DIgSILENT PowerFactory Technical Reference Documentation
Current Transformer StaCT
DIgSILENT GmbH Heinrich-Hertz-Str. 9 72810 - Gomaringen Germany T: +49 7072 9168 0 F: +49 7072 9168 88 http://www.digsilent.de
[email protected] Version: 2016 Edition: 1
Copyright Copyrig ht © 201 2016, 6, DIg DIgSIL SILENT ENT GmbH. GmbH. Cop Copyrig yright ht of this this docume document nt belong belongs s to DIg DIgSIL SILENT ENT GmbH. GmbH. No part of this document may be reproduced, reproduced, copied, or transmitte transmitted d in any form, by any means electronic or mechanical, without the prior written permission of DIgSILENT GmbH. Current Transformer (StaCT)
1
Contents
Contents 1 Genera Generall Descri Descripti ption on
4
2 Integration Integration in the relay relay scheme scheme
4
3 Featur Features es & User User inte interfa rface ce
5
3.1 Current Transformer Transformer Type (TypCt) (TypCt) . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
3.1.1 3.1 .1 Basic Basic dat data a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
3.1.2 3.1 .2 Additi Additiona onall dat data a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
3.1.3 3.1 .3 Descri Descripti ption on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
3.2 Current Current Transf Transformer ormer (StaCt) (StaCt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
3.2.1 3.2 .1 Basic Basic dat data a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
3.2.2 3.2 .2 Additi Additiona onall Dat Data a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
3.2.3 3.2 .3 Descri Descripti ption on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
4 Transfer ransfer functions functions 4.1
7
Load Flow, Flow, Short-circu Short-circuit it and and RM RMS S simulat simulation ion Model . . . . . . . . . . . . . . . .
7
4.1.1 CT with with Y connection connection on secondary secondary side . . . . . . . . . . . . . . . . . . .
8
4.1.2 CT with with D connect connection ion on the seconda secondary ry side . . . . . . . . . . . . . . . .
8
4.2 EMT simula simulatio tion n Model Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
4.2.1 CT with with Y connection connection on secondary secondary side . . . . . . . . . . . . . . . . . . .
10
4.2.2 CT with with D connection connection on seconda secondary ry side side
10
. . . . . . . . . . . . . . . . . .
5 Ct satura saturation tion models models
11
5.0.3 Piecewise Piecewise Linear Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
5.0.4 5.0 .4 Polynom olynomial ial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
A Paramete Parameterr Definitions Definitions
13
A.1 Current Transformer Transformer Type Type (TypCt) (TypCt) . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
A.2 Current Current Transf Transformer ormer (StaCt (StaCt ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
B Signal Signal Definiti Definitions ons B.1 B.1 Single Single pha phase se . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Transformer (StaCT)
14 14
2
Contents
B.2 B.2 3 phas phase e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
List of Figures Figures
15
List of Tables
16
Current Transformer (StaCT)
3
2
1
Integration Integration in the relay relay scheme
Genera Generall Descri Descripti ption on
The Ct The Ct block block simulates simulates the behavior behavior of a current current transformer transformer.. Internally Internally two models models are available: able: a “basic “basic”” mod model el and a “detai “detailed led”” mod model. el. The “basic” “basic” model simulat simulates es only the curren currentt conversion operated by the CT ratio and by the CT windings connection. The “detailed” model simulates the core saturation effect accordingly with the parameters defined by the IEC and the ANSI standards. Two different types of CT block are available: the 3 phase CT and the single phase CT. Each type has different input and output signals.
2
Integr Integrati ation on in the rel relay ay sc schem heme e
The CT type type class class name is TypCt; ypCt; the CT class class name is StaCt. StaCt. The block block represen represents ts in the relay relay model scheme the current current signals entry point. Usually Usually the CT block is connected to the measurement block. In figure 2.1 figure 2.1 the the typical connection scheme of a 3phase Ct block is shown, in figure 2.2 figure 2.2 the the same scheme for a single single phase Ct . The Ct is connected connected to the Measurement Measurement block inputs.
Figure 2.1: DIgSILENT The Current The Current Transformer “StaCt” Transformer “StaCt” 3 phase connection scheme with the measurement element.
Figure 2.2: DIgSILENT 2.2: DIgSILENT The Current The Current Transformer “StaCt” “StaCt” single phase connection scheme with the measurement element.
Current Transformer (StaCT)
4
3
Featu Features res & User User interf interface ace
3
Featur Features es & User User interf interfac ace e
3.1 3.1. 3.1.1 1
Current Transformer ransformer Type (TypCt) (TypCt) Basi Basic c data data
The “Basic Data” tab page allows to define the available transformer ratios in terms of number of windings at the primary and the secondary side.
3.1.2 3.1 .2 Additi Additional onal data data In the “Additional data” tab page the CT accuracy can be defined using the IEC-Apparent Power and the ANSI Burden and Voltage standard. When When the select selected ed standa standard rd is “Ansi “Ansi ©-Burd ©-Burden” en”,, the CT burde burden n (“Zb” (“Zb” varia variable ble)) is ent entere ered d direct directly ly.. When the selected standard is not “Ansi ©-Burden”, the CT burden (“Zb” variable) is calculated using the following formulas: Ansi ©Voltage: ©Voltage: Z b = V max max /(aclimit I n )
∗
IEC Apparent Apparent Powe Power: r: Z b = S nom nom /(I n I n )
∗
where V max max = Voltage Limit (“Vm” variable) Accuracy cy Limit Limit Facto Factorr (“aclim (“aclimit” it” variab variable le in the Curren Currentt Transf ransforme ormerr Type dialog dialog (“TypC (“TypCt” t” aclimit = Accura class)) I n = Secondary side CT rated current S nom nom = Apparent Power(“Snom” variable)
3.1.3 3.1 .3 Descri Descripti ption on The Description tab Description tab page can be used to insert some information to identify the StaCt type element (both with a generic string and with an unique textual string similar to the Foreign Key approach approach used in the relational relational databases) databases) and to identify the source of the data used to create it. Other text fields allow allow to insert the manufacturer manufacturer name and a longer description. description.
3.2
Current Current Transfor ransformer mer (StaCt) (StaCt)
The user can change change the block block settings settings using the “Current “Current Transformer”di ransformer”dialog alog (“StaCt” class). The dialog consists of three tab pages: Basic data , Tripping times , Additional Data , and De- scription . The main settings are located in the Basic the Basic data tab tab page.
3.2. 3.2.1 1
Basi Basic c data data
The “Basic Data” tab page of the CT dialog (“StaCt” class) should be used to set the CT type(Type type(Type control), control), transformer ratio (Primary (Primary and and Secondary Secondary Tap comboboxes), comboboxes), measurement
Current Transformer (StaCT)
5
3
Featu Features res & User User interf interface ace
point (Location (Location control), control), orientation (Orientation (Orientation combobox), combobox), secondary secondary side connection (Con- (Con- nection nection combobox), number of phases (No.Phases (No.Phases combobox, combobox, “iphase” variable) and phase order (Phase (Phase 1 and 1 and Phase Phase 2 2 comboboxes). The block can be disabled using the Out of service check check box. The blue text provides additional info regarding the current ratio. Please note that the Location the Location control control can point to another Current Transformer. In this way the other oth er CT out output put signals signals can be used used as input signals signals of the CT block. block. The Location The Location control control can point also to a cubicle(“StaCubic” class), to a switch(“StaSwitch” class) or to a 3 Windings transformer (“ElmTr3” class). When the Location the Location control control is not used the Measure the Measure at is at is displayed just below the the Branch Branch control control and it allows setting the measurement point at the switch position or at CT block itself.
3.2.2 3.2 .2 Additi Additional onal Data Data The internal model is by default the basic model basic model.. To take take care care of the saturati saturation on effects effects the detailed model can be activated using the Detailed Model check Model check box in the “Additional data” tab page of the CT block dialog (“StaCt” class).
3.2.3 3.2 .3 Descri Descripti ption on The Description The Description tab tab page can be used to insert some information to identify the Current Transformer element (both with a generic string and with an unique textual string similar to the Foreign Key approach approach used in the relational databases) and to identify the source of the data used to create it.
Current Transformer (StaCT)
6
4
Transfer ransfer functions functions
4
Transfe ransferr functi functions ons
When the “Detailed model” is not enabled the following transfer formulas are applied: When the primary connection connection is Y is Y and and the secondary connection is Y is Y .
I xsecondary xsecondary = I xprimary xprimary /ratio where ratio = ratio = the CT transformer ratio x = phase a,b,c When the primary connection connection is Y is Y and and the secondary connection is D is D
I xysecondary ( I xprimary xysecondary = (I xprimary
− I
yprimary yprimary )/ratio
where ratio = ratio = the CT transformer ratio x = phase b,c,a y = phase a,b,c Please consider that when the CT is located in a bus bar cubicle or when the Location control control is pointing pointing to a cubicle or to a switch switch the rated voltage voltage of the bus bar at which the cubicle (or the switch) belongs is used to calculate the following formula:
√ ∗
I xprimary 1000/( 3 U n ) xprimary = 1000/ When the Location the Location control control is pointing to another CT or to a 3 windings transformer the following formula is used:
I xprimary xprimary = I unit
∗ ∗
where unit = 1 for the other the other Ct case Ct case and unit = 1000 for the 3 windings transformer case (to take care of the transformer rated power unit)
4.1
Load Flow, Flow, Short-cir Short-circuit cuit and RMS simula simulation tion Model Model
Figure 4.1: DIgSILENT 4.1: DIgSILENT The Current The Current Transformer “StaCt” “StaCt” LDF, Short Circuit, RMS model. Current Transformer (StaCT)
7
4
Transfer ransfer functions functions
The saturation of the magnetizing admittance is not considered for this model The magnetizing admittance is calculated using the following equations: PF Version< 14.0.522
Y M M = j curmg/Z b
− ∗
PF Version> 14.0.522
Y M M = j curmg/Z bnom bnom
− ∗
where curmg is the Excitation Current /Rated Current (in the CT element, “StaCt” class). Zbnom is the nominal burden impedance. The burden impedance Z b is calculated by using the CT element parameter Zburd and and cosburd with the following formula:
√ −
Z b = R = R b + jX + jX b = Z burd cos(cosburd) cosburd) + jZ + jZ burd cosburd2 burd cos( burd 1
4.1.1 CT with with Y connection connection on on secondary secondary side The secondary current is calculated with the following formula:
I 2x = I = I 22x
1 1 + Y + Y M + Z b ) M (Rs + Z
and
I 2x =
I 1x ratio
where I 1x = primary current with x = phase A,B,C ratio = ratio = CT transformer winding ratio = ptapset/stapset (primary tap / secondary tap)
4.1.2 CT with with D connection connection on on the secondary secondary side side The secondary current is calculated using the following equations:
I 2x = I = I bx bx
− I
by by
where x is is phase A,B,C and y is y is phase B,C,A and
Current Transformer (StaCT)
8
4
Transfer ransfer functions functions
I bx bx = (I 2x
1 3 Z b ) M M (Rs + 3Z
− I 2 ) 1 + Y + Y 0
where x is is phase A,B,C
I 20 = (I 2A + I + I 2B + I + I 2C )/3
(zero sequence current)
I 2x =
I 1x ratio
where x is is phase A,B,C and y is y is phase B,C,A ratio = ratio = CT transformer winding ratio = ptapset/stapset (primary tap / secondary tap) The excitation voltage is calculated:
V ex = I bx 3 Z b )Rs I D0 ex = I bx (Rs + 3Z where x is is phase A,B,C with
I D0 = I = I 220
1 1 + Y + Y M M Rs
4.2 EMT simu simulat lation ion Model Model
Figure 4.2: DIgSILENT 4.2: DIgSILENT The Current The Current Transformer “StaCt” “StaCt” EMT simulation model.
The Magnetizing Inductance (1/Lm) is calculated accordingly with the following formula:
Bm =
Current Transformer (StaCT)
curmg ωN Z bnom bnom
9
4
Transfer ransfer functions functions
where curmg is the Excitation Current /Rated Current (in the CT element, “StaCt” class). Zbnom is the nominal burden impedance. ωN = 2πF nom nom with F nom nom = Nominal Frequency. The Saturated Magnetizing inductance (1/Lmsat) is calculated accordingly with the following formula:
Bmsat =
bmsat ωN Z bnom bnom
where bmsat is the Saturated Admittance in p.u. (based on the nominal burden impedance). ωN = 2πF nom nom with F nom nom = Nominal Frequency. Zbnom is the nominal burden impedance calculated as follow:
Lb = Z = Z burd burd
∗
√ 1 − cosburd
2
ωN
The derivative of the magnetic flux is calculated with the following formula:
dpsimx = ω N V ex ex dt where x is is phase A,B,C. V ex ex is the excitation voltage for the phase x. ωN = 2πF nom nom with F nom nom = Nominal Frequency.
4.2.1 CT with with Y connection connection on on secondary secondary side The excitation voltage is calculated with the following formula:
V ex + Rb )I 2x + L + Lb ex = (Rs + R
I 2x =
dI 2x dt
√ 2 I 1 − I ratio x
ex ex
where I 1x is the primary current with x = phase A,B,C A,B,C ratio = ratio = CT transformer winding ratio = “ptapset”/“stapset” (primary tap / secondary tap). I ex ex is the Excitation Current with x = phase A,B,C.
4.2.2 CT with with D connection connection on on secondary secondary side The excitation voltage is calculated with the following formula: Current Transformer (StaCT)
10
5
Ct satura saturatio tion n mod models els
dI 2x dt
V ex = R s (I 2x + I + I D0 ) + 3R 3 Rb I 2x + 3L 3 Lb ex = R with
I ex ex = Excitation Current with x = phase A,B,C
√ I 1
I D0 = 1/3( 2
+ I 1B + I + I 1C A + I ratio
− I − I − I eA eA
eB eB
eC eC )
where I 1A is the phase A primary current. current. I 1B is the phase B primary current. I 1C is the phase C primary current. ratio = ratio = CT transformer winding ratio = “ptapset”/“stapset” (primary tap / secondary tap). I eA eA = Phase A Excitation Current. I eB eB = Phase B Excitation Current. I eC eC = Phase C Excitation Current. The secondary current is:
I 2x =
√ 2 I 1 − I − I ratio x
ex ex
D0
where A,B,C. I 1x is the primary current with x = phase A,B,C. ratio = ratio = CT transformer winding ratio = “ptapset”/“stapset” (primary tap / secondary tap). I ex ex = Excitation Current with x = phase A,B,C.
5
Ct sa satu tura ratio tion n mode models ls
5.0.3 5.0 .3 Piece Piecewis wise e Linear Linear In the non-saturated condition the excitation current is calculated by the following equation:
I ex ex =
Bm psimx ωN
In the saturated condition (psimX > psimknee)by the following equation:
I ex ex =
with psimknee =
Bm B masat psimknee + ( psimx ωN ωN
− psim
knee )
√ 2V
s
where V s = is the Saturation the Saturation Voltage (“Vs” Voltage (“Vs” variable in the “Excitation Parameter” frame in the Current Transformer dialog (“StaCt” class)).
Current Transformer (StaCT)
11
5
Ct satura saturatio tion n mod models els
5.0.4 5.0 .4 Polyn Polynomi omial al The excitation current is calculated with the following formula:
I ex = f ((Bmsat ,Bm ,psimx ,ksat,V s ) ex = f When I < I knee knee
I ex ex =
BM I xprim xprim ksat I xprim ) ) xprim(1 + ( ω P 0
|
|
When I > I knee knee
I ex ex = I knee knee +
B M (I xprim xprim ω
− P
knee knee )
with
B K B − ln
− 1 + 1
Msat M
sat sat
P 0 = P knee knee e
∗
Ksat
and
P knee knee
K √ = 2
sat sat +
ksat
1
where ksat is the Exponent the Exponent (“Ksat” (“Ksat” variable in the “Excitation Parameter” frame in the Current Transformer dialog (“StaCt” class)). V s = is the Saturation the Saturation Voltage (“Vs” Voltage (“Vs” variable in the “Excitation Parameter” frame in the Current Transformer dialog (“StaCt” class)).
Current Transformer (StaCT)
12
A
Paramet Parameter er Definitions Definitions
A
Paramet arameter er Definit Definition ions s
A.1
Current Transformer ransformer Type (TypCt) (TypCt) Table A.1: Input parameters of Ct type (TypCt ( TypCt )
Parameter loc name Primt Primtap aps s
Sectap Sectaps s iopt iopt sat sat
Snom Snom Zb Vmax raclass aclimit Ithr Ithr
A.2
Description Name assigned by the user to the block type The The list list of the avai availa labl ble e numbe numberr of windin windings gs at the the prima primary ry side side (i.e. (i.e. 50,100,200,500 etc) List List of the avail availab able le num number ber of windin windings gs at the second secondary ary side side (i.e. (i.e. 1, 5) The kind kind of of CT CT repr represe esenta ntatio tion. n. It can can be “IEC“IEC- Appare Apparent nt Power” ower” interna internall string:“iec”, “ANSI©-Burden” internal string:“anscb”or “ANSI©-Voltage” “ANSI©-Voltage” internal string:“anscv” Curren Currentt transf transform ormer er app appare arent nt power power (“IEC(“IEC-App Appare arent nt Power Power”” repres represent entaation) Burden impedance (“ANSI©-Burden” representation) Voltage oltage limit limit (default (default values values 100, 200,400,50 200,400,500,800 0,800)) (“ANSI©-V (“ANSI©-Volta oltage” ge” representation) Accuracy class (default values: 5,10) Accuracy limit factor (default values: 5, 10, 15, 20, 30 ) Rate Rated d short short circ circui uitt curr curren entt (the (the max max curr curren entt whic which h can can be sust sustai aine ned d or 1 sec)
Unit Text Array of real numbers
Array Array of real real numbe numbers rs Text
VA Ohm Volt Integer Integer Primary Amperes
Current Current Transfor ransformer mer (StaCt (StaCt ) Table A.2: Input parameters of Ioc element (RelIoc ( RelIoc )) ))
Parameter loc name Typ id Outser v loc name typ id outser v pbranc pbranch h
iloca ilocatio tion n iorie iorient nt ptapse ptapsett itapse itapsett stapco stapcon n iphase it2p1 it2p2 Iconsat Zburd cosburd Rs itrm itrmtt cur mg bmsat Vs ksat ksat
Description Name assigned to the user to the block element Pointer to the relevant TyIoc object Flag to put out of ser vice the block The user assigned name of the Ct type Pointer to the CT type object (TypCt clas) Flag to enable /disable the block Locati Location on whe where re the CT is (if it is not set the defaul defaultt locati location on is the cubicl cubicle e where the CT has been created) Place Place whe where re the CT is mea measin sing g the curren currentt (it can be “Circu “Circuit it elemen element” t” id = 0, “Element” “Element” id = 1 CT orie orient ntat atio ion n (it (it can can be “Bra “Branc nch” h” inte interna rnall id = 0 or “Bus “Busba bar” r” inte interna rnall id = 1 Primary Primary side side numbe numberr of windin windings gs (its (its one of the value value listed listed in the “prim“primtaps” list in the TypCt object) Second Secondary ary side side num number ber of windin windings gs (its (its one of the value value listed listed in the “sec“sectaps” list in the TypCt object) Second Secondary ary side side connec connectio tion n type type (it can can be “Y” interna internall id = 0 or “D” intern internal al id = 1) CT number of phases (it can be “1”, “2” or “3”) Phase 1 name (it can be “a”, “b”,“c”,“N”,“I0”) Phase 2 name (it can be “a”, “b”,“c”) Detailed model (considering saturation) activation flag Burden impedance Burden cosφ Secondar y winding resistance Satu Satura rati tion on mode modell (it (it can can be “Pie “Piece cewi wise se Line Linear ar”” inte interna rnall ID = 0 or “Pol “Polyn ynoomial” internal ID = 1) Excitation Current/rated Current Saturated Admittance Saturation Voltage Satura Saturatio tion n expon exponent ent for for the polyno polynomia miall repres represent entati ation on . Typica ypicall value values s are 9,13,15.
Current Transformer (StaCT)
Unit Text Pointer Y/N Text Pointer Integer Pointer
Integer Inte Intege gerr Real number Real number Integer Integer Integer Integer Integer Real number Ohm Real number Real number Ohm Integer Real number pu Real number Ohm Real number Volt Integer
13
B
Signal Signal Definit Definition ions s
B
Sign Si gnal al Defin Definiti ition ons s
B.1 Singl Single e phase phase Table B.1: Input/output signals of the single phase StaCt element ( CalStaCt1p ) Name Ir A Ir B Ir C Ii A Ii B Ii C I2r I2i I2r A I2i A I0x I0x3r I0x I0x3i
B.2 B.2
Description Ct block phase A primar y side current real par t Ct block phase B primar y side current real par t Ct block phase C primar y side current real par t Ct block phase A primar y side current imaginar y par t Ct block phase B primar y side current imaginar y par t Ct block phase C primar y side current imaginar y par t Secondar y side current real par t Secondar y side current imaginar y par t Secondar y side current real par t (equal to I2r) Secondar y side current imaginar y par t ( eq equal to I2i) Zero Zero sequ sequen ence ce curre urren nt real real part part (ca (calcu lculate lated d inte intern rna ally lly) Zerose Zeroseq quenc uence e curre urren nt ima imagina ginarypa rypart rt (ca (calcul lculat atedin edinte tern rnal ally ly))
Unit Primar y Amps Primar y Amps Primar y Amps Primar y Amps Primar y Amps Primar y Amps Secondar y Amps Secondar y Amps Secondar y Amps Secondar y Amps Second condar ary y Amps Second condar ary y Amps
Type IN IN IN IN IN IN OUT OUT OUT OUT OUT OUT
Model Any Any Any Any Any Any Any Any Any Any Any Any
3 phas phase e Table B.2: Input/output signals of 3 phase Current Transformer element (CalStaCt ( CalStaCt )
Name Ir A Ir B Ir C Ii A Ii B Ii C I2r A I2r B I2r C I2i A I2i B I2i C I0x3r I0x3r
I0x3i I0x3i
Description Ct block phase A primar y side current real par t pu Ct block phase B primar y side current real par t pu Ct block phase C primar y side current real par t pu Ct block phase A pr im imar y side curr en ent imaginar y par t pu Ct block phase B pr im imar y side curr en ent imaginar y par t pu Ct block phase C pr im imar y side current imaginar y par t pu Phase A secondar y side current real par t Phase B secondar y side current real par t Phase C secondar y side current real par t Phase A secondar y side current imaginar y par t Phase B secondar y side current imaginar y par t Phase C secondar y side current imaginar y par t Zero Zero sequen sequence ce second secondary ary side side curren currentt real real part (calc (calcula ulated ted internally) Zero Zero seque sequence nce second secondary ary side side curre current nt imagi imaginary nary part (cal(calculated internally)
Current Transformer (StaCT)
Unit Primar y Amperes Primar y Amperes Primar y Amperes Pr im imar y Amperes Pr im imar y Amperes Pr im imar y Amperes Secondar y Amperes Secondar y Amperes Secondar y Amperes Secondar y Amperes Secondar y Amperes Secondar y Amperes Secondar y Amperes
Type IN IN IN IN IN IN OUT OUT OUT OUT OUT OUT OUT
Model Any Any Any Any Any Any Any Any Any Any Any Any Any
Secondar y Amperes
OUT
Any
14
List of Figures Figures
List of Figures 2.1 DIgSILENT The The Current Transformer Transformer “StaCt” 3 phase connection scheme with the measurement element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
2.2 DIgSILENT The The Current Transformer “StaCt” Transformer “StaCt” single phase connection scheme with the measurement element. element. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1 DIgSILENT The Current The Current Transformer “StaCt” “StaCt” LDF, Short Circuit, RMS model. . .
7
4.2 DIgSILENT The Current The Current Transformer “StaCt” “StaCt” EMT simulation model. . . . . . . .
9
Current Transformer (StaCT)
15
List of Tables
List of Tables A.1 Input parameters parameters of Ct type (TypCt (TypCt )
. . . . . . . . . . . . . . . . . . . . . . . . .
13
A.2 Input parameters parameters of Io Ioc c element element (RelIoc (RelIoc )) )) . . . . . . . . . . . . . . . . . . . . . .
13
B.1 Input/output Input/output signals signals of of the single single phase StaCt StaCt element element (CalStaCt1p (CalStaCt1p ) . . . . . . .
14
B.2 Input/output Input/output signals signals of 3 phase Current Transf Transformer ormer element (CalStaCt (CalStaCt ) . . . . .
14
Current Transformer (StaCT)
16