Descripción: Music book OVERFLOW--------(PLANETSHAKERS).
Full description
Pola Flag
Full description
Carry me home - not angkaFull description
Descripción: flg
calisteniaFull description
Carry On - AngraDescrição completa
Arithmetic logic units and digital signal processors widely uses adders. It is the most complicated arithmetic circuits in digital electronics. The existing adders suffer from critical path delay, area overhead and power consumption. Speculative adde
Carry me home - not angka
Descrição completa
COWS Marching Band Arrangement ALL Parts
Carry On - Angra
Full description
Metro Cash & A Brief Report on Metro Cash and CarryFull description
FRC Sript BSU LHSFull description
Descripción: planner flag stickers
This is a pick up manual by PUA master "Shark" on how to attract women.
calistenia
===================================================== The CARRY flag and OVERFLOW flag in binary arithmetic ===================================================== - Ian! Allen - idallen"idallenca - ###idallenc$m $ n$t c$nf%&e the 'carry' flag #ith the '$(erfl$#' flag in integer arithmetic Each flag can $cc%r $n it& $#n) $r b$th t$gether The C*+,& AL+ d$e&n,t care $r n$# #hether y$% are d$ing &igned $r %n&igned mathematic&. mathematic&. the AL+ al#ay& &et& b$th flag& a//r$/riately #hen d$ing any integer math math The AL+ d$e&n,t n$# n$# ab$%t &igned0%n&igned. &igned0%n&igned. the AL+ 1%&t d$e& the binary binary math and and &et& the flag& a//r$/riately a//r$/riately It,& %/ t$ y$%) the /r$grammer) t$ n$# #hich flag t$ chec after the math i& d$ne If y$%r /r$gram treat& the bit& in a #$rd a& %n&igned n%mber&) y$% m%&t #atch t$ &ee if y$%r arithmetic &et& the carry flag $n) indicating the re&%lt i& #r$ng Y$% d$n,t care ab$%t the $(erfl$# flag #hen d$ing %n&igned math 2The $(erfl$# flag i& $nly rele(ant t$ &igned n%mber&) n$t %n&igned3 If y$%r /r$gram treat& the bit& in a #$rd a& t#$,& c$m/lement &igned (al%e&) y$% m%&t #atch t$ &ee if y$%r arithmetic &et& the $(erfl$# flag $n) indicating the re&%lt i& #r$ng Y$% d$n,t care ab$%t the carry flag #hen d$ing &igned) t#$,& c$m/lement math 2The carry flag i& $nly rele(ant t$ %n&igned n%mber&) n$t &igned3 In %n&igned arithmetic) #atch the carry flag t$ detect err$r& In %n&igned arithmetic) the $(erfl$# flag tell& y$% n$thing intere&ting In &igned arithmetic) #atch the $(erfl$# flag t$ detect err$r& In &igned arithmetic) the carry flag tell& y$% n$thing intere&ting Engli&h ------$ n$t c$nf%&e the Engli&h (erb 't$ $(erfl$#' #ith the '$(erfl$# flag' in the AL+ The (erb 't$ $(erfl$#' i& %&ed ca&%ally ca&%ally t$ indicate indicate that &$me math re&%lt d$e&n,t fit in the n%mber $f bit& a(ailable. it c$%ld be integer math) $r fl$ating-/$int fl$ating-/$i nt math) $r #hate(er The '$(erfl$# flag' i& &et &/ecifically by the AL+ a& de&cribed bel$#) and it i&n,t the &ame a& the ca&%al Engli&h (erb 't$ $(erfl$#' In Engli&h) #e may &ay 'the binary0integer math $(erfl$#ed the n%mber $f bit& a(ailable f$r the re&%lt) ca%&ing the carry flag t$ c$me $n' 4$te h$# thi& Engli&h %&age $f the (erb 't$ $(erfl$#' i& 5n$t5 the &ame a& &aying 'the $(erfl$# flag i& $n' A math re&%lt can $(erfl$# 2the (erb3 the n%mber $f bit& a(ailable #ith$%t t%rning $n the AL+ '$(erfl$#' flag Carry Flag ---------The r%le& f$r t%rning $n the carry flag in binary0integer math are t#$6 7 The carry flag i& &et if the additi$n $f t#$ n%mber& ca%&e& a carry $%t $f the m$&t &ignificant 2leftm$&t3 bit& added 7777 8 9997 = 9999 2carry flag i& t%rned $n3 : The carry 2b$rr$#3 flag i& al&$ &et if the &%btracti$n $f t#$ n%mber& re;%ire& a b$rr$# int$ the m$&t &ignificant 2leftm$&t3 bit& &%btracted 9999 - 9997 = 7777 2carry flag i& t%rned $n3 Other#i&e) the carry flag i& t%rned $ff 23
5 7999 - 9997 = 9777 2carry flag i& t%rned $ff 3 In %n&igned arithmetic) #atch the carry flag t$ detect err$r& In &igned arithmetic) the carry flag tell& y$% n$thing intere&ting O(erfl$# Flag ------------The r%le& f$r t%rning $n the $(erfl$# flag in binary0integer math are t#$6 7 If the &%m $f t#$ n%mber& #ith the &ign bit& $ff yield& a re&%lt n%mber #ith the &ign bit $n) the '$(erfl$#' flag i& t%rned $n 9799 8 9799 = 7999 2$(erfl$# flag i& t%rned $n3 : If the &%m $f t#$ n%mber& #ith the &ign bit& $n yield& a re&%lt n%mber #ith the &ign bit $ff) the '$(erfl$#' flag i& t%rned $n 7999 8 7999 = 9999 2$(erfl$# flag i& t%rned $n3 Other#i&e) the 5 9799 8 9997 5 9779 8 7997 5 7999 8 9997 5 7799 8 7799
t%rned $ff flag i& t%rned flag i& t%rned flag i& t%rned flag i& t%rned
$ff3 $ff3 $ff3 $ff3
4$te that y$% $nly need t$ l$$ at the &ign bit& 2leftm$&t3 $f the three n%mber& t$ decide if the $(erfl$# flag i& t%rned $n $r $ff If y$% are d$ing t#$,& c$m/lement 2&igned3 arithmetic) $(erfl$# flag $n mean& the aner i& #r$ng - y$% added t#$ /$&iti(e n%mber& and g$t a negati(e) $r y$% added t#$ negati(e n%mber& and g$t a /$&iti(e If y$% are d$ing %n&igned arithmetic) the $(erfl$# flag mean& n$thing and &h$%ld be ign$red The r%le& f$r t#$,& c$m/lement detect err$r& by e?amining the &ign $f the re&%lt A negati(e and /$&iti(e added t$gether cann$t be #r$ng) beca%&e the &%m i& bet#een the addend& @ince b$th $f the addend& fit #ithin the all$#able range $f n%mber&) and their &%m i& bet#een them) it m%&t fit a& #ell i?ed-&ign additi$n ne(er t%rn& $n the $(erfl$# flag In &igned arithmetic) #atch the $(erfl$# flag t$ detect err$r& In %n&igned arithmetic) the $(erfl$# flag tell& y$% n$thing intere&ting B$# the AL+ calc%late& the O(erfl$# Flag ---------------------------------------Thi& material i& $/ti$nal reading There are &e(eral a%t$mated #ay& $f detecting $(erfl$# err$r& in t#$,& c$m/lement binary arithmetic 2f$r th$&e $f y$% #h$ d$n,t lie the man%al in&/ecti$n meth$d3 Bere are t#$6 Calc%lating O(erfl$# Flag6 eth$d 7 ----------------------------------O(erfl$# can $nly ha//en #hen adding t#$ n%mber& $f the &ame &ign and getting a different &ign @$) t$ detect $(erfl$# #e d$n,t care ab$%t any bit& e?ce/t the &ign bit& Ign$re the $ther bit& With t#$ $/erand& and $ne re&%lt) #e ha(e three &ign bit& 2each 7 $r 93 t$ c$n&ider) &$ #e ha(e e?actly :55=D /$&&ible c$mbinati$n& $f the three bit& Only t#$ $f th$&e D /$&&ible ca&e& are c$n&idered $(erfl$#
el$# are 1%&t the &ign bit& $f the t#$ additi$n $/erand& and re&%lt6 AITIO4 @I4 IT@ n%m7&ign n%m:&ign &%m&ign --------------------------9 9 9 5OVER5 9 9 7 2adding t#$ /$&iti(e& &h$%ld be /$&iti(e3 9 7 9 9 7 7 7 9 9 7 9 7 5OVER5 7 7 9 2adding t#$ negati(e& &h$%ld be negati(e3 7 7 7 We can re/eat the &ame table f$r &%btracti$n 4$te that &%btracting a /$&iti(e n%mber i& the &ame a& adding a negati(e) &$ the c$nditi$n& that trigger the $(erfl$# flag are6 @+TRACTIO4 @I4 IT@ n%m7&ign n%m:&ign &%m&ign --------------------------9 9 9 9 9 7 9 7 9 5OVER5 9 7 7 2&%btracting a negati(e i& the &ame a& adding a /$&iti(e3 5OVER5 7 9 9 2&%btracting a /$&iti(e i& the &ame a& adding a negati(e3 7 9 7 7 7 9 7 7 7 A c$m/%ter might c$ntain a &mall l$gic gate array that &et& the $(erfl$# flag t$ '7' iff any $ne $f the ab$(e f$%r OV c$nditi$n& i& met A h%man need $nly remember that) #hen d$ing &igned math) adding t#$ n%mber& $f the &ame &ign m%&t /r$d%ce a re&%lt $f the &ame &ign) $ther#i&e $(erfl$# ha//ened Calc%lating O(erfl$# Flag6 eth$d : ----------------------------------When adding t#$ binary (al%e&) c$n&ider the binary carry c$ming int$ the leftm$&t /lace 2int$ the &ign bit3 and the binary carry g$ing $%t $f that leftm$&t /lace 2Carry g$ing $%t $f the leftm$&t &ign> bit bec$me& the CARRY flag in the AL+3 O(erfl$# in t#$,& c$m/lement may $cc%r) n$t #hen a bit i& carried $%t $%t $f the left c$l%mn) b%t #hen $ne i& carried int$ it and n$ matching carry $%t $cc%r& That i&) $(erfl$# ha//en& #hen there i& a carry int$ the &ign bit b%t n$ carry $%t $f the &ign bit The OVERFLOW flag i& the GOR $f the carry c$ming int$ the &ign bit 2if any3 #ith the carry g$ing $%t $f the &ign bit 2if any3 O(erfl$# ha//en& if the carry in d$e& n$t e;%al the carry $%t E?am/le& 2:-bit &igned :,& c$m/lement binary n%mber&36 77 897 === 99 - carry in i& 7 - carry $%t i& 7 - 7 GOR 7 = 4O OVERFLOW
97 897 === 79 - carry in i& 7 - carry $%t i& 9 - 7 GOR 9 = OVERFLOW!
77 879 === 97 - carry in i& 9 - carry $%t i& 7 - 9 GOR 7 = OVERFLOW!
79 897 === 77 - carry in i& 9 - carry $%t i& 9 - 9 GOR 9 = 4O OVERFLOW 4$te that thi& GOR meth$d $nly #$r& #ith the 5binary5 carry that g$e& int$ the &ign 5bit5 If y$% are #$ring #ith he?adecimal n%mber&) $r decimal n%mber&) $r $ctal n%mber&) y$% al&$ ha(e carry. b%t) the carry d$e&n,t g$ int$ the &ign 5bit5 and y$% can,t GOR that n$n-binary carry #ith the $%tg$ing carry Be?adecimal additi$n e?am/le 2&h$#ing that GOR d$e&n,t #$r f$r he? carry36
DAh 8DAh ==== 7Hh The he?adecimal carry $f 7 re&%lting fr$m A8A d$e& n$t affect the &ign bit If y$% d$ the math in binary) y$%,ll &ee that there i& 5n$5 carry 5int$5 the &ign bit. b%t) there i& carry $%t $f the &ign bit Theref$re) the ab$(e e?am/le &et& OVERFLOW $n 2The e?am/le add& t#$ negati(e n%mber& and get& a /$&iti(e n%mber3