ETABS MODELLING
AUTHOR: VALENTINOS NEOPHYTOU BEng (Hons), MSc
March 2013
ETABS MODELING ACCORDING TO EUROCODES
Step by step procedure and methodology of how you developing a modelusing ETABS Step 1: Specify Material Properties for Concrete
1. Poisson ratio is equal to v = 0 (cracked concrete) and v = 0.2 (un-cracked concrete) as (EN1992-1-1,cl.3.1.3) Table 1: Concrete properties (EN 1992, Table 3.1) Property Data for concrete
C16/20 (N/mm2)
C20/25 (N/mm2)
C25/30 (N/mm2)
C30/37 (N/mm2)
Mass per unit Volume
2,5E-09
2,5E-09
2,5E-09
2,5E-09
Weight per unit volume
2,5E-05
2,5E-05
2,5E-05
2,5E-05
29000
30000
31000
33000
0
0
0
0
10E-06
10E-06
10E-06
10E-06
Charact. ConcCyl. Strength, fck
16
20
25
30
Bending Reinf. Yield stress, fyk
500
500
500
500
Shear Reinf. Yield stress, fyk
500
500
500
500
Modulus of Elasticity Poisson’s Ratio (cracked concrete) Coeff. of thermal expansion
Figure 1: Concrete properties
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 2
ETABS MODELING ACCORDING TO EUROCODES Step 2: Add frame section for columns
Figure 2: Section properties of concrete columns
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 3
ETABS MODELING ACCORDING TO EUROCODES Step 3: Add frame section for beams Figure 3: Effective width of beams (EN1992-1-1,cl.5.3.2.1)
Interior beam
Internal beam supporting an internal and an external slab
Exterior beam supporting cantilever
External beam no cantilever
For practice use beff 1,2 = 0.2lo
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 4
ETABS MODELING ACCORDING TO EUROCODES Figure 4: Section properties of concrete beams
Notes: 1. Property modification factors are used to reduce moment and torsion stiffness due to crack section. Torsional stiffness of the cracked section should be set equal to 10% of the torsional stiffness of the un-cracked section. 2. Unless a more accurate analysis of the cracked elements is performed, the elastic flexural and shear stiffness properties of concrete and masonry elements may be taken to be equal to one-half of the corresponding stiffness of the un-cracked elements (EN1998-1-1,cl. 4.3.1(7)). 3. These modification factor only affect the analysis properties, they do not affect the design properties.
Column (Line element) I22=I33=0.5 It=0.1
Beam (Line element) I22=I33=0.5 It=0.1
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Slab (Shell element)
Wall (Shell element) m11= m12=m22=0.5 It=0.1
m11=m12=m22=0.5 It=0.1
Page: 5
ETABS MODELING ACCORDING TO EUROCODES Step 4: Add Slabs & Walls
Figure 5: Section properties of concrete slab
Figure 6: Section properties of concrete wall
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 6
ETABS MODELING ACCORDING TO EUROCODES Step 5: Define Response Spectrum function according to EC8
1. 2. 3. 4.
Peak ground acceleration agR=0,25g, Type C or D for building within category of importance I and II, Define two response spectrum cases if the factor q is different in each direction, Modify the existing values of elastic response spectrum case in order to change it into the design response spectrum. Figure 7: Response Spectrum to EC8
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 7
ETABS MODELING ACCORDING TO EUROCODES
Figure 8: Design spectrum for elastic analysis data
PERIOD T 0.0000 0.0667 0.1333 0.2000 0.6000
g ACCELERATION β Sd(T) Soil Type 0.0767 q 0.1150 α 0.1533 gR S 0.1917 TB 0.1917
0.8333
0.1380
1.0667 1.3000 1.5333 1.7667 2.0000 3.3333 4.6667 6.0000 7.3333 8.6667 10.0000
0.1078 0.0885 0.0750 0.0651 0.0575 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200
= = = = = = =
TC = TD = T =
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
index 1 2 3 4 5
9.81 0.2 C 1.50 0.10 1.15 0.20
m/sec2 -‐ -‐ -‐
0.60
sec
2.00 0.50
sec
-‐ -‐ sec
sec
Data for soil type -‐ T ype Spectrum 1 Soil Type S TB TC A 1 0.15 0.4 B 1.2 0.15 0.5 C 1.15 0.2 0.6 D 1.35 0.2 0.8 E 1.4 0.15 0.5
Page: 8
TD 2 2 2 2 2
ETABS MODELING ACCORDING TO EUROCODES Step 6: Define Load Case
Figure 8: Dead/Live/Wind
Step 5: Define Equivalent Static Analysis
Equivalent static analysis can be used if the following case can be met:
1. Ground acceleration: Check seismic zonation map from National Annex 2. Spectrum type 1:
5.5Hz
3. Ground type: Normally type B or C can be used (see EN 1998,table 3.1) 4. Lower bound factor for the horizontal design spectrum: 0.2 (EN 1998-11,cl.3.2.2.5(4)P)
5. Behavior factor q: See table
6. Correction factor λ (EN1998-1-1,cl.4.3.3.2.2(1Ρ)) λ=0.85 if T1≤2TC and more than 2 storey λ=1.0 in all other case Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 9
ETABS MODELING ACCORDING TO EUROCODES
7. Regular in elevation
8. Regular in elevation and irregular in plan
9. Fundamental period:
T1≤4T_c T1≤2,0s
Table 1: Equivalent Static Force Case Load case name EQXA EQYA EQXB EQYB
Direction and Eccentricity X Dir + Eccen. Y X Dir – Eccen. Y Y Dir + Eccen. X Y Dir – Eccen. X
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
% Eccentricity 0.05 0.05 0.05 0.05
Page: 10
ETABS MODELING ACCORDING TO EUROCODES Step 6: Define Load Combination for Equivalent lateral force analysis Ultimate limit state (ULS)
Static case COMBO 1. COMBO 2. COMBO 3. COMBO 4. COMBO 5. COMBO 6. COMBO 7. COMBO 8. COMBO 9. COMBO 10. COMBO 11. COMBO 12. COMBO 13. COMBO 14. COMBO 15.
1.35DL + 1.5LL 1.35DL + 1.5WINDX + 1.5 (0.7LL + 0.5 SNOW) 1.35DL + 1.5WINDY + 1.5 (0.7LL + 0.5 SNOW) 1.35DL + 1.5LL + 1.5 (0.7WINDX + 0.5 SNOW) 1.35DL + 1.5LL + 1.5 (0.7WINDY + 0.5 SNOW) 1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDX) 1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDY) 1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDX) 1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDY) 1.35DL + 1.5SNOW + 1.5 (0.7WINDX + 0.5LL) 1.35DL + 1.5SNOW + 1.5 (0.7WINDY + 0.5LL) 1.35DL + 1.5WINDX + 0.7*1.5(LL+SNOW) 1.35DL + 1.5WINDY + 0.7*1.5(LL+SNOW) 1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDX 1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDY
Seismic case COMBO 16. COMBO 17. COMBO 18. COMBO 19. COMBO 20. COMBO 21. COMBO 22. COMBO 23.
DL + 0.3LL + EQXA + 0.3EQYA DL + 0.3LL + EQXA – 0.3EQYA DL + 0.3LL - EQXA + 0.3EQYA DL + 0.3LL - EQXA – 0.3EQYA DL + 0.3LL + EQYA + 0.3EQXA DL + 0.3LL + EQYA – 0.3EQXA DL + 0.3LL - EQYA + 0.3EQXA DL + 0.3LL - EQYA – 0.3EQXA
COMBO 24. COMBO 25. COMBO 26. COMBO 27. COMBO 28. COMBO 29. COMBO 30. COMBO 31.
DL + 0.3LL + EQXB + 0.3EQYB DL + 0.3LL + EQXB – 0.3EQYB DL + 0.3LL - EQXB + 0.3EQYB DL + 0.3LL - EQXB – 0.3EQYB DL + 0.3LL + EQYB + 0.3EQXB DL + 0.3LL + EQYB – 0.3EQXB DL + 0.3LL - EQYB + 0.3EQXB DL + 0.3LL - EQYB – 0.3EQXB
Serviceability limit state (SLS) COMBO 32.
DL + LL
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 11
ETABS MODELING ACCORDING TO EUROCODES Step 7: Define Response Spectrum case
Modal Response spectrum 1. 2. 3. 4.
Independently in X and Y direction, Define design spectrum, Use CQC rule for the combination of different modes (EN1998-1-1,cl.4.3.3.3.2(3)) Use SRS rule for combined the results of modal analysis for both horizontal directions (EN1998-1-1,cl.4.3.3.5.1(21)). 5. Accidental eccentricity of each storey cause of uncertainties locatin of masses have been taken into account 5% (EN1998-1-1,cl.4.3.2). 6. Modal Combination: “Complete Quadratic Combination” (CQC) can be used if the Tj ≤ 0,9 Ti (EN1998-1-1,cl.4.3.3.3.2(3)P). Figure 9: Response Spectrum case Data for EQY& EQX
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 12
ETABS MODELING ACCORDING TO EUROCODES Step 8: Define Load Combination for modal analysis
Ultimate limit state (ULS)
Static case COMBO 1. COMBO 2. COMBO 3. COMBO 4. COMBO 5. COMBO 6. COMBO 7. COMBO 8. COMBO 9. COMBO 10. COMBO 11. COMBO 12. COMBO 13. COMBO 14. COMBO 15.
1.35DL + 1.5LL 1.35DL + 1.5WINDX + 1.5 (0.7LL + 0.5 SNOW) 1.35DL + 1.5WINDY + 1.5 (0.7LL + 0.5 SNOW) 1.35DL + 1.5LL + 1.5 (0.7WINDX + 0.5 SNOW) 1.35DL + 1.5LL + 1.5 (0.7WINDY + 0.5 SNOW) 1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDX) 1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDY) 1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDX) 1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDY) 1.35DL + 1.5SNOW + 1.5 (0.7WINDX + 0.5LL) 1.35DL + 1.5SNOW + 1.5 (0.7WINDY + 0.5LL) 1.35DL + 1.5WINDX + 0.7*1.5(LL+SNOW) 1.35DL + 1.5WINDY + 0.7*1.5(LL+SNOW) 1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDX 1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDY
Seismic case
COMBO 16. COMBO 17. COMBO 18. COMBO 19. COMBO 20. COMBO 21. COMBO 22. COMBO 23.
DL + 0.3LL + EQX + 0.3EQY DL + 0.3LL + EQX – 0.3EQY DL + 0.3LL - EQX + 0.3EQY DL + 0.3LL - EQX – 0.3EQY DL + 0.3LL + EQY + 0.3EQX DL + 0.3LL + EQY – 0.3EQX DL + 0.3LL - EQY + 0.3EQX DL + 0.3LL - EQY – 0.3EQX
Serviceability limit state (SLS)
COMBO 24.
DL + LL
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 13
ETABS MODELING ACCORDING TO EUROCODES G+0.3Q+Ex+0.3Ey
G+0.3Q+Ex-0.3Ey
G+0.3Q-Ex+0.3Ey
G+0.3Q-Ex-0.3Ey
G+0.3Q+Ey+0.3Ex
G+0.3Q+Ey-0.3Ex
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 14
ETABS MODELING ACCORDING TO EUROCODES
G+0.3Q-Ey+0.3Ex
G+0.3Q-Ey-0.3Ex
1.35G+1.5Q
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 15
ETABS MODELING ACCORDING TO EUROCODES
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 16
ETABS MODELING ACCORDING TO EUROCODES Step 9: Meshing of slab
Assign -> Shell Area -> Area Object Mesh Option
Automatic meshing option for slab element only
Notes: 1. The property assignments to meshed area objectets are the same as the original area object. 2. Load and mass assignments on the original area object are appropriately broken up onto the meshed area objects.
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 17
ETABS MODELING ACCORDING TO EUROCODES Step 10: Meshing/Label of wall
Edit>Mesh shells and click on the Mesh/Quads/Triangles at Intersections with visible grid lines:
Assign->Shell/Area->Pier Label or Spandrel Label.
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 18
ETABS MODELING ACCORDING TO EUROCODES Step 11: Define Auto-Line Constraint
Select area element (slab)->Assign->Shell Are-> Auto-Line Constraint
Step 12: Define mass source Combination of the seismic action with other actions (EN 1998-1-1,cl.3.2.4): 1. Define the category of building (EN 1991,Table 6.1), 2. Define the reduce factor (EN 199, Table A.1.1).
Table 2: Combination of seismic mass 𝑮𝒌,𝒋 +
𝝍𝑬𝒊 𝑸𝒌,𝒊
(ΕΝ1998-1-1,Eq. 3.17)
Combination coefficient for variable action is:
𝜓!" = 𝜙 ∙ 𝜓!! (ΕΝ1998-1-1,Eq. 4.2)
Values of φ for calculating 𝝍𝑬𝒊 (CYS NA EN1998-1-1:2004) Type of Variable action Categories AC1
Storey
φ
Roof Storeys with correlated occupancies Independently occupied storeys
1,0 0,8 0,5
Categories AF1
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
1.0
Page: 19
ETABS MODELING ACCORDING TO EUROCODES
Table 3: Values of ψ coefficients Category
Specific Use
A B C D E F G H
Domestic and residential Office Areas for Congregation Shopping Storage Traffic < 30 kN vehicle Traffic < 160 kN vehicle Roofs Snow, altitude < 1000 m Wind
ψο
ψ1
ψ2
0.7 0.7 0.7 0.7 1.0 0.7 0.7 0.7 0.5 0.5
0.5 0.5 0.7 0.7 0.9 0.7 0.5 0 0.2 0.2
0.3 0.3 0.6 0.6 0.8 0.6 0.3 0 0 0
Figure 10: Adding seismic mass to ETABS
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 20
ETABS MODELING ACCORDING TO EUROCODES
Step 13: Define number of modes
Notes: 1. Minimum number of modes to be taken into account (EN1998-1-1,cl.4.3.3.3.1(5)): k ≥ 3.√n
k is the number of modes taken into account. n is the number of storeys above the foundation or the top of a rigid basement.
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 21
ETABS MODELING ACCORDING TO EUROCODES
Step 14: Define restrains at the base Select the entire base joints
Step 15: Define diaphragms to slab
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 22
ETABS MODELING ACCORDING TO EUROCODES Step 16: Checking the model
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 23
ETABS MODELING ACCORDING TO EUROCODES MODAL ANALYSIS RESULTS
Step 1: Calculate the effective modal mass
Display> Show Tables > Modal information > Building modal information > Table modal participation mass ratios
1. The sum of the effective modal masses for the modes taken into account amounts to at least 90% of the total mass of the structure (EN 1998-1-1,cl.4.3.3.3.1(3)). 2. All modes with effective modal masses greater than 5% of the total mass are taken into account.
Mode 1 (Translation Y - direction)
Mode 2 (Translation X - direction) Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 24
ETABS MODELING ACCORDING TO EUROCODES
Mode 3 (Torsional)
Step 2: Damage limitations Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 25
ETABS MODELING ACCORDING TO EUROCODES
The damage limitation requirements should be verified in terms of the interstorey drift (dr) (EN 1998-1-1,cl.4.4.3.2) using the equation below: 𝑑! ∙ 𝑣 ≤ 𝑎 ∙ ℎ =>
𝑑! 𝑎 ≤ ℎ 𝑣
dr: is the difference of the average lateral displacement ds in CM at the top and bottom of storey. v: is the reduction factor which takes into account the lower return period of the seismic action. h: is the storey height Table 4: Damage limitation (EN1998-1-1,cl.4.4.3) For non-structural elements of brittle material attached to the structure
drv≤0.005h
For building having ductile non structural elements
drv≤0.0075h
For building having non-structural elements fixed in a way so as not to interfere with structural deformation
drv≤0.010h
Tab;e 5: Reduction factor of limitation to interstorey drift (CYA NA EN1998-11,cl.NA.2.15) Importance class I II III IV
Reduction factor v 0.5 0.5 0.4 0.4
1. Export results from ETABS to ECXEL Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 26
ETABS MODELING ACCORDING TO EUROCODES
2. Sort the Larger value on top
3. Record the value of each storey in the spread sheet below: Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 27
ETABS MODELING ACCORDING TO EUROCODES Damage limitation (EN1998-1-1,cl.4.4.3) Displacement Displacement Heigh of each Drift X Drift Y storey, h dr (m) dr (m) (m) Storey 2 Storey 1
0,0026 0,0017
0,0026 0,0017
3,00 3,00
Reduction factor v
v*dr X - direction
v*dr/h Y - direction
0,50 0,50
0,00043 0,00028
0,00043 0,00028
X-‐direction Y-‐direction dr*v<0,005-‐0,01 dr*v<0,005-‐0,01 OK OK
OK OK
Step 3: Second order effects
1. The criterion for taking into account the second order effect is based on the interstorey drift sensitivity coefficient θ, which is define with equation (EN 1998-11,cl.4.4.2.2(2)). 𝜃=
𝑃!"! ∙ 𝑑! 𝑉!"! ∙ ℎ
hr: is the interstorey drift, h: is the storey height, Vtot: is the total seismic storey shear Ptot: is the total gravity load at and above storey considered in the seismic design situation (G+0.3Q). Table 6: Consequences of value of P-Δ coefficient θ on the analysis θ≤0,1
No need to consider P-Δ effects
0,1≤θ≤0,2
P-Δ effects may be taken into account approximately by ! amplifying the effects of the seismic actions by !!!
0,2≤θ≤0,3
P-Δ effects must be accounted for by an analysis including second order effects explicity
θ≥0,3
Not permitted
1. Explore the results from ETABS to EXCEL Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 28
ETABS MODELING ACCORDING TO EUROCODES
2. Select the combo G+0,3Q and record the highest value from each storey
3. Record the heist value for Vtot Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 29
ETABS MODELING ACCORDING TO EUROCODES
4. Record all values on the spread sheet as showing below
Second order effects (EN1998-1-1,cl.4.4.2.2) Ptot (kN) Storey 2 Storey 1
709 1426
Heigh of each storey, h (m) 3,00 3,00
Vtot X-direction (kN) 220,00 334,00
θ θ X-‐direction Y-‐direction θ≤0.1 θ≤0.1 OK OK OK OK
Vtot Displaceme Displacement Y-direction nt Drift X Drift Y (kN) dr (m) dr (m) 220,00 0,00260 0,00260 334,00 0,00170 0,00170
Step 4: Structural regularity plan Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 30
ETABS MODELING ACCORDING TO EUROCODES
1. Slenderness ratio of the building λ=Lmax/Lmin<4 2. A “compact shape”: one in which the perimeter lines is always convex, or at least encloses not more than 5% re-entrant area. 3. The floor diaphragms shall be sufficient stiff in-plane not to affect the distribution of lateral loads between vertical elements. Table 7: Criteria for regularity in plan rx> 3.33eox rx> 3.33eoy rx> Is
Lateral torsional rensponse condition: Torsionally rigidity condition: Regularity in plan (cl. 4.2.3.2) Check 1 - slenderness ratio cl.4.2.3.2(5) λ=Lmax/Lmin<4
Slenderness ratio
=
2,80
= =
56 20
OK
Regularity in plan (cl. 4.2.3.2) Check 2 - structural eccentricity & torsional radius cl.4.2.3.2(6) Length in longitudinal direction Length in trasverse direction Stifness in X direction Stifness in Y direction Torsional stifness Torsional radius
Sx=1000/dx
Torsional radius Radius of gyration Structural eccentricity in x direction
rx=Ts/Sy
Structural eccentricity in y direction
eox=Rz(Fy)/Rz(Mz)
m m
Sy=1000/dy Ts=1000/Rz ry=Ts/Sx Is=((Lmax²+Lmin²)12)^0,5 eox=Rz(Fx)/Rz(Mz)
Table 1: Criteria for regularity in plan - Torsionally rigity condition Displacement Displacement X (mm) Y (mm) dx dy Storey 2 Storey 1
Storey 2 Storey 1
Rotation Z (radians) Rz
Stifness X (kN/m) Sx
Stifness Y (kN/m) Sy
7,35 5
7,14 6
8,18E-06 8,18E-06
136054 200000
140056 166667
0.3rx (m)
0.3ry (m)
Is (m)
Is
Is
OK OK
OK OK
8,9 8,1
9,0 7,4
17,2 17,2
Torsional Stifness (kNm/radian) Ts 1,22E+08 1,22E+08
rx (m)
ry (m)
29,5 27,1
30,0 24,7
Table 2: Criteria for regularity in plan - Lateral torsional respone condition
Storey 2 Storey 1
Rotation Rz for Fx=1000kN 8,18E-06 8,18E-06
Rotation Rz Rotation Rz Eccentricity for for eox Fy=1000kN Mx=1000kNm 8,18E-06 8,18E-06 1,00 8,18E-06 8,18E-06 1
Eccentricity eoy
3,33eox
3,33eoy
1,00 1,00E+00
OK OK
OK OK
Apply forces as follow: Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 31
ETABS MODELING ACCORDING TO EUROCODES
Storeys STOREY 1 STOREY 2
Load Case FX1 FY1 MZ1 FX2 FY2 MZ2
Forces FX1=1000kN FΥ1=1000kN MZ1=1000kNm FX2=1000kN FΥ2=1000kN MZ2=1000kNm
Repeat this process for all load case in order to obtain the displacement values. Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 32
ETABS MODELING ACCORDING TO EUROCODES Step 5: Structural type of the building
Table 8: Classification of structural system Wall system Frame system Frame-equivalent dual system Wall-equivalent dual system
Vertical and lateral load: Wall resist Vb,wall>65%Vbtotal Vertical and lateral load: Vb,frame>65%Vbtotal Vertical and lateral load: Vb,frame>50%Vbtotal Vertical and lateral load: Vb,wall>50%Vbtotal
Display >Show Tables> Support/Sprint/Reaction
1. Explore the results from ETABS to EXCEL
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 33
ETABS MODELING ACCORDING TO EUROCODES From load case tick the worst-case seismic design combination:
COMBO 1. COMBO 2. COMBO 3. COMBO 4. COMBO 5. COMBO 6. COMBO 7. COMBO 8.
DL + 0.3LL + EQX + 0.3EQY DL + 0.3LL + EQX – 0.3EQY DL + 0.3LL - EQX + 0.3EQY DL + 0.3LL - EQX – 0.3EQY DL + 0.3LL + EQY + 0.3EQX DL + 0.3LL + EQY – 0.3EQX DL + 0.3LL - EQY + 0.3EQX DL + 0.3LL - EQY – 0.3EQX
2. Select the worst-case design combo
3. Select the nodes for frames only
4. Calculate the sum of the base shear that can be resist by column in X and Y direction
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 34
ETABS MODELING ACCORDING TO EUROCODES i.e
VTOTAL
= 1000KN
VFRAMES, X ,Y = 500KN VTOTAL / VFRAME 500/1000*100= 50% Therefore the structural system of building is: Wall-equivalent dual system
How to checking base shear Base shear can be check as follow: Table 9: Checking the base shear Direction X direction
Lower bound values Fb = %Effective mass(X dir.)*Mass *Sdx
Upper bound values Fb = ∑mass * Sdx
Y direction
Fb = %Effective mass(Y dir.)*Mass *Sdv
Fb = ∑mass * Sdy
Note: The base shear should be within those limits
NOTE: REPEAT ALL THIS PROCESS FROM BEGIN WITH THE NEW Q VALUE Revised the design spectrum input data with the new q (for example if q=1.5 adopt at initial stage and the new q=3 then you have to repeat the process with the new q)
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 35
ETABS MODELING ACCORDING TO EUROCODES
OUTPUT DATA
Step 1: Print data for steel/concrete design File > Print Tables > Concrete Frame Design
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 36
ETABS MODELING ACCORDING TO EUROCODES
ADDITIONAL NOTES
SHRINKAGE AREAS Select Area > Edit > Expand/Srink Area
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Page: 37
ETABS MODELING ACCORDING TO EUROCODES PIN JOINT
Export model to SAFE
File menu > Export > Save Story as SAFE.f2k Text File
Local Axis
Local axis 1 Local axis 2 Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
X - direction Y- direction
Page: 38
ETABS MODELING ACCORDING TO EUROCODES Local axis 3 Local axis 2 (My) Local axis 3 (Mx)
Valentinos Neophytou BEng (Hons), MSc ETABS MANUAL
Z - direction Y- direction X - direction
Page: 39