Fisikastudycenter.com- Soal Ulangan Harian Fisika Fisikastudycenter.comGelombang SMA Kelas XII IPA contoh soal disertai pembahasan. Nomor 1 Diberikan sebuah persamaan persamaan gelombang Y = 0,02 sin (10πt − 2πx) dengan t dalam sekon, Y dan x dalam meter. Tentukan: a. amplitudo gelombang b. frekuensi sudut gelombang c. tetapan gelombang d. cepat rambat gelombang e. frekuensi gelombang f. periode gelombang g. panjang gelombang h. arah rambat gelombang i. simpangan gelombang saat t = 1 sekon dan x = 1 m j. persamaan kecepatan kecepatan gelombang k. kecepatan maksimum gelombang l. persamaan percepatan gelombang m. nilai mutlak percepatan maksimum n. sudut fase saat t = 0,1 sekon pada x = 1/3 m o. fase saat t = 0,1 sekon pada x = 1/3 m Pembahasan : Bentuk persamaan umum gelombang: Y = A sin (ωt - kx)
dengan A amplitudo gelombang, ω = 2πf dan k = 2π/λ dengan demikian : a. A = 0,02 m b. ω = 10π rad/s c. k = 2π d. v = ω/k = 10π/2π = 5 m/s e. f = ω/2π = 10π/2π = 5 Hz f. T = 1/f = 1/ 5 = 0, 2 sekon g. λ = 2π/k = 2π/2π = 1 m h. ke arah sumbu x positif i. Y = 0,02 sin(10 ππ- 2π) = 0,02 sin(8π) = 0 m j. v = ω A cos(ωt−kx) cos(ωt−kx) = 10π(0,02) cos(10πt−2πx) m/s m/s k. vmaks = ωA = 10π(0,02) m/s l. a = −ω2y = −(10π)2 (0,02) sin(10πt − 2πx) m/s2 m. amaks = |−ω2A| = |−(10π)2 (0,02)| m/s2 n. sudut fase θ = (10.π.0,1−2π.(1/3) = 1/3 π = 60o o. fase φ = 60o/360o = 1/6 Nomor 2 Suatu gelombang permukaan air yang frekuensinya
500 Hz merambat dengan kecepatan 350 m/s. tentukan jarak antara dua titik yang berbeda sudut fase 60°! (Sumber Sumber : : Soal SPMB) Pembahasan : Lebih dahulu tentukan besarnya panjang gelombang dimana
Beda fase gelombang antara dua titik yang jaraknya diketahui adalah
Nomor 3 Seutas tali salah satu ujungnya digerakkan naik turun sedangkan ujung lainnya terikat. Persamaan gelombang tali adalah y = 8 sin (0,1π) x cos π (100t 12) dengan y dan x dalam cm dan t dalam satuan sekon. Tentukan: a. panjang gelombang b. frekuensi gelombang c. panjang tali (Sumber Sumber : : Soal Ebtanas) Pembahasan : Pola dari gelombang stasioner diatas adalah
a. menentukan panjang gelombang
b. menentukan frekuensi gelombang
c. menentukan panjang tali
Nomor 4 Diberikan grafik dari suatu gelombang berjalan seperti gambar di bawah!
D. 5,0 cm E. 2,5 cm Sumber Soal : Marthen Kanginan 3A Gejala Gelombang Pembahasan :
Jika jarak P ke Q ditempuh dalam waktu 5 sekon, tentukan persamaan dari gelombang di atas! (Tipikal Soal UN)
Pola diatas adalah pola untuk persamaan gelombang stasioner ujung tetap atau ujung terikat. Untuk mencari jarak perut atau simpul dari ujung ikatnya, tentukan dulu nilai dari panjang gelombang.
Pembahasan : Bentuk umum persamaan gelombang adalah
atau
atau
dengan perjanjian tanda sebagai berikut : Tanda Amplitudo (+) jika gerakan pertama ke arah atas Tanda Amplitudo (-) jika gerakan pertama ke arah bawah Tanda dalam kurung (+) jika gelombang merambat ke arah sumbu X negatif / ke kiri Tanda dalam kurung (-) jika gelombang merambat ke arah sumbu X positif / ke kanan ambil data dari soal panjang gelombang (λ) = 2 meter, dan periode (T) = 5/2 sekon atau frekuensi (f) = 2/5 Hz, masukkan data ke pola misal pola ke 2 yang dipakai didapat
Nomor 5 Seutas kawat bergetar menurut persamaan :
Jarak perut ketiga dari titik x = 0 adalah..... A. 10 cm B. 7,5 cm C. 6,0 cm
Setelah ketemu panjang gelombang, tinggal masukkan rumus untuk mencari perut ke -3 . Lupa rumusnya,..!?! Atau takut kebalik-balik dengan ujung bebas,..!? Ya sudah tak usah pakai rumus, kita pakai gambar saja seperti di bawah:
Posisi perut ketiga P 3 dari ujung tetap A adalah satu seperempat panjang gelombang atau ( 5/4) λ (Satu gelombang = satu bukit - satu lembah), sehingga nilai X adalah : X = (5/4) λ = (5/4) x 6 cm = 7,5 cm Nomor 6 Sebuah gelombang transversal memiliki frekuensi sebesar 0,25 Hz. Jika jarak antara dua buah titik yang berurutan pada gelombang yang memiliki fase samaadalah 0,125 m, tentukan cepat rambat gelombang tersebut, nyatakan dalam satuan cm/s! Pembahasan Data dari soal: f = 0,25 Hz Jarak dua titik yang berurutan dan sefase: λ = 0, 125 m ν = .....
Persamaan gelombang stationer ujung bebas ν=λf ν = (0,125)(0,25) = 0,03125 m/s = 3,125 cm/s Nomor 7 Sebuah gelombang transversal memiliki frekuensi sebesar 0,25 Hz. Jika jarak antara dua buah titik yang berurutan pada gelombang yang memiliki fase berlawanan adalah 0,125 m, tentukan cepat rambat gelombang tersebut, nyatakan dalam satuan cm/s! Pembahasan Data dari soal: f = 0,25 Hz Jarak dua titik yang berurutan dan berlawanan fase: 1 /2λ = 0, 125 m → λ = 2 × 0,125 = 0,25 m ν = .....
ν = λ f ν = (0,25)(0,25) = 0,0625 m/s = 6,25 cm/s Nomor 8 Diberikan sebuah persamaan gelombang: y = 0,05 cos (10t + 2x) meter Tentukan : a) Persamaan kecepatan b) Persamaan percepatan
Persamaan gelombang berjalan ujung terikat Soal No. 9 Persamaan simpangan gelombang berjalan y = 10 sin π(0,5t −2x). Jika x dan y dalam meter serta t dalam sekon maka cepat rambat gelombang adalah…. A. 2,00 m.s−1 B. 0,25 m.s−1 C. 0,10 m.s−1 D. 0,02 m.s−1 E. 0,01 m.s−1 (Soal Gelombang - UN Fisika 2009) Pembahasan Menentukan cepat rambat gelombang dari suatu persamaan simpangan gelombang, bisa dengan beberapa cara, diantaranya: - mencari frekuensi dan panjang gelombang terlebih dahulu, kemudian menggunakan rumus ν = λ f - mengambil ω dan k dari persamaan gelombang, kemudian memakai rumus ν = ω / k seperti contoh 1 point d. - mengambil koefisien t dan koefisien x, kemudian menggunakan ν = koefisien t / koefisien x
Kita ambil cara yang ketiga saja:
Pembahasan ( y) ↓ diturunkan ( ν) ↓ diturunkan ( a)
y = 0,05 cos (10t + 2x) meter Jika y diturunkan, akan diperoleh v : ν = − (10)(0,05) sin (10t + 2x) ν = − 0,5 sin (10t + 2x) m/s Jika v diturunkan, akan diperoleh a : a = − (10)(0,5) cos (10t + 2x) a = − 5 cos (10t + 2x) m/s2 Artikel Terkait materi ini bisa ditengok: Bank Soal Semester Gelombang Berjalan, Bank Soal Semester Gelombang Stasioner
Soal No. 10 Sebuah gelombang berjalan di permukaan air memenuhi persamaan y = 0,03 sin 2π (60 t − 2x), y dan x dalam meter dan t dalam sekon. Cepat rambat gelombang tersebut adalah.... A. 15 m.s−1 B. 20 m.s−1 C. 30 m.s−1 D. 45 m.s−1 E. 60 m.s−1 (Soal Gelombang - UN Fisika 2011) Pembahasan Dengan cara yang sama nomor sebelumnya:
Soal pembahasan tentang gelombang yang lain silahkan dibuka berikut ini. Soal No. 11 Pada tali yang panjangnya 2 m dan ujungnya terikat pada tiang ditimbulkan gelombang stasioner. Jika terbentuk 5 gelombang penuh, maka letak perut yang ke tiga dihitung dari ujung terikat adalah... A. 0,10 meter B. 0,30 meter C. 0,50 meter D. 0,60 meter E. 1,00 meter (Soal Gelombang Stasioner Ujung Tetap - Ebtanas 1992) Pembahasan Terlihat, dalam 2 meter (200 cm) ada 5 gelombang. Jadi untuk 1 gelombangnya, panjangnya adalah λ = 200 cm/5 = 40 cm.
Perut ketiga, jika dihitung dari ujung ikatnya berjarak 1 gelombang lebih 1/4, atau 5/4 gelombang. Jadi jaraknya adalah: x = 5/4 × λ x = 5/4 × 40 cm = 50 cm = 0,5 meter. Soal No. 12 Seutas tali digetarkan pada salah satu ujungnya sehingga menghasilkan gelombang seperti gambar.
Jika ujung tali digetarkan selama 0,5 s maka panjang gelombang dan cepat rambat gelombang berturutturut adalah….(Sampel UN 013) A. 25 cm dan 100 cm/s B. 25 cm dan 50 cm/s C. 50 cm dan 25 cm/s D. 50 cm dan 100 cm/s E. 125 cm dan 25 cm/s Pembahasan Untuk dua buah gelombang = 50 cm Jadi satu gelombangnya λ = 50 cm / 2 = 25 cm
Cepat rambat: 50 cm / 0,5 s = 100 cm/s