Use of the formula
Formula
Source of the Formula
Planform area of the wing (S)
1 2
Root cho
croot =
rd of the wing
Mean aerodynamic chord of the wing
c
ρ v 2 C l
b(1 + λ )
3(1 + λ )
Reynolds nm!er
MQP FINAL
2 S
2(1 + λ + λ 2 )
=
MQP nal
L
S =
Re =
MQP FINAL
c root
MQP FINAL
ρ vc µ
WING AND TAIL
WING AND TAIL
WING
AERODYNAMIC
AERODYNAMIC
AND TAIL
PROPERTIES
PROPERTIES
AERODYN AMIC PROPERTI ES
Lft coe!ce"t
C Lα
MQP FINAL
2Π ( AR)
= 2+ 4+
( AR) 2 β 2
η 2
(1 +
tan 2 Λ
= 1 − M 2
β 2 η =
β 2 MQP FINAL
C l α ( 2Π / β )
F = 1.07(1 + d / b) 2 "here Mach nm!er
Aerodynamic center of the wing
M =
x ac c
v
MQP FINAL
R (TEMP ) γ
=−
∂C M , LE ∂C N
MQP FINAL
Normal force coe#cient
= C l cos α + C d sin α
C n
Qarter chord moments
C m, LE
PROPULSION
C n
= C m,c / 4 −
MQP FINAL
MQP FINAL
4
PROPULSION
PROPULSI ON
Power ot$t
P = I ⋅ V
MQP FINAL
R%P%M
RPM = K v ⋅ V battery
MQP FINAL
&'ations for diameter of the $ro$eller
PERFORMANCE
T =
MQP FINAL
P V pitc T
A prop
=
! prop
= 2⋅
0.5 ⋅ ρ ⋅ V e
2
A prop
Π
PERFORMANCE
PERFORM ANCE
AL *RA+ Indced drag
!total = !ind$ced , "in# + !0
1
C dra# =
+ ! feateredprop
(C l ) 2
MQP FINAL MQP FINAL
Π ( AR)e e = 1.78(1 − 0.045( AR) 0.68 ) − 0.64
Parasite drag
Form factor of the wing
FF c %c S "et ,c
f ,c
C d 0 Laminar and tr!lent s,in friction coe#cients
∑ C
C f ,lam
=
C f ,t$rb
=
=
MQP FINAL
c
S ref MQP FINAL
1.328 Re 0.455 (log 10 Re)
2.58
+ (1 + 0.144 M 2
4 0.6 t t FF = 1 + + 100 [1.34 M 0 ( x / c ) m c c
MQP FINAL
Form factor of the em$ennage
1
f =
Feathered $ro$ drag
MQP FINAL
60 f FF = 1 + 3 + 400 f 4 A max Π
C d 0, feat eredprop
= 0 .1
nblade&
Aprop
Π ( AR) blade
S ref
MQP FINAL
AIRCRAFT
AIRCRAFT
AIRCRAFT
STA#ILITY AND
STA#ILITY AND
STA#ILIT
CONTROL
CONTROL
Y AND CONTROL
Primary e'ations to calclate netral $oint Sta!ility en.elo$e
x np
=
S '
C Lα , " xac, "
+ η '
C Lα ,"
+ η '
S S ' S
− 0.15 + xac," + η ' x nf
=
C Lα , '
d α ' d α d α '
MQP FINAL MQP re$ort
d α
S ' C Lα , ' d S C Lα , "
S ' C Lα , ' d α '
1 + η '
SE = xnp
C Lα , '
S C Lα , " d α
− xmf
/inge moments
' Total = ' Aerodynam ic + ' (ei#t = C m ,in#e( 0.5
MQP FINAL
STRUCTURAL
STRUCTURAL
STRUCTU
ANALYSIS
ANALYSIS
RAL ANALYSIS
LIF P&R 0NI SPAN A /& R F /& "IN+
∫ L 2
0
!ending moment as a fnction of s$an wise (y) $osition1 and fond the moment at the wing root area moment of inertia
0
2 y dy = ( 1− 2 b 2
v
M ( y )
= − M root + ∫ &L
1 0
0
I ))
MQP FINAL
2
b
= I )) , &*$a re − I )) ,circle =
2 & 1 − d& b 4 l &id e
12
4 − Π r ole
4
MQP FINAL
MQP FINAL
Ma2imm !ending stress
M root ( l &id e / 2)
=
σ max
MQP FINAL
I ))
UA$
UA$
UA$
LONGITUDINAL
LONGITUDINAL
LONGITU
STATIC STA#ILITY
STATIC STA#ILITY
DINAL
AND CONTROL
AND CONTROL
STATIC STA#ILIT Y AND CONTROL
CONTRI#UTION OF AIRCRAFT COMPONENTS TO STA#ILITY
0A3 "IN+S 4NRI50IN
C m 0 "
= C m
C mα
= C L
"
ac "
α "
0A3 F0S&LA+& 4NRI50IN
=
C m 0 f
=
C mα f 0A3 AIL 4NRI50IN
+ + + C L 0 c# − ac c c + + + c# − ac c c "
− , 1
, 2
36.5S c 1
l f
∫ " (α )dx 2 f
0 "+ i f
0
x =l f
∑" 36.5S c
2 f
x = 0
∂ε $ ∆ x ∂α
C m 0t
= η V ' C L ( ε 0 + i" − it )
C mα t
d ε = −η V ' C L 1 − d α
α t
α t
ε = ε 0 ε =
+
d ε d α
2C L"
Π AR"
α "
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
&'ation for netral $oint
+ NP c
=
+ ac c
−
C mα f C Lα
"
d ε + η V ' 1 − d α
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
UA$ DIRECTIONAL
UA$ DIRECTIONAL
UA$
STA#ILITY
STA#ILITY
DIRECTIO NAL STA#ILIT Y M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
UA$ COMPONENTS CONTRI#UTION
F0S&LA+& 3&RI4AL AIL "IN+ 4NRI50IN 6A"IN+ MM&N 4&FFI4I&N *0& SI*&SLIP F /& 0A3
C nβ f
= −, n , Rl
C nβ
= C L
v free
C nβ
"
C nβ 0A3 MM&NS F IN&RIA MI a!ot o2 a2is MI a!ot oy a2is MI a!ot o7 a2is Prodct of inertia a!ot o2 oy a2es Prodct of inertia a!ot o2 o7 a2es Prodct of inertia a!ot o7 oy a2es AERODYNAMIC FORCES AND DERI$ATI$ES
=
S " b
η v α
S v xv &
v
S b
C L2
4Π AR = C nβ + C nβ f
"
+ C n
= ∑ δ m( y 2 + ) 2 ) 2 2 I y = ∑ δ m( x + ) ) I ) = ∑ δ m( y 2 + x 2 ) I xy = ∑ δ mxy I x) = ∑ δ mxy I y) = ∑ δ my) I x
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
S f& l f
β v
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
Longitdinal deri.ati.es + $
+ $ - $
- $
= − ρ S.C ! = − ρ S.C L
+ "
1 2 M = ρ . S c C m 2 ∂C m 1 M $ = ρ . 2 S c 2 ∂.
- "
+ "
M M $
- " *ownwash deri.ati.es
4ontrol deri.ati.es
− ∂C ! 2 ∂α ∂C 1 = ρ .S L + C ! 2 ∂α =
1
ρ .S C L
∂C ∂ + 1 ∂ + 1 = = ρ .S ! ∂" . ∂α 2 ∂α ∂C ∂ - 1 ∂ - 1 = = ρ .S L - " = ∂" . ∂α 2 ∂α ∂C ∂ M 1 ∂ M 1 = = ρ .S c m M " = ∂" . ∂α 2 ∂α + "
=
∂ +
+ η = - η =
∂η ∂ -
=
M η =
1 2 1
=
∂η
M η =
ail .olme coe#cients
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
∂ M
2
ρ . 2 S
=
∂η ∂ M ∂η
ρ . 2 S
1 2
=−
∂C ! ∂η
∂C L ∂η
ρ . 2 S c 1 2
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
∂C m ∂η
ρ . 2 S c V a ′2
V T
=
S T l T
V F
=
S F l F
S c S b
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
Normal force deri.ati.es
- $ = −
ρ v0 S
( M C 0
L
+ 2C L
M 2m ρ S c (C - α ) - " = 4m ρ v S - " = − 0 ( C Lα + C ! ) 2m ρ V 0 S c - * = C - * m
(
- " = Pitching moment deri.ati.es
ρ V 02 S
M *
LA&RAL *&RI3AI3&S
= =
M δ
=
Lv
=
Lv L p Lr Lδ
= = = =
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
)
(C ) - δ
2m
M "
)
ρ V 0 S c
C mα
2 I y
ρ V 0 S c 2 4 I y
ρ V 02 S c
C mδ
2 I y
ρ V 0 Sb 2 I x
C l β
ρ V 02 Sb 2 I x
C l β
ρ V 0 Sb 2 4 I x
ρ V 0 Sb 2 4 I x
ρ V 02 Sb 2 I x
C m*
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
C lp C l r
C l δ
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
6A"IN+ MM&N *&RI3AI3&S
N v
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
ρ V 0 Sb C nβ 2 I )
=
ρ V 02 Sb N β = C nβ 2 I ) ρ V 0 Sb 2 N p = C np 4 I ) ρ V 0 Sb 2 N r = C nr 4 I ) ρ V 02 Sb N δ = C nδ 2 I ) Lateral force deri.ati.es
/ v / v
ρ V 0 S
=
2m
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
C yβ
ρ V 02 S
=
C yβ 2m ρ V 0 Sb / p = C yp 4m ρ V 0 Sb / r = C yr 4m / δ 0A3 LN+I0*INAL MIN Assming stic, 2ed Fre'ency *am$ing ratio
ω n&p
2m
- α M *
=
$0 M *
ζ &p &stimating 0A3 $hogoid Fre'ency *am$ing ratio
=
ρ V 02 S
ω n
p
=
C yδ
− M α
+ M α +
=−
- α $0
M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
2ω n &p M*&LLIN+ AN* SIM0LAIN F A 0/ 0A3 *6NAMI4S
− - $ # $0
− + $
ζ p
=
λ 1, 2
= −ζ pω np ± iω n
2ω np 1 − ζ 2