.
GSM LINK BUDGET Welcome! Hello Duncan Welcome to the GSM Link Budget course. In any communications system, a link budget describes the path loss and/or power budget needed to ensure reliable and contiguous coverage with a minimum number of holes. This module discusses how the standard Lucent link budget is established and the recommended default values used as design parameters.
Additional Resources List A Cross-Functional Performance Management Team has been set up to work on Lucents GSM Network Performance Management offering. This group is comprised of experts from various disciplines across Lucent and is focused on: • Developing and designing a high quality and coherent PM offering for Lucents GSM customers. • Addressing PM issues relating to individual network elements and cross network elements. • Raising the profile of PM within the GSM organization. For more information on link budgets, review the RF Dimensioning and Link Budget Documents provided on the RF Engineering Home page at
htt~xIIenOO33svrO6 uk. Iucent.com/network performance&system enQineerinci
Topic List This course covers the following topics: 1. Introduction to Link Budget 2. Receiver Sensitivity and Noise Contributions 3. ETSI Specifications and Transmitter Power Classes 4. Calculating a Link Budget 5. Receivers Field Strength
A more detailed list of topics and pages can be found by selecting one of the topics at the left and clicking on the icon that appears in the toolbar at the top of the page.
Objectives This course was designed to enable you to: • • • • • • • • •
State the purpose/goal of creating a link budget. Define receiver sensitivity. Identify the noise contribution for a radio receiver to include thermal and amplifier noise. Identify and compare the ETSI specifications and Lucent implementation for both GSM-gOQ and GSM-1 800/GSM1 gOO. Name the transmitter power classes supported by Lucent. Calculate the maximum path loss. Given the maximum path loss, calculate the transmit power of the BTS. Given the calculated maximum path loss, use Okumura-Hata tables to find the maximum cell range. Given the power level at the receiver input, calculate the field strength of the receiver according to GSM recommendations.
.
Prerequisites The following courses are recommended before taking the GSM Link Budget course. If you have not already taken these courses, please return to the course list and review them. • • • • • • • • •
RF Design Engineering Objectives RF Propagation Concepts Frequency Reuse Traffic Engineering Select Antennas GSM Antenna Coupling Equipment GSM Measurement Techniques Interference Concepts Effective Radiated Power
Let’s Begin! We hope you enjoy this learning experience, and that you use the information in this module to its fullest extent. If you are taking a Wireless University web module for the first time then click on Learninc~ on WirelessU. This topic teaches you to navigate through a web module. If you feel like you already know how to navigate this course, lets begin with Introduction to Link Budciet Note: The information in this module is proprietary to Lucent Technologies. Please do not share it with friends or customers.
Introduction to Link Budget Link Budget’s Purpose A link budget is established during RF planning and design activities. The link budget describes the path loss and/or power budget needed to ensure reliable communication and to determine appropriate coverage build-out levels. GSM link budget considerations should include: •
Coverage types,
•
Classes of mobile and base stations, and
•
Type of physical installations.
For duplex (2-way) systems, the mobile-base path is called the reverse link (or uplink) path and base-mobile is called the forward link (or downlink) path. The link budget is the maximum loss allowed in the respective path. For example, the reverse link budget represents the maximum loss allowed in the mobile to base path. More often than not, the reverse link is the limiting case. The figure shows the typical link budget elements of a GSM network. Values for each are defined separately. Note the arrows represent the RF signal path from either the base station to the mobile (forward link) or the mobile to the base station (reverse link).
Link Budget Elements of a GSM Network 4—
T
+
T I
—~
D ownlink
~—
Uplink
8TS
Mobile
Who Determines the Link Budget? At Lucent, system engineering usually handles the specific parameter issues for-each customer. This is because each customer may have a specific value to use for different equipment that affects a link budget. For example, instead of having a balanced link budget, some operators prefer to have the downlink a few dB stronger than the uplink to prevent the mobile from going out of coverage, thereby causing constant searches that consume more battery power. However, the standard link budget recommended in this course is established on a balanced scenario only. After a link budget is established and finalized, the desired coverage levels are specified. The link budget dictates what coverage level is needed for a particular system. Most existing systems have already determined a transparent link budget, and designing a new cell site is simply a matter of providing the correct height/EIRP/antenna to fill in a coverage gap. [ectiveisotropic radiated power (EIRP) represents the gain of a transmitting ~nain a given direction multiplied by the power the antenna accepts ~omthe connected transmitter. In simple terms, the EIRP value is the sum of ie antenna power input and the antenna gain expressed to an isotropic eference. EIRP = antenna input power (dBm) + antenna gain (dB1) The gain of a dipole may be expressed with respect to an isotropic reference as 2.15 dB~. Thus, EIRP is equal to ERP + 2.15 dB. Although systems engineering calculates the link budget, it is important to review the theory behind the calculation to understand how the link budget works. The definitions on the next page will help you become familiar with the basic link budget terminology.
Definitions Term ACE Loss
Definition In general, Antenna Coupling Equipment (ACE) includes all diplexers, combiners and connectors. The value of ACE loss is dependent on the ACE configuration. There are various ACE configurations depending on the number of TRXs and combiners used. For more information on this topic, locate the GSM Antenna CounhinQ E~ui~ment module
) .
Antenna Diversity Gain Body Loss
BTS Antenna Gain Combiner Loss Downlink Power Budget Eb/NO
Fade Margin Fading Feeder Loss
available on the Wireless University web site. Antenna diversity gain is used to reduce the effects of multipath fading on the uplink path. Two common techniques include space and polarization diversity. When a hand-held phone is held up to the user’s head, antenna pattern distortion and body absorption takes places. This is referred to as body loss. A value of 2 dB is typically given to this loss. The value of antenna gain can vary according to the manufacturer and is specified as dBd or dBi depending on the reference. Insertion loss at the 3:1, 4:1, and 9:1 combiners on the transmit path. The downlink power budget is determined after the maximum path loss is calculated (i.e. after the uplink power budget). The BTS transmit power is determined using the downlink power budget. A digital metric (bit energy/noise density) comparable to signal to noise ratio in the analog world (interference). The impact of Rayleigh fading is taken into account by implementing a multipath fade margin of 8 to 12.5 dB nominally EL/NO. Extra signal power reserved to overcome potential fading caused by diffraction, shadowing, multi-pathing, and so forth. Variations in the average field strength of a signal due to the motion of the user and the addition of multipath waves of various path lengths. Feeder loss is dependent on the feeder type and length of the BTS to the antenna. For example: ANDREW coaxial cable loss (LDF5-50A, 7/8 A*tu~rnu~fi,~u.i (dR/i OOm’~ Freauencv ~ ~ u 1000MHz 4 2000 MHz 7 The gain of an antenna is the maximum signal intensity as referenced to a standard antenna (like a dipole). The gain of an antenna is related to the 3 dB beamwidths of the antenna. In effect, the narrower the beamwidths, the higher the antenna gain is. How fast bits are transmitted for the technology. A link budget describes the path loss and/or power budget needed to ensure reliable communication. A receiver amplifier that does not add any appreciable noise to the signal than is already there. The maximum path loss is normally determined by the relatively fixed values applied in the uplink power budget. These depend on the equipment used and the specified performance levels (for example, frame error rate, signal to noise ratio, etc.). Power from the base station/traffic channel. .
Gain
Information Data Rate Link Budget Low Noise Amplifier Maximum Path Loss
Maximum Transmitter Power Per Traffic Channel Path Loss Penetration Loss
— —- - -
The loss in power experienced by a signal as it travels between the transmitting and receiving antennas separated by a distance d (also called space loss). The loss associated with the penetration of a signal from an outdoor environment to an indoor environment. Actual penetration losses for any given market depend on numerous factors, including building material, number of walls that neet to be penetrated, frequency, and so forth. However, typical values used are 20 dB or more for urban, 10 to 20 dB for suburban, 8 to 15 dB for rural, and 6 to 8 dB
for in-vehicle loss. White noise; frequency independent noise. Receiver sensitivity is the weakest signal strength that the receiver can distinguish from noise. Transmission Line The transmission line connects the signal from the transmitter to the receiver. The transmission line can be Up and Downlink cable or an electrical medium. The uplink and downlink radio link power budgets need to Balance be in balance to avoid coverage differences in the up and downlink directions. Uplink Power Budget The uplink power budget is calculated to determine the maximum path loss. This is the end of Introduction to Link Budget. Select the next topic on the left to continue.
Receiver Noise Density Receiver Sensitivity
Receiver Sensitivity and Noise Contributions Receiver Sensitivity When determining link budgets, consider the impact of receiver sensitivity into the budget. Receiver sensitivity can be defined as the weakest signal strength that the receiver can distinguish from noise. Impacts to the theoretical noise threshold include the system bandwidth, temperature, receiver or amplifier performance. The following sections describe the contributions to noise-and-the--theoretical minimum receiver sensitivity of GSM.
Noise Contributions For a Radio Receiver What are the noise contributions for a radio receiver? Noise is any unwanted signal that comes from many external or equipment sources. There are two types of noise: thermal and amplifier noise. Noise contributions The diagram below shows the thermal noise at the input of the receiver and the amplifier noise of the receiver it serves.
(SIN) ~ 4
kTB
(SIN)
0~
How to calculate thermal noise power Thermal movements of electrons cause thermal noise. Every conductor or resistance shows thermal noise. Thermal noise is produced in the antenna cables and depends on the receiver bandwidth B (in HZ) and the absolute temperature T (Kelvin). The absolute temperature T = t (0C) + 273 [K].The (input) thermal noise power (N,) can be expressed as: N~=k~T~B, where k is the Boltzmann constant equal to 1.38~10 23J/K.
Thermal noise example At a temperature of 170C and a receiver bandwidth of 200 kHz, the thermal noise is calculated as follows: N
1=k~T~B N1=1.38~10 23 (17 + 273)~200~10 3 16 N=8.10 Watt = -151 dBW = -121 dBm
What is amplifier noise? When radio signals are received on the antenna, they are amplified by the front-end RF amplifier in the receiver. After amplification (G), the signal-to-noise ratio will be lower (or worse) than at the antenna due to the amplifier-added noise. Amplifier noise is expressed as Nampi. Noise figure The noise figure F is the ratio between: •
the input signal-to-noise ratio generated by thermal noise only
•
the total output signal-to-noise ratio generated by the thermal noise and the amplifier noise
Si
Na
F= N.
—
GKTB Inaformula:
N a
Where N0 = G~N~ +Nampi. The S~ and S~ are respectively the input and the output signal level. Typical noise figure The typical noise figure for a GSM BTS receiver is 8 dB. For a GSM MS receiver the noise figure may vary from 8 to 12 dB depending on the mobile class and band (GSM900 or CDS1 800). Reference sensitivity level As shown in the diagram below, the reference sensitivity level is determined from the known noise contributions and the minimum output performance criteria (S/N or EL/CO) according to the equipment specifications.
(SIN) ~
kTB
(SIN)0~ or
1’
(EbINO) ~
In Digital S~ lOIog(K*PB)
+
F + (EbINO)O~
EdNO threshold The mobile radio channel is characterized by wideband multipath propagation effects such as delay spread and Doppler shift as defined in GSM 05.05 annex C. The reference signal-to-noise ratio in the modulating bit rate bandwidth (271 kHz) is EdNO. The typical value used is 8 dB which includes a 2 dB implementation margin for the GSM system at the minimum service quality without interference.
You Try It! Answer: N=1.38~10 120.5dBm
23
3
.
16
(50 + 273) ~200~10= 8.9110 Watt
=
-150.5dBW
=
-
Exercise Answer Check the following to see if you answered the exercise question on the previous page correctly:
Si
=
1Olog(k~T~B)+ F+ Eb/NO
~‘
Si =-120+ 8 +8=-lO4dBm
This is the end of Receiver Sensitivity and Noise Contributions. Select the next topic on the leftto continue.
ETSI Specifications and Transmitter Power Classes ETSI Specifications What are the ETSI specifications? The European Telecommunications Standards Institute (ETSI) is a non-profit organization whose mission is to determine and produce telecommunications standards or specifications.
ETSI produces voluntary standards, but some of these may go on to be the technical base for European directives or regulations. You will use the ETSI specifications to identify the minimum transceiver performance (i.e. receiver sensitivity and transmit power) for mobile stations and base stations. Use the tables in the next sections to identify and compare the ETSI specifications and Lucent implementation for both GSM-900 and GSM-1800/GSM1900.
Specification Tables There are varieties of mobiles with varying performance in the network. The link budget design must cover the worst case sensitivity as defined by the GSM (ETSI) specifications. ETSI MS receiver sensitivity the minimum receiver sensitivity of Mobile Stations as by the ETSI:
3 -104 dBm 4 -102 dBm 5 -102 dBm ETSI BTS receiver sensitivity This table
-102 dBm
I:
I
Ml -97 dBm -102 dBm M2 -92 dBm -97 dBm M3 -87 dBm -92 dBm Lucent Tecnnologies SRFU receiver sensitivity Lucents SRFU has a guaranteed static receiver sensitivity defined in this table. Under different even better:
-108 dBm
-110 dBm
Lucent Technologies BTS receiver sensitivity
I
1
1
-108 aiim
-104
dBm
3 Ml
GSM1800-lO7dBm GSM 900
-104 dBm
-104 dBm -104 dBm
M2
GSM 1800 GSM900
-104 dBm -lO4dBm
-104 dBm -lO4dBm
M3
OSM 1800 GSM 900
-lO4dBm -104 dBm
-lO4dBm -104 dBm
)
GSM 1800 • •
-104 dBm
-104 dBm
Fading degradation of 4 5 dB applied to static sensitivity levels. Normal BTS sensitivity measured at the cabinet (not the SRFU) -
Effect of Moving Mobiles on Performance There are varieties of mobiles with varying performance in any network. The link budget must design the network to cover the worst case sensitivity as defined by the OSM specifications. With the new generation of mobile evaluation, -102 dBm are used for both GSM900 and 1800. A mobile receiver that moves at 50km/h, averages the fading but a static mobile will be under more severe fading influences. Therefore, if the customer queries on the quality margin for a static mobile receiver, it is necessary to consider for the static condition of the mobile receiver by applying an additional quality margin (approximately 4-5 dB) into the link budgets. I kc~ thc~ fAIIt-nA,ir
tlA,c
th~
t—~f mnhiI~Q
I I
in
n~C~tiAn nfl r~rc~i~,e2r c~c~nc~iti~,itx,
I
I
vvnere: • TU5O typical case for a typical urban area with an MS speed (vehicle speed) of 50 Km/h • HT1 00 typical case for a hilly terrain with an MS speed (vehicle speed) of 100 Km/h • RAl 30 typical case for a rural area with an MS speed (vehicle speed) of 130 Km/h (Only for DOSi 800) • RA250 typical case for a rural area with an MS speed (vehicle speed) of 250 Km/h (Only for GSM900) The most common model used in cell planning is the TU modeL which is used in approximately 95% of HT conditions. ~ iuii~t ~ ~ w~ IIIU~L LdN~ the given receiver sensitivity value and subtract 4 db to account for the more severe shadow fading environment that occurs with a stationary mobile. Value = -108 + 4 = -104 dBm. If you did not reach this answer, did you subtract 4 db to account for the greater influence of fading on the stationary mobile? -
Lucent Supported Transmitter Power Classes What are the transmitter power classes that Lucent supports? This section discusses the base station and mobile station transmitted power requirements. Base station transmission power The base station maximum transmission power, measured at the input of the BTS TX combiner, is given in the following table: BASE STATION GSM~9OO Watt (dBm) 320 (55)-640 (58) 160 (52)-320 (55) 80 (49)-i 60 (52) 40 (46)-80 (49)
1
GSM-1 800/1 900 Watt (dBm) 20 (43)~4O (46) 10 (40)-20 (43 5 (37)-b (40) 2.5 (34)-5 (37
)
20 (43)-40 (46) 10 (40)-20 (43) 5 (37)-b (40) 2.5 (34)-S (37)
1
Micro BTS transmission power The micro BTS provides lower transmitter ranges that are measured at the antenna connector after all stages of combining. The transmit powers are given in the following table: MICRO BTS GSM-900 Watt (dBm) 0.08 (1 9)-0.25 (24) 0.03 (15)-0.08 (19) 0.01 (10)-0.03 (15)
1
j j
Watt’d~~ GSM-1800/1900 0.5 (27)-i .6 (32 0.16 (22)-0.5 (27) 0.05 (17)-0.16 (22
Lucent BTS transmission output power The following table shows the Lucent supported TRX power classes:
4
/2C
4
40 (45)
40 (4S)
7
I I
3 5(37) 5(37) Ml 0.2(23) 1.25 (31) M2 0.08 (19) 0.5 (27) M3 M3 0.02 (13) 0.125 (21) • BTS type 6/12 includes 6id, l2id, 60dB, and l2od. • The TX power of BTS 6/12 is measured at the SFRU output. • The TX power of the /2C is measured at the antenna connector.
MS Transmitted power The mobile stations maximum output power is specified in GSM Rec.05.05. The power levels are given in the table below:
8 (39) 0.~, ~24) 0.~o ~4) 5 (37) 4(36) 4(36) 2 (33) 0.8 (29) )lerances are 2 dB under normal condition or 2.S dB under eme conditions. Minimum MS power level The lowest power control levels for GSM-900 and GSM-1 800/1 900 MSs are respectively 5 dBm and This0isdBm. the end of ETSI Specifications and Transmitter Power Classes. Select the next topic on the left to continue.
Calculating a Link Budget Maximum Path Loss Performing power budget cakulations As stated previously, there are two main reasons for performing power budget calculations. They are to:
6. achieve a maximum cell area covered using selected equipment, and 7. determine the required transmit power at the BTS side. Radio link power budget The radio link power budget is the total transmitted power(induding yatns~ subtracted by the losses and receiver sensitivity. This figure shows a graphical representation of the radio link power budget.
How to Calculate the Maximum Path Loss The uplink power budget is used to determine the maximum path loss. This calculation is performed first because: •
The MS transmit power is fixed.
•
The BTS receiver sensitivity is fixed.
•
The MS has less transmit power than the BTS.
Review the following example of an uplink power budget, which results in the maximum path loss. Signal Leuel
UPLINK MS transmit
~dBmi
power (GSM-900 class 4)
33
dBm
Cable loss
0 dOm
Antenna gain MS
2 dBi
Body Loss
2 d8
Fade margin (for example, 90% cell edge
140
L
+35
dO
12 dB
w19 db standard dev. for shadow fading) Antenna gain BTS
+33
+33
Pr
Maximum path lass
+33 +33
-107 -119
16 dBi
ACE loss (duplexer)
1 dB
Feeder loss
3 dB
Diversity Gain
3 dO
-103 -104 -107
OTS
receiver sensitivity • 0 0
-104
dOm
-104
The ACE includes all duplexers, combiners, filters, etc. Frequency hopping is not included in the budget. Additional margins can be considered to cover for: • Differences between actual and ideal BTS locations • Buildina Denetration loss.
iding can be a result of several things, for example shadowing, diffraction, and iulti-pathing. These factors help you identify the fade margin and shadow needed to complete your RF design plan and calculate the maximum j
)ath loss. To review the fade margin topic, go to the RF Propagation Concepts nodule in the RF Design Engineering curriculum available on the course list )age.
Transmit Power of the BIS How to calculate the transmit power of the BTS After the maximum path loss is calculated in the uplink power budget, the BTS transmit power can be determined using the downlink power budget. Review the following example of a downlink power budget, which results in the BTS transmit power.
DOWNLINK
BTS transmit power
Signal Leuel (dBm)
__________
L
38
dOm
Feeder loss
2 dB
ACE loss (combiner, duplexer)
2 dB
Antenna gain BTS Maximum path loss
16 dBi
12 dO
Body loss
2 dO
Antenna gain MS
2 dBi
Cable loss
0 db
Diversity Gain
0 dO
MS
receiver sensitivity (GSM-900 class 4)
+36 +34
140 db _________
Fade margin (for example, 90% cell edge wI9dB standard dev. for Shadow Fading
+38
-102 dOm
-90 -102 -104 -102 -102 -102
Maximum Cell Range Example of how to calculate maximum cell range After determining the power link budgets, you will determine the maximum cell range. For this example, use a maximum path loss (MAPL) of 140 dB from the previous example. Assume the following equipment parameters: -
An MS antenna height of 1.5 m, and BTS antenna height of 30 m in a low density urban area.
Now print the attached tables in Arrendix A and use them to calculate the maximum cell range. Continue to the next page to check the correct answer for this example. If you need additional information, try the Help links below and use your browser’s Back button to return to this page.
HeI~ 1 HeIr 2 Help 1: The maximum path loss (MAPL) is calculated by knowing the values of each element in link budget. These will depend on the equipment used and the signal strength required. The MAPL is
normally calculated automatically using the RF planning tool, but for this example, use 140 dB as the MAPL. Please use your browser’s Back button to return to the previous page. Help 2: The adjustment for an S3 clutter class is defined as an L~(dB) of 8. For more information on how to calibrate clutter classes, see the Surface Clutter Effects section in the RF Propagation Concepts module on the Wireless University website. Please use your browser’s Back button to return to the previous page.
Maximum Cell Range Answer A cell range of 2.96 can be found using the Okumura-Hata formula and tables.
I
I
I
I
I
I
I
I
I
Range D(km)
—
—
~. — .~ ——
.13 2.6013.6012.96 — . *4* .~ — ...28 2.7713.841316 4 ~ ~ — 2.60 3.16 4.38 360
4.38
2.77
569
3.37
4.68
384
468
533
3.84 7.39 7.39 4107894 789 438842 842 468899 899 499960I_ 960
10.25 114.21 1094115.17 — 11 68 116.19 1247 17.28 1331 18.45
Exercise Use the resources, information, and coverage requirements noted to determine the answers-to questions 1 through 3. • • •
A~~endix A tables UDlink worksheet Down link worksheet
Note: Use the Back icon on your browser to return to this page.
•
• • • •
•
uestions
A GMS-1900 mobile station, class 1 has no cable loss
and the antenna gain is 2 dBi. The body loss is 2 dB and the antenna height is 1 .5 m. Shadow fading has a standard deviation of 8 dB and the propagation slope is -39 dB gain. The Class 1 BTS is equipped with 11 dBi antennas at 15 m height. The ACE loss is 1 dO, while feeder loss is 2 dB. Diversity reception provides 3 dB gain.
Outdoor coverage with 90% confidence over the whole cell area.
Determine the following:
I
8. 9.
Power budgets for uplink and downlink. OTS power required for the cell edges (expressed in Watts).
I
10. Cell range in a dense suburban area (Class S3). Once you have answered these questions continue to the next page to verify your responses.
Uplink Worksheet UPLINK
Signal Level (dBm)
MS transmit power (GSM-1900 class 1) Cable loss Antenna gain MS Body Loss Maximum path lass Fade margin (75% cell edge) Antenna gain OTS ACE loss (duplexer) Feeder loss Diversity Gain OTS receiver sensitivity
Downlink Worksheet DOWNLINK 8TS
transmit power
Feeder loss ACE loss (combiner, duplexor) Antenna gain BTS Maximum path lass Fade margin (75% cell edge) Oody loss Antenna gain MS Cable loss Diversity Gain MS receiver sensitivity(GSM1900 class 1)
Signal Level ~dBm)
ExerCise Answers Review these answers to see if your responses to questions 1 through 3 are correct. Answer 1: Power budgets for Signal Leuel
UPLINK
(dDm)
MS transmit power (GSM-l 900 class 1)
+rn
30 dOm
Cable loss
0 dOm
Antenna gain MS
2 dOi
Oody Loss
2dO
Maximum path loss
+30 +32 +30
130 dB -108
Fade margin (75% cell edge)
5 dO
Antenna gain OTS
11 dOi
-113 -102
ACE loss (duplexer)
1 dO
Feeder loss
2 dO
Diversity Gain
3 dO
-103 -105
OTS receiver sensitivity uplink Answer 1: Power budgets for downlink
-102 dOm
Signal Leuel (dBm)
DOWN LINK BIS transmit power
35 dOm
Feeder loss
2 dO
ACE loss (combiner, duplexor)
1 dO
Antenna gain OTS
-102
11 dOi
+35 +33 +32 +43
Maximum path loss
138 dO -95
Fade margin (75% cell edge)
S dO -100
Oody loss
2 dO
Antenna gain MS
2 dOi
Cable loss
0 dO
Diversity Gain
0 dO
-98 -100 -100
MS receiver sensitivity (GSM1 900 class 1)
-100 dOm
-100
Answer 2: What is the BTS power (expres ed in watts)? As shown in the Downlink Budget above, Output Power = 35 dBm or 5 dBW = 3.2 Watts Answer 3: What is the cell range in a dense suburban area (class S3)?
In reference to the Path Loss Table for 1900MHz w/ iSm Antenna heights. We find with a Maximum Allowable Path Loss (MAPL) of 138 dO in S3 clutter, the cell range is 1 .35 kms. This is the end of Calculating a Link Budget. Select the next topic on the left to continue
Receiver’s Field Strength How to calculate the receiver~s field strength Receiver sensitivity requirements are given in terms of power levels at the receiver input. However, receiver equipment with an integral antenna (assuming a 0 dBi antenna) needs requirements expressed in terms of field strength (E). Field strength for GSM~9OO The relation between field strength (E) and power level (P) according to GSM rec.05.05 for GSM-900 is: E(dBpVIm) = P(dBm) +1 36.5 [50 ~2,925 MHzJ Field strength for GSM-i 800 The relation between field strength (E) and power level (P) according to GSM rec.05.05 for GSM-1 800 is: E(dBpVIm) = P(dBm) +1 42.3 [50 ~2,1795 MHz]
Continue ~ This is the end of the GSM Link Budget material. Select Quiz Me! from the topics on the left to answer the quiz questions and see how well you understand the concepts presented in this course.
RACE
Frequency f (MHz): BTS antenna height hb (in): MS antenna height hm (in):
Model: Propagation curves
900 15 1.5
clutter class:
U2
Ul
53
52
Si
F2
Fl
02
01
W
Corr.factorLc(dB)
0
3
8
5
11
9
19
19
24
29
Path loss
Range
L(db)
d(km)
120
0.52
0.63
0.85
0.71
1.03
0.91
1.69
1.69
2.30
3.13
121
0.55
0.67
0.91
0.75
1.09
0.97
1.79
1.79
2.44
3.33
122
0.59
0.71
0.97
0.80
1.16
1.03
1.91
1.91
2.60
3.54
123
0.63
0.75
1.03
0.85
1.24
1.09
2.03
2.03
2.77
3.77
124
0.67
0.80
1.09
0.91
1.32
1.16
2.16
2.16
2.94
4.01
125
0.71
0.85
1.16
0.97
1.40
1.24
2.30
2.30
3.13
4.27
126
0.75
0.91
1.24
1.03
1.49
1.32
2.44
2.44
3.33
4.54
127
0.80
0.97
1.32
1.09
1.58
1.40
2.60
2.60
3.54
4.83
128
0.85
1.03
1.40
1.16
1.69
1.49
2.77
2.77
3.77
5.14
129
0.91
1.09
1.49
1.24
1.79
1.58
2.94
2.94
4.01
5.47
130
0.97
1.16
1.58
1.32
1.91
1.69
3.13
3.13
4.27
5.81
131
1.03
1.24
1.69
1.40
2.03
1.79
3.33
3.33
4.54
6.19
132
1.09
1.32
1.79
1.49
2.16
1.91
3.54
3.54
4.83
6.58
133
1.16
1.40
1.91
1.58
2.30
2.03
3.77
3.77
5.14
7.00
134
1.24
1.49
2.03
1.69
2.44
2.16
4.01
4.01
5.47
7.45
135
1.32
1.58
2.16
1.79
2.60
2.30
4.27
4.27
5.81
7.92
136
1.40
1.69
2.30
1.91
2.77
2.44
4.54
4.54
6.19
8.43
137
1.49
1.79
2.44
2.03
2.94
2.60
4.83
4.83
6.58
8.97
138
1.58
1.91
2.60
2.16
3.13
2.77
5.14
5.14
7.00
9.54
139
1.69
2.03
2.77
2.30
3.33
2.94
5.47
5.47
7.45
10.15
140
1.79
2.16
2.94
2.44
3.54
3.13
5.81
5.81
7.92
10.80
141
1.91
2.30
3.13
2.60
3.77
3.33
6.19
6.19
8.43
11.49
142
2.03
2.44
3.33
2.77
4.01
3.54
6.58
6.58
8.97
12.22
143
2.16
2.60
3.54
2.94
4.27
3.77
7.00
7.00
9.54
13.00
144
2.30
2.77
3.77
3.13
4.54
4.01
7.45
7.45
10.15
13.83
145
2.44
2.94
4.01
3.33
4.83
4.27
7.92
7.92
10.80
14.71
146
2.60
3.13
4.27
3.54
5.14
4.54
8.43
8.43
11.49
15.65
147
2.77
3.33
4.54
3.77
5.47
4.83
8.97
8.97
12.22
16.65
148
2.94
3.54
4.83
4.01
5.81
5.14
9.54
9.54
13.00
17.72
149
3.13
3.77
5.14
4.27
6.19
5.47
10.15
10.15
13.83
18.85
150
3.33
4.01
5.47
4.54
6.58
5.81
10.80
10.80
14.71
20.05
Frequency f (MHz): BTS antenna height hb (in): MS antenna height hm (in):
clutter class:
U2
900 30 1.5
Ul
S3
S2
3
8
5
Si
F2
1119
Path loss
Range
L(db)
d(kin)
Fl
02
01
W
19
19
24
29
120
0.66
0.80
1.11
0.91
1.35
1.18
2.28
2.28
3.16
4.38
121
0.70
0.85
1.18
0.97
1.44
1.27
2.43
2.43
3.37
4.68
122
0.75
0.91
1.27
1.04
1.54
1.35
2.60
2.60
3.60
4.99
123
0.80
0.97
1.35
1.11
1.64
1.44
2.77
2.77
3.84
5.33
124
0.85
1.04
1.44
1.18
1.75
1.54
2.96
2.96
4.10
5.69
125
0.91
1.11
1.54
1.27
1.87
1.64
3.16
3.16
4.38
6.07
126
0.97
1.18
1.64
1.35
2.00
1.75
3.37
3.37
4.68
6.48
127
1.04
1.27
1.75
1.44
2.13
1.87
3.60
3.60
4.99
6.92
128
1.11
1.35
1.87
1.54
2.28
2.00
3.84
3.84
5.33
7.39
129
1.18
1.44
2.00
1.64
2.43
2.13
4.10
4.10
5.69
7.89
130
1.27
1.54
2.13
1.75
2.60
2.28
4.38
4.38
6.07
8.42
131
1.35
1.64
2.28
1.87
2.77
2.43
4.68
4.68
6.48
8.99
132
1.44
1.75
2.43
2.00
2.96
2.60
4.99
4.99
6.92
9.60
133
1.54
1.87
2.60
2.13
3.16
2.77
5.33
5.33
7.39
10.25
134
1.64
2.00
2.77
2.28
3.37
2.96
5.69
5.69
7.89
10.94
135
1.75
2.13
2.96
2.43
3.60
3.16
6.07
6.07
8.42
11.68
136
1.87
2.28
3.16
2.60
3.84
3.37
6.48
6.48
8.99
12.47
137
2.00
2.43
3.37
2.77
4.10
3.60
6.92
6.92
9.60
13.31
138
2.13
2.60
3.60
2.96
4.38
3.84
7.39
7.39
10.25
14.21
139
2.28
2.77
3.84
3.16
4.68
4.10
7.89
7.89
10.94
15.17
140
2.43
2.96
4.10
3.37
4.99
4.38
8.42
8.42
11.68
16.19
141
2.60
3.16
4.38
3.60
5.33
4.68
8.99
8.99
12.47
17.28
142
2.77
3.37
4.68
3.84
5.69
4.99
9.60
9.60
13.31
18.45
143
2.96
3.60
4.99
4.10
6.07
5.33
10.25
10.25
14.21
19.70
144
3.16
3.84
5.33
4.38
6.48
5.69
10.94
10.94
15.17
21.03
145
3.37
4.10
5.69
4.68
6.92
6.07
11.68
11.68
16.19
22.45
146
3.60
4.38
6.07
4.99
7.39
6.48
12.47
12.47
17.28
23.97
147
3.84
4.68
6.48
5.33
7.89
6.92
13.31
13.31
18.45
25.59
148
4.10
4.99
6.92
5.69
8.42
7.39
14.21
14.21
19.70
27.31
149
4.38
5.33
7,39
6.07
8.99
7.89
15.17
15.17
21.03
29.16
150
4.68
5.69
7.89
6.48
9.60
5.81
16.19
16.19
22.45
31.13
Frequency f (MHz): BTS antenna height hb
900 45
(in):
MS antenna height hm (in): clutter class: corr.factorLc(dB)
1.5
U2
Ul
S3
S2
51
F2
Fl
02
01
W
0
3
8
5
11
9
19
19
24
29
Path loss
Range
L(db)
d(kin)
120
0.76
0.94
1.31
1.07
1.61
1.40
2.76
2.76
3.87
5.43
121
0.82
1.00
1.40
1.15
1.72
1.50
2.95
2.95
4.14
5.81
122
0.88
1.07
1.50
1.23
1.84
1.61
3.16
3.16
4.43
6.21
123
0.94
1.15
1.61
1.31
1.97
1.72
3.38
3.38
4.74
6.65
124
1.00
1.23
1.72
1.40
2.11
1.84
3.62
3.62
5.07
7.11
125
1.07
1.31
1.84
1.50
2.25
1.97
3.87
3.87
5.43
7.61
126
1.15
1.40
1.97
1.61
2.41
2.11
4.14
4.14
5.81
8.14
127
1.23
1.50
2.11
1.72
2.58
2.25
4.43
4.43
6.21
8.71
128
1.31
1.61
2.25
1.84
2.76
2.41
4.74
4.74
6.65
9.32
129
1.40
1.72
2.41
1.97
2.95
2.58
5.07
5.07
7.11
9.97
130
1.50
1.84
2.58
2.11
3.16
2.76
5.43
5.43
7.61
10.67
131
1.61
1.97
2.76
2.25
3.38
2.95
5.81
5.81
8.14
11.42
132
1.72
2.11
2.95
2.41
3.62
3.16
6.21
6.21
8.71
12.21
133
1.84
2.25
3.16
2.58
3.87
3.38
6.65
6.65
9.32
13.07
134
1.97
2.41
3.38
2.76
4.14
3.62
7.11
7.11
9.97
13.98
135
2.11
2.58
3.62
2.95
4.43
3.87
7.61
7.61
10.67
14.96
136
2.25
2.76
3.87
3.16
4.74
4.14
8.14
8.14
11.42
16.00
137
2.41
2.95
4.14
3.38
5.07
4.43
8.71
8.71
12.21
17.12
138
2.58
3.16
4.43
3.62
5.43
4.74
9.32
9.32
13.07
18.32
139
2.76
3.38
4.74
3.87
5.81
5.07
9.97
9.97
13.98
19.60
140
2.95
3.62
5.07
4.14
6.21
5.43
10.67
10.67
14.96
20.97
141
3.16
3.87
5.43
4.43
6.65
5.81
11.42
11.42
16.00
22.44
142
3.38
4.14
5.81
4.74
7.11
6.21
12.21
12.21
17.12
24.01
143
3.62
4.43
6.21
5.07
7.61
6.65
13.07
13.07
18.32
25.69
144
3.87
4.74
6.65
5.43
8.14
7.11
13.98
13.98
19.60
27.48
145
4.14
5.07
7.11
5.81
8.71
7.61
14.96
14.96
20.97
29.40
146
4.43
5.43
7.61
6.21
9.32
8.14
16,00
16.00
22.44
31.46
147
4.74
5.81
8.14
6.65
9.97
8.71
17.12
17.12
24.01
33.66
148
5.07
6.21
8.71
7.11
10.67
9.32
18.32
18.32
25.69
36.01
149
5.43
6.65
9.32
7.61
11.42
9.97
19.60
19.60
27.48
38.53
150
5.81
7.11
9.97
8.14
12.21
10.67
20.97
20.97
29.40
41.22
Frequency f (MHz): BTS antenna height hb (in): MS antenna height hm (in):
1800 15 1.5
clutter class:
U2
Ul
S3
S2
51
F2
Fl
02
01
W
corr. factor Lc(dB)
0
3
8
5
11
9
19
19
24
29
Path loss
Range
L(db)
d(kin)
120
0.28
0.34
0.47
0.39
0.56
0.50
0.92
0.92
1.25
1.71
121
0.30
0.36
0.50
0.41
0.60
0.53
0.98
0.98
1.33
1.82
122
0.32
0.39
0.53
0.44
0.63
0.56
1.04
1.04
1.42
1.93
123
0.34
0.41
0.56
0.47
0.67
0.60
1.11
1.11
1.51
2.06
124
0.36
0.44
0.60
0.50
0.72
0.63
1.18
1.18
1.60
2.19
125
0.39
0.47
0.63
0.53
0.76
0.67
1.25
1.25
1.71
2.33
126
0.41
0.50
0.67
0.56
0.81
0.72
1.33
1.33
1.82
2.48
127
0.44
0.53
0.72
0.60
0.86
0.76
1.42
1.42
1.93
2.63
128
0.47
0.56
0.76
0.63
0.92
0.81
1.51
1.51
2.06
2.80
129
0.50
0.60
0.81
0.67
0.98
0.86
1.60
1.60
2.19
2.98
130
0.53
0.63
0.86
0.72
1.04
0.92
1.71
1.71
2.33
3.17
131
0.56
0.67
0.92
0.76
1.11
0.98
1.82
1.82
2.48
3.37
132
0.60
0.72
0.98
0.81
1.18
1.04
1.93
1.93
2.63
3.59
133
0.63
0.76
1.04
0.86
1.25
1.11
2.06
2.06
2.80
3.82
134
0.67
0.81
1.11
0.92
1.33
1.18
2.19
2.19
2.98
4.06
135
0.72
0.86
1.18
0.98
1.42
1.25
2.33
2.33
3.17
4.32
136
0.76
0.92
1.25
1.04
1.51
1.33
2.48
2.48
3.37
4.60
137
0.81
0.98
1.33
1.11
1.60
1.42
2.63
2.63
3.59
4.89
138
0.86
1.04
1.42
1.18
1.71
1.51
2.80
2.80
3.82
5.20
139
0.92
1.11
1.51
1.25
1.82
1.60
2,98
2.98
4.06
5.54
140
0.98
1.18
1.60
1.33
1.93
1.71
3.17
3.17
4.32
5.89
141
1.04
1.25
1.71
1.42
2.06
1.82
3.37
3.37
4.60
6.27
142
1.11
1.33
1.82
1.51
2.19
1.93
3.59
3.59
4.89
6.67
143
1.18
1.42
1.93
1.60
2.33
2.06
3.82
3.82
5.20
7.09
144
1.25
1.51
2.06
1.71
2.48
2.19
4.06
4.06
5.54
7.54
145
1.33
1.60
2.19
1.82
2.63
2.33
4.32
4.32
5.89
8.03
146
1.42
1.71
2.33
1.93
2.80
2.48
4.60
4.60
6.27
8.54
147
1.51
1.82
2.48
2.06
2.98
2.63
4.89
4.89
6.67
9.08
148
1.60
1.93
2.63
2.19
3.17
2.80
5.20
5.20
7.09
9.66
149
1.71
2.06
2.80
2.33
3.37
2.98
5.54
5.54
7.54
10.28
150
1.82
2.19
2.98
2.48
3.59
3.17
5.89
5.89
8.03
10.94
Frequency f (MHz): BTS antenna height hb (in): MS antenna height hm (in):
1800 30 1.5
clutter class:
U2
Ul
S3
S2
51
F2
Fl
02
01
w
Corr.factorLc(dB)
0
3
8
5
11
9
19
19
24
29
Path loss
Range
L(db)
d(kin)
120
0.28
0.34
0.47
0.39
0.56
0.50
0.92
0.92
1.25
1.71
121
0.30
0.36
0.50
0.41
0.60
0.53
0.98
0.98
1.33
1.82
122
0.32
0.39
0.53
0.44
0.63
0.56
1.04
1.04
1.42
1.93
123
0.34
0.41
0.56
0.47
0.67
0.60
1.11
1.11
1.51
2.06
124
0.36
0.44
0.60
0.50
0.72
0.63
1.18
1.18
1.60
2.19
125
0.39
0.47
0.63
0.53
0.76
0.67
1.25
1.25
1.71
2.33
126
0.41
0.50
0.67
0.56
0.81
0.72
1.33
1.33
1.82
2.48
127
0.44
0.53
0.72
0.60
0.86
0.76
1.42
1.42
1.93
2.63
128
0.47
0.56
0.76
0.63
0.92
0.81
1.51
1.51
2.06
2.80
129
0.50
0.60
0.81
0.67
0.98
0.86
1.60
1.60
2.19
2.98
130
0.53
0.63
0.86
0.72
1.04
0.92
1.71
1.71
2.33
3.17
131
0.56
0.67
0.92
0.76
1.11
0.98
1.82
1.82
2.48
3.37
132
0.60
0.72
0.98
0.81
1.18
1.04
1.93
1.93
2.63
3.59
133
0.63
0.76
1.04
0.86
1.25
1.11
2.06
2.06
2.80
3.82
134
0.67
0.81
1.11
0.92
1.33
1.18
2.19
2.19
2.98
4.06
135
0.72
0.86
1.18
0.98
1.42
1.25
2.33
2.33
3.17
4.32
136
0.76
0.92
1.25
1.04
1.51
1.33
2.48
2.48
3.37
4.60
137
0.81
0.98
1.33
1.11
1.60
1.42
2.63
2.63
3.59
4.89
138
0.86
1.04
1.42
1.18
1.71
1.51
2.80
2.80
3.82
5.20
139
0.92
1.11
1.51
1.25
1.82
1.60
2.98
2.98
4.06
5.54
140
0.98
1.18
1.60
1.33
1.93
1.71
3.17
3.17
4.32
5.89
141
1.04
1.25
1.71
1.42
2.06
1.82
3.37
3.37
4.60
6.27
142
1.11
1.33
1.82
1.51
2.19
1.93
3.59
3.59
4.89
6.67
143
1.18
1.42
1.93
1.60
2.33
2.06
3.82
3.82
5.20
7.09
144
1.25
1.51
2.06
1.71
2.48
2.19
4.06
4.06
5.54
7.54
145
1.33
1.60
2.19
1.82
2.63
2.33
4.32
4.32
5.89
8.03
146
1.42
1.71
2.33
1.93
2.80
2.48
4.60
4.60
6.27
8.54
147
1.51
1.82
2.48
2.06
2.98
2.63
4.89
4.89
6.67
9.08
148
1.60
1.93
2.63
2.19
3.17
2.80
5.20
5.20
7.09
9.66
149
1.71
2.06
2.80
2.33
3.37
2.98
5.54
5.54
7.54
10.28
150
1.82
2.19
2.98
2.48
3.59
3.17
5.89
5.89
8.03
10.94
Frequency f (MHz): BTS antenna height hb (in): MS antenna height hm (in):
1800 45 1.5
clutter class:
U2
Ul
S3
52
Si
F2
Fl
02
01
W
corr.factorLc(dB)
0
3
8
5
11
9
19
19
24
29
Path loss
Range
L(db)
d(kin)
120
0.39
0.48
0.68
0.55
0.83
0.72
1.42
1.42
2.00
2.80
121
0.42
0.52
0.72
0.59
0.89
0.53
1.52
1.52
2.14
3.00
122
0.45
0.55
0.78
0.63
0.95
0.56
1.63
1.63
2.29
3.21
123
0.48
0.59
0.83
0.68
1.02
0.60
1.74
1.74
2.45
3.43
124
0.52
0.63
0.89
0.72
1.09
0.63
1.87
1.87
2.62
3.67
125
0.55
0.68
0.95
0.78
1.16
0.67
2.00
2.00
2.80
3.93
126
0.59
0.72
1.02
0.83
1.24
0.72
2.14
2.14
3.00
4.20
127
0.63
0.78
1.09
0.89
1.33
0.76
2.29
2.29
3.21
4.49
128
0.68
0.83
1.16
0.95
1.42
0.81
2.45
2.45
3.43
4.81
129
0.72
0.89
1.24
1.02
1.52
0.86
2.62
2.62
3.67
5.14
130
0.78
0.95
1.33
1.09
1.63
0.92
2.80
2.80
3.93
5.50
131
0.83
1.02
1.42
1.16
1.74
0.98
3.00
3.00
4.20
5.89
132
0.89
1.09
1.52
1.24
1.87
1.04
3.21
3.21
4.49
6.30
133
0.95
1.16
1.63
1.33
2.00
1.11
3.43
3.43
4.81
6.74
134
1.02
1.24
1.74
1.42
2.14
1.18
3.67
3.67
5.14
7.21
135
1.09
1.33
1.87
1.52
2.29
1.25
3.93
3.93
5.50
7.72
136
1.16
1.42
2.00
1.63
2.45
1.33
4.20
4.20
5.89
8.26
137
1.24
1.52
2.14
1.74
2.62
1.42
4.49
4.49
6.30
8.83
138
1.33
1.63
2.29
1.87
2.80
1.51
4.81
4.81
6.74
9.45
139
1.42
1.74
2.45
2.00
3.00
1.60
5.14
5.14
7.21
10.11
140
1.52
1.87
2.62
2.14
3.21
1.71
5.50
5.50
7.72
10.82
141
1.63
2.00
2.80
2.29
3.43
1.82
5.89
5.89
8.26
11.58
142
1.74
2.14
3.00
2.45
3.67
1.93
6.30
6.30
8.83
12.39
143
1.87
2.29
3.21
2.62
3.93
2.06
6.74
6.74
9.45
13.25
144
2.00
2.45
3.43
2.80
4.20
2.19
7.21
7.21
10.11
14.18
U
—
145
2.14
2.62
3.67
3.00
4.49
2.33
7.72
7.72
10.82
15.17
146
2~29
2.80
3.93
3.21
4.81
2.48
8.26
8.26
6.27
16.23
147
2.45
3.00
4.20
343
5.14
2.63
8.83
8.83
6.67
17.36
148
2.62
3.21
4.49
3.67
550
2.80
9~45
945
7.09
1858
149
2.80
3.43
4.81
3.93
589
2.98
10.11
10.11
7.54
19.88
150
3.00
3.67
514
420
6.30
5.50
10.82
1O~82
803
21.27
6
—
Frequency f (MHz): BTS antenna height hb (in): MS antenna height hm (in):
1900 15 1.5
Clutter class:
U2
Ul
S3
S2
Si
F2
Fl
02
01
w
Corr.factorLc(dB)
0
3
8
5
11
9
19
19
24
29
Path loss
Range
L(db)
d(kin)
120
0.27
0.33
0.44
0.37
0.53
0.47
0.88
0.88
1.19
1.63
121
0.29
0.35
0.47
0.39
0.57
0.50
0.93
0.93
1.27
1.73
122
0.31
0.37
0.50
0.42
0.60
0.53
0.99
0.99
1.35
1.84
123
0.33
0.39
0.53
0.44
0.64
0.57
1.05
1.05
1.44
1.96
124
0.35
0.42
0.57
0.47
0.68
0.60
1.12
1.12
1.53
2.08
125
0.37
0.44
0.60
0.50
0.73
0.64
1.19
1.19
1.63
2.22
126
0.39
0.47
0.64
0.53
0.77
0.68
1.27
1.27
1.73
2.36
127
0.42
0.50
0.68
0.57
0.82
0.73
1.35
1.35
1.84
2.51
128
0.44
0.53
0.73
0.60
0.88
0.77
1.44
1.44
1.96
2.67
129
0.47
0.57
0.77
0.64
0.93
0.82
1.53
1.53
2.08
2.84
130
0.50
0.60
0.82
0.68
0.99
0.88
1.63
1.63
2.22
3.02
131
0.53
0.64
0.88
0.73
1.05
0.93
1.73
1.73
2.36
3.21
132
0.57
0.68
0.93
0.77
1.12
0.99
1.84
1.84
2.51
3.42
133
0.60
0.73
0.99
0.82
1.19
1.05
1.96
1.96
2.67
3.64
134
0.64
0.77
1.05
0.88
1.27
1.12
2.08
2.08
2.84
3.87
135
0.68
0.82
1.12
0.93
1.35
1.19
2.22
2.22
3.02
4.11
136
0.73
0.88
1.19
0.99
1.44
1.27
2.36
2.36
3.21
4.38
137
0.77
0.93
1.27
1.05
1.53
1.35
2.51
2.51
3.42
4.66
138
0.82
0.99
1.35
1.12
1.63
1.44
2.67
2.67
3.64
4.95
139
0.88
1.05
1.44
1.19
1.73
1.53
2.84
2.84
3.87
5.27
140
0.93
1.12
1.53
1.27
1.84
1.63
3.02
3.02
4.11
5.61
141
0.99
1.19
1.63
1.35
1.96
1.73
3.21
3.21
4.38
5.96
142
1.05
1.27
1.73
1.44
2.08
1.84
3.42
3.42
4.66
6.35
143
1.12
1.35
1.84
1.53
2.22
1.96
3.64
3.64
4.95
6.75
144
1.19
1.44
1.96
1.63
2.36
2.08
3.87
3.87
5.27
7.18
4
145
1.27
1.53
2.08
1.73
2.51
2.22
4.11
4.11
5.61
7.64
146
1.35
1.63
2.22
1.84
2.67
2.36
4.38
4.38
5.96
8.13
147
1.44
1.73
2.36
1.96
2.84
2.51
4.66
4.66
6.35
8.65
148
1.53
1.84
2.51
2.08
3.02
2.67
4.95
4.95
6.75
9.20
149
1.63
1.96
2.67
2.22
3.21
2.84
5.27
5.27
7.18
9.79
150
1.73
2.08
2.84
2.36
3.42
3.02
5.61
5.61
7.64
10.41
4
4
Frequency f (MHz): BTS antenna height hb (in): MS antenna height hm (in):
1900 30 1.5
Clutter class:
U2
Ul
S3
52
51
F2
Fl
02
01
W
Corr.factorLc(dB)
0
3
8
5
11
9
19
19
24
29
Path loss
Range
L(db)
d(kin)
120
0.33
0.40
0.56
0.46
0.68
0.59
1.14
1.14
1.58
2.19
121
0.35
0.43
0.59
0.49
0.72
0.63
1.22
1.22
1.69
2.34
122
0.38
0.46
0.63
0.52
0.77
0.68
1.30
1.30
1.80
2.50
123
0.40
0.49
0.68
0.56
0.82
0.72
1.39
1.39
1.92
2.67
124
0.43
0.52
0.72
0.59
0.88
0.77
1.48
1.48
2.05
2.85
125
0.46
0.56
0.77
0.63
0.94
0.82
1.58
1.58
2.19
3.04
126
0.49
0.59
0.82
0.68
1.00
0.88
1.69
1.69
2.34
3.25
127
0.52
0.63
0.88
0.72
1.07
0.94
1.80
1.80
2.50
3.46
128
0.56
0.68
0.94
0.77
1.14
1.00
1.92
1.92
2.67
3.70
129
0.59
0.72
1.00
0.82
1.22
1.07
2.05
2.05
2.85
3.95
130
0.63
0.77
1.07
0.88
1.30
1.14
2.19
2.19
3.04
4.22
131
0.68
0.82
1.14
0.94
1.39
1.22
2.34
2.34
3.25
4.50
132
0.72
0.88
1.22
1.00
1.48
1.30
2.50
2.50
3.46
4.80
133
0.77
0.94
1.30
1.07
1.58
1.39
2.67
2.67
3.70
5.13
134
0.82
1.00
1.39
1.14
1.69
1.48
2.85
2.85
3.95
5.47
135
0.88
1.07
1.48
1.22
1.80
1.58
3.04
3.04
4.22
5.84
136
0.94
1.14
1.58
1.30
1.92
1.69
3.25
3.25
4.50
6.24
137
1.00
1.22
1.69
1.39
2.05
1.80
3.46
3.46
4.80
6.66
138
1.07
1.30
1.80
1.48
2.19
1.92
3.70
3.70
5.13
7.11
139
1.14
1.39
1.92
1.58
2.34
2.05
3.95
3.95
5.47
7.59
140
1.22
1.48
2.05
1.69
2.50
2.19
4.22
4.22
5.84
8.10
141
1.30
1.58
2.19
1.80
2.67
2.34
4.50
4.50
6.24
8.65
142
1.39
1.69
2.34
1.92
2.85
2.50
4.80
4.80
6.66
9.24
143
1.48
1.80
2.50
2.05
3.04
2.67
5.13
5.13
7.11
9.86
144
1.58
1.92
2.67
2.19
3.25
2.85
5.47
5.47
7.59
10.53
4
145
1.69
2.05
2.85
2.34
3.46
3.04
5.84
5.84
8.10
11.24
146
1.80
2.19
3.04
2.50
3.70
3.25
6.24
6.24
8.65
12.00
147
1.92
2.34
3.25
2.67
3.95
3.46
6.66
6.66
9.24
12.81
148
2.05
2.50
3.46
2.85
4.22
3.70
7.11
7.11
9.86
13.67
149
2.19
2.67
3.70
3.04
4.50
3.95
7.59
7.59
10.53
14.60
150
2.34
2.85
3.95
3.25
4.80
4.22
8.10
8.10
11.24
15.58
4
Frequency f (MHz): BTS antenna height hb (in): MS antenna height hm (in):
1900 45 1.5
clutter class:
U2
Ul
53
S2
51
F2
Fl
02
01
W
Corr.factorLc(dB)
0
3
8
5
11
9
19
19
24
29
Path loss
Range
L(db)
d(kin)
120
0.37
0.46
0.64
0.52
0.79
0.69
1.35
1.35
1.89
2.65
121
0.40
0.49
0.69
0.56
0.84
0.73
1.44
1.44
2.03
2.84
122
0.43
0.52
0.73
0.60
0.90
0.79
1.55
1.55
2.17
3.04
123
0.46
0.56
0.79
0.64
0.96
0.84
1.65
1.65
2.32
3.25
124
0.49
0.60
0.84
0.69
1.03
0.90
1.77
1.77
2.48
3.48
125
0.52
0.64
0.90
0.73
1.10
0.96
1.89
1.89
2.65
3.72
126
0.56
0.69
0.96
0.79
1.18
1.03
2.03
2.03
2.84
3.98
127
0.60
0.73
1.03
0.84
1.26
1.10
2.17
2.17
3.04
4.26
128
0.64
0.79
1.10
0.90
1.35
1.18
2.32
2.32
3.25
4.56
129
0.69
0.84
1.18
0.96
1.44
1.26
2.48
2.48
3.48
4.88
130
0.73
0.90
1.26
1.03
1.55
1.35
2.65
2.65
3.72
5.22
131
0.79
0.96
1.35
1.10
1.65
1.44
2.84
2.84
3.98
5.58
132
0.84
1.03
1.44
1.18
1.77
1.55
3.04
3.04
4.26
5.97
133
0.90
1.10
1.55
1.26
1.89
1.65
3.25
3.25
4.56
6.39
134
0.96
1.18
1.65
1.35
2.03
1.77
3.48
3.48
4.88
6.84
135
1.03
1.26
1.77
1.44
2.17
1.89
3.72
3.72
5.22
7.31
136
1.10
1.35
1.89
1.55
2.32
2.03
3.98
3.98
5.58
7.83
137
1.18
1.44
2.03
1.65
2.48
2.17
4.26
4.26
5.97
8.37
138
1.26
1.55
2.17
1.77
2.65
2.32
4.56
4.56
6.39
8.96
139
1.35
1.65
2.32
1.89
2.84
2.48
4.88
4.88
6.84
9.58
140
1.44
1.77
2.48
2.03
3.04
2.65
5.22
5.22
7.31
10.25
141
1.55
1.89
2.65
2.17
3.25
2.84
5.58
5.58
7.83
10.97
142
1.65
2.03
2.84
2.32
3.48
3.04
5.97
5.97
8.37
11.74
143
1.77
2.17
3.04
2.48
3.72
3.25
6.39
6.39
8.96
12.56
144
1.89
2.32
3.25
2.65
3.98
3.48
6.84
6.84
9.58
13.44
145
2.03
2.48
3.48
2.84
4.26
3.72
7.31
7.31
10.25
14.38
146
2.17
2.65
3.72
3.04
4.56
3.98
7.83
7.83
10.97
15.38
147
2.32
2.84
3.98
3.25
4.88
4.26
8.37
8.37
11.74
16.46
148
2.48
3.04
4.26
3.48
5.22
4.56
8.96
8.96
12.56
17.61
149
2.65
3.25
4.56
3.72
5.58
4.88
9.58
9.58
13.44
18.84
150
2.84
3.48
4.88
3.98
5.97
5.22
10.25
10.25
14.38
20.16