Chapter 11 11.1 24 lb
2 = 4:511 slugs J 5:32 ft/s = mg = 4:511(32:2) = 145:3 lb J
(a) m = (b) W
11.2 W
1 2 R h g = (0:0752 )(0:125)(2700)(9:81) = 19:503 N 3 3 0:2284 lb (19:503 N) = 4:45 lb J 1:0 N
= =
11.3 (a) 100 kN/m2 =
(b) 30 m/s =
100
30 m s
103 N m2
0:2248 lb 1:0 N
3:281 ft 1:0 m
1:0 mi 5280 ft
20 lb ft2
3600 s = 67:1 mi/h J 1:0 h
14:593 kg = 11:67 1:0 slug
(c) 800 slugs = 800 slugs
(d) 20 lb/ft2 =
1:0 m2 = 14:50 lb/in.2 J 1550 in.2
4:448 N 1:0 lb
103 kg = 11:67 Mg J
1:0 ft2 = 958 N/m2 J 0:092 903 04 m2
11.4 I = 20 kg m2 = 20 kg m2
0:06853 slugs 1:0 kg
10:764 ft2 = 14:75 slugs ft2 1:0 m2
But 1:0 slug = 1:0 lb s2 =ft I = 14:75
lb s2 2 ft = 14:75 lb ft s2 J ft
11.5 1 1 mv 2 + mk 2 ! 2 2 2 Since the dimensions of each term must be the same, we have KE =
[KE] = [M ]
L2 = [M ] k 2 T2
1 T2
1 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Therefore, [k] = [L] (a) In the SI system kg m2 L2 = J T2 s2
[KE] = [M ]
[k] = m J
(b) In the US system [KE]
= [M ]
FT2 L2 = T2 L
L2 = [F L] = lb ft J T2
= ft J
[k]
11.6 1 W
[g] [k] [x]
=
L T2
1 F [L] L F
=
L = [a] Q.E.D. T2
11.7 (a) [ ]=
PL EA
[L] =
1 E
FL L2
[E] =
F L2
J
(b) Substituting [F ] = M L=T 2 into the result of part (a): [E] =
ML T2
1 M = 2 L T 2L
J
11.8 (a)
mv 2 =
FT2 L
L2 = [F L] J T2
(b) [mv] =
FT2 L
L = [F T ] J T
(c) [ma] =
FT2 L
L = [F ] J T2
2 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
11.9 Rewrite the equation as y = 1:0 x2 [y] = [1:0] x2
[L] = [1:0] L2
1 L
[1:0] =
y = x2 can be dimensionally correct only if the units of the implied constant 1:0 are in. 1 . J
11.10 FT2 L
(a) [I] = mR2 =
L2 = F LT 2 J
(b) [I] = mR2 = M L2 J
11.11 (a)
v 3 = [A] x2 + [B] [v] t2 L J T3
[A] =
(b)
x2 = [A] t2
h
2 e[B][t ]
[A] =
i
L2 T2
L3 L = [A] L2 + [B] T3 T L2 [B] = J T4
L2 = [A] T 2 [1] J
[B] =
T2
[B] T 2 = [1]
1 T2
J
11.12 dx d2 x +c + kx = P0 sin !t 2 dt dt d2 x FT2 L [m] = = [F ] 2 dt L T2 m
Therefore, the dimension of each term in the expression is [F ]. [c]
dx L = [c] = [F ] dt T [k] [x] = [k] [L] = [F ]
[P0 ] [sin !t] = [P0 ] [1] = [F ] [!] [t] = [!] [T ] = [1]
FT L
[c] =
[k] =
J
F J L
[P0 ] = [F ] J [!] =
1 T
J
3 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
11.13 F =G
(a) [G] =
(b) [G] =
mA mB R2
[F ] L2 2
[F T 2 =L]
=
G=
L4 FT4
F R2 mA mb
[G] =
[F ] L2 [M 2 ]
J
M L=T 2 L2 L3 = 2 [M ] MT2
J
11.14 Using the base dimensions of an absolute [MLT] system: ML M = [C] 3 2 T L
[F ] = [C][ ][v 2 ][A]
L2 [L2 ] T2
[C] = [1] Q.E.D J
11.15 F W F W
100%
82 m2 = (6:67 10 11 ) 2 = 2:668 10 8 N 2 R 0:4 = mg = 8(9:81) = 78:48 N 2:668 10 8 = 100% = 3:40 10 8 % J 78:48 = G
11.16 F =G
2
m2 = 3:44 R2
10
8
(2=32:2) = 7:46 (16=12)2
10
11
lb J
11.17 m=
W R2 (3000) (6378 + 1600)2 106 = = 479 kg J GMe (6:67 10 11 ) (5:9742 1024 )
11.18 GMm 2 Rm
ge =
0:073483 5:9742
6378 1738
gm = gm Mm = ge Me
Re Rm
2
=
GMe Re2 2
= 0:1656 t
1 Q.E.D 6
4 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
11.19 Me = 5:9742
Me m
= 3:44
10
Ms m = 6:67 R2
10
2
(2Re )
3:281 ft = 20:93 1:0 m
103 m
Re = 6378 W =G
0:06853 slugs = 0:4094 1:0 kg
1024 kg
(2
106 ft
1024 )(150=32:2)
8 (0:4094
2
106 )
20:93
1024 slugs
= 37:4 lb J
11.20 F =G
11
1:9891
1030 (1:0)
(149:6
2
109 )
= 0:00593 N J
11.21 Me m r2 Me Ms 5:9742 1024 1:9891 1030
=
0
=
G
Ms m Me Ms = (R r)2 r2 (R r)2 r2 2 R 2Rr + r2 r2 9 2 (149:6 10 ) 2(149:6 109 )r + r2
= G
=
2:238
r = 259
1022
2:992
106 m = 259
1011 r
3:329 4
105 r2
103 km J
5 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 12 12.1 y v
= 0:16t4 + 4:9t3 + 0:14t2 ft = y_ = 0:64t3 + 14:7t2 + 0:28t ft/s
a = v_ =
1:92t2 + 29:4t + 0:28 ft/s
2
At maximum velocity (a = 0): 1:92t2 + 29:4t + 0:28 = 0 vmax y
t = 15:322 s
= 0:64(15:3223 ) + 14:7(15:3222 ) + 0:28(15:322) = 1153 ft/s J = 0:16(15:3224 ) + 4:9(15:3223 ) + 0:14(15:3222 ) = 8840 ft J
12.2
6 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.65 y = 64:4(4
x_ =
y_ =
128:8t ft/s
y• =
128:8 ft/s
x •=
Fx Fy
t2 ) ft
x = 20 cos
t ft 2 10 sin t ft/s 2 2 5 2 cos t ft/s 2
2
4 5 2 cos t = 6:130 cos t lb 32:2 2 2 4 = m• y= ( 128:8) = 16:00 lb 32:2 = m• x=
t (s) 0 1 2
Fx (lb) 6:13 0 6:13
Fy (lb) 16:0 16:0 16:0
J
12.66
12.67 x = b sin
2 t t0
y=
2 b 2 t cos t0 t0 2 t 4 2b sin ax = t20 t0 vx =
b 4
vy = ay =
4 t t0 b 4 t sin t0 t0 2 4 b 4 t cos t20 t0 1 + cos
At point B: x = 0 ) t = 0 ) ax = 0
) ay =
4
2
t20
b
=
4
2
(1:2) = 0:82
74:02 m/s
2
7 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
N
0.2N
y x F = 0.5(74.02) N MAD
0.5(9.81) N FBD Fy = may
+"
N
0:5(9:81) =
0:5(74:02)
N = 32:11 N Fx = 0
+ !
F
0:2N = 0
F = 0:2N = 0:2(32:11) = 6:42 N J
12.68
8 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.69
x
y g
20o
From the acceleration diagram of a water droplet: ax
=
g sin 20 =
32:2 sin 20 =
11:013 ft/s
ay
=
g cos 20 =
32:2 cos 20 =
30:26 ft/s
2
2
Initial conditions at t = 0 : x = y=0 vx = 22 cos 30 = 19:053 ft/s
vy = 22 sin 30 = 11:0 ft/s
Integrating and using initial conditions: vx = x =
11:013t + 19:053 ft/s 5:507t2 + 19:053t ft
vy = 30:26t + 11:0 ft/s y = 15:13t2 + 11:0t ft
Droplet lands when y = 0: y R
= 15:13t2 + 11:0t = 0 t = 0:7270 s = xjt=0:7270s = 5:507(0:72702 ) + 19:053(0:7270) = 10:94 ft J
9 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.70 From Eqs. (e) of Sample Problem 2.11: x = y
= =
(v0 cos )t = (65 cos 55 ) t = 37:28t ft 1 2 32:2 2 gt + (v0 sin )t = t + (65 sin 55 )t 2 2 16:1t2 + 53:24t ft
At point B: x = 60 ft 60 = 37:28t t = 1:6094 s h = yjt=1:6094s = 16:1(1:60942 ) + 53:24(1:6094) = 44:0 ft J
*12.71 From Sample Problem 12.12: x = C1 e
c m
C1
ct=m
c e m
mgt + C4 c mg c C3 e ct=m m c
+ C2
y = C3 e
ct=m
vy =
vx
=
=
0:0025 = 0:06708 s 1:2=32:2
1
mg 1:2 = = 480:0 ft/s c 0:0025
x = C1 e 0:06708t + C2 y = C3 e 0:06708t vx = C1 0:06708e vy
=
C3 0:06708e v0 sin v0 cos
0:06708t
= =
ct=m
0:06708t
480t + C4
480:0
70 sin 65 = 63:44 ft/s 70 cos 65 = 29:58 ft/s
Initial conditions at t = 0: x y vx vy
= = = =
0 ) C2 0 ) C4 v0 cos v0 sin
= C1 = C3 ) C1 (0:06708) = 29:58 C1 = ) C3 (0:06708) 480:0 = 63:44
441:0 ft C3 = 8101 ft
When x = 60 ft: 60 = 441:0e 0:06708t + 441:0 t = 2:180 s (0:06708)(2:180) h = yjt=2:180 = 8101e 480(2:180) + (8101) = 55:7 ft J
10 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.72 y
x g
Acceleration diagram At t = 0 (initial conditions): x = y =
0 vx = 200 sin 30 = 100 m/s 1200 m vy = 200 cos 30 = 173:21 m/s
Integrating acceleration and applying initial conditions: ax = 0 vx = 100 m/s x = 100t m
2
ay = 9:81 m/s vy = 9:81t 173:21 m/s y = 4:905t2 173:21t + 1200 m
When y = 0: 4:905t2
173:21t + 1200 = 0
t = 5:932 s
x = 100(5:932) = 593:2 m 593:2 = 99:6 m J
d = 1200 tan 30
12.73 Eqs. (d) and (e) of Sample Problem 12.11: x = v0 t cos = 2500t cos ft 1 2 y = v0 t sin gt = 2500t sin 2 Setting x = R = 5280 ft and solving for t: 5280 = 2500t cos
t=
5280 2500 cos
16:1t2 ft
=
2:112 s cos
Setting y = 0, we get after dividing by t: 2500 sin
16:1t =
0
16:1
2:112 2500
= 0:013 601
sin cos
=
16:1
1 sin 2 2
=
0:013 601
=
1 sin 2
2:112 cos
2500 sin
1
=0
sin 2 = 2(0:013 601) = 0:02720
(0:02720) = 0:779
J
11 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.74 From Eqs. (e) of Sample Problem 12.11: x = (v0 cos ) t
1 2 gt + (v0 sin ) t 2
y=
(a) x = y
(42 cos 28 ) t = 37:08t ft
)t=
1 (32:2)t2 + (42 sin 28 ) t = 2
=
x s 37:08
16:1t2 + 19:718t
Substituting for t: y
= =
2 x x + 19:718 37:08 37:08 0:01171x2 + 0:5318x ft J
16:1
(b) Check if ball hits the ceiling. dy dx
=
ymax
=
0:02342x + 0:5318 = 0
x = 22:71 ft
2
0:01171(22:71) + 0:5318(22:71) = 6:04 ft
Since ymax < 25 ft, the ball will not hit the ceiling. Check if ball clears the net. When x = 22 ft: y=
0:01171(22)2 + 0:5318(22) = 6:03 ft
Since y > 5 ft, the ball clears the net. J When x = 42 ft: y=
0:01171(42)2 + 0:5318(42) = 1:679 ft
Since y > 0, the ball lands behind the baseline. J
12.75 From Eqs. (e) of Sample Problem 12.11: x = (v0 cos ) t y vy
1 2 gt + (v0 sin ) t 2
y=
1 (32:2)t2 + (v0 sin 70 )t = 2 = y_ = 32:2t + 0:9397v0 ft/s
=
16:1t2 + 0:9397v0 t ft
When y = ymax vy = 0 ymax = 27 ft
32:2t + 0:9397v0 = 0
t = 0:02918v0 s
2
16:1(0:02918v0 ) + 0:9397v0 (0:02918v0 ) = 27 v0 = 44:4 ft/s J
0:013712v02 = 27
12 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.76 Equations (e) of Sample Problem 12.10: x = y
= =
(v0 cos )t = (30 cos 60 )t = 15t ft 1 2 1 gt + (v0 sin )t = (32:2)t2 + (30 sin 60 )t 2 2 16:1t2 + 25:98t ft
vx = x_ = 15 ft/s
vy = y_ =
v 30o
B
y
30o
32:2t + 25:98 ft/s
h y
30o
x tan 30o
30o
x
x
At point B: v is parallel to the inclined surface 32:2t + 25:98 = tan 30 15
)
vy = tan 30 vx
t = 0:5379 s
x = 15(0:5379) = 8:069 ft y = 16:1(0:53792 ) + 25:98(0:5379) = 9:316 ft h = (y x tan 30 ) cos 30 = (9:316 8:069 tan 30 ) cos 30 = 4:03 ft J
13 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.77
*12.78
14 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.79 (a)
FD(vx /v) FD
y mg vx v vy
x = max FD(vy /v) MAD FBD
Fx = max ax
= =
= =
+ !
FD
vx = max v
0:0005v 2 vx FD vx = = 0:005vvx m v q 0:1 v 2 0:005vx vx2 + vy2 m/s J
Fy = may ay
may
+"
FD
vy v
mg = may
FD vy 0:0005v 2 vy g= 9:81 = m v q 0:1 v 2 0:005vy vx2 + vy2 9:81 m/s J
0:005vvy
9:81
15 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) Letting x1 = x, x2 = y, x3 = vx and x4 = vy , the equivalent …rst-order equations are x_ 1 = x3 x_ 2 = x4 q q 2 2 x_ 4 = 0:005x4 x23 + x24 9:81 x_ 3 = 0:005x3 x3 + x4 The initial conditions are
x1 (0) = 0
x2 (0) = 2 m/s
x3 (0) = 30 cos 50 = 19:284 m/s
x4 (0) = 30 sin 50 = 22:981 m/s
The following MATLAB program was used to integrate the equations: function problem12_79 [t,x] = ode45(@f,(0:0.05:2),[0 2 19.284 22.981]); printSol(t,x) function dxdt = f(t,x) v = sqrt(x(3)^2 + x(4)^2); dxdt = [x(3) x(4) -0.005*x(3)*v -0.005*x(4)*v-9.81]; end end The two lines of output that span x = 30 m are t 1.7000e+000 1.7500e+000
x1 2.9607e+001 3.0405e+001
x2 2.3944e+001 2.4117e+001
x3 1.5990e+001 1.5925e+001
x4 3.6997e+000 3.1952e+000
Linear interpolation for h: 30:405 24:117
29:607 30 = 23:944 h
29:607 23:944
h = 24:0 m J
Linear interpolation for vx and vy : 30:405 15:925
29:607 30 = 15:990 vx
29:607 15:990
vx = 15:958 m/s
30:405 3:1952
29:607 30 29:607 = vy = 3:451 m/s 3:6997 vy 3:6997 p ) v = 15:9582 + 3:4512 = 16:33 m/s J
16 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.80 (a)
F y
F(y/d)
may
x
max
F(x/d) = FBD Fx = max ax =
+ !
x = max d 0:5x 2 = m/s J 3=2 2 2 (x + y ) y F = may d 0:5y 2 m/s J = 3=2 2 2 (x + y )
F
1 x 1 0:005 x x F = = 0:5 3 m d 0:01 d2 d d Fy = may
ay =
MAD
+"
1 y 1 0:005 y y F = = 0:5 3 m d 0:01 d2 d d
The initial conditions are: x = 0:3 m y = 0:4 m vx = 0
vy =
2 m/s at t = 0 J
(b) Letting x1 = x, x2 = y, x3 = vx and x4 = vy , the equivalent …rst-order equations are x_ 1 = x3
x_ 2 = x4
x_ 3 =
0:5x1 (x21
+
3=2 x22 )
x_ 4 =
0:5x2 (x21
3=2
+ x22 )
The MATLAB program for solving the equations is function problem12_80 [t,x] = ode45(@f,(0:0.005:0.25),[0.3 0.4 0 -2]); printSol(t,x) function dxdt = f(t,x) d3 = (sqrt(x(1)^2 + x(2)^2))^3; dxdt = [x(3) x(4) 0.5*x(1)/d3 0.5*x(2)/d3]; end end The two output lines spanning y = 0 are shown below. t 2.2000e-001 2.2500e-001
x1 x2 3.5879e-001 3.0450e-003 3.6213e-001 -5.2884e-003
x3 x4 6.5959e-001 -1.6667e+000 6.7883e-001 -1.6668e+000
17 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Linear interpolation for x at y = 0: 0:36213 0:35879 x 0:35879 = 0:0052884 0:0030450 0 0:0030450
x = 0:360 m J
Linear interpolation for vx : vx :
0:67883 0:65959 vx 0:65959 = 0:0052884 0:0030450 0 0:0030450
vx = 0:6666 m/s
By inspection vy =
1:6667 m/s. p ) v = 0:66662 + 1:66672 = 1:795 m/s J
12.81
(a) The signs of ax and ay in the solution of Prob. 12.80 must be reversed. ax =
0:5x (x2
+
3=2 y2 )
m/s
2
J
ay =
0:5y (x2
+
3=2 y2 )
m/s
2
J
The initial conditions are the same as in Problem 12.80: x = 0:3 m y = 0:4 m vx = 0 vy =
2 m/s
at t = 0: J
(b) MATLAB program: function problem12_81 [t,x] = ode45(@f,(0:0.005:0.2),[0.3 0.4 0 -2]); printSol(t,x) function dxdt = f(t,x) d3 = (sqrt(x(1)^2 + x(2)^2))^3; dxdt = [x(3) x(4) -0.5*x(1)/d3 -0.5*x(2)/d3]; end end The two lines of output spanning y = 0 are: t 1.8000e-001 1.8500e-001
x1 x2 x3 x4 2.5952e-001 8.5117e-003 -6.3935e-001 -2.3329e+000 2.5623e-001 -3.1544e-003 -6.7692e-001 -2.3333e+000
Linear interpolation for x at y = 0: 0:25623 0:25952 x 0:25952 = 0:0031544 0:0085117 0 0:0085177
x = 0:257 m J
18 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Linear interpolation for vx : 0:67692 ( 0:63935) vx = 0:0031544 0:0085117 0 By inspection, vy =
12.82
( 0:63935) 0:0085177
vx =
0:6668 m/s
2:3332 m/s. p v = 0:66682 + 2:33322 = 2:43 m/s J
FD (vx/v) FD
mg vx v y vy
may
x
max
=
FD (vy/v) FBD
MAD
vx vx = max cD v 1:5 = max v v cD p ) ax = vx v m 0:0012 cD 0:5 = = 0:06869 (ft s) m (9=16)(32:2)
Fx = max
+ !
FD
) ax = Fy = may
+"
0:06869vx vx2 + vy2 FD
vy y
cD p vy v g = m The initial conditions are: ) ay =
x=0
y = 6 ft
0:25
ft/s
J
cD v 1:5
mg = may 0:06869vy vx2 + vy2
vx = 120 ft/s
2
0:25
vy = 0
vy y
mg = may
32:2 ft/s
2
J
at t = 0 J
(b) Letting x1 = x, x2 = y, x3 = vx and x4 = vy , the equivalent …rst-order equations are x_ 1
= x3
x_ 2 = x4
x_ 3
=
0:06869x3 x23 + x24
0:25
x4
=
0:06869x4 x23 + x24
0:25
32:2
The MATLAB program is
19 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
function problem12_82 [t,x] = ode45(@f,(0:0.02:0.7),[0 6 120 0]); printSol(t,x) function dxdt = f(t,x) v25 = sqrt((sqrt(x(3)^2 + x(4)^2))); dxdt = [x(3) x(4) -0.06869*x(3)*v25 -0.06869*x(4)*v25-32.2]; end end The two lines of output that span y = 0 are: t 6.4000e-001 6.6000e-001
x1 x2 6.1878e+001 2.6073e-001 6.3426e+001 -8.0650e-002
x3 x4 7.7840e+001 -1.6851e+001 7.6894e+001 -1.7286e+001
Linear interpolation for x at y = 0: R 61:878 63:426 61:878 = 0:080650 0:26073 0 0:26072
R = 63:1 ft J
Linear interpolation for t at y = 0: 0:66 0:64 t 0:64 = 0:080650 0:26073 0 0:26072
t = 0:655 s J
12.83 ax =
10
0:5vx m/s
2
ay =
9:81
0:5vy m/s
2
(a) Letting x1 = x, x2 = y, x3 = vx and x4 = vy , the equivalent …rst-order equations are x_ 1 = x3
x_ 2 = x4
x_ 3 =
10
0:5x3
x_ 4 =
9:81
0:5x4
At t = 0 (initial conditions): x1 = x2 = 0
x3 = 30 cos 40 = 22:98 m/s
x4 = 30 sin 40 = 19:284 m/s
MATLAB program: function problem12_83 [t,x] = ode45(@f,(0:0.05:3.5),[0 0 22.98 19.284]); printSol(t,x) axes(’fontsize’,14) plot(x(:,1),x(:,2),’linewidth’,1.5)
20 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
grid on xlabel(’x (ft)’); ylabel(’y (ft)’) function dxdt = f(t,x) dxdt = [x(3) x(4) -10-0.5*x(3) -9.81-0.5*x(4)]; end end Two lines of output that span y = 0: t 3.1000e+000 3.1500e+000
x1 x2 x3 x4 5.7152e+000 4.7141e-001 -1.0878e+001 -1.1363e+001 5.1656e+000 -1.0184e-001 -1.1103e+001 -1.1567e+001
Linear interpolation for x at y = 0: b 5:1656 5:7152 = 0:10184 0:47141 0
5:7152 0:47141
b = 5:26 m J
3:15 3:10 t 3:10 = 0:10184 0:47141 0 0:47141
t = 3:14 s J
Linear interpolation for t at y = 0:
(b) 15
y (ft)
10
5
0 0
5
10 x (ft)
15
20
21 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.84 (a)
y
mg
x R
y
θ
Spring force is F = k(R
x
F
MAD
FBD
+ !
p x2 + y 2 :
F cos = max
k(R L0 ) x F cos = = m m R 10 0:5 1 x = 40 1 0:25 R
= =
Fy = may ay
max
=
L0 ), where R =
Fx = max
ax
θ
may
=
F sin m
=
40 1
+" k(R
g= 0:5 R
y
F sin L0 ) y m R
9:81 m/s
2
k L0 1 x m R 0:5 2 x m/s J R mg = may
g=
k m
1
L0 R
y
g
J
The initial conditions are: x = 0:5 m y =
0:5 m vx = vy = 0 at t = 0 J
(b) Letting x1 = x, x2 = y, x3 = vx and x4 = vy , the equivalent …rst-order equations are x_ 1
= x3
x_ 2 = x4 0:5 x1 40 1 R
x_ 3
=
x_ 4 =
40 1
0:5 R
x2
9:81
p where R = x21 + x22 . The MATLAB program is: function problem12_84 [t,x] = ode45(@f,(0:0.02:2),[0.5 -0.5 0 0]); axes(’fontsize’,14) plot(x(:,1),x(:,2),’linewidth’,1.5) grid on xlabel(’x (m)’); ylabel(’y (m)’) function dxdt = f(t,x)
22 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
rr = 1-0.5/sqrt(x(1)^2 + x(2)^2); dxdt = [x(3) x(4) -40*rr*x(1) -40*rr*x(2)-9.81]; end end
-0.4 -0.5
y (m)
-0.6 -0.7 -0.8 -0.9 -1 -1.1 -0.5 -0.4 -0.3 -0.2 -0.1
0 0.1 0.2 0.3 0.4 0.5 x (m)
12.85 (a) The expressions for the accelerations in Prob. 12.84 are now valid only when the spring is in tension. If the spring is not in tension, the spring force is zero. Therefore, we have 8 0:5 < 2 40 1 x m/s if R > 0:5 m ax = J R : 0 if R 0:5 m 8 < 40 1 0:5 y 9:81 m/s2 if R > 0:5 m ay = J R : 2 9:81 m/s if R 0:5 m The initial conditions are:
x = y = 0:5m
vy = vy = 0 at t = 0 J
(b) MATLAB program: function problem12_85 [t,x] = ode45(@f,(0:0.02:2),[0.5 0.5 0 0]);
23 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
axes(’fontsize’,14) plot(x(:,1),x(:,2),’linewidth’,1.5) grid on xlabel(’x (m)’); ylabel(’y (m)’) function dxdt = f(t,x) rr = 1-0.5/sqrt(x(1)^2 + x(2)^2); if rr < 0; rr = 0; end dxdt = [x(3) x(4) -40*rr*x(1) -40*rr*x(2)-9.81]; end end 1
0.5
y (m)
0
-0.5
-1
-1.5 -0.4
-0.2
0
0.2
0.4
0.6
x (m)
12.86 (a) ax =
aD cos + aL sin
ay =
aD sin
aL cos
g
Substitute sin aL where v =
vx2
+
= =
vy vx cos = aD = 0:05v 2 v v 0:16!v = 0:16(10)v = 1:6v
vy2 .
vx vy + 1:6v = v v vy vx ay = 0:05v 2 1:6v 32:2 = v v The initial conditions at t = 0 are: ax =
x=y=0
0:05v 2
0:05vvx + 1:6vy ft/s 0:05vvy
vx = 60 cos 60 = 30 ft/s
1:6vx
2
J
32:2 ft/s
2
J
vy = 60 sin 60 = 51:96 ft/s
24 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) Letting x1 = x, x2 = y, x3 = vx and x4 = vy , the equivalent …rst-order equations are x_ 1 x_ 3
= x3 x_ 2 = x4 = 0:05vx3 + 16x4
x_ 4 =
0:05vx4
16x3
32:2
MATLAB program: function problem12_86 [t,x] = ode45(@f,(0:0.02:1.2),[0 0 30 51.96]); printSol(t,x) axes(’fontsize’,14) plot(x(:,1),x(:,2),’linewidth’,1.5) grid on xlabel(’x (ft)’); ylabel(’y (ft)’) function dxdt = f(t,x) v = sqrt(x(3)^2 + x(4)^2); dxdt = [x(3) x(4) -0.05*v*x(3)+1.6*x(4) -0.05*v*x(4)-1.6*x(3)-32.2]; end end The two lines of output that span y = 0 are t 1.0400e+000 1.0600e+000
x1 x2 1.9377e+001 2.5868e-001 1.9388e+001 -1.9335e-001
x3 x4 9.6888e-001 -2.2523e+001 2.3210e-001 -2.2675e+001
Linear interpolation for t at y = 0: t 1:04 1:06 1:04 = 0:19335 0:25868 0 0:25868
t = 1:051 s J
Linear interpolation for x at y = 0: 19:388 19:377 x 19:377 = 0:19335 0:25868 0 0:25868
x = 19:38 ft J
25 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(c) 10
8
y (ft)
6
4
2
0 0
5
10 x (ft)
15
20
12.87 a (ft/s2) 3 60 150 170 190 t (s) -20 -40
0 0 20 -1 -2 v (ft/s) 60 40 7800
1000
600 400
0
t (s)
x (ft) 9800 9400 8400 600
t (s)
0 d = 9800 ft J
26 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.88 x (m) x = 10t 2 4000 0 0 v (m/s) 400
t (s)
20
0 0
t (s)
20
a (m/s2 ) 20 0 0
v
t (s)
20
= slope of x diagram
a = slope of v diagram
vj20s = a=
dx dy
= 400 m/s 20s
400 2 = 20 m/s 20
12.89 It is su¢ cient to consider vertical motion only: a=
g=
32:2 ft/s
2
Initial conditions: vjt=0 = v0 sin 60 = 0:8660v0 ft/s
yjt=0 = 0
27 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
a (ft/s2) 0 0
t1
t (s)
-32.2t1 -32.2 v (ft/s) 0.8660v0 0
0.4330v0t1 0
t1
t (s)
y (ft) 27 0 0
t1 t (s)
End conditions (t1 is the time when the ball is at its maximum height): vjt=t1 yjt=t1
= 0 0:8660v0 32:2t = 0 t1 = 0:026 89v0 2 = 27 ft 0:4330(0:026 89)v0 = 27 v0 = 48:2 ft/s J
28 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.90
a (ft/s2 ) 00
t1
6
−24
t (s)
−8 (t1 −6)
-8 v (ft/s) 88 64
96 384
42
0
6
x (ft) 480
t1 = 14 s t (s) 522
0 0
6
14
t (s)
From a and v diagrams 8(t1 6) = 64 t1 = 14:0 s J From x diagram xjt1 = 522 ft J
29 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.91 Horizontal motion (ax = 0)
Vertical motion (ay =
ax (m/s2) 0
t (s)
0
vx (m/s) 240 0
ay (m/s2) 0 0 -9.81
9:81 m/s2 )
t1 -9.81t1
t (s)
vy (m/s) 240t1 t1
0
5
00
t (s)
t (s)
1 9.81
−49.05 y (m) h
x (m) 1200 0 0
0 0
t1 t (s)
t (s)
5
End condition: xjt=t1
=
h
=
1200 m
240t1 = 1200
t1 = 5:0 s 1 [area under vy diagram] = (49:05)(5) = 122:6 m J 2
12.92 Horizontal motion: ax = 0 Vertical motion: ay =
32:2 ft/s
2
30 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ax (ft/s2) 0 0
10
ay (ft/s2) 00
t (s)
-32.2 vx (ft/s) v0 0
t (s)
vy (ft/s) 10v0
0
10
10
00
t (s)
-1610
t (s)
-322 y (ft) 1610
x (ft) 10v0 0 0
vy vx
10 -322
0 0
10 t (s)
= tan 20 t=10
10
322 = tan 20 v0
R = xjt=10 = 10v0 = 8850 ft J
t (s)
v0 = 885 ft/s J
h = yjt=0 = 1610 ft J
12.93
y 22.6o
g
x
Acceleration diagram
ax
= g sin 22:6 = 32:2 sin 22:6 = 12:374 ft/s
ay
=
g cos 22:6 =
32:2 cos 22:6 =
2
29:73 ft/s
2
At t = 0 (initial conditions): x = 0 y = 0
vx = 260 cos 22:6 = 240:0 ft/s vy = 260 sin 22:6 = 99:92 ft/s
31 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ax (ft/s) 12.374 0 0
t1 = 3.361 s 6.722 t (s)
ay (ft/s) 83.18 6.722
0
t (s)
-29.73 t1 = -99.92 -29.73
vx (ft/s) 323.2 240.0 0
vy (ft/s) 167.92
99.92 t (s) 0 -99.92
1892.8
x (ft) 1892.8
t (s)
y (ft) 167.92
0
t (s)
vy = 0 at t = t1 . h = 167:9 ft J
) 99:92
t (s)
0 29:73t1 = 0
R = 1893 ft J
) t1 = 3:361 s
time of ‡ight = 6:72 s J
12.94 ax (m/s2) 0
0
16.091
ay (m/s2) 00
t (s)
-9.81 vx (m/s) 190.52 0
0
t (s)
vy (m/s) 110 3066 16.091
x (m) 3066 0 0
t1 -9.81t1
16.091
110 - 9.81t1 t (s) 0
(110 - 4.905t1)t1 0 t1 t (s) y (m) (110 - 4.905t1)t1 0 0
t (s)
End condition: yjt t1 = 500 m. ) (110 The larger root is t1 = 16:091 s J R = xjt=16:091 = 3066 m J
t1
t (s)
4:905t1 )t1 = 500
32 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.95
33 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.96 2 mi = 2(5280) = 10 560 ft
45 mi/h = 45
5280 = 66 ft/s 3600
Accelerate at the maximum rate (6.6 ft/s2 ) until maximum allowable speed (66 ft/s) is reached at time t1 . Then maintain this speed until time t2 . Finally, decelerate at the maximum rate (5.5 ft/s2 ) until the train stops at time t3 . The distance traveled during this time must be 10 560 ft.
a (ft/s2) 6.6 0 6.6t1 0
t2 t1
t3
t (s)
-5.5(t3 - t2)
-5.5 v (ft/s) 66 0
0
330 66(t2 - 10) 396 t (s) 10 t2 + 12 t2
x (ft) 10 560
0 0
10
159
171
t (s)
From a and v diagrams: 6:6t1 = 66 ft/s 5:5(t3 t2 ) = 66 ft/s
) t1 = 10 s ) t3 t2 = 12 s
From v and x diagrams: 330 + 66(t2
10) + 396 = 10 560
) t2 = 159:0 s
t3 = t2 + 12 = 159:0 + 12 = 171:0 s J
34 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.97
35 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.98 a (m/s2) 8 + t1 = 11 8 t (s) 00 3 -1.8t1 -1.8 -9.6 -25 t1 -3.2 -5.0 v (m/s) 40 30.4 105.6 89.5 5.4 0
8.1 t (s)
x (m) 203.2 195.1 105.6 t (s)
v = 0 when 40
9:6
25
1:8t1 = 0
) t1 = 3:0s
After touchdown, the plane travels 203 m J
12.99 a (m/s2) 12 0.6
0.6 0 0
0.1
0.2
0.3
0.4
0.3
0.4
t (s)
v (m/s) 1.2 0.6 00 From the v diagram:
0.1
0.2
t (s)
vj0:4s = 1:2 m/s J
36 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
xj0:4s
= area under v diagram 1 = 2 (0:6)(0:1) + 4(0:6)(0:1) = 0:28 m J 3
12.100
37 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.101
38 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.102 a (m/s2) 0.38
0.10182
00
t1 = 0.5359 1.1 t (s)
−0.11282 −0.40 v (m/s) 0.10182 0.03638 0 −0.011
0.5359
0.03638 1.0718 t (s)
y (m) 0.07276 0.03638 t (s)
0 From similar triangles on the a-diagram: t1 0:38 vmax
= =
1:1 t1 = 0:5359 s 0:78 0:1018 m/s J ymax = 0:0728 m J
39 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.103 a (ft/s2 ) 60 t1 t2 14 t (s) 0 0273.3 -32.2( t 2 - 14) -32.2 -78.7 = -194.6 v (ft/s) 273.3 194.6 1660 1208 588 0 t (s) 20.04 9.111 14 0 y (ft) 3456 2868 1660 t (s) 0 From similar triangles on a-diagram: 14 t1 = 60 60 + 32:2
) t1 = 9:111 s
Let t2 be the time when v = 0: Therefore, 194:6 vmax = 273 ft/s J
32:2(t2
14) = 0
) t2 = 20:04 s
ymax = 3460 ft J occurring at t = 20:0 s J
12.104 v = 2x3
8x2 + 12x mm/s
dv = 2x3 8x2 + 12x 6x2 16x + 12 dx 2 = (2(8) 8(4) + 12(2)) (6(4) 16(2) + 12) = 32:0 mm/s J a=v
ajx=2
12.105 a = At + B When t = 0: a = 0 ) B = 0 4 When t = 6 ft/s: a = 8 ft/s ) 8 = A(6) ) A = ft/s3 3 Z 4 2 2 ) a = t ft/s v = a dt + C = t2 + C 3 3
When t = 0: v = v0 ) C = v0 When t = 6 s: v = 16 ft/s )
2 (36) + v0 = 16 3
) v0 =
8:0 ft/s J
40 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.106 Car A a = 4 ft/s2 v = 4t + C1 ft/s vjt=0 = 30 ft/s ) C1 = 30 ft/s v = 4t + 30 ft/s x = 2t2 + 30t + C2 ft xjt=0 = 400 ft ) C2 = 400 ft x = 2t2 + 30t 400 ft
Car B a = 2 ft/s2 v = 2t + C3 ft/s vjt=0 = 60 ft/s ) C3 = 60 ft/s v = 2t + 60 ft/s x = t2 + 60t + C4 ft xjt=0 = 0 ) C4 = 0 x = t2 + 60t ft
Car A overtakes car B when xA = xB : 2t2 + 30t 3t2 30t
400 = t2 + 60t 400 = 0 t = 17:58 s J
12.107 (a) x = 3t3 9t + 4 in. x = xjt=2 xjt=0 = [3(8) (b) v = x_ = 9t2
-2
) v = 0 when t = 1:0 s
9 in./s
xjt=0 = 4 in.
xjt=1 =
0
4 = 6:0 in. J
9(2) + 4]
2 in.
xjt=2 = 10 in.
4
x (in.) 10
d = 6 + 12 = 18 in. J
12.108 Fall of the stone: a = 32:2 ft/s ) v = 32:2t + C1 ft/s ) y = 16:1t2 + C1 t + C2 ft 2
When t = 0: v = x = 0 ) C1 = C2 = 0 Let t1 be the time of fall and h the depth of the well. ) h = 16:1t21 ft Travel of the sound: Let t2 be the time for sound to travel the distance h: ) h = 1120t2 ft t 1 + t2 = 3 16:1t21 = 1120t2
) t2 = 3
16:1t21 = 1120(3
t1 )
t1 t1 = 2:881 s
h = yjt=2:881s = 16:1(2:881) = 133:6 ft J 2
41 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.109 2
12t 6t2 ft/s Z v = a dt = 6t2 2t3 + C1 ft/s Z x = v dt = 2t3 0:5t4 + C1 t + C2 ft a =
) C1 = C2 = 0
When t = 0: x = v = 0:
) x = 2t3
) v = 6t2
0:5t4 ft
2t3 ft/s
(a) xjt=0 = 2(5)3
x = xjt=5
0:5(5)4
62:5 ft J
0=
(b) When v = 0: 6t2 xjt=0 = 0
xjt=3 = 2(3)
2t3 = 0 3
t = 3:0 s 4
0:5(3) = 13:5 ft xjt=5 =
0
-62.5
13.5
62:5 ft
x (ft)
d = 2(13:5) + 62:5 = 89:5 ft J
12.110 dv = dt
cv
2
1 dv = v2
c dt
Z
Initial condition: vjt=0 = 800 ft/s When v = 400 ft/s: 1 v
1 800
1 dv = v2 )
1 = 400
1 = v
ct + C1
1 = v
1 = 800
C1
0:8t
t = 1:5625
)
10
ct + C1
0:8t 3
1 1 0:8t + v= 800 0:8t + 1=800 Z dt 1 1 x = + C2 = ln 0:8t + 0:8t + 1=800 0:8 800 1 1 Initial condition: xjt=0 = 0 ) 0 = ln + C2 0:8 800 1 1 C2 = ln = 8:356 ft 1 0:8 800 1 1 x = ln 0:8t + + 8:356 0:8 800
1 800
s J
=
+ C2
42 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
When v
=
x =
400 ft/s t = 1:5625 1 ln 0:8(1:5625 0:8
10 10
3
3
)+
s : 1 + 8:356 = 0:867 ft J 800
12.111 75e 0:05t ft/s Z x = 75e 0:05t dt = v
Initial condition:
=
1500e
0:05t
+ C ft
xjt=0 = 0 ) C = 1500 ft x = 1500(1 e 0:05t ) ft
Setting v = 5 ft/s and solving for t: 5 = 75e
0:05t
h
xjv=5 ft/s = 1500 1
t = 54:16 s J i e 0:05(54:16) = 1400 ft J
12.112
may max mg FBD Fx Fy
MAD
= max = may vx =
Initial condition: vx jt=0 = v0 cos 50
ax = 0 ay = g = Z
9:81 m/s
2
ax dt = C1
) C1 = v0 cos 50 = 0:6428v0 vx = 0:6428v0 Z x = vx dt = 0:6428v0 t + C2
Initial condition: xjt=0 = 0
) C2 = 0 x = 0:6428v0 t Z vy = ay dt = 9:81t + C3
43 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Initial condition: vy jt=0 = v0 sin 50 ) C3 = v0 sin 50 = 0:7660v0 vy = 9:81t + 0:7660v0 Z y = vy dt = 4:905t2 + 0:7660v0 t + C4
Initial condition: yjt=0 = 0
) C4 = 0
4:905t2 + 0:7660v0 t
y=
At point B: x = 18 m ) 0:6428v0 t = 18 v0 t = 28:0 m y = 18 m ) 4:905t2 + 0:7660(28:0) = 18 t = 0:8384 s 28:0 = 33:4 m/s J v0 = 0:8384
12.113
12.114 F = (50
+"
a = v
=
y
=
F m Z
Z
g=
(50
t)
103 N
t) 103 1400
a dt = 25:90t v dt = 12:95t2
9:81 = 25:90
0:7143t m/s
2
0:3571t2 + C1 0:11903t3 + C1 t + C2
Initial conditions: y = v = 0 when t = 0. ) C1 = C2 = 0: yjt=20 = 12:95(20)2
0:11903(20)3 = 4230 m J
44 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.115
12.116
12.117 From Eqs. (d) and (e) of Sample Problem12.11: x = v0 t cos = 8t cos 30 = 6:928t 1 2 1 y = gt + v0 t sin = (9:81)t2 + 8t sin 30 = 2 2
4:905t2 + 4t
45 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
At the landing point y
=
x =
4:905t2 + 4t = 6:928t tan 20 t = 1:330 s J 9:214 6:928(1:330) = 9:214 m d= = 9:81 m J cos 20
x tan 20 4:905t = 6:522
12.118
0.3 lb y F6 FBD N
45
x
0.3 a 32.2
3
MAD
When x = 6 in., the elongation of the spring and the spring force are p = 32 + 62 3 = 3:708 in. F = k = 5(3:708) = 18:540 lb Fx
6 0:3 p F = a 32:2 45 2 1780 ft/s J
= ma
a =
6 0:3 p (18:540) = a 32:2 45
12.119
46 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.120
12.121 From Eqs. (d) and (e) of Sample Problem 12.11: x = v0 t cos
0
y=
1 2 gt + v0 t sin 2
(a) Let t = t1 when the ball hits the fairway at y = 1 (9:81)t21 + 45t1 sin 40 2 ) R = 45(6:162) cos 40 = 212 m J
)
8=
0
8 m, x = R. t1 = 6:162 s
(b) At t = 6:162 s: vx vy
= x_ = v0 cos 0 = 45 cos 40 = 34:47 m/s = y_ = gt + v0 sin 0 = 9:81(6:162) + 45 sin 40 = p v = 34:472 + 31:522 = 46:7 m/s J
31:52 m/s
47 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.122
48 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.3 x = v
6 1
= x_ = 6
a = v_ =
(a) xmax
=
vmax
=
e
t=2
m
1 t=2 e = 3e t=2 m/s 2 1 t=2 2 e = 1:5e t=2 m/s 3 2
6 m at t = 1 J
3 m/s and jajmax = 1:5 m/s both occurring at t = 0 J 2
(b) When x = 3 m: 3 = 6(1 e t=2 ) t = 2 ln(0:5) = 1:3863 s J v
=
3(0:5) = 1:5 m/s J
t=2
e a=
= 0:5
1:5(0:5) =
0:75 m/s
2
J
12.4 x = t3 6t2 v = x_ = 3t2 a = v_ = 6t
32t in. 12t 32 in./s 12 in./s
2
At t = 10 s: x = 103 6(102 ) 32(10) = 80 in. J v = 3(102 ) 12(10) 32 = 148 in./s J a =
6(10)
2
12 = 48 in./s
J
Reversal of velocity occurs when v = 0 (t 6= 0): v = x =
3t2 12t 32 = 0 5:8303 6(5:8302 )
t = 5:830 s 32(5:830) = 192:3 in.
At t = 10 s the distance travelled is s = 192:3 + (193:3 + 80) = 466 in. J
−192.3 in.
0
5.83 s
80 in. 10 s
49 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.5 (a) x = t2
t3 ft 90
(b) a = v_ = 2
v = x_ = 2t
t2 ft/s 30
xmax = 602
603 = 1200 ft J 90
t ft/s2 15
v = 0 when t = 60 s
a = 0 when t = 30 s
vmax = 2(30)
302 = 30 ft/s J 30
12.6
12.7 x = 3t2
12t in.
v = x_ = 6t
12 in./s
(a) The bead leaves the wire when x = 40 in. 3t2
t = 6:16 s J
12t = 40
(b) Reversal of velocity occurs when v = 0 (t 6= 0): v = x =
6t 10 3(2:02 )
t = 2:0 s 12(2:0) = 12:0 in.
The distance travelled is s = 2(12) + 40 = 64:0 in. J
−12 in. 0
40 in. 6.16 s
2.0 s
50 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.8 x = y
=
4t2 2 mm x2 16t4 16t2 + 4 4t4 = = 12 12
4t2 + 1 mm 3
When t = 2 s: vx vy v
= x_ = 8t = 8(2) = 16 mm/s 16t3 8t 16(2)3 8(2) = y_ = = = 37:33 mm/s 3 3 q p = vx2 + vy2 = 162 + 37:332 = 40:6 mm/s J 2
ax
= v_ x = 8 mm/s 48t2 8 48(2)2 8 2 ay = v_ y = = = 61:33 mm/s 3 3 q p 2 a = a2x + a2y = 82 + 61:332 = 61:9 mm/s J
12.9
12.10 y = 50 x=
2t s
6 6 = in. y 50 2t
vy = y_ = vx = x_ =
2 in./s 3
(25
t)2
ay = v_ y = 0
in./s
ax = vx =
6 (25
3
t)
At t = 20 s: vx
=
ax
=
3 20)2
(25 6 (25
3
20)
= 0:12 in./s = 0:048 in./s
vy = 2
2 in./s
ay = 0
2j in./s J
v = 0:12i 2
a = 0:048i in./s
J
51 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.11
12.12 x =
15
2t2 m
y
15
10t + t2 m
=
(a) At t = 0:
v=
(b) At t = 5 s:
v=
vx = x_ =
4t m/s
vy = y_ =
10j m/s J
ax = v_ x =
10 + 2t m/s a=
20i m/s J
a=
4 m/s
2
ay = v_ y = 2 m/s
2
4i + 2j m/s2 J 4i + 2j m/s2 J
12.13 x = y (a) (b) (c)
=
58t m
vx = x_ = 58 m/s
78t
2
4:91t m
vy = y_ = 78
9:82t m/s
ay = v_ y =
9:82 m/s
2
a = 9:82j m/s2 J vjt=0 = 58i + 78j m/s J y = h when vy = 0: vy h
(d)
ax = v_ x = 0
= 78 9:82t = 0 t = 7:943 s = 78(7:943) 4:91(7:9432 ) = 310 m J
x = L when y =
140 m:
y = 78t 4:91t2 = 140 t = 17:514 s L = 58(17:514) = 1016 m J
52 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.14 y=
x2 1000
dy x = dx 500
)2 v0 x d / (dy dy/dx 1+
1 vx
1
= v0 q
2
1 + (dy=dx)
vy
dy=dx
= v0 q
2
1 + (dy=dx)
When x = 100 m:
vx
=
vy
=
v
=
v0
=p
1+
(x=500)2
x=500
=p
1+
(x=500)2
=p
500v0 5002 + x2
=p
xv0 5002 + x2
500(6) = 5:883 m/s 5002 + 1002 100(6) p = 1:1767 m/s 5002 + 1002 5:88i + 1:177j m/s J p
ax
= v_ x =
dvx dx dvx = vx = dx dt dx
ay
= v_ y =
dvy dx dvy v = vx = 3=2 x dx dt dx (5002 + x2 )
500xv0
v 3=2 x
(5002 + x2 ) 5002 v0
When x = 100 m: ax
=
ay
=
a =
500(100)(6) (5002
3=2 1002 )
+ 5002 (6)
3=2
(5002 + 1002 )
(5:883) =
0:013 31 m/s
(5:883) = 0:0666 m/s
0:013 32i + 0:666j m/s
2
2
2
J
53 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.15
12.16
54 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.17
12.18
55 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.19
12.20
56 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.21
12.22
12.23
12.24 x = R cos y = R sin vy
v0 R cos v0 vx = ( R sin ) = R cos
= v0 )
vx = x_ = ( R sin ) _ vy = y_ = (R cos ) _
yields
_=
v0 tan
57 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ax = v_ x =
_=
v0 sec2
With R = 6 ft, v0 = 2:5 ft/s and vy v
v0 R cos
v0 sec2
= 60 we get
= 2:5 ft/s vx = 2:5 tan 60 = = 4:33i + 2:5j ft/s J
ay
=
a =
0
v02 sec3 R
=
2:52 sec3 60 = 6 2 8:33i ft/s J ax =
4:330 ft/s
8:333 ft/s
2
12.25 _ = 1200 rev 1:0 min r
=
2 rad 1:0 rev
1:0 min = 125:66 rad/s 60 s
55 + 10 cos + 5 cos 2 dr _ v = r_ = = ( 10 sin d dv _ a = v_ = = ( 10 cos d jajmax = 30(125:66)2 = 474 000
mm 10 sin 2 ) (125:66) mm/s 20 cos 2 )(125:66)2 mm/s 2
2
mm/s = 474 m/s (at
2
= 0) J
*12.26
58 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.27 T
ma =
mg FBD
MAD
v = 4t m/s
a = v_ = 4 m/s
F = ma + "
T
2
mg = ma
T = m(g + a) = 50(9:81 + 4) = 691 N J
12.28 y
mg
x ma
=
F = µk N
FBD N
MAD 1000 m/km 3600 s/h
v0 = 100 km/h = 100 km/h Fy
=
0 +"
Fx
= ma v
N
kN
Z
=
x =
k gt
1 2
v dt =
kN
)a=
= ma
a dt =
Z
) N = mg
mg = 0
+ !
= 27:78 m/s
m
=
kg
+ C1
2 k gt
+ C1 t + C2
When t = 0 (initial conditions): x=0 )x=
) C2 = 0 v = v0 ) C1 = v0 1 gt2 + v0 t v= k gt + v0 2 k
When v = 0: k gt
x =
1 2
)t=
+ v0 = 0 v0 kg
kg
2
+ v0
v0 kg
v0 kg =
v02 2
kg
2
=
27:78 = 60:5 m J 2(0:65)(9:81)
59 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.29 y
mg 5o
x =
F = µk N FBD
ma MAD
N
v0 = 100 km/h = 27:78 m/s = 0 +" N mg cos 5 = 0 ) N = mg cos 5 + = ma ! k N + mg sin 5 = ma N k )a = + g sin 5 = (sin 5 k cos 5 )g m 2 = (sin 5 0:65 cos 5 )9:81 = 5:497 m/s Fy Fx
v
=
x =
Z Z
a dt =
5:497t + C1
v dt =
2:749t2 + C1 t + C2
When t = 0 (initial conditions): x=0
) C2 = 0
v = v0
2:749t2 + 27:78t m 5:497t + 27:78 m/s
x = v = When v = 0:
5:497t + 27:78 = 0 x=
) C1 = v0 = 27:78 m/s
) t = 5:054 s
2:749(5:054)2 + 27:78(5:054) = 70:2 m J
12.30 a = v
=
x =
F 1:2t = = 0:1 Zm Z
12t m/s
2
ax dt =
6t2 + C1 m/s
vx dt =
2t3 + C1 t + C2 m
When t = 0 (initial conditions): x = 0 ) C2 = 0
v = 64 m/s ) C1 = 64 m/s
60 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
)x=
2t3 + 64t m
v=
6t2 + 64 m/s
When t = 4 s: x=
2(4)3 + 64(4) = 128 m
When v = 0 : 6t2 + 64 = 0 x=
t = 3:266 s
2(3:266)3 + 64(3:266) = 139:35 m
Distance traveled: d = 2(139:35)
128 = 150:7 m J
139.35
0
x (m)
128
12.31 a = dt
=
p p 0:06 v F 2 = = 5 v m/s m 0:012 Z dv dv dv 2p p = = p t= v + C1 a 5 5 v 5 v
Given v = 0:25 m/s when t = 0:8 s: 0:8 =
2p 0:25 + C1 5
C1 = 0:6 s
2p v + 0:6 s 5 2 v = (2:5t 1:5) = 6:25t2 7:5t + 2:25 m/s Z 6:25 3 7:5 2 x = v dt = t t + 2:25t + C2 3 2 t
=
Initial condition: x = 0 when t = 0 xjt=1:2s =
6:25 (1:2)3 3
) C2 = 0
7:5 1:22 + 2:25(1:2) = 0:90 m J 2
12.32
T cv2 FBD
=
ma MAD
61 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ma = T
cv 2
FD = T
a=
cv 2 m
T
Z
Z m v v dv + C = x= dv = m ln T cv 2 + C a T cv 2 2c Initial condition: v = 0 at x = 0: m m ln (T ) + C C= ln (T ) 0 = 2c 2c m m m T ) x= ln(T cv 2 ) + ln(T ) = ln 2c 2c 2c (T cv 2 ) Solve for v: T (T cv 2 ) v2
2c x m
=
exp
=
T 1 c
cv 2 = T exp s
T 2c x m
exp
v=
Terminal velocity: v1 = lim v(x) = x!1
r
2c x m T 1 c
exp
2c x m
J
T J c
12.33 4t 4 F 2 = = t 1 m/s m 4 Z 1 = a dt = t2 t + C1 2 Z 1 2 1 t + C1 t + C2 = v dt = t3 6 2
a = v y
When t = 0 (initial condition): y = 0 ) C2 = 0 )y=
1 3 t 6
When t = 8 s: y= When v = 0:
y=
1 2 t 2
1 3 (8) 6 1 2 t 2
1 3 (5:123) 6
8 m/s ) C1 =
v=
t
1 2 t 2
8t m
v=
1 2 (8) 2
8 (8) =
t
t = 5:123 s
1 2 (5:123) 2
8 (5:123) =
d = 2(31:70)
8 m/s
10:67 m
8=0
Distance traveled:
8 m/s
31:70 m
10:67 = 52:7 m J
-31.70
0
y (m)
-10.67
62 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.34
12.35
12.36 y mg 20o NA
ma
x =
FA = 0.4 NA FBD
MAD
Assume impending sliding (FA = 0:4NA ) Fy = 0 + "
NA cos 20
0:4NA sin 20
mg = 0
NA = 1:2455 mg Fx = max
+ !
NA sin 20 + 0:4NA cos 20 = ma
1:2455 mg(sin 20 + 0:4 cos 20 ) = ma
a = 0:894g J
12.37 Let y be measured up from the base of the cli¤.
y
ma x
=
FBD
MAD
mg
63 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Fy = ma + " a=
dv v dy
) v dv =
1 2 v 2
At impact y = 0
)
1 2 v 2
1 2 v = 2
g dy
Initial condition: v = v0 when y = h: ) C = )
)a=
mg = ma
gy + C
1 2 v + gh 2 0
v02 = g(h )v=
v02 = gh
g
y) p
v02 + 2gh J
12.38
F
=
FBD F 1 2 v 2
= ma F0 m
=
e
x=b
Initial condition
:
1 2 v 2
=
v
vjx=1:8 ft =
s
MAD
F F0 x=b F0 = e v dv = e m m m F0 b x=b dx = e +C m
a= Z
ma
v = 0 at x = 0
)C=
x=b
dx
F0 b m
F0 b 1 e x=b m r 2F0 b 1 e x=b = m
2(1576)(2) 1 6:62 10 3 =32:2
e
1:8=2:0
= 4270 ft/s J
12.39
20o 18 lb
6t y
FBD
18 a g
= x MAD
N
64 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Fx
= ma 32:2 (6t Z18
a = v
6t
=
Z
x =
18 sin 20 =
18 a 32:2
18 sin 20 ) = 10:733t
11:013 ft/s
a dt = 5:367t2
11:013t + C1 ft/s
v dt = 1:789t3
5:507t2 + C1 t + C2 ft
2
) C1 = C2 = 0
Initial conditions: x = v = 0 at t = 0 (a) When v = 0:
v = 5:367t2 11:013t = 0 t = 2:052 s x = 1:789 2:0523 5:507(2:0522 ) = 7:73 ft J (b) When x = 0: x = 1:789t3 5:507t2 = 0 t = 3:078 s 2 v = 5:367(3:078 ) 11:013(3:078) = 16:95 ft J
12.40 x 4
ma 3
P = 8 - 2t
FBD mg N
= 4 P 5
Fx = ma + % a=
4P 5m v
3 4 8 2t g= 5 5 5=32:2 =
x = Initial conditions: v = When x = 0 : 10:95t2
Z
Z
MAD 3 mg = ma 5
3 (32:2) = 21:90 5
a dt = 21:90t v dt = 10:95t2
10:304t ft/s
5:152t2 + C1 1:7173t3 + C1 t + C2
10 ft/s, x = 0 at t = 0. ) C1 = 1:7173t3
v = 21:90(1:1049 )
2
10t = 0
5:152(1:1049 )2
10 ft/s
C2 = 0
t = 1:1049 s J 10 = 7:91 ft/s J
65 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.41
(mA + mB)g A
y
θ
x
=
B
(mA + mB) a
NB FBD
MAD
Fx = ma + &
(mA + mB )g sin = (mA + mB )a a = g sin
Assume impending slipping between A and B:
mA g y
=
A
x
Fx = ma + &
F =µsNA NA FBD (mA g s
θ ma A MAD
NA ) sin +
s NA
cos = mA g sin
= tan J
12.42 (a) Assume impending sliding of crate to the left.
y 20o 60 lb 60 a g
x FA = 0.3NA NA FBD Fy
=
Fx
= max
MAD
0 NA cos 20 NA = 67:35 lb
0:3NA sin 20
NA sin 20 + 0:3NA cos 20
67:35(sin 20 + 0:3 cos 20 ) a = 11:54 ft/s
2
60 cos 20 = 0 60 sin 20 =
60 sin 20 =
60 a 32:2
60 a 32:2
J
66 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) Assume impending sliding of crate to the right.
y
20 o 60 lb x 60 a g
FA = 0.3NA NA FBD Fy
=
Fx
= max
MAD
0 NA cos 20 + 0:3NA sin 20 NA = 54:09 lb NA sin 20
54:09 (sin 20
0:3NA cos 20
0:3 cos 20 )
a = 9:27 ft/s
2
60 cos 20 = 0 60 sin 20 =
60 sin 20 =
60 a 32:2
60 a 32:2
J
12.43
mg
=
ma
0.2 N N FBD
MAD
Fy = 0 N mg = 0 N = mg Fx = 0 0:2N = ma 0:2mg = ma 2 a = 0:2g = 1:962 m/s Z 1 2 v dv = a dx v = 1:962 dx = 1:962x + C 2 1 2 Initial condition: vjx=0 = 6 m/s (6 ) = C C = 18 m2 =s2 2 ) v
=
1 2 v = 1:962x + 18 2 0 when 1:962x + 18 = 0
x = 9:17 m J
67 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.44 W F
ma
=
µkΝ N FBD Fy Fx
= 0 = 0 F a = =
+" N W =0 N = W = 3000 lb +! F k N = ma 0:2t N 1000e 0:05(3000) k = m 3000=32:2 0:2t
10:733e
v
= =
MAD
Z
1:61 ft/s
a dt = 53:67e
Z
2
(10:733e
0:2t
0:2t
1:61)dt
1:61t + C ft/s
Initial condition: v = 0 when t = 0. ) C = 53:67 ft/s v = 53:67(1
e
0:2t
)
1:61t ft/s
Maximum velocity occurs at t = 4 s (end of powered travel) h i vmax = 53:67 1 e 0:2(4) 1:61(4) = 23:1 ft/s J
12.45
mg
kx
30o
µk N
x
y
=
N FBD Fy Fx
= 0 = ma
a =
MAD
mg cos 30 N =0 mg sin 30 kN
a = g (sin 30 9:81(sin 30
ma
k
N = mg cos 30 kx = ma
k x m 25 0:3 cos 30 ) x = 2:356 2:5 cos 30 )
10x m/s
2
68 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
v dv 1 2 v 2
Z
= a dx
1 2 v = 2
=
5x2 + C
2:356x
Initial condition:
(2:356
)C=0
vjx=0 = 0
) x = 0:471 m J
2
v = 0 when 2:356x
10x)dx
5x = 0
12.46 ma
40o P N mg µN FBD
y
= x MAD ) N = P sin 40 (P sin 40 ) = ma
= 0 +! P sin 40 N =0 = may + " P cos 40 mg
Fx Fy
P (cos 40 m When motion impends: a = 0 and = a=
0=
P (cos 40 5
sin 40 ) s
0:5 sin 40 )
= 0:5 9:81
When collar begins to slide: P = 110:31 N and a=
110:31 (cos 40 5
g
0:4 sin 40 )
P = 110:31 N =
k
= 0:4
9:81 = 1:418 m/s
2
J
12.47
69 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.48
12.49
70 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.50 v0 = 10 km/h = 10
1000 = 2:778 m/s 3600
mg kx
x = ma MAD
FBD N Fx = max
a =
dv v dx 1 2 v = 2
kx = ma
v dv = a dx
a=
v dv =
k x m k x dx m
k 2 x +C 2m ) C1 = 12 v02
Initial condition: v = v0 when x = 0: ) v 2 = v02
k 2 x m
Stopping condition: v = 0 when x = 0:5 m: 2:7782
k 18
103
(0:5)2 = 0
k = 5:56
105 N/m J
12.51
71 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.52
*12.53 F = ma dv = dx Z x=
a=v
T
cD v 2 = ma
1 (T + cD v 2 ) m mv dv = T + cD v 2
mv dv = dx T + cD v 2 m T + cD v 2 ln +C 2cD cD
Initial condition: v = v0 when x = 0: ) C = )x=
m T + cD v02 ln 2cD cD
m T + cD v02 ln 2cD T + cD v 2
72 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
2500 = 77:64 slugs 32:2
m=
v0 = (90)
5280 = 132 ft/s 3600
When v = 0: x=
m T + cD v02 77:64 450 + 0:006(132)2 ln = ln = 1352 ft J 2cD T 2(0:006) 450
*12.54 .
x 5 lb
30o
4 ft
θ
=
8 lb
FBD
Ν
MAD
Fx = ma + .
5 sin 30
32:2 (5 sin 30 5
8 cos ) = 16:1
)a=
cos = p a=v
5 a 32.2
dv = 16:1 dx
51:52x p x2 + 16
v dv =
Initial condition: v = 0 when x = 0: When a = 0 (v = vmax ):
1 2 v 2 max
= =
5 a 32:2
51:52 cos ft/s
2
x x =p x2 + 42 x2 + 16
1 2 v = 16:1x 2
16:1
8 cos =
2
51:52x p x2 + 16
dx
p 51:52 x2 + 16 + C
) C = 51:51(4) = 206:0 (ft/s)2
51:52x p =0 x2 + 16
16:1(1:3159)
16:1
) x = 1:3159 ft J p 51:52 (1:3159)2 + 16 + 206:0
10:241 (ft/s) p vmax = 2(10:241) = 4:53 ft/s J
73 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
*12.55 F = ma + # a= t=
1 ln cd =m
dv =g dt g
mg
cd v m
dt =
(cd =m)v +C = cd =m
Initial condition: v = 0 when t = 0: )t=
)C=
dv (cd =m) v
g
m ln cD m ln cD
mg +v +C cD mg cD
m mg=cD ln cD mg=cd v
When v = v1 (terminal velocity), a = 0: mg When v = 0:9v1 = 0:9 : cd t=
cD v = ma
) v1 =
mg cd
m 1 m m = ln ln 10 = 2:30 J cd 1 0:9 cD cd
12.56 v 7 2 + m/s 4 16 Letting x1 = x, x2 = v, the equivalent …rst-order equations and initial conditions are 7 x2 x_ 1 = x2 x_ 2 = + 4 16 x1 (0) = 0 x2 (0) = 20 m/s a=
The MATLAB program that integrates the equations is function problem12_56 [t,x] =ode45(@f,[0:0.5:25],[0 20]); printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) -7/4 + x(2)/16]; end end The 2 lines of output that span the instant where v = 0 are t 2.0000e+001 2.0500e+001
x1 x2 2.4124e+002 7.7255e-002 2.4105e+002 -8.0911e-001
By inspection of output, the stopping distance is x = 241 m J
74 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.57 v2 10 Letting x1 = x, x2 = v, the equivalent …rst-order equations and initial conditions are x22 x_ 1 = x2 x_ 2 = 10 x1 (0) = 0 x2 (0) = 20 in. a=
The MATLAB program that integrates the equations is function problem12_57 [t,x] =ode45(@f,(0:0.01:0.51),[0 20]); printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) -x(2)^2/10]; end end The 3 lines of output that span the instant where v = 10 in./s are t 4.9000e-001 5.0000e-001 5.1000e-001
x1 6.8310e+000 6.9315e+000 7.0310e+000
x2 1.0101e+001 1.0000e+001 9.9010e+000
By inspection, when v = 10 in./s, t = 0:500 s J
12.58 Letting x1 = x, x2 = v, the equivalent …rst-order equations and initial conditions are x_ 1 = x2 x_ 2 = 32:2(1 32:3 10 6 x22 ) x1 (0) = 0
x2 (0) = 0
The MATLAB program that integrates the equations is function problem12_58 [t,x] =ode45(@f,(0:0.1:7),[0 0]); printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) 32.2*(1-32.3e-6*x(2)^2)]; end end The 2 lines of output that span the instant where v = 100 mi/h = 146:67 ft/s are
75 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
t 6.5000e+000 6.6000e+000
x1 5.6244e+002 5.7710e+002
x2 1.4612e+002 1.4710e+002
Linear interpolation: 6:6 147:10
6:5 t 6:5 = 146:12 146:67 146:12
t = 6:56 s J
12.59 p
5
2
x in./s +9 Letting x1 = x, x2 = v, the equivalent …rst-order equations and initial conditions are ! 5 x1 x_ 1 = x2 x_ 2 = 5796 1 p 2 x1 + 9 a=
5796 1
x2
x1 (0) = 8 in.
x2 (0) = 0
The MATLAB program that integrates the equations is function problem12_59 [t,x] =ode45(@f,(0:0.001:0.042),[8 0]); printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) -5796*(1 - 5/sqrt(x(1)^2 + 9))*x(1)]; end end The 2 lines of output that span the instant where x = 0 are t x1 x2 3.9000e-002 3.7400e-002 -2.2275e+002 4.0000e-002 -1.8542e-001 -2.2304e+002 By inspection, when x = 0, v = 223 in./s J
12.60 a=
32:2 1
6:24
10
4 2
v exp( 3:211
10
5
x) ft/s
2
(a) Letting x1 = x, x2 = v, the equivalent …rst-order equations and initial conditions are x_ 1 = x2
x_ 2 =
32:2 1
6:24
x1 (0) = 30 000 ft
10
4 2 x2 e 3:211 10
5
x1
x2 (0) = 0
The MATLAB program that integrates the equations is
76 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
function problem12_60 [t,x] = ode45(@f,(0:0.2:10),[30000 0]); printSol(t,x) axes(’fontsize’,14) plot(x(:,1),x(:,2),’linewidth’,1.5) grid on xlabel(’x (ft)’); ylabel(’v (ft/s)’) function dxdt = f(t,x) dxdt = [x(2) -32.2*(1-6.24e-4*x(2)^2*exp(-3.211e-5*x(1)))]; end end The 3 lines of output that span the instant where v = vmax are t 7.4000e+000 7.6000e+000 7.8000e+000
x1 x2 2.9612e+004 -6.4384e+001 2.9599e+004 -6.4385e+001 2.9586e+004 -6.4384e+001
By inspection, vmax = 64:4 ft/s J at x = 29 600 ft J (b) 0 -10
v (ft/s)
-20 -30 -40 -50 -60 -70 2.94
2.95
2.96
2.97 x (ft)
2.98
2.99
3 x 10
4
77 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.61 (a)
mg y P = kx
=
v F = µN
x
N FBD
ma
MAD
The FBD shown is valid only if v > 0 (block is moving to the right.) If v < 0 (block is moving to the left), the direction of the friction force F must be reversed. Fy Fx ) =
a=
= 0 +" = ma +!
k x m
30 x 1:6
N
mg = 0 ) N = mg kx N sign(v) = ma
N sign(v) = m
0:2(9:81) sign(v) =
k m
g sign(v)
18:75x
1:962 sign(v) m/s
2
J
(b) With the notation x1 = x and x2 = v, the equivalent …rst-order equations are x_ 1 = x2 x_ 2 = 18:75x1 1:962 sign(x2 ) subject to the initial conditions x1 = 0, x2 = 6 m/s at t = 0. The corresponding MATLAB program is: function problem12_61 [t,x] =ode45(@f,[0:0.02:1.2],[0 6]); printSol(t,x) axes(’fontsize’,14) plot(x(:,1),x(:,2),’linewidth’,1.5) grid on xlabel(’x (m)’); ylabel(’v (m/s)’) function dxdt = f(t,x) dxdt = [x(2) -18.75*x(1)-1.962*sign(x(2))]; end end The block stops twice during the period 0 < t < 1:2 s. Only the lines of output that span the instant where v = 0 are shown below. t 3.4000e-001 3.6000e-001
x1 x2 1.2844e+000 1.3160e-001 1.2822e+000 -3.5272e-001
78 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Linear interpolation: 3:6 3:4 t1 3:4 = 0:35272 0:13160 0 0:13160
t1 = 3:45 s J
1.0600e+000 -1.0745e+000 -2.1421e-001 1.0800e+000 -1.0745e+000 2.0038e-001 Linear interpolation: t2 1:06 1:08 1:06 = 0:20038 ( 0:21421) 0 ( 0:21421)
t2 = 1:070 s J
(c) 6 4
v (m/s)
2 0 -2 -4 -6 -1.5
-1
-0.5
0 x (m)
0.5
1
1.5
12.62 (a)
y
mg P(t)
kx
=
x
N FBD Fx = ma P (t)
= =
+ !
ma
MAD P (t)
kx = ma
25t N when t 25 N when t
a=
P (t) m
k x m
1s 1s
(12:5t + 12:5) + (12:5t
12:5) sgn (1
t)
79 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
) =
(12:5t + 12:5) + (12:5t 12:5) sgn (1 t) 25 x 2 2 2 6:25 [(t + 1) + (t 1) sgn (1 t)] 12:5x m/s J
a=
(b) With the notation x1 = x and x2 = v, the equivalent …rst-order equations are x_ 1 = x2 x_ 2 = 6:25 [(t + 1) + (t 1) sgn (1 t)] 12:5x1 subject to the initial conditions x1 = x2 = 0 at t = 0. The corresponding MATLAB program is: function problem12_62 [t,x] = ode45(@f,(0:0.05:3),[0 0]); printSol(t,x) axes(’fontsize’,14) plot(x(:,1),x(:,2),’linewidth’,1.5) grid on xlabel(’x (m)’); ylabel(’v (m/s)’) function dxdt = f(t,x) dxdt = [x(2) 6.25*(t+1 + (t-1)*sign(1-t)) - 12.5*x(1)]; end end Below are partial printouts that span vmax and xmax . t 8.0000e-001 9.0000e-001 1.0000e+000
x1 7.1290e-001 9.1150e-001 1.1087e+000
x2 1.9518e+000 2.0003e+000 1.9205e+000
By inspection, vmax = 2:00 m/s J 1.3000e+000 1.4000e+000 1.5000e+000
1.5271e+000 6.0188e-001 1.5535e+000 -8.0559e-002 1.5113e+000 -7.5304e-001
By inspection, xmax = 1:554 m J
80 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(c) 2 1.5 1
v (m/s)
0.5 0 -0.5 -1 -1.5 -2 0
0.5
1 x (m)
1.5
2
12.63 a = 80
16v 1:5 ft/s
2
With the notation x1 = x and x2 = v, the equivalent …rst-order equations are x_ 1 = x2
x_ 2 = 80
16x1
subject to the initial conditions x1 = x2 = 0 at t = 0. The corresponding MATLAB program is: function problem12_63 [t,x] =ode45(@f,[0:0.005:0.15],[0 0]); printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) 80 - 16*x(2)^1.5]; end end Only the 4 lines of output that span x = 0:25 ft are shown below. t 1.0500e-001 1.1000e-001 1.1500e-001 1.2000e-001
x1 2.2384e-001 2.3822e-001 2.5263e-001 2.6709e-001
x2 2.8693e+000 2.8794e+000 2.8876e+000 2.8944e+000
Use linear interpolation to …nd v at x = 0:25 ft: 2:8876 2:8794 v 2:8794 = 0:25263 0:23822 0:25 0:23822
v = 2:89 ft/s J
81 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
12.64 y=
x2 400
y_ =
x x_ = 200
x v0 200
y• =
1 v0 x_ = 200
v02 200
mg
= mv02/200
N FBD Fy = may
MAD N
mg =
m
v02 200
v2 Contact is lost when N = 0: g = 0 200 p p v0 = 200g = 200(32:2) = 80:3 ft/s J
82 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 13 13.1 2 1
5
3 4
13.2 2
2
at = 0:8 m/s a = 1:5 m/s q p 2 an = a2 a2t = 1:52 0:82 = 1:2689 m/s an
=
v
=
v2
)v=
15:930
m s
p
an =
1 km 1000 m
p 1:2689(200) = 15:930 m/s
3600 s = 57:3 km/h J 1h
13.3
athrust g
an 30o
a
an = g cos 30 = 32:2 cos 30 = 27:89 ft/s an =
v2
)
=
2
v2 8002 = 22 900 ft J = an 27:89
13.4 At point A: at = 0
v
=
v
=
p
an = ft 109:89 s
an =
v2
p
(0:25 32:2)(1500) = 109:89 ft/s 1 mi 3600 s = 74:9 mi/h J 5280 ft 1h
83 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.5 At point B: v = vx = v0 cos an =
v
2
2
=
v = an
an = g 2 vA
cos2 g
J
13.6 at
dv ds dv 1 2 = v v dv = at ds v = at s + C ds dt ds 2 Initial condition: v = 0 at s = 0 ) C = 0 v2 at = 2s
= )
At point B:
a=
at
=
an
=
q
2 52 vB 2 = = 1:989 ft/s 2( R) 2(2 ) 2 vB 52 2 = = 12:5 ft/s R 2
a2n + a2t =
13.7
y
=
p 2 12:52 + 1:9892 = 12:66 ft/s J
y0 =
4 cos x 0 2
4 sin x
3=2
at
4 cos x
3=2
1 + (y )
1 + 16 sin2 x jy 00 j 4 cos x 2 2 (2 )(4 cos x) v 16 cos x = = = 3=2 2 1 + 16 sin x 1 + 16 sin2 x = v_ = 0 =
an
y 00 =
=
At A :
x=0
At B
:
x=
At C
:
x=
4 2
) a = an = 16 m/s J 16 cos( =4) ) a = an = 1 + 16 sin2 ( =4)
3=2
2
3=2
= 0:419 m/s J
) a = an = 0 J
84 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.8 at )
1 2 v 2
= =
dv ds dv = v ds Zds dt
v dv = at ds
at ds + C =
Z
0:05s ds + C = 0:025s2 + C
At point O: v = 20 in./s at s = 0. ) C = 200 (in./s)2 At point B: s = 80 in. 1 2 v = 0:025(80)2 + 200 2 an =
13.9
v2
=
) v 2 = 720 (in./s)
2
720 2 2 = 6:0 in./s at = 0:05s = 0:05(80) = 4:0 in./s 120 q p 2 a = a2n + a2t = 62 + 42 = 7:21 in./s J
13.10 (a)
. .
B
0 75
Dimensions in mm
A
.
O
θ
vB
300 450 mm/s
85 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
vB (an )A
=
_ = vB = 450 = 0:60 rad/s RB 750
450 mm/s 2
= RA _ = 300(0:62 ) = 108:0 mm/s
(b)
300 O
450 mm/s vA = 450 mm/s
(an )A =
2
J
.
A vA
2 vA 4502 2 = = 675 mm/s J RA 300
13.11
13.12
86 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.13
13.14
13.15
87 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.16 At point A: 1000 = 9:722 m/s 3600 v2 9:7222 2 = = = 0:9452 m/s 100 p p a2 a2n = 1:32 0:94522 = =
v
=
an at
35
1 2 v = 2
v dv = at ds
0:8925 m/s
2
0:8925s + C
Initial condition: 1 2 (9:7222 ) = 47:26 (m/s) 2 0:8925s + 47:26 s = 53:0 m J
v = 9:722 m/s when s = 0 ) C = When v = 0:
0=
13.17
13.18 y=
x2 m 80
y0 =
x 40
y 00 =
1 m 40
1
At point A (x = 10 m): y0 = 1
=h
10 = 0:25 m 40
y 00 1+
2 (y 0 )
i3=2 =
y 00 = 0:025 m 0:025 3=2
(1 + 0:252 )
1
= 0:02283 m
1
88 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
an =
v2
= 122 (0:02283) = 3:288 m/s
a=
q
a2n + a2t =
13.19
2
at = v_ = 4 m/s
p 2 3:2882 + 42 = 5:18 m/s J
at
o
20 an
g 2
at
= g sin 20 = 9:82 sin 20 = 3:359 m/s
an
= g cos 20 = 9:82 cos 20 = 9:228 m/s
an =
v2
v=
p
2
an =
2
p 9:228(4500) = 204 m/s J
*13.20 Curve Car travels at constant speed v1 , determined by an = amax . amax =
v12
v1 = t1 =
p
amax =
p 5(200) = 31:62 m/s
s1 200 = 19:871 s = v1 31:62
Straightaway Car accelerates for 500 m at the rate v_ = amax and then brakes for the next 500 m at the rate v_ = amax : . For the …rst 500 m: v
= v1 + amax t 1 s = v1 t + amax t2 2 1 500 = 31:62t2 + (5)t22 2
t2 = 9:168 s
Total time to complete the circuit is t = 2t1 + 4t2 = 2(19:871) + 4(9:168) = 76:4 s J
89 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.21
v
θ
v0 B
R
y
θ
O
) y_ = v0 = R cos
y = R sin
v0 )_= sec R
_
v0 v2 • = v0 sec tan _ = v0 sec tan sec = 02 sec2 tan R R R R v = v0 sec = 6 sec 60 = 12:0 in./s J 2
an = R _ = R
at
v0 sec R
= R• = R
2
=
62 v02 2 sec2 = sec2 60 = 8:0 in./s R 18
v02 sec2 tan R2
=
v02 sec2 tan R
62 2 sec2 60 tan 60 = 13:856 in./s 18 q p 2 a = a2t + a2n = 13:8562 + 8:02 = 16:0 in./s J =
13.22
x2 ft 120
y=
y0 =
x 60
y 00 =
1 ft 60
1
At point A (x = 10 ft): y0 1
an at
= = =
10 1 = 60 6 jy 00 j
y 00 =
1 ft 60 (1=60)
1
= = 0:015996 3=2 3=2 [1 + (y 0 )2 ] (1 + ( 1=6)2 ) v2 2 = (102 )(0:015996) = 1:5996 ft/s 2
= v_ = 1:2 ft/s q p 2 a = a2n + a2t = 1:59962 + 1:22 = 2:00 ft/s J
90 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.23
P
2 in./s
θ
v From velocity diagram: v = 2 sec R_ v_ an at When
= v = 2 sec
=
2 sec 5
= 0:4 sec rad/s
dv _ = (2 sec tan ) (0:4 sec ) = 0:8 tan sec2 d (2 sec )2 4 sec2 v2 2 = = = 0:8 sec2 in./s = R R 5 2 = v_ = 0:8 tan sec2 in./s =
in./s
= 20 : v
=
2 sec 20 = 2:13 in./s J
an
=
0:8 sec2 20 = 0:9060 in./s
2 2
0:8 tan 20 sec2 20 = 0:3298 in./s p 2 a = 0:90602 + 0:32982 = 0:964 in./s J
at
13.24
_ = 2 sec R
=
13.25
91 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.26
v vθ
θ
vR cot )_= R
v = R _ = vR cot • = R • R )a =
aθ
θ
aR
v = vR csc = 350 csc 40 = 545 m/s J
vR = R_ = 350 m/s
aR
a
vR
=
350 cot 40 5000
= 0:08342 rad/s
2
R _ = a sin 2 R_ 100 = sin
5000(0:08342)2 2 = 101:4 m/s J sin 40
13.27 R = 0:75 + 0:5t2 m R_ = 1:0t m/s • = 1:0 m/s2 R
t2 rad 2 _ = t rad/s • = rad/s2 =
At t = 2 s: R = 0:75 + 0:5(2)2 = 2:75 m R_ = 1:0(2) = 2 m/s • = 1:0 m/s2 R
(2)2 = 2 rad 2 _ = (2) = 2 rad/s • = rad/s2 =
vR = R_ = 2 m/s v = R _ = 2:75(2 ) = 17:279 m/s q p 2 + v2 = v = vR 22 + 17:2792 = 17:39 m/s J aR a
2
2
R _ = 1:0 2:75(2 )2 = 107:57 m/s 2 = R• + 2R_ _ = 2:75( ) + 2(2)(2 ) = 33:77 m/s
• = R
92 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
a=
q
a2R + a2 =
13.28
p 2 ( 107:57)2 + 33:772 = 112:7 m/s J
R = 4 + 2 sin ft R_ = 2 cos _ = 3 cos ft/s • = 3 sin _ = 4:5 sin ft/s2 R
_ = 1:5 rad/s •=0
(a) At point A ( = 0): R_ = 3 ft/s
R = 4 ft vR = R_ = 3 ft/s J aR a
•=0 R
v = R _ = 4(1:5) = 6 ft/s J
2
R _ = 0 4(1:5)2 = 9 ft/s J 2 = R• + 2R_ _ = 4(0) + 2(3)(1:5) = 9 ft/s J
• = R
2
At point B ( = 90 )· : R_ = 0
R = 6 ft vR = R_ = 0 J aR a
•= R
4:5 ft/s
2
v = R _ = 6(1:5) = 9 ft/s J _
• R _ 2 = 4:5 6(1:5)2 = 18 ft/s2 J = R = R• + 2R_ _ = 6(0) + 2(0)(1:5) = 0 J
13.29 R vR
= 4 + 2 sin ft = R_ = 2 cos _ ft/s
v = R _ = (4 + 2 sin ) _ ft/s
(a) At point A: = 0 ) sin = 0 cos = 1 ) vR = 2 _ ft/s v = R _ = 4 _ ft/s
v
r q 2 2 vR + v = 2_ =
v
=
p
4 ft/s
2
+ 4_
20 _ = 4
2
=
p
20 _
_ = p4 = 0:894 rad/s J 20
(b) At point B:
vR
= =
=2 0
) sin = 1 v = 6 _ ft/s
cos = 0
93 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
v
=
v
=
q 2 + v 2 = 6 _ ft/s vR 6_ = 4
4 ft/s
_ = 4 = 0:667 rad/s J 6
13.30 v = R_
vR = R_ = 600 ft/s Find _ from acceleration:
-g
aθ θ
aR
θ
_=
s
• + g sin R R
• aR = R r =
2_
R_ =
g sin
50 + 32:2 sin 30 8000
=
0:09090 rad/s
By inspection of the ‡ight path we see that _ is negative; hence _ = rad/s. ) v = 8000( 0:09090) = 727:2 ft/s q p 2 + v2 = v = vR 6002 + ( 727:2)2 = 943 ft/s J
0:09090
13.31
Di¤erentiate cam pro…le twice: R2 + 6R cos 27 = 0 2RR_ + 6R_ cos 6R sin _ = 0 • + 6R • cos 2R_ 2 + 2RR Substituting
_
6R_ sin
6R cos
_2
6R sin • =
0
(a) (b) (c)
= 0, _ = 2 rad/s and R = 3 in. into Eq. (b) yields 2(3)R_ + 6R_
0=0
) v = R_ = 0 J
Eq. (c) now becomes • + 6R • 0 6(3)(22 ) 0 = 0 0 + 2(3)R • = 6:0 in./s2 J )a=R
94 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.32 R = 0:3 _
R_ =
0:4
=
0:4
•= R (a) When
2
•
(b) When
•=0
=2
= 0:1 m
v = R _ = 0:1(2) = 0:2 m/s J
2_
R _ = 0 0:1(2)2 = 0:4 m/s J 2 = R• + 2R_ _ = 0 + 2( 0:2546)(2) = 1:018 m/s J
• = R
2
= =3:
vR = R_ =
a
0:4
0:255 m/s J
R = 0:3
aR
=0
_ = 2 rad/s
= =2:
vR = R_ =
a
m
0:2546 m/s
0:4
R = 0:3
aR
=
0:4
0:255 m/s J
0:4
=3
= 0:16667 m
v = R _ = 0:16667(2) = 0:333 m/s J
2_
R _ = 0 0:16667(2)2 = 0:667 m/s J 2 = R• + 2R_ _ = 0 + 2( 0:2546)(2) = 1:018 m/s J
• = R
2
13.33 • = 0 and _ = 15(2 =60) = 0:5 rad/s. Given: R = 0:7 ft, R_ = 4 ft/s, R Note that in the position = 0 we have eR = i and e = j. (a) When = =2: v
_ R + R _ e = 4eR + 0:7(0:5 )e = Re = 4eR + 1:100e = 4i + 1:100j ft/s J
(b) • R _ 2 )eR + (R• + 2R_ _ )e a = (R = 0 0:7(0:5 )2 eR + [0:7(0) + 2(4)(0:5 )] e =
1:727eR + 12:567e =
1:727i + 12:567j ft/s
2
J
95 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.34
13.35 _
= 2t rad = 2 rad/s
• = When R vR v v
= 2:5 mm: t = cosh 1 2:5 = 1:5668 s = R_ = sinh(1:5668) = 2:291 mm/s = R _ = 2:5(2) = 5:0 mm/s p 2:2912 + 5:02 = 5:50 mm/s J = 2
2
R _ = 2:5 2:5(22 ) = 7:50 mm/s 2 a = R• + 2R_ _ = 0 + 2 [sinh(1:5668)] (2) = 9:165 mm/s p 2 a = 7:52 + 9:1652 = 11:84 mm/s J
aR
13.36
0
R = cosh t mm R_ = sinh t mm/s • = cosh t mm/s2 = R R
• = R
96 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.37
13.38
13.39
97 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.40 R2 = b2 sin 2 2RR_ = 2b2 cos 2 _ • + R_ 2 ) = 2b2 ( 2 sin 2 _ 2 + cos 2 •) 2(RR At point A ( = 45 ): R 2RR_ • 2bR
= b = 0 ) R_ = 0 2 •= = 2b2 ( 2 _ ) ) R 2
R_ =
• aR = R v
2
2
b_ =
2
3b _
2
v0 v = )_= b b v0 2 v02 3b = 3 J b b
= R_ = b_ )
an =
2b _
2b _
aR =
aR =
v02
3
v02 v2 = 0 b
=
b J 3
13.41
98 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.42 h = R sin = 8200 sin 35 = 4703 ft J h_ = R_ sin + R _ cos = 0 0 = R_ sin 35 + 8200(0:03) cos 35 ) R_ = 351:3 ft/s vR v
13.43
= R_ = 351:3 ft/s v = R _ = 8200(0:03) = 246:0 ft/s q p 2 + v2 = = vR ( 351:3)2 + 246:02 = 429 ft/s J
13.44
A
5.25 m
5.25 m
θ
θ
6m
R=
C
A
28.96o
6m
28.96o B
vR
B
v
C
57.92o
vθ 57.92o
Given: R = 6 m, R_ = 1:2 m/s cos vR
5:25 = 28:96 6 = R_ = 1:2 m/s =
From velocity diagram (note that v is perpendicular to AB): v=
1:2 vR = = 1:416 m/s J sin 57:92 sin 57:92
99 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.45 •=0 R = 0:4 m R_ = R z = 0:2 z_ = 0:2 _ = 0:2(6) = z• = 0:2• = 0:2( 10) = 2 m/s v v
1:2 m/s
= R_ eR + R _ e + z_ ez = 0 + 0:4(6)e + ( 1:2)ez = 2:4e p = 2:42 + ( 1:2)2 = 2:68 m/s J a = =
1:2ez m/s
• R _ 2 )eR + (R• + 2R_ _ )e + z•ez (R 0 0:4(6)2 eR + [(0:4)( 10) + 0] e + 2ez 2
=
14:4eR 4e + 2ez m/s p 2 ( 14:4)2 + ( 4)2 + 22 = 15:08 m/s J a =
13.46
R _ z z_
•=0 = 4 in. (const.) ) R_ = R = 0:8 rad/s (const.) )•=0 = 0:5 sin 4 in. = 2 _ cos 4 = 2(0:8) cos 4 = 1:6 cos 4 in./s
z• = =
2
8 _ sin 4 + 2• cos 4 =
8(0:8)2 sin 4 + 0
2
5:12 sin 4 in./s
v = R _ = 4(0:8) = 3:2 in./s vz = z_ = 1:6 cos 4 in./s p n = 3:22 + 1:62 = 3:58 in./s at = , n = 0; 1; 2; : : : J 4
vR = R_ = 0 ) vmax
aR
) amax
2
2
R _ = 4(0:8)2 = 2:56 in./s 2 = R• + 2R_ _ = 0 az = z• = 5:12 sin 4 in./s
• = R
a p 2 = 2:562 + 5:122 = 5:72 in./s at
=
8
+
n , n = 0; 1; 2; : : : J 4
100 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.47
13.48
13.49 _ = 3 rad/s
•=0
_ = 2 rad/s
L = 0:8 m
101 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
R_ =
R = L cos z = L sin When
= 50 and
z_ = L cos
az
z• =
_2
L cos L sin
_2
= 0:8 cos 40 = 0:6128 m = 0:8(sin 40 )(2) = 1:0285 m/s = 0:8(cos 40 )(22 ) = 2:451 m/s 0:8(sin 40 )(22 ) =
z• =
a
_
•= R
= 40 : R R_ • R
aR
_
L sin
2:057 m/s
2
2
R _ = 2:451 0:6128(32 ) = 7:966 m/s 2 = R• + 2R_ _ = 0 + 2( 1:0285)(3) = 6:171 m/s
• = R
2
2
= z• = 2:057 m/s p 2 a = 7:9662 + 6:1712 + 2:0572 = 10:28 m/s J
102 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.50
13.51 z
ρ
mg = man
µsN FBD
Fz
=
Fn
= man
v
13.52
=
0
p
+"
s
N
N
mg = 0
MAD
) N = mg
+ s N = man s mg = m p g = 0:4(600)(32:2) = 87:9 ft/s J
v = 70 km/h =
v2
70 103 m/s = 19:444 m/s 3600
103 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Assume impending sliding of crate.
Mg
R
y v MR
2
x
15o
µsΝ
N FBD
Fy
= may
N
= M
N
s
M g cos 15 = M
v2 sin 15 R
v2 sin 15 R 19:4442 9:81 cos 15 + sin 15 50 g cos 15 +
= M
Fx
MAD
= max
sN
M g sin 15 =
= 11:433M
M
v2 cos 15 R
v 2 =R cos 15 M g sin 15 N 19:4442 =50 cos 15 9:81 sin 15 = 0:417 J 11:433
= M =
13.53 W
T 35
N FR T cos 35
N
= maR =
maR
o
MAD
+ !
60 0 32:2
Fz 60 + 90:99 sin 35
FBD
T cos 35 =
10(2)2
= 0 = 0
W • (R g
2
R_ )
T = 90:99 lb
+ " N W + T sin 35 = 0 N = 7:81 N J
104 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.54 ρ =4m N
=
z mρv
mg FBD
µsN Fz
z
0
+"
MAD sN
)N =
mg = 0 v2
+! N =m ) r r g 4(9:81) = = = 8:09 m/s J 0:6 s
Fn
= man
v
2
mg
mg s
=m
v2
s
13.55 o
3200 lb 20
n
man t
F = 0.6N
mat
N FBD
MAD
Assume impending sliding between the tires and the road. = man =
Ft
3200 602 N = 4796 lb 32:2 200 = mat 3200 sin 20 0:6N = mat 3200 2 3200 sin 20 0:6(4796) = at at = 17:94 ft/s J 32:2 N
N
W cos 20 = m
v2
Fn
3200 cos 20 =
13.56
mv R
2
mg
n
. mv
t
µN
N FBD
MAD
105 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(a) Fn
= man
N
N
= m g+
v2 R
mg = m
v2 R
= 8 9:81 +
2:82 2:5
= 103:57 N J
(b) Ft v_
= mat N = = m
N = mv_ 0:2(103:57) = 8
2:59 m/s
2
J
13.57 T FBD
=
mg
θ
• = 0, we have aR = Since R_ = R F
= ma g sin • = R
FR _2 _
maθ MAD maR
2
R _ and a = R•
+% mg sin = mR• 9:81 sin 25 2 = = 2:07 rad/s J 2:0 2
= maR + & mg cos T = mR _ 1 T 1 8:5 = g cos = 9:81 cos 25 R m 2:0 0:5 p 4:055 = 2:01 rad/s J =
2
= 4:055 (rad/s)
13.58
106 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.59
ω
y
ρ
x v
The bead moves on a horizonal circle of radius v = ! = !R sin .
= R sin
with the speed
y mg mv2/ρ
x N θ FBD Fx
= m
Fy
=
v2
MAD
N sin = m! 2 R sin
N = m! 2 R
0
mg N cos = 0 mg g 9:81 cos = = 2 = = 0:8741 N ! R (6:72 ) (0:25) = 29:1 J
13.60
107 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.61 Critical position is
= 90 .
N
FBD
MAD man
W Fn _
W _2 R = man +# W = g r r g 32:2 = = = 4:01 rad/s J R 2
Ft = mat
+
N=
W • R = 0 (since • = 0) g
Because N = 0 in the critical position, friction would not change the result.
13.62
N y F n W = 0.4 lb FBD v
=
an
=
30o t
x mat ma n
ma MAD
vx 8 = = 9:238 ft/s cos 30 cos 30 v2 9:2382 2 = = 71:12 ft/s 1:2
Because vx is constant, we have ax = 0, so that a is vertical. Therefore (see MAD), 2 at = an tan 30 = 71:12 tan 30 = 41:06 ft/s
108 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Ft
= mat
F cos 30 + W sin 30 = mat 0:4 F cos 30 + 0:4 sin 30 = (41:06) 32:2 = 0:358 lb J
F
13.63 x
N
F
FBD
MAD
β R
man β
O Fx
= max
+
kx0
x = k
2 m_
=
F = man sin 2
k(x
2
x0 ) = m(R _ )
x R
2(0:5) = 2:24 ft J (2=32:2) (5)2
13.64 .
θ
R = 3 ft
W = 1.5 lb FBD
MAD maR
F = 2 lb
(a) Rotation in the horizontal plane: delete W from the FBD (it acts perpendicular to the plane of motion). FR
= maR 1:5 (0 2 = 32:2
+# 2
3_ )
• F = m(R
2
R_ )
_ = 3:78 rad/s J
(b) Rotation in the vertical plane: use FBD as shown. FR
= maR 1:5 (0 2 + 1:5 = 32:2
+# 2
3_ )
• F + W = m(R
2
R_ )
_ = 1:892 rad/s J
109 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.65 When slider is at C:
mat
F 45o man
N mg FBD F an
Ft at
MAD
p = k = 1:2(2:5 2 1:3) = 2:683 lb v2 82 2 = = = 25:60 ft/s R 2:5
= mat F cos 45 mg = mat 2:683 F cos 45 g= cos 45 = m 1:0=32:2
Fn
= man
N
= F sin 45 a=
F sin 45
a2n + a2t =
13.66 mg
1:0 (25:60) = 1:102 lb J 32:2
p 2 25:602 + 28:892 = 38:6 ft/s J
R T
maR
.
θ MAD
N FBD FR = maR
2
N = man
man = 2:683 sin 45
q
32:2 = 28:89 ft/s
+ !
• = 0. ) T = (a) If string is intact, R
T = 2:5 0
(b) After string breaks, T = 0. ) 0 = • = 560 m/s2 J )R
h • 2:5 R
• m(R
2
R_ )
1:4(20)2 = 1400 N J 1:4(20)2
i
110 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.67
13.68 Assume impending sliding of the block up the cone.
mg
µsN
y
mv2 /ρ
x
β
β N FBD
Fy
=
MAD
0
N cos
N=
Fx
cos
= max mg
sN
sin
mg = 0
mg s
N sin
sin + cos
sin
+
cos s sin
s
s N cos
=m
=m
v2
v2
Substituting v = !: ) !2
= =
sin + cos g sin + cos
g
cos = !2 sin s 32:2 sin 35 + 0:28 cos 35 s cos = 1:2 cos 35 0:28 sin 35 s sin
s
2
32:7 (rad/s)
! = 5:72 rad/s
111 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Assume impending sliding of the block down the cone. The direction of the friction force s N must be reversed on the FBD. This is equivalent to reversing the sign of s . The result is !2
=
!
=
32:2 sin 35 0:28 cos 35 = 9:427 1:2 cos 35 + 0:28 sin 35 3:07 rad/s
) The block will not slide if 3:07 rad/s
!
5:72 rad/s J
13.69
13.70
112 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.71
13.72 v
=
an
=
_ R = 1:2(2:2) = 2:640 m/s v2 2:6402 2 = = 3:168 m/s R 2:2
Assume impending sliding when
35o
at = 0
= 35 .
9.81m
man
µs N n
t
N FBD Fn N Ft s
MAD
= man N 9:81m cos 35 = m(3:168) = m(9:81 cos 35 + 3:168) = 11:204m = mat 9:81m sin 35 = 0 sN 9:81 sin 35 9:81 sin 35 = = = 0:502 J N 11:204
113 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.73
13.74
114 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.75
T maθ
θ
maR
mg FBD
MAD
• = 0, so that the acceleration components are aR = Note that R_ = R • a =R . mg sin = mR•
F = ma
g sin R
)•=
d_ d d_ _ = d dt d
But • = d_ _ d
2
R _ and
g sin R
=
_ d_ =
_2
g sin d R
2
=
g cos + C R
= 0 then _ = _ A
Initial condition: when _2
A
2
= )
_2 g g +C C= A R 2 R _2 _ 2 = 2g (1 cos ) A R
(a) Rigid rod: pendulum will just reach position B if _ = 0 at r 4g ) _A = J R
= 180
(b) Flexible string: FR = maR
T + mg cos =
Pendulum will just reach position B if T = 0 at mg _A
2
mR _ r 5g = J R
=
_2 = g R
mR _
2
= 180
2 2 2g 5g ) _ A = _ + (2) = R R
115 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.76 aR a
θ
aθ
R_ R_ cos
R _ sin
R θ 2m O
=
4 m/s (given)
=
0
a
= =
a =
R cos = 2 m
1 cos = R 2
m
1
R_ = R _ tan = 4 tan 1 d(4R) 1 1 d(R2 _ ) = = 4 R_ R dt R dt R cos 2 4 (4 tan ) = 8 sin m/s 2 a 8 sin 2 = = 8 tan m/s cos cos
F = ma = 0:6(8 tan ) = 4:8 tan N J
13.77 We must show that a = 0. R2 _
= constant ) R2 • + 2RR_ _ = 0 ) a = R• + 2R_ _ = 0 Q.E.D
R• + 2R_ _ = 0
*13.78 (a)
θ
maR mg
N FR = maR
maθ
FBD
MAD
• mg sin = m(R
R_ )
d d d d = = !0 dt d dt d
2
• g sin = R
• = !2 )R 0
! 20 R
d2 R d 2
116 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
= ! 20
g sin d2 R d 2
R
=
d2 R d 2
g sin ! 20
R J
(a)
(b) Solution of the homogeneous equation d2 R d 2 A particular integral is
R = 0 is R = C1 sinh + C2 cosh
R=
g sin 2! 20
Therefore, the solution of the di¤erential equation in Eq. (a) is R = C1 sinh + C2 cosh
g sin 2! 20
Initial conditions: R R_
=
0 when
=0
=
0 when
=0 R=
) C2 = 0 C1
g (sinh 2! 20
g =0 2! 20
C1 =
g 2! 20
sin ) J
13.79
117 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
*13.80
13.81
118 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.82
13.83
119 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.84
120 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.85
Initial conditions: Letting x1 = are
g sin = L
•=
Equation of motion:
= 60 =
3
9:81 sin = sin 9:81 rad _ = 0 at t = 0
and x2 = _ , the …rst-order equations and the initial conditions x_ 1 x1 (0)
= x2
x_ 2 =
=
x2 (0) = 0
3
sin x1
The MATLAB program for solving the equations at intervals of 0.1 s is: function problem13_85 [t,x] = ode45(@f,(0:0.1:2),[pi/3,0]); printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) -sin(x(1))]; end end The two lines of printout that span x1 = 0 are: t x1 x2 1.6000e+000 8.5645e-002 -9.9633e-001 1.7000e+000 -1.4249e-002 -9.9990e-001 Linear interpolation: t 1:6 = 1:7 1:6
0 0:085 645 0:014 249 0:085 645
t = 1:686 s J
which agrees with the analytical solution
13.86 • = 0, we have aR = (a) Since R_ = R
2
R _ and a = R•
θ mg FBD
=
µN
maR
N FR F
= maR = ma
+. +&
mg sin mg cos
maθ
MAD
2 N = mR _ N = mR•
121 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Elimination of N yields mg cos
mg sin
= mR• + mR_ 2 • = g (cos sin ) R
_2
Q.E.D.
(b) Substituting numerical values, the equation of motion becomes • = 9:81 (cos 2
0:3 _
0:3 sin )
2
Letting x1 = and x2 = _ , the equivalent …rst-order equations and the initial conditions are x_ 1 = x2 x1 (0) = 0
x_ 2 = 4:905(cos x2 (0) = 0
0:3 sin )
0:3x22
The corresponding MATLAB program is function problem13_86 [t,x] = ode45(@f,(0:0.02:1.6),[0,0]); printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) 4.905*(cos(x(1)) - 0.3*sin(x(1))) - 0.3*x(2)^2]; end end The two lines of output spanning x2 = 0 are t 1.5200e+000 1.5400e+000
x1 x2 2.0982e+000 1.1455e-002 2.0977e+000 -6.3349e-002
Linear interpolation: x1 2:0982 2:0977 2:0982 x1
= =
0 ( 0:063349) 0:011455 ( 0:063349) = 2:098 rad = 120:2 J
13.87 (a)
θ mg
maθ
maR
= FBD
N
MAD
122 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
= !
0
)_=
cos !t
=
rad/s
FR
= maR
• )R • R R(0)
= R_
0
sin !t
g sin = R( !
= 15 =
0
sin !t)2
12
rad
2
R_ ) g sin(
0
cos !t)
2
2
12
0
• mg sin = m(R
+%
2
= R
!
sin t
32:2 sin
12
cos t
J
_ = 2 ft, R(0) =0 J
_ the equivalent …rst-order equations and the (b) Letting x1 = R and x2 = R, initial conditions are 2
2
x_ 1 x1 (0)
= x2 = 2 ft
x_ 2 = x1
12 x2 (0) = 0
sin t
32:2 sin
12
cos t
The corresponding MATLAB program is function problem13_87 [t,x] = ode45(@f,(0:0.025:3.5),[2,0]); plot(t,x(:,1),’linewidth’,1.5) xlabel(’t (s)’); ylabel(’R (ft)’) grid on printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) x(1)*(pi^2/12*sin(pi*t))^2-32.2*sin(pi/12*cos(pi*t))]; end which produces the following plot:
123 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
4.5
4
3.5
R (ft)
3
2.5
2
1.5
1
0.5
0
0.5
1
1.5
2
2.5
3
3.5
t (s)
(c) The two lines lines of output spanning R = 4 ft are: t 3.4000e+000 3.4250e+000
x1 3.9520e+000 4.0718e+000
x2 4.7323e+000 4.8523e+000
Linear interpolation: 4:0718 3:9529 4 3:9529 = 3:4250 3:4 t 3:4 R_ 4:7323 4:8523 4:7323 = 3:410 3:4 3:4250 3:4
t = 3:410 s J R_ = 4:78 ft/s J
13.88 (a) Kinematics: R aR a
• = z• tan = z tan R_ = z_ tan R 2 2 • R _ = (• = R z z _ ) tan = R• + 2R_ _ = (z • + 2z_ _ ) tan az = z•
124 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
6 tanβ R 6 ft
β
s z
FBD
β
mg N
=
maz maθ
s maR
β MAD
Kinetics: 0 = m(z • + 2z_ _ ) tan
F
= ma
+
Fs
= mas
+%
g
= az + aR tan
mg cos
= m(az cos
2z_ _ Q.E.D. z + aR sin ) )•= 2
2
z _ ) tan2
= z• + (• z
z• =
z _ tan2 1 + tan2
g
Q.E.D.
Initial conditions: z(0) = 6 ft (b) With
z(0) _ =0
(0) = 0
_ (0) =
v1 6 tan
=
10 6 tan
J
= 20 and g = 32:2 ft/s2 , we have
z• = 0:116978z _
2
28:433 ft/s
2
•=
2z_ _ z
_ (0) = 4:5791 rad/s
Letting x1 = , x2 = _ , x3 = z and x4 = z, _ the equivalent …rst-order equation and the initial conditions are x_ 1 x_ 3
= x2 = x4
x_ 2 = 2x4 x2 =x3 x_ 4 = 0:116978x3 x22 28:433 10 x1 (0) = 0 x2 (0) = = 4:5791 rad/s 6 tan 20 x3 (0) = 6 ft x4 (0) = 0 The MATLAB program for solving the equation of motion is function problem13_88 [t,x] = ode45(@f,(0:0.02:2),[0,4.5791,6,0]); plot(x(:,1),x(:,3),’linewidth’,1.5) xlabel(’theta (rad)’); ylabel(’z (ft)’) grid on printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) -2*x(4)*x(2)/x(3) x(4) 0.116978*x(3)*x(2)^2-28.433]; end end
125 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
6.5
6
z (ft)
5.5
5
4.5
4
3.5
0
2
4
6 8 theta (rad)
10
12
14
(c) The two lines of output spanning x4 = 0 are: t 7.6000e-001 7.8000e-001
x1 5.2777e+000 5.4915e+000
x2 1.0695e+001 1.0671e+001
x3 x4 3.9257e+000 -1.3783e-002 3.9302e+000 4.6720e-001
By inspection, minimum value of x3 is 3:93 ft ) hmin = 6
3:93 = 2:07 ft J
13.89 (a)
k(R − L0)
FBD θ
= maθ
mg FR
F
MAD maR
• + & mg sin k(R L0 ) = m(R k • = R_2 ) R (R L0 ) + g sin m = ma + . mg cos = m(R• + 2R_ _ ) 1 ) • = (g cos 2R_ _ ) R = maR
2
R_ )
126 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Substituting given data, the equations of motion become • = R_2 R
40(R
0:5) + 9:81 sin
J
• = 1 (9:81 cos R
2R_ _ ) J
The initial conditions are R(0) = 0:5 m
_ R(0) = (0) = _ (0) = 0 J
_ x3 = and x4 = _ , the equivalent …rst-order (b) Letting x1 = R, x2 = R, equation and the initial conditions are x_ 1 = x2 x_ 2 = x1 x24 40(x1 0:5) + 9:81 sin x3 x_ 3 = x4 x_ 4 = (9:81 cos x3 2x2 x4 )=x1 x1 (0) = 0:5 m x2 (0) = x3 (0) = x4 (0) = 0 The MATLAB program for numerical integration becomes function problem13_89 [t,x] = ode45(@f,(0:0.01:0.75),[0.5,0,0,0]); plot(x(:,3)*180/pi,x(:,1),’linewidth’,1.5) xlabel(’theta (deg)’); ylabel(’R (ft)’) grid on printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) x(1)*x(4)^2-40*(x(1)-0.5)+9.81*sin(x(3)) x(4) (9.81*cos(x(3))-2*x(2)*x(4))/x(1)]; end end
127 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
1.3
1.2
1.1
R (ft)
1
0.9
0.8
0.7
0.6
0.5
0
20
40
60 theta (deg)
80
100
120
(c) From the partial printout shown below, we see that Rmax = 1:186 m J t 6.5000e-001 6.6000e-001 6.7000e-001
x1 x2 1.1859e+000 1.4175e-002 1.1854e+000 -1.2450e-001 1.1834e+000 -2.6261e-001
x3 1.5646e+000 1.5823e+000 1.6002e+000
x4 1.7783e+000 1.7798e+000 1.7839e+000
13.90 (a) The equations of motion are identical to those derived in Prob. 13.89: • = R_2 R
40(R
0:5) + 9:81 sin
J
• = 1 (9:81 cos R
2R_ _ ) J
The initial conditions are also the same, except for R(0): R(0) = 0:75 m
_ R(0) = (0) = _ (0) = 0 J
(b) The only changes in the MATLAB program are in the arguments of ode45— changing R(0) to 0:75 and extending the integration period to 1:1 s, as shown below
128 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
[t,x] = ode45(@f,(0:0.01:1.1),[0.75,0,0,0]);
1.6
1.4
1.2
R (ft)
1
0.8
0.6
0.4
0.2
0
25
50
75 theta (deg)
100
125
150
(c) Partial printout of the results: t 6.7000e-001 6.8000e-001 6.9000e-001
x1 x2 1.2815e+000 1.4977e-001 1.2820e+000 -5.1364e-002 1.2805e+000 -2.5326e-001
x3 1.8433e+000 1.8549e+000 1.8663e+000
x4 1.1749e+000 1.1529e+000 1.1337e+000
1.0000e+000 1.0100e+000
5.2318e-001 -3.0221e+000 4.9342e-001 -2.9271e+000
2.2686e+000 2.2902e+000
2.1048e+000 2.2322e+000
By inspection, Rmax = 1:282 m J The cord becomes slack when R = 0:5 m. Using linear interpolation: 0:49342 2:2902
0:52318 0:5 = 2:2686
0:52318 2:2686
= 2:285 rad = 130:9
J
13.91 v = 150
mi h
1h 3600 s
5280 ft = 220 ft/s 1 mi
at = 0
129 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F1 F2
mat man MAD
W FBD Ft
= mat
F2 = 0
Fn
= man
F1 + W =
F1
= W
F
=
v2 g 28:1 lb # J 1+
Path
W v2 g
= 180
1+
2202 32:2(1300)
= 28:12 lb
13.92
130 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.93
13.94 Consider a water particle about to exit the pipe at C. Using polar coordinates, we have R
=
_
=
0:12 m R_ = 0:6 m/s 2 160 = 16:755 rad/s 60 2
•=0 R •=0
2
R _ = 0 0:12(16:755)2 = 33:69 m/s 2 a = R• + 2R_ _ = 0 + 2(0:6)(16:755) = 20:11 m/s q p 2 a = a2R + a2 = ( 33:69)2 + 20:112 = 39:2 m/s J
aR
• = R
131 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.95
13.96 Kinematics: • = 5 rad/s2 When
_ = 5t rad/s
= 2:5t2 rad
R = 0:18 m (constant)
= 30 = =6 rad: t2 = 2
R_ = 0
2:5
=
=6 = s2 2:5 15
aR
• = R
a
2 = R• + 2R_ _ = 0:18(5) + 0 = 0:900 m/s
0:18(5t)2 =
0:18(25)
15
=
0:9425 m/s
2
Kinetics (assume impending sliding):
30o 9.81m
maθ
maR
µs N FBD F FR
N
MAD
= ma N 9:81m cos 30 = 0:900m N = (0:900 + 9:81 cos 30 ) m = maR 9:81m sin 30 = 0:9425m sN (0:900 + 9:81 cos 30 ) m 9:81m sin 30 = s 9:396 s = 3:963 s = 0:422 J
0:9425m
132 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.97
13.98 y = sinh x dy dx d2 y dx2
x = sinh
1
y = sinh
1
(3:8) = 2:045 m
=
cosh x = cosh(2:045) = 3:929
=
sinh x = sinh(2:045) = 3:800 m 1 h i3=2 2 1 + (dy=dx) 1 + 3:9292 = d2 y=dx2 3:800
=
an =
v2
=
3=2
= 17:537 m
82 2 = 3:649 m/s 17:537
133 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
man mg FBD = tan Fn
Ft
1
N
θ
ma t MAD
(dy=dx) = tan
1
(3:929) = 75:72
= man N mg cos = man N 12(9:81) cos 75:72 = 12(3:649) N = 72:8 N J
= mat mg sin = mat 2 v_ = at = g sin = 9:81 sin 75:72 = 9:51 m/s J
13.99 an =
v2 4:22 2 = = 8:82 ft/s J R 2
3 lb mat o
45 1.8 lb
ma n N FBD
Fn
= man
MAD
3 + 1:8 sin 45
N=
N = 3:451 lb J Ft
= mat
at
=
1:8 cos 45 = 2
13:66 rad/s
3 (8:82) 32:2
3 at 32:2
J
13.100
mg
β man µsN
z
N n FBD
MAD
134 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Fz
=
N
=
0 cos
Fn v
N cos mg s sin
sN
sin
mg = 0 m(32:2) = 37:30m lb = cos 10 0:7 sin 10
v2 = man = s N cos + N sin r N = ( cos + sin ) m s r 300(37:30m) = (0:7 cos 10 + sin 10 ) m 3600 = 98:27 ft/s = 98:27 = 67:0 mi/h J 5280
13.101
13.102
θ mg
maR FBD
N
maθ
MAD
135 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F
= ma
mg sin = m(R• + 2R_ _ ) d_ _ g • = g sin = sin R d R 1 _2 g = cos + C 2 R
+.
= R• + 0
g sin _ d_
=
g sin d R
= 0. ) C = g=R.
Initial condition: _ = 0 when
g = (1 cos ) R p = R _ = 2gR(1
1 2 ) _ 2 v
FR
= maR
When N
=
cos
+-
0:
=
N
g cos = 0
2(1
r
2g (1 R cos ) J _=
cos )
cos )
• mg cos = m(R 2
R_ = = cos
1
2
R_ )
2g(1 cos ) 2 = 48:2 J 3
13.103 T ββT
T FBD
FBD
β mg
mg Before cut
=
n MAD mat
After cut
(a) Due to symmetry, TAB = TCB = T Fy T
=
0
=
mg 2 cos
+#
mg 2T cos = 0 mg = = 0:610mg J 2 cos 35
(b) Immediately after release v = 0; hence an = 0 Fn T
= man = mg cos
+ % T mg cos = 0 = mg cos 35 = 0:819mg J
(c) The results would be equal if mg 2 cos
= mg cos
cos2
= 0:5
= 45
J
136 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.104
13.105
137 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.106
R
θ 2a R = 2a cos
R_ = 2a sin
_ = 2a! 0 sin
vR = R_ = 2a! 0 sin v = R _ = 2a! 0 cos q 2 + v 2 = 2a! (constant) J v = vR 0
13.107
138 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
13.108
13.109
z A
z A m 0.6
θ
T R
B
FBD
ma n MAD
mg
B
(a) Fz T
= maz T cos mg = 0 mg 1:4(9:81) = = = 79:09 N J cos cos 80
(b) Fn v2 v
v2 R T R sin 79:09(0:6 sin 80 ) sin 80 2 = = = 32:87 (m/s) m 1:4 p = 32:87 = 5:73 m/s J
= man
T sin = m
139 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 14 14.1
14.2
140 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.3
14.4
14.5 (a) When L0 = b: A
UA
B
=
0
B
1 k 2
=
=
p
2 B
2b
2 A
b = 0:4142b 1 h 2 = k (0:4142b) 2
i 0 =
0:0858kb2 J
(b) When L0 = 0:8b:
UA
A
= b
B
=
0:8b = 0:2b 1 k 2
2 B
2 A
p = 2b 0:8b = 0:6142b i 1 h 2 k (0:6142b) (0:2b)2 = 2
B
=
0:1686kb2 J
141 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.6
14.7
180 lb FBD
µkN
30 lb 20o
N Fy = 0 U1
N
180 + 30 sin 20 = 0
N = 169:74 lb
1 mv 2 0 2 2 1 180 [ 0:15 (169:74) + 30 cos 20 ] x = 4:02 2 32:2 x = 16:38 ft J = T2
2
T2
(
sN
+ 30 cos 20 )x =
14.8 UA
B
= TB
d
=
TA
mghA
k mgd
=0
1 mv 2 2 A
2 2ghA + vA 2(32:2)(4) + 102 = = 13:88 ft J 2g k 2(32:2)(0:4)
142 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.9 U1
2
= T2
T1
(
k mg) x
1 k 2
2
=
0
1 mv 2 2 1
1 1 (150)(x 8)2 = (25)(8)2 2 2 75x2 1151x + 4000 = 0 The larger root is x = 10:03 m
0:2(25)(9:81)x
14.10 v1 =
U1
2
v2
80 km 1h
1000 m 1 km
1h = 22:22 m/s 3600 s
1 = T2 T1 mgh2 = m v22 v12 2 q p 2 2 = v1 2gh2 = 22:22 2(9:81)(10) = 17:249 m/s =
17:249
m s
1 km 1000 m
3600 s = 62:1 km/h J 1h
14.11
R2 = 0.2 m 2
.
0.75 m
A R1
1
.
The tension in the rope is a central force always passing through point A. U1
T1 U1
2
2
=
=
R1 ) mg h p = 10(0:2 0:22 + 0:752 ) = 1:3476 N m 0
= T2
F (R2
T2 = T1 :
1 2 mv 2 = 0:3vB 2 B 2 1:3476 = 0:3vB
0:6(9:81)(0:75)
vB = 2:12 m/s J
143 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.12
14.13
h
2
1 T1 U1
= T2 = 0
2
= T2
h
=
T1 :
1:223 m J
U1
2
=
1 k( 2
1 (1200)(0 2
2 2
2 1)
0:12 )
mgh = 0 0:5(9:81)h = 0
144 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.14
14.15
14.16 In the limiting case, package will arrive at D with zero velocity. ) TA = TD = 0.
2P
UA D = area under P -x diagram 10(9:81)(2) = 0 P = 98:1 N J
mghD = 0
145 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.17
A
2R
25o 20o
B
d
UA
TA UA
B
p
= Fd = F
B
=
2:769 lb ft
0
TB =
=
= TB
TA :
2R cos 25
= 1:2
p
2(1:8) cos 25
1 1 2 2 2 2 mvB = v = 0:03106vB 2 2 32:2 B 2 2:769 = 0:03106vB vB = 9:44 ft/s J
14.18 U1
2
v22
= T2
=
1 k 2
T1
2
1 (2000) (0:122 ) 2 2 89:43 (m/s)
30o
n
mg (1
cos 30 ) =
0:3(9:81)(2:5)(1
1 mv 2 2 2
0
cos 30 ) =
1 (0:3)v22 2
mg man
t FBD
mat MAD
N Fn
= man
N
mg cos 30 = m
N
= m g cos 30 +
v22
v22
= 0:3 9:81 cos 30 +
89:43 2:5
= 13:28 N J
146 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.19 mg 35o y
µk N
FBD x
N Fy N
= 0 + % N mg cos 35 = 0 = mg cos 35 = 5(9:81) cos 35 = 40:18 N
The distance traveled by the block is 3 + spring. U1
2
= T2
T2
mg(3 + ) sin 35
5(9:81)(3 + ) sin 35
m, where
k N (3
+ )
= deformation of the 1 k 2
2
=
0
1 mv 2 2 1
1 1 (4000) 2 = (5)(6)2 2 2 2000 2 + 18:089 144:27 = 0 The positive root is = 0:2641 m
0:25(40:18)(3 + )
Fmax = k = 4000(0:2641) = 1056 N J
14.20 Release position (position 1) Return position (position 2) T1 = 0
U1
2
U1
T2 =
1 2
= x1 = 1:5 ft = x2 = 0
1 20 2 1 mv 2 = v = 0:3106v22 2 2 2 32:2 2
1 2 k( 22 x1 ) k mg(x2 1) 2 1 = (22:5)(0 1:52 ) 0:25(20)(0 + 1:5) 2 = 17:813 lb ft
=
2
v2
= T2 T1 17:813 = 0:3106v22 = 7:57 ft/s J
147 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.21
14.22
148 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.23
14.24 Position 1 = position at entry (x = 0); Position 2 = position at exit (x = 54 in.). U1
2
= = =
T2
T1
(area under the F -x diagram) 10 + 18 18 + 24 24 + 16 (24) + (6) + (24) 2 2 2 942 lb in. = 78:5 lb ft
= =
U1
2
v2
1 1 3:2=16 2 m(v22 v12 ) = (v 2102 ) 2 2 32:2 2 3:106 10 3 v22 136:96 lb ft
= T2 T1 78:5 = 3:106 = 137:2 ft/s J
10
3 2 v2
136:96
149 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.25
14.26 Position 1 = release position ( = 0); choose as datum for gravitational potential energy. Position 2 = position where spring has maximum deformation ( = max ). V1 = T 1 = 0
T1 + V1 Fmax
V2 =
= T 2 + V2 = k
max
0=
W
max
W
= 2W J
1 + k 2
max
2 max
1 + k 2
T2 = 0
2 max
max
=
2W k
14.27 Let B denote the lowest point of the drop and let A be the datum for gravitational potenetial energy. TA
= TB = VA = 0
VB
= =
1 + k 2B = 2 150 B 24 000
mg(L + 120 VB h
2 B
B)
= 0: = L+
Pmax = k
150(160 +
B)
1 + (240) 2
2 B
= 14:78 ft = 160 + 14:78 = 174:8 ft J
B B B
= 240(14:78) = 3550 lb J
14.28 Position 1: position just before car hits the spring.
150 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Position 2: position where car come to a stop. T 1 + V1 1 18 2
103
10 103 3600
1 1 mv 2 + 0 = 0 + k 2 1 2
= T 2 + V2
2
=
1 k(0:52 ) 2
k = 556
2
103 N/m J
14.29 Position 1: position just before car hits the spring. Position 2: position where car come to a stop.
2 δ2 1
δ1
0.3 m
Spring 1 Spring 2 2
= 0:5 m
T 1 + V1 1 18 2
103
10 103 3600
1
=
= T 2 + V2
2
=
2
0:3 = 0:2 m 1 1 mv12 + 0 = 0 + k 2 2
1 k(0:22 + 0:52 ) 2
k = 479
2 1
+
2 2
103 N/m J
14.30
151 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.31 Choosing position A as the datum for gravitational potential energy: VA VB TB
1 2 1 k = (2000) 2A = 1000 2A TA = 0 2 A 2 = mgh = 0:5(9:81)(0:8) = 3:924 N m 1 1 = mv 2 = (0:5)(1:52 ) = 0:5625 N m 2 B 2 =
VA + TA A
= VB + TB : 1000 = 0:0670 m J
2 A
= 3:924 + 0:5625
14.32
152 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.33 A
0.4 m 0.2 m
0.1 m Datum
B
Position A: p = 0:42 + 0:12 0:15 = 0:2623 m A 1 1 VA = mg(2R) + k 2A = 0:6(9:81)(0:4) + (200)(0:2623)2 = 9:235 N m 2 2 1 1 TA = mv 2 = (0:6)(3)2 = 2:70 N m 2 A 2 Position B: B
=
VB
=
TB
=
T A + VA = T B + VB
0:3 0:15 = 0:15 m 1 2 1 k B = (200)(0:15)2 = 2:25 N m 2 2 1 1 2 2 2 mvB = (0:6)vB = 0:3vB 2 2 2 2:70 + 9:235 = 0:3vB + 2:25
vB = 5:68 m/s J
14.34
153 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.35
14.36 Position 1 = position where = max ; choose as datum for gravitational potential energy. Position 2 = position where = 0. T 1 + V1 v22
= T2 + V2 =
2Lg(1
1 mv 2 mgL(1 cos 50 ) 2 2 2 cos 50 ) = 2(2)(9:81)(1 cos 50 ) = 14:017 (m/s) 0+0=
T
man FBD
MAD
mg Fn T
= man = m g+
+" v22 L
v22 L 14:017 = 0:5 9:81 + 2 T
mg = m
= 8:41 N J
14.37 The potential energy of a spring in terms of the spring force F is Ve =
1 k 2
2
=
1 k 2
F k
2
=
1 F2 2 k
154 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Position 1 = position just before drum stops (choose as datum for gravitational potential). Position 2 = position of maximum tension in cable. In Position 1 the cable force is the weight W of the elevator. ) V1
=
T1
=
1 12002 1 W2 = 1:0909 N m = 2 k 2 660 103 1W 2 1 1200 2 v = (8) = 1192:5 N m 2 g 1 2 32:2
(Ve )1 =
Let F be the cable force in Position 2 V2 = (Ve )2 + (Vg )2 =
=
1 F2 2 660 103
T 1 + V1 = T 2 + V 2 7:576
1 F2 F W 2 k k F F (F 2400) 1200 = 3 660 10 1:32 106
)
10
7
F2
1:8182
1192:5 + 1:0909 10
3
F
=
0+
F (F 2400) 1:32 106
1193:6 = 0 F = 40 900 lb J
14.38 (a) Choose the release position (x = 0) as the datum for gravitational potential energy. Consequently, V1 = T1 = 0 in the release position. Noting that the elongation of the spring is = 2x, we obtain for arbitrary x V2
=
T2
=
1 1 k(2x)2 mgx = (50)(4x2 ) 2 2 1 120 2 1 2 mv = v = 1:8634v 2 2 2 32:2
V2 + T2 v2 v (b)
120x = 100x2
120x
= V1 + T 1 : 100x2 120x + 1:8634v 2 = 0 120x 100x2 = = 64:40x 53:67x2 1:8634 p = 64:40x 53:67x2 ft/s J
xmax occurs when v 64:40xmax 53:67x2max
= =
0: 0
xmax = 1:200 ft J
155 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
vmax
14.39
vmax occurs when d(v 2 )=dx = 0: 64:40 2(53:67)x = 0 x = 0:60 ft p = 64:40(0:60) 53:67(0:60)2 = 4:40 ft/s J
1 2.5 in. 2 1 2
V1 V2 T2
10 in. . 78 in 10.30
= 0:15 in. = 0:0125 ft = (10:307 8 10) + 0:15 = 0:4578 in. = 0:0381 5 ft 1 2 = k 21 = 28(0:012 5)2 = 0:004 375 lb ft = 2 k 2 1 1 2 2:5 = Wy + 2 k 2 = 0:8 + 28(0:038 15)2 = 2 12 1 0:8 1 mv22 = v22 = 0:012 422v22 = 2 2 32:2 V1 + T1 v2
= V2 + T2 0:004 375 + 0 = = 3:24 ft/s J
0:125 92 lb ft
0:125 92 + 0:012 422v22
14.40 Datum
5 ft
1.0 ft 6 ft Position 1 V1
=
1:2(1:0)(0:5) =
V2
=
1:2(6)(3) =
T 1 + V1 v2
Position 2 0:6 lb ft
21:6 lb ft
= T2 + V2 0 = 13:71 ft/s J
v2
T1 = 0 1 1:2(6) 2 T2 = v = 0:11180v22 2 32:2 2 0:6 = 0:11180v22
21:6
156 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.41 Choose line AC as the datum for gravitational potential. V1
V2 T2
1 h (Vg )1 + (Ve )1 = mgR sin 30 + k R(45 2 1 15 = 0:21(9:81)(0:5) sin 30 + (80) 0:5 2 180 = mgR = 0:21(9:81)(0:5) = 1:0301 N m 1 1 mv 2 = (0:21)v22 = 0:105v22 = 2 2 2 =
T 1 + V1 v2
30) 2
180
i2
= 1:2004 N m
= T2 + V2 0 + 1:2004 = 0:105v22 + 1:0301 = 1:274 m/s J
14.42
157 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.43
14.44
158 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.45
14.46
159 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.47 Choose point O as the datum for gravitational potential energy. VA VB TA
1 1 = mgR + k(OA L0 )2 = 2:4(1:5) + (10)(1:5 1:0)2 = 4:850 lb ft 2 2 p 1 1 2 = mgR + k(OB L0 ) = 2:4(1:5) + (10)(1:5 2 1:0)2 2 2 = 2:687 lb ft 1 2:4 2 1 2 2 = v = 0:03727vB = 0 TB = mvB 2 2 32:2 B VA + T A = V B + T B 2 4:850 + 0 = 2:687 + 0:03727vB
vB = 7:62 ft/s J
160 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.48 On surface of earth (R = Re ): V1
= =
6:673 GMe m = Re 7:50 1010 J
10
11
(5:974 1024 )(1200) 6378 103
In outer space (R ! 1), V2 = 0. ) Energy required = V2
V1 = 7:50
1010 J J
14.49 V1
=
T1
=
V2
=
(3:98 1014 )m GMe m = 6:633 107 m N m = R1 6 106 1 1 mv 2 = m(10 500)2 = 5:513 107 m N m 2 1 2 GMe m (3:98 1014 )m = 1:730 4 107 m N m = R2 23 106 V1 + T1
6:633
107 m + 5:513
= V2 + T 2
107 m = v2
=
1 107 m + mv22 2 3490 m/s J 1:730 4
14.50
161 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.51
mg ma F N FBD F P
MAD
4200 (12) = 1565:2 lb 32:2 5280 = 137 740 lb ft/s = 250 hp J = F v = 1565:2 60 3600 = ma =
14.52 Let F be the driving force. P
= F v = (ma) v = P dx = v 2 dv m
)
dv dx dv v = mv 2 dx dt dx P 1 3 x= v +C m 3
m
Initial condition: v = 30 mi/h = 44 ft/s when x = 0. 1 2 (44)3 (ft/s) 3
)C=
When v = 60 mi/h = 88 ft/s: x =
x=
m 3 (v 3P
3600=32:2 (883 3(40 550)
443 )
443 ) = 1010 ft J
14.53 Let F be the driving force. P v dv
dv v dt 1 2 P v = t+C 2 m
= F v = (ma) v = m =
P dt m
Initial condition: v = v0 when t = 0. ) C = v02 =2 r 1 2 P 1 2 P ) v = t + v0 v = 2 t + v02 2 m 2 m When t = 60 s: v=
s
2
450 150
103 (60) + 102 = 21:4 m/s J 103
162 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.54 P =
dW h 15 = 600 = 12 857 lb ft/s = 23:4 hp J dt 0:7
14.55 Let P be the power supplied to driving wheels. From Sample Problem 14.6: Px =
When x = )
1 mv 3 + C 3 5280 3600
0, v = 30 mi/h = 30 0=
When x = ) P
=
Pengine
=
1 3200 (44:0)3 + C 3 32:2
= 44:0 ft/s C=
320 ft, v = 50 mi/h = 50
2:822
5280 3600
= 73:33 ft/s
3200 (73:33)3 2:822 32:2 32 000 32 000 lb ft/s = = 58:18 hp 550 P 58:18 = = 71:0 hp J 0:82
P (320) =
1 3
106 lb ft2 /s
106
14.56 Pin Pout
240 hp = 132 103 lb ft/s dW 62:4 1600 = h= (58) = 96:51 103 lb ft/s dt 60 Pout 96:51 103 = 100% = 100% = 73:1% J Pin 132 103 =
14.57
v
y. x.
100
2.8
From the velocity diagram: y_ = p
2:8 v = 0:02799v 1002 + 2:82
163 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
P v
= mg y_ 4800 = 12:49 m/s J
103 = (1400
103 )(9:81)(0:02799v)
14.58
14.59
14.60
320(9.81) N F
20o
y 0.35N
Fy Fx
= =
0 0 F
x N FBD
N 320(9:81) cos 20 = 0 N = 2950 N F 0:35N 320(9:81) sin 20 = 0 0:35(2950) 320(9:81) sin 20 = 0 F = 2106 N
P = F v0
4000 = 2106v0
v0 = 1:899 m/s J
164 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.61 (a) Pout
= =
(mg)v = 500(9:81)(0:68) = 3335 W 3335 Pout 100% = 100% = 79:4% J Pin 4200
(b) v=
Pout 3335 = = 0:425 m/s J mg 800(9:81)
14.62
14.63
14.64 The propelling force during acceleration is F = ma + FD = ma + 0:14v 2
165 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The power of F is )a=
P = F v = mav + 0:14v 3
P
0:14v 3 mv
(a) When v = 50 km/h = 50(1000=3600) = 13:889 m/s: a=
103 0:14(13:889)3 2 = 5:75 m/s J 2000(13:889)
160
(b) When v = 110 km/h = 110(1000=3600) = 30: 56 m/s: a=
103 0:14(30:56)3 2 = 2:55 m/s J 2000(30:56)
160
14.65 ) P = F v = F0 v + cv 3
F = F0 + cv 2 19:3 = F0 (50) + c(50)3 32:3 = F0 (60) + c(60)3 The solution is: c = 1:384 8 When v = 70 mi/h, we have
10
4
19:3 = 50F0 + 1:25 32:3 = 60F0 + 2:16
105 105
, F0 = 0:03979
P = 0:03979(70) + (1:3848
10
4
)(703 ) = 50:3 hp J
14.66
y
15 lb x
F 35o
0.6N
vx
35o 3 ft/s
Velocity diagram N FBD
Fy Fx
=
0 N cos 35 + 0:6N sin 35 15 cos 35 = 0 N = 10:562 lb = 0 F 15 sin 35 + N sin 35 0:6N cos 35 = 0 F 15 sin 35 + 10:562 sin 35 0:6(10:562) cos 35 = 0 F = 7:737 lb P = F vx = 7:737(3 cos 35 ) = 19:01 lb ft/s J
166 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
*14.67
14.68 T0 v1 L0
1
L0
1
14.69 L1
2
=
Z
1 1 T1 v2 mv02 T1 = mv12 ) = 12 = 0:85 2 2 T0 v0 p p = 0:85v0 = 0:85(20) = 18:439 m/s =
= p1
+ " L0 1 = mv1 ( mv0 ) 0:25 (20 + 18:439) = 0:298 lb s J = m(v0 + v1 ) = 32:2
5s
F dt =
0
p0
Z
5s
(2ti
0:6t2 j)dt = t2 i
0:2t3 j
0
mv1 + L1
2
v2
= mv2 = 22:5i
2(10i) + 25(i 12:5j m/s J
5s 0
= 25(i
j) N s
j) = 2v2
14.70 v1 v2 L1
2
= 60(cos 30 i + sin 30 j) = 51:96i + 30j ft/s = 60j ft/s = P t = 2:0P lb s = m(v2 v1 ) 3 2:0P = [(0 51:96)i + (60 32:2 P = 2:42i + 1:398j lb J
L1
2
30)j]
167 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.71
80 lb
40 lb o
30 y 0.4N N FBD
(L1
2 )x
x
80 + 40 sin 30 = 0
Fy = 0
N
= m(v2
v1 )
[40 cos 30
N = 60 lb
0:4(60)] (4) =
v2 = 17:13 ft/s J
80 (v2 32:2
0)
14.72 W FBD F =µsW
N=W
The limiting force between the tires and the road is F = L0
1
t
sW
= 0:65(2800) = 1820 lb
= p1 p0 + ! F t = mv1 mv0 m 2800=32:2 5280 = (v0 v1 ) = 60 0 = 4:20 s J F 1820 3600
168 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.73
14.74
14.75
W
mv2 60o
y x
N FBD during contact
68o mv1 Momentum just before impact
Momentum just after impact
(a) (L1
2 )x
v2
= m [(v2 )x (v1 )x ] 0 = m(v2 cos 60 cos 68 cos 68 = v1 = 28 = 20:98 ft/s J cos 60 cos 60
v1 cos 68 )
169 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) (L1
2 )y
= m [(v2 )y (v1 )y ] = m(v2 sin 60 + v1 sin 68 ) 2:6=16 = (20:98 sin 60 + 28 sin 68 ) = 0:223 lb s J 32:2
14.76 W
x N FBD during contact L1 2 1:8j
θ2
y 45o mv1 Momentum just before impact
= m(v2 v1) = 0:05 [v2 (cos
2i
+ sin
mv2
Momentum just after impact
20(cos 45 i
2 j)
sin 45 j)]
Equating like components: 0 = v2 cos 1:8 = v2 sin 0:05 The solution is v2 cos ) v2 2
20 cos 45
2 2
+ 20 sin 45
= 14:142, v2 sin 2 = 21:86. p = 14:1422 + 21:862 = 26:0 m/s J 21:86 = tan 1 = 57:1 J 14:142
2
14.77 Use principle of impulse and momentum to compute the velocity v2 immediately after the initial impulse: L1
2
= m (v2
v1 )
10 =
25 (v2 32:2
0)
v2 = 12:880 ft/s
25 lb
0.45(25) = 11.25 lb N = 25 lb FBD
170 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Use principle of work and kinetic energy to …nd the distance x3 traveled: U2
= T3
3
T2
11:25x3 = 0
1 2
25 32:2
(12:8802 )
x3 = 5:72 ft J Use principle of impulse and momentum to compute the time t3 of travel: L2
3
= m(v3 t3 =
v2 )
11:25t3 =
25 (0 32:2
12:880)
12:880 = 0:889 s J 0:45(32:2)
14.78
14.79
171 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.80 y m
L0 1 (mg sin 15 ) t j ) v1
mg
v0 60o x
15
= m(v1 = m [v1
o
n15 mg si o 15
o
v0 ) v0 (cos 60 i + sin 60 j)]
= v0 (cos 60 i + sin 60 j) g t sin 15 j = 2(cos 60 i + sin 60 j) 9:81(0:5) sin 15 j = 1:0i + 0:463j m/s J
14.81 L1
2
= m(v2 v1 ) = 10 [3:6i = 7:30i + 25j N s J
5(i cos 30
j sin 30 )]
14.82 F ) L1 L1
2
2
(4)2 = pA = 4(1 e 0:5t ) = 50:27(1 e 0:5t ) lb 4 Z 10 Z 10 = F dt = 50:27 (1 e 0:5t )dt = 402:8 lb s
= m(v2
0
v1 )
0
402:8 =
500 (v2 32:2
0)
v2 = 25:9 ft/s J
14.83
172 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.84
14.85
14.86 L1
2
=
Z
t2
F (t) dt =
0
L1
2
Z
t2
(600
0
= m(v2 t2
v1 )
600t2
240t + 4200 = 0
5t) dt = 600t2
5 2 t 2 2
5 2 t = 3500(3 0) 2 2 t2 = 19:0 s J
173 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.87 Impulse of F
= = =
(L1
2 )F
=
Z
1:0 + 1:2 1:0 + 1:2 (0:75) + 1:2(1:25) + (1:0) W 2 2 3:425W "
Impulse of W = (L1 (L1
2 )F
(L1
3:425W
F dt = area under F -t diagram
2 )W
3W
2 )W
=W
= m(v2 v1 ) W (v2 0) = 9:81
t = 3W #
v2 = 4:17 m/s J
14.88
14.89
14.90 v
= =
r = hO
= =
0:2i + 0:2j 0:3k 0:22 + 0:22 + 0:32 2:425i + 2:425j 3:638k m/s ! OA = 0:6j m i j k 2:425 2:425 3:638 (0:2) (r v)m = 0 0:6 0 0:437i 0:291k N m s J (5) p
174 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.91
y A
O
mv sin40o mv mv cos40o x
R 40o
(a) hO = mvR =
2=16 (12)(1:5) = 0:0699 lb ft s 32:2
J
(b) hA
= mv cos 40 (R cos 40 ) mv sin 40 (R 2=16 (12)(1:5)(1 = mvR(1 sin 40 ) = 32:2 = 0:0250 lb ft s J
R sin 40 ) sin 40 )
14.92 2θ
v
y
m r O
R 2θ
θ
r = 2R cos (i cos + j sin )
h = r =
(mv) = 2mvR cos
x
v = v( i sin 2 + j cos 2 ) i cos sin 2
j sin cos 2
k 0 0
2mvR cos (cos cos 2 + sin sin 2 )k = 2mvR cos2
kJ
175 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.93
176 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.94
14.95
14.96
. θ
z
R M
=
h1
= Z
t2
M dt
=
0
h2 = h1 +
Z
M m 12 N.m 0
0
t2 t
1.0 s
mv1 Rk = m(R _ 1 )Rk = mR2 _ 1 k 12 (3)2 (5)k = 16:770k lb ft s 32:2 1 (12)(1:0) + 12(t2 1:0) k = (12t2 6) k lb ft s 2
t2
M dt
0 = [ 16:770 + (12t2
0
6)] k
t2 = 1:898 s J
177 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.97
z L
θ
R
ω
m
L
h = mRvk = m(L sin )(!L sin )k = mL2 ! sin k h1 = 0:4(0:6)2 (12) sin2 60 k = 1:296k N m s h2 = 0:4(0:6)2 ! 2 sin2 25 k = 0:02572! 2 k N m s h1 !2
= h2 1:296k =0:02572! 2 k = 50:4 rad/s J
14.98
x mg
A
FBD
Because there are no horizontal forces acting on the projectile, the horizontal component of velocity is constant. Therefore, x = (v0 cos
(AA )1
2
=
Z
0) t
= (200 cos 30 ) t = 173:21t m
10 s
MA dt =
0
=
2(9:81)(173:21)
Z
10 s
mgx dt =
0
Z
10 s
2(9:81)(173:21t) dt
0
102 2
= 169:9
103 N m s
178 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(hA )2
(hA )1 (hA )2
= (AA )1 2 (hA )2 0 = 169:9 3 = 169:9 10 N m s J
103 N m s
14.99
14.100
14.101 (a) Energy is conserved. Choose Position 2 as the datum for gravitational potential energy
z R N T 1 + V1 v2
mg
FBD
1 1 = T 2 + V2 mv12 + mgh = mv22 + 0 2 2 q p 2 2 = v1 + 2gh = 6 + 2(9:81)(0:5) = 6:768 m/s J
(b) Angular momentum about the z-axis is conserved (hz )1 cos
=
(hz )2 (mv1 ) R = (mv2 cos ) R v1 6 = = = 0:8865 = 27:6 J v2 6:768
179 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.102
14.103 Angular momentum about the z-axis is conserved: (hz )1 = (hz )2 (m! 1 R1 )R1 = (m! 2 R2 ) R2 !2 = !1
R12 = 10 R22
62 152
= 1:6 rad/s
(v )2 = ! 2 R2 = 1:6(15) = 24:0 in./s J Kinetic energy is conserved: T1 = T2 1 1 m(! 1 R1 )2 = m (v )22 + (vR )22 2 2 q (vR )2
=
14.104
(! 1 R1 )2
=
p
(v )22
24:02 = 55:0 in./s J
(102 )(62 )
z
W T
θ
N=W
R
180 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(a) Angular momentum about z-axis is conserved. (hz )1
=
_2
=
(hz )2 R1 (mv )1 = R2 (mv )2 R1 (mR1 _ 1 ) = R2 (mR2 _ 2 ) R1 R2
2
_1 =
1:5 0:8
2
(6) = 21:09 rad/s J
(b) hz
= R(mv ) = R(mR _ ) = mR2 _
h_ z
= m(2RR_ + R2 •) = 0
)•=
2R_ _ R
When R = 0:8 ft: •2 =
2R_ _ 2 = R2
2( 0:3)(21:09) 2 = 15:82 rad/s J 0:8
14.105
14.106
181 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.107 h20 GMe (1 + e cos ) RA 10:5 106 1 + e cos 65 1 + e cos 70 ) = = RB 1 + e cos 0 16 106 1+e Since e > 1, the trajectory is a hyperbola J R=
10:5
RA
=
106
=
h0
=
h0 = RA v0
e = 1:4713
h20 GMe (1 + e cos 0) (6:674 10:170 v0 =
h20 10 11 )(5:972 10
10
1024 )(1 + 1:4713)
2
m =s
h0 10:170 1010 = 9690 m/s J = RA 10:5 106
14.108 GMe Re
= (6:674 10 11 )(5:972 = 6378 103 m
v1
1024 ) = 3:986
1014 m3 =s2
h2
h1 O
v2 R1
R2
182 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
R1 v1 ) R2
= R2 v2 (angular momentum about O is conserved) v1 6 = R1 = R1 = 0:8R1 v2 7:5
1 2 GMe 1 2 GMe v1 = v (energy is conserved) 2 R1 2 2 R2 1 1 1 2 (v v22 ) = GMe 2 1 R1 R2 1 1 1 (60002 75002 ) = 3:986 1014 2 R1 0:8R1 R1 h1 h2
= 9:842 106 m R2 = 0:8(9:842 106 ) = 7:874 106 m = R1 Re = (9:842 6:378) 106 = 3:464 106 m J = R2 Re = (7:874 6:378) 106 = 1:496 106 m J
14.109
183 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.110 From Prob.(14.109):
= 2:359
106 s
14.111 From Table 14.2 (for Mars): GM = 6:674
10
11
(0:6417
1024 ) = 4:283
1013 m3 /s
2
14.112 (a) Rmin Rmax GMe
= 6378 + 2500 = 8878 km = 6378 + 4500 = 10 878 km = (6:674 10 11 )(5:972 1024 ) = 3:986 1014 m3 =s2 Rmax Rmin 10 878 8878 e = = 0:101 24 = Rmax + Rmin 10 878 + 8878
184 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
vmax vmin
=
=
s s
GMe (1 + e) = Rmin GMe (1 e) = Rmax
r r
(3:986
1014 )(1 + 0:101 24) = 7032 m/s J 8878 103
(3:986
1014 )(1 0:101 24) = 5739 m/s J 10 878 103
(b) h0
103 (5739) = 6:243
= Rmax vmin = 10 878
1010 m2 =s
2 h30 2 (6:243 1010 )3 = (GMe )2 (1 e2 )3=2 (3:986 1014 )2 (1 0:101 242 )3=2 11 290 s J
= =
14.113 Find speed at A just before retrorockets are …red. The orbit is circular (e = 0). R ) h0 h0
h20 GM p e p = RGMe = (6688 103 )(6:674 10 11 )(5:972 = 5:163 1010 m2 =s 5:163 1010 h0 = = 7720 m/s = Rv1 v1 = R 6688 103
=
1024 )
Find speed at A just after the retrorockets are …red. The new orbit is elliptic with Rmax = R and Rmin = Re e=
6378
Rmax Rmin 6688 6378 = 0:02373 = Rmax + Rmin 6688 + 6378
Rmin
=
103
=
h0
=
h0 = Rv2 L1
2
= m(v2
h20 GMe (1 + e) (6:674 5:101 v2 =
h20 10 11 )(5:972 1024 )(1 + 0:02373) 1010 m2 =s h0 5:101 = R 6688
v1 ) = 6000(7627
1010 = 7627 m/s 103
7720) =
5:6
105 N s J
The answer is accurate to only 2 signi…cant …gures because 2 …gures were lost in the subtraction.
185 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.114 From Table 14.2 (for Venus): GM Rv
1016 ft3 /s
= (3:440 10 8 )(333:5 1021 ) = 1:1472 = 3761 mi = 19:858 106 ft
x1
2
F Rv
y1
R1
vmax
Hmin
v1 (a) q
x21 + y12 =
p
52 + 12
R1
=
h0
= v1 y1 = 8000(1:0
108 = 5:099
108 ) = 800
108 ft
109 ft2 /s
Equation (14.55): E0
=
1 2 v 2 1
=
9:501
GM 1 = (8000)2 R1 2
1016 108
1:1472 5:099
2
106 (ft/s)
Since E > 0, the trajectory is a hyperbola J (b) Equation (14.57): s 2 h0 e = 1 + 2E0 GM s 800 109 = 1 + 2(9:501 106 ) 1:1472 1016
2
= 1:0452
Equation (14.62): 2
800 109 h20 = GM (1 + e) 1:1472 1016 (1 + 1:0452)
Rmin
=
Hmin
= 27:278 106 ft = Rmin Rv = (27:278 19:858) = 7:42 106 ft = 1405 mi J
106
186 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(c) Angular momentum about F is conserved: vmax Rmin = h0
vmax =
h0 800 109 = 29 300 ft/s J = Rmin 27:278 106
14.115 From Table 14.2 (for Venus): GM Rv
(3:440 10 8 )(333:5 1021 ) = 1:1472 3761 mi = 19:858 106 ft
= =
2
Rv
x1 y1
1016 ft3 /s
Rmin
R1 v1
(a) R1 = Equation (14.55):
q p x21 + y12 = 52 + 12 E0 =
1 2 v 2 1
108 = 5:099
108 ft
GM R1
For elliptical orbit E0 < 0. In the limit E0 = 0 (parabola), in which case Eq. (14.55) yields 0 v1
1 2 GM v 2 1 R1 r r 2GM 2(1:1472 1016 ) = = = 6710 ft/s J R1 5:099 108 =
(b) Equation (14.62): Rmin =
h20 GM (1 + e)
Substituting h0 = v1 y1 and e = 1, we get Rmin =
(6710)2 (1:0 108 )2 = 19:623 (1:1472 1016 )(2)
106 ft
Since Rmin < Rv , the spacecraft would crash. J
187 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.116 (a) At insertion point: = Re + H = (6:378 + 0:240) 106 = 6:618 106 m = vR cos = 9600(6:618 106 ) cos 4 = 63:38 109 m2 /s
R h0
Equation (14.55): E0
1 2 GM v = 2 R 14:150 106
= =
(b) Equation (14.57): s
1 + 2E0
e =
s
1 3:986 1014 (9600)2 2 6:618 106 2 (m/s) < 0 ) Trajectory is an ellipse J
h0 GM
1 + 2( 14:150
=
2
106 )
63:38 3:986
109 1014
2
= 0:5334
Solving Eq. (14.61) for : =
1
cos
1
=
cos
=
11:45
"
1 e
h20 R GM
1 0:5334
1
63:38 109 (6:618 106 )(3:986
2
1014 )
!#
1
J
(c) Equation (14.62): 2
63:38 109 h20 = = 6:572 GM (1 + e) (3:986 1014 )(1 + 0:5334)
Rmin
=
Hmin
= Rmin
Re = (6:572
6:378)
106 = 1:94
106 m
105 m = 194 km J
14.117 (a) At point A: R E0
= Re + H = (6:378 + 0:240) 106 = 6:618 106 m 1 3:986 1014 1 2 GMe v = (11:4 103 )2 = = 4:750 2 R 2 6:618 106
2
106 (m/s)
Since E0 > 0 , the trajectory is a hyperbola. Q.E.D.
188 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) When R ! 1, then E0 ! ) v1 =
14.118
p
2E0 =
1 2 v 2 1
p 2 (4:750
106 ) = 3080 m/s J
For the circular orbits: R1 = 3800 mi = 20:06
106 ft
R2 = 25 400 mi = 134:11
106 ft
Equation (14.66): v1 v2
= =
r
r
GMe = R1 GMe = R2
r r
1:4076 20:06
1016 = 26:49 106
1:4076 134:11
1016 = 10:245 106
103 ft/s 103 ft/s
For the transfer orbit: Rmin = R1
Rmax = R2
Equation (14.68): e=
Rmax Rmin 134:11 20:06 = 0:7398 = Rmax + Rmin 134:11 + 20:06
From Table 14.2: vmax
=
s
GMe (1 + e) = Rmin
r
(1:4076
1016 ) (1 + 0:7398) 20:06 106
34:94 103 ft/s s r GMe (1 e) (1:4076 1016 ) (1 0:7398) = = Rmax 134:11 106
= vmin
= At A
: =
At B
: =
5:226
103 ft/s
Lpark-tranfer = m(vmax v1 ) 2000 (34:94 26:49) 103 = 525 103 lb s J 32:2 Ltransfer-geo = m(v2 vmin ) 2000 (10:245 5:225) 103 = 312 103 lb s J 32:2
189 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.119
14.120 GMe Re
= (6:674 10 = 6378 km
11
)(5:972 1024 ) = 3:986 Rmax = Re + H
1014 m3 =s2
At point A: (h0 )A
=
(vA cos ) Re = (2500 cos 45 ) (6378
(E0 )A
=
1 2 v 2 A
GMe 1 = (2500)2 Re 2
3:986 6378
103 ) = 1:1275 1014 = 103
5:937
1010 m2 =s 107 m2 =s2
At point B: (h0 )B = vB Rmax
(E0 )B =
1 2 v 2 B
GMe 1 2 = vB Rmax 2
3:986 1014 Rmax
190 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Angular momentum and mechanical energy are conserved: (h0 )B
=
(h0 )A :
(E0 )B
=
(E0 )A :
vB Rmax = 1:1275 1010 m2 =s 1 2 3:986 1014 vB = 5:937 2 Rmax
(a) 107 m2 =s2
(b)
2 Multiply Eq. (b) by Rmax :
1 2 2 v R 2 B max
1014 Rmax + 5:937
3:986
2 107 Rmax =0
Substitute for vB Rmax from Eq. (a): 1 2 (1:1275 1010 )2 3:986 1014 Rmax + 5:937 107 Rmax 2 2 5:937 107 Rmax 3:986 1014 Rmax + 6:356 1019 2 5:937Rmax
3:986
10
7
Rmax + 6:356
10
12
=
0
=
0
=
0
Solution is Rmax H
106 m = 6550 km Re = 6550 6378 = 172:0 km J
= 6:550 = Rmax
14.121 (a)
maθ R
FR
= maR
• R
= R_
2
• R
= R_
2
=
F
θ FBD
O
+%
• F = m(R
+-
MAD
O
3:440 2 GMe = R_ R2 1:4076 1016 J R2
F = ma
maR
2
R_ ) 10
8
GmMe • = m(R R2 (409:2 1021 )
2
R_ )
R2
0 = m(R• + 2R_ _ )
•=
2R_ _ J R
191 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
= Re + H0 = (3963 + 480) (5280) = 2:346 107 ft J 5280 _ R(0) = v0 sin 5 = 17 500 sin 5 = 2237 ft/s J 3600 (0) = 0 J cos 5 _ (0) = v0 cos 5 = 17 500 5280 R(0) 3600 2:346 107
R(0)
=
1:0899
10
3
rad/s J
_ x3 = and x4 = _ , the equivalent …rst-order (b) Letting x1 = R, x2 = R, equations and the initial conditions are: x_ =
x2
x(0) =
x1 x24 2:346
1:4076 1016 x21 107
2237
0
x4 1:0899
2x2 x4 x1 10
3
T
T
The corresponding MATLAB program is: function problem14_121 [t,x] = ode45(@f,(0:50:7500),[2.346e7,2237,0,1.0899e-3]); printSol(t,x) plot(t,x(:,1),’linewidth’,1.5) xlabel(’t (s)’); ylabel(’R (ft)’) grid on printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) x(1)*x(4)^2-1.4076e16/x(1)^2 x(4) -2*x(2)*x(4)/x(1)]; end end
192 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
7
3
x 10
2.9 2.8
R (ft)
2.7 2.6 2.5 2.4 2.3 2.2
0
1000
2000
3000
4000 t (s)
5000
6000
(c) The following lines of printout span the time when t 7.0000e+003 7.0500e+003
7000
8000
=2 :
x1 x2 x3 x4 2.3402e+007 2.1687e+003 6.2548e+000 1.0953e-003 2.3513e+007 2.2835e+003 6.3093e+000 1.0850e-003
Use linear interpolation to …nd t at = 2 : 6:3093 6:2548 2 6:2548 = 7050 7000 t 7000
t = 7026 s J
(d) The partial printouts shown below span Rmax and Rmin : t 2.7500e+003 2.8000e+003 2.8500e+003
x1 x2 x3 x4 2.9411e+007 1.0793e+002 2.2914e+000 6.9351e-004 2.9414e+007 1.5877e+000 2.3261e+000 6.9338e-004 2.9412e+007 -1.0476e+002 2.3608e+000 6.9350e-004
6.2500e+003 6.3000e+003 6.3500e+003
2.2616e+007 -2.3204e+002 2.2609e+007 -5.2497e+001 2.2611e+007 1.2733e+002
5.3933e+000 5.4520e+000 5.5107e+000
1.1728e-003 1.1735e-003 1.1733e-003
By inspection, we …nd that Rmax
= 29:41 106 ft = 5570 mi Rmin = 22:61 106 ft = 4282 mi ) Hmax = Rmax Re = 5570 3963 = 1607 mi J ) Hmin = Rmin Re = 4282 3963 = 319 mi J
193 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.122 (a) The equations of motion were derived in the solution of Prob. 14.121: 1:4076 1016 J R2
• = R_2 R
•=
2R_ _ J R
The initial conditions are: = Re + H0 = (3963 + 480) (5280) = 2:346 107 ft J 5280 _ sin 5 = 1917:4 ft/s J R(0) = v0 sin 5 = 15 000 3600 (0) = 0 J cos 5 _ (0) = v0 cos 5 = 15 000 5280 R(0) 3600 2:346 107
R(0)
=
0:9342
10
3
rad/s J
_ x3 = and x4 = _ , the equivalent …rst-order (b) Letting x1 = R, x2 = R, equations and the initial conditions are: x_ = x(0) =
x2
x1 x24
2:346
1:4076 1016 x21 107
1917:4
0
x4 0:9342
T
2x2 x4 x1 10
3
T
The corresponding MATLAB program is: function problem14_122 [t,x] = ode45(@f,(0:10:1500),[2.346e7,1917.4,0,0.9342e-3]); printSol(t,x); plot(x(:,3)*180/pi,x(:,1)/5280,’linewidth’,1.5) xlabel(’theta (deg)’); ylabel(’R (mi)’) grid on printSol(t,x) function dxdt = f(t,x) dxdt = [x(2) x(1)*x(4)^2-1.4076e16/x(1)^2 x(4) -2*x(2)*x(4)/x(1)]; end end
194 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
4600
4500
4400
R (mi)
4300
4200
4100
4000
3900
0
10
20
30
40 50 theta (deg)
60
(c) Partial printout spanning R = Re = 2:0925 t 1.4400e+003 1.4500e+003
x1 x2 2.0942e+007 -5.0507e+003 2.0892e+007 -5.0835e+003
70
80
90
107 ft:
x3 1.3984e+000 1.4102e+000
x4 1.1723e-003 1.1780e-003
Linear interpolation: 2:0892 1:4102
2:0942 2:0925 2:0942 = 1:3984 1:3984
= 1:4024 rad = 80:4
J
14.123
y 24 lb 10 lb
FBD
o
0.2N Fy L1 2
30 x N
= 0 N 24 + 10 sin 30 = 0 N = 19:0 lb = m(v2 v1 ): Fx t = m(v2 v1 ) 24 [10 cos 30 0:2(19:0)] t = (50 15) 32:2 t = 5:37 s J
195 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.124 Since there is no impulse in the x-direction, vx does not change: vx = 3 cos 35 = 2:458 m/s (constant) (L1
2 )y
=
(py )2
Z
(py )1 :
10 s
P dt = m(vy )2
m(vy )1
0
(vy )2
v2
14.125
Z 1 10 s 0:3t e dt = 3 sin 35 m 0 = 2:239 m/s p 2:4582 + 2:2392 = 3:32 m/s J = =
1 (3:1674) 0:8
(vy )1
(a) T A + VA
= TB + VB = TC + VC 1 1 2 = mv 2 + 0 = mvC + 8mg 2 B 2
0 + 24mg
p 2(24)(9:81) = 21:7 m/s J p = 2(16)(9:81) = 17:72 m/s J
vB
=
vC (b)
mg MAD
FBD man
N Fn = man
+#
mg
N =m
2 vC
=
2 mvC mg N
Contact is lost when N = 0. )
=
2 vC 17:722 = = 32:0 m J g 9:81
14.126 U1
2
= T2
T1 :
k W (5
1 2 k =0 2 1 35 = (12)2 2 32:2
+ )
1 0:2(35)(5 + ) + (280) 2 = 0:5314 ft
2
1 mv 2 2 1
F = k = 280(0:5314) = 148:8 lb J
196 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.127 Choose O as the datum for gravitational potential energy. Between positions A and B energy is conserved. TA + VA 2 vB
= T B + VB =
2gR1 (1
0 cos
mgR1 cos
1
1 mv 2 2 B
=
mgR1
1)
Between positions B and C angular momentum about point O is conserved. (h0 )C 2 vC
=
(h0 )B
2 = vB
mvC R2 = mvB R1
R1 R2
2
= 2gR1 (1
cos
R1 R2
1)
2
Between positions C and D energy is conserved. 1 mv 2 2 C 2 vC = 2gR2 (1
mgR2 = 0
TC + VC = TD + VD
2gR1 (1 (1 cos
2
=1
(1
cos
cos cos 1)
1)
1)
R1 R2 2
R1 R2
cos
mgR2 cos
2
2)
2
R1 R2
= 2gR2 (1
cos
2)
3
=1
cos
2
3
=1
(1
= 48:6
J
cos 45 )(1:05)3 = 0:6609
14.128
197 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.129
y mg
P(N) 60 30 0 0 4
FBD Ps
µsmg
x N = mg
8
12
t(s)
First determine if the crate will move. The smallest force that would move the crate is Ps = s mg = 0:3(16)(9:81) = 47:09 N Since Ps < 60 N, the crate will move. L1
L1
2
2
= (area under P -t diagram) t k mg 1 = 60 8 (30 4) 0:25(16)(9:81)(8) = 106:08 N s 2 = m(v2
v1 ):
106:08 = 16(v2
0)
v2 = 6:63 m/s J
14.130 Energy is conserved. Choose horizontal plane at O as the datum for Vg . p = AB L0 = 52 + 42 + 32 2:5 = 4:571 ft A 1 1 VA = W OA + k 2A = 8(5) + (4:2)(4:571)2 = 83:88 lb ft 2 2 O
VO TO TA + VA vO
p = OB L0 = 42 + 32 2:5 = 2:50 ft 1 2 1 = k O = (4:2)(2:50)2 = 13:125 lb ft 2 2 1 1 8 2 2 2 = mvO = v = 0:12422vO lb ft 2 2 32:2 O 2 = TO + VO 0 + 83:88 = 0:12422vO + 13:125 = 23:9 ft/s J
14.131
198 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.132
14.133 Angular momentum about AB is conserved: m(R1 ! 1 )R1 = m(R2 ! 2 )R2
T
= T2
T1 =
T T1
=
R2 ! 2 R1 ! 1
% energy lost
=
T T1
2
1 m(R2 ! 2 )2 2 R2 1= R1 "
100% = 1
!2 = !1
R1 R2
2
1 m(R1 ! 1 )2 2 2 4 R1 R1 1= R2 R2 # 2 R1 100% J R2
2
1
14.134 Energy is conserved: TA + VA vB
1W 2 1 1W 2 1 = TB + VB v + k 2 = v + k 2 2 g A 2 A 2 g B 2 B r r gk 2 32:2(2:5) 2 2 = vA + ( A 252 + (0:52 1:02 ) B) = W 1:2 = 23:97 ft/s J
199 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Angular momentum about O is conserved: RA vA = RB (v )B
(v )B =
Rate of elongation
14.135 (px )A vB
=
RA 2 vA = (25) = 20 ft/s RB 2:5
(vR )B = p = 23:972
q v22
2
(v )B
202 = 13:21 ft/s J
= (px )B : mvA cos = mvB = vA cos = 20 cos 35 = 16:383 m/s
(a)
mg FBD (LA
B )y
t
=
(py )B vA sin = g
(py )A : mgt = 0 mvA sin 20 sin 30 = = 1:019 s J 9:81
(b) TA + VA h
= T B + VB : =
2 vB
2 vA
2g
1 1 2 mv 2 + 0 = mvB + mgh 2 A 2 202 16:3832 = = 6:71 m J 2(9:81)
14.136
Dimensions in 108 feet
38.41o
y
3.960
5.0 1.0 A
vB B 3.382 x
O vA = 16 000 ft/s
200 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Angular momentum about point O is conserved. m(16 000)(1:0) = mvB (3:960 cos 38:41 3:382 sin 38:41 ) 16 000 = 1:0018vB vB = 15 970 ft/s J
14.137
201 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.138
14.139 LA
A
m 0.4
30o 0.2 m
Datum L2A = 0:42 + 0:22 VA
= = =
VB
= =
TB
=
2(0:4)(0:2) cos 30
LA = 0:2479 m
1 k(LA L0 )2 + mgR cos 30 2 1 (110)(0:2479 0:08)2 + 0:6(9:81)(0:4) cos 30 2 3:589 N m 1 k(LB L0 )2 + mgR 2 1 (110)(0:2 0:08)2 + 0:6(9:81)(0:4) = 3:146 N m 2 1 1 2 2 2 mvB = (0:6)vB = 0:3vB 2 2
TA + VA = TB + VB
2 0 + 3:589 = 0:3vB + 3:146
vB = 1:215 m/s J
202 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
14.140 Choose the horizontal line through O as the datum for Vg . V1 =
V2
T2
1 k(L1 2
L0 )2 =
1 (200) 2
52
42
1 k(L2 2
=
1 (200) 2
=
1 40 2 1W 2 v = v = 0:6211v22 lb ft 2 g 2 2 32:2 2
T 1 + V1 v2
p
= 69:44 lb ft
12
=
L0 )2
2
Wh
402 + 122 12
42
!2
40
48 12
=
= T2 + V 2 0 + 69:44 = 0:6211v22 = 19:22 ft/s J
159:96 lb ft
159:96
203 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 15 15.1 vB=A
= vB vA = 260(i cos 30 j sin 30 ) = 445i 601j mi/h J
520( i cos 65 + j sin 65 )
15.2 vA = 40 m/s
vB = 15 + 0:15t m/s
vB=A
= vB
xB=A
=
vA =
25 + 0:15t m/s
25t + 0:075t2 + C
Initial condition: xB=A = 3000 m when t = 0. ) C = 3000 m 25t + 0:075t2 + 3000
xB=A = (xB=A )min occurs when vB=A xB=A
min
= =
0:
25 + 0:15t = 0
t = 166:67 s J
25(166:67) + 0:075(166:672 ) + 3000 = 917 m J
15.3 For aB=A to be zero, aB must be parallel to aA (vertical).
(at )B o
60
(an )B
=
aB
=
aB=A = aB
2 vB
aB
(an)B
162 = 1:280 m/s 200 (an )B 1:280 2 = = 1:478 m/s sin 60 sin 60
aA = 0
=
aA = aB = 1:478 m/s # J 2
204 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.4 Let P and W refer to the plane and the wind, respectively. = vW + vP=W
vP
y x
vP (sin i + cos j)
=
55(cos 28 i + sin 28 j) + 520j
Equating like components: vP sin vP cos
= 55 cos 28 = 48:56 mi/h = 55 sin 28 + 520 = 545:82 mi/h
48:56 tan 1 = 5:084 J 545:82 p = 48:562 + 545:822 = 548 mi/h J =
vP
15.5
Let W refer to the water and B to the boat
vW
vB
θ
vB/W
vB = vW + vB=W (a) sin =
vW 10 = = 0:4167 vB=W 24
= 24:6
J
(b) vB
=
t
=
q
2 vB=W
2 = vW
p 242
102 = 21:82 km/h
d 4:8 = = 0:220 h = 13:2 min J vB 21:82
15.6 Balls collide if vA=B is directed from A toward B. vA
= vB + vA=B
y x
2j
=
3 (cos 30 i + sin 30 j) + vA=B ( sin i + cos j)
205 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Equating like components: 0 = 3 cos 30 vA=B sin 2 = 3 sin 30 + vA=B cos = tan
1
vA=B sin = 2:598 vA=B cos = 0:5
2:598 = 79:11 0:5
J
15.7
15.8 vA vB
vA=B vA=B
15.9
= 50i mi/h = (60 cos 25 ) i + (60 sin 25 ) j = 54:38i + 25:36j mi/h = vA vB = 4:38i 25:36j mi/h p = 4:382 + 25:362 = 25:74 mi/h J
206 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.10
15.11
207 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.12
15.13 vA vB vB=A
= 70j ft/s = 40(i cos 30 + j sin 30 ) = 34:64i + 20:0j ft/s = vB vA = 34:6i 50:0j ft/s J
6j ft/s
2
aA
=
aB
=
(aB )t + (aB )n = v_ B (i cos 30 + j sin 30 ) +
=
4(i cos 30 + j sin 30 ) +
402 (i sin 30 200
2 vB
(i sin 30
j cos 30 )
j cos 30 )
2
aB=A
= 7:464i 4:928j ft/s = aB aA = 7:464i 4:928j =
7:46i + 1:07j ft/s
2
( 6j)
J
15.14 Let W and B refer to the wind and the boat, respectively. Position (a): vW = (vB )a + (vW=B )a = 6j + va ( i cos 5 + j sin 5 )
208 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Position (b): vW = (vB )b + (vW=B )b = 6i + vb ( i cos 28 + j sin 28 ) Equating like components: va cos 5 6 + va sin 5
= 6 vb cos 28 = vb sin 28
Solution is va = 6:349 mi/h
vb = 13:959 mi/h 6:32i + 6:55j mi/h J
vW = 6j + (6:349) ( i cos 5 + j sin 5 ) =
15.15
A
B xA
xB Length of cable: dL dt vB
L = 3xA + 2xB + constant =
0:
=
3vA + 2vB = 0
1:5vA =
1:5(4) =
6 in./s = 6 in./s ! J
15.16
A xA
yB B Length of cable dL dt vA
= L = xA + 3yB + constant = vA + 3vB = 0 =
3vB =
3( 0:4) = 1:2 m/s
! J
15.17
yB
yA B A
209 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Length of cable: dL dt
vA=B vB
= vA =
vB
1 (8) = 2
L = 2yB + yA + constant =
0: 2vB + vA = 0
12 = vA
1 vA 2
vB =
1 vA 2
vA = 8 in./s # J
4 in./s = 4 in./s " J
15.18
15.19
210 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.20 yA
yB A
B
yC
C
Length of cable
= L = (yC yA ) + 2yC + (yC = 4yC yA yB + constant
dL dt
=
vC
=
vC
=
4vC
vA
yB ) + constant
vB = 0
vA + vB 3 + 1:2 = = 4 4 0:45 ft/s " J
0:45 ft/s
15.21
1.2 m yB
yA B
A
Length of cable = L = 2yB + dL dt
=
vB
=
vB
=
q 2 + 22 + constant yA
yA vA 2vB + p 2 =0 yA + 22 1 y 1 2 p A p vA = (0:8) = 2 2 2 2 yA + 2 2 2 + 1:22
0:343 m/s
0:343 m/s " J
15.22 2.4 m
2.4 m yB
yA A
B
211 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Length of cable dL dt vB
q 2 + 2:42 + constant = L = y A + 2 yB
yB vB = 0 = vA + 2 p 2 yB + 2:42 p 2 + 2:42 yB = vA 2yB p 22 + 2:42 = ( 3:6) = 2:81 m/s " J 2(2)
15.23 20 0
300 B
β
θ
xB
300 cos + 200 cos 300 sin 200 sin
= xB = 0
(a) (b)
200 200 sin = sin 60 = 0:5774 = 35:26 300 300 From (b) : 300 _ cos 200 _ cos = 0 _ _ = 200 cos = 200(2) cos 60 = 0:8165 rad/s 300 cos 300 cos 35:26 From (a) : 300 _ sin 200 _ sin = vB vB = 300(0:8165) sin 35:26 200(2) sin 60 = 488 m/s vB = 488 m/s ! J From (b)
:
sin
=
15.24 x2 = L2 But L_ =
242
) 2xx_ = 2LL_
x_ =
LL_ x
10 in./s ) x_ =
10
L x
Using x = 18 in. L = )
p 182 + 242 = 30 in. 30 x_ = 10 = 16:67 in./s = 16:67 in./s ! J 18
212 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.25
15.26
213 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.27
1
yC yA
. D
.
C
yB B
2 A
L1 L2 L_ 1 L_ 2
= yB + yC + (constant) = 2(yA yC ) + yA + (constant) = 3yA = vB + vC = 0 = 3vA 2vC = 0
2yC + (constant)
6 + vC = 0 vC = 6 in./s 3vA 2(6) = 0 vA = 4:00 in./s # J
15.28
214 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.29
15.30
215 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.31
y
xB xA
.
GA
B
A
x
(a) The coordinate x of the mass center of the system is given by mA xA + mB xB = (mA + mB )x Since there are no external forces acting on the system in the x-direction, x does not change. Therefore, di¤erentiation with respect to time gives mA vA + mB vB = 0 ) vB =
vA
mA = mB
( 4:4)
18 = 1320 ft/s J 0:06
(b) The muzzle velocity is vB=A = vB
( 4:4) = 1324 ft/s J
vA = 1320
15.32
20 ft
A
B
G d
x 20 ft
A
B x
The mass center G of the system is located at x=
mi xi (10)600 = = 7:692 ft mi 600 + 180
216 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The mass center of the system does not move. Hence the displacement d of the log is given by ) d + 2x = L
d=L
2x = 20
2(7:692) = 4:62 ft J
15.33
15.34 The motion of the mass center is not changed by the explosion. ax x ay y
= 0 vx = 240 cos 60 = 120 m/s = 120t m = g vy = gt + 240 sin 60 = 9:81t + 207:9 m/s = 4:905t2 + 207:9t m
217 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
When t = 35 s: x = y =
120(35) = 4200 m 4:905(35)2 + 207:9(35) = 1267:9 m
(mA + mB )x = mA xA + mB xB (20 + 40)(4200) = 20(3820) + 40xB (mA + mB )y = mA yA + mB yB (20 + 40)(1267:9) = 20(1960) + 40yB
xB = 4390 m J yB = 922 m J
15.35 (a)
2000g
1400g B
A
B
A y
0.8(2000)g 1400g
(2000+1400)a
2000g
FBD
x
MAD
Fx
= max 0:8(2000)g = (2000 + 1400)a 0:8(2000)(9:81) 2 a = = 4:616 m/s J 2000 + 1400
(b)
1400g B FBD Fx = max + !
1400a T
B MAD
1400g
T = 1400a = 1400(4:616) = 6460 N = 6:46 kN J
218 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.36
15.37 System (crate + cart): Fx = max
+ !
Crate:
100 + 300 a 32:2
P =
100 lb FBD P 0.2N
a = 0:0805P
100 a MAD 32.2
= N = 100 lb
Fx P
0:2(100)
= max =
+ !
100 (0:0805P ) 32:2
P
0:2N =
100 a 32:2
P = 26:7 lb J
15.38 Check if the crate will slide on the cart: s NA
= 0:2(100) = 20 lb < 32 lb ) The crate will slide.
219 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
100 lb 32 lb A
0.18(100) = 18 lb
MAD
FBD NA= 100 lb (100+300) = 400 lb 18 lb
300 a 32.2 B
B
B
FBD 400 lb Crate A : Cart B
:
100 a 32.2 A
A
MAD
Fx = mA aA + !
32
Fx = mB aB + !
18 =
18 =
100 aA 32:2
300 aB 32:2
aA = 4:51 ft/s
aB = 1:932 ft/s
2
2
J
J
15.39 System:
2850 N A 80g N
A 80a
FBD
MAD B
B
110g N
F
= ma + "
110a
2850
a = 5:190 m/s
2
(80 + 110)(9:81) = (80 + 110)a
J
220 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Block A:
2850/2 N A 80g N
FBD
A 80a MAD
T F
= ma + "
T
=
225 N J
2850 2
80(9:81)
T = 80(5:190)
15.40 Kinematics
xB B
yA
A • = 3aA + aB = 0 L
L = 3yA + xB + (constant)
aB =
3aA
Kinetics
3T A 6aA 6(9.81) N FBD MAD
12(9.81) N T
12aB
B FBD N
MAD
221 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Block A : Block B : Solution is
Fy = mA aA + # Fx = mB aB + !
T = 18:59 N J
6(9:81) 3T = 6aA T = 12aB = 12( 3aA )
aA = 0:516 m/s # J 2
15.41
222 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.42
15.43 Kinematic constraints: aA
= aB ! = aC # = a
223 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Kinetics:
24 a 32.2
24 lb TAB
A
A MAD
0.4(24) = 9.6 lb 24 lb FBD
24 a 32.2
48 lb TAB
TBC
B 0.4(48) = 19.2 lb
B MAD
48 lb TBC FBD FBD C
C
40 lb
Block A :
Fx = maA +
Block B
:
Fx = maB + !
Block C
:
Fy = maC + #
TAB TBC 40
MAD 40 a 32.2
9:6 = TAB
TBC =
24 a 32:2 19:2 =
24 a 32:2
40 a 32:2
The solution is a = 4:10 ft/s
2
TAB = 12:66 lb J
TBC = 34:9 lb J
15.44 Kinematics: aB =
1 aA = 2 m/s. 2
WA T FBD's
P
A
N y T T
A
mA aA MAD's mBaB
x
B B WB
224 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Kinetics: Block B: Fy = ma 2T 8(9:81) = 8(2)
+ " 2T WB = mB aB T = 47:24 N
Block A: Fx = ma P 47:24 = 3(4)
+ ! P T = mA aA P = 59:2 N J
15.45
0.8 lb P
A
N
x
B
FBD
0.2 lb
0.8 ag
y
T T
40o B
A
0.2 ag MAD
Bob B: Fy Fx
=
0
T cos 40
0:2 = 0 T = 0:2611 lb 0:2 a = ma T sin 40 = g 0:2 2 0:2611 sin 40 = a a = 27:02 ft/s 32:2
Block A: Fx
= ma P
0:8 a 32:2 0:8 0:2611 sin 40 = (27:02) 32:2 P
T sin 40 =
P = 0:839 lb J
15.46 o 15o mg 45o mg 15 o T A 15 B t t T N NA B FBD's
Ft = mat
+&
A man
B
mat man MAD's
mg sin 15 + T cos 15 mg sin 45 T cos 15
= mat = mat
mat
(Block A) (Block B)
225 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Subtracting 2nd equation from 1st: mg(sin 15 12(9:81)(sin 15
sin 45 ) + 2T cos 15 sin 45 ) + 2T cos 15 T
= 0 = 0 = 27:3 N J
15.47 40ο
WA
T
40ο
µANA
A
NA
y
x
µBNB
Α
WB B
mAa
NB
T FBD's
Β
mBa MAD's
Block A: Fy = 0 Fx = 0
+ - NA WA cos 40 NA 40 cos 40 = 0 NA + % T + A NA WA sin 40 T + 0:15(30:64)
= = =
0 30:64 lb mA a 40 40 sin 40 = a 32:2 T 21:12 = 1:2422a
(a)
Block B: Fy = 0 Fx = 0
+ - NB WB cos 40 NB 60 cos 40 = 0 NB +% T + B NB WB sin 40 T + 0:3(45:96)
The solution of (a) and (b) is
= 0 = 45:96 lb = mB a 60 60 sin 40 = a 32:2 T 24:78 = 1:8634a
(b)
a = 14:78 ft/s2 and T = 2:76 N J
15.48 Kinematics: x2 + y 2 = 252
2xx_ + 2y y_ = 0
2
x• x + x_ + y y• + y_ 2 = 0 Immediately after the release we have x_ = y_ = 0. Thus x• x + y y• = 0
y• =
x x •= y
20 x •= 15
4 x • 3
(a)
226 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Kinetics:
4 .. 32.2 y
4 lb NA A
A
P 3
FBD
MAD
4
3 .. x 32.2
3 lb P
B
B
3 NB
Block A:
4
MAD
FBD
Fy = mA aA + "
Substituting for y• from Eq. (a), we get Block B:
Fx = mB aB + !
3 4 P 4= y• 5 32:2 3 4 P 4= 5 32:2 3 4 P = x • 5 32:2
4 x • 3
(b) (c)
The solution of Eqs. (b) and (c) yields x • = 16:99 ft/s
2
P = 1:978 lb J
15.49 yC yA
C
1
2
yB
W B W A Kinematics: Cable 1 : Cable 2 :
yA + (yA yC ) = constant ) 2aA aC = 0 yB + 2yC = constant ) aB + 2aC = 0
aC = 2aA aB = 4aA
227 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Kinetics:
F = ma + #
T1
T1
T2
T2
C A
Pulley C
:
T1
Block A :
W
Block B
W
:
B
T1 FBD's
W
T2
W
2T2 = 0 T1 = 2T2 W W 2T1 = aA W 4T2 = aA g g W W aB W T2 = 4 aA T2 = g g
(a) (b)
Solution of (a) and (b) is aA =
3 g 17
T2 =
5 W J 17
) T1 = 2
5 W 17
=
10 W J 17
*15.50
228 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.51
229 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.52 (a)
2
mg k(x1 − x2) N
a1
=
a1
=
a2
=
1
F
=
2
N
FBD's
Block 1:
Block 2:
mg
ma2
1
ma1
MAD's
Fx = max + ! F k(x1 x2 ) = ma1 1 32:2 [F k(x1 x2 )] = [1:2 (2 12) (x1 x2 )] m 5 2 7:728 154:56(x1 x2 ) ft/s J
Fx = max + ! k(x1 x2 ) = ma2 2 12 k (x1 x2 ) = (x1 x2 ) = 154:56(x1 m 5=32:2
x2 ) ft/s
2
J
Initial conditions: x1 (0) = x_ 1 (0) = x2 (0) = x_ 2 (0) = 0 J (b) Letting x = x1 x2 x_ 1 and the initial conditions are x_
=
x3
x(0)
=
0
x4 0
7:728 0
0
x_ 2
T
, the equivalent …rst-order equations
154:56(x1
x2 )
154:56(x1
x2 )
T
T
The MATLAB program for integrating these equations is function problem15_52 [t,x] = ode45(@f,[0,0.1],[0,0,0,0]); printSol(t,x); function dxdt = f(t,x) dxdt = [x(3) x(4) 7.728-154.56*(x(1)-x(2)) 154.56*(x(1)-x(2))]; end end From the last line of output t 1.0000e-001
x1 3.4149e-002
x2 4.4914e-003
x3 6.0233e-001
x4 1.7047e-001
we deduce that v1 P
= 0:602 33 ft/s = 7:23 in./s J = k(x1 x2 ) = (2 12)(34:149
v2 = 0:170 47 ft/s = 2:05 in./s J 4:491) 10 3 = 0:712 lb J
230 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.53 (a)
xB xA
d F F
A
FBD's
Particle A
:
aA
=
B
mAaA
=
mBaB
MAD's
Fx = max + ! F = mA aA 2 F c=d 0:005=(xB xA )2 = = mA mA 0:015 1 2 m/s J 3(xB xA )2
=
Particle B
:
aB
= =
Fx = max + ! F 0:005=(xB xA )2 = mB 0:01 1 2 m/s J 2(xB xA )2
F = mB aB
Initial conditions: xA (0) = 0
xB (0) = 0:5 m
(b) Letting x = xA xB x_ A and the initial conditions are x_
=
x3
x(0)
=
0
x4 0:5 m
x_ A (0) = 0 x_ B
T
x_ B (0) =
, the equivalent …rst-order equations 1
1 3(x2 0
2 m/s J
x1 )2
2(x2
x1 )2
2 m/s
The MATLAB program that solves the equations numerically is function problem15_53 [t,x] = ode45(@f,[0:0.005:0.25],[0,0.5,0,-2]); printSol(t,x); function dxdt = f(t,x) xx =1/(x(2)-x(1))^2; dxdt = [x(3) x(4) -xx/3 xx/2]; end end
231 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The condition for minimizing d is d_ = x_ B x_ A = 0. Hence x_ B = x_ A when d is minimized. The following two lines of the output span the instance where x_ B = x_ A : t x1 2.1500e-001 -6.2911e-002 2.2000e-001 -6.6964e-002
When t When t
x2 x3 x4 1.6437e-001 -7.9442e-001 -8.0837e-001 1.6045e-001 -8.2667e-001 -7.5999e-001
= 0:215 s, d = 0:16437 = 0:220 s, d = 0:16045 ) dmin = 0:227 m J
( 0:06291) = 0:2273 m ( 0:06696) = 0:2274 m
We …nd x_ A = x_ B = v by linear interpolation. 0:75999 0:82667
( 0:80837) v = ( 0:79442) v
( 0:80837) ( 0:79442)
Therefore, x_ A = x_ B = 0:800 m/s
v=
0:800 m/s
J
15.54 (a)
F F A
B
=
mBaB
mAaA
FBD's MAD's (Only horizontal forces are shown)
Block: aA
Bullet: aB
=
=
Fx = max + ! F = mA aA 10 F 50(vB vA ) 2 = (vB vA ) m/s J = mA 15 3 Fx = max + ! F = mB aB 50(vB vA ) F 2 = = 2000(vB vA ) m/s J mB 0:025
Initial conditions: xA (0) = xB (0) = vA (0) = 0
vB (0) = 600 m/s J
232 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) Letting x = xA xB vA and the initial conditions are x_
=
x3
x(0)
=
0
vB
T
, the equivalent …rst-order equations
10 (x4 x3 ) 3 0 600 m/s
x4 0
2000(x4
x3 )
The corresponding MATLAB program is function problem15_54 [t,x] = ode45(@f,[0:0.005e-3:1e-3],[0,0,0,600]); printSol(t,x); function dxdt = f(t,x) dxdt = [x(3) x(4) (x(4)-x(3))*10/3 -(x(4)-x(3))*2000]; end end The last line of output is shown below t 1.0000e-003
x1 5.6722e-004
x2 2.5967e-001
x3 8.6368e-001
x4 8.1795e+001
We see that at t = 0:001s we have xA = 5:67
4
10
m = 0:567 mm J
vB = 81:8 m/s J
15.55 (a) Let xA and xB be the displacements of the cars, measured from the position where the bumpers just touch.
xA FF
A
xB B
=
mAaA
mBaB
MAD's FBD's (Only horizontal forces are shown)
Car A
:
aA
=
Fx = max + ! F = mA aA F 20 000(xA xB ) = = 53:67(xA mA 12 000=32:2
Car B
:
aB
=
xB ) ft/s
2
J
Fx = max + ! F = mB aB F 20 000(xA xB ) 2 = = 35:78(xA xB ) ft/s J mB 18 000=32:2
233 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Initial conditions: xA (0) = xB (0) = 0
(b) Letting x = xA xB vA and the initial conditions are x_
=
x3
x(0)
=
0
x4 0
vB (0) = 5 ft/s J
vA (0) = 8 ft/s vB
T
, the equivalent …rst-order equations
53:67(x1 8 ft/s
x2 )
35:78(x1
x2 )
5 ft/s
The MATLAB program shown below was used for integration. Note that only t and the contact force F were printed out (x1 on the printout represents F ) function problem15_55 [t,x] = ode45(@f,[0:0.005:0.4],[0,0,8,5]); F = 20000*(x(:,1)-x(:,2)); printSol(t,F) function dxdt = f(t,x) dxdt = [x(3) x(4) -53.67*(x(1)-x(2)) 35.78*(x(1)-x(2))]; end end (c) The following partial printout spans Fmax : t 1.6000e-001 1.6500e-001 1.7000e-001
x1 6.3335e+003 6.3436e+003 6.3396e+003
By inspection we determine that Fmax = 6340 lb J The two lines of output spanning F = 0 are: 3.3000e-001 1.3013e+002 3.3500e-001 -1.6984e+002 We use linear interpolation to …nd t when contact is lost: 169:84 130:13 0 = 0:335 0:330 t
130:13 0:330
t = 0:332 s J
234 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.56 (a) Let xA and xB be the displacements of the blocks from the equilibrium position (where the spring is unstretched)
mAg
FBD's
xB B
mAaA
P
A
F
N N F mBg
=
MAD's mBaB
NB F =
kN
Block A
:
aA
=
k mA g
sgn (vA
vB )
P = mA aA k vB ) xA mA 2000 0:3(9:81) sgn (vA vB ) xA 2 2 2:943 sgn (vA vB ) 1000xA m/s J
=
aB
vB ) =
Fx = max + ! F P = k g sgn (vA mA
=
Block B
sgn (vA
F
:
Fx = max + ! F = mB aB mA F = k g sgn (vA vB ) = mB mB 2 = 0:3 (9:81) sgn (vA vB ) 4 =
1:4715 sgn (vA
vB ) m/s
2
J
Initial conditions: xA (0) = xB (0) =
(b) Letting x = xA xB vA and the initial conditions are x_
=
x(0)
=
x3
x4
0:02 m
vB
2:943 sgn (x3 0:02 m
vA (0) = vB (0) = 0 J
0:02 m
0
T
, the equivalent …rst-order equations
x4 )
1000x1
1:4715 sgn (x3
x4 )
0
The ‡ollowing MATLAB program was used for the plot:
235 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
function problem15_56 [t,x] = ode45(@f,[0:0.0025:0.2],[-0.02,-0.02,0,0]); axes(’fontsize’,13) plot(t,x(:,3),t,x(:,4),’linewidth’,1.5) xlabel(’t (s)’); ylabel(’v (m/s’) gtext(’A’);gtext(’B’) % Creates mouse-movable text grid on function dxdt = f(t,x) dxdt = [x(3) x(4) -2.943*sign(x(3)-x(4))-1000*x(1) 1.4715*sign(x(3)-x(4))]; end end
0.6
A
0.4
v (m/s
0.2 B
0
-0.2
-0.4 0
0.05
0.1 t (s)
0.15
0.2
236 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.57 (a) Let v be the velocity of A relative to the disk q ) vR = R_ v = R( _ !) v = R_ 2 + R2 ( _ !
=
2 60
45
The friction force F = ) FR = F FR • R
F
= 4:7124 rad/s
O
FR
FBD F
maθ
R
= θ
MAD maR
Fθ
k mg
vR = v
opposes the relative velocity vector v
k mg
R_ v
= maR = R_
2
= R_
2
where v= Initial conditions:
x2
x(0)
=
1:0 ft 0
9:66 0
where v=
9:66
!) v
2
R_ )
R_ J v
4:7124)2
_ R(0) = (0) = _ (0) = 0 J _
x1 x24
=
• FR = m(R R_ kg v
R( _
F = m(R• + 2R_ _ ) _ ! F 2R_ _ = kg mR R v _ 4:7124 9:66 J v
R(0) = 1:0 ft
x_
k mg
+%
q R_ 2 + R2 ( _
(b) Letting x = R R_ the initial conditions are
v = v
2 FR = R_ m 2 R_ 0:3(32:2) = R _ v
2R_ _ R 2R_ _ R
=
F =F +&
= ma
• =
!)2
T
x2 v
, the equivalent …rst-order equations and x4
2x2 x4 x1
9:66
x4
4:7124 v
0
q x22 + x21 (x4
4:7124)2
The corresponding MATLAB program is
237 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
function problem15_57 [t,x] = ode45(@f,[0:0.01:1],[1,0,0,0]); printSol(t,x) function dxdt = f(t,x) v = sqrt(x(2)^2 + x(1)^2*(x(4) - 4.7124 )^2); dxdt = [x(2) x(1)*x(4)^2 - 9.66*x(2)/v x(4) -2*x(2)*x(4)/x(1) - 9.66*(x(4) - 4.7124)/v]; end end The two lines of output spanning R = 2:5 ft are: t 9.4000e-001 9.5000e-001
x1 2.4831e+000 2.5203e+000
x2 3.6938e+000 3.7325e+000
x3 2.0583e+000 2.0765e+000
x4 1.8289e+000 1.8092e+000
We …nd R_ and _ at R = 2:5 ft by linear interpolation: 3:7325 2:5203
R_ 3:6938 3:6938 = 2:4831 2:5 2:4831
_ 1:8289 1:8092 1:8289 = 2:5203 2:4831 2:5 2:4831 q q ) vA = R_ 2 + (R _ )2 = 3:7112 + (2:5
R_ = 3:711 ft/s _ = 1:8200 rad/s 1:8200) = 5:87 ft/s J 2
15.58
O
θ 400
A
Spring
B
L
1
400(1 - cosθ) 400 sinθ
350 = sin
0 40
θ
0 60
Dimensions in mm
400 = 41:81 600
q 2 2 L = (0:35 + 0:4 sin 41:81 ) + [0:4(1 cos 41:81 )] = 0:6250 m = L L0 = 0:6250 0:35 = 0:2750 m
238 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Because the system rotates about O, we have !=
vA vB = 0:6 0:4
vB =
2 vA 3
2
T2
= =
1 2 2 1 1 2 2 = mA vA vA mA + mB vA + mB 2 2 3 2 9 1 2 2 2 (4) + (2) vA = 2:444vA 2 9
Choose the initial position as the datum for gravitational potential energy. yA
=
V2
= = =
cos 41:81 ) = 0:101 86 m " 1 2 mA g yA + mA g yB + k 2 1 4(9:81)(0:4) + 2(9:81)(0:101 86) + (240)(0:2750)2 2 4:623 N m
0:4 m #
T1 + V 1 = T 2 + V 2
yB = 0:4(1
2 0 + 0 = 2:444vA
vA = 1:375 m/s J
4:623
15.59 vA = 22 ft/s U1
2
= T2
vB = 11 ft/s "
)
xA = 2 yB
T1 :
1 2 1 1 2 2 k xA WB yB = 0 mA vA + mB vB k WA 2 2 2 1 1 5 9 1 k(5:42 ) 0:2(5)(5:4) 9(2:7) = (222 ) 2 2 32:2 2 32:2 k = 1:700 lb/ft J
(112 )
239 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.60
15.61
240 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.62 Horizontal momentum is conserved: p1 = p2 + ! 0 = mb oat vb oat + mb oy vb oy cos 35 0 = 60vb oat + 40(10 cos 35 ) vb oat = 5:46 m/s vb oat = 5:46 m/s J
15.63
y
δ x The mass center of the system does not move: mA xA + mB xB = mA + mB (xB + ) where xB is the centroidal coordinate of the cart in the initial position. mA xA = (mA + mB )
mA xA 15(2:5) = 0:798 m J = mA + mB 15 + 32
=
15.64 Horizontal momentum is conserved: p1
= p2
+ ! mA vA = mB
vB
=
0 = mA vA + mB vB 12 vA = 1:5vA 8
Energy is conserved: T 1 + V1 1 (2 2
12)
1:8 2 12
1 1 1 2 2 0 + k 2 = mA vA + mB vB +0 2 2 2 1 0:75 2 1 0:5 v + ( 1:5vA )2 2 32:2 A 2 32:2
= T2 + V2
2
=
0:0675 = vB = vA = 1:523 ft/s
2 0:029 11vA vA = 1:5228 ft/s 1:5( 1:5228) = 2:28 ft/s
J
vB = 2:28 ft/s ! J
241 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.65
15.66 ) 2vA + vB = 0
Constraint: 2yA + xB = constant
T
vB =
2vA
T T
B
A 7 lb Block A: + # L1 (7
2
2T ) t
Block B: + ! L1
2
Tt
= p2 =
(7
2T ) t =
7 (6) 32:2
(7
2T ) t = 1:3043
= p2 =
7 vA 32:2
p1 :
p1 :
Tt =
12 ( 12) = 4:472 32:2
12 vB 32:2
0 (a)
0 (b)
242 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Substituting (b) into (a): 7t
t = 1:464 s J
2(4:472) = 1:3043
15.67 Let vB = …nal velocity of block and vC = …nal velocity of cart, both positive to the right. Mometum is conserved: p1
= p2 + ! mB = vB = mC
vC
0 = mC vC + mB vB 8 vB = 0:4vB 20
Energy is conserved: T 2 + V2 = T 1 + V1
vC vB=C vB=C
1 1 2 2 mC vC + mB vB +0 = 2 2 1 1 2 (20)( 0:4vB )2 + 8vB = 2 2 vB =
= 0:4( 3:273) = 1:309 m/s = vB vC = 3:273 1:309 = = 4:58 m/s J
1 0+ k 2 2 1 (12 000) (0:1)2 2 3:273 m/s
4:582 m/s
15.68 Constraint: 2yA + yB = constant
T
) 2vA + vB = 0
T
2
= p2
2vA
T B
A 8 lb + " L1
vB =
6 lb
p1 :
Block A :
(2T
WA )t = mA vA
0
(2T
Block B
(T
WB ) t = mB vB
0
(T
:
8 vA 32:2 6 6)(7) = ( 2vA ) 32:2 8)(7) =
The solution is T = 4:50 lb and vA = 28:2 ft/s " J
243 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.69
15.70 Since there are no external forces acting on the system in the horizontal direction, we have p 1 = p2
0=
400 800 vA + vB g g
vA =
2vB
400 lb 180 lb (0.35)(400) lb N =400 lb FBD (U1 0 + [180
2 )ext
+ (U1
2 )int
= T2 T1 1 800 2 1 400 2 vA + v (0:35)(400)] (8) = 2 32:2 2 32:2 B 1 400 1 800 2 2 2 320 = ( 2vB ) + vB = 37:27vB 2 32:2 2 32:2 r 320 vB = = 2:93 ft/s J 37:27
244 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.71
15.72
245 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.73
246 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.74
15.75
247 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.76 L
mωL
L O
Momentum diagram
L/3
mωL
G
2L/3
mωL
hG = 2(m!L)L + (m!L)
2L 8 = m!L2 3 3
J
15.77 z 8 m/s
2m
6 m/s
O
m 2 12 m 3 /s y x 1 4 3m m m 4 A i 1 2 3
ri 4i 4i + 4j + 3k 3i + 2j
ri=A 4j 3k 7i 2j
=
X
=
340i
vi 8k 12j 6i
3
ri
vi 32j 36i + 48k 12k 36i 32j + 60k
(a) hO
= m
(b) hA
180i 160j + 300k N m s J X = m ri=A vi = 5( 68i 12k)
ri
vi = 5( 36i
ri=A vi 32i 36i 12k 68i 12k
32j + 60k)
60k N m s J
248 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.78 (a) (AO )1
2
=
(hO )2
8 ( t)
=
140 4(0:62 ) + 7(0:32 )
(b) +
!=
(hO )1
Z
+
C0 t = 0
_ ( mA r2 A
t = 36:23 s J
dt + C1 = t + C1
( is constant)
When t = 0, ! = 140 rad/s. ) C1 = 140 rad/s When t = 36:23 s, ! = 0. ) 0 = (36:23) 140 ) + d When
= 0, ! =
When ! = 0,
=
2 mB r B )
= 3:864 rad/s2
d! d d! d! = = ! dt d dt d 1 = ! d! 3:864 = ! 2 + C2 2 =
1 ( 140)2 = 9800 (rad/s)2 140 rad/s. ) C2 = 2 2536 9800 = 2536 rad. ) = = 404 rev J 3:864 2
15.79 (a)
.
L
O
mv 2 L
mv1
. O
Just after impact
L
Momentum diagrams
Just before impact
2mv2
Angular momentum of the system about O is conserved: (hO )1
=
(hO )2
mv1 L = 3mv2 L
!2
=
v2 v1 = J L 3L
v2 =
1 v1 3
249 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) 2
1 1 1 1 1 mv 2 T2 = (3m)v22 = (3m) v1 = mv12 2 1 2 2 3 6 (1=6) (1=2) T2 T1 % energy change = 100% = 100% = 66:7% T1 (1=2) % energy lost = 66:7% J T1
=
15.80
250 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.81 A
mv0
3L/4 m(vA)y 3L/4 L/4 3m(vB)y B A mv L/4 3mvx G x 3mv0
G
B Initial momenta (p1 )x
=
(p2 )x
+ !
(p1 )y
=
(p2 )y
+"
(hG )1 3 v0 2
Final momenta 3mv0
mv0 = 3mvx + mvx
0 = m(vA )y + 3m(vB )y
1 v0 2 3(vB )y
vx =
(vA )y =
3L L 3L L = (hG )2 + mv0 + 3mv0 = m(vA )y + 3m(vB )y 4 4 4 4 3 3 1 = [(vB )y (vA )y ] = [(vB )y + 3(vB )y ] (vB )y = v0 4 4 2 1 3 v0 = v0 ) (vA )y = 3 2 2 ) vA =
1 i 2
3 j v0 J 2
1 1 i + j v0 J 2 2
vB =
15.82
0.3 m yA
0.3 m
.
yB A B
q 2 + 0:32 y A + 2 yB
= L
) vA
=
When yB
=
yA = L 2y v p B B 2 + 0:32 yB
0:4 m: vA =
q 2 + 0:32 2 yB
p
2(0:4)vB = 0:42 + 0:32
1:60vB
251 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
0.3 m
∆yA A
m
A
m
0.5 m
= 0
.
m 0.5
B 2m Position 2
Position 1 (Datum)
yA = yA jyB
0.3 m
0.4 m
B 2m
.
yA jyB =0:25 m = [L
2(0:3)]
[L
2(0:5)] = 0:4 m
T1 + V1 = T2 + V2 : 1 1 2 mv 2 + (2m) vB + mg yA 2 A 2 1 2 0 = ( 1:60vB )2 + vB + 9:81(0:4) 2 vB = 1:312 m/s # J
0+0
=
2mg(0:4) 2(9:81)(0:4)
15.83
252 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.84
2m(vB)y B A mω0 L
L/2
.G L/2
B ω 0
2m (vB)x
L/2
G.
Position 2
L/2
Position 1
A m(vA)y
m(vA)x
Because there are no external forces in the xy-plane, linear and angular momenta about the mass center G are conserved. Because the bar is rigid (vA )y = (vB )y (px )1
= )
(py )1
= )
(px )2 : 0 = m(vA )x + 2m(vB )x 1 (vB )x = (vA )x 2
(py )2 :
m! 0 L = m(vA )y + 2m(vB )y !0 L (vA )y = (vB )y = 3
!0 L =
3(vA )y
253 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(hG )1
=
!0 L = )
(hG )2 :
(m! 0 L)
(vA )x
2(vB )x
(vA )x =
!0 L 2
vA = ! 0 L
1 i 2
1 j 3
L L = m(vA )x 2 2 ! 0 L = (vA )x (vB )x = J
2m(vB )x 2
L 2
1 (vA )x = 2(vA )x 2
!0 L 4
vB = ! 0 L
1 i 4
1 j 3
J
15.85
15.86
254 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#15.87
255 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.88
15.89 +! (px )1 = (px )2 : 0 = 125 000v
106(1640) cos 35
v = 1:139 m/s J
256 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.90 p1 v…nal
= p2 + ! mA vA + mB vB = (mA + mB )v…nal mA vA + mB vB 40(5) + 55(3) = = = 3:842 m/s ! J mA + mB 40 + 55
% energy lost
=
T2 T1
1
=
1
100% = 1
95(3:842)2 40(5)2 + 55(3)2
2 (mA + mB ) v…nal 2 + m v2 mA vA B B
100%
100% = 6:20% J
15.91 Position 1 = just before impact Position 2 = just after impact Position 3 = max. compression of spring + ! p1 = p 2 : mA vA = (mA + mB ) v…nal mA 0:008 v…nal = vA = vA = 0:004 975vA mA + mB 1:6 + 0:008 1 1 2 (mA + mB )v…nal +0 = 0+ k 2 2 2 1 1 2 (1:608) (0:004975vA ) = (6500)(0:052)2 2 2 vA = 665 m/s J
T2 + V2 = T3 + V3 :
15.92 Position 1 = release position; Position 2 = just before impact; Position 3 = just after impact; Position 4 = …nal (rest) position U1
2
v2
U3
1 WA 2 = T2 T1 WA h = v 2 g 2 p p = 2gh = 2(32:2)(8) = 22:70 ft/s
p3
= p3
v3
=
4
= T4
d
=
+ mA v2 = (mA + mB )v3 mA 8 v2 = (22:70) = 6:985 ft/s mA + mB 26
T3
k (WA
+ WB )d = 0
1 (mA + mB )v32 2
(mA + mB )v32 v2 6:9852 = 3 = = 3:79 ft J 2 k (WA + WB ) 2 kg 2(0:2)(32:2)
257 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.93 (a) Position 1 = just before impact; Position 2 = just after impact; Position 3 = …nal (rest) position p1 = p2 + ! 0:02(600) = (10 + 0:02)v2 U2 k (WA
3
+ WB )d
= T3 =
0:25(10 + 0:02)(9:81)d =
0
mB v1 = (mA + mB )v2 v2 = 1:1976 m/s
T2 1 (mA + mB )v22 2
1 (10 + 0:02)(1:1976)2 2
d = 0:292 m J
(b) T1
=
T2
=
% energy loss
=
1 1 mB v12 = (0:02)(600)2 = 3600 J 2 2 1 1 (mA + mB )v22 = (10 + 0:02)(1:1976)2 = 7:186 J 2 2 T1 T2 3600 7:186 100% = 100% = 99:8% J T1 3600
15.94 (a) Horizontal momentum is conserved: p1 v…nal
= p2
+ ! mB vB cos 30 = (mA + mB )v…nal mB 60 (8) cos 30 = 1:4846 ft/s J vB cos 30 = mA + mB 280
=
(b) % energy lost =
1
=
1
T2 T1
100% = 1 ! 2 280 (1:4846) 60 (8)
2
2 (mA + mB ) v…nal 2 mB vB
100%
100% = 83:9% J
15.95 Position 1 = just before collision; Position 2 = just after collision; Position 3 = …nal (rest) position p1 v…nal
= p2 =
+ ! mA vA = (mA + mB )v…nal mA 5000 vA = vA = 0:5814vA mA + mB 8600
258 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
U2
3
= T3
0:8(3600)(22) =
T2
k WB d
1 8600 2 (0:5814vA ) 2 32:2
=0
1 2 (mA + mB )v…nal 2
vA = 37:5 ft/s J
15.96 Choose Position 2 as the datum for Vg . Energy beween Positions 1 and 2 is conserved: 1 T 1 + V 1 = T 2 + V2 : 0 + mgh1 = mv22 + 0 2 1 (8)v22 v2 = 3:388 m/s 8(9:81)(2:5)(1 cos 40 ) = 2 Horizontal momentum is conserved during impact: + ! p2 = p02 : mv2 = mtot v20 8(3:388) = 11v20 v20 = 2:464 m/s Energy beween Positions 2 and 3 is conserved: 1 2 mtot (v20 ) + 0 = 0 + mtot gh3 T 2 + V2 = T 3 + V3 : 2 1 (11)(2:464)2 + 0 = 0 + (11)(9:81)(2:5)(1 cos ) 2 cos = 0:8762 = 28:8 J
15.97 (a) Momentum is conserved during impact between carts (note that the parcel keeps going at v = 15 ft/s): p1
= p01
+ ! (mA + mC )v = (mA + mB )v 0 + mC v mA 50 15 = 7:5 ft/s J v= mA + mB 100
v0
=
(b) Impact between the front of cart A and the parcel conserves the momentum: p01 v…nal
= p…nal + ! (mA + mB ) v 0 + mC v = (mA + mB + mC )v…nal 0 100(7:5) + 35(15) (mA + mB ) v + mC v = = 9:44 ft/s J = mA + mB + mC 135
15.98 (a) p1 = p2 : [mA (vA )1 [4200(44)
mB (vB )1 sin 30 ] i + mB (vB )1 (cos 30 )j = (mA + mB )v2 3500(60) sin 30 ] i + 3500(60)(cos 30 )j = (4200 + 3500)v2 v2 = 10:36i + 23:6j ft/s J
259 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) T1
= = T2
1 1 1 4200 1 3500 mA (vA )21 + mB (vB )21 = (442 ) + (602 ) 2 2 2 32:2 2 32:2 321:9 103 lb ft = =
1 4200 + 3500 1 (mA + mB )v22 = (10:362 + 23:62 ) 2 2 32:2 79:4 103 lb ft
Energy absorbed = T1
T2 = (321:9
79:4)
103 = 243
103 lb ft J
15.99 p1
p2
= mA vA (i cos 25 + j sin 25 ) mB vB j 8 2:8=16 = (130)(i cos 25 + j sin 25 ) (14)j 32:2 32:2 = 0:6403i 3:180j slug ft/s (2:8=16) + 8 = (mA + mB )v2 = v2 = 0:2539v2 32:2 p1 v2
= p2 0:6403i 3:180j = 0:2539v2 = 2:52i 12:52j ft/s J
15.100
A Datum
4 ft
δ
B
A B Position 4
Position 1
Position 1: Release position. Note that the springs are compressed by 0 = WB =k = 48=1200 = 0:04 ft Position 2: Just before the impact. Position 3: Just after the impact. Position 4: Position of maximum displacement. Springs are compressed by additional . T1 + V1 = T2 + V2 : p p 1 v2 = 2gh = 2(32:2)(4) = 16:050 ft/s 0 + mA gh = mA v22 + 0 2
260 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
p 2 = p3 : mA v2 = (mA + mB )v3
v3 =
mA 60 v2 = (16:050) = 8:917 ft/s mA + mB 60 + 48
T3 + V3 = T4 + V4 : 1 1 (mA + mB )v32 + 0 = 0 (mA + mB )g + k( 2 2 1 60 + 48 1 (8:9172 ) = (60 + 48) + (1200) 2 32:2 2 133:34 = 108 + 600 0 = 600 2 108 = 0:572 ft J 4
2
2
2 0)
2
0:042
0:96 134:30
15.101
261 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.102
262 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.103
15.104
15.105
263 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.106
264 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
*15.107
15.108
265 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.109 p 1 = p2 : m(vA )1 + m(vB )1 (vA )1 + (vB )1
= m(vA )2 + m(vB )2 = (vA )2 + (vB )2
(a)
e = vsep =vapp : (vB )2 (vA )2 (vA )1 (vB )1 e(vA )1 e(vB )1 = (vB )2
e =
(vA )2
(b)
Subtract Eq. (a) from Eq. (b): (vA )1 (1
e) + (vB )1 (1 + e) = 2(vA )2
Q.E.D.
Add Eqs. (a) and (b): (vA )1 (1 + e) + (vB )1 (1
e) = 2(vB )2
Q.E.D.
15.110 With e = 1=2 the formulas in Prob. 15.109 become (vA )2 =
3 1 (vA )1 + (vB )1 4 4
(vB )2 =
3 1 (vA )1 + (vB )1 4 4
(vB )2 =
3 v0 4
After impact of A and B: (vA )2 =
1 v0 4
266 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
After impact of B and C: (vB )3
=
(vC )3
=
1 1 (vB )2 = 4 4 3 3 (vB )2 = 4 4
3 v0 4 3 v0 4
3 v0 16 9 = v0 16 =
After second impact of A and B: (vA )4
=
(vB )4
=
1 (vA )2 + 4 3 (vA )2 + 4
3 1 (vB )3 = 4 4 1 3 (vB )3 = 4 4
1 v0 4 1 v0 4
3 4 1 + 4 +
3 v0 16 3 v0 16
13 v0 64 15 = v0 64 =
Final velocities are: vA =
13 v0 J 64
vB =
15 v0 J 64
vC =
9 v0 J 16
15.111 p 1 = p2 : (vB )2 1:2 = = 0:667 (vA )1 1:8
1:2 (vA )1 = 1:8 (vB )2 e = vsep =vapp : e=
(vB )2 = 0:667 J (vA )1
15.112
267 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.113
+ ! p1 = p2 : mA (vA )1 = mA (vA )2 + mB (vB )2 0:3(6) = 0:3( 2:5) + 1:5(vB )2 (vB )2 = 1:70 m/s ! e=
vsep (vB )2 (vA )2 1:70 ( 2:5) = = = 0:70 J vapp (vA )1 6
15.114
268 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.115
15.116
θ2
θ2'
θ3
θ1' θ1
Rebound formula
:
Geometry
:
Rebound formula Geometry
0 1
tan tan
2
= e tan 1 = tan 01
1
e tan 01 1 tan 01 : tan 3 = = = tan e tan 02 ) Q.E.D. 1 = 3 :
tan
0 2
= e tan
2
=
1
269 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.117 The x-component of the momentum is conserved for each disk: (vAx )2 = 12 cos 70 = 4:104 m/s
(vBx )2 = 0
Momentum of the system is conserved in the y-direction: + " mA (vAy )1 = mA (vAy )2 + mB (vBy )2 m(12 sin 70 ) = m(vAy )2 + (2m)(vBy )2 (vAy )2 + 2(vBy )2 = 11:276 m/s
e=
(vBy )2 (vAy )2 vsep = vapp (vAy )1 (vBy )2 (vAy )2
(vBy )2 (vAy )2 12 sin 70 9:585 m/s
(a)
0:85 = =
(b)
Solution of (a) and (b) is (vAy )2 = ) (vA )2 = 4:10i
2:631 m/s
(vBy )2 = 6:954 m/s
2:63j m/s J
(vB )2 = 6:95j m/s J
15.118 Let v2 = velocity of pellet and ! 2 = angular velocity of the bar after impact. (hO )1 = (hO )2 + mp ellet v0 L / = mp ellet v2 L / + 2m(L! 2 )L / 0:16 0:16 (300) = v2 + 2 (0:5) (0:75)! 2 3 = 0:01v2 + 0:75! 2 (a) 16 16 e=
L! 2 v2 v0
Solution of (a) and (b) is v2 =
0:75 =
0:75! 2 v2 300
(b)
220 ft/s and ! 2 = 6:93 rad/s J
15.119 Since the release positions are the same, the velocities of the pendulums are equal just before the impact: (vA )1 = (vB )1 = v Because A returns to its release position, its velocity just after the impact equals the velocity just before the impact: (vA )2 = (vA )1 = v
270 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
mv 3mv
A
B
mv
3mv'
mv + 3mv = mv + 3mv 0
+
B
Momenta after impact
Momenta before impact p 1 = p2
A
v0 =
1 v 3
v v0 v v=3 1 = = J v+v 2v 3
e=
15.120 Position Position Position Position Position
1 2 3 4 5
= = = = =
release position just before A hits the ground (choose as the datum position) just after A hits the ground but before impacting with B just after A and B impact B is at its maximum elevation
Position 1 to 2:
T1 + V1 (vA )2
=
Position 2 to 3: (vA )3 (vB )3
1 0 + mgh = mv22 (valid for each ball) p p2 (vB )2 = v2 = 2gh = 2(32:2)(5) = 17:944 ft/s
= T 2 + V2
= e(vA )2 (vA )3 = 0:85(17:944) = 15:252 ft/s = (vB )2 = 17:944 ft/s
Position 3 to 4:
B Before impact
m(vB)3 10m(vA)3
A
p3 = p4
e=
+"
(vB )4 (vA )4 (vA )3 + (vB )3
B
m(vB)4 After 10m(vA)4 impact
A
10m(vA )3 m(vB )3 = 10m(vA )4 + m(vB )4 10(15:252) 17:944 = 10(vA )4 + (vB )4 134:58 = 10(vA )4 + (vB )4 0:85 =
(vB )4 (vA )4 15:252 + 17:944
28:22 = (vB )4
(a)
(vA )4 (b)
271 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Solution of (a) and (b) is (vA )4 = 9:669 ft/s, (vB )4 = 37:89 ft/s. Position 4 to 5: Ball B :
1 mB (vB )24 + 0 = 0 + mB g (h 2 37:892 (vB )24 =5+ = 27:3 ft J = dA + 2g 2(32:2) T 4 + V 4 = T 5 + V5
h
dA )
*15.121
272 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.122
A 18θ0 90
.
0.5(vA)y
y
.
6N s
4.8 N s
x
30o B Just before impact
0.6(vB)y
0.5(vA)x 0.6(vB)x
Just after impact
90 = 30 180 The x-component of the impulse of each disk is unchanged. = sin1
Disk A : Disk B :
6 sin 30 = 0:5(vA )x 4:8 sin 30 = 0:6(vB )x
(vA )x = 6:0 m/s (vB )x = 4:0 m/s
Momentum of the system is unchanged in the y-direction. 4:8 cos 30 6 cos 30 0:5(vA )y + 0:6(vB )y e=
vsep vapp
0:6 =
= =
0:6(vB )y + 0:5(vA )y 1:0392
(vA )y (vB )y 12 cos 30 + 8 cos 30
(vA )y
(vB )y = 10:392
(a) (b)
Solution of Eqs. (a) and (b) is (vA )y = 4:724 m/s
(vB )y =
5:668 m/s
The …nal speeds are vA vB
15.123
p 6:02 + 4:7242 = 7:64 m/s J p = 4:02 + 5:6682 = 6:94 m/s J =
273 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.124
15.125
274 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.126
Mg T/2
T/2 FBD
From FBD: T = M g = 250 lb Equation (15.49): T = mu _ P
250 = m(1100) _
m _ = 0:2273 slugs/s
1 1 mu _ 2 = (0:2273)(11002 ) = 1:3752 2 2 1:3752 105 = 250:0 hp J 550
= =
105 lb ft/s
15.127 Choose the water jet outside the hose as the control volume vin = 50 m/s
A=
1 2 1 d = (0:04)2 = 1:2566 4 4
10
3
m2
(a) Stationary plate: vout = 0 m _ = Av = 1000(1:2566
10
3
)(50) = 62:83 kg/s
The force acting on control volume: F = m(v _ out
vin ) = 62:83(0
Force acting on plate: P =
50) =
3142 N
F = 3140 N J
(b) Moving plate: vout = 4 m/s m _ = A(vin F P
vout ) = 1000(1:2566
10
= m(v _ out vin ) = 57:80(4 = F = 2660 N J
3
)(50 50) =
4) = 57:80 kg/s 2659 N
275 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.128
y vin
x
vout 28o
Control volume m _ = vin
=
180(8:34) = 0:7770 slugs/s 32:2(60) 45i ft/s vout = 45(i cos 28 + j sin 28 ) = 39:73i + 21:13j ft/s
Force acting on control volume: F = m(v _ out
vin ) = 0:7770(39:73i + 21:13j 45i) =
4:095i + 16:418j lb
Force acting on vane: P =
F = 4:10i
16:42j lb J
15.129
276 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.130 Choosing the fan as the control volume, we have vin
= v = 20 ft/s
m _ =
Au = 2:33
vout = u = 50 ft/s (6:42 ) 10 3 (50) = 3:748 slugs/s 4
Equation (15.47): T = F = m(v _ out
vin ) = 3:784(50
20) = 113:5 lb J
15.131
277 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.132
Pin R y x FBD of control vol. Pout Let R = force exerted by the bend on water. Equation (15.47): F = m(v _ out vin ) From FBD: F = Pin Pout + R Pin i + Pout j + R = m( _ vout j vin i) Substitute m _ = vin
=
Ain vin = 1000
0:42 (4:2) = 527:8 kg/s
4:2 m/s (given) Ain = 4:2 Aout
vout
= vin
Pin
= pin Ain = 12
Pout
4
= pout Aout = (18
0:4 0:6
2
= 1:8667 m/s
(0:42 ) = 1508 N 4 (0:62 ) 103 ) = 5089 N 4
103
) 1508i + 5089j + R = 527:8( 1:8667j R = 3720i 6070j N
4:2i)
Force exerted by the water on the bend is F=
R = 3720i + 6070j N J
278 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.133
T A
ρgL
L
FBD
B Let be the mass of the chain per unit length. Choose the portion AB of the chain as the control volume (the bottom link lies on the ground). We have steady ‡ow, where the force acting on the control volume is F = m(v _ out
vin )
where vin = m _ =
0 (bottom link has no velocity) vout = 3:2(1:5) = 4:8 kg/s ) F = 4:8((1:5
vout = 1:5 m/s
0) = 7:2 N
From FBD: F =T
) T = F + gL = 7:2 + 3:2(9:81)(4) = 132:8 N J
gL
15.134
vout 40
y vin
Control volume
Mg
o
P x N
Let the xy axes be attached to the control volume. vin = 3i ft/s
vout = 30( i cos 40 + j sin 40 ) =
20 ( 22:98i + 19:284j 3i) 32:2 16:137i + 11:978j lb ( F)x = 16:14 lb J
F = m(v _ out P
= =
22:98i + 19:284j ft/s
vin ) =
279 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.135 d
a 5 in.
P
25.4 ft/s a
d2 d2 62:4 vout = (25:4) = 38:66d2 slugs/s 4 4 32:2 (5=12)2 D2 p= (624) = 85:09 lb = Aa a p = 4 4 = P = m(v _ out vin ) 85:09 = 38:66d2 (25:4 0) = 0:2944 ft = 3:53 in. J
m _ = P F d
15.136 W
y
FBD
x
θ
2T
Thrust of one engine = T = m _ out u = (80 + 1:6)(660) = 53 860 N Fy
= =
0 +" 2T sin W =0 8000(9:81) W = sin 1 = 46:77 sin 1 2T 2(53 860)
J
Fx
= max + ! 2T cos = ma 2T cos 2(53 860) cos 46:77 2 a = = = 9:22 m/s J m 8000
15.137 y x
FBD T T =m _ out u = Fy
Mg
θ
250 (1500) = 11 646 lb 32:2 = =
M=
5000 = 155:28 slugs 32:2
0 +" T sin Mg = 0 Mg 155:28(28:8) sin 1 = sin 1 = 22:6 T 11 646
J
280 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.138
Mg
FBD 4.5 km A T Control volume = rocket + wire above A.
M = 70 + 0:004(4500) = 88:0 kg p_V
d(M v) = M_ v + M a = ( v) v + M a dt 0:004(220)2 + 88:0a = 193:6 + 88:0a N
= =
+" F = p_V
=
a =
F
+"
Mg
T =
88:0(9:81)
193:6 + 88:0a =
18 =
881:3
881:3 N a=
12:21 m/s
2
12:21 m/s # J 2
15.139 Equation (15.48): mu _ Substituting m _ =
M g = M v_
dM=dt and v_ = a (constant), we get dM u dt
1 dM = M
Mg = Ma
Integration yields ln M =
a+g dt u
a+g t+C u
Initial condition: M
= M0 when t = 0 ) C = ln M0 M a+g ) ln = t M0 u
When M = 0:25M0 : ln (0:25) =
34:4 + 9:81 t 1300
t = 40:8 s J
281 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.140
Mg FBD
30 in. P m _ =
" 0:075 vin Ain = (80) 32:2 4
10 12
2
#
= 0:101 63 slugs/s
2
20
30 = 4:909p 4 12 vin ) + # M g P = m(0 _
P
= pAout = p
F
= m(v _ out
4:909p =
0:101 63(80)
p = 5:73 lb/ft
2
vin )
J
15.141
282 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.142
15.143
30o N2
A
y 60 a A g A
x
40 lb
60 lb FBD N1
N2
MAD
a B B 40 g A
30o 40 a g B/A
30o FBD
MAD
Block A: + +
"
Fx = mA aA
N2 sin 30 =
Fy = 0
N2 cos 30
N1
60 aA 32:2 60 = 0
Block B: 40 aB=A cos 30 aA 32:2 40 aB=A sin 30 N2 cos 30 = 32:2
+ !
Fx = mB (aB )x
N2 sin 30 =
+
Fy = mB (aB )y
40
#
283 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
After simplifying, the equations become 0:5N2 1:8634aA N1 0:8660N2 0:5N2 + 1:2422aA 1:0758aB=A 0:8660N2 + 0:6211aB=A
= 0 = 60 = 0 = 40
The solution is N1 = 85:7 lb aA aB
N2 = 29:7 lb
aA = 7:97 ft/s
2
= 7:97i ft/s J = aA + aB=A = ( 7:97 + 23:0 cos 30 ) i
aB=A = 23:0 ft/s
2
2
=
11:95i
11:50j ft/s
2
(23:0 sin 30 ) j
J
15.144
15.145 p1 = p 2 + 4000(25) = 36 000v2
mcar v1 = mtot v2 v2 = 2:78 mi/h J
284 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.146 p1 = p 2
+ !
0 0 mA vA + mB vB = mA vA + mB vB 0 8000(6) + 5000(2) = 8000vA + 5000(5:2) 0 vA = 4:0 mi/h J
15.147 yA
yB A B
L_ = 4vA + vB = 0 vB = 8 m/s " J
L = 4yA + yB + constant 4(2) + vB = 0 vB = 8 m/s
15.148 Position 1 = just before impact Position 2 = just after impact (datum position for Vg ) Position 3 = maximum displacement of block Momentum parallel to the incline is conserved: + % p1 = p2 : mbullet v0 cos 20 = mtot v1 0:8 0:8 v0 cos 20 = + 5 v1 v1 = 9:304 10 3 v0 16 16 Energy is conserved after the impact : T 2 + V2 = T 3 + V3 : 1 (9:304 2
1 mtot v12 + 0 2 10
3
)v0
2
v0
=
0 + mtot gd sin 20
=
32:2(1:6) sin 20
=
638 ft/s J
285 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.149
15.150 y
µsW A
250
ω T
FBD T
B
400
µsW
x
Block B tends to slide to the right and block A tends to slide downward. The friction forces shown oppose impending sliding. Block B: Fx 0:25(2 9:81) T Block A: Fy 0:25(2 9:81) T
= max + ! T = mrB ! 2 sW = 2(0:4)! 2 4:905 + T = +0:8! 2 = may + " = 2(0:25)! 2
T = mrA ! 2 4:905 T = 0:5! 2
(a)
sW
(b)
Solution of (a) and (b) is T = 21:3 N and ! = 5:72 rad/s J
15.151
286 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.152
287 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.153
288 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.154
15.155
L Datum
L
L L/2
y2 s1 y1
WA Position 1
L L
WA
WB
WB s2
Position 2
289 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Length of rope is constant: 2s1 + y1 p 2 L2 + (0:5L)2 + y1 y1 y2
= = =
2s2 + y2 p 2 2L2 + y2 0:5924L
Energy is conserved: V1 = V2 WA (0:5L)
W B y1 0:5WA L 0:5WA L WA WB
= WA L W B y 2 = WB (y1 y2 ) = 0:5924WB L 0:5924 = = 1:185 J 0:5
15.156
290 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
15.157 Position 1: release position. Position 2: just before impact. Position 3: just after impact. T1 + V1 = T2 + V2 : 1 1 mA (vA )22 + k 22 2 2 1 1 1 (300) (0:32 ) = (0:5)(vA )22 + (300)(0:052 ) 2 2 2 (vA )2 = 7:246 m/s 1 0+ k 2
2 1
=
e = vsep =vapp : e=
(vB )3 (vA )3 (vA )2
0:8 =
(vB )3 (vA )3 7:246
(a)
p 2 = p3 : mA (vA )2 = mA (vA )3 + mB (vB )3 0:5(7:246) = 0:5(vA )3 + 0:2(vB )3
(b)
Solution of Eqs. (a) and (b) is (vB )3 = 9:32 m/s J
(vA )3 = 3:52 m/s
15.158 Position 1 = just before shell is …red Position 2 = just after the shell is …red Position 3 = maximum compression of spring System: + ! p1 = p2 : 0 = mA (vA )2 0 = 24(1800) 650 (vB )2
Barrel only: T2 + V2 1 2
650 32:2
(66:46)2
= T3 =
1 1 2 mB (vB )2 + 0 = 0 + k 2 2
V3 :
1 (26 2
mB (vB )2 (vB )2 = 66:46 ft/s
103 )
2 3
3
2 3
= 1:852 ft J
15.159 Block A:
3 lb
y x
o
25
FBD NA
= 0.2NA
3 a 32.2 MAD
291 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Fy
=
Fx
= max
a =
0
+"
NA cos 25
+ !
0:2NA sin 25
3=0
NA sin 25 + 0:2NA cos 25 =
NA = 3:651 lb 3 a 32:2
32:2 2 (3:651) (sin 25 + 0:2 cos 25 ) = 23:66 ft/s 3
System (block A and wedge B):
9 lb
P
9 a 32.2
=
FBD 0.4NB NB Fy
=
Fx
= max
+ !
=
9 (23:66) = 10:21 lb J 32:2
P
0
MAD
+"
0:4(9) +
NB
9=0 P
NB = 9 lb 9 a 0:4NB = 32:2
15.160
(mA+ mB)v2
mB(vB )1
mA (vA )1
B A Before impact
A
B
After impact
(vA )1
=
40 mi/h = 40
(vB )1
=
26 mi/h = 26
5280 3600 5280 3600
= 58:67 ft/s = 38:13 ft/s
(a) Momentum is conserved: mA (vA )1 + mB (vB )1 = (mA + mB )v2 3800 3200 + 3800 3200 (58:67) + (38:13) = v2 g g g v2 = 47:52 ft/s J (b) T1
= =
1 1 mA (vA )21 + mB (vB )21 2 2 1 3200 1 3800 (58:67)2 + 2 32:2 2 32:2
(38:13)2 = 256:8
103 lb ft
292 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
T2 =
1 1 (mA + mB )v22 = 2 2
% energy loss =
T1
T2 T1
3200 + 3800 32:2 100% =
(47:52)2 = 245:5
256:8 245:5 256:8
103 lb ft
100% = 4:40% J
15.161
293 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 16 16.1
16.2 = 10e
0:5t
!=
20e
0:5t
+ C1
= 40e
0:5t
+ C1 t + C2
= 0 when t = 0. ) C1 = 20 rad/s, C2 =
Initial conditions: ! = )!=
20e
0:5t
+ 20 rad/s
= 40e
0:5t
+ 20t
40 rad
40 rad
When t ! 1, ! ! 20 rad/s. ) ! 1 = 20 rad/s J When ! = 0:5! 1 : 10
= =
20e 0:5t + 20 e 40(0:5) + 20(1:3863)
0:5t
= 0:5 t = 1:3863 s 40 = 7:726 rad = 1:230 rev J
16.3 = ) ! d!
=
d! d d! d! = = ! dt d dt d 1 2 d ! = + C1 2
Initial condition: ! = 6000 rev/min when ) When
1 2 (! 2
( is constant)
= 0. ) C1 = 60002 =2 (rev/min)
2
60002 ) =
= 3600 rev, ! = 1200 rev/min. )
1 (12002 2
60002 ) = (3600)
=
4800 rev/min
2
d! dt = d! t = ! + C2 dt Initial condition: ! = 6000 rev/min when t = 0. ) C2 = 6000 rev/min When ! = 0: =
t = C2
4800t =
6000
t = 1:250 min = 75:0 s J
294 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.4 =
4t2 + 24t
10 rad
!=
8t + 24 rad/s
=
8 rad/s
2
(a) When t = 4 s: !=
8(4) + 24 =
8 rad/s J
=
8 rad/s
2
J
(b) Note that the rotation reverses direction when t = 3 s (obtained by setting ! = 0). When t = 0, = 10 rad When t = 3 s, = 4(3)2 + 24(3) 10 = 26 rad When t = 4 s, = 4(4)2 + 24(4) 10 = 22 rad The total angle turned through is tot = (10 + 26) + (26 22) = 40 rad J
16.5 Z 4 + 6t != dt = 4t + 3t2 + C1 Z = ! dt = 2t2 + t3 + C1 t + C2 =
Initial conditions: ! = 0 and
= 0 when t = 0: ) C1 = C2 = 0
) ! = 4t + 3t2
= 2t2 + t3
When ! = 24 rad/s: 24 = 4t + 3t2
t = 2:239 s
)
= 2(2:239)2 + 2:2393 = 21:3 rad J
16.6
295 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.7
16.8 2
= 12 rad/s Initial conditions: C2 = 0.
= 6t2 + C1 t + C2 rad
! = 12t + C1 rad/s = 0, ! =
) ! = 12t
24 rad/s when t = 0. ) C1 = 24 rad/s
= 6t2
24 rad/s and
24t rad
Note that the rotation reverses direction when t = 2 s (obtained by setting ! = 0). When t = 0, = 0: When t = 2 s, = 6(2)2 24(2) = 24:0 rad When t = 4 s, = 6(4)2 24(4) = 0 The total angle turned through is tot = 48 rad J
296 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.9 !
=
4t1=2
=
=
jt=6 s
Z
! dt =
8 3=2 t +C 3
8 3=2 (6) + C 3
jt=0 s =
J
C = 39:2 rad
16.10 _=
= sin t
•=
cos t
2
sin t
= R• = R 2 sin t 2 an = R _ = R 2 cos2 t q q a = a2t + a2n = R 2 sin2 t + cos4 t at
The acceleration is maximized when
d (sin2 t + cos4 t) d( t)
=
0
2 sin t cos t + 4 cos3 t( sin t)
=
0
There are three solutions: t
=
t
=
t
=
2
0 yielding a = R 2 4
yielding a = R p
3 R 2
yielding a =
) amax = R
2
2
2
J
16.11 Pulley B: v
=
a =
(RB )o ! B (RB )o
B
40
! B = 24 rad/s J
12 = 20! B 28
12 = 20
B
B
=
16:8 rad/s
2
J
Belt between B and C: v0
=
(RB )i ! B = 8(24) = 192 in./s
0
=
(RB )i
a
B
= 8( 16:8) =
134:4 in./s
2
Pulley C: v0 0
a
= RC ! C = RC
C
! C = 8:0 rad/s J
192 = 24! C 134:4 = 24
C
C
=
2
5:60 rad/s
J
297 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.12 Left pulley: vA
=
(aA )n
=
a2A
=
(RA )i ! A
12 = 0:75! A ! A = 16 rad/s 2 2 2 (RA )o ! A = 2(16) = 512 ft/s (aA )t = (RA )o A = 2 2 2 2 (aA )n + (aA )t 600 = 512 + 4 2A A = 156:41
2
A 2
rad/s
Right pulley: vB
= RB ! B
(aB )n
=
RB ! 2B
(aB )t
= ab elt = (RA )i A = 0:75(156:41) = 117:31 ft/s q p 2 (aB )2n + (aB )2t = 115:22 + 117:312 = 164:4 ft/s J =
aB
16.13
12 = 1:25! B 2
! B = 9:6 rad/s
= 1:25(9:6) = 115:2 ft/s
2 2
!B !C !D
rA 50 (320) = 457:1 rad/s !A = rB 35 = ! B = 457:1 rad/s rC 20 = !C = (457:1) = 203 rad/s J rD 45 =
16.14
298 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.15
16.16 AC
vB
= !
vB
=
0:36i + 0:54j 0:3k =p = 0:5035i + 0:7553j 0:362 + 0:542 + 0:32
rB=C = 4 0:9063i
AC
i ( 0:54j) = 4 0:5035 0
0:4196k
j 0:7553 0:54
k 0:4196 0
1:0876k m/s J
299 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
B
= = 6
rB=C + ! (! rB=C ) = rB=C + ! vB ( 0:54j) + 2 AC vB AC i j i j k 0:4196 + 4 0:5035 0:7553 6 0:5035 0:7553 0:9063 0 0 0:54 0
= =
4:65i + 3:71j
1:107k m/s
2
k 0:4196 1:0876
J
16.17 Let w be the width of the tape. dV1 dV2 dV1
!
= Vol. of tape leaving the reel during time dt is v0 hw dt = Vol. change of tape on the reel (approx.) is 2 Rw dR dR vo h = dV2 : v0 h dt = 2 R dR = dt 2 R = =
v0 R d! d! dR = = dt dR dt
v0 dR = R2 dt
v0 R2
v0 h 2 R
=
v02 h J 2 R3
16.18 ! rB=A vB
= ! =
12i
= !
15j + 9k = 25 p = 152 + 92 9k in.
21:44j + 12:862k rad/s
CA
rB=A =
i 0 12
j 21:44 0
k 12:862 9
= 192:96i + 154:34j + 257:3k in./s = 16:08i + 12:86j + 21:4k ft/s J
aB
= !
vB =
i 0 192:96
j 21:44 154:34
=
7502i + 2482j + 4137k in./s
=
625i + 207j + 345k ft/s
2
k 12:862 257:3 2
J
16.19 vB = vA + vB=A
300 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
v)
v)
B
+
!
=
A
(vB )x = 8 cos 60 = 4 ft/s q p 2 (vB )y = vB (vB )2x = 62
) + !
( B x
" =
2ω
8 ft/s 60o + ω A
( B y
2 ft
B
42 = 4:472 ft/s
(vB )y = 8 sin 60 + 2! 4:472 = 8 sin 60 + 2! 1:228 rad/s ! = 1:228 rad/s J
16.20 Wheel rolls without slipping: vC = R! = 1:75! vB = vC + vB=C
8 ft/s B +"
0.75ω = 1.75ω + B 0.75 ft (vB)x C
ω
C
= 0:75! ! = 10:667 rad/s J = 1:75! = 1:75(10:667) = 18:67 ft/s
8 vC
! J
16.21 Wheel rolls without slipping: vC = R! vA = vC + vB=C + vA=B
vA
A =
Rω
ω
+ C C
Rω ω AB
R
B +
B 2
2R
45o
A
2 2RωAB
+
+"
0 vA vA
p = R! 2 2R! AB sin 45 ! AB = 0:5! J p p = R! + 2 2R! AB cos 45 = R! + 2 2R(0:5!) cos 45 = 2R! J
301 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.22 vO = vA + vO=A
6 ft/s
=
O
4 ft/s
2.5ω
+
A
O 2.5 ft
ω +!
6=4
2:5!
.A
! = 4:0 rad/s
J
16.23
A 0.5 m/s A
=
0.6 m/s B
+
0.16 m
vA = vB + vA=B
B + ! 0:5 =
0:6 + 0:16!
0.16ω
ω
! = 6:875 rad/s
J
vC = vB + vC=B
C
=
0.6 m/s B
+
0.6875 m/s 0.1 m
vC C
6.875 rad/s B + ! vC =
0:6 + 0:6875 = 0:0875 m/s ! J
302 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.24
303 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.25
16.26 vA = vB + vA=B
ω A
=
12 in./s B
in. 10
vA
.
B
+
A 10ω
4
3
304 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
+ +
"
3 (10!) ! = 2:0 rad/s 5 4 4 vA = (10!) = (10 2) = 16:0 in./s 5 5
0 = 12
J
16.27
16.28
D B y A 2 ft/s
ω
θ
d
x
vB 2.5 ft
d = 2:5 csc
305 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Solution I (scalar notation) vB = vA + vB=A
ωd vB
θ
B + -
=A
vA
d
+ ωA
0 = vA sin + !d ! = 0:8 sin2 rad/s
0= J
θ
B
2 sin + !(2:5 csc )
Solution II (vector notation) vB vB i vB i
= vA + ! = 2 cos i = 2 cos i
rB=A 2 sin j + !k 2:5 csc i 2 sin j + 2:5! csc j
Equating j-components: !=
! = 0:8 sin2
2 sin + 2:5! csc
J
rad/s
16.29 = vB + vC=B = ! AB rB=A + ! BC rC=B = 2:8k ( 30i) + ! BC k (30i + 60j) = 84j + ! BC (30j 60i)
vC ! CD rC=D ! CD k 60i 60! CD j
Equating like components: 60! BC 60! CD
= =
0 84
) ! BC = 0 J ) ! CD = 1:40 rad/s
J
16.30
y
B
D 6
15
A
8 E
x
306 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
= rB=A = ( 6i) = 36j = vB
! AB 6k
vD + vB=D ! DE rD=E + ! BD rB=D ! DE k ( 6i + 8j) + ! BD k ( 15i ! DE ( 6j 8i) + ! BD ( 15j + 8i)
8j)
Equating like components: 0 ! BD
= 8! DE + 8! BD = ! DE = 1:714 rad/s
36 = J
6! DE
15! BD
16.31
307 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.32
B
A
Geometry: rB=A rC=B
18 30o x
27
y
30
φ
C
18 cos 30 + 27 cos = 30 = 57:74 = 18(i cos 30 + j sin 30 ) = 15:588i + 9j in. = 27(i cos 57:74 j sin 57:74 ) = 14:412i 22:83j in.
= vB + vC=B = ! AB rB=A + ! BC rC=B = 20k (15:588i + 9j) + ! BC k (14:412i 22:83j) = 311:8j 180i + ! BC (14:412i 22:83j) in./s
vC vC j
Equating like components: 0 vC
= 180 + 22:83! BC ! BC = 7:884 rad/s = 311:8 + 7:884(14:412) = 425 in./s " J
16.33 vB = vA + vB=A
30 o
vB
Β + ! vB sin 30 + " vB cos 30 (0:3420!) cos 30
= = =
ω
Α
20o 0.5ω + 2 m/s Α 0.5 m Β
=
0:5! sin 20 vB = 0:3420! 2 + 0:5! cos 20 2 + 0:5! cos 20 ! = 11:516 rad/s
J
vC = vA + vC=A
(vC)y
Α (vC)x =
C + +
! "
vC
=
2 m/s
11.516 rad/s +
20o
Α 1.0 m
11.516 m/s C
(vC )x = 11:516 sin 20 = 3:939 m/s (vC )y = 2 + 11:516 cos 20 = 8:822 m/s p 3:9392 + 8:8222 = 9:66 m/s J
308 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.34
A
m B 4 . 0 θ 0.25 m
0:25 = 38:68 0:4 vC = vB + vC=B
= sin
1
1.0 m/s vC C
= 2.5 rad/s
+ +
"
.
m 0.4
C 38.68o o 0.4 38.68 m B 0.4ωBC ωBC B
+
.
A
0 = (1:0 0:4! BC ) cos 38:68 ! BC = 2:50 rad/s vC = (1:0 + 0:4! BC ) sin 38:68 = [1:0 + (0:4 2:5)] sin 38:68 = 1:250 m/s J
16.35
309 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.36
16.37
vB
A vB 30j 30j
80
B 160 o y 30 vA
D
x
= vA + vB=A 30j = vA i + ! BD rB=A = vA i + ! BD k 160(i cos 30 + j sin 30 ) = vA i + ! BD (138:56j 80i)
Equating y-components: 30 = 138:56! BD vD
vD
! BD = 0:2165 rad/s
= vB + vD=B = 30j + ! BD rD=B = 30j + 0:2165k 80(i cos 30 + j sin 30 ) = 30j + 15:0j 8:660i = 45:0j 8:660i mm/s p = 45:02 + ( 8:660)2 = 45:8 mm/s J
310 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.38
311 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.39
16.40
13 i n.
12 in.
O 5 in. B ω 20 in./s
.
A
vA
Point B is the I.C. of the disk. vO vA
= ! OB 20 = 5! ! = 4 rad/s = ! AB = 4(13) = 52 in./s J
312 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.41
12 in./s 6 in.
B
ω
O
in. 10
vA
8 in.
A
Point O is the I.C. of the disk. vB vA
= OB ! 12 = 6! ! = 2 rad/s = OA ! = 8(2) = 16 in./s J
16.42
ω = 2.5 rad/s
300 vG
O vO= 500 mm/s
G 3 2
d = 200
e C
Dimensions in mm vO 500 = = 200 mm ! 2:5 determine the location of the instant center C of
d=
The directions of vO and vG the wheel. p e = 3002 + 2002 = 360:6 mm vG = e! = 360:6(2:5) = 902 mm/s %56:3
J
313 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.43
16.44
314 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.45
16.46 vC 24 rad/s
80 A
vB vB
vB 120 C B
= vA + vA=B = 0 + ! AB AB = 4:8(200) = 960 mm/s vC vC
= vA + vC=A = 0 + ! A AC = 24(80) = 1920 mm/s
ωB I.C. of B
(A and B on the arm AB)
(A and C on gear A)
The velocities vC and vB establish the instant center for velocities of gear B. ) !B =
vC 1920 = = 8 rad/s 240 240
J
315 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.47
0.5 m/s
0.5 m/s A
a I.C.
60 mm
C 160 − a
100 mm B
0.6 m/s 0.6 m/s Velocities of A and B establish the I.C. of the gear. a 0:5
=
!
=
vC
=
160 a a = 72:73 mm 0:6 vA 500 = = 6:875 rad/s J a 72:73 (a AC)! = (72:73 60) (6:875) = 87:5 mm/s ! J
16.48
vB
B
30
6 in .
o
6 rad/s A Geometry: BE = vB ! BC vC ! CD
vC 8 in.
60o ωCD
8 = 16:0 in. cos 60
ωBC 13.856 in.
16 in.
E
C 4 in. D CE = 8 tan 60 = 13:856 in.
= ! AB AB = 6(6) = 36 in./s vB 36 = = = 2:25 rad/s 16 BE = ! BC CE = 2:25(13:856) = 31:18 in./s vC 31:18 = = = 7:80 rad/s J 4 CD
316 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.49
16.50
16.51
317 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.52
16.53
D
vC 60
Dimensions in mm
C
60
ωCD
vB B
30
A
2.8 rad/s
I.C. of link AB is point A. This determines the direction of vB .
318 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
I.C. of link CD is point D. This determines the direction of vC . Since vB and vC are parallel, link BC is translating. Therefore, = 0 J = vC
! BC vB From motion of link AB:
vB = AB ! AB = 30(2:8) = 84:0 mm/s From motion of link CD: vC = CD ! CD
84:0 = 60! CD
! CD = 1:40 rad/s
J
16.54 D
C 12 i n.
ωBC
B vB
Geometry:
AC BD
! BC vB ! AB
γ
30 in./s
β
6 i 45o n.
ωAB A
6 12 = = 20:70 sin sin 45 = 180 45 20:70 = 114:3 p 2 = CD = 12 + 62 2(12)(6) cos 114:3 = 15:468 in. AC sin 45
=
6=
15:468 sin 45
6 = 15:875 in.
vC 30 = = 1:940 rad/s 15:468 CD = ! BC BD = 1:940(15:875) = 30:80 in./s vB 30:80 = = = 5:13 rad/s J 6 AB =
319 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.55
A
27 in. 60o
12 rad/s
E
in. 15
vD
D
B
vB
ωBC F Geometry: BF = vB ! BC
AE cos 60
AB =
27 cos 60
15 = 39 in.
= ! AB AB = 12(15) = 180 in./s vB 180 = = = 4:62 rad/s J 39 BF
16.56
13 in.
12 rad/s B A 15 in. vB
F
BE
D
BF = tan DF = BF + DF cot = (27 = tan
vB ! BC
β
E
β
27 in.
Geometry:
ωBC
1
vD 1
27
15 = 42:71 13 15) + 13 cot 42:71 = 26:08 in.
= ! AB AB = 12(15) = 180 in./s vB 180 = = = 6:90 rad/s J 26:08 BE
320 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.57
vC
C
ωBCD
24
E 18 F
B 24
A
20 o 35 vB 48 rad/s
18 D
BF
=
BE
=
DE
q 2 BC
2
CF =
Dimensions in inches
p 242
vD 182 = 15:875 in.
BF 15:875 = = 19:380 in. cos 35 cos 35 = DF + BF tan 35 = 18 + 15:875 tan 35 = 29:12 in. vB
! BCD vD
= ! AB AB = 48(20) = 960 in./s 960 vB = = 49:54 rad/s J = 19:380 BE = ! BCD DE = 49:54(29:12) = 1443 in./s ! J
321 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.58
ωAD
E 30o
22 .27 in.
in. 78 20.
24 in.
D C
. 8 in
.
in. 12 18 in./s
.
vD
vC 60o
30o
A
.B
Point E is the I.C. of link AD. Its location is determined by the known directions of the velocities at A and C. AE CE DE vA vD
12 = 24 in. sin 30 12 = = 20:78 in. tan p 30 = 20:782 + 82 = 22:27 in. =
18 = 24! AD ! AD = 0:75 rad/s = AE ! AD = DE ! AD = 22:27(0:75) = 16:70 in./s J
322 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.59
16.60
ωAB 8
E
vB B
vA O 16 in./s
A 3 5
4 C ωdisk
Geometry: OB BE AE
! disk ! AB vB
q p 2 2 = AB AO = 82 32 = 7:416 in. 3 3 = AO + OB = 3 + (7:416) = 8:562 in. 4 4 5 5 = OB = (7:416) = 9:270 in. 4 4
vO 16 = = 4 rad/s vA = ! disk AC = 4(5) = 20 in./s 4 OC vA 20 = = = 2:1575 rad/s 9:270 AE = ! AB BE = 2:1575(8:562) = 18:47 in./s " J =
323 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.61 y
B o
30
B
8 m/s
2
=
x
+
o
6 m/s2
30
A
A
0.2ωAB2
m 0.2 o 30
0.2αAB α ωABAB(sense indeterminate)
aB = aA + aB=A x+ %
y+ -
6 cos 30 = 8 sin 30
0:2! 2AB
6 sin 30 = 8 cos 30
0:2
AB
! AB = 6:78 rad/s J AB
= 49:6 rad/s
2
J
16.62
324 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.63
B
ω = 5 rad/s
rB/A
10 "
α = 12 rad/s2
.
A 4" r D/A
y
v0 a0
D
x No-slip condition gives
aA = R = 10(12) = 120 in./s
rD=A
= =
2
2
12k rad/s ! = 5k rad/s 4j in. rB=A = 10j in. R = 10 in.
(a) aD
= aA + aD=A = R i + rD=A + ! = 10(12)i + ( 12k) ( 4j) + ( 5k) =
120i
48i + 100j =72i + 100j in./s
(! rD=A ) [( 5k) ( 4j)] 2
J
(b) aB
= aA + aB=A = R i + rB=A + ! (! rB=A ) = 10(12)i + ( 12k) 10j + ( 5k) [( 5k) 10j] =
120i + 120i
250j = 240i
250j in./s
2
J
(c) The acceleration of the end of the string is the same as the horizintal component of the acceleration of point D on the spool: a0 = 72i in./s
2
J
325 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.64 B
ω = 5 rad/s α = 12 rad/s2
10 "
.
A 4"
y
v0 a0
D
x
Note that the acceleration of point D on the spool is aD = (a0 !) + (aD )y " aD = aA + aD=A
ω = 5 rad/s α = 12 rad/s2
(aD)y D
= 16 in./s2 A
aA
A
+
4"
4(12) = 48 in./s2
D
4(5)2 =100 in./s2 Equating like components: + !
+
"
16 = aA
48
aA = 64 in./s
(aD )y = 100 in./s
) aD = 16i + 100j in./s
J
2
2
2
aA = 64i in./s
2
J
aB = aA + aB=A
10(5)2 = 250 in./s2 aB
=
64 in./s2 A
+
10(12) = 120 in./s2
B 10"
A aB = (64 + 120)i
ω = 5 rad/s α = 12 rad/s2
250j = 184i
2
250j in./s
J
326 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.65 = B
A
1.2(2)2 m/s2 30o α B ω = 2 rad/s
8 m/s2 +
m 1.2
aA
A
1.2α
aA = aB + aA=B + + The solution is
aA = 1:2 sin 30 1:2(2)2 cos 30 0 = 8 1:2 cos 30 + 1:2(2)2 sin 30
" !
= 10:007 rad/s2 and aA =
10:161 m/s2
) aA = 10:16 m/s # J 2
16.66 Let A and B be points on the disk. vA + vB=A = vB
3 m/s A
0.4 m
+ω
A
+" 3
B
=
0.4ω
0:4! = 1:0
1.0 m/s B J
! = 5 rad/s
Note that the belt accelerations shown in Fig. P16.66 are the tangential components of the accelerations of points A and B on the disk. aA + aB=A = aB
0.5 m/s2 A
0.2ω2
+
+ " 0:5
A
0.4 m
α, ω 0:4 =
1:2
0.4ω2 B 0.4α
=
= 4:25 rad/s
0.2ω2
B
1.2 m/s2 2
J
327 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.67
vB B
16 in.
vC C
β 15 rad/s A
8 in.
! BC = 0 (vB and vC are parallel)
= sin
1
6 = 30 12
aC = aB + aC=B
=
16αBC C 30o
+α
BC
16 i n.
aC
8(15)2 in./s2 8 in. 15 rad/s B A
B 0 = 8(15)2
+ !
+
"
aC = 16
16
BC
2
cos 30
BC
= 129:9 rad/s
sin 30 = 16(129:9) sin 30 = 1039 in./s " J 2
BC
16.68
3 rad/s
A
vC ! BC sin
2
180
β
t 6f
6 ft
γ ft 4 C
vB
B
= ! AB = 3 rad/s (A is the I.C. for BC) 2 1 = = 2 sin 1 = 38:94 6 3 38:94 = +2 = 90 = 90 = 70:53 2 2
328 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
t 6f
aC
3 rad/s A 12 rad/s2
β
C =
B
0 = 0 = + = BC aC = = +
+
γ
6(12) ft/s2 +
4(32) ft/s2
6(32) ft/s2
B 4 ft
C
αBC
3 rad/s
= aB + aC=B
aC +"
4αBC
aC
6(32 ) cos + 6(12) sin + 4(32 ) cos + 4 BC sin 54 cos 38:94 + 72 sin 38:94 + 36 cos 70:53 4 BC sin 70:53 2 26:32 rad/s 2 6(3 ) sin 6(12) cos 4(32 ) sin + 4 BC cos 54 sin 38:94 72 cos 38:94 36 sin 70:53 4( 26:32) cos 70:53 2
=
91:1 ft/s = 91:1 ft/s
2
! J
16.69 ) ! BC =
By inspection: b! = 2b! BC
aC
ω, α C =
A
bα b aC
+
aC +"
0
bω +
ω/2, αBC
2
B
= aB + aC=B ! = b! 2 + 2b 2 2b
2b(ω/2)2 2b
B
= b
1 2!
2
BC
=
3 2 b! 2 BC
=
C
2bαBC
J 1 2
J
16.70
B 30
D ! BC =
4 m/s 6m 0.1
o
ωBC
C vC
vB 4 = = 28:87 rad/s (D is the I.C. for BC) 0:16 cos 30 BD aC = aB + aC=B (note that aB = 0)
329 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
C
28.87 rad/s
B
6m 0.1
αBC
aC =
30o
C 0.16(28.872) m/s2
0.16αBC +
0
=
0:16
BC
cos 30 + 0:16(28:872 ) sin 30 2
aC
= 481:2 rad/s = 0:16 BC sin 30 0:16(28:872 ) cos 30 = 0:16( 481:2) sin 30 0:16(28:872 ) cos 30
aC
=
BC
+#
154:0 m/s = 154:0 m/s " J 2
2
16.71
A
vA = 2 m/s
0.5
0.4
E 0.3
ωBC
vB
ωAB B
C
0.6
Point E is the I.C. of bar AB ! AB vB ! BC
vA 2 = = 5:0 rad/s 0:4 EA = EB ! AB = 0:3(5) = 1:5 m/s vB 1:5 = 2:5 rad/s = = 0:6 BC =
aB = aA + aB=A
0.6αBC
ωBC = 2.5 rad/s 1.2 m/s2 =
C
αBC
A + 0.4
ωAB = 5 rad/s αAB 0.5
0.6(2.5)2 m/s2 B 0.6
A
0.3 0.5αAB
+
!
+
"
0.5(5)2 m/s2 B
4 3 1:2 + (0:5 AB ) (0:5)(5)2 5 5 4 3 = (0:5)(5)2 + (0:5 AB ) 5 5
0:6(2:5)2 = 0:6
BC
330 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The solution is )
AB
= 31:125 rad/s2 and J
2
AB
= 31:1 rad/s
BC
=
32:23 rad/s2 J
2
BC
= 32:2 rad/s
16.72
ωAB
vB
2 ft
C
B
1.5 ft A
6 ft/s
Point C is the I.C. of bar AB. 1:5! AB vB 2! BC
= =
6 ! AB = 4 rad/s 2! AB = 2(4) = 8 ft/s 8 vB = = 4 rad/s = vB ! BC = 2 2 aA = aB + aA=B
B 2αBC 2 ft/s2 A
=
αBC ωBC= 4 rad/s
+ !
2= AB
+
BC
3
+A
B 2(4)2 ft/s2
2 ft
C
ft 2.5
2.5(4)2 ft/s2
αAB ωAB= 4 rad/s
4
2.5αAB
4 3 2(4)2 + (2:5)(4)2 + (2:5) 5 5 2 = 1:3333 rad/s J
AB
3 4 + (2:5)(4)2 (2:5) AB 5 5 3 4 0 = 2 BC + (2:5)(4)2 (2:5)(1:3333) 5 5 2 2 = 10:67 rad/s = 10:67 rad/s J "
0=2
BC
331 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.73 vB = AB! AB = 1:2(10) = 12:0 m/s " Note that vB and vD are parallel. Therefore, bar BD is translating in the position shown. ) ! BD = 0
vD = vB = 12:0 m/s "
! DE =
vD DE
12 = 5:0 rad/s 2:4
aD = aB + aD=B 3
ωDE= 5.0 rad/s 2.4α DE αDE 2.4 m
E
1.5αBD
D 2.4(5)2 m/s2
=
10.0 rad/s 1.2(10)2 m/s2 A B 1.2 m
+
4
D
m
.5 αBD 1 3 4
B + ! +
"
2:4(5)2 = 1:2(10)2 2:4 DE
4 (1:5 BD ) 5 2 = 100 rad/s J
DE
=
3 (1:5 5 2:4
BD )
DE
=
BD
= 200 rad/s
2
J
4 (1:5)(200) 5
16.74
Acceleration Analysis
Assume
AB
to be counterclockwise.
332 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.75
B
vB
0.8 m
ωBC A 0.6 m
0.4 m C vC
.
D
8 rad/s
Point A is the I.C. of bar BC. vC 0:6! BC vB 0:8! AB
=
0:4(8) = 3:2 m/s 3:2 = vC ! BC = = 5:333 rad/s 0:6 = 0:8! BC = 0:8(5:333) = 4:266 m/s 4:266 = vB ! AB = = 5:333 rad/s 0:8 aC = aB + aC=B
333 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
0.8(5.333)2 m/s2 0.8αAB
5.333 rad/s
B
=
+ !
AB
=
3
αBC
5.333 rad/s
A
4 (5:333)2 5
0 = 0:8(5:333)2 BC
4
C
αAB + #
+
0.8 m
αBC
m 1.0
0.4(8)2 m/s2 0.4 m D C 8 rad/s
B
=0 J
3 5
(5.333)2 m/s2
BC
3 4 (5:333)2 + BC 5 5 4 3 (5:333)2 + (0) 0:4(8)2 = 0:8 AB 5 5 2 2 53:3 rad/s = 53:3 rad/s J 0:4(8)2 =
0:8
AB
16.76
n. i 25 15 in.
B
C vC ! AB
A
ωAB
D vB 6 rad/s . in 5 1 vC
= vB = ! CD CD = 6(15) = 90 in./s vB 90 = = = 3:6 rad/s ! BC = 0 (vB and vC are parallel) 25 AB aB + aC=B = aC
αAB
20 rad/s2 D A αBC 45o 3.6 rad/s 45o 6 rad/s + 15 = 5 C 15 2 B 15(20) in./s2 C 2 2 15(6 ) in./s α 25 15αBC AB 25(3.62) in./s2 B
334 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
25(3:62 ) + 15
+%
BC
sin 45
=
= 20:36 rad/s = 15(20) = 15(20)
BC
+&
25 25
+ 15 BC cos 45 + 15(20:36) cos 45
AB
AB
15(62 )
=
AB
J
2
J
2
3:36 rad/s
16.77 D
B vB
15 in.
ωBD
8 in.
in. 17 vD
6 in.
E
Point E is the I.C. of bar BD vB ! BD
= AB ! AB = 6(3) = 18 in./s # vB 18 = = = 0:8571 rad/s 21 BE
! DE = ! BD = 0:8571 rad/s
aB = aD + aB=D
+ !
+"
A
10αDE =
8
D 10 ω
2 DE
10
2 6ωAB B 6
ωAB
D
6
ωDE αDE
E
+
17 2 17ωBD B 15 17αBD
ωBD αBD
8
6 8 15 8 (10! 2DE ) (10 DE ) + (17! 2BD ) + (17 10 10 17 17 6(3)2 = 6(0:8571)2 8 DE + 15(0:8571)2 + 8 BD 38:57 = 8 BD 8 DE
6! 2AB
0
=
0 = 0 =
=
8 6 8 (10! 2DE ) (10 DE ) + (17! 2BD ) 10 10 17 8(0:8571)2 6 DE + 8(0:8571)2 15 15 BD 6 DE
Solution of (a) and (b) is )
BD
= 1:3775 rad/s2 and 2
BD
= 1:378 rad/s
J
DE
DE
=
15 (17 17
BD )
(a)
BD )
(b) 3:444 rad/s2
= 3:44 rad/s
J
335 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.78
16.79
336 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.80
337 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.81
338 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.82
16.83
rA/O y ω x O 0.6 ft A, A' ! = 30
2 60
=
rad/s
339 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Let A0 be a point on OB that is coincident with A at the instant under consideration aA
= aA0 + aA=OB + aC = ! (! rA=O ) + 0 + 2! vA=OB = k ( k 0:6i) + 2( k 3i) = k (0:6 j) + 6 j = 0:6 2 i + 6 j
aA
=
5:92i + 18:85j ft/s
2
J
16.84
16.85
P
30o A
16 .97 1i n.
in. 24
12 in.
45o
B
Let P 0 be …xed to bar BC. vP = vP 0 + vP=BC
340 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.971ωBC
24(5) in./s in. 24 30o
5 rad/s
16 .97 1i n.
P
=
45o
ωBC
A
P'
vP/BC
+
45o
B
+ - 45
24(5) cos 15 = 16:971! BC
2
! BC = 6:83 rad/s
J
16.86 6 rad/s2
y
3 rad/s
rP/Ao 30 A B
x ! !
rP=A rP=A vP
aP
36 in./s P
15 in. 2
= 3k rad/s = 6k rad/s vP=B = 36j in./s = 15(i + j tan 30 ) = 15i + 8:660j in. = 3k (15i + 8:660j) = 45j 25:98i in./s = vA + vP 0 =A + vP=B = 0 + ! rP=A + vP=B = 45j 25:98i + 36j = 51:96i + 126:0j = 26:0i + 81:0j in./s J
= aA + aP 0 =A + aP=B + aC = 0+ rP=A + ! (! rP=A ) + 0 + 2! vP=B = 6k (15i + 8:660j) + 3k (45j 25:98i) + 2(3k) = ( 90j + 51:96i) + ( 135i 77:94j) 216i =
299i
167:9j in./s
2
36j
J
341 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.87 aP = aA + aP 0 =A + aP=disk + aC Noting that A is a …xed point and that P 0 coincides with A, we have aA = aP 0 =A = 0. Hence aP = aP=disk + aC
82 = 8 in/s2 8 vP/disk = 8 in./s P aP
=
2(1.2)(8) = 19.2 in./s2
+
8 in.
vP/disk = 8 in./s ω = 1.2 rad/s
=
11.2 in./s2
B
aP = 11:2 in./s " J
16.88 vP = vA + vP 0 =A + vP=AB = 0 + vP 0 =A + vP=AB
P
ft/s 45o 4(1.6971) P' 45o = + 1 7 vP/AB 4 rad/s .69 1 A
0
=
4(1:6971)
vP vP
= =
vP
+
+"
vP=AB sin 45
vP=AB = 6:788 ft/s
4(1:6971) + vP=AB cos 45 [4(1:6971) + 6:788] cos 45 = 9:60 ft/s J
vP2 9:602 2 = = 76:8 ft/s R 1:2 aP = aA + aP 0 =A + aP=AB + aC = 0 + aP 0 =A + aP=AB + aC (aP )y =
1.6971(12) ft/s2 45o P
(aP)x 76.8 ft/s2
=
P' 1 7 4 rad/s 69 1. A 12 rad/s2
1.6971(42) ft/s2 +
ω 45o 45o + vP/AB aP/AB 2(4)(6.788) ft/s2
342 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
+" + !
76:8
42 )
=
1:6971(12
aP=AB
=
2
(aP )x
=
1:6971(12 + 42 )
(aP )x
=
28:8 ft/s
2
) aP
=
28:8i
47:52 ft/s
76:8j ft/s
aP=AB
2(4)(6:788) sin 45
47:52 + 2(4)(6:788) cos 45 2
J
16.89 vP = vA + vP 0 =A + vP=AB = 0 + vP 0 =A + vP=AB
ωAB
0.2 309 m
0.2309ωAB P' vP/AB x 30o 1.2 m/s + = 60 o P y A +x +y .
1:2 cos 30 1:2 sin 30
J
= 0:2309! AB ! AB = 4:50 rad/s = vP=AB vP=AB = 0:6 m/s
aP = aA + aP 0 =A + aP=AB + aC 0 = 0 + aP 0 =A + aP=AB + aC
0.2309αΑΒ
0.2 309 m
30o
0 = 4.50 rad/s A +x -
0.2309 (4.52) m/s2 P'
ωAB
+ 60 o + v P/AB aP/AB
30o 2(4.50)(0.6) m/s2
αΑΒ
0 = 0:2309
AB
2(4:50)(0:6)
2
AB
= 23:4 rad/s
J
16.90 aO vP=disk
20 2 (2) = 3:333 ft/s 12 2 6 ft/s # aP=disk = 28 ft/s #
= R = =
aP = aO + aP 0 =O + aP=disk + aC
343 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
aP = 3.333 ft/s O
2
+ O
+ +
!
"
)
1.0(52) ft/s2 P'
1.0 ft
1.0(2) ft/s
2
+ 5 rad/s 2 rad/s2
(aP )x =
3:333
(aP )y =
1:0(52 )
aP =
65:3i
2(5)(6) ft/s2 ω + 28 ft/s2 vP/disk
1:0(2)
2(5)(6) =
28 =
53:0j ft/s
2
53:0 ft/s
65:3 ft/s
2
2
J
*16.91
344 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.92 ! = 5k rad/s
=0
rP 0 =A = 0:4(i cot 60 + j) = 0:2309i + 0:4j) m
(a) vP 0 =A vP=AB
= ! rP 0 =A = 5k (0:2309i + 0:4j) = 1:1547j 2i m/s = vP=AB (i cos 60 + j sin 60 ) = vP=AB (0:5i + 0:8660j) m/s vP vP i
= vA + vP 0 =A + vP=AB = 0 + 1:1547j 2i + vP=AB (0:5i + 0:8660j)
Equating y-components: +
" )
0 = 1:1547 + 0:8660vP=AB vP=AB = 1:333 m/s vP=AB = 1:333(i cos 60 + j sin 60 ) = 0:6665i 1:1544j m/s J
(b) = !
aP 0 =A
(!
rP 0 =A ) = 5k
(1:1547j
2i) =
5:776i
10j m/s
2
2
= aP=AB (0:5i + 0:8660j) m/s = 2! vP=AB = 2(5k) ( 0:6665i
aP=AB aC
=
6:665j + 11:544i m/s
1:1544j)
2
= aA + aP 0 =A + aP=AB + aC = 0 + ( 5:776i 10j) + aP=AB (0:5i + 0:8660j) + ( 6:665j + 11:544i)
aP aP i
Equating y-components: +
"
)
0=
10 + 0:8660aP=AB
6:665
aP=AB = 19:244 m/s
aP=AB = 19:244(0:5i + 0:8660j) = 9:62i + 16:67j m/s
2
2
J
16.93 vP = vP 0 =A + vP=AB
P
=
0.8 m
0.9 m
A 0.8(5) m/s 45o
5 rad/s C
P'
ωAB
+
vP/AB
0.9ωAB
345 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
+ ! + " )
0:8(5) cos 45 = 0:9! AB 0:8(5) sin 45 = vP=AB
J
! AB = 3:143 rad/s vP=AB = 2:828 m/s
aC = 2! AB vP=AB = 2(3:143)(2:828) = 17:777 m/s
2
Let P 0 be the point on AB that is coincident with P at this instant. Coordinates are embedded in bar AB: aP = aP 0 =A + aP=AB + aC
45o P 0.8 m
ω = 5 rad/s α = 3 rad/s2
=
A 0.9 m
0.8(5)2 m/s2 0.8(3) m/s2
αAB ωAB = 3.143 rad/s
+
aP/AB
vP/AB = 2.828 m/s
+ 17.777 m/s2 ωAB = 3.143 rad/s
0.9αAB
C
0.9(3.143)2 + !
0:8(52 ) sin 45 + 0:8(3) cos 45 = 0:9 AB
= 37:4 rad/s
2
AB
17:777
J
16.94
346 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.95
16.96
347 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.97 B P 390
A
150
2 rad/s
22.62o 360
D
vP = vA + vP 0 =A + vP=AB = 0 + vP 0 =A + vP=AB
348 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
P 0.3 m
0.3(2) m/s 2 rad/s
+x +y .
m 0.39 o 22.62
= ωAB A D
0:3(2) sin 22:62 = 0:39! AB 0:3(2) cos 22:62 = vP=AB
0.39ωAB 22.62o P' + v P/AB
x y
! AB = 0:5917 rad/s vP=AB = 0:5538 m/s
J
aP = aA + aP 0 =A + aP=AB + aC = 0 + aP 0 =A + aP=AB + aC
P
0.15 m
0.15(22) m/s2
A
0.39(0.59172) m/s2 +
22.62
ωAB
22.62o 22.62 + vP/AB vP/AB 2(0.5917)(0.5538) m/s2 o
0.5917 rad/s
+x AB
αAB 0.39 m P' o
=
2 rad/s O
0.39αAB
=
0:15(22 ) cos 22:62 = 0:39 0:260 rad/s
2
AB
2(0:5917)(0:5538)
J
16.98
349 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.99
A
9i n.
θ
xD xD vD aD
= =
9 cos in. 9 _ sin =
B
9 (8) sin 40 = 2
=
9• sin
9 _ cos in./s
=
9(140) sin 40
46:3 in./s
2
9(8)2 cos 40 =
) vD = 46:3 in./s ! J
1251 in./s
aD = 1251 in./s
2
2
! J
16.100
A yA
θ L B xB
2 Constraint: x2B + yA = L2
(a) Di¤erentiating with respect to time: 2xB vB + 2yA vA xB ) vA = vB yA ) vA
= = =
0
(a) vB tan =
1:4 tan 20 =
0:5096 m/s
0:510 m/s # J
(b) Di¤erentiating (a) with respect to time: 2 2 vB + xB aB + vA + yA aA 2 2 vB + vA + xB aB ) aA = yA
aA
= = =
0 1:42 + ( 0:5096)2 + 0 = 1:8 cos 20
1:312 m/s
2
1:312 m/s # J 2
350 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.101
C
.
β 3 ft
.B
2.5 ft t 2f
θ
0.8 rad/s A Geometry: 2 sin + 3 sin
= 2:5
(a)
Di¤erentiation yields: _ + 3 cos
2 cos When
_ =0
(b)
= 45 : Eq. (a): 2 sin 45 + 3 sin = 2:5 = 21:22 Eq. (b): (2 cos 45 ) (0:8) + (3 cos 21:22 ) _ = 0
_ =
0:4046 rad/s
Di¤erentiate Eq. (b): 2 sin When
_ 2 + 2 cos •
3 sin
_ 2 + 3 cos
•=0
= 45 : (2 sin 45 ) (0:8)2 + 0
(3 sin 21:22 ) ( 0:4046)2 + (3 cos 21:22 ) • = 0 • = 0:3872 rad/s2
Therefore, J
! BC = 0:405 rad/s
2
BC
= 0:387 rad/s
J
16.102
B 0.25 m
φ
5m 0.7
0.5 m
C
x θ
D
351 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Geometry: x = 0:75 cos + 0:5 cos 0:25 = 0:75 sin 0:5 sin
(a)
Di¤erentiation with respect to time: 0:75 _ sin 0:75 _ cos
x_ = 0 = Substitute
0:5 _ sin 0:5 _ cos
(b) (c)
= 60 and x_ = 1:2 m/s:
From (a): From (b): From (c):
0:25 = 0:75 sin 60 0:5 sin = 53:04 _ _ 1:2 = 0:75 sin 60 0:5 sin 53:04 _ _ 0 = 0:75 cos 60 0:5 cos 53:04
Solving (d) and (e) simultaneously, we get _ = rad/s. Therefore, ! CD = 1:045 rad/s
(d) (e)
1:302 rad/s and _ =
1:045
J
16.103 Geometry: 0:4 sin 1 + 0:3 sin 2 0:4 cos 1 _ 1 + 0:3 cos 2 _ 2 0:4 sin
1
_ 2 + 0:4 cos 1
1
•1
0:3 sin
2
_ 2 + 0:3 cos 2
2
•2
= 0:4 = 0
(a) (b)
=
(c)
0
When 1 = 30 and _ 1 = 0:6 rad/s (note that •1 = 0): Eqs. (a) and (b): 0:4 sin 30 + 0:3 sin 2 (0:4 cos 30 ) (0:6) + (0:3 cos 41:81 ) _ 2
= =
0:4 0
2 = 41:81 _ 2 = 0:9295 rad/s J
Eq. (c): ( 0:4 sin 30 ) (0:6)2
(0:3 sin 41:81 )( 0:9295)2 + (0:3 cos 41:81 ) •2 = 0 •2 = 1:095 rad/s2 J
352 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.104
16.105
353 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.106
16.107
A R y
θ
e
O
_ = 800
2 60
= 83:78 rad/s
Law of cosines: R2 802
= y 2 + e2 2ye cos = y 2 + 402 2y(40) cos 50
(a) y = 99:61 mm
354 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Di¤erentiating Eq. (a): 0
=
y_
= =
2y y_
_
2ye _ cos + 2ye sin
ye _ sin 99:61(40) (83:78) (sin 50 ) = e cos y 40 cos 50 99:61 3460 mm/s = 3:47 m/s # J
*16.108
A
θ
9 ft
C
φ
6 ft
L
B
Geometry: 6 sin L sin 6 cos + L cos
= =
0 9 ft
(a) (b)
Di¤erentiating with respect to time: 6 _ cos 6 _ sin Substituting
L _ cos L_ sin L _ sin + L_ cos
= 20 and L_ =
0 0
(c) (d)
2 ft/s, we get
From (a): From (b):
6 sin 20 L sin = 0 6 cos 20 + L cos = 9 ft
The solution is L = 3:939 ft and From (c): 6 _ cos 20 From (d): 6 _ sin 20 The solution is _ =
= =
= 31:40 .
3:939 _ cos 31:40 ( 2) sin 31:40 _ 3:939 sin 31:40 + ( 2) cos 31:40
0:4053 rad/s and _ =
= 0 = 0
0:4265 rad/s. Therefore, J
! AB = 0:427 rad/s
16.109 D y A
0.5 m
θ θ
C
.5 m 0 m 0.5 B
θ
355 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
y y_
= 3(0:5) sin = 1:5 sin m = 1:5 _ cos m/s
y• = Substitute
2
1:5 _ sin + 1:5• cos m/s
(a) 2
(b)
= 30 , y_ = 3 m/s and y• = 0:
From (a): From (b):
3 = 1:5 _ cos 30 0=
_ = 2:309 rad/s 1:5(2:309) sin 30 + 1:5• cos 30
! ABC = 2:31 rad/s
• = 3:078 rad/s2
2
J
2
ABC
= 3:08 rad/s
J
16.110
356 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.111
16.112 x
G
2R θ A
x = 2R tan x_ = 2R _ sec2 2 x• = 2R _ (2 sec )(sec tan ) + 2R• sec2 = 4R! 2 sec2 tan (note that _ = ! and • = 0) = 4R! 2 sec2 50 tan 50 = 11:537R! 2 )
gear
=
x• = 11:54! 2 R
J
357 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.113
D B 2 ft
θ
vA A
x
Geometry: 2 cot
x • =
_2
2 csc2 (2 cot
= When
) x_ =
2 csc2 _ 2 2 [2 csc ( csc cot )] _ 2 csc2
x =
•
•)
= 30 : x_ = x • =
2 csc2 30 _ 2 •=0 (2 cot 30 ) (0:25)
2 ft/s 0
! AD (aB )t (aB )n
=
2=
_ = 0:25 rad/s
_ = 0:25 rad/s • = 0:2165 rad/s2
J
2
2 = AB _ = 4(0:25)2 = 0:25 ft/s 30 . J 2 = AB • = 4(0:2165) = 0:866 ft/s 60 - J
358 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.114
359 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.115
16.116
360 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.117
1.5 ft
vO
A
O
25o 8 ft/s
25o C
ω
The directions of the velocties of points O and A locate the instant center C of the disk. AC = 1:5 csc 25 = 3:549 ft !=
OC = 1:5 cot 25 = 3:217 ft
vA 8 = 2:254 rad/s = 3:549 AC
J
vO = OC ! = 3:217(2:254) = 7:25 ft/s ! J
16.118 Because the two arms form a parallelogram linkage, member BC translates (BC remains horizontal). Hence the velocity and acceleration vectors of B and C are identical.
vC aC
rB=A
=
2(i cos 30 + j sin 30 ) = 1:7321i + 1:0j m
! AB
=
2k rad/s
AB
=
1:5k rad/s
2
= vB = ! AB rB=A = 2k (1:7321i + 1:0j) = 2:0i + 3:464j m/s J = aB = ! AB vB + AB rB=A = 2k ( 2:0i + 3:464j) + ( 1:5k) (1:7321i + 1:0j) = 4:0j 6:928i 2:598j + 1:5i 2 = 5:43i 6:60j m/s J
361 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.119 vC = vB + vC=B
60 in./s
= ωAB A
+ !
0
=
+"
60
=
in. 10
C
17ωAB Bω BC B . n i 17 8 in. + 8 in. 10ωBC 15 in. 6 in.C
8 8 + 10! BC = 8! AB + 8! BC 17 10 15 6 17! AB + 10! BC = 15! AB + 6! BC 17 10 17! AB
The solution is ! AB = ! BC = 2:86 rad/s
J
16.120 !
=
AB
=
rad/s = 20 AB rad/s rC=B = 0:6j m 0:6i + 0:8j + 0:4k p = 0:5571i + 0:7428j + 0:3714k 0:62 + 0:82 + 0:42
=
AB
= !
vC
aC
2
4
=
0:8914i
rC=B + !
(!
i 0:5571 0
=
20
=
0:484i
i 0:5571 0
rC=B = 4
j 0:7428 0:6
k 0:3714 0
1:337k m/s J rC=B ) =
j 0:7428 0:6
rC=B + !
k 0:3714 0
4:30j + 9:33k m/s
2
+4
vC
i 0:5571 0:8914
j 0:7428 0
k 0:3714 1:337
J
16.121 AB
=
rBC
=
vC
aC
= ! =
3i + 5j + 4k = 32 + 52 + 42 5j ft
p
0:4243i + 0:7071j + 0:5657k
= ! rBC = 5 ( 0:4243i + 0:7071j + 0:5657k) = 14:143i + 10:608k ft/s J vC = 5 ( 0:4243i + 0:7071j + 0:5657k)
37:5i + 62:5j
50:0k ft/s
2
( 5j)
(14:143i + 10:608k)
J
362 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.122
16.123
363 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.124
A
805 .0
E
4 3
15 0
A
201 .2
2
60
1
Geometry: AD AE
vB ! BC
1
B
360 vA
D 7 rad/s
D 90
! AB
720
2
120
O
vA
ωAB
vB
180
C
ωBC
p
902 + 1802 = 201:2 mm p = 3602 + 7202 = 805:0 mm
=
= AD! OA = 201:2(7) = 1408:4 mm/s 1408:4 vA = = 1:7496 rad/s = 805:0 AE = BE! AB = 720(1:7496) = 1259:7 mm/s 1259:7 vB = = = 7:00 rad/s J 180 BC
16.125 (a)
vB
0 25 4 rad/s
5 37 O
300
A 200
B 150 225 200 C vC
ωCD D
364 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Point O is the I.C. for bar BC. vB ! BC vC ! CD
= AB! AB = 250(4) = 1000 mm/s vB 1000 = = = 1:60 rad/s Q.E.D 625 OB = OC! BC = 500(1:60) = 800 mm/s vC 800 = = 4 rad/s Q.E.D = 200 CD
(b) aB = aC + aB=C
375(1.6)2 mm/s2 375αBC B
250(4)2 mm/s 2
0 25 4 rad/s
B
=
3
200(4)2 mm/s2 200 C
4 rad/s D
αCD
200αCD
4
+
A
375
αBC 1.6 rad/s C
+ !
+ #
4 (250)(4)2 = 200(4)2 375 5 2 J BC = 17:07 rad/s 3 (250)(4)2 = 200 5 2 CD = 7:20 rad/s
CD
BC
+ 375(1:6)2 J
vC
C
60 0
16.126 F
B
E
vB
0 60
00 72 rad/s 5 o 35
ωBCD
450
A D
vD
365 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Geometry: BE BF DF vB
p 6002 4502 = 396:9 mm BE 396:9 = = = 484:5 mm cos 35 cos 35 = DE + BE tan 35 = 450 + 396:9 tan 35 = 727:9 mm =
= ! AB AB = 72(500) = 36 000 mm/s vB 36 000 = = 74:30 rad/s J = 484:5 BF = ! BCD DF = 74:30(727:9) = 54 080 mm/s = 54:1 m/s ! J
! BCD vD
16.127 Let D0 be a point on rod AB that is coincident with D at the instant under consideration aD
= aD0 + aD=AB + aC = rD0 =A + ! (! rD0 =A ) + aD=AB + 2! vD=AB = 18k (12i 5j) + 6k [6k (12i 5j)] + 48j + 2(6k) = (216j + 90i) + 6k (72j + 30i) + 48j + 432i =
216j + 90i
( 36j)
432i + 180j + 48j + 432i = 90i + 444j in./s
2
J
16.128 vC = vB + vC=B
C vC
0.1 2m
B
= .
4
3
3
0.12(1.5) m/s
+
C
4
0.09ωBC
1.5 rad/s
0.0 9m
ωBC
. B
A + ! +
#
4 3 (0:12) (1:5) (0:09)! BC ! BC = 2:667 rad/s 5 5 3 4 vC = (0:12)(1:5) + (0:09)! BC 5 5 3 4 = (0:12)(1:5) + (0:09)(2:667) = 0:300 m/s # J 5 5 0=
aC = aB + aC=B
366 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
C
0.1 2m
0.12(1.5)2 m/s2
=
aC
.
4
B
+
1.5 rad/s
A
.
3 4 3 (0:12) (1:5)2 + (0:09)(2:667)2 (0:09) BC 5 5 5 2 BC = 6:484 rad/s 3 4 4 aC = (0:12)(1:5)2 + (0:09)(2:667)2 + (0:09) BC 5 5 5 4 3 4 2 2 = (0:12)(1:5) + (0:09)(2:667) + (0:09)(6:484) 5 5 5 2 = 1:067 m/s # J
+ ! +
C
0.09(2.667)2 m/s2 4 3 0.0 4 9m 0.09αBC 2.667 rad/s αBC B 3
3
0=
#
16.129 (a) Because bars AB and CD are parallel, the velocities of points B and C are also parallel. Therefore, the bar BC translates in the position shown. ) ! BC = 0 vC = vB = AB! AB = 75(12) = 900 mm/s 900 vC = ! CD = = 6 rad/s J 150 CD (b) aC = aB + aC=B
3
150(6)2 mm/s2
B
C 4
75(12)2 mm/s2
=
75 mm
αCD
15 0m m
150αCD
3
12 rad/s
6 rad/s
4
+
αBC B
165αBC 165 mm C
A
D +
4 3 3 (150 CD ) + (150)(6)2 = (75)(12)2 5 5 5 2 = 27:0 rad/s J CD
367 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
+ "
3 4 4 (150 CD ) (150)(6)2 = (75)(12)2 + 165 5 5 5 3 4 4 (150)(27:0) (150)(6)2 = (75)(12)2 + 165 5 5 5 2 J BC = 40:9 rad/s
BC
BC
16.130 (a)
O 30o B o vB 40 60 o 800
Geometry: BC OC OA
ωAB = 6 rad/s y
C
x A
vA
= 800 cos 40 = 612:8 mm = BC tan 30 = 612:8 tan 30 = 353:8 mm = OC + AB sin 40 = 353:8 + 800 sin 40 = 868:0 mm
vA = ! AB OA = 6(868:0) = 5208 mm/s = 5:21 m/s ! J (b)
! AB aA aA i aA i
! AB aA rA=B rA=B
2
= 6k rad/s AB = 8k rad/s = aA i aB = aB (i cos 60 j sin 60 ) = aB (0:5i 0:8660j) = BC i AC j = 612:8i 800j sin 40 = 612:8i 514:2j mm = 6k (612:8i 514:2j) = 3677j + 3085i
= aB + AB rA=B + ! AB (! AB rA=B ) = aB (0:5i 0:8660j) + 8k (612:8i 514:2j) + 6k (3677j + 3085i) = aB (0:5i 0:8660j) + (4902j + 4114i) + ( 22 060i + 18 510j)
Equating like components: aA = 0:5aB + 4114 22 060 0 = 0:8660aB + 4902 + 18 510 The solution is
aB = 27 050 mm/s2 and aA = aA = 4:42 m/s
2
4423 mm/s2 . Therefore, J
368 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
16.131
369 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.1
17.2
. 2
R R
2R
1
.
R 1 3 1 2 R (R) = R 3 3 1 5 3 R R3 = 3 3 V2 1 m2 = m= m V 5
R2 (2R) = 2 R3
V1
=
V
= V1
V2 =
2
m1
=
V1 12 m= m V 5
Iz
=
(Iz )1
=
1 2
(Iz )2 =
12 m R2 5
V2 =
1 3 m1 R2 m2 R2 2 10 3 1 57 m R2 = mR2 J 10 5 50
370 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.3
17.4
371 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.5
y 90 mm
90 mm
8 mm
.
2 144 mm
y- = 104.0 mm
1 x
10 mm m1
=
4
d21 L1 =
4
(7850)(0:010)2 (0:144) = 0:08878 kg
d2 L2 = (7850)(0:008)2 (0:180) = 0:07103 kg 4 2 4 m = m1 + m2 = 0:08878 + 0:07103 = 0:159 81 kg
m2
y
=
0:08878(0:072) + 0:07103(0:144) mi y i = = 0:1040 m = 104:0 mm m 0:159 81 Coordinates of mass center are (0, 104.0 mm, 0) J
= ) Iz Iz
1 1 m1 L21 + m2 y22 = (0:08878)(0:144)2 + 0:07103(0:148)2 3 3 = 2:170 10 3 kg m2 = Iz my 2 = 2:170 10 3 0:159 81(0:1040)2 = 4:42 10 4 kg m2 J =
17.6 "
Iz
=
1 3 mro d b2 + mro d 12
) Iz
=
1 1 mrod b2 = mb2 J 2 6
b p 2 3
2
#
where mro d =
m 3
17.7 "Thin" implies that t
b, so that t can be neglected in comparison to b.
One side (mass = m=4): (Iz )1 =
1 m 2 m b + 12 4 4
b 2
2
=
1 mb2 12
372 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Bottom (mass = m=2): (Iz )2 = Iz = 2(Iz )1 + (Iz )2 = 2
1 m 2 m (b + b2 ) + 12 2 2 1 mb2 12
p b 2 2
2
=
1 2 mb 3
1 1 + mb2 = mb2 J 3 2
17.8 2
75 y
1
180
150 x
(Ix )1
=
(Ix )2
=
(Ix )3
=
Ix
=
(Iz )1
=
(Iz )2
=
(Iz )3
=
Iz
=
m1
=
m2
=
m3
=
60 y
3 x
Thickness = 80
0:15(0:18)(0:08)(2650) = 5:724 kg 2
(0:075)2 (0:08)(2650) = 1:8732 kg (0:06)2 (0:08)(2650) =
2:398 kg
1 (5:724)(0:152 + 0:082 ) = 0:013 785 kg m2 12 1 (1:8732) 3(0:075)2 + 0:082 = 0:003 63 kg m2 12 1 (2:398) 3(0:06)2 + 0:082 = 0:003 44 kg m2 12 0:003 44 = 0:013 98 kg m2 J i (Ix )i = 0:013 785 + 0:003 63 1 (5:724)(0:152 + 0:182 ) + 5:724(0:09)2 = 0:072 55 kg m2 12 1 (1:8732)(0:075)2 = 0:002 63 kg m2 4 1 (2:398)(0:06)2 = 0:004 32 kg m2 2 0:004 32 = 0:0709 kg m2 J i (Iz )i = 0:072 55 + 0:002 63
373 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.9 y
y
50
100
50
z
x
200 50 100
150 100 Block: Cylinder: Hole:
(Iz )1
=
(Iz )2
=
(Iz )3
=
Iz =
200 m1 = 0:2(0:4)(0:1)(7850) = 62:80 kg m2 = (0:05)2 (0:15)(7850) = 9:248 kg m3 = (0:05)2 (0:1)(7850) = 6:165 kg
62:80 (0:22 + 0:42 ) + 62:80(0:1)2 = 1:6747 kg m2 12 9:248 (0:05)2 + 9:248(0:2)2 = 0:3815 kg m2 2 6:165 (0:05)2 = 0:0077 kg m2 2
i (Iz )i
= 1:6747 + 0:3815
0:0077 = 2:05 kg m2 J
17.10
y x
1
_ r
2 ft G
2
1.5 ft m1 =
1:2 2 = 21:30 32:2 3:5
10
3
slugs
m2 =
1:2 1:5 = 15:972 32:2 3:5
10
3
slugs
374 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(Iz )1
=
(Iz )2
= =
Iz
=
1 1 m1 L21 = 21:30 10 3 (2)2 = 28:40 10 3 slug ft2 3 3 " # 2 1 L2 1 2 2 m2 L2 + m2 L1 + = m2 (3L21 + L22 ) 12 2 3 1 (15:972 10 3 ) 3(2)2 + 1:52 = 75:87 10 3 slug ft2 3 (Iz )1 + (Iz )2 = (28:40 + 75:87) 10 3 = 104:27 10 3 slug ft2 J 2(0) + 1:5(0:75) Li xi = = 0:3214 ft Li 2 + 1:5 Li yi 2( 1:0) + 1:5( 2) = = 1:4286 ft Li 2 + 1:5
x = y
Iz
= Iz =
24:4
=
mr2 = 104:27 10
3
(21:30 + 15:972)(0:32142 + 1:42862 )
10
3
slug ft2 J
17.11
375 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.12 I
1 msp oke R2 3 8 8 + 32:2 3
= Irim + 8(Isp oke ) = mrim R2 + 8 8 = R2 mrim + msp oke = 1:252 3 =
0:5 32:2
0:453 slug ft2 J
17.13 (a) Sphere: Ix
= =
2 mR2 + m(L + R)2 5 2 2 130 5 130 + 5 32:2 12 32:2
60 + 5 12
2
= 118:73 slug ft2
Rod: Ix
Pendulum:
=
1 mL2 + m 12
=
1 3
25 32:2
2
L 2 60 12
=
1 mL2 3
2
= 6:47 slug ft2
Ix = 118:73 + 6:47 = 125:20 slug ft2 J
(b) Using the speci…ed approximation: 2
Ix
130 60 + 5 = 118:45 slug ft2 32:2 12 118:45 125:20 100% = 5:39% J 125:20
= m(L + R)2 =
% error =
17.14 I = IO mx2 408:5 120x2 )I
= IC m(2 x)2 = 145:5 120(2 x)2 x = 1:5479 m J = 408:5 120(1:5479)2 = 121:0 kg m2 J
376 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.15
*17.16
17.17
377 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.18
17.19 B 20 lb O
( MO )FBD P
=
ma
O
2'
P A N
B
2'
A
MAD
FBD
= ( MO )M AD = 23:1 lb J
60o
+
P (2 sin 60 )
20(4 cos 60 ) = 0
378 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.20
B
P
R mg
FBD
R
µs mg
A
ma
= A
MAD
N = mg
Assume impending sliding. MA
= maR +
2RP = maR
Fx
= ma + !
s mg
a =
2
sg
+ P = ma
J
P =
ma 2
s mg
+
ma = ma 2
17.21
379 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.22
NA
y
4.5'
.2.25' = B. 55 lb N G
20 lb
B
FBD Fx = max
O 20 =
.
G
55 a g
MAD O 55 a 32:2
( MO )FBD NA (4:5)
x
5.25'
A
a = 11:709 ft/s
2
J
=
( MO )M AD + 55 (11:709)(5:25) 55(2:25) = 32:2 NA = 50:8 lb J
17.23
380 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.24 The bar AB is translating. Therfore, all points on the bar have the same velocity and acceleration.
TA
35o
A
.
2 ft
y
TB
.G
.B =
2 ft mg FBD
x
ma n
A
G
ma t
.
B
MAD
an = 3 _
2
at = 3•
( MG )FBD = ( MG )M AD + : (TA cos 35 ) (2)
(TB cos 35 )(2) = 0
TA = TB
( Fx )FBD = ( Fx )M AD + .: mg sin 35 =
mat
48 sin 35 =
48 3• 32:2
•=
6:16 rad/s
2
J
( Fy )FBD = ( Fy )M AD + -: TA + TB
mg cos 35
2TA
48 cos 35
= man =
48 (3 32:2
2TA 32 )
48 cos 35 =
2 48 (3 _ ) 32:2
TA = TB = 39:8 lb J
17.25 y
80 lb
FBD F
80 a 32.2 n o = 30
MAD
x N
The box translates along a circular path of 5-ft radius ) an = R! 2 = 5(2)2 = 20 ft/s Fy
= may
+"
Fx
= max
+ !
N
2
80 (20) sin 30 32:2 80 (20) cos 30 F = 32:2 80 =
N = 104:8 lb J F = 43:0 lb J
381 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.26 L/2
A
B = A mg FBD
N ( MA )FBD L + mg 2 aB
L/2
mL2α 12
B MAD
m Lα 2
=
( MA )M AD L L mL2 = m + 2 2 12 3 = L = g #J 2
=
3g 2L
17.27
A N2 N1
=
7a y
x
MAD
FBD
A
Ax
= 35 3a 3(9.81) N
2m
35 o
35 o T B
o
B
FBD
1.0 m
Ay
7(9.81) N
MAD
System: Fx = max
+ . 7(9:81) sin 35 = 7a
a = 5:627 m/s
2
Bar: ( MA )FBD T
= ( MA )M AD + (T sin 35 )(2) = (3a cos 35 )(1:0) = 2:142a = 2:142 (5:627) = 12:05 N J
17.28 1 2 B 12 mLαAC
mg B
C C = A L/2 L/2 L/2 R L/2 T FBD's 1 mL2α MAD's mg DE T 12 F D = D E E L/2 L/2 L/2 L/2 F Lα m 2 ( AC + αDE) A
382 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Kinematics: # aE = aC =
L 2
# aF = aE +
AC
L 2
DE
=
L ( 2
AC
+
DE )
Kinetics— bar AC: ( MB )FBD = ( MB )M AD
1 L T = mL2 2 12
+
AC
AC
6T mL
=
Kinetics— barDE: ( MF )FBD Fy T
=
( MF )M AD
= may
1 L T = mL2 2 12 L T = m ( AC + 2
+
+#
mg
DE DE )
DE
=m
6T mL 6T 2 mL
=
L 2
1 mg J 7
=
17.29
.G
NB
=
mg o
60
. A
.A
Ax
Ay
60o MAD
FBD
( MA )FBD = ( MA )M AD +
mg/2
8f t
8f t
10 ft
.G
B
:
mg (8 cos 60 )
10NB
=
60(8 cos 60 )
10NB
=
mg (8 sin 60 ) 2 60 (8 sin 60 ) 2
NB = 3:215 lb J
( Fx )FBD = ( Fx )M AD +!: Ax
NB sin 60 Ax
= =
mg Ax 2 32:78 lb
3:215 sin 60 =
60 2
383 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
( Fy )FBD = ( Fy )M AD + ": Ay + NB cos 60
17.30
mg = 0 Ay + 3:215 cos 60 Ay = 58:39 lb p A = 32:782 + 58:392 = 67:0 lb J
60 = 0
384 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.31
17.32
40(0.252)α
40(9.81) N
G 0.6 m
0.6 m 0.6 m = G T 800 N R T FBD's A 60(9.81) N
60(0.6α) A
MAD's
System:
800(0:6)
( MG )FBD = ( MG )M AD + : 60(9:81)(0:6) = 40(0:25)2 + 60(0:6 )(0:6) =
2
5:263 rad/s
J
385 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Block A: Fy T
= may + " T 60(9:81) = 60(0:6) = 60(9:81) + 60(0:6)(5:263) = 778 N J
17.33 FBD
mg 2 ft
=
A
B
2 ft
µs NA
( MB )FBD ma 4:5mg 7:5
= max
4.5 ft 3 ft
+ !
=
( MB )M AD
=
2ma
ma A
B
NB 4.5 ft 3 ft NA Fx
MAD
G
s NA
= ma
NA =
ma s
+
4:5mg 7:5NA = 2ma a 2 7:5 = 2a a = 12:74 ft/s J 0:8
4:5(32:2)
s
17.34
Ay
.A
.G
R
Ax
I
2R
2R b
= IC
b
2R
π
MAD
= R2 + =
.
mbα
FBD
sin
A
θ
.
R
=
mg
b2
C I-α G
2
=
cos = m
1+
4 2
R2
R b
2
2R
= mR2
m
2R
2
=
4
1
2
mR2
( MA )FBD = ( MA )M AD + : mgR g
= I + (mb )b = =
2R
=
g 2R
1
4 2
mR2 + 1 +
4 2
mR2
J
386 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
( Fx )FBD = (Fx )M AD +!: Ax = mb sin = mb
g 2R
2R b
=
mg
! J
( Fy )FBD = (Fy )M AD +": Ay
mg =
mb cos =
mb
g 2R
R b
Ay =
mg " J 2
17.35
FA
FA 3' C 2' FBD
FB
2(aC + 3α) A
A 1180 lb.ft =
5aC
20α
FB B
4(-aC +2α)
B MAD
Only horizontal forces are shown Kinematics: ! aA = aC + 3
aB =
aC + 2
Kinetics— racks: FA = 2(aC + 3 )
FB = 4( aC + 2 )
Kinetics— gear: 2 IC = mkC = 5(2)2 = 20 slug ft2
( MC )FBD = ( MC )M AD 1180
+ 1180 3FA 2FB = 20 6(aC + 3 ) 8( aC + 2 ) = 20 2aC 54 = 1180 (a)
Fx = max + ! FB FA = 5aC 4( aC + 2 ) 2(aC + 3 ) = 5aC 2 11aC = 0 Solution of (a) and (b) is
= 22:0 rad/s2
(b)
and aC = 4:0 ft/s2 ! J
387 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.36
x aA
A
6' T
B aB
y
α 8' G
B
B
G
8'
mg
=
A
6'
1 m(102)α 12 3mα
4mα A
MAD
N FBD
Kinematics:
aG
= k rG=A = rG=B = 3i + 4j ft rG=A = ( 3j + 4i) = aA + aG=A = aA i + rG=A = aA i + ( 3j + 4i) ) (aG )y = 3 aG
= aB + aG=B = ) (aG )x = 4
aB j +
rG=B =
aB j + (3j
4i)
Kinetics: Fx = max + ( MA )FBD
T = 4m
=
( MA )M AD + 1 m(102 ) + 3m (3) 3mg 8T = 12 3mg 8(4m ) = 1:3333m = T =4
4m (4) 2
0:090g = 0:090(32:2) = 2:898 rad/s 50 (2:898) = 18:0 lb 32:2
J
J
388 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.37
389 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.38
390 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.39
17.40 R2 h = (0:12)2 (0:36)(7850) = 42:62 kg 3 3 = mg = 42:62(9:81) = 418:1 N 3 3 = m(4R2 + h2 ) = (42:62) 4(0:12)2 + 0:362 = 0:2992 kg m2 80 80
m = W I
22o 0.2 7m
G =
418.1 N F A N FBD
0.2 7m
0.2992α
A
=
Fx
11.507α
y x
MAD
( MA )FBD = ( MA )M AD 418:1(0:27 sin 22 ) = 0:2992 + 11:507 (0:27)
+
Fy
G
= ) = )
12:416 rad/s
2
J
may + " N 418:1 = 11:507 sin 22 N = 418:1 11:507(12:416) sin 22 = 365 N " J max + ! F = 11:507 cos 22 F = 11:507(12:416) cos 22 = 132:5 N ! J
391 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.41 4 = 0:124 22 slugs 32:2 1 1 mL2 = (0:124 22)(32 ) = 0:093 17 slug ft2 = 12 12 = mr = 0:124 22(0:75) = 0:093 17 " = mr! 2 = 0:124 22(0:75)(42 ) = 1:4906 lb
m = I may max
y
Cy Cx G 1.5 lb ft C
.
..
0.75'
=
FBD
x MAD
0.09317α G 1.4906 lb
.C . 0.09317α
Only the horizontal forces are shown on the FBD. ( MC )FBD
= =
Fx Fy
( MC )M AD + 2
9:20 rad/s
= max + = may + " C=
17.42
1:5 = 0:093 17 + 0:093 17 (0:75) J
Cx = 1:4906 lb Cy = 0:093 17 = (0:09317) (9:20) = 0:8572 lb p
1:49062 + 0:85722 = 1:720 lb J
392 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.43
Ay A
d
W
L
=
.C
P
A
Ax = 0
Iα
G C
mat d − L/2
.
FBD
MAD
B
B
( MC )FBD = ( MC )M AD + : 0
= I
d
=
mat d
L 2
=
mL2 12
m
L 2
d
L 2
2 L J 3
393 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.44
17.45
394 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.46 30 = 0:9317 slugs 32:2 2 1 1 16 = mR2 = (0:9317) = 0:8282 slug ft2 2 2 12 ! p 302 + 162 = 2:640 = mL = 0:9317 12
m = I mat System:
16"
A
.
By 34"
30 lb
. B
Bx y
= x
FBD
0.8282α 34" " 16 A 2.640α
.
.
B
MAD
395 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
( MB )FBD
=
( MB )M AD +
=
10:231 rad/s
30
34 12
= 0:8282 + 2:640
34 12
J
2
Disk:
30 lb Ax
.A 16"
Ay
FBD ( MA )FBD
=
T
=
.
A
= T
0.8282α
2.640α
C
MAD
16 T = 0:8282 12 0:6212 = 0:6212(10:231) = 6:36 lb J
( MA )M AD +
17.47
A
.G
Iα
4 ft
= θ
40 lb O
C
θ
4 ft
θ
A
C
NA
B FBD NB
.G
ma n
ma t B
O MAD
The path of the mass center G is a circle of radius r = 4 ft centered at O. Let the angular acceleration of line OG be = • clockwise. Then the angular
396 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
acceleration of the bar is also , but it is directed counterclockwise (see MAD). m = man mat
= =
I
= =
W 40 = = 1:2422 slugs g 32:2 mr! 2 = 1:2422(4)(2)2 = 19:875 lb mr = 1:2422(4) = 4:969 1:2422(8)2 mL2 = = 6:625 slug ft2 12 12 30
( MC )FBD = ( MC )M AD +
:
W (4 sin 30 )
= I + mat (4)
40(4 sin 30 )
=
6:625 + 4(4:969 )
= 3:019 rad/s
2
J
( Fx )FBD = ( Fx )M AD + !: NA
= =
man sin 30 + mat cos 30 19:875 sin 30 + 4:969(3:019) cos 30 = 3:05 lb ! J
( Fy )FBD = ( Fy )M AD +": NB NB
W = man cos 30 mat sin 30 40 = 19:875 cos 30 4:969(3:019) sin 30 NB = 15:29 lb " J
17.48
397 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.49 20o FBD
y
Mg
Iα
x G
R
=
Ma-
0.075N C N Fy N Fx = max
G
MAD C
= 0 + - N M g cos 20 = 0 = M (9:81) cos 20 = 9:218M
+ % 0:075N M g sin 20 0:075(9:218M ) M (9:81) sin 20
= =
a =
Ma Ma 2:66 m/s
2
J
17.50
398 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.51
399 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.52
400 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.53
401 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.54
17.55 Kinematics:
y
1.2 m
ω, α O G x 0.4 m
402 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
a = aO + aG=O = R i + rG=O + ! ! rG=O = 1:2(3)i + ( 3k) 0:4i + ( !k) ( !k 0:4i) = 3:6i 1:2j + ( !k) ( 0:4!j) =
0:4! 2 i
3:6
1:2j m/s
Kinetics:
2
Iα O G 0.4 m Mg FBD N
C F
Ma-y O G 0.4 m
=
MAD
Ma-x 1.2 m
C
I = M k 2 = M (0:4)2 = 0:16M ( MC )FBD = ( MC )M AD + 0:4M g = 1:2M ax 0:4M ay + I 0:4M (9:81) = 1:2M 3:6 0:4! 2 0:4M ( 1:2) + 0:16M (3) 3:924
=
5:280
0:48! 2
! = 1:681 rad/s J
17.56
403 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.57
404 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.58 aC = aO + aC=O Kinematics (C is the midpoint of bar AB):
aC
aO
=O
+
0.15 α 0.15 C 2 0.15ω
ω, α O
Kinetics:
NB
0.3 0.2
4
0.15
3
C mg
0.2
Ay
Iα
=
C
m(a0 + 0.15ω2)
A
Ax
A
B
m(0.15α)
B
FBD
MAD 2
! = 5 rad/s = 8 rad/s a0 = R = 0:45(8) = 3:60 m/s m = 25 kg mg = 25(9:81) = 245:3 N mL2 25(0:5)2 I = = = 0:5208 kg m2 12 12
2
( MA )FBD = ( MA )M AD : 0:15mg
0:5NB NB
= I + m(a0 + 0:15! 2 )(0:2) (0:15m ) (0:15) = 0:5208(8) + 25 3:60 + 0:15(5)2 (0:2) 0:15(25)(8)(0:15) = 0:757 N & J
17.59 1 1 mL2 = (4:2) (1:22 ) = 0:5040 kg m2 12 12 Kinematics (the system has 2 DOF): Bar AB:
I=
aA + aG=A = aG
405 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
aA A
α
+
A
=
aA− 0.6α G
0.6 m 0.6α
G
Kinetics:
WA A
. NA
G
A
.
14 N 0.6 m
.
=
G 0.5040α
.
2.4aA 4.2(aA − 0.6α)
WAB
y MAD
FBD Fx = max + !
x
14 = 2:4aA + 4:2(aA
( MA )FBD = ( MA )M AD + 0 = 0:5040 4:2(aA Solution is
=
5:07 rad/s
2
J
0:6 )
0:6 )(0:6) aA = 4:06 m/s ! J 2
406 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.60
407 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.61
17.62 For the assembly: MB
= IB =
40 = 2
6:822 rad/s
1 2
40 32:2
(1:2)2 +
40 (2)2 32:2
J
408 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
For the disk:
Ay
. A
NC 0.8 ft
IAα
=
Ax C
.A man mat
FBD
MAD
MA
= IA
NC
=
0:8NC =
1 2
40 32:2
(1:2)2 (6:822)
7:63 lb " J
17.63 W
= mg = 150(9:81) = 1471:5 N = m(AG! 2 ) = 150(0:6)
man
v0 1:8
!= 2
= 27:78v02
y
Ax
y
0.6 G
θ
A 1.8 Ay 1471.5 N
G x
=
27.78v02
P
θ
x
MAD
FBD Fy Ay
v0 v0 = R 1:8
= may + " Ay 1471:5 = = 1471:5 27:78v02 sin
27:78v02 sin
409 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Disk stays in bearing if Ay this condition is
0 for all . The largest v0 that does not violate r 1471:5 v0 = = 7:28 m/s J 27:78
17.64
410 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.65
*17.66
411 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.67
412 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.68 (a) MA = IA
k =
mL2 3
3k 3k = 2 mL mL2
=
J
(b) 3k d! ! ! d! = d mL2 Initial condition: ! = 0 when = 0 =
0
3k 2 2mL r
= )
!=
2 0
+C
3k ( mL2
(c) ! max = !j
1 2 ! = 2
d
=0
=
C= 2
2 0
r
3k 2mL2
3k 2mL2
2
+C
2 0
) J
3k mL2
0
J
17.69 (a)
1.2 m mg FBD
360
Fx 30v
FD
N d
P 0.45 m = C y
ma 0.6 m C x
MAD
= max + ! P FD = ma 2 = 60a a = 6:0 0:5v m/s Q.E.D
(a)
413 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) dv Zdt
a = t
=
dv = dt a dv = 6:0 0:5v
dv = dt 6:0 0:5v 2:0 ln(6:0
0:5v) + C
Initial condition: v = 0 when t = 0. ) C = 2 ln 6:0 )t=
2:0 ln
6:0
0:5v = 6:0
v 12
2:0 ln 1
(b)
When tipping impends, we have d = 0 on the FBD. ( MC )FBD = ( MC )M AD + 1:2P 0:45mg = 0:6ma 2 1:2(360) 0:45(60)(9:81) = 0:6(60)a a = 4:643 m/s Eq. (a):
4:643 = 6:0
0:5v v = 2:714 m/s 2:714 2:0 ln 1 = 0:513 s J 12
Eq. (b):
t=
17.70 (a) W I
= mg = 2:4(9:81) = 23:54 N 1 1 = mR2 = (2:4)(0:18)2 = 0:03888 kg m2 2 2
23.54 N O 45
o
0.18 m
0.03888α
=
Fy NC
= may +% = 20:47 N
C
y
NO C 0.15NC FBD NC
O x
MAD
NC cos 45 + 0:15NC sin 45
23:54 cos 45 = 0
( MO )FBD
=
( MO )M AD
+
0:15NC (0:18) = 0:03888
0:15(20:47)(0:18)
=
0:03888
= 14:215 rad/s
2
J
414 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) =
d! ! d
)
d = ! d!
14:215 d = ! d!
14:215 =
1 2 ! +C 2
= 0: ) C = 0 1 ) 14:215 = ! 2 ) = 0:03517! 2 2
Initial condition: ! = 0 when
Final angular speed of the disk is ! 1 = v=R = 6=0:18 = 33:33 rad/s = 0:03517(33:33)2 = 39:07 rad = 6:22 rev J
When ! = ! 1 :
17.71 (a) Wheel: I = mR2 =
Ay
A
1.0' 6 lb 1.0' 20o
18 (2)2 = 2:236 slug ft2 32:2
N Ax
0.75N
40o
0.75N B FBD N Bar AB : + N = Wheel +
: =
2.236α
20o 2' 18 lb C Cx Cy
=
C MAD
FBD
MA = 0 6(1:0 sin 20 ) + 0:75N (2 cos 40 ) 15:033 lb
N (2 sin 40 ) = 0
( MC )FBD = ( MC )M AD 0:75N (2) = 2:236 0:75(15:033)(2) = 2
10:085 rad/s = 10:085 rad/s
2
2:236
J
(b) =
d! dt
) d! =
dt =
10:085 dt
)!=
10:085t + C
Initial condition: ! = 400 rev/min = 41:89 rad/s when t = 0 ) C = 41:89 rad/s
)!=
When ! = 0: t =
10:085t + 41:89
41:89 = 4:15 s J 10:085
415 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.72 (a) Wheel: I = mR2 =
Ay
N
A
Ax
1.0' 6 lb 40
1.0' 20o
0.75N
o
0.75N B FBD N Bar AB : + N = Wheel +
2.236α
20o 2' 18 lb C Cx Cy
=
C MAD
FBD
MA = 0 6(1:0 sin 20 ) 0:8429 lb
:
18 (2)2 = 2:236 32:2
0:75N (2 cos 40 )
N (2 sin 40 ) = 0
( MC )FBD = ( MC )M AD 0:75N (2) = 2:236 0:75(0:8429)(2) = 2
=
0:5654 rad/s = 0:5654 rad/s
2
2:236
J
(b) =
d! dt
) d! =
dt =
0:5654 dt
)!=
0:5654t + C
Initial condition: ! = 400 rev/min = 41:89 rad/s when t = 0 ) C = 41:89 rad/s
)!=
When ! = 0: t =
0:5654t + 41:89
41:89 = 74:1 s J 0:5654
17.73 (a) IA
=
IB
=
1 2 1 2
18 32:2 30 32:2
(1:52 ) = 0:6289 slug ft2 (2:02 ) = 1:8634 slug ft2
416 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18 lb
Ax
' 1.5
A
=
0.6289αA
0.3N = 5.4 lb N = 18 lb N = 18 lb 0.3N = 5.4 lb 30 lb
2'
B
=
Bx
1.8634αB
By FBD's
( MA )FBD A
( MB )FBD B
MAD's
=
( MA )M AD +
= =
12:880 rad/s = 12:880 rad/s J ( MB )M AD + 5:4(2:0) = 1:8634
=
5:4(1:5) = 2
5:796 rad/s
2
0:6289
A
2
B
J
(b) d! != dt During sliding: =
!A
=
!B
=
dt
! = t + ! 0 ( constant, ! 0 = initial speed)
2 = 12:880t + 18:850 rad/s 60 5:796t + 0 = 5:796t rad/s 12:880t + 180
Sliding stops when RA ! A t
= RB ! B = 0:9147 s
1:5( 12:880t + 18:850) = 2:0(5:796t)
Final speeds: !A !B
= =
12:880(0:9147) + 18:850 = 7:07 rad/s J 5:796(0:9147) = 5:30 rad/s J
417 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.74 (a) Let _ be the angular velocity of the disk. Noting that A is the I.C. of the disk, we have vA = vG + vA=G
0
. G
.
O
θ
β
=
G 0 = R_
r
Rθ
.A
R )•= • r
mg
ma n
G
G .. Iβ r
at = R•
ma t
A
A
F an = R _
MAD 2
(point G rotates about O)
:
= I • + (mat ) r 3 • R 2
=
N
( MA )FBD = ( MA )M AD +
=
. rβ
.
R ) _ = _ r
FBD
g sin
.
r_
θ
mg(r sin )
r
+
R
•=
mgr sin = 2g sin 3R
mr2 2
R• + mR• r r
J
(b) The di¤erential equation is equivalent to d_ _ d
= )
2g _ d_ = sin 3R 1 _2 2g = cos + C 2 3R
2g sin d 3R
418 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Initial condition: _ = 0 when 0
=
1 _2 2
=
= 60
2g cos 60 + C 3R 2g 1g cos 3R 3R
C= _=
1g 3R r 2g (2 cos 3R
1) J
17.75
419 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.76
420 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.77
421 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.78 Assume impending sliding.
B
Iα
G
30o
L/2
B
30o
mg F = µsN
A
A MAD
N FBD ( MA )FBD = ( MA )M AD + L mg sin 30 2
=
:
L 2 3g 3g sin 30 = 2L 4L
= I +
mL α 2
mL 2
L mg sin 30 = 2
mL2 mL2 + 12 4
( Fx )FBD = ( Fx )M AD + !: sN
=
mL mL cos 30 = 2 2
3g sin 30 2L
cos 30 = 0:3248mg
( Fy )FBD = ( Fy )M AD + ": N
mg N
mL sin 30 2 mL 3g = mg sin 30 2 2L =
s
=
sN
N
=
sin 30 = 0:8125mg
0:3248 = 0:400 J 0:8125
422 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.79 A
θ
L/2
θ L/2
mg 2
=
( MA )FBD
=
m L g( + L) cos 2 2
d! ! d
m L 2 2 18 g cos 17 L
=
) ! d! =
Initial condition: ! = 0 when
mLα 2
( MA )M AD
=
=
m Lω2 22 mLα 22
mLω2 2
1m 2 12 2 L α MAD
mg 2
FBD
+
1m 2 12 2 L α
A
= 0: r
)!=
2
+
m 2 L +2 2
1 m 2 L 12 2
J
d
=
1 2 ! 2
=
18 g cos d 17 L 18 g sin + C 17 L
)C=0 36 g sin 17 L
J
17.80
A
An
6 ft
At t
Bt n 750 lb . ft B FBD Bn mat man
100 lb 2 ft 2 ft θ A C Cn An At
ma t = A
θ
C
man MAD
FBD 100 (6) = 18:634 lb 32:2 = mL! 2 = 18:634! 2 lb
= mL =
(a) Bar AB: MB = 0 +
6At
750 = 0
At = 125 lb
423 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Bar AC: 125
Ft 100 cos
= mat + & = 18:634
At 100 cos = 18:634 2 = 6:708 5:367 cos rad/s J
(b) =
d! ! d
! d! =
d = (6:708
5:367 cos ) d
1 2 ! = 6:708 5:367 sin + C 2 Initial condition: ! = 0 when = 0: ) C = 0 p ) ! = 13:412 10:734 sin rad/s J
17.81
424 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.82
17.83
425 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
*17.84
426 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
=
d! ! d
! d! =
1 2 ! = 2
d = 4:905 sin
4:905 cos + C
Initial condition: ! = 0 when = 30 ) C = 4:905 cos 30 p 2(4:905)(cos 30 cos ) ! = p = 3:132 0:8660 cos rad/s J (b) Substituting the expressions for ! and Eq. (a), we get NA
= =
, and the values of M and L into
25(3) [(4:905 sin ) cos 2(4:905)(0:8660 2 183:94(3 cos 1:7320) sin N J
(c) NA = 0 when 3 cos
1:7320 = 0
)
= 54:7
cos ) sin ]
J
17.85 (a) Kinematics of bar AB:
aA
L/2
A L + 2α
G
ω, α
Lω2 2
B a = aA + aG=A
427 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Kinetics:
m2g Ax
P0
FBD's
Collar: Bar:
MAD's
Ay A
G θ m1g
Fx = max
Ax m Lα = 12
L/2
L/2
B
m2aA
=
N Ay
B
+ !
P0
A m1 Lω2 2 m1aA
I-α
Ax = m2 aA
Ax = P0
L Ax = m1 aA + m1 ! 2 sin 2 L 2 L ) P0 m2 aA = m1 aA + m1 ! sin m1 cos 2 2 1 m1 L(! 2 sin + cos ) P0 2 ) aA = m1 + m2 Fx = max
+ !
Bar: ( MA )FBD L m1 g sin 2
L m1 g sin 2 g sin
=
= =
1 m1 L2 3
=
( MA )M AD L = I + m1 2
P0 m1
+ L 2
(m1 aA )
1 m1 L(! 2 sin + 2 m1 + m2
m2 aA L cos 2
m1
L cos 2
cos ) L cos 2
1 P0 m1 L(! 2 sin + cos ) 2 2 L cos 3 m1 + m2 2P0 cos 2g(m1 + m2 ) sin L! 2 m1 cos sin (4L=3) (m1 + m2 ) + m1 L cos2
Q.E.D.
(b) Substituting the given data, the equation of motion becomes = =
2(12) cos 24 cos
2(9:81)(3:6 + 2:0) sin 0:8! 2 (3:6) cos sin (4 0:8=3)(3:6 + 2:0) + 3:6(0:8) cos2 109:87 sin 2:88! 2 sin cos 5:973 + 2:88 cos2
428 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The initial conditions are = ! = 0 at t = 0. Letting x1 = and x2 = !, the equivalent …rst-order equations and the initial conditions are x_ 1 x1 (0)
= x2
x_ 2 =
24 cos x1
109:87 sin x1 2:88x22 sin x1 cos x1 5:973 + 2:88 cos2 (x1 )
= x2 (0) = 0
The corresponding MATLAB program is: function problem17_85 [t,x] = ode45(@f,[0:0.02:2],[0,0]); printSol(t,x*180/pi) axes(’fontsize’,14) plot(t,x(:,1)*180/pi,’linewidth’,1.5) xlabel(’t (s)’); ylabel(’theta (deg)’) grid on function dxdt = f(t,x) s = sin(x(1)); c = cos(x(1)); num = 24*c - 109.87*s - 2.88*x(2)^2*s*c; den = 5.973 + 2.88*c^2; dxdt = [x(2); num/den]; end end Below is a partial printout spanning the location where that is in degrees and ! is in deg/s t 8.6000e-001 8.8000e-001
is maximized. Note
x1 x2 2.4173e+001 1.8418e+000 2.4179e+001 -1.3238e+000
By inspection we see that
max
= 24:2 J
429 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(c) 25
theta (deg)
20
15
10
5
0 0
0.5
1 t (s)
1.5
2
17.86 (a) In Prob. 17.85 the di¤erential equation of motion was = Setting sin = =
24
24 cos
109:87 sin 2:88! 2 sin cos 5:973 + 2:88 cos2
and cos = 1, we obtain the "linearized" form 109:87 2:88! 2 = 2:711 5:973 + 2:88
(0:3253! 2 + 12:411)
(b) Using x1 = and x2 = !, the equivalent …rst-order equations and the initial conditions are x_ 1 = x2
x_ 2 = 2:711 (0:3253x22 + 12:411)x1 x1 (0) = x2 (0) = 0
The corresponding MATLAB program is: function problem17_86 [t,x] = ode45(@f,[0:0.02:2],[0,0]); printSol(t,x*180/pi) axes(’fontsize’,14) plot(t,x(:,1)*180/pi,’linewidth’,1.5) xlabel(’t (s)’); ylabel(’theta (deg)’)
430 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
grid on function dxdt = f(t,x) dxdt = [x(2) 2.711 - (0.3253*x(2)^2 + 12.411)*x(1)]; end end Below is a partial printout spanning the location where degrees and ! is in deg/s) t 8.8000e-001 9.0000e-001
is maximized ( is in
x1 x2 2.4771e+001 1.5291e+000 2.4771e+001 -1.5149e+000
By inspection, we have max = 24:8 J The error caused by linearization is % error =
24:2 24:8 24:6
100% =
2:4%
(c) 25
theta (deg)
20
15
10
5
0 0
0.5
1 t (s)
1.5
2
17.87 (a) Geometry:
B A
φ
L
R
θ C
431 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
L sin
) sin
= R sin
tan
sin
p
=
1
Kinetics:
φ
θ
R sin L sin
=q (L=R)2
sin2
sin2
Iα
P B
P tanφ
=
R Cx
=
C
C
Cy MAD
FBD
( MC )FBD = ( MC )M AD + P (R sin ) + (P tan )(R cos ) = I 0 1 sin A (R cos ) = W k 2 (P0 sin ) (R sin ) + @P0 q g (L=R)2 sin2 0 cos gP0 R sin @ sin + q = 2 Wk (L=R)2
2
sin
1
A Q.E.D.
(b) Substituting the given data, the equation of motion becomes 0 1 cos 32:2(24)(0:75) sin @ A sin + q = 180(0:6)2 (1:5=0:75)2 sin2 ! cos = 8:944 sin sin + p 4 sin2
The initial conditions are = =2 rad and ! = 0 at t = 0. Letting x1 = and x2 = !, the equivalent …rst-order equations and the initial conditions are ! cos x1 x_ 1 = x2 x_ 2 = 8:944 sin x1 sin x1 + p 4 sin2 x1 x1 (0)
=
2
rad
x2 (0) = 0
The corresponding MATLAB program is function problem17_87 [t,x] = ode45(@f,[0:0.02:2.4],[pi/2,0]);
432 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
printSol(t,x) axes(’fontsize’,14) plot(t,x(:,2),’linewidth’,1.5) xlabel(’t (s)’); ylabel(’omega (rad/s)’) grid on function dxdt = f(t,x) s = sin(x(1)); c = cos(x(1)); dxdt = [x(2) 8.944*s*(s + c/sqrt(4-s^2))]; end end The two lines of output that span ! = 10 rad/s are: t 2.2400e+000 2.2600e+000
x1 1.3274e+001 1.3473e+001
x2 9.8875e+000 1.0031e+001
Using linear interpolation to …nd t when ! = 10 rad/s: 2:26 10:031
t 2:24 = 9:8875 10
2:24 9:8975
t = 2:25 s J
(c) 12
omega (rad/s)
10 8 6 4 2 0 0
0.5
1
1.5
2
2.5
t (s)
433 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.88 (a) Kinematics (note that AB has two DOF: angle
L/2
A
β +
aA
θ
G Lα 2
and displacement of A):
A
ω, α
L ω2 2
a = aA + aG=A Kinetics (note that
FBD
=
):
A
y
B
= B
Fy
= may
+.
aA
= g sin
L ( sin 2
+
( MA )FBD L mg cos 2 L mg cos 2 1 g cos 2 1 g cos 2 )
=
= = = = =
MAD I-α
N
L/2 θ β x mg
G
mg sin
φ θ
y
A m L ω2 φ 2
maA m Lα x 2
L = maA + m ( sin 2
! 2 cos )
! 2 cos )
( MA )M AD L L L I + m + (maA ) sin 2 2 2 L 1 L L mL2 + m + (maA ) sin 12 2 2 2 1 1 L + aA sin 3 2 1 1 L L + sin g sin ( sin ! 2 cos ) 3 2 2
(2g=L)(cos
sin sin ) (4=3) sin2
! 2 sin cos
Q.E.D.
(b) Using the given data, we have 2g L
= )
2(32:2) = 8:050 = 60 = rad 8 3 8:050(cos sin sin ) ! 2 sin cos a= (4=3) sin2
=
=
3
434 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The initial conditions are = ! = 0 when t = 0. Letting x1 = and x2 = ! 2 , the equivalent …rst-order equations and the initial conditions are: x_ 1 x_ 2 x1 (0)
= x2 0:8050 [cos x1 =
sin sin( (4=3)
x22 sin( x2 )
x1 )] sin2 (
x1 ) cos(
x1 )
= x2 (0) = 0
The MATLAB program is: function problem17_88 [t,x] = ode45(@f,[0:0.01:1.0],[0,0]); printSol(t,x) function dxdt = f(t,x) s = sin(pi/3-x(1)); c = cos(pi/3-x(1)); num = 8.050*(cos(x(1))-sin(pi/3)*s)- x(2)^2*c*s; den =4/3-s^2; dxdt = [x(2); num/den]; end end The two lines of output spanning t 8.4000e-001 8.5000e-001
x1 1.0249e+000 1.0477e+000
We compute ! at 1:0477 2:2872
= =3 = 1:0472 rad are: x2 2.2575e+000 2.2872e+000
= =3 by linear interpolation: 1:0249 =3 1:0249 = 2:2575 ! 2:2575
! = 2:29 rad/s J
17.89 (a)
.. m1 Lθ B 2 r - .. L/2 G N L/2 L .I21θ mg m1 θ A θ Ax 1 2 .. . . = A m2(rθ + 2rθ) θ m2g Ay .. . m2(r − rθ 2) MAD's FBD's N B
+
Bar: ( MA )FBD L m1 g cos + N r 2 L m1 g cos + N r 2
= = =
( MA )M AD L L m1 • 2 2 1 1 m1 L2 • m1 L2 • = 12 4
I1 •
1 m1 L2 • 3
(a)
435 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Collar:
F = ma +- N • = m2 (g cos + r + 2r_ _ )
N
m2 g cos = m2 (r• + 2r_ _ ) (b)
Substituting (b) into (a): L cos + m2 (g cos + r• + 2r_ _ )r 2 3 m1 gL cos + 2r(g cos + 2r_ _ ) 2 m2 3 m1 g cos L + 2r + 4rr_ _ 2 m2
m1 g
3 2
)•=
Collar:
g cos
= =
m1 L + 2r + 4rr_ _ m2 Q.E.D. m1 2 L + 3r2 m2
Fr = mar r• =
1 m1 L2 • 3 m1 2 L + 3r2 • m2 m1 2 L + 3r2 • m2
=
2
+%
m2 g sin = m2 (• r
2
r_ )
g sin + r _ Q.E.D.
(b) Substituting the given data, we get • =
3 32:2 cos (2(1:5) + 2r) + 4rr_ _ = 2 2(1:5)2 + 3r2
r• =
32:2 sin + r _
The initial conditions are: _ r r_ Letting x = are
32:2 cos (3 + 2r) + 4rr_ _ 3 + 2r2
2
T
= =3, _ = 0, r = 1:5 ft and r_ = 0 when t = 0 , the …rst-order equations and the initial conditions
x_ 1
= x2
x_ 2 =
32:2 cos x1 (3 + 2x3 ) + 4x3 x4 x2 3 + 2x23
x_ 3
= x4
x_ 4 =
32:2 sin x1 + x3 x22
x(0)
=
=3 rad
0
1:5 ft
0
T
The MATLAB program that produced the plot is function problem17_89 [t,x] = ode45(@f,[0:0.01:0.5],[pi/3,0,1.5,0]); axes(’fontsize’,14) plot(x(:,1),x(:,3),’linewidth’,1.5) xlabel(’theta (rad)’); ylabel(’r (ft)’) grid on function dxdt = f(t,x)
436 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
num = 32.2*cos(x(1))*(3 + 2*x(3)) + 4*x(3)*x(4)*x(2); den =3 + 2*x(3)^2; dxdt = [x(2) -num/den x(4) -32.2*sin(x(1)) + x(3)*x(2)^2]; end end
1.5
r (ft)
1.25
1
0.75
0.5 -2
-1
0 theta (rad)
1
2
17.90 (a) Kinematics:
aθ
Top view .. y
r
ω, α
ar D
C + C
aD = aC + aD=C
437 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Kinetics:
B D L/2 C Cx N r
mABy.. .. Iθ C
Cy
A
θ
A
maθ
D
mar D
N FBD's
A
θ MAD's
y = a sin pt
) y• =
ap2 sin pt
:
( MC )FBD = ( MC )M AD 1 • I ) N= r
Collar D N
.. my
=
k(r − r0)
Rod AB
=
B
+
N r = I• (a)
: F = ma + - N = ma + m• y cos 2 • _ = m(r + 2r_ ) + m( ap sin pt) cos
(b)
Equating (a) and (b), we obtain 1 • I = m(r• + 2r_ _ ) + m( ap2 sin pt) cos r 1 I + mr2 • = m 2r_ _ ap2 sin pt cos r r • = ap2 sin pt cos 2r_ _ Q.E.D. I=m + r2 Rod AB k(r
:
Fr = mar 2
+%
k(r
r0 ) = mar + m• y sin
= m(• r r _ ) + m( ap2 sin pt) sin 2 k (r r0 ) + r _ + ap2 sin pt sin Q.E.D r• = m
r0 )
(b) Substituting the given data, we get • =
r (312:5
10
r sin 10t cos = r• = =
6 ) =0:125
2r_ _
+ r2
h
0:01(10)2 sin 10t cos
2r_ _
i
0:0025 + r2 2 3:125 (r 0:05) + r _ + 0:01(10)2 sin 10t sin 0:125 2 25(r 0:05) + r _ + sin 10t sin
438 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The initial conditions are: = _ = 0, r = 0:05 m and r_ = 0 when t = 0 Letting _ r r_ T , the …rst-order equations and the initial conditions are x= x_ 1
= x2
x_ 2 =
x_ 3
= x4
x_ 4 =
=
x(0)
0
0
x3 (sin 10t cos x1 2x4 x2 ) 0:0025 + x23 0:05) + x3 x22 + sin 10t sin x1
25(x3
0:05 m
0
T
The following MATLAB program was used to produce the plot: function problem17_90 [t,x] = ode45(@f,[0:0.01:3],[0,0,0.05,0]); axes(’fontsize’,14) plot(t,x(:,1),’linewidth’,1.5) xlabel(’time (s)’); ylabel(’theta (rad)’) grid on function dxdt = f(t,x) num = x(3)*(sin(10*t)*cos(x(1)) - 2*x(4)*x(2)); den = 0.0025 + x(3)^2; dxdt = [x(2) num/den x(4) -25*(x(3) - 0.05) + x(3)*x(2)^2 + sin(10*t)*sin(x(1))]; end end
2
theta (rad)
1.5
1
0.5
0 0
Since
0.5
1
1.5 time (s)
2
2.5
3
is positive, the rotation is counter-clockwise (as viewed from above)
439 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.91
17.92 Consider the disk as a composite of the uniform disk 1 and the half-disk 2.
m
2m
+
O
O x- G 2 2 2
1
(a) x2
=
x =
4 R 3 m1 x1 + m2 x2 0 + mx2 4 = = R J m1 + m2 3m 9
440 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) IO = (IO )1 + (IO )2 = I = IO
3mx2 =
m1 R 2 m2 R 2 2mR2 mR2 5 + = + = mR2 2 4 2 4 4 5 mR2 4
3m
4 R 9
2
= 1:190mR2 J
17.93 30o
mg
x
G A = 0.4 0.2N N
0.4 0.4
P
y
FBD
ma G MAD
Assume impending tipping Fy N
= 0 + - N mg cos 30 = 0 = mg cos 30 = 50(9:81) cos 30 = 424:8 N
( MG )FBD = ( MG )M AD + 0:4N 0:4(0:2N ) 0:4P = 0 P = 0:8N = 0:8(424:8) = 340 N J
17.94
441 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.95 Assume impending loss of contact at B.
N
0.9 '
0.9 '
A
B
Ay
A
Ax
0.9 '
0.2N FBD's
W + 12 a g
18 lb =
W + 12 lb
= W
MAD's Wa g
60o
60o
Bar AB: ( MA )FBD
=
a =
( MA )M AD +
W (0:9 cos 60 ) =
W a(0:9 sin 60 ) g
0:5774g
System: Fy Fx
=
0+"
N
(W + 12) = 0 N = W + 12 lb W + 12 a = max + ! 18 0:2N = g W + 12 18 0:2(W + 12) = (0:5774g) W = 11:15 lb J g
442 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.96 D
T
G
A
B FBD y
L/2 L/2 o 45 mg 1 mL2α aG = 45o B + G L/2 B D 12 α Lα aB L/2 L/2 2 A G aG = aB + aG/B maB o 45 1mLα 2 ( MD )FBD = ( MD )M AD
+
mg
L 4
1 1 mL2 + mL 12 2 6g 5L
= =
Fx T + mg sin 45
= max =
1 mL 2
+& 6g 5L
x B MAD
T + mg sin 45 =
L 4
1 mL sin 45 2
T = 0:283mg J
sin 45
17.97
0.24 m
45o
B
=
( MA )FBD = ( MA )M AD
45o
_ ma 45o
G m
B MAD
A
Ax
ma = mCG! 2 = 6
C
0.2 2 4
A
0.2 4
FBD Ay
2
ω T m
0:24 p 2 +
(10)2 = 101:82 N
0:24T
=
T
=
0:24 p 2 72:0 N J 101:82
17.98 y 279.5α 1800 lb o 62.11aA MAD α 419.3 40 A B = x A 4.5 ft 4.5 ft B 4.5 ft 4.5 ft 0.8 N N 2000 lb
FBD
443 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
I
=
max
=
1 2000 2 1 mL2 = 9 = 419:3 slug ft2 12 12 32:2 2000 L 2000 aA = 62:11aA may = m = 32:2 2 32:2
9 2
= 279:5
( MA )FBD = ( MA )M AD (1800 sin 40 )(9) 2000(4:5) = 419:3 + 279:5 (4:5) = Fy = may
Fx = max
+"
N N
2000 + 1800 sin 40 2000 + 1800 sin 40 N
+ ! 0:8N 0:8(1078:5)
J
2
0:8427 rad/s
1800 cos 40 1800 cos 40
= =
aA
=
aA
=
= = =
279:5 279:5(0:8427) 1078:5 lb
62:11aA 62:11aA 8:309 ft/s 8:31 ft/s
2
2
J
17.99
444 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.100 aG I
= aA + aG=A = 50 -aA + # 2:25 =
mL2 80(4:5)2 = = 135:0 kg m2 12 12
y'
40o
T A
40o
x'
G
80(9.81) N ( MG )FBD T Fy 0
B
2.25 m
2.25 m
80aA
=
2.25 m
135.0α 2.25 m
o
40 80(2.25)α
FBD
= ( MG )M AD + = 93:34
MAD
(T sin 40 ) (2:25) = 135:0
T 80(9:81) sin 40 = 80(2:25) sin 40 = may0 + % 93:34 80(9:81) sin 40 = 80(2:25) sin 40 = 2:413 rad/s J T = 93:34(2:413) = 225 N J 2
17.101
445 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.102 Assume impending sliding
B 60 lb
Iα G
=
120 lb
8 ft
b
F = µsN A
ma t
FBD
A
MAD
N : 120 162 mL2 = = 79:50 slug ft2 12 32:2 12 L 120 16 = m = = 29:81 lb 2 32:2 2
I
=
mat
Fy = 0: N = 120 lb ( Fx )FBD = ( Fx )M AD + !: 60
sN
= mat
60
( MA )FBD = ( MA )M AD + 60b b
0:3(120) = 29:81
2
= 0:8051 rad/s
:
= 79:50 + 29:81 (8) = 5:230 = 5:230(0:8051) = 4:21 ft J
446 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
17.103
17.104
G
110 lb y 200 lb 2 ft 1.0 ft
D
T FBD
N
x =
0.3N
G 20.12α D 12.422α MAD
447 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The spool "rolls" on point D. ) a = DG = 2 ft/s2 I
mk
2
200 (1:8)2 = 20:12 slug ft2 32:2 200 (2 ) = 12:422 lb 32:2
=
ma = Fy = 0 + "
N
200 = 0
N = 200 lb
( MD )FBD = ( MD )M AD + 110(5) 0:3N (1:0) = 20:12 + 12:422 (2) 110(5) 0:3(200)(1:0) = 20:12 + 12:422 (2) =
10:898 rad/s
a = Fx
2
2(10:898) = 21:8 ft/s
2
J
= ma + ! 110 T + 0:3N = 12:422 110 T + 0:3(200) = 12:422(10:898) T = 34:6 lb J
17.105 n
A An FBD
R
At
=
θ mg
t mRα
A mRω2 MAD mR2α
(a) ( MA )FBD
= =
( MA )M AD g sin J 2R
+
mg(R sin ) =
mR2
mR (R)
(b) = )
d! ! ) ! d! = d = d 1 2 g ! = cos + C 2 2R
g sin d 2R
= =2. ) C = 0 r g )!= cos J R
Initial condition: ! = 0 when
448 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(c) Fn An
mg cos Ft
&
At + mg sin
A=
s
= man % An g = mR cos R At + mg sin = g mR sin 2R
=
2
1 mg sin 2
2
(2mg cos ) +
= mg
mg cos = mR! 2 An = 2mg cos mR 1 mg sin 2
At = r
4 cos2 +
1 sin2 4
J
17.106 B y 3m
20(9.81) N P A 3m FBD NA Fx ( MA )FBD 20(9:81)(3) + 1:5P 20(9:81)(3) + 1:5P
+
B x =
1.5 m
A
20a 2.25 m MAD
= max + ! P = 20a ) a = 0:05P = ( MA )M AD = 20a(2:25) = 20(0:05P )(2:25) P = 785 N J
17.107 (a)
θC
1.0' G
. .
F N
mg FBD
( MC )FBD = ( MC )M AD + mg(1:0) cos 40 cos
=
Iα
. .
C
man
1.0' G mat MAD
:
= I + mat (1:0) 40 82 40 = + (1:02 ) 32:2 12 32:2
= 5:084 cos rad/s
2
J
449 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) d! ! = 5:084 cos d
1 2 ! = 2
! d! = 5:084 cos d
Initial condition: ! = 0 when
5:084 sin + C
= 0: ) C = 0
p ! = 3:189 sin rad/s
) ! 2 = 10:168 sin
J
(c) ( Ft )FBD = ( Ft )M AD + %: N
mg cos N
=
mat
=
40 cos
N
40 (1:0) 32:2
40 cos =
40 (5:084 cos ) = 33:68 cos lb J 32:2
( Fn )FBD = ( Fn )M AD + -: F
mg sin
= man
F
=
F
40 sin +
40 sin =
40 (1:0)! 2 32:2
40 (10:168 sin ) = 52:63 sin lb J 32:2
(d) Sliding impends when F=N =
s:
52:63 tan = 0:6 33:68
= 21:0
J
17.108 (a)
P A
y
L/2
mg θ FBD
+
P (L cos )
= )
L/2 By
B
x = Bx
( MB )FBD L mg cos 2
α mL 2 ω2 mL 1 mL2α 2 12 θ B MAD
A
=
( MB )M AD 1 L L = mL2 + m 12 2 2 3 2P = g cos J 2L m
3 d! ! ) ! d! = d = d 2L 1 2 3 2P ! = g sin + C 2 2L m
2P m
g cos d
450 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Initial condition: ! = 0 when = 0: ) C = 0 s 3 2P )!= g sin L m
J
(b) Fx Bx
L L Bx = m ! 2 cos + m sin 2 2 L 3 2P L 3 2P = m g sin cos + m g cos 2 L m 2 2L m 9 9 = (2P mg) sin cos = (2P mg) sin 2 ! J 4 8 = max
+ !
sin
17.109 R FBD O x
O
=
mg
O
1 mR2α 2
MAD
µkmg
N = mg Final angular speed of disk: ! 0 =
( MO )FBD
= )
v 5 = = 20 rad/s R 0:25
( MO )M AD + =2
k mg(R)
=
1 mR2 2
0:25(9:81) 2 kg =2 = 19:62 rad/s R 0:25
d! ) d! = dt = 19:62dt dt Initial condition: ! = 0 when t = 0. ) C = 0 =
! = ! 0 when 19:62t = 20
) ! = 19:62t + C
) t = 1:019 s J
451 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 18 18.1
18.2
18.3
452 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.4
B 2.4 ft 4 . 10 ft 2 lb lb 10 k = 12 lb/ft θ L0 =2.5 ft
40 lb.ft A Work of gravity:
(U1
Work of couple:
(U1
2 )c
=
Work of spring:
(U1
2 )s
=
= = Total work: U1
2
=
C
2 )g
=
= 40
C
2W
h=
2(10)(1:2 sin 35 ) =
35 180
= 24:43 lb ft
1 k (L2 L0 )2 (L1 L0 )2 2 1 (12) (4:8 cos 35 2:5)2 (4:8 2 19:437 lb ft
13:766 lb
ft
2:5)2
13:766 + 24:43 + 19:473 = 30:1 lb ft J
18.5 U1
2
=
12(9:81)(0:375)
=
78:9 J J
8(9:81)
p 0:752 + 0:32
0:45 + 40
2
18.6 6 rad/s 250 mm
6 rad/s
200 N
B
250 mm 150 mm
150 mm
A
A 200 N
(a) Both cases: P Case (a): P Case (b): P
B (b)
= F vB = F (AB !) = 200(6)AB = 1200 AB = 1200(0:4) = 480 W J = 1200(0:1) = 120 W J
453 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.7 De…nition of power: De…nition of e¢ ciency:
(a) C
=
(b) C
=
Pout = C! Pout = Pin
)C=
Pin !
0:78(12 103 ) = 49:7 N m J 1800(2 =60) 0:78(12 103 ) = 24:8 N m J 3600(2 =60)
18.8 M =I =I
d! dt
But P = M !, so that P d! =I ! dt
P dt = I! d!
Pt =
1 2 I! + C 2
Initial condition: ! = 0 when t = 0: ) C = 0 r 2P t != J I
18.9
454 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.10
18.11
455 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.12
18.13
456 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.14
18.15 I IC T
= mk 2 = 60(0:24)2 = 3:456 kg m2 2
= I + m CG = 3:456 + 60(0:252 + 0:122 ) = 8:070 kg m2 1 1 = IC ! 2 = (8:070)(2)2 = 16:14 J J 2 2
457 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.16
C ω
ft 10
d
8 ft
3 ft
A vA = 12 ft/s
3 ft G
B 3
vB
4
Instant center of zero velocity is at C. From geometry AC
=
d2
=
IC = I + md2 = T =
vA 12 = = 1:5 rad/s 8 AC 82 + 32 = 73 ft2
8 ft
!=
62 + 73 12
24 1 W 2 W 2 L + d = 12 g g 32:2
= 56:65 slug ft2
1 1 IC ! 2 = (56:65)(1:5)2 = 63:7 lb ft J 2 2
18.17
0.3 rad/s C d 30o
G
4 ft
6 ft 1.8 ft/s
A
Point C is the I.C. of the bar. From geometry: d2 = (4 sin 30 )2 + (6
4 cos 30 )2 = 10:431 ft2
458 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
I IC T
1 1 mL2 = 12 12
=
20 32:2
= I + md2 = 3:313 +
(8)2 = 3:313 slug ft2
20 (10:431) = 9:792 slug ft2 32:2
1 1 IC ! 2 = (9:792)(0:3)2 = 0:441 lb ft J 2 2
=
18.18
4 rad/s
A
0.8 ft
3.2 ft/s
C
2.4 f t 10 lb 3.2 ft/s
B 2 lb
15 lb Bar AB is translating with the velocity v = R! = 0:8(4) = 3:2 ft/s Disk: IC =
T
= =
1 1 mR2 = 2 2
15 32:2
(0:8)2 = 0:14907 slug ft2
1 1 1 IC ! 2 + mAB v 2 + mB v 2 2 2 2 1 2 10 2 (3:2)2 + (3:2)2 0:14907(4) + 2 32:2 32:2
= 3:10 lb ft J
18.19
1.5 m/s
1.4 kg
110 mm
B
220 mm 2.8 kg
1.5 m/s A
13.64 rad/s
C
459 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Bar BC is translating with the velocity v = 1:5 m/s. ! AB
=
TAB
= =
TBC
=
1:5 = 13:64 rad/s 0:110 1 1 1 2 IA ! 2AB = mAB AB ! 2AB 2 2 3 1 (1:4)(0:110)2 (13:64)2 = 0:5253 J 6 1 1 mBC v 2 = (2:8)(1:5)2 = 3:150 J 2 2
T = 0:5253 + 3:150 = 3:68 J J
18.20 5 = 0:155 28 slugs 32:2 2 = mR = 0:155 28(1:5)2 = 0:3494 slug 1 1 1 = mv 2 + I! 2 = (0:155 28)(30)2 + 2 2 2
m = I T
ft2 1 (0:3494)(102 ) = 87:3 lb ft J 2
18.21 vB
B
3m
2 m 30o vC C 7.5 rad/s A D 30o
ωBC
y x
E Point E is the I.C. of bar BC vB ! BC vC
vBC
= =
= ! AB AB = 7:5(2) = 15 m/s 15 vB = = = 2:50 rad/s 3 csc 30 EB = ! BC EC = 2:50(3 cot 30 ) = 12:990 m/s
1 1 (vB + vC ) = [ 15i + 12:990( i cos 30 + j sin 30 )] 2 2 13:125i + 3:248j m/s
460 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
TBC
1 1 2 IBC ! 2BC + mBC vBC 2 2 1 (12)(3)2 1 (2:5)2 + (12)(13:1252 + 3:2482 ) = 1125 J J 2 12 2
= =
18.22
A
= =
+# 3=8
+# v=8 I=
T
B
G v
vB = vA + vB=A v = vA + vG=A
ω 1.2 m
1.2 m
2:4!
1:2! = 8
! = 2:083 rad/s 1:2(2:083) = 5:500 m/s
2
18(2:4) = 8:640 kg m2 12
1 2 1 1 1 I! + mv 2 = (8:640)(2:083)2 + (18)(5:500)2 2 2 2 2 291 J J
18.23
ωDE E
vD
.D
1.6 m m 1.0
vB B
.
0.8 m
A
ωAB
Kinematics vB vD ! ED
= ! AB LAB = 12(0:8) = 9:6 m/s = vB = 9:6 m/s ! BD = 0 v BD = 9:6 m/s vD 9:6 = = = 6:0 rad/s LED 1:6
Mass properties (IAB )A
=
(IED )E
=
mBD
=
1 1 mAB L2AB = (2 3 3 1 1 2 mED LED = (2 3 3 2 1:0 = 2:0 kg
0:8)(0:8)2 = 0:3413 kg m2 1:6)(1:6)2 = 2:731 kg m2
461 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Kinetic energy T
1 1 1 2 (IAB )A ! 2AB + (IED )E ! 2ED + mBD vBD 2 2 2 1 1 1 (0:3413)(12)2 + (2:731)(6:0)2 + (2:0)(9:6)2 2 2 2 165:9 J J
= = =
18.24
.
B
5 m/s
25 rad/s
.A
.C8.333 rad/s
5 m/s
Disk A: IA
=
TA
=
mA R2 8(0:2)2 = = 0:160 kg m2 2 2 1 1 1 1 2 IA ! 2A + mA vA = (0:160)(25)2 + (8)(5)2 2 2 2 2 150:0 J
= Bar AB (translates):
TAB =
1 1 2 mAB vAB = (6)(5)2 = 75:0 J 2 2
Bar BC (rotates about C): TBC =
1 1 mBC L2BC 2 1 4(0:6)2 (IBC )C ! 2BC = ! BC = (8:333)2 = 16:67 J 2 2 3 2 3
System: T = TA + TAB + TBC = 150:0 + 75:0 + 16:67 = 242 J J
18.25 Choose the horizontal plane through point A as the datum for gravitational potential energy ) V ( ) = mg
L cos 2
T =
1 1 IA ! 2 = 2 2
1 mL2 ! 2 3
462 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
1 1 mgL cos + mL2 ! 2 = C 2 6 1 Initial condition: ! = 0 when = 0: ) C = mgL 2 r 1 g 1 1 2 2 ) mgL cos + mL ! = mgL ! = 3 (1 cos ) J 2 6 2 L V + T = C (constant)
18.26
ω m = 4 kg k- = 0.18 m
6 kg A
0.25 m 0.15 m C
vA
12 kg
B
vB
The displacements of the blocks during a 90 clockwise turn of the pulley are
U1
2
T2
U1
2
yA
= RA
= 0:25
yB
= RB
= 0:15
2
= 0:3927 m "
2
= 0:2356 m #
= =
mA g yA + mB g yB [ 6(0:3927) + 12(0:2356)] 9:81 = 4:621 J 1 1 1 2 2 mA vA + mB vB + mC k 2 ! 2 = 2 2 2 1 2 = 6(0:25!) + 12(0:15!)2 + 4(0:18)2 ! 2 = 0:3873! 2 2
= T2
T1
4:621 = 0:3873! 2
0
! = 3:45 rad/s J
463 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.27
.
.
C
C
3 ft
B.
6 ft
.A (IA )AB = V1 T1 V2 T2
5 rad/s
9 ft
2
.Aω
t 7f .81 10
1
Datum 6 ft
B
mAB L2AB (20=32:2) (6)2 = = 7:453 slug ft2 3 3
= WAB (3) = 20(3) = 60 lb ft 1 1 = (IA )AB ! 20 = (7:453) (5)2 = 93:16 lb ft 2 2 1 2 1 = k = (5)(10:817 3)2 = 152:76 lb ft 2 2 1 1 = (IA )AB ! 2 = (7:453) ! 2 = 3:727! 2 2 2 V 1 + T 1 = V 2 + T2 60 + 93:16 = 152:76 + 3:727! 2 ! = 0:328 rad/s J
18.28
464 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.29 M (lb.ft) 0.88 0.50 0 0
π
θ (rad)
Open
θ
M
Closed
Mass moment of inertia of the jaw about axis AD: I
= IAB + IBC + IDC = 2IAB + IBC = 2 =
2 2:22 10 3 32:2
=
1:7236
U1
U1
10
3
5
(3)
3 12
2
+
(2:22
=
area under M - diagram =
T2
=
1 2 1 I! = (1:7236 2 2
= T2
!
=
10 32:2
3
3 12
)(2)
+ mBC L2AB 2
slug ft2
2
2
1 mAB L2AB 3
T1
501:6 rad/s
2:168 =
10
5
0:88 + 0:50 2
= 2:168 lb ft
)! 2
1 (1:7236 2
10
) vBC = LAB ! =
5
)! 2
0
3 (501:6) = 125:4 ft/s J 12
*18.30
465 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.31
466 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.32
18.33
467 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.34
vB v
1.5 ft
0.5 ft
ω
Kinematics: Let vB be the velocity of the block. From the velocity diagram of the spool we see that !=
vB = 0:5vB 2:0
v = 1:5! = 0:75vB
It follows that sA = 0:75sB Conservation of energy: Let the release position (position 1) be the datum for potential energy. V1 = 0 T1 = 0
468 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
V2 T2
= =
WB sB + WA sA sin 30 = 38(6) + 64(0:75 6)(0:5) 84:0 lb ft 1 1 1 2 = mA v 2 + mA k 2 ! 2 + mB vB 2 2 2 1 64 1 38 2 1 64 (0:75vB )2 + (1:25)2 (0:5vB )2 + v = 2 32:2 2 32:2 2 32:2 B 2 = 1:5373vB V1 + T1 0+0
= V2 + T2 2 = 84:0 + 1:5373vB
vB = 7:39 ft/s J
18.35
M = 0.15P
G C
P 0.4 m
Replace P by the equivalent force-couple system shown. Displacement of G: U1
2
T2
s=R
= 0:4(2 ) = 0:8 m
=
M + P s = 0:15P (2 ) + P (0:8 ) = 0:5 P N m 1 1 1 2 = IC ! = I + mR2 ! 2 = 1:6 + 40(0:4)2 (6)2 = 144:0 N m 2 2 2 U1 2 = T2 T1 0:5 P = 144:0 0 P = 91:7 N J
18.36
469 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.37
18.38 (a)
A
0.3 m
0.075 m
o
30 Datum
B
A
vA
0.3 m
B
ωAB
Position 2
Position 1
In position 2 point B is stationary. ) Point B is the I.C. of bar AB. V1 T2
= mAB g(0:15 sin 30 ) = 3:2(9:81)(0:15 sin 30 ) = 2:354 J 1 1 1 1 = (IAB )B ! 2AB = mAB L2AB ! 2AB = (3:2)(0:3)2 ! 2AB 2 2 3 6 =
0:0480! 2AB
T 1 + V1 = T 2 + V2
0 + 2:354 = 0:0480! 2AB + 0
! AB = 7:003 rad/s
470 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
vA = LAB ! AB = 0:3(7:003) = 2:10 m/s #J
(b)
Datum
δ
B
0.3 m
A
Position 3 V3
1 + k 2 2 1 3:2(9:81) + (1200) 2 2
=
mAB g
= T1 + V1
2
2
= 600
2
= T 3 + V3 0 + 2:354 = 0 + 600 = 0:0771 m J
15:696 2
15:696
18.39 3 rad/s
G 2.7 ft/s 0.25' 0.65'
L0 C Position 1 I v1 V1 T1 V2 T2
Datum
ω2
0.25' 0.4ω2 0.4' G C L0 + 0.65π Position 2
16 (0:25)2 = 0:198 94 slug ft2 32:2 = CG ! 1 = 0:9(3) = 2:7 ft/s v2 = CG ! 2 = 0:4! 2 = IO
md2 = 0:23
= mge = 16(0:25) = 4:0 lb ft 1 2 1 1 1 16 = I! 1 + mv12 = (0:198 94)(3)2 + (2:7)2 = 2:706 lb ft 2 2 2 2 32:2 1 1 = mge + k 2 = 4:0 + (5)(0:65 )2 = 6:425 lb ft 2 2 1 2 1 1 1 16 = I! 2 + mv2 = (0:198 94)! 22 + (0:4! 2 )2 = 0:139 22! 22 2 2 2 2 32:2 T1 + V1 !2
= T 2 + V2 2:706 + 4:0 = 0:139 22! 22 + 6:425 = 1:421 rad/s J
471 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.40
L/2
30o
L/2 B
L/2
B
Position 1
ω2
A
A
P
C
L/2
C
Position 2
P
In Position2, point A is the I.C. of the bar U1 U1
2
2
= P (L sin 30 ) = T2
T2 =
1 1 IA ! 22 = 2 2
1 P L sin 30 = mL2 ! 22 6
T1
1 mL2 ! 22 3 0
!2 =
r
3P J mL
18.41 IC T
2
2
2
= I + mCG = m(k 2 + CG )! 2 = 320(0:42 + CG ) = 51:20 + 320CG 1 1 2 2 IC ! 2 = 51:20 + 320CG ! 2 = 25:60 + 160CG ! 2 = 2 2
2
Dimensions in meters 0.3 Datum 1.4
G
G
0.3
ω3 ω2
G
0.3 1.7
1.1 C Position 2
C Position 1
C Position 3
(a) Position 1 (initial position): V1 = 0 2
CG T1
= =
1:42 + 0:32 = 2:050 m2 [25:60 + 160(2:050)] (2:8)2 = 2772 J
Position 2 (position of maximum T ): 2
CG T2 V2
= = =
1:12 = 1:21 m2 [(25:60 + 160(1:21)] ! 22 = 219:2! 22 mg(0:3) = 320(9:81)(0:3) = 941:8 J
472 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
T1 + V1 2772 + 0
= T 2 + V2 = 219:2! 22
941:8
! 2 = 4:12 rad/s J
(b) Position 3 (position of minimum T ): 2
CG T3 V3 T1 + V 1 2772 + 0
= 1:72 = 2:89 m2 = [25:60 + 160(2:89)] ! 23 = 488:0! 23 = mg(0:3) = 320(9:81)(0:3) = 941:8 J = T3 + V3 = 488:0! 23 + 941:8
! 3 = 1:937 rad/s J
473 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.42
G G a
b 1 Datum
ω
A
2
In position 2: IA
= I + mb2 = m = m
V1 V2 T2
2
+ b2 a2 + 5b2 + mb2 = m 4 4
1:02 + 5(0:75)2 = 0:9531m 4
= mga = m(32:2)(1:0) = 32:2m T1 = 0 = mgb = m(32:2)(0:75) = 24:15m 1 1 IA ! 2 = (0:9531m)! 2 = 0:4766m! 2 = 2 2 V 1 + T 1 = V 2 + T2 32:2m + 0 = 24:15m + 0:4766m! 2 ! = 4:11 rad/s J
18.43
474 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.44
18.45
475 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.46
18.47
.
A
.B
2 ft
ft 2.5
.
ω2 A
1.5 ft
. D
. C Position 1
2 ft
Datum vB
.
2 ft 0.5 ft
ωCD
.
D
B
2 ft
2.5 ft
Position 2
vC
.C
Position 1 (release position): T1 = 0
V1 = 2w0 (1:5) + 2:5w0 (0:75) = 4:875w0
476 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Position 2: Note that BC is translating (! BC = 0) V2 = 2w0 (0:5) vB ! CD mBC (IAB )A
T2
= = =
2:5w0 (1:25)
2w0 (1:0) =
4:125w0
= vC = vBC = LAB ! 2 = 2! 2 vC 2! 2 = !2 = LCD 2 2:5w0 = 0:07764w0 = 32:2 1 2w0 = (ICD )D = (2)2 = 0:08282w0 3 32:2
1 1 1 2 (IAB )A ! 22 + (ICD )D ! 2CD + mBC vBC 2 2 2 1 1 1 (0:08282w0 )! 22 + (0:08282w0 )! 22 + (0:07764w0 )(2! 2 )2 2 2 2 0:2381w0 ! 22 T 1 + V1 0 + 4:875w0 !2
= T2 + V2 = 0:2381w0 ! 22 4:125w0 = 6:15 rad/s J
18.48 Kinematics ( = 45 ):
2.121 ft
C
1.5 ft
A 45o
.
vA
G
ωAB
vG B
vB
Point C is the I.C. of bar AB. vG
=
!B
=
1:5! AB vB = 2:121! AB vB 2:121! AB = = 1:414! AB R 1:5
477 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Conservation of energy:
. 1.5'
IAB
=
IB
=
1
45o Datum
. 1.5'
1 1 12 mAB L2AB = (3)2 = 0:2795 slug ft2 12 12 32:2 1 15 1 mB R2 = (1:5)2 = 0:5241 slug ft2 2 2 32:2
V1 = WAB (1:5) = 12(1:5) = 18 lb ft V2 (T2 )AB
(T2 )B
2
T1 = 0
= WAB (1:5 sin 45 ) = 12(1:5 sin 45 ) = 12:728 lb ft 1 1 2 = IAB ! 2AB + mAB vG 2 2 1 12 1 (0:2795)! 2AB + (1:5! AB )2 = 0:5590! 2AB = 2 2 32:2 1 1 2 IB ! 2B + mB vB = 2 2 1 1 15 = (0:5241)(1:414! AB )2 + (2:121! AB )2 2 2 32:2 = 1:5718! 2AB V1 + T 1 18 + 0 ! AB
= V2 + T 2 = 12:728 + (0:5590 + 1:5718)! 2AB = 1:5730 rad/s
vB = 2:121! AB = 2:121(1:5730) = 3:34 ft/s J
18.49
478 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.50 60 lb A v2
60 lb C
C 3 ft
3 ft
3 ft
3 ft
A
o
240 lb.ft
60 240 lb.ft
Position 1 D
B
Position 2 B
D
Bar AC undergoes curvilinear translation U1
2
T2
= C
h = 240
30 180
60(3
3 sin 60 ) = 101:55 lb ft
1 60 2 1 mv 2 = v 2 2 2 32:2 2
= U1
mg
2
= T2
T1
101:55 =
1 60 2 v +0 2 32:2 2
v2 = 10:44 ft/s J
479 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.51 30o 80(9.81) N µkN =
FBD T
Fy kN U1
x
y MAD
80a
N
= 0 + - N 80(9:81) cos 30 = 0 = 0:4(679:7) = 271:9 N
2
=
2mgy
T2
=
2
= U1
2
kN x
= 2(80)(9:81)(x sin 30 )
N = 679:7 N
271:9x = 512:9x
1 1 1 1 2 mv22 + IA ! 2A = mv22 + mRA 2 2 2 2 1 1 mv22 = 1 + 80(5)2 = 2500 J 1+ 4 4
= T2
T1
512:9x = 2500
v2 RA
2
x = 4:87 m J
0
18.52
C A
0.5 m
0.3 m
P 0.4 m B Position 1
ωC
C 0.08 m 0.5 m ωAB B Position 2
Datum A 2 m/s
P
Position 1: V1
1 = mC g(0:3) + mAB g(0:15) + k 2 = =
2 1
1 2(9:81)(0:3) + 3(9:81)(0:15) + (72)(0:4 2 13:541 J
0:1)2
480 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Position 2 (B is the I.C. of bar AB): IC
=
(IAB )B
=
! AB
=
!C
=
V2
T2
1 1 2 mC RC = (2)(0:08)2 = 0:0064 kg m2 2 2 1 1 2 mAB LAB = (3)(0:5)2 = 0:25 kg m2 3 3 vA 2 = = 4 rad/s LAB 0:5 vA 2 = = 25 rad/s RC 0:08
1 1 2 k 2 P x = (72)(0:7 0:1)2 P (0:5 0:4) 2 2 = 12:96 0:1P 1 1 1 2 IC ! 2C + mC vA + (IAB )B ! 2AB = 2 2 2 1 1 1 (0:0064)(25)2 + (2)(2)2 + (0:25)(4)2 = 8:0 J = 2 2 2
=
T1 + V 1 = T 2 + V 2 0 + 13:541 = 8:0 + 12:96
0:1P
P = 74:2 N J
18.53 Kinematics: ! A = vB =0:25 = 4vB Choose the ground as the datum for potential energy. V1 = mB gh = 5(9:81)(6) = 294:3 J V2 T2
0 1 1 2 = mA R! 2A + mB vB 2 2 1 2 = (8)(0:25)2 (16vB )+ 2
T1 = 0
=
=
1 1 2 mA R2 (4vB )2 + mB vB 2 2
1 2 2 (5)vB = 6:50vB 2
V1 + T1 = V2 + T2 2 294:3 + 0 = 0 + 6:50vB
vB = 6:73 m/s J
481 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
*18.54
482 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.55
vC = 2vA
15"
vA
ωA vA !A
= vB = 0:5vC ) sA = sB = 0:5 vC vC = = 0:4vC = !B = 2R 30=12 250 32:2
IA = IB = mR2 =
15 12
sC
2
= 12:131 slug ft2
Cylinder A reaches corner of the slab when sC T2
sA = 20 in. = =
U1
2
U1
1 2 mC vC +2 2 1 1500 2 vC 2 32:2
= P 2
sC
= T2
sC = 180 T1
0:5 sC = 20 in.
sC = 40 in.
1 1 2 IA ! 2A + mA vA 2 2 + 12:131(0:4vC )2 + 40 12
250 2 (0:5vC )2 = 27:174vC 32:2
= 600 lb ft
2 600 = 27:174vC
0
vC = 4:70 ft/s J
18.56
483 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.57
D
180
180 A
B
G
120
x- = 380 100 x= IAB
=
ID
=
8(180) + 16(480) mi xi = = 380 mm mi 8 + 16 1 1 mAB L2AB = (8)(0:36)2 = 0:0864 kg m2 12 12 1 1 mD R2 = (16)(0:120)2 = 0:1152 kg m2 2 2
(a) I h
= IAB + mAB (0:2)2 + ID + mD (0:1)2 = 0:0864 + 8(0:2)2 + 0:1152 + 16(0:1)2 = 0:6816 kg m2 = I! = 0:6816(5) = 3:408 N m s J
(b) IA hA
= I + (mAB + mD )x2 = 0:6816 + (8 + 16)(0:38)2 = 4:147 kg m2 = IA ! = 4:147(5) = 20:7 N m s J
18.58
484 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.59
mABv-AB
IABω
m v- BC BC IBCω B
A 1.2'
d C
3.2' (a)
mv-
= B
A
C
(b)
Momentum diagram (a): IAB !
=
IBC !
=
mAB vAB mBC vBC
hA
= =
1 mAB L2AB ! = 12 1 mBC L2BC ! = 12
1 3 (2:4)2 ! = 0:04472! 12 32:2 1 5:5 (1:6)2 ! = 0:03644! 12 32:2
3 (1:2!) = 0:11180! 32:2 5:5 = mBC (rBC !) = (3:2!) = 0:5466! 32:2 = mAB (rAB !) =
[0:04472 + 0:03644 + 0:11180(1:2) + 0:5466(3:2)] ! 1:9644!
Momentum diagram (b): mv =
8:5 (!d) = 0:2640!d 32:2
hA = mvd = 0:2640!d2
Diagrams (a) and (b) are equivalent: 1:9644! = 0:2640!d2
d = 2:73 ft J
485 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.60
18.61
18.62 (AO )1
2
=
Z
60 s
C(t)dt = 12
0
= (hO )1 (AO )1
2
=
= (hO )2
60 s
1
2t
e
0
714:0 lb ft s
0
Z
(hO )2 = mk 2 ! 2 = (hO )1 :
40 32:2
9 12
714:0 = 0:6988! 2
1 dt = 12 t + e 2
60 s 2t 0
2
! 2 = 0:6988! 2 0
! 2 = 1022 rad/s J
486 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.63
20 in. Ay Ax A 120 lb
20 in.
.
.
Iω1
A mBω1R B 50 lb
FBD
IA =
Momentum diagram
1 1 120 mA R2 = 2 2 32:2
2
20 12
= 5:176 slug ft2
Z
(hA )1 IA ! 1 + (mB ! 1 R) R
Z
t
MA dt
=
(hA )2
0 t
mB gR dt =
0
0
5:176(12) +
20 12
50 (12) 32:2
2
20 12
50
t
=
0
t = 1:367 s J
18.64 h1 A1
2
= =
0 Z
0
A1
2
!1
= h2 =
h1
t
h2 = I! Z t M (t)dt = M0 e
t=t0
dt = M0 t0 1
e
t=t0
0
M 0 t0 1
e
t=t0
= I!
0
!=
M0 t 0 1 I
e
t=t0
M 0 t0 4:6(3:8) = = 24:3 rad/s J 0:72 I
487 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.65
488 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.66 400
P W 3P 3P 200 Ox O Oy 3Pµk
200
FBD's 2P +
(AO )1
2
=
Z
12 s
(3P
k) R
dt = 3
k R(area
under P -t diagram)
0
=
3(0:3)(0:2)(6P0 ) = 1:08P0
+
mk 2 ! 1 =
(hO )1 =
(AO )1
2
= (hO )2
(hO )1
20(0:16)2 400 1:08P0 = 0
2 60
=
21:45 N m s P0 = 19:86 N J
( 21:45)
18.67
mrodvG C Irodω G
.
A
mrodvG C Irodω G
mdiskvB
.
.B R
L/2 L/2 Momentum diagram (a)
A
mdiskvB
.B R
Idiskω
L/2 L/2 Momentum diagram (b)
(a) Angular speed of disk A will remain zero. hC
=
(hC )disk + (hC )ro d
=
(mdisk vB )L + Iro d ! + (mro d vG )
=
(mdisk !L)L +
=
(AC )1
2
1 L mro d L2 ! + mro d ! 12 2
1 mdisk + mro d 3 (AC )1 = (hC )2
2
L 2
L2 ! =
44 + (18=3) 32:2
L 2 16 12
2
! = 2:761!
= M0 t = 6(3) = 18 lb ft s
(hC )1
18 = 2:761!
0
! = 6:52 rad/s J
489 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) Disk and rod have the same angular speed. We must add the following term to hC : Idisk !
1 1 44 mdisk R2 ! = (1:0)2 ! = 0:6832! 2 2 32:2 hC = 2:761! + 0:6832! = 3:444!
= )
(AC )1
2
= (hC )2
(hC )1
18 = 3:444!
0
! = 5:23 rad/s J
18.68 I-ω
mg 0.3 m FBD
O
O
µkmg
Initial mv- momentum diagram
mg Let t be the time when cylinder stops +
!
t
=
+
L1 2 = p2 p1 k mgt = 0 v 2 = = 0:3398 s g 0:6(9:81) k
(AO )1
k mgRt
=
!
=
2
= (hO )2
(hO )1
mv
k mgRt
1 mR2 ! 2 2 k gt 2(0:6)(9:81)(0:3398) = = 13:33 rad/s R 0:3
=0
I!
J
18.69
490 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.70
P R
Iω
R
mωR mg F
C FBD
C Momentum diagram
N = mg
(a) + Z
(AC )1
2
= (hC )2
(hC )1
t
P (2R) dt
= I! + m!R(R)
0
0
2P Rt = t
=
mR2 ! + m!R2 2 3 m!R 3 60(10)(0:4) = = 0:900 s J 4 P 4 200
(b) Z
+ ! L1
2
= p2
p1
t
(P + F )dt
= m!R
0
(P + F )t = m!R
0
0
F
=
Pt
m!R = t
200(0:9)
(60)(10)(0:4) = 66:67 N 0:9
491 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Smallest
s
that would prevent sliding is s
=
F 66:67 = = 0:1133 J N 60(9:81)
18.71 B A
IAω1
mB Lω2 2 I-
IAω2
ω
B 2
10" 10" Final momenta
Initial momenta
IA
=
1 1 6 mA R2 = 2 2 32:2
IB
=
1 4 1 mB L2 = 12 12 32:2
(hO )1
=
0:052 41(16)
=
0:8386
=
+
mALω2
9 12
2
= 0:052 41 slug ft2
20 12
2
= 0:028 76 slug ft2
IA ! 1 = IA ! 2 + IB ! 2 + mA L2 ! 2 + mB
(hO )2 "
0:052 41 + 0:028 76 +
6 32:2
20 12
2
+
4 32:2
10 12
2
L 2 #
2
!2
!2
! 2 = 1:224 rad/s J
0:6850! 2
18.72
L/2 x C
A
1 m L2ω 12 AB B
mC xω mAB(L/2)ω Momentum diagram (a) Angular momentum of the system about A is conserved. hA
= =
1 L mAB L2 ! + mAB ! 12 2 1 mAB L2 + mC x2 ! 3
L + (mC x!) x 2
492 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
When x = When x =
1 2 (1:6)2 + 3 32:2 1 2 1:6 ft: (hA )2 = (1:6)2 + 3 32:2
0:5 ft: (hA )1 =
(hA )1 = (hA )2
0:2213 = 0:07685!
0:3 (0:5)2 (4) = 0:2213 lb ft s 32:2 0:3 (1:6)2 ! = 0:07685! 32:2 ! = 2:88 rad/s J
(b) The act of the mass leaving the rod does not change the angular momentum of the rod. ) ! = 2:88 rad/s J
*18.73
18.74
493 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.75
18.76
18.77
O
0.125mω1 O
Iω1 0.125 m Initial momenta I=
0.375 m
0.375mω2 Iω2
Final momenta
1 1 mL2 = (18)(0:75)2 = 0:8438 kg m2 12 12 (hO )1
=
(hO )2
2
I! 1 + (0:125) m! 1 = I! 2 + (0:375)2 m! 2 0:8438 + (0:125)2 (18) (16) = 0:8438 + (0:375)2 (18) ! 2 ! 2 = 5:33 rad/s J
494 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.78 With rods vertical: (Iz )1
=
2 "
1 mR (a2 + b2 ) + mR d21 + mB k 2 12
9 12
2
1 mR (a2 + L2 ) + mR d22 + mB k 2 12 " # 2 1 18 1:52 + 182 18 15 24 2 + + 12 32:2 122 32:2 12 32:2
9 12
2
=
0:7043 slug ft2
6 12
2
#
24 32:2
=
18 1 18 1:52 + 2:52 + 2 2 12 32:2 12 32:2
+
With rods horizontal: (Iz )2
= = =
2
2:377 slug ft2
Angular momentum about z-axis is conserved: (Iz )1 ! 1 = (Iz )2 ! 2 0:7043(40) = 2:377! 2
! 2 = 11:85 rad/s J
495 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
*18.79
496 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.80
18.81
497 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.82
Ι-ABω1 I-1ω1 m(2.5ω1)
I1ω1 m(2.5ω1)
2.5' O 2.5' Initial momenta
m(2.5ω2)
I2ω2
m(2.5ω2) ΙABω2
I2ω2
A
O B Final momenta
One plate: 1 1 12 mb2 = (2)2 = 0:124 22 slug ft2 12 12 32:2 1 m(2b2 ) = 2I1 = 0:2484 slug ft2 I2 = 12
In position 1:
I1 =
In position 2: IAB =
1 1 8 mAB L2 = (3)2 = 0:186 34 slug ft2 12 12 32:2
+ (hO )1 2 I1 ! 1 + m(2:5) ! 1 + IAB ! 1
= (hO )2 = 2 I2 ! 2 + m(2:5)2 ! 2 + IAB ! 2
2
12 (2:5)2 + 0:186 34 (12) 32:2 12 (2:5)2 + 0:186 34 ! 2 2 0:2484 + 32:2 5:342! 2 ! 2 = 11:44 rad/s J 2 0:124 22 +
= 61:12
=
18.83
498 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.84
A
Iω1
.
=
+ C
C Momenta before impact
0.25mL ω2 F dt
Impulse during impact
G C
. .
Iω2 0.25L
Momenta after impact
Angular momentum about C is conserved: I! 1 2
mL !1 12 !2
= I! 2 + 0:25mL! 2 (0:25L) mL2 = ! 2 + 0:25mL! 2 (0:25L) 12 = 0:5714! 1 = 0:5714(25) = 14:29 rad/s J
18.85
499 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.86 (a)
ω2 Datum ω2d
Velocities after impact d
θ C G
Position of maximum displacement
0:12 (1600)(0:60) = 3:578 lb ft s 32:2 + (hC )2 = (mAB + mD )! 2 d2 + I! 2 1 24 24 + 0:12 ! 2 (0:6)2 + (6)2 ! 2 = 2:506! 2 = 32:2 12 32:2 (hC )1 = (hC )2 3:578 = 2:506! 2 ! 2 = 1:4278 rad/s J +
(hC )1 = mD v1 d =
(b)
A C D mv D1
^ F
B Momenta before impact
T2
V2 V3
L/2
^ R ^ F
d
Iω2 (mAB + mD)ω2d
L/2
FBD during impact
Momenta after impact
1 2 1 I! + (mD + mAB )(! 2 d)2 2 2 2 1 1 24 1 0:12 + 24 = (6)2 (1:4278)2 + (1:4278 0:6)2 2 12 32:2 2 32:2 = 2:554 lb ft = (WD + WAB )d = (0:12 + 24)(0:6) = 14:472 lb ft = (WD + WAB )d cos = (0:12 + 24)(0:6 cos ) = 14:472 cos =
2:554
T2 + V2 = T3 + V3 14:472 = 0 14:472 cos
= 34:6
J
500 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.87 P^
A L/2
A Iω mv-
A
ω L/2
FBD during impact +
(hA )1 = (h2 )2 : vC = v
Momenta after impact 0 = I!
L 2
!
y
=v
mv
L 2
6 v L
C
y
vvC
Velocities after impact 1 L mL2 ! = mv 12 2
L 2
y
=0
y=
!=6
v L
L J 3
18.88
mv1
0.25mω2 G 0.25 m
5m 0.2
G 0.2 m
Iω2
A^x A A A ^ Ay 1 Momentum FBD during 2 Momenta before impact impact after impact
A Datum 3 Imminent tipping
(a) I=
1 m(0:32 + 0:42 ) = 0:02083m 12
+ (hA )1 = (hA )2 : mv1 (0:2) = I! 2 + (0:25)2 m! 2 0:2mv1 = 0:02083m! 2 + (0:25)2 m! 2 ! 2 = 2:40v1 J (b) 1 2 1 I! + m(0:25! 2 )2 + 0:2mg = 0 + 0:25mg 2 2 2 1 1 (0:02083m)(2:40v1 )2 + m(0:25 2:40v1 )2 + 0:2m(9:81) 2 2 0:25m(9:81) 0:4905 v1 = 1:430 m/s J
T2 + V2
= T 3 + V3 :
0:240v12
= =
501 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.89 (a) + !2
(hA )1 = (hA )2 =
mv1
L = IA ! 2 2
mv1
3 3 v1 = (5:5) = 9:167 rad/s 2L 2(0:9)
L 1 = mL2 ! 2 2 3
J
(b) Choose the horizontal plane through A as the datum for potential energy. V2 + T 2 L 1 mg + IA ! 22 2 2 L 1 1 mL2 ! 22 mg + 2 2 3 s r g ! 3 = ! 22 6 = 9:1672 L
= V3 + T3 L = mg + 2 L = mg + 2 6
9:81 0:9
1 IA ! 23 2 1 1 mL2 ! 23 2 3 J
= 4:32 rad/s
18.90 1 mR2ω 1 2
1 mR2ω2 2
mRω1
20o R A Momenta before impact
mRω2 R
A ^ ^ N F FBD during impact
A Momenta after impact
+ (hA )1 = (hA )2 : 1 1 mR2 ! 1 + (m! 1 R) R cos 20 = mR2 ! 2 + (m! 2 R) R 2 2 ! 1 (1 + 2 cos 20 ) = 3! 2 !2 =
1 + 2 cos 20 1 + 2 cos 20 !1 = (4) = 3:84 rad/s 3 3
J
502 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.91
18.92
503 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.93
2
1 G mv1
.
+
.
G I-ω 2
F dt
Momenta A after impact
ft 2.5
=
2 ft Momenta before impact
A
A
mv2
Impulse during impact
Angular momentum about A is conserved during impact: mv1 (2) 2mv1 !2
= I! 2 + mv2 (2:5) m 2 = (3 + 42 )! 2 + m! 2 (2:5)2 12 = 0:240v1
3
2
.G
.G 2 ft
2.5 ft
ω2
Datum A
A Energy is conserved after the impact: For the box to ‡ip, it has to reach position 3. V2
=
T2
= =
2mg = 64:4m V3 = 2:5mg = 2:5(32:2m) = 80:50m 1 2 1 1m 2 1 I! + mv 2 (2:5) = 3 + 42 ! 22 + m! 22 (2:5)2 2 2 2 2 2 12 2 2 4:167m! 2 V2 + T2 64:4m + 4:167m! 22 !2 v1 =
T3 = 0
= V3 + T 3 = 80:50m + 0 = 1:9656 rad/s
1:9656 = 8:19 ft/s J 0:240
504 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.94
18.95 (a)
R/2
R G Momenta before impact
FBD during impact
F^
mv-2 G
Iω2
Momenta after impact
505 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Z
F^ dt = mv2 = 2:8m Z R F^ dt = I! 2 0 (AG )1 2 = (hG )2 (hG )1 + 2 R 2 3:5 3:5 (2:8m) = mR2 ! 2 !2 = = = 33:60 rad/s J 2 5 R 1:25=12 L1
= p2
2
p1
+
(b)
mg mv-2
Iω2
G R C Momenta after impact (hC )1
mv2 R
=
G R
m(Rω3)
F N FBD during slipping C
G R C
Iω3
Momenta during rolling
+ mv2 R I! 2 = (mR! 3 ) R + I! 3 2 = mR2 ! 3 + mR2 ! 3 5 5v2 2R! 2 5(2:8) 2(1:25=12)(33:60) = = 7R 7(1:25=12) = 9:60 rad/s J
2 mR2 ! 2 5 !3
(hC )1
18.96 Angular momentum about the z-axis is conserved: mA (0:8)2 !2 4 12(0:8)2 !2 0:009(850)(0:6) = 0:009(310)(0:6) + 4 ! 2 = 1:519 rad/s J mB v1 (0:6)
= mB v2 (0:6) +
18.97 IA
= = =
1 2 2 2 2 mAB AB + mC RC + mc AB + RC 3 5 2 2 20 2 5 3 5 23 1 2 + + 3 32:2 12 5 32:2 12 32:2 12
2
0:6318 slug ft2
Let v2 be the velocity of ball D after the impact + 0:6318! 1
=
(hA )1 = (hA )2 : IA ! 1 = mD (AB + RC )v2 W 23 v2 ! 1 = 0:094 21W v2 32:2 12
(a)
506 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Since impact is elastic, energy is conserved T1
1 1 IA ! 21 = mD v22 2 2
= T2 :
1 (0:6318) ! 21 2
=
1 2
W 32:2
p ! 1 = 0:2217 W v2
v22
(b)
Equating (a) and (b): p 0:094 21W = 0:2217 W
W = 5:54 lb J
18.98 (a)
mCv1 30o
mCω2b
b
b IBω2
C B
A
A
Momentum before impact Bar AB: IB =
L/2 mAB L ω 2 2 Momenta after impact
B
1 60 1 mAB L2 = (8)2 = 39:75 slug ft2 3 3 32:2
(hB )1 = (hB )2 (mC v1 sin 30 ) b = IB ! 2 + (mC ! 2 b)b 28 28 (15 sin 30 )(6) = 39:75! 2 + ! 2 (6)2 32:2 32:2 ! 2 = 0:5507 rad/s J (b) Initial deformation of the spring is 1
=
0:5WAB 0:5(60) = = 1:5 in. k 20
L b L/2
Lθ A
Datum bθ Lθ/2 θ G C
B
507 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
T2
= =
V3
= = =
1 IB ! 22 + mC (! 2 b)2 2 1 28 39:75(0:5507)2 + (0:5507 6)2 = 10:774 lb ft 2 32:2 1 2 k(L (mAB g) (b ) 1) 2 2 1:5 1 (20 12) 8 60(4 ) 28(6 ) 2 12 7680
2
648 + 1:875
V 2 + T 2 = V 3 + T3 0 + 10:774 = 7680 2 648 + 1:875 + 0 0 = 7680:0 2 648:0 8:90 = 0:09639 rad = 5:52 J
18.99
508 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.100
18.101 (a)
B
B L/2
L mb v1
A Momentum before impact
+ ! mb v1
=
+ (mb v1 ) L
=
mb v1
=
!2
=
G mv2 1 2 12 mL ω2
A Momenta after impact
p 1 = p2 mv 2
v2 =
mb 0:04 v1 = (2800) = 6:222 ft/s m 18
(hB )1 = (hB )2 1 L mL2 ! 2 + (mv 2 ) 12 2 1 1 mb mL! 2 + m v1 12 2 m 6mb v1 6(0:04)(2800) = = 7:467 rad/s J mL 18(5)
509 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) Due to absence of horizontal forces, v remains constant after impact (v3 = v2 ).
B
B
Datum
θ
L/2
v-2
G
G ω3 = 0
ω2
L cosθ 2 v-3 = v-2 A
A Immediately after impact
V2
=
T2
= =
Position of maximum θ
L = 18(2:5) = 45:0 lb ft 2 1 mL2 ! 22 + mv 22 12 1 18 18 (5)2 (7:467)2 + (6:222)2 12 32:2 32:2
mg 1 2 1 2
V3
=
T3
=
= 43:29 lb ft
L cos = 18(2:5 cos ) = 45:0 cos lb ft 2 1 1 18 mv 22 = (6:222)2 = 10:820 lb ft 2 2 32:2 mg
V2 + T 2 = V 3 + T 3 45:0 + 43:29 = 45:0 cos + 10:820 45:0 + 43:29 10:820 = cos 1 45:0
= 73:8
J
18.102 Kinematics When = 0, the rods are vertical and the collars at B and D are at the limit of their travel. Therefore, vB = vD = 0
510 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Also note that due to symmetry the angular velocities of the rods are equal in magnitude but opposite sense: ! AC =
! CE = !
vA and ! are related by the relative velocity equation vB = vA + vB=A
.
A ω 0
vA
=
+
L/2
ωL/2
B 0=
vA +
!L 2
!=
2 vA L
Conservation of energy Choose the horizontal rod that guides collar A as the datum for potential energy. V1
=
V2
=
T2
=
0
2
T1 = 0 L 3L mg + 2 2 1 2 I! 2
=
V1 + T 1 0+0 vA
18.103
=
2mgL
mL2 2 mL2 ! = 12 12
2vA L
2
=
1 mv 2 3 A
= V2 + T2 1 2 2mgL + mvA 3 p = 6Lg J
=
511 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.104
18.105
Iω G
G
R
mg F = µkmg FBD
mv-
C Momentum diagram
N = mg
Sliding stops when vC = v0
v + !R = v0
(a)
(a) During sliding: p1 +
Z
t
F dt = p2
0+
k mgt
= mv
v=
k gt
(b)
0
512 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(hC )1 +
Z
t
F R dt =
0 k mgRt
=
(hC )2
0+
mR2 ! 2
k mgRt
!=
2
= I!
k gt R
(c)
J
(d)
Substituting Eqs. (b) and (c) into Eq. (a) yields k gt
+
2
k gt R = v0 R
t=
v0 3
kg
(b) Subsitution of Eq. (d) into Eqs (b) and (c) results in v=
kg
v0 3
kg
=
v0 J 3
!=
2
kg
R
v0 3
kg
=
2 v0 J 3R
18.106
513 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.107
18.108
3 ft
3 ft
L − 6.708' 3 ft C
8' 6.70
3 ft
B
A
B
A
Position 1
3 ft L − 3'
ωAB Position 2
C vC
vC = AB! AB = 3! AB Let L be the length of the rope. U1
2
= =
T2
= = =
AB + WC [(L 3) (L 6:708)] 2 W (1:5) + W (3:708) = 2:208W 1 1 2 (IAB )A ! 2AB + mC vC 2 2 11 W 1 W (3)2 ! 2AB + (3! AB )2 2 3 32:2 2 32:2 0:18634W ! 2AB WAB
514 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
U1 2 2:208W vC
= T2 T1 = 0:18634W ! 2AB 0 ! AB = 3:442 rad/s = 3(3:442) = 10:33 ft/s # J
18.109 ^ N
T^A
C A
G
^ N o
45o 45
FBD during impact
45o 45o
Momentum before impact
2.4 m 2.68 3m
G
O
T^B
O 2.4m ω 1.2 m C ΑΒ C 30 N.s Iω 2.683mCω B A B G
1.2 m A
B
O
Momenta after impact
Point O is the I.C. of bar AB. I=
1 1 mAB L2 = (15)(4:8)2 = 28:80 kg m2 12 12 +
(30)(1:2)
(hO )1 = (hO )2 2
= I! + (2:4)2 mAB ! + (2:863) mC ! 2
(30)(1:2) = 28:80! + (2:4)2 (15)! + (2:683) (5)! ! = 0:238 rad/s J
18.110
515 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.111
18.112 V1 T2
= mgh 1 2 = I! + 2
T 1 + V1 !
T1 = 0 V2 = 0 1 1 2 mv 2 = mR2 ! 2 2 2 5
1 9 + m(!R)2 = mR2 ! 2 2 10
9 = T 2 + V2 0 + mgh = mR2 ! 2 10 p p p 10 gh gh = = 1:054 J 3 R R
516 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
18.113
18.114
^y O
L
L
mv1
F^
A Momentum before impact
O Datum Lm ω 2 OA 2
Iω2 F^
FBD during impact
I=
O
^ O x
L/2
O
θ
L/2 L/2
A
mv2
A
Momenta after Position of max. displacement impact
1 1 30 mOA L2 = (3)2 = 0:6988 slug ft2 12 12 32:2
System +
(hO )1 = (hO )1
mv1 L = I! 2 + mOA
L 2
2
! 2 + mv2 L 2
5 30 3 5 (1800)(3) = 0:6988! 2 + !2 + (1400)(3) 16 32:2 32:2 2 16 32:2 52:41 = 2: 795 ! 2 + 40: 76 ! 2 = 4:1667 rad/s
517 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Bar only T 2 + V2
= T3 + V3
2
1 2 1 L L ! 22 WOA I! + mOA 2 2 2 2 2 " # 2 1 L I + mOA ! 22 2 2 1 2
0:6988 +
30 2 (1:5)2 (4:167) 32:2
=
0
WOA
L cos 2
L = WOA (1 2
cos )
=
30(1:5)(1
cos )
=
62:6
J
18.115 IAω1
Α^y Α^x Α 1.5' IAωA2
IA
=
IB
=
Momenta before impact
F^
Β^y Β^ x 1.2' Β IBωB2
F^
1 mA L2A = 12 1 mB LB = 12
FBD's during impact Momenta after impact
1 8 (3)2 = 0:18634 slug ft2 12 32:2 1 6 (2:4)2 = 0:08944 slug ft2 12 32:2
Kinematics (plastic impact): 1:5! A2 = 1:2! B2
! B2 = 1:25! A2
Bar A: + 1:5
Z
Z
A1
=
2
(hA )2
(hA )1
F^ dt = IA (! A2 F^ dt =
! A1 ) = 0:18634 (! A2
0:12423 (! A2
5)
5)
Bar B: + 1:2
Z
Z
A1
2
=
(hA )2
F^ dt = IB (! B2 F^ dt =
(hA )1 ! B1 ) = 0:08944 (1:25! A2 )
0
0:09317! A2
518 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
0:12423 (! A2 J
! A2 = 2:857 rad/s
5) = 0:09317! A2 J
! B2 = 1:25(2:857) = 3:57 rad/s
18.116 0.08 m
mg
FBD
C
0.4N2 N2 0.4N1
N1
Fx Fy
= 0: = 0:
+ +"
N2 0:4N1 = 0 N1 + 0:4N2 = mg = 12(9:81)
The solution is N1 = 101:48 N + =
A1 2 = MA t = [C 0:4(N1 + N2 )R] t [5 0:4(101:48 + 40:59)(0:08)] 3 = 1:3613 N m s
(hA )2 = I! 2 = A1
2
= (hA )2
N2 = 40:59 N
(hA )1 :
2 2 mR2 ! 2 = (12)(0:08)2 ! 2 = 0:030 73! 2 5 5 1:3613 = 0:030 72! 2 0 ! 2 = 44:3
rad/s J
18.117 θ
Position 1
1.8 m
1.2 m
Position 2
1.5 m/s
!1 = V2 T1
0.6 m Datum 2.5 rad/s
v1 1:5 = = 2:5 rad/s R 0:6
= W h = (9:81m) [1:2(1 cos )] = 11:772(1 1 1 1 1 2 = mv 2 + I! 21 = mv12 + mr ! 21 2 1 2 2 2 1 1 2 2 = m (1:5) + (0:6) (2:5)2 = 1:6875m 2 2
cos )m
519 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
V1 + T1 cos
= V2 + T 2 : 0 + 1:6875m = 11:772(1 cos )m + 0 1:6875 = 1 = 0:8567 = 31:1 J 11:772
18.118 Ox
Oy
ωA
A C
O
2 ft
C C
O
B
(mΒ + mC)vI- ω
IΒωΒ Final momenta
FBD Kinematics:
! C = ! A (C and A are rigidly connected) ! B = ! A + ! B=A = ! A 25 rad/s Final momentum diagram: +
"
20 + 12 (2! A ) = 1:987 6! A lb s 32:2 2 20 10 2 = mB kB !B = (! A 25) = 0:4313! A 32:2 12
(mB + mC )v =
+
IB ! B
+
2 IC ! C = mC kC !A =
12 32:2
3 12
10:783
2
! A = 0:023 29! A
Conservation of angular momentum:
1:987 6! A (2) + (0:4313! A
+ (hO )2 10:783) + 0:023 29! A !A
= (hO )1 = 0 = 2:43 rad/s J
520 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 19 19.1
19.2 From Sample Problem 19.4:
aC=Q
= ( 623:6 + 141:42 y + 200:0 z )i + (720:2 141:42 x + 173:21 z )j + ( 509:0 200:0 z 173:21 y )k
521 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Equating like components of aC = aC k = aQ + aC=Q , we get 0 = 1621:4 + 141:42 y + 200:0 z 0 = 720:2 141:42 x + 173:21 z aC = 787:0 200:0 x 173:21 y
x z
2
=
1:020 rad/s
=
2
4:99 rad/s
J J
2
=
(a) (b) (c)
4:41 rad/s
aC = 1755 mm/s
2
2
J
J
19.3
19.4 !
20i + 30j + 50k 202 + 302 + 502 = ! ( 0:3244i + 0:4867j + 0:8111k)
= !
OC
rB =
= !p
i 0:3244 0
j 0:4867 30
k 0:8111 50
vB
= !
vB
= !(0:002i + 16:220j 9:732k) p = ! 0:0022 + 16:2202 + 9:7322 = 18:916! vB 160 ) != = = 8:46 rad/s J 18:916 18:916
522 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.5
19.6
523 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.7 Let the y-axis be embedded in cone A, so that the coordinate system rotates about the z-axis with the angular velocity (a) From the velocity diagram of cone A:
z
!A
ω1 = 4 rad/s y 40o Ω ωA
= ! 1 tan 40 = 2 tan 40 = 1:6782 rad/s = !1 j k = 2j 1:6782k rad/s J
(b) = =
d! A dt
+
!A = ! _1+
!A
=xyz
7j + ( 1:6782k)
(2j
1:6782k) = 3:36i
2
7j rad/s
J
19.8
524 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.9
19.10
z
ω1 = 36 rad/s x
ω2 = 14 rad/s
23.2o
(a) Let the xyz-axes be attached to the frame B. !1 !2 !
= 36(i cos 23:2 + k sin 23:2 ) = 33:09i + 14:182k rad/s = 14k rad/s = ! 1 + ! 2 = 33:09i + 28:18k rad/s (valid only at the instant) J
525 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) Since the xyz-axes are attached to the frame, we have ) =
=
d! dt
320k + 14k
+ !2
!=! _ 2 + !2
= !2 .
!
=B 2
(33:09i + 28:18k) = 463j + 320k rad/s
J
19.11
19.12
526 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.13 rA=B = 0:18i
vA=B
= ! =
rA=B =
i !x 0:18
0:2j + 0:1k m
j !y 0:2
k !z 0:1
(0:1! y + 0:2! z )i + ( 0:1! x + 0:18! z ) j + ( 0:2! x vA = vA i
0:18! y )k
vB = 2k m/s
vA = vB + vA=B Equating like components, we get vA = 2 + 0:1! y + 0:2! z 0 = 0:1! x + 0:18! z 0 = 2 0:2! x 0:18! y
(a) (b) (c)
Assuming the spin velocity to be zero, we have ! rA=B = 0: 0 = 0:18! x
0:2! y + 0:1! z
(d)
Solution of Eqs. (a)-(d) is !x vA
= 4:85 rad/s = 3:11 m/s J
! y = 5:72 rad/s
! z = 2:70 rad/s
) ! = 4:85i + 5:72j + 2:70k rad/s
527 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.14 (a) Let the xyz-coordinate system be attached to the arm AB. !1
=
8k rad/s
!2
=
2i rad/s
6 ! 3 = p (j + k) = 4:243(j + k) rad/s 2
Angular velocity of the disk is !
= ! 1 + ! 2 + ! 3 = 8k + 2i + 4:243(j + k) = 2i + 4:243j + 12:243k rad/s J
(b) = ! 2 + ! 3 = 2i + 4:243(j + k) rad/s Angular acceleration of the disk is = ! _ = (!) _ =xyz + =
33:9i
! =0+
i 2 2
j 4:243 4:243
k 4:243 12:243
J
2
16:0j rad/s
19.15
z P
2.4 ft
5
4
4 ft
3.2 ft
3
A
ωPQ/OA
O
Q
y
(a) Let the xyz-axes be attached to OA. ! OA ! P Q=OA !P Q rP=O
= !2 =
16k rad/s 3j + 4k = ! 1 = 25 = 15j + 20k rad/s 5 = ! OA + ! P Q=OA = 15j + 4k rad/s = 4k ft
528 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Noting that point O is …xed, we have vP = ! P Q (b) Note that PQ
=
aP
rP=O = (15j + 4k)
4k = 60i ft/s J
= ! OA .
d! P Q dt
+ ! OA
! P Q = 0 + ( 16k)
=OA
= rP=O + ! P Q (! P Q rP=O ) = P Q rP=O + ! P Q PQ = 240i 4k+ (15j + 4k) 60i = 960j + ( 900k) + 240j =
720j
2
(15j + 4k) = 240i rad/s
900k ft/s
2
vP
J
19.16
19.17 rB=A vA
= =
0:75i + 0:9j + 0:27k m 2:1i m/s vB = vB j
529 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
= !
vB=A
=
rB=A =
(0:27! y
The equations vB 0 vB 0 0
i !x 0:75
j !y 0:9
k !z 0:27
0:9! z )i + ( 0:27! x
0:75! z )j + (0:9! x + 0:75! y )k
= vA + vB=A and ! rB=A = 0 (no spin velocity) yield = 2:1 + 0:27! y 0:9! z = 0:27! x 0:75! z = 0:9! x + 0:75! y = 0:75! x + 0:9! y + 0:27! z
The solution is !x vB
= =
0:327 rad/s 1:750 m/s J
! y = 0:392 rad/s
!z =
2:22 rad/s
19.18 z A
0.8 m
θ
B
y cos
= )
When
=
y 0:8
y
_ sin = y_ = 0:2 = 0:25 0:8 0:8 0:25 cos _= ) • = 0:25 sin sin2 • = 0:8660 rad/s2 30 : _ = 0:5 rad/s )
Let the xyz-coordinates be attached to the supporting frame. ) !1
= !1
= 1:5k rad/s ! 2 = _ i = 0:5i rad/s = ! _ =! _1+! _ 2 = (! _ 1 )=xyz + ! 1 ! 1 + (! _ 2 )=xyz + ! 1 = 0+
•i + 1:5k
0:5i =
0:866i + 0:75j rad/s
2
!2
J
530 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.19
19.20
531 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.21
532 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.22 (a) Let the xyz-axes be attached to arm AB, so that ! 1 = 3k rad/s
! 2 = 10i rad/s
= ! _ =! _1+! _ 2 = (! _ 1 )=xyz + ! 1 =
(0 + 0) + (0 + ! 1
= !1
! 2 ) = 3k
! 1 + (! _ 2 )=xyz + ! 1 10i = 30j rad/s
!2
J
2
(b) !
= (10i + 3k) ( 10k) = 100j in./s = ! (! rQ=B ) + rQ=B = (10i + 3k) 100j + 30j ( 10k)
rQ=B aQ=B
2
= (1000k 300i) 300i = 1000k 600i in./s = aB + aQ=B = AB! 21 j + aQ=B = 30(3)2 j + 1000k
aQ
=
600i
270j + 1000k in./s
2
600i
J
19.23 (a) Let the xyz-axes be attached to arm OA, so that !1 !
= !1 .
= 3k rad/s ! 2 = 5(j cos 35 + k sin 35 ) = 4:096j + 2:868k rad/s = ! 1 + ! 2 = 4:096j + 5:868k rad/s = ! _ = (!) _ =xyz + =
12k
!=
12:288i rad/s
2
12k + 3k
(4:096j + 5:868k)
J
(b) rA=O vA
= 0:480((j cos 35 + k sin 35 ) = 0:3932j + 0:2753k m = ! 1 rA=O = 3k (0:3932j + 0:2753k) = 1:1796i m/s
rP=A vP=A
= = = =
vP
0:2( j sin 35 + k cos 35 ) = 0:11472j + 0:16383k m ! rP=A = (4:096j + 5:868k) ( 0:11472j + 0:16383k) 1:3442i m/s vA + vP=A = ( 1:1796 + 1:3442)i = 0:1646i m/s J
533 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.24 (a) Let the xyz axes be embedded in the arm AB, so that ! 1 = 12k rad/s
= !1
! 2 = 9i rad/s
For arm AB: !
= ! 1 + ! 2 = 9i + 12k rad/s = ! _1+! _ 2 = (! _ 1 )=xyz + ! 1 = 0 + (0 + 12k
! 1 + (! _ 2 )=xyz + ! 1
9i) = 108j rad/s
2
!2
J
(b) = 1:2 (j cos 38 + k sin 38 ) = 0:9456j + 0:7388k m ! = (9i + 12k) (0:9456j + 0:7388k) = 11:347i 6:649j + 8:510k m/s (! rB=A ) = (9i + 12k) ( 11:347i 6:649j + 8:510k) rB=A rB=A
!
rB=A aB
=
79:79i
=
108j
212:75j
59:84k m/s
2
(0:9456j + 0:7388k) =79:79i m/s
2
= aB=A = ! (! rB=A ) + rB=A = (79:79i 212:75j 59:84k) + 79:79i =
159:6i
212:8j
59:8k m/s
2
J
19.25
z z' O
ω
β y y'
(a) Let the x0 y 0 z 0 axes be the principal axes of the rod ) Ix0
= Iz0 =
Iy0 = 0
! x0
=
hO
= Ix0 ! x0 i0 + Iy0 ! y0 j0 + Iz0 ! z0 k0 = =
0
mL2 12 ! y0 =
mL2 ! (k cos 12
! sin
! z0 = ! cos
+ j sin ) cos
mL2 0 !k cos 12
J
534 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) T
= =
1 1 mL2 ! h0 = (!k) ! (k cos 2 2 12 1 mL2 ! 2 cos2 J 24
+ j sin ) cos
19.26 z
y
5m 0.1
0.1 5m
O
G
O
x
G
^ P
Let ! 2 = ! x i + ! y j + ! z k From solution of Sample Problem 19.7: (hO )2 = 0:12! x i + (0:06! y
(AO )1
2
= rG=O =
0:48i
(AO )1
2
0:045! z )j + ( 0:045! y + 0:06! z )k Z
i j 0 0:15 2:2 1:4 0:33j + 0:33k N m s
k 0:15 1:8
^ dt = P
= (hO )2
(hO )1 = (hO )2
0
Equating like components: 0:48 = 0:12! x 0:33 = 0:06! y 0:045! z 0:33 = 0:045! y + 0:06! z The solution is !x
T2
= 4:0 rad/s ) ! 2 = 4:0i = =
! y = 3:143 rad/s ! z = 3:143 rad/s 3:143j + 3:143k rad/s J
1 1 ! 2 (hO )2 = ! 2 (AO )1 2 2 2 1 [4(0:48) + ( 3:143)( 0:33) + 3:143(0:33)] = 1:997 J J 2
535 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.27
z
m 0.4 kg 2 0. 4 k8 m g
O g 4k
0.8 4k m g
x
m 0.4 kg 2
y (a) Iy
=
Ixy
=
4(0:8)2 (2)(0:4)2 + + 2(4)(0:4)2 = 1:7067 kg m2 3 12 2 [2(0:2)( 0:8)] + 2 [4(0:4)( 0:4)] = 1:920 kg m2
2
!= (hO )x (hO )y (hO )z
18j rad/s
= Ixy ! y = ( 1:920)( 18) = 34:56 N m s = Iy ! y = 1:7067( 18) = 30:72 N m s = 0 hO =
34:56i
30:72j N m s J
(b) T =
1 1 ! hO = ( 18)( 30:72) = 276 J J 2 2
19.28 (a) The xyz-axes are the principal axes of the disk ! = ! 1 + ! 2 = 60j + 20k rad/s
hO
1 1 mR2 = (12)(0:15)2 = 0:0675 kg m2 4 2 2Ix = 0:1350 kg m2
Ix
= Iz =
Iy
=
= Ix ! x i + Iy ! y j + Iz ! z k = 0i + 0:1350(60)j + 0:0675(20)k = 8:10j + 1:35k N m s J
536 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) T
= =
1 1 ! hO + mv2 2 2 1 1 [60(8:10) + 20(1:35)] + (12)(20 2 2
0:4)2 = 641 J J
19.29
z
1
. . . b/2 O b b 3 b/2
y
2
With ! x = ! y = 0, ! z = ! Eqs. (19.17a) are equivalent to hO = Ixz
=
Iyz
= m( b)
Iz
Ixz !i
Iyz !j + Iz !k
0 b 2
+ m(b)
2
= m ( b) + mb2 +
b 2
+0=
mb2
8 1 (2m)(2b)2 = mb2 12 3
8 hO = mb2 ! j + k 3
J
From Eq. (19.25) we get T =
4 1 Iz ! 2 = mb2 ! 2 J 2 3
19.30
0.3 m
Position 2
A
x
0.4 m
ω y m 0.5 Position 1
B
δ
ωrod
537 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
In Position 2, the spring is undeformed and the rod is rotating about B with the angular velocity vB 0:15! ! ro d = = = 0:3! 0:5 AB . T2
= = =
1 1 (Idisk )O ! 2 + (Iro d )B ! 2ro d 2 2 1 1 1 1 mdisk R2 ! 2 + mro d L2 ! 2ro d 2 2 2 3 1 1 1 1 (6)(0:15)2 ! 2 + (2)(0:5)2 (0:3!)2 2 2 2 3
0:04125! 2 1 2 1 = k = (2000)(0:1)2 = 10 N m 2 2
= V1
T1 + V1 !
= T 2 + V2 0 + 10 = 0:04125! 2 + 0 = 15:57 rad/s J
19.31
538 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.32
539 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.33
19.34
O
z 20o L=1 .5'
Instant axis
ω1
3
1
y
R=
10
0.5'
ω0
C !0 !1 !
ω
= 4( j sin 20 + k cos 20 ) = 1:3681j + 3:759k rad/s = !1 j 3j + k p = ! = ( 0:9487j + 0:3162k) ! 10
! ( 0:9487j + 0:3162k) !
= !0 + !1 = ( 1:3681
! 1 ) j + 3:759k
540 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Equating like terms: 0:9487! 0:3162!
= =
1:3681 3:759
!1
The solution is ! = 11: 888 rad/s
! 1 = 9: 910 rad/s
) ! = 11:888 ( 0:9487j + 0:3162k) = Iy Iz
11:278j + 3:759k rad/s
1W 2 1 6 R = (0:5)2 = 0:02329 slug ft2 2 g 2 32:2 W 2 W 1 2 6 0:52 = Iz + L = R + L2 = + 1:52 g g 4 32:2 4 =
= 0:4309 slug ft2
Since the xyz-axes are the principal axes at O, we have hO
= Ix ! x i + Iy ! y j + Iz ! z k = 0:02329( 11:278)j + 0:4309(3:759)k = 0:263j + 1:620k lb ft s J
19.35 (a) OB rB=A vA
vB
= vA + !
) vB = 0 = 0 =
= = =
p 1:82 1:22 0:92 = 0:9950 m 0:9950i 1:2j 0:9k m 1:4j m/s vB = vB i
rB=A
vB i =
1:4j +
i !x 0:9950
j !y 1:2
0:9! y + 1:2! z 0:9! x + 0:9950! z 1:4 1:2! x 0:9950! y
k !z 0:9 (a) (b) (c)
Since the moment of inertia of AB about its axis is negligible, the spin velocity of AB is irrelevant. We assume the spin velocity to be zero, i.e., ! rB=A = 0
0:9950! x
1:2! y
0:9! z = 0
(d)
The solution of (a)-(d) is vB !y
= 1:6884 m/s ! x = 0:3889 rad/s = 0:4690 rad/s ! z = 1: 0553 rad/s 12(1:8)2 (0:3889i 0:4690j + 1: 0553k) 12 1:260i 1:520j + 3:419k N m s J
h = I! = =
541 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) v
=
T
= = =
vA + vB 1:4j + 1:6884i = = 0:8442i 0:7j m/s 2 2 1 (I! 2 + mv 2 ) 2 1 12(1:8)2 (0:38892 + 0:46902 + 1: 05532 ) + 12(0:84422 + 0:72 ) 2 12 9:62 N m J
19.36
19.37 z
ω1
A R O
2R
ω
ω2
B
ω2 = 2ω1
y
ω
2
1
ω1
! = ( 2j + k)! 1 For the disk: v Iy Ix
=
2R! 1 = 2(0:5)! 1 = ! 1 1 1 14 = mR2 = (0:5)2 = 0:05435 slug ft2 2 2 32:2 1 = Iz = Iy = 0:02717 slug ft2 2
542 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
1 1 Iy ! 2y + Iz ! 2z + mv 2 2 2 1 1 14 2 2 = 0:05435( 2! 1 ) + 0:02717! 21 + ! = 0:3397! 21 2 2 32:2 1 = C0 (4 ) = 0:35(4 ) = 4:398 lb ft
T2
U1 U1
=
2 2
= T2
4:398 = 0:3397! 21
T1
! 1 = 3:60 rad/s J
0
19.38
z A x
4.8 m
vA
4m Position 2
vB = 0 B m 53 2.6 y
Kinematics (position 2) Note that in position 2 collar B has reached the limit of its travel. Therefore, vB = 0. rA=B = 2:653i 4j m
vA = vB + !
rA=B
vA k = 0 +
i !x 2:653
j k !y !z 4 0
Expanding the determinant and equating like terms:
4! x
4! z 2:653! z 2:653! y
= 0 = 0 = vA
Setting the spin velocity of the bar to zero gives the fourth equation: ! rA=B = 0
2:653! x
4! y = 0
The above equations yield !x
= 0:173 62vA ! y = 0:115 16vA !z = 0 2 2 ) ! 2 = 0:173 622 + 0:115 162 vA = 0:043 406vA
Conservation of energy
543 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Using the xy-plane as the datum for potential energy: V1
=
V2
=
T2
= =
1 (1:2mg) = 0:6(9:81)m = 5:886m T1 = 0 2 0 1 1 mv 2 + I! 2 2 2 1 vA 2 1 m(4:8)2 2 2 + m (0:043 406vA ) = 0:166 67mvA 2 2 2 12 V1 + T1 = V2 + T2 2 5:886 + 0 = 0 + 0:166 67vA vA = 5:94 m/s J
19.39
544 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.40 Ix
=
Iy
=
Iz
=
1 1 300 mb2 = (4)2 = 12:422 slug ft2 12 12 32:2 1 300 1 ma2 = (3)2 = 6:988 slug ft2 12 12 32:2 1 300 2 1 m(a2 + b2 ) = (3 + 42 ) = 19:410 slug ft2 12 12 32:2 (hO )2
(AO )1
2
= rAO
= Ix ! x i + Iy ! y j + Iz ! z k = 12:422! x i + 6:988! y j + 19:410! z k Z k P^ dt = ( 1:5i + 2j) ( 20k) = 40i
(AO )1
2
= (hO )2
(hO )1 = (hO )2
30j lb ft s
0
Equating like components, we get 40 = 12:422! x 30 = 6:988! y 0 = 19:410! z !=
3:22i
) ! x = 3:22rad/s ) !y 4:29 rad/s ) !z = 0 4:29j rad/s J
19.41 (a) L1 2 = mv2 mv1 0:18i = 2v2 0 v2 =
0:09i m/s J
(b) 1 1 mR2 = (2)(0:09)2 = 0:0081 kg m2 2 2 1 = Iz = mR2 = 0:00405 kg m2 4 = Ix ! x i + Iy ! y j + Iz ! z k = 0:0045(2! x i + ! y j + ! z k)
Ix
=
Iy h2 A1
2
= rA=G L1 2 = 0:09(j cos 30 = 0:0081j + 0:01403k N m s
k sin 30 )
( 0:18i)
A1 2 = h2 h1 = h2 0 0:0081j + 0:01403k = 0:0045(2! x i + ! y j + ! z k) !x = 0 ! y = 1:8 rad/s ! z = 3:118 rad/s
545 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
T
= = =
1 1 1 1 h2 ! 2 + mv 22 = A1 2 ! 2 + mv 22 2 2 2 2 1 1 [0:0081(1:8) + 0:01403(3:118)] + (2)(0:09)2 2 2 0:0373 N m J
19.42
19.43
546 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.44
547 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.45
548 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.46
549 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
0.7 2 ft
19.47
C
1.6 ft
RC
B
ωx
60o
0.7 2 ft
y
x A D
1.6 ft
60o
−ωy
ω
RD
FBD
Let the xyz-axes be attached to bar AB. !x !y !z
= ! cos 60 = 5 cos 60 = 2:5 rad/s = ! sin 60 = 5 sin 60 = 4:330 rad/s = 0
For bar AB (CD does not contribute to dynamic reactions): Ix
=
0
Iy
= Iz =
1 1 mL2 = 12 12
14 32:2
(1:44)2 = 0:07513 slug ft2
Euler’s equation (the other two equations are trivially satis…ed): Mz = ! x ! y (Iy Ix ) RC (1:6) RD (1:6) = 2:5( 4:330)(0:07513) RC + RD = 0:5083 F = 0: RC RD = 0 ) RC = 0:254 lb " J
RD = 0:254 lb # J
19.48 Let the xyz-axes be embedded in the plate. !x = 0 Ix =
mb2 12
!y = Iy =
! 0 sin ma2 12
! z = ! 0 cos Iz =
m(a2 + b2 ) 12
550 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
C O R FBD Since the xyz-axes are the principal axes of inertia, we apply Eqs. (19.33). With !_ x = !_ y = !_ z = ! x = 0, these equations become Mx
= ! y ! z (Iz
My Mz
= 0 = 0
Iy )
) Cx = ( ! 0 sin )(! 0 cos )
) Cy = 0 ) Cz = 0
mb2 12
1 mb2 ! 20 sin cos i J 12 F = ma )R=0 J
C=
19.49 Let the xyz-axes be embedded in the plate. !x = 0
!y =
! 0 sin
! z = ! 0 cos
2
Iz
Ix
=
Iy
=
Iz
=
Iy
=
mb2 m b 5 + mb2 = 12 12 2 48 ma2 12 2 m(a2 + b2 ) m b ma2 5 + = + mb2 12 12 2 12 48 5 mb2 48
551 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
C O R FBD Since the xyz-axes are the principal axes of inertia, we can apply Eqs. (19.33). With !_ x = !_ y = !_ z = ! x = 0, these become Mx
= ! y ! z (Iz
My Mz
= =
) Cx = ( ! 0 sin )(! 0 cos )
Iy )
5 mb2 48
) Cy = 0 ) Cz = 0
0 0
5 mb2 ! 20 sin cos 48
C=
i J
ω0 z
βm
aA
A
y
b cosβ 2 aA =
b cos ! 20 (j cos 2
+ k sin )
F = mA aA R
= mA aA = =
m 12
b cos ! 20 (j cos 2
1 mb! 20 cos (j cos 24
+ k sin )
+ k sin ) J
552 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.50 B FBD
L mg R Ay z ω
A
C Az = mg
x
O
y
Rotation about …xed axis: Mx C
= Iyz ! 2z =
C = myz! 2 = m( R)
L 2
!2
1 mRL! 2 J 2
19.51
y
x
RA A
0.012 m G
0.4 8m
B
0.3 2m
RB
z
FBD (only horizontal forces are shown) We have rotation about a …xed axis. Equations (19.39) apply. Mx = Iyz ! 2z
My =
Ixz ! 2z
With origin of xyz-axes at A: Iyz Ixz My
= myz = 20(0)(0:48) = 0 = mxz = 20(0:012)(0:48) = 0:1152 kg m2 = Ixz ! 2z 0:8RB = 0:1152(18)2 RB = 46:7 N J
With origin of xyz-axes at B: Iyz Ixz My
= myz = 20(0)( 0:32) = 0 = mxz = 20(0:012)( 0:32) = 0:0768 kg m2 = Ixz ! 2z 0:8RA = ( 0:0768)(18)2 RA = 31:1 N J
553 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.52 The xyz-axes are attached to the rod. Because we have rotation about a …xed axis, Eqs. (19.39) apply. Iyz = 0
Ixz = m
y
A
Ax
ma2 a (a) = 2 2
a O 1
a a 2
x
B
Bx
a
z
FBD (only the dynamic reactions are shown) Ixz ! 20
My = max =
mx1 ! 20
Ax a
mx2 ! 20 =
a m ! 20 2
ma! 20 J
ma2 2 ! 2 0
ma! 20 =
3 ma! 20 2
3 ma! 20 2
Ax + Bx =
Fx = max Ax =
Bx a =
1 ma! 20 J 2
Bx =
19.53 5m 0.0 W1 y
z
x 0 .1 m R B W2 0 RA B .1 m
A 0.8 N. m FBD
m 0.1 W1
5m 0.0
554 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
m1
=
m2
=
W1
=
Ixz
=
Iyz
=
0 X
mi yi zi = 0:3(0:1)( 0:025) + 0:3( 0:1)( 0:075)
0:0015 kg m2 X = (Iz )i + mi d2i
= Iz
m 1:8 = = 0:3 kg (0.1 m 0.05 m plate) 6 6 4m 4(1:8) = = 1:2 kg (0.2 m 0.1 m plate) 6 6 0:3(9:81) = 2:943 N W2 = 1:2(9:81) = 11:772 N
=
1 1 (1:2)(0:2)2 + 2 (0:3)(0:1)2 + 0:3(0:12 + 0:052 ) 12 12
=
0:012 kg m2
Rotation about …xed axis: Mz = Iz !_ z My =
0:8 = 0:012!_ z
Iyz !_ z (2W1 + W2 )(0:05) (2 2:943 + 11:772) (0:05)
Fx = 0 (2
2
!_ z = 0:1RB 0:1RB RB
66:67 rad/s = = =
(2W1 + W2 ) + RA + RB = 0 2:943 + 11:772) + RA + 7:83 = 0 ) RA = 9:83i N J
J
Iyz !_ z 0:0015( 66:67) 7:83 N
RA = 9:83 N
RB = 7:83i N J
19.54 x y RA . z
RB B m 0.1
A
FBD (only horizontal forces are shown) From solution of Problem 19.53: Iyz = 0:0015 kg m2
Izx = 0
555 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Rotation about a …xed axis: Mx Fy
= Iyz ! 2z 0:1RB = 0:0015(10)2 RB = 1:5 N = 0 RA + R B = 0 RA = RB = 1:5 N ) RA =
1:5j N J
RB = 1:5j N J
19.55 x A y
RA
1.2 5'
B FBD 2 lb D
0.7 5' RB
C ' . 5 0.7 ω z ' 5 0.7 3 lb
Use Eqs. (19.37) with ! z = 0 , !_ z = !_ Ixz
=
0
Iz
=
1 1 mL2 = 3 3
Mz = Iz !_
Iyz = myz =
3(0:75)
My = 1:25RB 2 =
RA + 2:80 ) RA =
3 32:2
(1:5)2 = 0:06988 slug ft2
2(1:5) = 0:06988!_
!_ =
2
10:733 rad/s
Iyz !_ 1:25RB 3(2) + 2(2) = 0:139 75!_ 0:139 75( 10:733) RB = 2:80 lb
Fx
= max
1:0
=
1:050i lb J
3 (0:75)(2) = 0:13975 slug ft2 32:2
RA + R B
3 L !_ 32:2 2
1:0 =
3 (0:75)( 10:733) 32:2 RB = 2:80i lb J
RA = ! _ =
1:050 lb
10:733k rad/s
2
J
19.56 C
z R
FBD
O
x
y mg
556 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Use modi…ed Euler equations with the xyz-axes be attached to the fork !1 ! Ix Iy
= 180i rad/s ! 2 = 40k rad/s = ! 2 = 40k rad/s = ! 1 + ! 2 = 180i + 40k rad/s = mR2 = 0:15(0:08)2 = 9:6 10 4 kg m2 1 = Ix = 4:8 10 4 kg m2 2
Mx = Iz My = Ix Mz = Iy
y !z z !x
Iy Iz
z !y x !z
Cx Cy
x !y
Ix
y !x
Cz
)C=
= 0 0=0 = (9:6 10 4 )(40)( 180) = 6:91 N m = 0 0=0
0
6:91k N m J
19.57
Az Ay A
Ax
0.7 5 ft
z
G
_ an = 0.75ω12 FBD
25 lb
x
y
Let the xyz-axes be attached to the shaft AG. ! = 30j + ! 1 k Iy Ix
= !1 k
1W 2 1 25 R = (1)2 = 0:3882 slug ft2 2 g 2 32:2 1 = Iz = Iy = 0:1941 slug ft2 2 =
First equation of Eqs. (19.34) with G as the moment center: Mx 0:75Az
= Iz y ! z Iy z ! y = 0 (0:3882) ! 1 (30)
(a)
557 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Fz = maz
Az
25 = 0
Az = 25 lb
Equation (a) becomes ! 1 = 1:610 rad/s J
0:75(25) = (0:3882) ! 1 (30)
19.58 z O
ω0
m 0.2
ωy 25o A
Oy y O
m 0.1
ωz
z Oz
y
9.81m
G FBD 25o A
Let the xyz-axes be attached to the bar. These axes are the principal axes of the bar at O: ! Ix Iy
= ! 0 (j sin 25 + k cos 25 ) = ! 0 (0:4226j + 0:9063k) 1 1 = mL2 = m(0:2)2 = 0:013 333m 3 3 = Ix = 0:013 333m Iz = 0
Euler equation: Mx = ! y ! z (Iz Iy ) (9:81m) (0:1 sin 25 ) = (0:4226! 0 ) (0:9063! 0 )(0 ! 0 = 9:01 rad/s J
0:013 333m)
19.59
558 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.60 ωy y A
x 50o
T
B FBD Ay
Ax A
0.9 m
ωx
0.9 m
ω
20(9.81) N 50o
Let the xyz-axes be attached to the clevis so that the z-axis coincides with the pin !x !y Ix
= ! sin 50 = 6 sin 50 = 4:596 rad/s = ! cos 50 = 6 cos 50 = 3:857 rad/s !z = 0 1 1 = 0 Iy = Iz = mL2 = (20)(1:8)2 = 21:60 kg m2 3 3
Euler equation:
+
T (1:8 sin 50 )
Mz = ! x ! y (Iy Ix ) 20(9:81)(0:9 cos 50 ) = (4:596)(3:857)(21:60 T = 360 N J
0)
559 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.61 A
L/4 H
ω
A
=
G
mrω2
L/ 2
V
L/ 2
45o G mg y'
x'
FBD
B
From FBD-MAD: r= Fx0 Fy 0
y ω x o 45 G
r MAD
B
L sin 45 2
A
B
L = 0:103 55L 4
H = mr! 2 = 0:103 55mL! 2 mg = 0 V = mg
= max0 = 0 V
Euler equation (xyz-axes embedded in bar AB): Mz
= ! x ! y (Iy Ix ) L sin 45 + V 2 =
(! sin 45 ) (! cos 45 ) mg
=
L cos 45 2 1 mL2 0 12
H
L sin 45 2
0:103 55mL! 2
L cos 45 2
1 mL2 ! 2 sin 45 cos 45 12
The solution is ! = 2:126
r
g = 2:126 L
r
32:2 = 8:53 rad/s J 2
19.62 CA
RA
A x
b/2
b FBD b
G
mg
z
y
560 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Mass center G of the disk travels a circular path of radius rG=A about A. Hence the (normal) acceleration of G is a = !2
(! 2
= !0 i
rG=A ) = ! 0 i
(! 0 bk
! 0 bj) =
F = ma:
RA =
[! 0 i ! 20 bj
(bj + bk)] ! 20 bk
m! 20 b(j + k) J
Note that RA is directed along the line AG; thus its moment about G is zero. Use modi…ed Euler equations with xyz-axes attached to arm AG )
= !2 i = !0 i = ! 2 i + ! 1 k = ! 0 (i + 2k) (angular velocity of disk)
!
Modi…ed Euler equations (note that ! _ = 0): Mx
= Iz
My
=
Mz
= Iy )
y !z
Iz
Iy
x !z x !y
CA =
z !y :
+ Ix
(CA )x = 0
z !x :
Ix
y !x : 2 2 m! 0 b
8
m(b=2)2 (! 0 )(2! 0 ) = 2
(CA )y =
mb2 ! 20 4
(CA )z = 0
j J
19.63 4 rad/s Q
ωx
θ ωz
x
12 rad/s
P
z Q
R
z
CA θ x
C
D
P
FBD
CD
Let the xyz-axes be attached to P Q (the y-axis coinciding with the shaft of the motor at B) ! x = 4 sin rad/s
!y =
) !_ x = (4 cos ) _
12 rad/s !_ y = 0
! z = 4 cos rad/s !_ z = ( 4 sin ) _
Substituting _ = 12 rad/s, we get !_ x = 48 cos rad/s
2
!_ y = 0
!_ z =
1 1 mL2 = (16)(2:4)2 = 7:680 kg m2 12 12 Euler equations with D as the moment center: Ix = Iy =
Mx Cx
2
48 sin rad/s
= Ix !_ x + ! y ! z (Iz Iy ) = 7:680(48 cos ) + ( 12)( 4 cos )(0
Iz = 0
7:680) = 0
561 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
My Cy
= Iy !_ y + ! z ! x (Ix Iz ) = 7:680(0) + (4 cos )(4 sin )(7:680 Mz Cz ) CD CA
= Iz ! z + ! x ! y (Iy Ix ) = 0 + (4 cos )( 12)(7:680
0) = 122:88 sin cos
7:680) = 0
= Cy = 122:88 sin cos = 61:4 sin 2 N m J = Cx sin + Cz cos = 0 J
19.64
19.65 The no precession condition is ) Iz = I
= Iz =I = 1
1 1 mR2 = m(3R2 + h2 ) 2 12
p h = 3 J R
562 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.66
Z,y
.
φ
z R
6 ft
O
x
ψ.
mg A FBD _ =
F
_ = _R = L
16 rad/s
0.8 ft
0:8 6
16
=
2:133 rad/s
Since the precession axis is perpendicular to the spin axis, Eq. (19.48) applies: = Iz _ _
Mx (F
4)(6)
=
1 2
(F
4 32:2
mg)L =
1 mR2 _ _ 2 F = 4:23 lb J
(0:8)2 ( 16)( 2:133)
19.67 z x
Z,y .
φ
mg B
ψ.
O 0.5 m
0.5 m
F A mAg
FBD's
O
0.5 m
R
F A
Since the precession axis is perpendicular to the spin axis, Eq. (19.48) applies to the disk: 1 Mx = Iz _ _ (F mA g) 0:5 = mA R2 _ _ 2 where F is the force applied by the shaft on the disk. Substituting _ = 2 rad/s, and _ = 40 rad/s, we get [F
25(9:81)] 0:5 =
1 (25)(0:3)2 (2)( 40) 2
F = 65:25 N
From the FBD of the shaft: Mx = 0
0:5mg
0:5F = 0
m=
F 65:25 = = 6:65 kg J g 9:81
563 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.68
z Z 5o
β ω
y
1 Iz 1 =2 tan = tan = tan 2 I = tan 1 (2 tan ) = tan 1 (2 tan 5 ) = 9:925
(19.52):
= )
_ =1
(10.53c): )
_ =
_ cos = 1
2 2
(10) cos 5 =
4:98 rad/s
4:98k rad/s J _
( 4:98) = = 5:056 rad/s (1 ) cos (1 2) cos 9:925 = !(j sin + k cos ) = 5:056(j sin 9:925 + k cos 9:925 ) = 0:872j + 4:980k rad/s J
(19.53a):
!=
! )!
19.69 x
_
=
_
=
Z,y C φ.
z
ψ.
15 000(2 ) = 1570:8 rad/s 60 v 600(5280) 1 = = 0:083 33 rad/s R 3600 2(5280)
Since the precession axis is perpendicular to the spin axis, Eq. (19.48) applies to the rotor: Mx C
= Iz _ _ 500 = mk 2 _ _ = (1:2)2 (0:083 33)(1570:8) = 2930 lb ft J 32:2
564 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.70 z
mg Z
FBD
L/2 L/2
RO = 2mg y O mg
θ Iz
Iz
=
2 "
1 mR2 2
R
= mR2
I
=
1 2 mR2 + m 4
I
=
1 mR2 1 2
L 2
2
#
=
1 L2 mR2 1 + 2 2 R
L2 R2
We have steady precession with _ = 2 rad/s, _ = 3 rad/s and (19.46): +
Mx = (Iz 0
=
1 mR2 1 2
0
=
0:8988 1
= 32
2 I) _ sin cos + Iz _ _ sin L2 (2)2 sin 32 cos 32 + mR2 (2)(3) sin 32 R2 L L2 + 3:180 = 2:13 J R2 R
19.71
565 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.72
Z
y
L
θ
B1 B B2
β
FBD
R A z mg C
N
Let the xyz-axes be attached to disk. The motion is steady precession with _ = ! = 3 rad/s = tan
1
R = tan L
1
3 = 26:57 6
Iz
=
1 1 mR2 = 2 2
I
=
1 1 mR2 + mL2 = 4 4
=
49:50
6 32:2
3
10
3 12
mg(L sin )
6
N
= =
6 sin 26:57 12
5: 823 10 2:12 lb J
3
= 153:4
2
= 5: 823 3 12
2
+
10
3
slug ft2
6 32:2
6 12
2
slug ft2
L cos
N
= 180
6 32:2
Mx +
_ = _ =0
N 49:50
=
(Iz
2 I) _ sin cos + Iz _ _ sin
=
(Iz
2 I) _ sin cos + Iz _ _ sin
6=12 cos 26:57 10
3
(3)2 sin 153:4 cos 153:4 + 0
19.73 The xyz coordinate system is embedded in the sphere-rod assembly with the origin at the …xed point O. Iz =
2 mR2 5
I=
2 47 mR2 + m(3R)2 = mR2 5 5
566 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Oz
Oy O
2R
θ R
mg FBD Equation (19.46): 2 (Iz I) _ sin cos + Iz _ _ sin 45 2 mR2 _ sin cos + mR2 _ _ sin mg(3R sin ) = 5 5 2 3g = 9R _ cos + 0:4R _ _ 3(9:81) + 0:4(0:08)(60)(960) 3g + 0:4R _ _ = cos = = 0:7225 2 9(0:08)(60)2 9R _ = 43:7 J
Mx
=
567 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#19.74
568 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.75
Z, y 1.25 ft
1.25 ft
A
Bz
G
RA
RB
380 lb
'_
=
1:2 rad/s
_ = 160 rad/s
Iz
=
1 1 mR2 = 2 2
380 32:2
Fy = 0
1:25RA
+"
Mx 1:25RB R A RB
5 12
2
RA + RB
= 1:0244 slug ft2 380 = 0
(a)
= Iz '_ _ = 1:0244(1:2)(160) = 157:35
(b)
Solution of (a) and (b) is RA = 269 lb J
RB = 111:3 lb J
569 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.76
19.77
Z
z
mm 48
G 30o
y
0.5(9.81) N
Oy O Oz
FBD
We have steady precession. Equation (19.46) is
(0:5
Mx
=
9:81) (0:048 sin 30 )
=
0:11772
=
(Iz
2 I) _ sin cos + Iz _ _ sin
2 (5 10 4 20 10 4 ) _ sin 30 cos 30 +(5 10 4 )(120) _ sin 30
6:495
10
4 _2
+ 0:03 _
The two solutions are _ = 4:33 and 41:9 rad/s J
570 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.78 (a) The third equation of Eqs. (19.45) is Mz = Iz !_ z where Iz = 5
10
4
! z = Iz !_ z
!_ z =
Iz
!z
kg m2 (see Prob. 19.77). The solution is ! z = Ce
( =Iz )t
The initial condition ! z = (! z )0 at t = 0 yields C = (! z )0 . ) ! z = (! z )0 e
( =Iz )t
J
(b) When ! z = 0:5(! z )0 , then 0:5 t
= e
( =Iz )t
=
(ln 0:5)
Iz Iz
=
t = ln 0:5
(ln 0:5)
5 10 4 = 2:77 s J 1:25 10 4
19.79
19.80
571 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#19.81
572 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.82
573 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.83
19.84
574 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.85
z
Z 25 o
80 rad/s
β
.
(a) We have torque-free motion with tan
= )
ω
y
= Iz =I = 2:105. From Eq. (19.52):
tan = 2:105 tan 25 = 0:9816 = 44:47 J
Equation (19.53c): _
=
_
=
(1 (1
) _ cos _ ) cos
=
2:105( 80) = 168:2 rad/s J (1 2:105) cos 25
=
( 80) cos 25 = 65:6 rad/s J (1 2:105)
(b) Equation (19.53a): _
= !(1
!
=
) cos _
(1
) cos
19.86
575 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
19.87
576 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Chapter 20 20.1 (a) x(t) E (b)
r
v(t)
r
250 = E sin(pt + ) p= = 5 rad/s 10 q p x20 + (v0 =p)2 = 0:042 + ( 0:08=5)2 = 0:0431 m J =
=
tan
1
x0 p v0
= tan
1
= x(t) _ = pE cos(pt + ) 1 t= p
)
2
1 = 5
k = m
0:04(5) = 0:08
1:1903 rad
v(t) = 0 when pt + 2
=
2
+ 1:1903 = 0:552 s J
20.2 (a) x = E sin(pt + ) where ) f
=
E=
s
x20 +
v0 p
2
1:5 v0 =p = 153:90 rad/s 0:0122 0:0072 E 2 x20 153:90 p = = 24:5 Hz J 2 2
p= p
(b) tan
= x =
x0 p 0:007(153:90) = = 0:7182 v0 1:5 0:012 sin (153:90t + 0:6228) m J
= 0:6228 rad
20.3
577 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.4
20.5
578 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.6
20.7
579 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.8
580 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.9
θ
ft 1.5
1.8 lb 8(1.0)θ
Oy Ox
.
ft 1.0
ft 1.5 FBD
2.4 lb
= IO • 2:4 1:8 (2:5)2 + (1:5)2 • 8(1:0 )(1:0) = 32:2 32:2 7:10 = 0:5171• MO
1:8(2:5 )
2:4(1:5 )
This equation has the form m• + k = 0. Therfore, r r k 7:10 p= = = 3:71 rad/s J m 0:5171
20.10
Lθ T x FBD
Lθ T
Fx = max For small , we have sin
mx.. MAD
+ !
2T sin = m• x
tan = x=L, so that the equation of motion becomes 2T
x = m• x L
x •+
2T x=0 J mL
Since this equation has the formpx • + p2 x = 0, the motion is simple harmonic with the circular frequency p = 2T =mL.
581 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.11
.. m Lθ m g kbθ FBD L
.2
m Lθ
=
MAD
θ
bOx
Oy
Use small angle approximations: sin
O
and cos
( MO )FBD = ( MO )M AD
+
mg(L ) • + kb
If
1 kb (b)
O = mL•(L)
2
mgL mL2
=
0
= 1:2 s, then p = 2 = = 2 =1:2 = 5: 236 rad/s kb2 mgL mL2 2 2 p mL + mgL kb2 = 0 2 (5: 236) (0:3)L2 + 0:3(9:81)L 300(0:08)2 = 0 8:225L2 + 2:943L 1:92 = 0 ) p2 =
The positive root is L = 0:336 m J
20.12
a mg
θ
O b R
k(bθ +∆) =
FBD
Use small angle approximations: sin ( MO )FBD = ( MO )M AD where
and cos +
O a .2 maθ .. maθ MAD 1
mga + k(b +
)b =
ma2 •
is the static elongation of the spring. Substituting the static equilibrium
582 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
equation
mga + k kb2 )p
b = 0, we get 2 • + kb ma2 • =0 ma2 s r k b 20 12 = = = 7:583 rad/s ma 2:8=32:2 24
=
=
2 2 = = 0:829 s J p 7:583
20.13
#20.14
583 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#20.15 W Water level after displacement x Water level at equilibrium
∆
ρ ρw
Area = A h =
Ww FBD
.. (W/g)x MAD
584 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.16
20.17
12(2)(θ + θs) Ax
A Ay
2 ft
θ
3 − 8(4)(θ + θs) B
2 ft
C
FBD
= IA • 3 12(2)( + s )(2) + [3 8(4)( + s )] 4 = (4)2 • 32:2 12 176( + s ) = 1:4907• MA
The static displacement s is obtained by setting ft . Therefore, the equation of motion becomes
= • = 0 yielding
s
= 12=176
1:4907• + 176 = 0
585 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
r
p 1 ) f= = 2 2
k 1 = m 2
r
176 = 1:729 cps J 1:4907
20.18 (a) s
p
=
r
ccr
=
2mp = 2
=
6 c = = 0:3643 < 1 ccr 16:472
k = m
14 12 = 20:40 rad/s 13=32:2 13 32:2
(20:40) = 16:472 lb s/ft ) Underdamped.
(b) ln
xn+1 xn xn+1 xn
= = e
2 p 1
2:458
2
=
2 (0:3643) p = 1 0:36432
2:458
= 0:0856 J
20.19 Damping is critical if c =1 = p 2 km
s p c = 2 km = 2 (16
20.20 c = p =1 2 km
12)
20 32:2
= 21:8 lb s/ft J
p p ) c = 2 km = 2 80(3) = 31:0 N s/m J
20.21 = )
20.22
q 2 2 2 = 0:5 p ) 1 = 0:5 0:5 d 2 p p 1 p p = 0:8660 c = 2 km = 2(0:8660) 80(3) = 26:8 N s/m J
p
=
x(t)
=
r
r k 80 = = 5:164 rad/s m 3 (A1 + A2 t)e pt x(t) _ = p(A1 + A2 t)e
pt
+ A2 e
pt
586 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Initial conditions: = 0:01 m ) A1 = 0:01 m = 0:2 m/s ) pA1 + A2 = 0:2 5:164(0:01) + A2 = 0:2 A2 = 0:14836 m/s
x(0) x(0) _
) x(0:1) = [0:01
5:164(0:1)
0:14836(0:1)] e
=
2:89
10
3
m J
20.23 (a) Equivalent spring constant is k=
1 1 = 90 lb/ft = 1=k1 + 1=k2 1=225 + 1=150 m=
p
=
1:2 = 0:03727 slugs 32:2
r
r k 90 = = 49:14 rad/s m 0:03727 2(2:8) c = = 1:5288 overdamped J 2mp 2(0:03727)(49:14)
= (b) +
q
q
2
1 p
=
1:5288 +
2
1 p
=
1:5288
) x(t) = A1 e
p 1:52882 p 1:52882
18:30t
+ A2 e
1 49:14 =
18:30 s
1
1 49:14 =
132:0 s
1
132:0t
Initial conditions: 1:5 = 0:125 ft A1 + A2 = 0:125 ft 12 x(0) _ =0 18:30A1 + 132:0A2 = 0
x(0) =
The solution is A1 = 0:14511 ft, A2 = ) x(t) = 0:14511e
0:02011 ft
18:30t
0:02011e
132:0t
ft J
587 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.24
2x
. 2cx
bx FBD
Ox
kx
b Oy O b x
MAD
=
O b
.. mx
mg
(MO )FBD = (MO )M AD (kx)b + 2cx(2b) _ + mgx = mxb • mg m• x + 4cx_ + k + x = 0 b
p
= =
d
20.25
=
r k + mg=b 1800 + 3(9:81=0:2) = = 25:48 rad/s m 3 4c 4(30) = = 0:7849 2mp 2(3)(25:48) 2 2 p p = 0:398 s J = 2 25:48 1 0:78492 p 1
r
588 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.26
589 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.27
20.28
590 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.29
h L From Eq. (20.31) the amplitude the relative motion (displacement of trailer relative to the wheels) is (!=p)2 Z=Y 1 (!=p)2 where Y
=
p2
=
1:5=12 2 v h = = 0:0625 ft != 2 2 L 2k 2(240 12) 2 = = 231:8 (rad/s) m 800=32:2
The amplitude of the absolute motion is X =Z +Y =Y
(!=p)2 +Y = 1 (!=p)2 1
Y (!=p)2
The displacement of the trailer is x(t) = X sin !t =
1
Y sin !t (!=p)2
x •(t) =
Y !2 sin !t 1 (!=p)2
The wheels are about to leave the road if j• xjmax = g, i.e., Y !2 =g 1 (!=p)2 If !=p < 1: Y !2 1 (!=p)2
= g s
!
=
r
v
=
!L 12:664(6) = = 12:07 ft/s 2 2
g = Y + g=p2
32:2 = 12:644 rad/s 0:0625 + 32:2=231:8
591 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
If !=p > 1: Y !2 (!=p)2 1
= g s
!
=
r
v
=
!L 20:53(6) = = 19:60 ft/s 2 2
g g=p2
Y
=
32:2 = 20:53 rad/s 32:2=231:8 0:0625
Wheels lose contact with the road if 12:07 ft/s < v < 19:60 ft/s J
20.30
h L From Eq. (20.31) the maximum relative displacement (displacement of trailer relative to the wheels) is zmax = jZj = Y
(!=p)2 1 (!=p)2
where Y
=
!
=
p2
=
h 1:5=12 = = 0:0625 ft 2 2 v 12(5280=3600) 2 =2 = 18:431 rad/s L 6 2k 2(240 12) 2 = = 231:8 (rad/s) m 800=32:2 18:4312 = 1:4655 231:8 1:4655 = 0:0625 = 0:196 76 ft 1 1:4655 ) (!=p)2 =
zmax
But jZj is also the deformation of each spring, measured from the static equilibrium position. Thus the maximum force in each spring is Fmax
= =
W + kzmax 2 800 + (240 2
12)(0:196 76) = 967 lb J
592 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#20.31
593 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.32
594 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.33
20.34 r
p
=
Z
= Y
k = m
s
36 = 43:95 rad/s 0:6=32:2
(!=p)2 = 0:6 1 (!=p)2
0:8283 1 0:8283
! p
2
40 43:95
=
2
= 0:8283
= 2:89 in. J
20.35 With
= 0, Eq. (20.26) is X=
1
P0 =k = (!=p)2 1
P0 =k ! 2 =(k=m)
)k=
P0 + m! 2 X
If !=p < 1 (X = +7:5 mm): 0:25 + 4(62 ) = 177:3 N/m J 0:0075 7:5 mm): k=
If !=p > 1 (X =
k=
0:25 + 4(62 ) = 110:7 N/m J 0:0075
20.36 (a) Using Eq. (20.26) with X1 X2
=
5
=
= 0:
1 (! 2 =p)2 20 1 (10=p)2 = 2 1 (! 1 =p) 4 1 (5=p)2 p2 100 p = 2:5 rad/s J p2 25
595 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) X1
=
P0 k
P0 =k j1 (! 1 =p)2 j
=
0:02 1
0:02 =
j1
P0 =k (5=2:5)2 j
(5=2:5)2 = 0:06 m = 60 mm J
#20.37
596 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.38
20.39 k m
m
4k Equivalent systems
It was shown in the solution of Prob. 20.9 that the e¤ective spring constant of the system is k 0 = 4k. Hence we can replace the mass-spring-pulley system with the equivalent mass-spring system shown. With = 0 and Z = 5Y; Eq. (20.31) yields r (!=p)2 ! 5 5Y = Y ) = 1 (!=p)2 p 6 r ! r r ! r r r 5 5 k0 5 4k k ) != p= = = 1:826 J 6 6 m 6 m m
597 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.40
20.41
598 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#20.42
20.43
m
k Equivalent system
The system is equivalent to the mass-spring system shown, where k
=
mg
=
m(32:2) = 483:0m 0:8=12 2
k ! 182 2 = 483:0 (rad/s) = = 0:6708 m p 483:0 (!=p)2 0:6708 = Y = 0:2 = 0:4075 ft = 4:89 in. J 1 (!=p)2 1 0:6708 )
Z
p2 =
599 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.44
20.45
20.46
600 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.47 X
=
! = 0:5 p c 8 c c p = p = p = 0:5350 = 2mp 2 km 2m k=m) 2 60(30=32:2)
X
=
=
0:25 P0
3 in. = 0:25 ft
= =
q [1
q (1
P0 =k 2
(!=p)2 ] + (2 !=p)2 P0 =60 2 0:52 )
0:25 = 2
+ (2(0:5350)(0:5))
P0 =60 0:9213
13:82 lb J
#20.48
601 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
602 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.49
20.50
603 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.51 0:8 = 0:024 84 slugs k = 12(12) = 144 lb/ft 32:2 r r k 144 = = = 76:14 rad/s m 0:024 84 c 0:4 ! 50 = = = 0:105 75 = = 0:6567 2mp 2(0:024 84)(76:14) p 76:14
m = p
X
=
Y
q
[1
=
tan
= x(t)
1
2
0:2=144
q
(1
=
2
(!=p)2 ] + (2 !=p)
2: 372 3
2 0:65672 )
10
3
2
+ [2(0:105 75)(0:6567)]
ft = 0:02847 in.
2 !=p 2(0:105 75)(0:6567) = = 0:2442 (!=p)2 1 0:65672 = X sin(!t ) = 0:02847 sin(50t x(t) lags P (t) by 13:72 J
= 13:72
0:2442) in. J
604 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.52
.
cx
x
FBD
mg
k(y − x − ∆) F = m• x
k(y
x
)
cx_ + mg = m• x
Substituting the static equilibrium condition k
= mg, we get
k(y x) cx_ = m• x m• x + cx_ + kx = kY sin !t Letting P0 =k = Y , the last equation can be written as m• x + cx_ + kx = P0 sin !t
p
= =
X
=
P0 =k
q
[1
=
=
1
x(t)
2
(!=p)2 ] + (2 !=p)2 12
q
(1
tan
r k 90 103 = = 600 rad/s m 0:25 c 60 ! 900 = = 0:2 = = 1:5 2mp 2(0:25)(600) p 600
r
= 8:65 mm
2
2
1:52 ) + [2(0:2)(1:5)]
2(0:2)(1:5) 2 !=p = = (!=p)2 1 1:52
0:48
=
0:448 rad = 25:6
= X sin(!t ) = 8:65 sin(900t + 0:448) mm J x(t) leads y(t) by 25:6 J
605 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.53
20.54
606 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.55
20.56
607 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.57
P(t)
R
2 ft
θ
. 1.5 ft O.
4 lb 2 ft
.
c(2θ)
k(1.5θ + ∆) FBD Assume that the angular displacement
P (t)(3:5)
k(1:5 +
)(1:5)
of the bar is small.
c(2 _ )(2)
MO = IO • 4(2) = m(2)2 •
(a)
where is the deformation of the spring at static equilibrium. Its value is obtained by setting P (t) = = • = 0 which yields 1:5k 8 = 0: Substituting this into Eq. (a) gives us 3:5P (t)
2:25k
4c _
3:5(0:4 sin 4t) 2:25(6) 4(2:2) _ 0:4969• + 8:80 _ + 13:50
4 (4)• 32:2 = 0:4969• = 1:40 sin 4t =
which has the form M • + C _ + K = P0 sin !t
608 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
p
r
r K 13:50 = = 5:212 rad/s M 0:4969 C 8:8 = = 1:6989 2M p 2(0:4969)(5:212) 4=5:212 = 0:7675
= =
!=p
P0 =k
=q
=
max
=
[(1
=
(
q (1
2
2
(!=p)2 ] + (2 !=p) 1:40=13:5
= 0:03928 rad 2
0:76752 )2 + [2(1:6989)(0:7675)]
block )max
= 24(
max )
= 24(0:03928) = 0:943 in.
20.58 (a)
mg
6x.
80(0.004 sinωt − x)
FBD 60x N + !
Fx = max
80(0:004 sin !t
x)
6x_
60x = 12• x
12• x + 6x_ + 140x = 0:32 sin !t J (b) Comparing with M x + Cx + Kx = P0 sin !t, we obtain r r K 140 p = = = 3:416 rad/s M 12 C 6 = = = 0:07319 2M p 2(12)(3:416) With ! = p Eqs. (20.26) and (20.27) yield X
=
0:32=140 P0 =K = = 0:015 615 m = 15:62 mm 2 2(0:07319)
=
tan
1
1 = =2 rad
x(t) = 15:62 sin(3:42t + =2) mm J
609 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.59 (a)
P0 sinωt
Oy Ox O
θ
b
θ
b
.
mg − cbθ
FBD
kb(θ + θs)
(mg
cb _ )b
kb(
MO s )b + (P0 sin !t)b
= IO • = mb2 •
Substituting the static equilibrium equation mgb + kb2 the equation of motion becomes mb2 • + cb2 _ + kb2
p
= =
r
r k 30 ! 6 = = 8:660 rad/s = = 0:6928 m 0:4 p 8:660 c 3 = = 0:4330 2mp 2(0:4)(8:660) =
(P0 =b)=k
q
[1
= = = =
2
(!=p)2 ] + (2 !=p)2 (1:5=0:4)=30
q
(1
tan
=0
= P0 b sin !t P0 sin !t J = b
m• + c _ + k (b)
s
2
2
0:69282 ) + (2(0:4330)(0:6928))
0:157 44 rad = 9:02
J
2 !=p 2(0:4330)(0:6928) = = 1:1537 2 1 (!=p) 1 0:69282 49:1 J
610 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#20.60
#20.61
611 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
612 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.62
mg kx
R
FBD F
C N Fx Fy
= m• x = 0
MC
= IC •
F N
kx = m• x F = kx + m• x mg = 0 N = mg 1 x • (kx) R = mR2 + mR2 2 R
) F = kx
m
2 k x 3m
=
1 kx 3
Fmax =
x •=
2 k x 3m
1 kx0 3
At impending sliding we have Fmax = N
s
kx0 = 3mg
s
k=
3mg x0
s
=
3(8)(9:81)(0:2) = 314 N/m J 0:15
20.63
613 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.64
20.65 Use formula given in Prob. 20.64: p
2
= )
r
gy k2 + y2 gy k2 = 2 y2 p
(a) (b)
Pin at A: p=
2
=
y
=
0:28 m
=2s
From Eq. (b) k 2
=
9:81(0:28) 3:14162
0:282 = 0:199 91 m2
2 = 3:1416 rad/s 2
Pin at B: y
=
From Eq. (a) p2
= )
0:21 m 9:81(0:21) 2 = 24:51 (rad/s) 0:199 912 + 0:212 2 2 =p = = 1:269 s J p 24:51
614 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.66 (a) Let
s
be the static angular displacement
mg Ox O L/2
L/2 . c2Lθ/2
Oy
+
c2 L _ 2
mg
Upon substituting becomes
s
L 2
h
θ
FBD . kL(θs + θ) + c1Lθ
MO = IO • i 1 kL( s + ) + c1 L _ L = mL2 • 3
= mg=(2kL) and cancelling L2 , the equation of motion c2 1 • m + c1 + 3 4
_
k =0 J
(b) Comparing with M • + C _ + K = 0, we obtain s s r K k 80 = = = 3:464 rad/s p = M m=3 20=3 Ccr
= =
m 20 p=2 3:464 = 46:19 N s/m 3 3 C c1 + c2 =4 25 + 16=4 = 0:628 J = = Ccr Ccr 46:19
2M p = 2
20.67
Oy O O R x FBD 3mg θ mg MO = IO •
+
(mg) R
=
2:833R• + g
=
1 1 (3m) R2 + m(2R)2 • 2 3 0
Comparing with M • + K = 0, we obtain r r r K g g p = = = 0:5941 M 2:833R R r r p 0:5941 g g f = = = 0:0946 Hz J 2 2 R R
615 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.68 F2
2
= I + m OG = =
Letting
s
8(9.81) N
G 5m 2 1 0. O 0.15 m Oy
Ox
IO
θ
0.2 m
F1
FBD
1 m(a2 + b2 ) + m 12
b2 a2 + 4 4
=
1 m(a2 + b2 ) 3
1 (8)(0:152 + 0:22 ) = 0:166 67 kg m2 3
be the static angular displacement, the spring forces are F1 F2
= k1 = k2
1 2
= 300 [0:2( s + )] = 60( s + ) = 600 [0:15( s + )] = 90( s + )
MO = IO • + 8(9:81)(0:075) F1 (0:2) F2 (0:15) = 0:166 67• 8(9:81)(0:075) 60( s + )(0:2) 90( s + )(0:15) = 0:166 67• Substituting the static equilibrium equation 8(9:81)(0:075)
60 s (0:2)
90 s (0:15) = 0
we get for the equation of motion 0:166 67• + 25:5 = 0 Comparing with M • + K = 0, we obtain r r p 1 K 1 25:5 )f = = = = 1:969 Hz J 2 2 M 2 0:166 67
616 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.69
x A
L/4
kx By B
Bx
L/4
θ G
L/2
mg
FBD
k(3x − x0 sinωt)
C
3x
m= IB =
mL2 +m 12
12x
12 = 0:3727 slugs 32:2 L 4
2
=
=
4 2 x= x L 3
7 7 mL2 = (0:3727)(6)2 = 1:9567 slug ft2 48 48
MB L 3L mgx kx k (3x x0 sin !t) 4 4 3 6 150 (3x x0 sin 8t) (6) 150x 4 4 2262x + 675x0 sin 8t 1:3045• x + 2262x K p
= IB • = IB
2 3
= 1:9567 = =
x • 2 x • 3
1:3045• x 675x0 sin 8t
=
2262 lb M = 1:3045 slug ft r r K 2262 = = = 41:64 rad/s M 1:3045 2
(!=p)
2
xmax
8 = 0:03691 41:64 (!=p)2 0:03691 = x0 = 0:0796 in. J 2 = 2 (1 2 0:03691)2 [1 (!=p) ] =
617 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.70
20.71
x mg kx
R F
FBD C N
(a) m=
8 = 0:2484 slugs 32:2
MC = IC • p=
(kx) R = r
2 k = 3m
r
1 3 mR2 + mR2 = mR2 2 2 3 x • 2 k mR2 x •+ x=0 2 R 3m
IC =
2 110 = 17:182 rad/s J 3 0:2484
(b) Fx = m• x
F
kx = m• x
F = m• x + kx
618 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
p2 X sin pt:
Substitute x = X sin pt , x •= F Fmax
= X( mp2 + k) sin pt 1:2 = X( mp2 + k) = 12 s
=
(0:2484)(17:182)2 + 110 = 3:667 lb
Fmax 3:667 = = 0:458 J mg 8
20.72
kLθ
. cLθ L
O L
L/2
θ
L/2
. mg
FBD (only forces contributing to MOare shown) MO L (kL )L (cL _ )L mg 2 mg m• + c _ + k + 2L
= IO • mL2 = 3 3 =
•
0
Comparing with M • + C _ + K = 0, we obtain M K
p !d
1:8 = 0:05590 slugs C=c 32:2 mg 1:8 = k+ = 20 + = 20:60 lb/ft 2L 2(1:5)
= m=
r
K = = M q = p 1
r 2
20:60 = 19:197 rad/s 0:05590 p = 19:1971 1 0:52 = 16:625 rad/s J
619 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.73 (a)
Oy O
Ox b
2b
θ FBD . 2cbθ
b/2
kb(θs + θ)
mg IO =
1 m(3b)2 + m 12
b 2
2
= mb2
MO +
mg
b 2
2cb _ (2b)
The static angular displacement
s
(mg)
kb(
s
+ )b
= IO • = mb2 •
is given by b 2
kb2
s
=0
(a)
The equation of motion becomes, after utilizing Eq. (a) and cancelling b2 , m• + 4c _ + k = 0 J (b) Comparing with M • + C _ + K = 0, we obtain r r k 3200 p = = = 24:12 rad/s m 5:5 4c mp 5:5(24:12) = ccr = = = 66:3 N s/m J 2mp 2 2(1)
20.74 . chθ
A mg x-
h Bx
MB = IB
B +
By
b mgx
FBD
θ C kb(θs + θ) ch2 _
kb2 (
s
+ ) = IB •
Substituting the static angular displacement s = mgx=(kb2 ), the equation of motion becomes IB • + ch2 _ + kb2 = 0
620 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Comparison with M • + C _ + K = 0 yields p2
= =
(20 12)(2:5)2 kb2 2 = 2 = 7:709 slug ft 2 p (2 2:22) C ch2 c(1:0)2 = = = 0:004 650c 2M p 2IB p 2(7:709)(2 2:22) K kb2 = M IB
Damping is critical when
) IB =
=1
) ccr =
1 = 215 lb s/ft J 0:004 650
20.75
621 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#20.76
622 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.77
623 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.78
*20.79
624 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
*20.80
20.81
k1Rθ Oy
θ
R
k2Rθ Vg
=
Ve
=
V
W
O
Ox R/2 G
FBD
W R cos 2
W
R 2
1
1 2
2
1 1 k1 (R )2 + k2 (R )2 2 2 WR 1 WR = Vg + Ve = + + (k1 + k2 )R2 2 2 2
2
625 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
)K=
WR 44(2:4) + (k1 + k2 )R2 = + (25 + 35)(2:4)2 = 398:4 lb ft 2 2 T )M
1 _2 I 2
=
= I = mk 2 = )p=
r
K = M
r
44 (1:8)2 = 4:427 lb ft s2 32:2 398:4 = 9:49 rad/s J 4:427
20.82 Datum A L V
=
T
= =
θ
B Lθ
C L
L 1 1 k(L )2 2mg = kL2 2 mgL ) K = kL2 2 2 2 2 2 1 1 2 1 (IA + IC ) • = 2 mL2 • ) M = mL2 2 2 3 3 r r r 2 M 2mL2 =3 m = 5:13 =2 =2 J p K kL2 k
20.83 (a)
m
θa Datum
V
T
b
θ
1 1 2 = mga cos + k(b )2 mga 1 + 2 2 1 = mga + kb2 mga 2 ) K = kb2 2 1 = m(a _ )2 ) M = ma2 2 r r K kb2 mga p= = J M ma2
1 2 kb 2
2
mga
626 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
(b) kb2
mga > 0
k>
mga J b2
20.84
.
G
h
.G θ
Datum
max
R
θmax
Position of Vmax
Position of Tmax
Use Rayleigh’s principle: h
=
R cos
R=R
max
Vmax
= mgh = mgR
Tmax
=
1
cos max cos max
R
1
2 max =2) 2 max =2
R
2 max
2
2 max
2 1 _2 1 mL2 _ 2 1 IG max = = mL2 p2 2 2 12 max 24 Tmax 1 mL2 p2 24
(1 1
2 max
p2
= Vmax = mgR =
12gR L2
V0 2 max 2
2 max
0 p=
2p 3gR J L
20.85
627 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.86
20.87
628 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.88
Datum L
θ m V
=
T
=
mg(L cos )
R
1 2 ) K = mgL 2 2 _2 _ 2 = 1 m L2 + R 2 2
mgL 1
1 1 m(L _ )2 + 2 2
1 mR2 2 R2 ) M = m L2 + 2 s s r m L2 + R2 =2 2 M L2 + R2 =2 = =2 =2 =2 p K mgL gL
The condition
= 1:2 s yields s L2 + R2 =2 2 = gL
1:2
1:22 g R2 L+ = 0 2 4 2 1:1745L + 0:03125 = 0
L2 L2
4 L2
2 2L
+ R2 =2 = 1:22 gL
1:22 (32:2) 1 2 L + (0:25) = 0 4 2 2
The two solutions are L1 = 0:02724 ft = 0:327 in. J
L2 = 1:1473 ft = 13:76 in. J
629 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.89 Use Rayleigh’s method.
A.
.E
Datum L/2
b
3mg Position of maximum V
Tmax
2(mg
=
4mgL cos
=
4mgL
= =
Tmax p2
= Vmax =
12 g 11 L
.
b
D
Position of maximum T
L cos 2
=
Lθmax
.
C
V0
.
.
.
B
Vmax
.
θmax
L
L/2
mg
.
.
E
L
L/2
mg
.
θmax
L/2
L/2
θmax
A
max )
max
Vmax
3mL cos
max 2 max
4mgL 1 V0 = 2mgL
2 2 max
1 mL2 _ 2 2 + 3m L _ max 2 3 max 2 11 11 mL2 _ max = mL2 p2 2max 6 6 11 mL2 p2 2max = 2mgL 6 r 3g p=2 J 11L
V0
2
2 max
0
630 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.90
20.91 Datum position (spring undeformed)
β R x+ Let
∆
be the static elongation of the spring V
= = )
T
= ) f=
1 k(x + )2 mg(x + ) sin 2 1 1 k 2 + mg sin + (k mg sin )x + kx2 2 2 K=k 2 1 1 x_ 1 1 3 mR2 + mx_ 2 = m x_ 2 2 2 R 2 2 2 3 M= m 2 r r r p 1 K 1 2k k = = = 0:1299 J 2 2 M 2 3m m
631 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.92
Area = A
x Water level
h F
The force F of buoyancy is equal to the weight of water displaced: F =A
water x
Buoyancy acts like a spring of sti¤ness k = A V
=
T
=
p
= =
water
1 A x2 mwo o d gx ) K = A water 2 water 1 1 mwood x_ 2 = Ah wo o d x_ 2 ) M = Ah wo o d 2 2 g g r
K = M
r
g h
water wo o d
=
s
32:2(0:036) = 10:266 rad/s 0:5(0:022)
2 2 = = 0:612 s J p 10:266
20.93
632 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.94
633 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
#20.95
634 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.96 Datum
ω v
θ
R−r
R
r r) _
v = (R
V
=
T
=
mg(R
r) cos
!=
mg(R
v R r_ = r r
r) 1
1 2
) K = mg(R
2
r)
2
=
12 2 R r 1 2 1 _ 2 + 1 m(R r)2 _ 2 I! + mv 2 = mr 2 2 25 r 2 2 1 7 7 m(R r)2 _ ) M = m(R r)2 2 5 5 s r r 1 1 p K 5g g f= = = = 0:1345 J 2 2 M 2 7(R r) R r
20.97 Use Rayleigh’s method
.
θmax
Datum θmax h Position of Vmax
R−r
r R
C R
Position of Tmax
635 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
h IC Vmax
=
mgh =
= r + (R r) cos max = I + mR2 = mR2 + mR2 = 2mR2 mg [r + (R
mg r + (R V0
=
Tmax
=
r) 1
r) cos 1 2 2 max
max ]
1 mgR + mg(R 2
=
mgR 2 1 _2 1 2mR2 _ max = mR2 p2 IC max = 2 2
Tmax p
= Vmax V0 mR2 p2 r g(R r) J = 2R2
2 max
=
r)
2 max
2 max
1 mg(R 2
r)
2 max
20.98 (a)
x
Fx = max
(b)
kx
mg
FBD
N
+ !
2kx = m• x
kx
2(150)x = 6• x x • + 50x = 0 J
p 50 p = = 1:125 Hz J f= 2 2
(c) x = E sin(pt + ) s s 2 2 v ( 120) E = x20 + 02 = 252 + = 30:22 mm p 50 p ! x p 25 50 0 = tan 1 = tan 1 = 0:9744 rad v0 120 )
x = 30:22 sin(7:071t
0:9744) mm J
636 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.99
20.100
637 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.101
L/2
C(t)
θ
L/2
O
k1 L θ 2
k2 L θ 2
FBD (only forces contributing to MO are shown)
C0 sin !t
(k1 + k2 )
L 2
MO L 2
m• + 3(k1 + k2 )
= IO mL2 • = 12 C0 = 12 2 sin !t L
This equation has the form M • + K = P0 sin !t where
p
= =
X
=
18 = 0:5590 slugs 32:2 3(k1 + k2 ) = 3(20 + 30) = 150:0 lb=ft C0 0:5 12 2 = 12 = 0:16667 lb/ft L 62
M
= m=
K
=
P0
=
r
r K 150 = = 16:381 rad/s M 0:5590 P0 =K 0:16667=150:0 = 2 2 = 0:02582 rad [1 (!=p)2 ] [1 (18=16:381)2 ] L 6 = 0:02582 = 0:07746 ft = 0:930 in. J 2 2
20.102 Momentum is conserved during impact. Letting v0 be the velocity of the block (and the embedded bullet) immediately after the impact, we have 0:012(1200) = (5:012)v0
v0 = 2:873 m/s
638 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Now consider the ensuing damped free vibration with the inital conditions x = 0 and x_ = 2:873 m/s at t = 0. r r k 1800 p = = = 18:951 rad/s m 5:012 ccr = 2mp = 2(5:012)(18:951) = 189:96 N s/m c 50 = = = 0:2632 Since < 1, the system is underdamped ccr 189:96 q p 2 = 18:951 1 0:26322 = 18:283 rad/s !d = p 1 x(t) = Ee pt sin(! d t + ) x(t) _ = E pe pt sin(! d t + ) + E! d e p = 0:2632(18:951) = 4:988 x = x_ = )
pt
cos(! d + )
0 at t = 0 E sin = 0 2:873 m/s at t = 0 E p sin + E! d cos 2:873 2:873 = 0:157 14 m = =0 E= !d 18:283 ) x (t) = 0:1571e
0:499t
= 2:873
sin 18:28t m J
20.103
639 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.104 Since
= 0:6 < 1, the system is underdamped. s r k 300 p = = = 34:75 rad/s m 8=32:2 p !d
=
0:6(34:75) = 20:85 rad/s q p 2 = p 1 = 34:75 1 0:62 = 27:80 rad/s
x(t) = Ee
pt
sin(! d t + ) = Ee
20:85t
sin(27:80t + )
Initial conditions: x = 3 in. when t = 0. ) E sin = 3 in. x_ = 0 when t = 0. ) 20:85E sin + 27:80E cos = 0 27:80 = 1:3333 = 53:13 (0.9273 rad) ) tan = 20:85 3 ) E= = 3:750 in. sin 53:13 x(t) = 3:750e
20:85t
sin(27:80t + 0:9273) in. J
20.105
640 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.106
20.107
641 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.108
20.109
x
mg k1x cx.
k2(y − x) N
Fx = max
FBD
+ ! k2 (y x) k1 x cx_ = m• x k2 Y sin !t (k1 + k2 ) x cx_ = m• x m• x + cx_ + (k1 + k2 ) x = k2 Y sin !t
This has the form m• x + cx_ + kx = P0 sin !t, where k P0
p
= k1 + k2 = 8 + 14 = 22 kN/m = k2 Y = 14(0:024) = 0:336 m
= =
! p
=
r
r k 22 000 = = 52:44 rad/s m 8 c 50 = = 0:05959 2mp 2(8)(52:44) 18 = 0:3432 52:44
642 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
The steady-state displacement is x(t) = X sin(!t X
=
=
= )
q q
), where
P0 =k 2
2
(!=p)2 ] + (2 !=p)
[1
0:336=22 2
= 0:017 293 m 2
0:34322 ) + [2(0:05959)(0:3432)]
(1
2 !=p 2(0:05959)(0:3432) = tan 1 = 0:04633 rad 2 1 (!=p) 1 0:34322 x(t) = 0:01729(sin 18t 0:0463) m J x(t) lags y(t) by 0:0463 rad (2:65 ) J tan
1
20.110
643 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.111
b L/2
Ox O
. Oy
Substituting
s
θ kb(θ + θs)
s
L 1 kb2 ( + s ) = mL2 • 2 3 of the bar is oblained by setting
s
=0
mg
The static angular displacement L 2
.. mg
MO = I0 •
mg
FBD
kb2
)
s
=
(a) = 0:
mgL 2kb2
into Eq. (a) yields mg
L 2
mgL 1 = mL2 • 2kb2 3 2 • + 3kb = 0 mL2 r b 3k ) p= J L m
kb2
+
20.112
644 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.113 b az
F
θ
z
a
y,z
b
FBD
Oy
x
O
Ox
= may
mg F =k =k
kb But kb is
b + z a
ax = a _
( MO )FBD + F b (mg) a b k + z b mga a b2 mga + k z + ma• z a
2
MAD a max
O
ay = a• + y• = z• + y•
= =
( MO )M AD (may ) a
=
m(• z + y•)a
= maY ! 2 sin !t
mga = 0 (static equilibrium equation), so that the equation of motion z• +
k b2 z = Y ! 2 sin !t J m a2
645 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
20.114 From Eq. (20.31):
Y
= Z
! p
=
)Y
= =
rh
1
(!=p)
2
i2
+ (2 !=p)2
(!=p)2
18 = 0:9549 2 (3) q 2 2 (1 0:95492 ) + [2(0:25)(0:9549)] 10 0:95492 5:32 mm J
646 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
647 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
An Instructor’s Solutions Manual to Accompany
ENGINEERING MECHANICS: DYNAMICS, 4TH EDITION ANDREW PYTEL JAAN KIUSALAAS
ISBN: 978-1-305-88500-4
© 2017, 2010 Cengage Learning WCN: 01-100-101 ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.
For product information and technology assistance, contact us at Cengage Learning Academic Resource Center, 1-800-423-0563. For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be emailed to
[email protected].
Cengage Learning 20 Channel Center Street Boston, MA 02210 USA Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region. Cengage Learning products are represented in Canada by Nelson Education, Ltd. For your course and learning solutions, visit www.cengage.com/engineering. Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.
NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.
READ IMPORTANT LICENSE INFORMATION Dear Professor or Other Supplement Recipient: Cengage Learning has provided you with this product (the “Supplement”) for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the “Course”), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements. Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third party. Test banks and other testing materials may be made available in the classroom and collected at the end of each class session, or posted electronically as described herein. Any material posted
electronically must be through a password-protected site, with all copy and download functionality disabled, and accessible solely by your students who have purchased the associated textbook for the Course. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt. All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an “as is” basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State’s conflict of law rules. Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.
Instructor's Solutions Manual to Accompany
Engineering Mechanics: Dynamics 4th EDITION
ANDREW PYTEL JAAN KIUSALAAS
Contents Chapter 11:.......................................................................................................................... 1 Chapter 12:........................................................................................................................ 83 Chapter 13:...................................................................................................................... 140 Chapter 14:...................................................................................................................... 204 Chapter 15:...................................................................................................................... 294 Chapter 16:..................................................................................................................... .370 Chapter 17:...................................................................................................................... 452 Chapter 18:...................................................................................................................... 521 Chapter 19:...................................................................................................................... 577 Chapter 20:...................................................................................................................... 647
Appendix F F.1
F.2
647 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.3
648 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.4
F.5
649 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.6
F.7
650 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.8
F.9
651 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.10
F.11
652 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.12
653 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.13
F.14
654 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.15
F.16
655 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.17
656 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.18
F.19
657 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.20
F.21
658 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.22
659 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.23
660 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.24
F.25
661 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.26
662 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.27
663 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.28
664 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.29
665 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.30
Iy0 Iz0
Iy0 z0
m b2 3 m (2b)2 + = mb2 2 3 4 3 4 = (Iz0 )1 + (Iz0 )2 + (Iz0 )3 m (2b)2 m m m b2 3 = + (2b2 ) + b2 + = mb2 2 12 2 4 4 3 2 b m = = (Iy0 z0 )2 = (Iyz )2 + m2 y 0 z 0 = 0 + ( b) 4 2 =
(Iy )1 + (Iy )2 =
IAB = mb2
3 4
1 2
+
3 2
1 2
2
1 8
1 2
1 2 mb 8
= mb2 J
F.31
666 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.32
667 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.33
F.34
668 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.35
669 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.36
F.37
670 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.38
671 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.39
672 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.40
F.41
673 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
F.42
674 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
675 © 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.