth = Mu
Moment (t-m)
W 11.363 11.363
Without Seismic With Seismic
M/W 2.756 2.756
0.792
Z-B/2 2.360 2.360
2
2
2
Pmax (t/m )
Pmin (t/m )
Permissible (t/m )
W /B(1+6e/B) 270.65 270.65
W /B(1-6e/B) -241.97 -241.97
Comp Tension 1750.0 2333.3
792 mm 70
=
722 mm
522.7 kN-m
d =
=
Ast =
.5 fck
0.15 x
35
1 -
1-
f y Here : f ck =
Mu 0.15 x b x fck
522678487
d
b = d =
e (m) B (m)
M 31.322 31.322
Checking for effective depth =
=
Z (m)
0.792 m = 70 mm ( Effective ) 792 -
=
f y
Ultimate Load Hu Vu
L.A. (m) Moment (t-m) Fac
=
4.6 Mu f ck bd
Mu =
2
522.7 KN - m
1722.9 mm2 Dia Of Main Bar = # Dia Of Bar on Comp Side = # Ast =
500 N /mm 1000 mm 722 mm
Min Steel Required =
0.2 % =
0.2 x
1723 mm
=
Spacing of Main Bar required =
0.278
%
100 2009.6 1000 >
1000 x
722 / 100 =
mm x x 0.20%
x 1722.9
1000
=
1
2
1445 mm
=
< 3d = 2167.09 100 722.364 OK
O.K
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C Leaver Arm = z
16 10
2
200.96
So Provide Spacing = % of Steel Provided = p = =
mm
bd
2
35 N /mm2
Steel to be Provided
315.5
x 1000
-
1.1 fy Ast fck b d
d
117
mm
mm mm
Br no 20
32
Name of work: 4/19/2013 Dat Revision No.: R0 z = 1final z
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA 1105280 25282727
=
=
691
686
0.95 d =
( Min of above )
0.87 * fy *As * z 0.87 *
=
722
686 mm
Mur =
URS
Straight Return / Wing Wall
500
=
*
599.899 kN-m
2009.6 *
>
686 =
523 kN-m
599899306.5
N-mm
OK
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 613.418 78.5
= Required Spacing =
Provide Spacing
128 100
=
X
1000
Avg Width 511.2
X
2
mm x 613 mm mm
1000
1343.75 1793.75
Checking for Shear Stress
Ultimate Shear = Vu = b = d = Shear stress =
Depth factor =
245.6 kN 1000 mm 722 mm
v =
245.6 * 1000 1000* 722
s =
1/4
500 d
=
2009.6 mm
Ym =
s * vc v
2
0.91212
=
0.34004
* N/mm
2
0.27
100 As
Ym
bd
vc =
0.27
vc =
1.25 0.461
=
0.42039
1.25
=
N/mm
<
0.461
4.43706
0.75 fck =
or 0.7 whichever is maximum =
Ultim ate Shear Resistance of Concrete = vc = As =
0.34004
OK
0.91212
1/3
fck
x
x
1/3
1/3
200960
( Cl 15-4-3-2-1)
x
35
1/3
722364
N/mm
2
2
Hence NO Shear Reinforcement Required
6.3
At Bottom of Foundation
S.No. 1
LOAD
DESCRIPTION OF LOAD
VERT
Vertical Component P av
14.553
2.165 0.098
0.364
13.309
3.423
45.557
0.000
0.333 1.933
0.000 93.745
3.702
Earth Pressure due to Surcharge P h
3 Passive Earth Pressure 4 Self Weight & Back Fill TOTAL Due to seismic Effect Combined Load with Seismic 6.2.1
Moment (t-m) L.A. (m) Moment (t-m) Ms Front L.A.
Active Earth Pressure Horizontal Component P ah
2
HORZ.
48.509 52.210 0.000 52.210
31.511 5.494
20.336
3.660 177.534
171.178
197.870
0.000 171.178
197.870
Stresses at Bottom of Foundation
Case Without Seismic With Seismic
Vert. Load (t)
W 52.210 52.210
Moment (t-m)
M 171.178 171.178
Z (m)
e (m) B (m)
M/W 3.279 3.279
5.592
Z-B/2 0.482 0.482
2
2
Pmax (t/m )
Pmin (t/m )
W /B(1+6e/B) 14.17 14.17
W /B(1-6e/B) 4.50 4.50
2
Permissible (t/m ) Max
Min 15.0 20.0
0.0 0.0
Br no 20
33
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
2
t/m Design of Toe Slab Max Projection of T oe Slab
=
3.000
m
On safer side Taking Max Foundation Pressure as UDL ( Though it will be Trapezoidal ) Max Pressure =
141.684 kN/m 141.684
Max Moment =
x 2
Ultimate Moment
=
Mu
1083.9 kN-m
=
=
Ast =
.5 fck
3.000
1.700
Checking for effective depth =
d
( Taking Unit Width in Consideration )
x
f y
=
b = d =
637.58
1 -
Mu =
2
454.4
mm
1083.9 KN - m
2801.1 mm2 Dia Of Main Bar = # Dia Of Bar on Comp Side = # Ast =
500 N /mm 1000 mm 930 mm
Min Steel Required =
0.2 % =
0.2 x
2801 mm
=
Spacing of Main Bar required =
So Provide Spacing = % of Steel Provided = p = 0.338
1083.88 kN-m
bd
2
35 N /mm2
=
=
=
4.6 Mu
1-
f ck bd
Steel to be Provided
637.58
Mu 0.15 x b x fck
1083884407 35 x 1000
0.15 x
=
d =
f y Here : f ck =
2
100 3140 1000 >
%
1000 x
20 12
930 / 100 =
mm mm
2
1860 mm
2
314
x 2801.1
1000
mm x x
< 3d = 100 930 OK
2790
O.K
X
1000
X
0.20%
=
112
mm
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 858 113.04
= Required Spacing =
Provide Spacing
132 100
=
Avg Thick 715.0
2
mm x 858 mm mm
1000
Checking for Shear Stress Ulti Fac
Ultimate Shear, H u = b d
141.684
x
= =
2.000
x
1.9
=
538.4 kN
1000 mm 930 mm As per Clause 15.4.3.1 of CBC
Shear stress, v
=
538.4 1000
1000 930
=
2
0.57892 N/mm
<
0.75 √f ck =
As per Clause 15.4.3.2.1 of CBC
Depth factor, s
=
500 d
1/4
or 0.7, whichever is maximum
0.85629
4.43706
OK
Br no 20
34
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
Ultimate Shear Resistance of Concrete, v c =
2801.1 mm
As = Ym =
URS
Straight Return / Wing Wall
vc =
1.25
0.27
100 As
Ym
bd
1/3
1/3
x
(Cl 15.4.3.2.1)
f ck
0.27
280109.9004
1.25
930000
1/3
x
1/3
40
= 0.49476 s vc v
=
0.85629 0.49476
=
2
0.57892
Dia of Shear stirrups
N/mm
0.42366 N/mm2
=
=
10 mm having nos of leg in 1 m =
4
314.159 mm
Asv =
As per Cl 15.4.3.2 (Table - 14) v
s vc
>
sv =
0.87 f yv A sv /
b
(v + 0.4 - s vc)
It should not be more than 0.75 d or 450 mm Therefore required, s v = So provide Sv
136659 555.265
=
246.115
As per Clause 15.4.3.2.4 of CBC
246.115
=
=
(0.75d = 697.5 mm)
200 mm
Design of Heel Slab Max Projection of T oe Slab
=
1.800
Total Weight of Soil / m Run = Surcharge =
5.496 x
=
Vertical UD L
139.247 kN /m
98.928
139.247
Max Moment =
Ultimate Moment
=
=
Ast =
.5 fck
0.15 x 1 -
f y
b = d =
40.319
98.928 k N/m
=
139.247 kN/m
( Taking Uni t W id th in Consi deration )
x 2
1.800
x
2
=
225.58
=
225.58
383.49 kN-m
d =
Mu 0.15 x b x fck
383486789
=
=
=
383.5 kN-m
d
f y
+
1.700
Checking for effective depth =
Here : f ck =
18.000
40.319 kN/m
Total Vertical UDL
Mu
m
35 x
=
4.6 Mu
1-
f ck bd
35 N /mm2
Steel to be Provided
383.5 KN - m
962.6 mm2 Dia Of Main Bar = # Dia Of Bar on Comp Side = # Ast =
0.2 % = =
mm
bd
2
Mu =
500 N /mm2 1000 mm 930 mm
Min Steel Required =
270.3
1000
1860 mm
0.2 x 2
1000 x
16 12
930 / 100 =
2
1860 mm
mm mm
Br no 20
35
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Straight Return / Wing Wall
Spacing of Main Bar required =
So Provide Spacing = % of Steel Provided = p = =
0.216
200.96
x 1860.0
1000
mm x x
< 3d = 100 930 OK
2790
O.K
X
1000
X
100 2009.6 1000 >
%
0.20%
=
108
mm
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 858 113.04
= Required Spacing =
Provide Spacing
2
mm x 858 mm mm
132 100
=
Avg Thick 715.0
1000
7.0 STABILITY CALCULATION 7.1
Against Overturning ( Sub Structure Code Clause 5.10.1.1 and 6.8 ) Mo =
Moment due to [E.P. (Horz. Component) + Surcharge (Horz. Component)]
Without seismic,
Mo =
31.511 +
45.557 =
77.069 t-m
With seismic,
Mo =
31.511 +
45.557 +
0.000 =
Ms =
Moment due to [E.P. (Vert. Component) + Surcharge (Vert. Component)] + Moment due to self Wt. & Earth Fill Ms = 197.870 t-m
Without seismic, With seismic, Description Without Seismic With Seismic 7.2
77.069 t-m
Ms =
(Calculated in Table 6.3 )
197.870 t-m
Restoring moment (M s) 197.870 197.870
(Calculated in Table 6.3 )
Ov er tu rn in g m om en t (M o) 77.069 77.069
Fac to r o f S af et y (M s/Mo ) 2.57 2.57
FOS (Reqd.) 2.0 1.5
Against Sliding (Sub Structure Code Clause 6.8 ) Total Horz. Force, H =
14.553
+
13.309
Total Vert. Force, W =
52.210 t
Coff of Friction, Base Width =
0.550 5.592 m 2 10.000 t/m
Cohesion, c = Passive Force, P p =
27.862 t
(Ref. 9.2 )
0.000 t W+Bc+P p
Total Resisting Force, R =
28.716 = Factor of Safety =
=
+
55.924
+
0.000
84.639 t Resisting Force Horz. Force
=
84.639 27.862
=
3.038
>1.5
SAFE
Br no 20
36
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Return Wall
300 TOW =
EARTH SIDE
254.220
8 6 8b
1
8a
22 3500
1 22
1750
Curtail LVL =
5a
252.470
5b 5+8 1750
6+7 4
TOF =
250.720
2b
3 0 0 5
3b
0 0 5
9
0 0 5
0 0 5
2a
2
1000
Bar No
Dia
160
Layer
1 2 2a 2b 3 3a 3b
16 12 12 12 12 12 12
4 5 5a 5b 6
16 10 10 10 12
7 8 8a 8b 9
12 10 10 10 10
300 2820
Spacing Leg 100 100 100 100 100 100 100 2
2
100 0 100 100 100 0 100 100 100 300
4
160
3a
1200
1
BOF =
249.720
Br no 20
37
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Return Wall
DESIGN OF RETURN WALL Proposed Span Standard of Loading
12 x
5.9 m 25 t
RCC
BOX
Level (m) Top of Wing Wall 254.220 Formation Level Top of Foundation 250.720 R.L of Bed Level Bottom of Foundation 249.720 Deepest Scour Level 1 Height of Wall From T op of Foundation 2 Proposed Top W idth 3 Back Batter (Equivalent for existing ) (1H:?V) 4 Intermediate Front Batter (1H:?V) 5 Second Front Batter (1H:?V) 6 Horz Projection of Toe ( Front ) 7 Thickness of Toe At Wall Face 8 End Thickness of Toe 9 Horz Projection of Heel ( Back ) 10 Thickness of Heel At Wall Face 11 Thickness of Heel At End 12 Angle of Friction of Wall with Soil ( 11.67 Deg 13 Height of Second Batter (Intermediate Level) above Top of Foundation 14 Front Offset in Wall 15 Passive Height from Bottom of Foundation 16 Coefficient of Friction between Soil & Masonary ( 17 Distance form C/L of track to Back Face of Wall 18 Width of Sleeper 19 Depth of Ballast Cushion 20 Depth From Formation Level to Top of Wall 21
Live Load Surcharge
22 23 24
Dead Load Surcharge Angle of Repose of Soil ( Angle of Surcharge ()
25 26
Cohesion (c) Angle of internal friction of Soil (
27
Density of Front Soil
28
Density of Back Fill Seismic Parameter
29
256.216 252.720 250.720 3.500 0.300 22.0 22.0 22.0 1.200 1.000 0.500 1.000 1.000 0.500 0.204 1.750 0.000 3.000 0.550 7.117 2.750 0.350 1.996
III
35.00 Deg
32.00 Deg
2
1.800 t/m
0
Density of Masonry
31 32 33 34
Density of Submerged Soil F.O.S. for Passive Earth Pressure = 3 (0, IF PASSIVE IGNORED) Front Delta Angle of Back Batter (
35 36 37 38
Safe Bearing Capacity Type of Structure ( 1 = Mass CC or Masonary , 2= RCC ) Grade of Concrete fck = 35 Grade of Steel = Type of Foundation ( 1 =OPEN , 2= CAP )
Permissible Stress
At Intermediate Checking Level At Top of Foundation At Bottom of Foundation Stability Check Against Overturning Against Sliding
2
Maximum (t/m )
2
Minimum (t/m )
1750.0
20.9 87.2 13.2
-11.9 -68.6 2.4
Without Seismic Act ual Per Result 2.6 2.0 OK 4.14 1.50 OK Stability Check
1
0
30
Description
m m m m m m rad m m m
m m m m 2 13.700 t/m 2 6.200 t/m 0.611 rad 0.460 rad 2 10.000 t/m 0.559 rad 2 1.000 t/m
Method of Seismic Calculation (1= IRS Coeff Method, 2= IRC Response Spectrum )
Zone =
m m
=
0 2 2.500 t/m 2 1.000 t/m 3 0.186 rad 0.045 rad 2 15.0 t/m 2
500 1 Remark Stresses shown are maximum of (i) Normal (without seismic), (ii) W ith Seismic divided by 1.33
Result
With Seismic Ac tual Per Result 2.6 1.5 4.14 1.50
OK OK OK
Over
Sliding
OK OK OK
2.61
4.137
Br no 20
38
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Return Wall
RCC Design of Wing STEM
Default 70 Reqd Pro 145 548
Effective cover (m m) Depth (mm) At Top of Fou ndat ion (Up to INT LVL ) Dia mm Main Reinforcement (Back Side of Wall) Spacing mm c/c Reinforcement on Comp. Sdie (Front Side of Dia mm Wall) Spacing mm c/c Allowable Shear Check Actual Reinforcement From INT LVL to TOP
Reqd
Pro 12 103 100 10 154 100 0.408 0.140 No Any
Reqd
Dia mm Main Reinforcement (Back Side of Wall) Spacing mm c/c Reinforcement on Comp. Side (Front Side of Dia mm Wall) Spacing mm c/c Allowable Shear Check Actual Reinforcement
HT OK 100 OK OK
Pro
145 190 0.152 0.048 No Any
0 12 100 10 100
OK 100 OK
Toe SLAB Depth (mm) Dia mm Spacing mm c/c Dia mm Spacing mm c/c Dia mm No. of Legs Spacing mm c/c
Main R einforcement (Bottom) Reinforcement on C omp. Side Shear stirrups
Reqd Pro 176 Reqd Pro 16 108 12 132 10 4 342
930
OK
100
OK
100
OK
100
300
OK
Heel SLAB Depth (mm)
Main Reinforcement (Top Along) Reinforcement on C omp. Sdie
Dia Spacing Dia Spacing
mm mm c/c mm mm c/c
Reqd Pro 127 930 Reqd Pro 16 108 100 12 132 100
OK
OK 100 OK
Br no 20
39
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Return Wall DETAIL CALCULATION
1.0 ACTIVE EARTH PRESSURE For Calculating the Active Earth Pressure COULOMB's theory is followed. Pa
0.5Kawh (h+2h3)
=
Where :Ka = Coeff. of Active Earth Pressure h = w =
Height of Soil Unit W eight of Soil 2
Cos ( - ) Ka =
2
1 +
Cos ()Cos( + )
5.7.1
Sin( - )Sin( - ) Cos(+ )Cos ( - )
Following values are taken for calculating the active earth pressure. Level Int. Chk & TOF = Slope of Batter with Vert. 0.045 = Coff. of internal friction of Soil 0.611 = Angle of friction bet. Wall & earth 0.204 = Angle of slope of fill with Horz. 0.000 Ka = 0.269
BOF rad rad rad rad
(Effect of sloping Surcharge has been taken as per CL 5.8.4 of Sub Str. Code, So "
"
is taken = 0 for calculation of K a )
Horizontal Component of Active Earth Pressure Pah Pa Cos( + ) =
Acting at Y1= (h/3) above section considered
Vertical Component of Active Earth Pressure Pav Pa Sin( + ) = Pah
Acting at X1 = Y1Cot (90- ) from face of Wall
Y1 =h/3
Pa
Pav 1.1
At Intermediate Checking Level Height from Formation Level, h Pa =
0.5 x
0.269 x
FL =
1.800 x
h3 =
1.789 m 1.789 x 2.6335
0.422 m
1.139 t/m (Width)
=
Int. Lvl Horizontal Component Pah = 1.139 x Cos(
0.045+
0.204 )
Will act at Y 1 Vertical Component Pav = 1.139 x
=
0.596 m
TOF BOF
Sin(
Will act at X1 = Y1Cot(90-) 1.2
1.104 t/m (Width)
= 1.789 / 3
0.045+ =
0.204 )
0.281 t/m (Width)
=
0.596 x Cot(90 -
0.045 )
=
0.027 m
h3 =
0.844 m
At Top of Foundation Height from Formation Level, h Pa =
0.5 x
0.269 x
Horizontal Component Pah = 4.558 x Cos(
=
1.800 x
0.045+
3.579 m 3.579 x 5.26701
=
0.204 )
=
Will act at Y 2 3.57882 / 3 Vertical Component Pav = 4.558 x Sin(
0.045+
Will act at X2 = Y2Cot(90-)
=
0.204 ) 1.193 x Cot(90 -
Sub Str
2
=
=
4.558 t/m (Width)
4.417 t/m (Width) 1.193 m
1.124 t/m (Width) 0.045 )
=
0.054 m
Br no 20
40
Name of work: 4/19/2013 Dat Revision No.: R0 1.3
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Return Wall
At B ottom of Foundati on Height from Formation Level, h Pa =
0.5 x
0.269 x
Horizontal Component Pah = 9.162 x Cos(
=
1.800 x
0.045+
h3 =
5.074 m 5.074 x 7.46789
=
0.204 )
=
Will act at Y 2 5.07427 / 3 Vertical Component Pav = 9.162 x Sin(
0.045+
Will act at X 2 = Y2Cot(90-)
0.204 )
=
=
1.691 x Cot(90 -
0.045 )
1.197 m
9.162 t/m (Width)
8.880 t/m (Width) 1.691 m
2.259 t/m (Width) =
0.077 m
2.0 EARTH PRESSURE DUE TO SURCHARGE As per Cl 5.8.3 of Sub Str. Code Earth pressure due to surcharge is assumed to be dispersed below formation level at an angle of 45°. P1 =
(S + V) x h 1 x Ka
Will act at h 1/2
(B + 2D)
2
13.700 t/m 2 6.200 t/m 2.750 m
Live Load Surcharge per m, S= Dead Load Surcharge per m, V = Width of Distribution, B = 2.1
At Intermediate Checking Level
7.117 5.662
0.080
2.750 B
Formation Level
D 45
5.662
6 4 7 . 3
h1
0.000 Checking Level
Height, h 1 =
0.000 m
Depth of Dispersion, D =
5.662 m
P1 = 2.2
13.700+
6.200 0.000 x 2.750+ 11.325
0.269
=
Will act at h 1/2
0.000 t/m
0.000 m
At Top of Foundation
7.117 5.583
0.159
2.750 B
Formation Level
D 45
5.583
6 9 4 . 5
h1
0.263 Top of Foundation
Height, h 1 =
0.263 m
Width of Distribution, B = Depth of Dispersion, D =
2.750 m 5.583 m
Br no 20
41
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA 13.700+
P1 = 2.3
URS
Return Wall 6.200 0.263 x 2.750+ 11.166
0.269
=
Will act at h 1/2
0.101 t/m
0.132 m
At B ottom of Foundati on
7.117 4.583
1.159
2.750 B
Formation Level
D 45
4.583
6 9 4 . 6
h1
2.263 Bottom of Foundation
Height, h 1 =
2.263 m
Depth of Dispersion, D =
4.583 m
13.700+
P1 =
6.200 2.263 x 2.750+ 9.166
0.269
=
Will act at h 1/2
1.015 t/m
1.132 m
3.0 PASSIVE EARTH PRESSURE For Calculation Of Passive Earth Pressure On Substructure Coulomb Theory Is Used Pp
2
0.5 K p w h
=
2
Cos ( ) Kp=
2
Cos Cos( - )
Kp= Pph
0.559 rad
1-
2
Sin( + ) Sin( + ) Cos(- ) Cos ( - ) 0.186 rad
=
0.000 rad
4.678
=
0.000 rad
Factor of Safety for Passive =
Pp Cos( - ) Acting at (h/3) above section.
P pv
=
3
Pp Sin( - ) Acting at X=Y Cot(90 - )
Considering only Horizontal component because Vertical Component will be ineffective. 3.1
At Top of Foundation Passive Height = Bed Lvl or Scour Lvl T OF = 2 Pp = 0.5 x 4.678 x 1.000 x 0.000 Safe Passive Pressure = Ph = 0.000 x Cos( Resisting Moment =
3.2
0.000 0.1860.000 x
/ 0.000 ) 0.000 =
Resisting Moment =
2.339 0.1860.000 x
=
=
0.000 t/m
0.000 t/m
Will act @ h/3 =
0.000 m
0.000 t-m
250.72-
=
1.000 m
249. 72-
2.339 t/m
/3
=
0.000 t/m
0.000 )
=
0.000 t/m
0.333 =
0.000 m
250. 72-
0.000 t/m
3
At B ottom of Foundati on Passive Height = Bed Lvl or Scour Lvl BOF = 2 Pp = 0.5 x 4.678 x 1.000 x 1.000 Safe Passive Pressure = Ph = 0.000 x Cos(
250.72-
=
0.000 t-m
Will act @ h/3 =
0.333 m
Br no 20
42
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Return Wall
4.0 SELF WEIGHT 4.1
At Intermediate Checking Level FL 1.996
5
Top of Wall
0.300 Back Fill
4
0.000 1
Passive 1.750 6
3 A
2
0.080 No.
6
0.000
0.080 Shape Factor
W1 l W2 l i F e W3 i v t c W4 A W5 Passive W6
Horz. (m)
1.0 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5 x
Vert. (m) Density
0.300 x 0.080 x 0.080 x 0.080 x 0.080 x 0.000 x
1.750 x 1.750 x 1.750 x 1.750 x 0.039 x 0.000 x
Sum CG of Total Mass from A = Moment/Weight = CG of Total Mass above Intermediate Level = FL
1.996
11 Back Fill
Weight W(t)
L.A. from Moment L.A. Moment A (m) W X (tm) above A W Y (tm) (t/m ) (m) 2.500 = 1.313 0.230 0.301 0.875 1.148 2.500 = 0.174 0.406 0.071 0.583 0.102 0.174 0.053 0.009 0.583 0.102 2.500 = 0.125 0.027 0.003 1.167 0.146 1.800 = 0.003 0.027 0.000 1.763 0.005 1.800 = 0.000 0.459 0.000 1.000 = 1.789 0.385 1.503 WX /W = 0.385 / 1.789 = 0.215 m WY /W = 1.503 / 1.789 = 0.840 m 3
Top of Wall
0.300 10
Passive
9
0.01 1
0.000
1
1.750 1
13
2
15
0.250
2 0.080
14
5
2.000
3
1.750
1.750
4 B
250.72 0.159
10a
0.080
16
6a
0.500 1.000
0.500 C
4.2
6
7 8
1.000 6b 1.618 2.818
1.000 0.500
249.72
1.200
At Top of Foundation No.
W1 W2 l W3 l i F e W4 i v t c W5 A W9 W11 W12 e i v W13 s l l a s i P F W14
Shape
1.0 x 0.5 x 1.0 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5 x 1.0 x 0.5 x
Horz. (m) 0.300 x 0.080 x 0.080 x 0.080 x 0.159 x 0.159 x 0.159 x 0.011 x 0.080 x 0.080 x
Vert. (m) Density 3
(t/m ) 3.500 x
2.500 =
1.750 x
2.500 =
1.750 x
2.500 =
1.750 x
2.500 =
3.500 x
2.500 =
3.500 x
1.800 =
0.079 x
1.800 =
0.250 x
1.000 =
0.250 x
1.000 =
1.750 x
1.000 =
Sum CG of Total Mass from B =
Moment/Weight =
WX
Weight W(t) 2.625 0.174 0.348 0.174 0.696 0.501 0.011 0.001 0.020 0.070 4.620 /W =
L.A. from Moment L.A. Moment B (m) W X (tm) above B W Y (tm)
0.309 0.486 0.499 0.565 0.106 0.053 0.053 0.535 0.578 1.592
0.811 0.084 0.174 0.098 0.074 0.027 0.001 0.001 0.012 0.111 1.392 1.392 / 4.620
(m) 1.750 2.333 0.875 0.583 1.167 2.333 3.526
=
4.594 0.406 0.305 0.102 0.812 1.169 0.040
7.427 0.301 m
Br no 20
43
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
CG of Total Mass above Top of Foundation = 4.3
URS
Return Wall WY /W =
7.427 / 4.620
=
1.607 m
At B ottom of Foundation No.
l l i F e i v t c A
l l i F e i v s a s P
Shape
W1 W2 W3 W4 W5 W6 W6a W6b W7 W8 W9 W10 W 10a W11 W12 W13 W14 W15 W16
1.0 x 0.5 x 1.0 x 0.5 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x 1.0 x 0.5 x
Horz. (m)
Vert. (m) Density 3
(t/m )
0.300 x 0.080 x 0.080 x 0.080 x 0.159 x 0.618 x 1.000 x 1.000 x 1.200 x 1.200 x 0.159 x 1.000 x 1.000 x 1.159 x 0.011 x 0.080 x 0.080 x 1.200 x 1.200 x
3.500 x
2.500 =
1.750 x
2.500 =
1.750 x
2.500 =
1.750 x
2.500 =
3.500 x
2.500 =
1.000 x
2.500 =
0.500 x
2.500 =
0.500 x
2.500 =
0.500 x
2.500 =
0.500 x
2.500 =
3.500 x
1.800 =
3.500 x
1.800 =
0.500 x
1.800 =
0.574 x
1.800 =
0.250 x
1.000 =
0.250 x
1.000 =
1.750 x
1.000 =
2.000 x
1.000 =
0.500 x
1.000 =
Sum C.G. of mass from C = Moment/Weight = C.G. of Total Mass above Bott of Foundation =
WX WY
Weight W(t)
L.A. from Moment L.A. Moment C (m) W X (tm) above C W Y (tm)
2.625 1.309 3.436 0.174 1.486 0.259 0.348 1.499 0.522 0.174 1.565 0.272 0.696 1.106 0.770 1.545 0.809 1.250 0.625 0.667 0.417 1.250 0.500 0.625 0.750 2.018 1.514 1.500 2.218 3.327 0.501 1.053 0.528 6.300 0.500 3.150 0.450 0.333 0.150 1.198 0.386 0.463 0.001 1.535 0.002 0.020 1.578 0.031 0.070 2.592 0.180 2.400 2.218 5.324 0.300 2.418 0.725 20.928 22.945 /W = 22.945 / 20.928 /W = 37.603 / 20.928
(m) 2.750 3.333 1.875 1.583 2.167 0.500 0.667 0.250 0.667 0.250 3.333 2.750 0.833 4.691
7.219 0.580 0.653 0.276 1.508 0.773 0.417 0.313 0.500 0.375 1.670 17.325 0.375 5.621
1.050 0.070 0.139 0.070 0.278 0.618 0.250 0.500 0.300 0.600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.875
37.603
= =
1.096 m 1.797 m
5.0 SEISMIC FORCE Earth Pressure Due to Seismic Effect x x h = h =
0.00 x
0.0 x
Final Value h = 0.000
5.12.6. 1
o
0.000 =
v =
b " e u h t l i a v W : " I I " e & s " a C
=
tan =
1+v
Int. Chk & TOF 0.045 0.611 0.204 0.000
= = = = -
-1
tan h
1 + 0.000
(1 + v) Cos ( - - )
=
2
-
-1
=
tan =
1-v
1 + 0.000
1 - 0.000
(1 + v) Cos ( - - )
=
1 +
Cos Cos Cos( + + )
Int. Chk & TOF 0.269
Ka =
0.269
Dynamic Increment (C a - Ka) =
0.000
With (+)
Pt I
0.737
Pt II
0.656
2
Sin( + )Sin( - - ) Cos(+ + )Cos( - )
Sin( + )Sin( - - ) Cos(+ + )Cos( - )
0.269
=
With (-)
0.000
1
x
2
At Final C a =
rad rad rad rad
0.000
2
Ca =
BOF
1
x
Cos Cos Cos( + + ) tan h
0.000
TOF 0.000
2
Ca =
0.00 / 2 =
0.000
Level Slope of Batter with Vert. Coff. of internal friction of Soil Angle of friction bet. Wall & earth Angle of slope of fill with Horz. a e h t i l u W a : v I " e + s " a & C " + "
v =
0.000
Pt I
0.737
Pt II
0.656
2
=
0.269
BOF (Max Value of above, i.e., a and b)
S ub St r
Br no 20
44
Name of work: 4/19/2013 Dat Revision No.: R0 5.1
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Return Wall
At Intermediate Checking Level DESCRIPTION DUE TO SELF WT. OF W all SFH
FORCE L.A.
DUE TO SELF WT. OF W all SFV 2
5.2
Moment
0.000
0.840
0.000
0.000
0.000
0.000
Increment in Earth Pressure [0.5 h (Ca-Ka)]
0.000
0.875
0.000
Increment in Earth Pressure Surcharge Total Ver Load = 0.000 t T otal Horz Load = 0.000 t Total Moment = 0.000 t-m
0.000
0.000
0.000
At Top of Foundation DESCRIPTION DUE TO SELF WT. OF W all SFH
FORCE L.A.
DUE TO SELF WT. OF W all SFV
1.607
0.000 0.000
0.000
0.000
Increment in Earth Pressure [0.5 h (Ca-Ka)]
0.000
1.750
0.000
Increment in Earth Pressure Surcharge Total Ver Load = 0.000 t T otal Horz Load = 0.000 t Total Moment = 0.000 t-m
0.000
0.175
0.000
2
5.3
Moment
0.000
At B ottom of Foundati on DESCRIPTION DUE TO SELF WT. OF W all SFH
FORCE L.A.
DUE TO SELF WT. OF W all SFV 2
Moment
0.000
1.797
0.000
0.000
0.000
0.000
Increment in Earth Pressure [0.5 h (Ca-Ka)]
0.000
2.250
0.000
Increment in Earth Pressure Surcharge Total Ver Load = 0.000 t T otal Horz Load = 0.000 t Total Moment = 0.000 t-m
0.000
1.509
0.000
6.0 STRESS CALCULATION 6.1
At Intermediate Checking Level
S.No.
LOAD VERT HORZ.
DESCRI 1 Active Earth Pressure Horizontal Component P ah
1.104
Vertical Component P av 2
0.281
Earth Pressure due to Surcharge P h
3 Self Weight & Back Fill TOTAL - Without Seismic Due to seismic Effect Combined Load with Seismic
6.1.1
0.596
0.659
1.70
0.027
0.008
1.70
0.000
1.104 0.000 1.104
0.000
1.70
0.385 1.051 0.000 1.051
1.40 1.600
1.87723
1.12 0.47749
0.01
2.50406 2.982 0 2.98
0.54 1.671 0.00 1.67
0 1.877 0 1.88
Mu
0.00
Stresses at Intermediate Checking Level Vert. Load (t)
Case Without Seismic With Seismic
Width of the section = Cover = Effective Depth = Mu
0.000 1.789 2.069 0.000 2.069
Ultimate Load Hu Vu
L.A. (m) Moment (t-m) Fac
=
Moment (t-m)
W 2.069 2.069
M 1.051 1.051
Z (m)
e (m) B (m)
M/W 0.508 0.508
0.459 m = 70 mm ( Effective ) 459 -
0.459
Z-B/2 0.278 0.278
2
2
Pmin (t/m )
Permissible (t/m )
W /B(1+6e/B) 20.90 20.90
W /B(1-6e/B) -11.88 -11.88
Comp Tension 1750.0 2333.3
459 mm 70
=
389 mm
16.7 kN-m
Checking for effective depth =
=
d =
16710407
Mu 0.15 x b x fck =
2
Pmax (t/m )
56.4
mm
Br no 20
45
Name of work: 4/19/2013 Dat Revision No.: R0
Ast =
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA 0.15 x
35
1 -
1-
.5 fck
x 1000 4.6 Mu
f y Here : f ck = f y
=
b = d =
URS
Return Wall
f ck bd
bd
2
35 N /mm2
Mu =
500 N /mm2 1000 mm 389 mm
Ast =
0.2 % =
0.2 x
778 mm
=
Spacing of Main Bar required =
0.291
100 1130.4 1000 >
%
1000 x
12 10
mm mm
2
778 mm
389 / 100 =
2
113.04
So Provide Spacing = % of Steel Provided = p = =
99.1 mm2
Dia Of Main Bar = # Dia Of Bar on Comp Side = #
Min Steel Required = Steel to be Provided
16.7 KN - m
mm x x 0.20%
x 778.2
1000
=
< 3d = 1167.27 100 389.091 OK
145
mm
O.K
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C Leaver Arm = z
z =
final z
=
621720 13618182
1=
370 mm
Mur =
=
500
1.1 fy Ast fck b d
389
=
371
d
370
0.95 d =
=
*
181.759 kN-m
-
( Min of above )
0.87 * fy *As * z 0.87 *
1
1130.4 *
>
370 =
17 kN-m
181759071.3
N-mm
OK
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 413.455 78.5
= Required Spacing =
Provide Spacing
190 100
=
X
1000
X
Avg Width 344.5
2
mm x 413 mm mm
1000
1343.75 1793.75
Checking for Shear Stress
Ultimate Shear = Vu = b = d = Shear stress =
Depth factor =
18.8 kN 1000 mm 389 mm
v =
s =
18.8 * 1000 1000* 389 500 d
1/4
=
Ym =
1130.4 mm
2
N/mm
2
<
0.27
100 As
Ym
bd
vc =
0.27
vc =
1.25 0.143
1.25
x
1/3
0.75
0.75 fck =
or 0.7 whichever is maximum =
Ultim ate Shear Resistance of Concrete = vc = As =
0.04825
OK
1.06471
fck
x
113040 389091
1/3
1/3
( Cl 15-4-3-2-1)
x
1
1/3
Br no 20
46
Name of work: 4/19/2013 Dat Revision No.: R0 s * vc
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
=
v
URS
Return Wall 1.06471
=
*
0.04825
0.143
N/mm
=
0.15238
N/mm
2
2
Hence NO Shear Reinforcement Required
6.2
At Top of Foundation
S.No.
DESCRI
LOAD VERT HORZ.
1 Active Earth Pressure Horizontal Component P ah
4.417
Vertical Component P av
1.124
Earth Pressure due to Surcharge P h
2
3 Passive Earth Pressure 4 Self Weight & Back Fill TOTAL Due to seismic Effect Combined Load with Seismic
6.2.1
1.193
5.269
1.70
0.054
0.061
1.70
7.50892
Mu 8.96
1.90995
0.10
6.46853 8.378 0 8.38
0.101
0.132
0.013
1.70
0.17183
0.02
0.000
0.000 0.301
0.000 1.392 6.735 0.000 6.735
1.70 1.40
0
0.00 1.95 11.032 0.00 11.03
4.620 5.744 0.000 0.000 5.744
1.600
7.681 0 7.68
Stresses at Top of Foundation Vert. Load (t)
Case
Width of the section = Cover = Effective Depth = Mu
Moment (t-m)
W 5.744 5.744
Without Seismic With Seismic
M/W 1.173 1.173
0.618
Z-B/2 0.864 0.864
2
2
2
Pmax (t/m )
Pmin (t/m )
Permissible (t/m )
W /B(1+6e/B) 87.17 87.17
W /B(1-6e/B) -68.58 -68.58
Comp Tension 1750.0 2333.3
618 mm 70
=
548 mm
110.3 kN-m
d =
=
Ast =
.5 fck
0.15 x
35
1 -
1-
f y Here : f ck =
Mu 0.15 x b x fck
110324541
d
b = d =
e (m) B (m)
M 6.735 6.735
Checking for effective depth =
=
Z (m)
0.618 m = 70 mm ( Effective ) 618 -
=
f y
Ultimate Load Hu Vu
L.A. (m) Moment (t-m) Fac
=
4.6 Mu f ck bd
Mu =
2
110.3 KN - m
468.6 mm2 Dia Of Main Bar = # Dia Of Bar on Comp Side = # Ast =
500 N /mm 1000 mm 548 mm
Min Steel Required =
0.2 % =
0.2 x
1096 mm
=
Spacing of Main Bar required =
0.206
%
100 1130.4 1000 >
1000 x
548 / 100 =
mm x x 0.20%
x 1096.4
1000
=
1
2
1096 mm
=
< 3d = 1644.55 100 548.182 OK
O.K
Checking of Mu as per Cl 15-4-2-2-1 of C.B.C Leaver Arm = z
12 10
2
113.04
So Provide Spacing = % of Steel Provided = p = =
mm
bd
2
35 N /mm2
Steel to be Provided
145.0
x 1000
-
1.1 fy Ast fck b d
d
103
mm
mm mm
Br no 20
47
Name of work: 4/19/2013 Dat Revision No.: R0 z = 1final z
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA 621720 19186364
=
=
530
521
0.95 d =
( Min of above )
0.87 * fy *As * z 0.87 *
=
548
521 mm
Mur =
URS
Return Wall
500
=
*
256.076 kN-m
1130.4 *
>
521 =
110 kN-m
256076448.5
N-mm
OK
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 508.909 78.5
= Required Spacing =
Provide Spacing
154 100
=
X
1000
Avg Width 424.1
X
2
mm x 509 mm mm
1000
1343.75 1793.75
Checking for Shear Stress
Ultimate Shear = Vu = b = d = Shear stress =
Depth factor =
76.8 kN 1000 mm 548 mm
v =
76.8 * 1000 1000* 548
s =
1/4
500 d
=
1130.4 mm
Ym =
s * vc v
2
0.97726
=
0.14011
* N/mm
2
0.27
100 As
Ym
bd
vc =
0.27
vc =
1.25 0.417
=
0.40767
1.25
=
N/mm
<
0.417
1/3
4.43706
0.75 fck =
or 0.7 whichever is maximum =
Ultim ate Shear Resistance of Concrete = vc = As =
0.14011
OK
0.97726
fck
x
x
1/3
1/3
113040
( Cl 15-4-3-2-1)
x
35
1/3
548182
N/mm
2
2
Hence NO Shear Reinforcement Required
6.3
At Bottom of Foundation
S.No. 1
LOAD
DESCRIPTION OF LOAD
VERT
Vertical Component P av
8.880
1.691 0.077
0.174
1.015
1.132
1.149
0.000
0.333 1.096
0.000 22.945
2.259
Earth Pressure due to Surcharge P h
3 Passive Earth Pressure 4 Self Weight & Back Fill TOTAL Due to seismic Effect Combined Load with Seismic 6.2.1
Moment (t-m) L.A. (m) Moment (t-m) Ms Front L.A.
Active Earth Pressure Horizontal Component P ah
2
HORZ.
20.928 23.186 0.000 23.186
15.019 2.741
6.192
1.722
36.033
39.287
42.224
0.000 39.287
42.224
Stresses at Bottom of Foundation
Case Without Seismic With Seismic
Vert. Load (t)
W 23.186 23.186
Moment (t-m)
M 39.287 39.287
Z (m)
e (m) B (m)
M/W 1.694 1.694
2.818
Z-B/2 0.285 0.285
2
2
Pmax (t/m )
Pmin (t/m )
W /B(1+6e/B) 13.23 13.23
W /B(1-6e/B) 3.23 3.23
2
Permissible (t/m ) Max
Min 15.0 20.0
0.0 0.0
Br no 20
48
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
URS
Return Wall
2
t/m Design of Toe Slab Max Projection of T oe Slab
=
1.200
m
On safer side Taking Max Foundation Pressure as UDL ( Though it will be Trapezoidal ) Max Pressure =
132.252 kN/m 132.252
Max Moment =
Ultimate Moment Mu
x 2
=
=
( Taking Unit Width in Consideration ) 1.200
1.700
x
d
=
Ast =
.5 fck
Here : f ck = b = d =
95.22
=
161.88 kN-m
d =
Mu 0.15 x b x fck
161876651 35 x 1000
0.15 x 1 -
f ck bd
Mu =
2
161.9 KN - m
402.8 mm2 Dia Of Main Bar = # Dia Of Bar on Comp Side = #
Min Steel Required =
0.2 % =
0.2 x
1860 mm
=
Spacing of Main Bar required =
So Provide Spacing = % of Steel Provided = p = 0.216
mm
Ast =
500 N /mm 1000 mm 930 mm
=
175.6
bd
2
35 N /mm2
Steel to be Provided
=
4.6 Mu
1-
f y
=
95.22
=
161.9 kN-m
Checking for effective depth =
f y
2
100 2009.6 1000 >
%
1000 x
16 12
930 / 100 =
mm mm
2
1860 mm
2
200.96
x 1860.0
1000
mm x x
< 3d = 100 930 OK
2790
O.K
X
1000
X
0.20%
=
108
mm
Steel on Other side Parallel to Main Steel Area of Stee Required = 0.12 % =
0.12 100 858 113.04
= Required Spacing =
Provide Spacing
132 100
=
Avg Thick 715.0
2
mm x 858 mm mm
1000
Checking for Shear Stress Ulti Fac
Ultimate Shear, H u = b d
132.252
x
= =
0.200
x
1.9
=
50.2558 kN
1000 mm 930 mm As per Clause 15.4.3.1 of CBC
Shear stress, v
=
50.2558 1000
1000 930
=
2
0.05404 N/mm
<
0.75 √f ck =
As per Clause 15.4.3.2.1 of CBC
Depth factor, s
=
500 d
1/4
or 0.7, whichever is maximum
0.85629
4.43706
OK
Br no 20
49
Name of work: 4/19/2013 Dat Revision No.: R0
CONSULTANT
DOUBLING OF RUTHIYAI-KOTA
Ultimate Shear Resistance of Concrete, v c =
1860 mm
As = Ym =
vc =
1.25
= s vc v
URS
Return Wall
=
0.85629 0.4317
=
2
0.05404
Dia of Shear stirrups
N/mm
100 As
Ym
bd
1/3
1/3
x
0.27
186000
1.25
930000
(Cl 15.4.3.2.1)
f ck
1/3
x
1/3
40
0.4317
0.36966 N/mm2
=
=
0.27
10 mm having nos of leg in 1 m =
4
314.159 mm
Asv =
As per Cl 15.4.3.2 (Table - 14)
≤
v
s vc
sv =
0.87 f yv A sv /
0.4 b
=
It should not be more than 0.75 d or 450 mm Therefore required, s v = So provide Sv
=
341.648
As per Clause 15.4.3.2.4 of CBC
341.648
=
136659 400
(0.75d = 697.5 mm)
300 mm
Design of Heel Slab Max Projection of T oe Slab
=
1.000
Total Weight of Soil / m Run = Surcharge = =
Vertical U DL
98.928
99.939 kN /m 99.939
Max Moment =
98.928 k N/m
1.011
=
99.939 kN/m
2
=
x
49.97
=
49.97
84.95 kN-m
84.9 kN-m
d =
Mu 0.15 x b x fck
84947940
d
=
Ast =
.5 fck
0.15 x 1 -
f y
=
+
1.000
1.700
Checking for effective depth =
b = d =
=
( T aking U ni t W id th in Consi deration )
x
=
=
f y
18.000
2
Ultimate Moment
Here : f ck =
5.496 x
1.011 kN/m
Total Vertical UDL
Mu
m
35 x
=
4.6 Mu
1-
f ck bd
35 N /mm2
Steel to be Provided
84.9 KN - m
210.8 mm2 Dia Of Main Bar = # Dia Of Bar on Comp Side = # Ast =
0.2 % = =
mm
bd
2
Mu =
500 N /mm2 1000 mm 930 mm
Min Steel Required =
127.2
1000
1860 mm
0.2 x 2
1000 x
16 12
930 / 100 =
2
1860 mm
mm mm