SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
0
DESIGN CALCULATIONS
Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS
6.4.a DESIGN OF CRANE GANTRY GIRDER 11M span
All below references are BS 5950, part-1, UNO
a) INPUT DATA :(Refer Appendix-E, for EOT drawing) Crane Capacity
=
1050 kN
Weight of Crab
=
320 kN
Weight of Crane Bridge
=
780 kN
Self weight of the Rail
=
Width of Walk way
=
0.6 m
Dead Load of the Walkway Live Load of the Walkway
= =
1.5 kN/m² 5 kN/m²
Height of the Crane Rail
=
65 mm
Span of the Crane Girder, Lg
=
11 m
Centre to centre distance of , Lc Rail (i.e. Span of Crane Bridge)
=
32 m
Mini. approach of crane hook to the gantry
=
1.800 m
No. of Wheels Wheel Spacing1 Wheel Spacing2 C.G of loading from left load
= = = =
4 1.40 m 4.70 m 3.75 m
Impact Factor :
Vertical
=
30 %
Horizontal (Transverse to rail) Vertical Horizontal
=
10 %
= =
600 500
Imposed load vertical -gIvf Imposed load Horiz.gIhf Dead load gdf
= = =
1.6 1.6 1.4
Deflection Factor
Load Factor :
Design strength of steel, py
146905687.xls.ms_office .xls REF
2 265.0 N/mm
=
Maximum unsupported length Top Flange
gvrs/ST
2 kN/m
=
2.60 m
1.40 4.70
Table:5
Table:6
1.40
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
Page of Area: Turbine build. Dept Structural
0
DESIGN CALCULATIONS
REFERENCES / REMARKS
Depth of the surge girder
= =
Maximum unsupported length Bottom Flange 1.80m
(1050+320)kN
0.60 m 2.60 m
780 kN
Kicker RL
RL =
RR
32.00m
(1370 x 30.20 + 780 x 32.00/2)/32.00=
1682.938 kN
Wheel Load by calculation
420.73 kN/wheel
b) LOAD CALCULATIONS: b.1) Vertical Loads b.1.a) Conc. Loads Max. static Wheel Load Load due to Impact Total load Factored Load
Wm
=
421 kN
= 0.30 x 421
=
126.3 kN
W mf = 1.60 x 547.30
= =
547 kN 875.68 kN
say
b.1.b) Uniform Dirstributed Load Self weight of rail Walkway Dead Load Walkway Live Load Self weight of girder Factored load
= = = =
W df = 1.40 x 8.61
2.00 0.45 1.50 4.66 8.61 12.06
875.7
875.7
1.40 4.70
1.40
kN/m kN/m kN/m kN/m kN/m kN/m
b.2) Horizontal Loads Maximum lateral load per wheel is equal to 10% Static vertical wheel load, l = 0.1 W H = 0.10(421*4) Max. Lateral load = 168.4 kN 4 wheels are resisting the total lateral load Factored lateral load
146905687.xls.ms_office .xls REF
W df = 1.60 x 168.40 / 4
gvrs/ST
67.36 kN/wheel
from Fig-1 BS:2573,part-1
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
0
DESIGN CALCULATIONS
Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS
c) MAXIMUM BENDING MOMENT AND SHEAR FORCE: c.1) For vertical loads c.1.a) Bending Moment :The maximum Bending moment under moving loads occurs when line of action of one load and centre of gravity of the loads are at equal distance from the centre of span. CG. OF LOADS
875.68kN
875.68kN 875.68kN
875.68kN
12.06kN/m
=
=
C RA
RB 11.00m
Mid Span of Crane Girder
Reactions :Ra
= 4x875.68x(11 - 11*0.5 - 0.25*4.7)/11 + 12.06 x 11 /2
=
1443.525 kN
Rb
= 4x875.68+12.06x11- 1,443.525
=
2191.834 kN
Maximum Bending moment occurs at C.
=
Mux1
= (1443.53 x 4.33) -875.68 x 1.4 - (12.06 x 4.33²/2) = 4904.517 kN.m c.1.b) Shear Force:875.68kN
RA
875.68kN
11.00m
12.06kN/m
CG. OF GANTRY
Reactions: RA
= 4 x 875.7 x [11.0-3.8] /11+ (12.1 x 11.0/2)
2374.930 kN
RB
= (4 x 875.7) + (12.1 x 11.0) - 2374.93
1260.428 kN
Max. Reaction
=
c.2) For Horizontal loads :-
146905687.xls.ms_office .xls REF
gvrs/ST
2374.930 kN
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
0
DESIGN CALCULATIONS
Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS
67.36kN
C
c.2.a) Local Bending Moment at C, Crane Girder is laterally bending between Node points of surge Girder Muy = 67.360 x 2.6 /4 43.784 kN.m c.2.b) Axial Force: Because of Lateral force, the Crane Girder is subjected to axial force. Max lateral bending Moment 4904.5 x 67.36 / 875.68
377.27 kN-m
F=Axial force in the surge girder 377.27 / 0.6
628.78 kN
c.2.c) Shear force :-
RA
67.36kN
67.36kN
3.75m
11.00m
RB
Reactions :RA
= 4x 67.4[11.0 - 3.8]11.00
=
177.585 kN
RB
= 4 x 67.360 - 177.585
=
91.855 kN
Max. Horzontal reaction RH
=
177.585 kN
d) DESIGN OF GANTRY GIRDER:
y
146905687.xls.ms_office .xls REF
gvrs/ST
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
Page of Area: Turbine build. Dept Structural
0
DESIGN CALCULATIONS
REFERENCES / REMARKS
Depth
1250 mm
Width
450 mm
t
=
20 mm
T
=
40 mm
20
x
x
1250
40
450
Properties :Depth of the section, D Width of the section, B Thickness of web, t Thickness of flange, T Effective depth of web, d Second moment of inertia, Ixx Second moment of inertia, Iyy rmin Section modulus, Zxx Section modulus, Zyy Plastic modulus, Sxx Plastic modulus, Syy Buckling parameter, u Torsional index, x : D/T Sectional Area, A Flange Area on one side, Ag Out stand width of panel, b Constant, e, = sqrt(275/py)
= = = = = = = = = = = = = = = = = =
Outstand element of compression flange, b/T Web slenderness, d/t
1250 450 20 40 1170 1.59E+10 6.08E+08 101.19 2.54E+07 2.70E+06 2.96E+07 4.28E+06 1 31.25 59400 18000 215 1.02 =
mm mm mm mm mm mm4 mm4 mm mm3 mm3 mm3 mm3 conservatively as per Cl.4.3.7.5 mm2 mm2 mm
5.38 = 58.50
Plastic Plastic
Cl.3.5.2 and Table:7
d.1) Shear Capacity Web slenderness, d/t
=
58.50 < 63*1.02
Shear area parallel to the web, Avx=t*d
=
23400 mm2
Critical Shear strength, qcr for t/d =58.50
=
Shear Capacity, Vcr=qcr*Avx
=
d.2) Moment capacity, Mb
146905687.xls.ms_office .xls REF
gvrs/ST
159 N/mm2 3720.6 kN >2,374.93 kN
Cl.4.4.4.1 Satisfactory Cl.4.2.3, Table:21, Cl.4.4.5.3 Satisfactory
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
0
DESIGN CALCULATIONS
Page of Area: Turbine build. Dept Structural REFERENCES / REMARKS
d.2.a) Lateral-torsional buckling moment, Mb: ( as per clause 4.3.7.3 of BS 5950, part-1) Effective length factor = 1.00 ( Destabilizing condition) (As per table:9,BS 5950,part-1: Beam partial restrained against rotation) Effective length, LE
=
Slenderness, l = LE/rmin
=
Equivalent slenderness, lLT
=
Slenderness correction factor, n Uniform moment factor, m Buckling parameter, u l/x N Slenderness factor, n
= = = = = =
lLT pb
= =
Buckling resistance, Mb
= =
Table:9
2.60 m 25.69 nunl
Cl.4.3.7.5 1.0 1.0 1.000 0.822 0.50 1.00
conservatively conservatively
Table:14
25.69 265.00 N/mm2 pb*Sxx 7843.23 kN.m >4904.52 kN.m > m*Mux1
Table:12
Satisfactory Cl.4.3.7.2
e) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL) e.1) Compressive strength pc :Slenderness, l = LE/rmin Reduced design strength, py pc
= = =
25.69 245.00 N/mm2 240.00 N/mm2
Cl.4.7.5 Table:27c
e.2) Overall buckling check (As per Clause 4.8.3.3.1, BS 5950: part-1) F/Ag*pc + mMux1/Mb + mMuy/py*Zyy
= <
f) CHECK FOR LONGITUDINAL STRESS:
146905687.xls.ms_office .xls REF
gvrs/ST
0.832 1.000
Satisfactory
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
Page of Area: Turbine build. Dept Structural
0
DESIGN CALCULATIONS
REFERENCES / REMARKS
Height of rail
=
5% of the static wheel load =
65 mm 5/100 x4x 875.7
175.14 kN
Bending moment in the longitudinal direction is equal to Longitudinal Force into Crane Rail Depth plus half of Crane Girder depth Mux2
= 175136 x (65 + 625.0)
120.84 kN.m
CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL) F/Ag*pc + m(Mux1+Mux2)/Mb
=
0.681
g) CHECK FOR DEFLECTION: Allowable deflection for vertical loads d lim, v = Span / 600 =11,000.0 / 600.0 =
18.33 mm
Allowable deflection for horizontal loads d lim, h = Span / 500 = 11,000.0 /500 =
22.00 mm
Vertical Deflection:3.15 1.75
CG OF LOADS
547.3kN
8.61kN/m
c 11.00 CG. OF GANTRY
RA
dv
547.3kN
=
=
=
=
=
3
4
5
´
384
WL EI
+
PL
48EI
é 3a1
´ê
ëê L
RB
3 3 3 æ a1ö ù PL é 3a2 æ a2 ö ù + ´ 4 ÷ ú ê ç ÷ ú è L ø ûú 48EI êë L è L ø ûú
- 4ç
#VALUE! {( 2 x 547300 x 11000³)/( 48 x 205000 x 1.59E+10)} x {[3 x 1.75/11 - 4 x (1.75/11)³] + [3 x 3.15/11 - 4 x (3.15/11)³]} 11.960 mm
CHECK dv < Allowable Deflection
11.960 < 18.3 HENCE SAFE
h) Crane Girder Welding Calculation Top Flange & Web is welded by full Penetration Butt weld.
146905687.xls.ms_office .xls REF
gvrs/ST
Satisfactory
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
Page of Area: Turbine build. Dept Structural
0
DESIGN CALCULATIONS
REFERENCES / REMARKS
Bottom Flange Weld. Horizontal Shear = FAy/ Ixx 2 18000 mm
A- Area of the Bottom Flange
=
y - C.G of flange Plate from C.G of section
=
Ixx of the section
=
4 1.59E+10 mm
Maximum vertical shear
=
2374.930 kN
605 mm
Horizontal Shear 2,374.9 x 1000 x 18000x605 / 158510550001631.626 N/mm Size of the weld on each side 1,631.6/ ( 2 x 215x 0.707) Provide weld as
5.421 mm
=
12 mm
i) DESIGN OF BEARING STIFFENER Bearing check: Minimum area of stiffener in contact with the flange = Fx = pys =
0.8*Fx/pys Cl.4.5.4.2 External reaction Design strength of stiffener
Minimum Area of stiffener required
=
7169.60 mm2
Conside Thk. Of Stiffener , ts
=
25.00 mm
Width of the stiffener, bs
=
450.00 mm
Area of the stiffener
=
11250.00 mm2
= =
bs/2-web thickness 215.00 mm
Satisfactory
Check for outstands Outstand from the face of the web
Outstand of web stiffeners, as per Cl.4.5.1.2 of BS5950: Limits: 19tse
=
483.88
mm
13tse
=
331.08
mm
Bearing resistance of the stiffener Bearing Stress in member
146905687.xls.ms_office .xls REF
=
gvrs/ST
2 211.10 N/mm
Satisfactory
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
Page of Area: Turbine build. Dept Structural
0
DESIGN CALCULATIONS
REFERENCES / REMARKS
< 265
N/mm2
py-20 245.0
N/mm2
Satisfactory
Buckling resistance of the stiffner (as per Cl.4.5.1.5 of BS5950,part-1) Design strength of the stiffner in buckling
= =
Cl.4.5.1.5
Buckling resistance check as a column: Area of combined section 450 x25 + 20 x 20 x 20
2 19250.00 mm
Ixx Rmin = I / A
= =
4 1.90E+08 mm 99.38 mm
l = l / Rmin =1250x 1000 / 99.4
=
Compressive strength, pc
=
Buckling resistance of the stiffener
=
12.58 245.00 N/mm2 4716.25 kN > 2374.93 kN
Tb.27c,
Satistactory
Weld between Stiffener & web Vetical Height avilable for Welding
=
1170.00 mm
Thk. of weld reqd =2,374.9 x1000/(1170x2x0.7*215) Provide weld thickness
6.74 mm
=
12.00 mm
j) Shear buckling of Web under Wheel load Web bearing under wheel load (as per Cl.4.11.4,BS 5950, part-1) Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange) = 210 mm Bearing Capacity
=
lw*py*t
Web buckling under wheel load (as per Cl.4.5.2.1, BS 5950,part-1)
146905687.xls.ms_office .xls REF
gvrs/ST
=
1113 kN > 875.68 kN
Satisfactory
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
Page of Area: Turbine build. Dept Structural
0
DESIGN CALCULATIONS
REFERENCES / REMARKS
b1
=
Stiff bearing length
n1
= = =
Dispersion at 45degrees through half the depth of the section (depth of the web + 2*thickness of the flange) 1250 mm
d
= =
Depth of the web 1170 mm
Web slenderness, l
= =
2(Height of the crane rail) 130.00 mm
= 2.5*depth of the web/thickness of the web = 146.25
Compressive resistance, pc
=
Buckling resistance, Pw
= =
70 N/mm2
Cl.4.5.2.1
Table 27c
(b1+n1)*t*pc 1932.00 kN > 875.68 kN
Satisfactory
k) Connection for Longitudinal Force Longitudinal Force
=
175.14 kN
Dia of bolt provided No. of bolts provided
= =
Stress in Bolts
=
2 96.78 N/mm < 160 N/mm2
Maximum Horizontal force Max Force in diagonal
= =
177.585 kN 335.1 kN
Angles provided Area of the Section Rmin of the section Length of diagonal Inclination of diagonal w.r.t Horizontal
= = = = =
Stress in member
=
24.00 mm 4.00
l) Design of Surge Girder Design of bracing members
Allowable Stress in member l=1.5 *100 / 3.07 = 48.86
146905687.xls.ms_office .xls REF
gvrs/ST
100X100X8 15.60 3.07 1.50 32.00
RSC cm2 cm m
2 214.82 N/mm
(No.bays are not to count in the sketch)
SUMITOMO CORPORATION Checked By
PROJECT : SKS, Prai - 350MW CCGT Power Plant DOC.TITLE: DOC. NO
:
Design of Super structure-Design of Crane-girder CGPR1-100-5-011 Rev
Page of Area: Turbine build. Dept Structural
0
DESIGN CALCULATIONS
REFERENCES / REMARKS
Compressive stress, pc
=
225.00 N/mm2 > 214.82
Table 27c Satisfactory
Design of bottom chord member (as surge may come on either direction, bottom chord members are designed for compression) Member size provided Area of the Section Rmin of the section Unsupported length
= = = =
300X150X32 40.80 3.29 2.60
MS profile cm2 cm m
Maximum axial force, F Stress in member
= =
628.78 kN 2 154.11 N/mm
Allowable Stress in member l=2.6 *100 / 3.29 = 79.03 Compressive stress, pc
=
161.00 N/mm2 > 154.11
Table 27c Satisfactory
j) Design of Crane Girder Bracket Depth of the bracket, Db Width of the flange plate, Wb Thickness of the flange plate, Tb Thickness of the web plate, tb Eccetricity of Crane girder from grid Maximum Vertical force
= = = = = =
1200 600.00 32.00 25.00 1.00 2374.93
Design for Moment Moment due to eccentricity, Me
=
2374.93 kN.m
Axial Force in Top flange, Ab=Me/Db
=
1979.11 kN
Stress in top flange=Ab/Wb*Tb
= <
mm mm mm mm m kN
10.3078569 N/mm2 265.0 N/mm2
Design for shear Web slenderness
=
45.44 < 63*1.02
Shear area parallel to the web Critical Shear strength
= =
28400 mm2 159 N/mm2
Shear Capacity,
=
146905687.xls.ms_office .xls REF
gvrs/ST
4515.6 kN >2,374.93 kN
Satisfactory Cl.4.4.4.1 Satisfactory Cl.4.2.3, Cl.4.2.3
Satisfactory
5/21/2013 9:48 PM
Name ISMC 75 ISMC 100 ISMC 125 ISMC 150 ISMC 175 ISMC 200 ISMC 225 ISMC 250 ISMC 300 ISMC 350 ISMC 400
Depth Breadth wt/m mm mm kN/m 75 40 0.0681 100 50 0.0918 125 65 0.1271 150 75 0.1639 175 75 0.1914 200 75 0.2214 225 80 0.2591 250 80 0.3036 300 90 0.3583 350 100 0.4212 400 100 0.4940
146905687.xls.ms_office
Tf mm 7.30 7.50 8.10 9.00 10.20 11.40 12.40 14.10 13.00 13.50 15.30
Tw mm 4.40 4.70 5.00 5.40 5.70 6.10 6.40 7.10 7.60 8.10 8.60
Cyy mm 13.10 15.30 19.40 22.20 22.00 21.70 23.00 23.00 23.60 24.40 24.20
G Ixx 4 mm mm 21 760000 28 1867000 35 4164000 40 7794000 40 12233000 40 18193000 45 26946000 45 38168000 50 63626000 60 100080000 60 150828000
Iyy mm4 126000 259000 599000 1023000 1210000 1404000 1872000 2191000 3108000 4306000 5048000
Rxx mm 29.60 40.00 50.70 61.10 70.80 80.30 90.30 99.40 118.10 136.60 154.80
Ryy mm 12.10 14.90 19.20 22.10 22.30 22.30 23.80 23.80 26.10 28.30 28.30
Zxx Zyy mm3 mm3 20300 4700 37300 7500 66600 13100 103900 19400 139800 22800 181900 26300 239500 32800 305300 38400 424200 46800 571900 57000 754100 66600
Page 12 of 29
Area mm2 867 1170 1619 2088 2438 2821 3301 3867 4564 5366 6293
ISMC
5/21/2013 9:48 PM
Section ISMB100 ISMB125 ISMB150 ISMB175 ISMB200 ISMB225 ISMB250 ISMB300 ISMB350 ISMB400 ISMB450 ISMB500 ISMB600
H mm 100 125 150 175 200 225 250 300 350 400 450 500 600
B wt/m mm kN/m 75 0.115 75 0.130 80 0.149 90 0.193 100 0.254 110 0.312 125 0.373 140 0.442 140 0.524 140 0.616 150 0.724 180 0.869 210 1.226
146905687.xls.ms_office
A mm2 1460 1660 1900 2462 3233 3972 4755 5626 6671 7846 9227 11074 15621
Tf mm 7.2 7.6 7.6 8.6 10.8 11.8 12.5 12.4 14.2 16.0 17.4 17.2 20.8
Tw mm 4.0 4.4 4.8 5.5 5.7 6.5 6.9 7.5 8.1 8.9 9.4 10.2 12.0
R1 R2 mm mm 9.0 4.5 9.0 4.5 9.0 4.5 10.0 5.0 11.0 5.5 12.0 6.0 13.0 6.5 14.0 7.0 14.0 7.0 14.0 7.0 15.0 7.5 17.0 8.5 20.0 10.0
H1 mm 65.0 89.2 113.9 134.5 152.7 173.3 194.1 241.6 288.0 334.4 379.2 424.1 509.7
H2 mm 17.50 17.90 18.05 20.25 23.65 25.85 27.95 29.25 31.00 32.80 35.40 37.95 45.15
G mm 35 35 40 50 55 60 65 80 80 80 90 100 140
Ixx mm4 2575000 4490000 7264000 12720000 22354000 34418000 51314000 86034000 136303000 204584000 303908000 452183000 918130000
Iyy mm4 408000 437000 526000 850000 1500000 2183000 3345000 4539000 5377000 6221000 8340000 13698000 26510000
Page 13 of 29
Rxx mm 42.0 52.0 61.8 71.9 83.2 93.1 103.9 123.7 142.9 161.5 181.5 202.1 242.4
Ryy mm 16.7 16.2 16.6 18.6 21.5 23.4 26.5 28.4 28.4 28.2 30.1 35.2 41.2
Zxx mm3 51500 71840 96853 145371 223540 305938 410512 573560 778874 1022920 1350702 1808732 3060433
Zyy mm3 10880 11653 13150 18889 30000 39691 53520 64843 76814 88871 111200 152200 252476
ISMB
DESIGN OF CRANE GANTRY GIRDER Project : Building : Girder Type :
PRAI POWER 350 MW CCGT POWER PLANT PROJECT CW PUMPHOUSE ( INTERNAL) EXISTING CRANE BEAM - DESIGN CHECK
1) INPUT DATA (Refer Appendix-A, for EOT drawing) Crane Capacity
=
100 kN
Weight of Crab
=
0 kN
Weight of Crane Bridge
=
0 kN
Self weight of the Rail
=
1 kN/m
Height of the Crane Rail
=
70 mm
Span of the Crane Girder, Lg
=
8.7 m
Mini. approach of crane hook to the gantry
=
1.000 m
No. of Wheels Wheel Spacing1 C.G of loading from left load
= = =
2 0.60 m 0.30 m
Impact Factor :
Vertical
=
30 %
Horizontal (Transverse to rail) On Stopper
=
10 %
=
16 kN
Deflection Factor
Vertical Horizontal
= =
1000 1000
Load Factor :
Imposed load vertical -gIvf Imposed load Horiz.gIhf Dead load gdf
= = =
1.6 1.6 1.4
All below references are BS 5950, part-1,
Table:5
2 275 N/mm
Design strength of steel, py
=
Maximum unsupported length Top Flange
=
8.70 m
Maximum unsupported length Bottom Flange
=
8.70 m
Table:6
2) LOAD CALCULATIONS Wheel load calculation Wheel Load by Vendor
=
2.a) Vertical Loads i) Conc. Loads Average static Wheel Load
Wm
50.00 kN/wheel
=
50.0 kN
= 0.30 x 50
=
15.00 kN
W mf = 1.60 x 65.00
= =
65 kN 104.00 kN
say
104.0 Load due to Impact Total load Factored Load
ii) Uniform Dirstributed Load Self weight of rail Self weight of girder Factored load
W df = 1.40 x 2.49
= =
1.00 kN/m 1.49 kN/m 2.49 kN/m
=
3.49 kN/m
2.b) Horizontal Loads Maximum lateral load per wheel is equal to 10% Static vertical wheel load, l = 0.1
0.60
104.0
####
0.60
from Fig-1
W H = 0.10(50*2)
Max. Lateral load
=
10.0 kN
=
8.00 kN/wheel
BS:2573,part-1
2 wheels are resisting the total lateral load W df = 1.60 x 10.00 / 2
Factored lateral load 2.c) Stopper Loads Factored lateral load
Wsp = 1.60 x 16.00
=
25.6 kN/stopper
3) MAXIMUM BENDING MOMENT AND SHEAR FORCE 3.a) For vertical loads i) Bending Moment The maximum Bending moment under moving loads occurs when line of action of one load and centre of gravity of the loads are at equal distance from the centre of span. ( refer diagram at deflection check) Reactions :Ra
=
104x(1 + 0.60/2/8.7) +3.49x8.70/2
=
122.76 kN
Rb
=
2x104+3.49x8.7- 122.759
=
115.59 kN
Maximum Bending Moment Mux1
= (122.76 x 4.35) -104 x 0.45 - (3.49 x 4.35²/2) = 355.20 kN.m
ii) Shear Force:Reactions: RA
= 2 x 104.0 x [8.7-0.3] /8.7+ (3.5 x 8.7/2)
RB
= (2 x 104.0) + (3.5 x 8.7) - 216.00
Max. Reaction
=
216.00 kN
=
22.35 kN =
216.00 kN
3.b) For Horizontal loads i) Local Bending Moment at C, Crane Girder is laterally bending between points of restrained at support Muy = 8.000 x 8.7 /4 = 17.40 kN.m ii) Shear force Reactions :RA
= 2x 8.0[8.7 - 0.3]8.70
=
15.448 kN
RB
= 2 x 8.000 - 15.448
=
0.552 kN
=
15.448 kN
Max. Horzontal reaction RH
4) DESIGN OF GANTRY BEAM Properties :Depth of the section, D Width of the section, B Thickness of web, t Thickness of flange, T Effective depth of web, d Second moment of inertia, Ixx
= 609.9 = 304.8 = 11.9 = 19.7 = 537.2 = 1.25E+09
mm mm mm mm mm mm4
rmin
= 9.30E+07 mm4 = 69.90 mm
Section modulus, Zxx
= 4.09E+06 mm3
Second moment of inertia, Iyy
UB610X305X149kg/m
Plastic modulus, Sxx
= 6.10E+05 mm3 = 4.57E+06 mm3
Plastic modulus, Syy Buckling parameter, u Torsional index, x : D/T Sectional Area, A Flange Area on one side, Ag Out stand width of panel, b Constant, e, = sqrt(275/py)
= 9.37E+05 mm3 = 0.886 = 32.5 = 19000 mm2 = 6005 mm2 = 146.45 mm = 1.00
Section modulus, Zyy
Outstand element of compression flange, b/T Web slenderness, d/t
= =
7.43 Plastic 45.14 Plastic
Cl.3.5.2 and Table:7
Web slenderness, d/t
=
45.14 < 63*1.00
Shear area parallel to the web, Avx=t*d
=
Cl.4.4.4.1 Satisfactory Cl.4.2.3,
Critical Shear strength, qcr for d/t =45.14
=
Shear Capacity, Vcr=qcr*Avx
=
4.a) Shear Capacity
6392.68 mm2 165 N/mm2 1054.79 kN > 216 kN
Table:21, Cl.4.4.5.3 Satisfactory
4.b) Moment capacity, Mb i) Lateral-torsional buckling moment, Mb: ( as per clause 4.3.7.3 of BS 5950, part-1) Effective length factor = 1.20 ( Destabilizing condition) (As per table:9,BS 5950,part-1: Beam partial restrained against rotation) Effective length, LE
=
Slenderness, l = LE/rmin
=
Equivalent slenderness, lLT
=
149.36 nunl
Slenderness correction factor, n Uniform moment factor, m Buckling parameter, u l/x N Slenderness factor, n
= = = = = =
1.0 1.0 0.886 4.596 0.50 0.82
lLT pb
= =
Buckling resistance, Mb
= =
Table:9
10.44 m Cl.4.3.7.5 conservatively conservatively
Table:14
108.51 109.00 N/mm2
Table:11
pb*Sxx 498.13 kN.m >355.20 kN.m > m*Mux1
Satisfactory Cl.4.3.7.2
5) CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL) 5.a) Compressive strength pc Slenderness, l = LE/rmin
=
pc
=
149.36 81 N/mm2
Table 27c
5.b) Overall buckling check (As per Clause 4.8.3.3.1, BS 5950: part-1) mMux1/Mb + mMuy/py*Zyy
= <
0.817 1.000
Satisfactory
6) CHECK FOR LONGITUDINAL STRESS Height of rail
=
70 mm
5% of the static wheel load =
5/100 x2x 104.0
10.40 kN
Bending moment in the longitudinal direction is equal to Longitudinal Force into Crane Rail Depth plus half of Crane Girder depth Mux2
= 10400 x (70 + 305.0)
=
3.90 kN.m
CHECK FOR COMBINED BENDING COMPRESSIVE STRESS IN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL) F/Ag*pc + m(Mux1+Mux2)/Mb
=
0.742
7) CHECK FOR DEFLECTION Allowable deflection for vertical loads d lim, v = Span / 1000 =8,700.0 / 1,000.0 =
8.70 mm
Allowable deflection for horizontal loads d lim, h = Span / 1000 = 8,700.0 /1,000 =
8.70 mm
Satisfactory
Vertical Deflection:4.5
4.2
3.90
CG OF LOADS
65kN
65kN
c 8.70
RA
dv
=
´
384
dv
=
=
WL
+
EI
RB
CG. OF GANTRY
3
4
5
2.49kN/m
=
=
PL
48EI
é 3a1
´ê
ëê L
3 3 3 æ a1ö ù PL é 3a2 æ a2 ö ù ´ê - 4ç ÷ ú+ ÷ ú è L ø ûú 48EI ëê L è L ø ûú
- 4ç
#VALUE! {( 65000 x 8700³)/( 48 x 205000 x 1.25E+09)} x {[3 x 3.90/9 - 4 x (3.90/9)³] + [3 x 4.20/9 - 4 x (4.20/9)³]} 7.625 mm
CHECK dv < Allowable Deflection
7.625 < 8.7 HENCE SAFE
8) SHEAR BUCKING OF WEB UNDER WHEEL LOAD 8.a) Web bearing under wheel load (as per Cl.4.11.4,BS 5950, part-1) Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange) = 179.4 mm Bearing Capacity
=
lw*py*t
=
587.0865 kN > 104.00 kN
Satisfactory
8.b) Web buckling under wheel load (as per Cl.4.5.2.1, BS 5950,part-1) b1
=
Stiff bearing length
n1
= = =
Dispersion at 45degrees through half the depth of the section (depth of the web + 2*thickness of the flange) 609.9 mm
d
=
Depth of the web
Web slenderness, l
Compressive resistance, pc
= =
= =
=
2(Height of the crane rail) 140.00 mm
570.5 mm
2.5*depth of the web/thickness of the web 119.85 =
97 N/mm2
Cl.4.5.2.1
Table 27c
Buckling resistance, Pw = (b1+n1)*t*pc=
865.61 kN > 104.00 kN
=
Satisfactory
9) CONNECTION FOR LONGITUDINAL LOAD Longitudinal Force
=
10.40 kN
Dia of bolt provided No. of bolts provided
= =
16 mm 2
Stress in Bolts
=
25.86 N/mm < 160 N/mm2
2
10) DESIGN OF STOPPER BRACKET Depth of the bracket, Dsp Width of the bracket, Wsp Thickness of the bracket plate, Tsp Thickness of stiffener plate, Ts No of stiffener plate, Ns Distance between Stopper and flange of Crane girder Maximum Stopper force Maximum ultimate Stopper force, S
= = = = = = =
250 102 6 6 1 0.20 16.0 25.6
10.a) Design for Moment Moment due to eccentricity, Mc
=
5.12 kN.m
Combined plate C.G., x
=
91.2 mm
Combined plate Ixx
=
Distance of compression edge
=
158.8 mm
Combined plate Zxx
=
3 88189 mm
Moment capacity, Mc = PypZxx
= >
24.25 kNm 5.12 kNm
=
mm mm mm mm nos m kN kN
4 1.40E+07 mm
Cl.4.13.2.4 Satisfactory
10.b) Weld between Bracket and flange of Crane Girder Design strength of fillet weld, pw
=
2 215 N/mm
Weld thickness
=
6 mm
Effective length of flange weld
=
400 mm
Max.bending tension in bracket, T = M/x
=
56.2 kN
Capacity of bracket weld under tension
= >
361.2 kN 56.2 kN
Tb.36, BS5950
Satisfactory
O.K.