UNIVERSIDAD UNIVERSID AD RICARDO PALMA FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL
CURSO: PROFESOR: TITULO:
ALUMNOS: SUBGRUPO:
Ingeniería Hidráulica Ing. Manuel Casas Villal!s Ver"eders
Mina#a Car!a$al Edisn Fla%i SS&
Lima 2015-I
VERTEDEROS
Ing. Hidraulica
INTRODUCCION Cuando la descarga de un líquido se efectúa por encima de un muro o una placa y a superficie libre, libre, la estructura estructura hidráulica en la que que ocurre esta descarga descarga se llama Vertedor. Este puede presentar diferentes formas según las finalidades a que se destine. Así, cuando la descarga se efectúa sobre una placa con perfil de cualquier forma, pero con arista aguda, el vertedor se llama de pared delgada por el contrario, contrario, cuando el contacto entre la pared y la lámina vertiente es más bien toda una superficie, superficie, el vertedor vertedor es de pared gruesa. gruesa. Este informe tiene tiene como ob!etivo ob!etivo funda fundamen menta tall estud estudiar iar,, anal anali"a i"arr y compa comparar rar el compo comport rtami amient ento o de cauda caudales les tomados e#perimentalmente e#perimentalmente en el laboratorio laboratorio en tipo de vertedero vertedero rectangular, rectangular, con sus respectivos caudales te$ricos.
LA'(RAT(RI( DE HIDRAULICA
&
VERTEDEROS
Ing. Hidraulica
OBJETIVOS
A% &enera &enerales les '
•
Estudiar las características de flu!o a trav(s de un vertedero de escotadura rectang rectangular ular,, practica practicado do en una pared pared delgad delgada a y con el umbral umbral afilado. afilado. )aciendo uso de lo aprendido anteriormente en la medici$n de caudales.
*% Es Espe pecí cífi fico cos' s' Comparar Comparar caudales caudales prácticos con caudales te$ricos, e#traer datos y, o eliminar los que se ale!an y consolidar cálculos. o +emostrar mediante ecuaciones las relaciones entre las variables. o
btener un coeficiente de +escarga uniforme
FUNDAMENTO TEÓRICO CAUDAL LA'(RAT(RI( DE HIDRAULICA
)
VERTEDEROS
Ing. Hidraulica
En dinámica de fluidos, caudal es la cantidad de fluido que pasa en una unidad de tiempo. -ormalmente se identifica con el flu!o volum(trico o volumen que pasa por un área dada en la unidad de tiempo. enos frecuentemente, se identifica con el flu!o másico o masa que pasa por un área dada en la unidad de tiempo.
VERTEDEROS En general, un vertedero se puede interpretar como una barrera que se interpone al flu!o, para causar una elevaci$n en el nivel de aguas arriba y una ba!a aguas aba!o. El control en el nivel de embalses, canales, dep$sitos, aforo o medici$n de caudales, son dos de las principales funciones de los vertederos en el campo de la ingeniería. /os vertederos pueden ser clasificados de diferentes maneras, ya sea por su forma geom(trica o su finalidad. 0n vertedero donde se reali"a una descarga sobre una placa de perfil cualquiera, pero con arista aguda, se llama vertedor de pared delgada. 1i el contacto entre la lámina de descarga y la pared del vertedero es una superficie, el vertedero será de pared gruesa. 1egún su forma geom(trica, pueden ser triangulares, rectangulares, trape"oidales, circulares, etc., todo depende de la funci$n que este ira a cumplir.
VERTEDEROS DE PARED DELGADA /os vertederos de paredes delgadas son vertederos hidráulicos, generalmente usados para medir caudales. 2ara obtener resultados fiables en la medici$n con el vertedero de pared delgada es importante que'
tenga la pared de aguas arriba vertical,
est( colocado perpendicularmente a la direcci$n de la corriente, y,
la cresta del vertedero sea hori"ontal
LA'(RAT(RI( DE HIDRAULICA
*
VERTEDEROS
Ing. Hidraulica
VERTEDEROS RECTANGULARES. 1on una estructura con una entalladura, la cual se coloca transversalmente en el canal y perpendicular a la direcci$n del flu!o.
0.0
b href
h
Q
ECUACIÓN DE GASTO 2ara obtener la ecuaci$n general del gasto de un vertedero de pared delgada y secci$n geom(trica rectangular, se considera que su cresta está ubicada a una altura 3, medida desde la plantilla del canal de alimentaci$n. El desnivel entre la superficie inalterada del agua, antes del vertedor y la cresta, es h y la velocidad uniforme de llegada del agua es Vo , de tal modo que' 2
H =h +
V 0 2g
1i 3 es muy grande,
Vo 2 / 2 g es despreciable y H =h .
El vertedero rectangular tiene como ecuaci$n que representa el perfil de forma, la cual es normalmente conocida, X =b / 2 . +onde b es la longitud de la cresta. Al aplicar la ecuaci$n de *ernoulli para una línea de corriente entre los puntos 4 y 5, de la figura, se tiene
LA'(RAT(RI( DE HIDRAULICA
+
VERTEDEROS
2
Ing. Hidraulica
2
v0
v h0 + = h0−h + y + 2g 2g 2
2 v0 v H =h + = y + 2g 2g
1i Vo6 7 6g es despreciable, la velocidad en cualquier punto de la secci$n 5 vale, v =√ 2 g ( h − y )
El gasto a trav(s del área elemental, es entonces' h
1 2
∫ ( h− y ) (−dy )
Q=− μ √ 2 g b
0
y efectuando la integraci$n es'
[
]
h
Q=− μ √ 2 g b ( h− y )3/ 2 0
y finalmente LA'(RAT(RI( DE HIDRAULICA
,
VERTEDEROS
Ing. Hidraulica
2 3/2 Q= √ 2 g μ b h 3
donde' 8 9 es el coeficiente de gasto o coeficiente de descarga. b 9 es la anchura del vertedero. h 9 es la altura de carga o altura de la lámina de agua sobre la cresta o umbral del vertedero. /a cual es la ecuaci$n general para calcular el gasto :Caudal% en un vertedero rectangular cuya carga de velocidad de llegada es despreciable. En la deducci$n de las ecuaciones para vertederos de pared delgada en general se han considerado hip$tesis únicamente apro#imadas, como la omisi$n de la perdida de energía que se considera incluida en el coeficiente m, pero qui"á la más importante que se ha supuesto, es la que en todos los puntos de la secci$n 5 las velocidades tienen direcci$n hori"ontal y con una distribuci$n parab$lica, efectuándose la integraci$n entre los limites 4 y h. Esto equivale a que en la secci$n el tirante debe alcan"ar la magnitud h. 2or otra parte, al aplicar la ecuaci$n de *ernoulli entre los puntos 4 y 5 se ha supuesto una distribuci$n hidrostática de presiones. Esto implica una distribuci$n uniforme de las Vo velocidades y v para todos los puntos de las secciones 4 y 5, respectivamente.
LA'(RAT(RI( DE HIDRAULICA
-
VERTEDEROS
Ing. Hidraulica
EQUIPOS Y MATERIALES EQUIPOS A. CANAL DE PENDIENTE VARIABLE
B. LIMNIMETRO 0sado para medir la cargas hidráulica
VERTEDERO
LA'(RAT(RI( DE HIDRAULICA
VERTEDEROS
Ing. Hidraulica
MATERIALES AGUA ;luido del cual determinaremos la presi$n e#perimentalmente y te$ricamente empleando los equipos se
CRONOMETRO 0sado para determinar el tiempo en cada ensayo, volumen peque
PROBETA: 0sado para contener el fluido y para verter en el equipo de presi$n sobre superficies cuando se van agregando las pesas.
LA'(RAT(RI( DE HIDRAULICA
/
VERTEDEROS
Ing. Hidraulica
INSTALACION DEL EQUIPO El equipo consta de cinco sencillos elementos que se emplean en combinaci$n con el canal del *anco )idráulico. /a boquilla de impulsi$n del banco debe sustituirse por la embocadura especial:5%. 1ituar una pantalla rígida :6% como indica la figura, desli"ándola entre las dos ranuras e#istentes en las paredes del canal. /a forma de estas ranuras asegura la correcta orientaci$n de la pantalla, pues s$lo puede introducirse en una única posici$n. El con!unto formado por la embocadura y la pantalla proporcional lis condiciones necesarias para obtener una corriente lenta en el canal. 0n =nonius= :>%, que se a!usta en un mástil y se% se fi!a al mástil :% mediante el tomillo :B% y se utili"a en con!unto con la escala :%. 0n peque
LA'(RAT(RI( DE HIDRAULICA
01
VERTEDEROS
Ing. Hidraulica
PROCEDIMIENTO Y TOMA DE DATOS PARA CAUDALES PEQUEÑOS El vertedero en forma rectangular se monta en un soporte, al que quedaran enclavados por unas tuercas.
1e suministra agua al canal hasta que descargue por el vertedero.
Esperamos que no discurra el agua, para con el limnimetro tomar lectura de la altura de referencia, medida desde el limnimetro hasta la superficie libre en reposo.
LA'(RAT(RI( DE HIDRAULICA
00
VERTEDEROS
Ing. Hidraulica
1e abre la válvula para aumentar el caudal, se toma lectura de la altura a la que se encuentra la superficie libre.
Con ayuda de la probeta graduada se recibe el agua que sale por la embocadura, a la ve" que con el cronometro se contabili"a el tiempo desde que el agua cae a la probeta hasta que se esta se retira.
1e toman los datos obtenidos para el cálculo posterior.
Cuando el caudal aumenta y ya no es posible recibir el agua en la probeta, se toman los datos de otra forma, como se indica a continuaci$n.
PARA CAUDALES GRANDES
LA'(RAT(RI( DE HIDRAULICA
0&
VERTEDEROS
Ing. Hidraulica
/os pasos a seguir son los mismos que para caudales peque
Ahora el caudal se calculará con la altura leída en el tubo de nivel provisto de una escala graduada.
DATOS En la práctica se obtuvieron los siguientes datos'
LA'(RAT(RI( DE HIDRAULICA
0)
VERTEDEROS
Ing. Hidraulica DATOSEXTRAIDOSDELABORATORIO CAUDAL
VOLUMEN ENML
TIEMPO (s)
,1& -1) ,, -) - -&& -0+ 11 /++ / /,) /* /* //+ ,0 -++ ++ -)+ 11 - + -)+ /1+ ++ /*0 &+ -++ ++ +/ /,1 ++ ) 01111 &1111 )1111
*.11 *.// *.+/ *.// +.)+ *./+ *., ).&* *.11 ).+0 ).)./) )./ ).0 0. &.&, &.-* &.1& &.+, &.0&.0* 0.- &.&/ &.0& 0.-+ 0.-& 0.+/ 0.,* 0.* 0./* 0.0.-, /.0) 0.+ &.&0
Q1
Q2
Q3
Q4
Q5
Q6
ALTURA LEIDA (mm)
,-.,1
,1.01
++.*1
+1./1
*,.-1
&0.-1
Altura eferencial' >.6 mm
CALCULOS a Calcul! d" caudal"# LA'(RAT(RI( DE HIDRAULICA
0*
VERTEDEROS
Ing. Hidraulica
Pa$a Q%
CAUD AL
Q 1
VOLUM EN ml
VOLUM EN m3
TIEMP O (s)
46
4.44446
?.44
B4>
4.444B4>
?.DD
4.444
?.@D
B>
4.444B>
?.DD
B
4.444B
@.>@
B66
4.444B66
?.D@
B5@
4.444B5@
?.
CAUDAL m3 /s
4.4445@4 @ 4.4445?4 4.4445?@ @> 4.4445?B D 4.4445?B 6D 4.4445?@ 4.4445?B 56
Como se sabe el caudal no se define con solo dos pruebas es necesario reali"ar diversas mediciones y elegir las más cercanas, se eligieron las mediciones que están resaltadas en el cuadro anterior. Con los datos se
CAUDA L Q1
VOLUMEN PROMEDI O 4.444B?B
LA'(RAT(RI( DE HIDRAULICA
TIEMPO PROMEDI O @.4B
CAUDAL PROMEDIO m3 /s
4.4445?B?>@
0+
VERTEDEROS
Ing. Hidraulica
Pa$a "l $"#&! d" caudal"#: MEDICIONES EN LABORATORIO Y CALCULO DE CAUDAL CAUDA L
VOLUME N ml
VOLUME N m3
TIEMPO (s)
44
4.44444
>.6?
D@@
4.444D@@
?.44
D
4.444D
>.@5
Q2 D>
4.444D>
>.B
D?
4.444D?
>.D>
D?
4.444D?
>.D
DD@
4.444DD@
>.5
5
4.4445
5.
B@@
4.444B@@
6.6
Q3
Q4
Q5
@@
4.444@@
6.B?
B>@
4.444B>@
6.46
44
4.44444
6.@
B
4.444B
6.5B
@
4.444@
6.5?
B>@
4.444B>@
5.B
D4@
4.444D4@
6.6D
@@
4.444@@
6.56
D?5
4.444D?5
5.B@
6@
4.4446@
5.B6
LA'(RAT(RI( DE HIDRAULICA
CAUDAL m3 /s 4.4446?D 5 4.4446>B @ 4.4446@@ ? 4.4446? ? 4.4446@4> 4.4446?B6 ? 4.444>56 D 4.444>6B 6 4.444>>?4 B 4.444>564 ? 4.444>> 4.444>56@ 4 4.444?4? 5 4.444?44D > 4.444?56D 6 4.444>D@6 4 4.444?4>> 4 4.444@>BB 5 4.444?BD
PROMEDIOS VOLUMEN PROMEDI O
TIEMPO PROMEDI O
CAUDAL PROMEDIO M3/S
4.444D5
>.B4
4.4446?BB
4.444>
6.>
4.444>56@
4.444?
6.5?
4.444?4>B
4.4445
5.B?
4.444?D4
0,
VERTEDEROS
Q6
Ing. Hidraulica
B@@
4.444B@@
5.@D
@@
4.444@@
5.?
@D
4.444@D
5.?
D4
4.444D
5.D?
@@
4.444@@
5.B
>
4.444>
5.B
54444
4.45
D.5>
64444
4.46
5.@
>4444
4.4>
6.65
@ 4.444?B? ? 4.444@65> ? 4.444? @ 4.444?D? @ 4.444?@B6 6 4.444?B5 ? 4.4454D@6 D 4.4454B? > 4.4454>? @
4.464444
5.?
-ota' /os datos resaltados con color verde son los caudales seleccionados, para calcular el caudal F promedio.
' C(lcul! d" la al&u$a d" ca$)a *
N+ % 2 3 4 5 6
Al&u$a R","$"-ca l //
Al&u$a l"0da //
Al&u$a d" Ca$)a * //
* 1/
>.6
B. 4.5 @@.? @4.D ?.B 65.B4
5@. 6>.5 6B. >6.> >.@ 5.@
4.45@ 4.46>5 4.46B 4.4>6> 4.4>@ 4.45@
Altura de cargah = Altura Referencial− Altura Leida
c C(lcul! d" c!",c"-&" d" d"#ca$)a μm
LA'(RAT(RI( DE HIDRAULICA
0-
4.4454B>4
VERTEDEROS
Ing. Hidraulica
1e sabe que el caudal a trav(s de un orificio rectangular viene dado por la e#presi$n' 3 2 Q= μm . b √ 2 g h 2 3 +espe!ando 3Q
μm=
2 b . √ 2 g h
3 2
ancho de escotadura b=3 cm =0.03 m.Porloqueμm esadimensional
Además'
A continuaci$n presentamos la siguiente tabla en la que se calcula coeficiente de descarga para cada caso y su valor promedio'
N+
CAUDAL Q /3 7#
* 1/
%
4.4445?B
4.45@
2
4.4446?
4.46>5
3
4.444>56
4.46B
4
4.444?4?
4.4>6>
5
4.444?D
4.4>@
6
4.4454B>
4.45@
μm
h
3 2
2ero escogemos los valores resaltados'
μm
4.445D? ? 4.44>@54 D 4.44?>@ 6 4.44@4@ 4 4.44DB> > 4.45@6@5 @
PROMEDIO
el
4.@6 4.BDB 4.B4 4.B 4.B@D 4.BD? 4.BD5
μm= 0.792
d Ta'la d" c(lcul!# ,-al"#
N +
VOLUME N /3
%
4.444B?B
CALCULOS 8 VERTEDERO RECTANGULAR TIEMP ALTUR 2 Q log Q log h Q3 O A 3 / 7# # * @.4B
4.4445? B
LA'(RAT(RI( DE HIDRAULICA
4.45@
4.446B@
G>.>6B
G5.4D
h b
μm
4.@64
4.@6
0
VERTEDEROS
2
4.444D5
>.B4
3
4.444>
6.>
4
4.444?
6.5?
5
4.4445
5.B?
6
4.464444
5.?
Ing. Hidraulica
4.4446? 4.444>5 6 4.444?4 ? 4.444? D 4.4454B >
4.46>5
4.44>D?B
G>.4@@
G5.>?
4.BB4
4.BDB
4.46B
4.44?44
G>.@4@
G5.@@4
4.D6B
4.B4
4.4>6>
4.44@?@
G>.>D>
G5.?D4
5.4BB
4.B
4.4>@
4.444>
G>.>6
G5.?>BB
5.65B
4.B@D
4.45@
4.454?5
G6.DD?
G5.6555
6.4@4
4.BD?
Homamos los valores cercanos los cálculos -I 6, -I ?, -I observando el
CALCULOS 8 VERTEDERO RECTANGULAR TIEMP ALTUR 2 Q log Q log h Q3 O A 3 / 7# # *
N +
VOLUME N /3
2
4.444D5
>.B4
4
4.444?
6.5?
6
4.464444
5.?
4.4446? 4.444?4 ? 4.4454B >
μm
h b
μm
4.46>5
4.44>D?B
G>.4@@
G5.>?
4.BB4
4.BDB
4.4>6>
4.44@?@
G>.>D>
G5.?D4
5.4BB
4.B
4.45@
4.454?5
G6.DD?
G5.6555
6.4@4
4.BD?
RESULTADOS Y GRAFICAS LA'(RAT(RI( DE HIDRAULICA
0/
VERTEDEROS
Ing. Hidraulica
DETERMINACION DE GRAFICAS A. Q273 "- ,u-c9- d" * 1e tienen los siguientes resultados, según lo que se di!o anteriomente'
ALTURA 1* /
Q273
4.46>5 4.4>6> 4.45@
4.44>D 4.44@@ 4.454@
A.%. RECTA TEORICA ediante formula definida en el marco te$rico se define una relaci$n entre las variables, veamos' 1i' 3
2 Q= μm . b √ 2 g h 2 3
(
)
2
2 Q = μm .b √ 2 g 3 h 3 2/ 3
)aciendo Q = y ; h= 2/ 3
y =
(
)
2
2 μ . b √ 2 g 3 3 m
eempla"ando valores' y =0.1701
LA'(RAT(RI( DE HIDRAULICA
&1
VERTEDEROS
Ing. Hidraulica
A.2. RECTA EPERIMENTAL *asada en nuestros valores obtenidos en esta práctica de laboratorio y empleando concepto de JA!uste de Curvas en EstadísticaK :ecta de ínimos Cuadrados%.
RECTA DE REGRESION % =h
N 2 4 6 S!m"s P#$m%&'$ s
2
2
y
4.44>D?B
4.4444D5
4.444@>?
4.44445
4.44@?@
4.4445BB
4.4454?>
4.4444>4
4.454?5
4.444?@
4.44>B6
4.444554
4.45DD>
4.444D56
4.44@>@D
4.4445@@
4.44>5
4.444>4?
4.445B
4.4444@6
y =Q
4.46>54 4 4.4>6>4 4 4.45@4 4 4.55D4 4 4.4>D B
2 3
y
1e emplea las formulas'
∑¿ ¿ ¿
∑ −¿ n ∑ y −∑ ∑ y b= n
2
¿
a = y´ −b ´
1i n9 b =0.1705 ;a=−0.000014 ;inalmente' y =0.1705 −0.000014 Empleando icrosoft E#cel, presentamos la grafica
LA'(RAT(RI( DE HIDRAULICA
&0
VERTEDEROS
Ing. Hidraulica
Q^(2!" 1.10&111 1.101111
2345 6 1.0-4 7 1
1.11111
893&:)5 Linear 3893&:)55
1.11,111 1.11*111 1.11&111 1.111111 1.1&
1.1)
1.1*
1.1+
1.1,
1.1-
B. L!) Q "- ,u-c9- d" l!) ; 1e tienen los siguientes resultados' log h
G5.>>D G5.?D44 G5.65556
log Q
G>.4@@@ G>.>D>6 G6.DD?4
B.%. RECTA TEORICA ediante formula definida en el marco te$rico se define una relaci$n entre las variables, veamos' 2artiendo de 3
2 Q= μm . b √ 2 g h 2 3
(
3
2 log Q= log μm . b √ 2 g h 2 3
LA'(RAT(RI( DE HIDRAULICA
) &&
VERTEDEROS
Ing. Hidraulica
( (
) )+
( ) 3
2 log Q = log μm . b √ 2 g + log h 2 3 log Q = log
)acemos' y = log
(
2 μ . b √ 2 g 3 m
3 logh 2
log Q= y ; logh =
2 μ . b √ 2 g 3 m
)
3 + 2
eempla"ando' y =−1.1538 + 1.5
B.2. RECTA EPERIMENTAL RECTA DE REGRESION % 2 y =logQ y
N
=logh
2 4 6
G5.>> G5.?D4BDB G5.65556@
G>.4@@? G>.>D>5D G6.DD?44
S!m"s
G?.>>>54
GD.D@B
P#$m%&'$ s
G5.??54>
G>.>66@
y
2
@.D444B @.4@D5D >.@D>5@ 5?.@@@@ D
6.BBB 6.666?BB 5.?6>
56.DDDDBD 55.@5?B .5B>>
.>B4
>>.>>>D?
?.@5>
6.566>@@
55.555>65
Empleando las formulas'
LA'(RAT(RI( DE HIDRAULICA
&)
VERTEDEROS
Ing. Hidraulica
∑¿ ¿ ¿
∑ −¿ n ∑ y −∑ ∑ y b= n
2
¿
a = y´ −b ´
1e tiene' y =1.4987 −1.1556
#$% Q 1.11111 70.1111 70.,1111 70.*1111 70.&1111 70.11111 71.+1111 70.11111 70.+1111
lg 8 Linear 3lg 85
7&.11111 7&.+1111 2345 6 0.+4 7 0.0,
7).11111 7).+1111 7*.11111
C. "- ,u-c9- d" * μm=
3Q 2 b . √ 2 g h
LA'(RAT(RI( DE HIDRAULICA
3 2
&*
VERTEDEROS
Ing. Hidraulica
El coeficiente de descarga depende de F y de h, por lo que no se podrá definir una curva te$ricamente.
c.%. Da&!# E=>"$/"-&al"# 1e presenta los datos graficados empleando 1 ELCE/.
* 1/ ?.?23% ?.?323 ?.?6%5
μm
4.BDB? 4.B@ 4.BD?6
C$&' D& D&)*a+%a 1.111 1.-/+1 1.-/11
2345 6 1.104 ; 1.-/ Ce2. De Descarga
Linear 3Ce2. De Descarga5
1.-+1 1.-11 1.--+1 1.1&11 1.1&+1 1.1)11 1.1)+1 1.1*11 1.1*+1 1.1+11 1.1++1 1.1,11 1.1,+1
D. R"lac9- Q @ *.
1e obtuvieron los #)u"-&"# resultados'
* / LA'(RAT(RI( DE HIDRAULICA
Q 1/3 7# &+
VERTEDEROS
Ing. Hidraulica
?.?23% ?.?323 ?.?6%5
4.4446? 4.444?4? 4.4454B>
D.%. Cu$a T"9$ca: eempla"amos valores en la formula inicial 3 2 Q= μm . b √ 2 g h 2 3 Q=0.0702 h
3 2
D.2. Cu$a "=>"$/"-&al: 2or el m(todo no lineal de egresi$n 2otencial :estadística% se tiene las relaciones y se construye la sgte. tabla' b y = a ln ( y )= ln ( a )+ b∗ln ( )
Ahora se reempla"a' " = ln ( y ) A = ln ( a ) X =ln ( )
1e tendría la ecuaci$n' " = A + bX AJUSTE POTENCIAL N
=h
y =Q
X = Ln
" =lny
X"
2
2
"
X
2
4.46>5
4.4446?B@B
G>.BBD66
G.>4>6B45>
>5.65B
5?.5DB6?56
.D@>@?>5
4
4.4>6>
4.444?4>B?
G>.?>64@
GB.5?B?>5
6.6@@BB
55.B>>?B6
5.4B465B
6 S!m" s
4.45@
4.4454B6D
G6.BB55
G.>B>>65@
5D.4B>D>
B.BBD?
?.B?D56
4.55D
4.445B6?6B
GD.DD>65
G66.D@@D4>?@
BB.555?
>>.B@B@>B5
5B.BB65
Ap Aplicando la f$rmula de egresi$n lineal :mínimos cuadrados%'
LA'(RAT(RI( DE HIDRAULICA
&,
VERTEDEROS
Ing. Hidraulica A =−2.6561 b =1.5 A
a =e
2or lo tanto
=0.0702
;inalmente' y =0.0702
1.5003
1.5003
Q=0.0702 h
&ráfica'
,Q 1 1
2345 6 1.1- 490.+
1 1
#68 <=er 3#685
1 1 1 1.1& 1.1) 1.1) 1.1* 1.1* 1.1+ 1.1+ 1.1, 1.1, 1.1-
LA'(RAT(RI( DE HIDRAULICA
&-
VERTEDEROS
Ing. Hidraulica
CONCLUSIONES: •
1e obtuvieron los siguientes resultados finales'
CALCULOS 8 VERTEDERO RECTANGULAR N+
VOLUME N /3
TIEMPO #
2
4.444D5
>.B4
4
4.444?
6.5?
6
4.464444
5.?
•
•
Q /3 7# 4.4446? 4.444?4 ? 4.4454B >
log Q
log h
h b
μm
4.44>D?B
G>.4@@
G5.>?
4.BB4
4.BDB
4.4>6>
4.44@?@
G>.>D>
G5.?D4
5.4BB
4.B
4.45@
4.454?5
G6.DD?
G5.6555
6.4@4
4.BD?
ALTURA *
Q
4.46>5
2 3
1e defini$ el valor del coeficiente de +escarga' μm= 0.792 1e calcul$ una ecuaci$n que relaciona F y h. 1.5003 Q =0.0702 h
Q .) / 1 1
2345 6 1.1- 490.+
1 1
#68 <=er 3#685
1 1 1 1.1& 1.1) 1.1) 1.1* 1.1* 1.1+ 1.1+ 1.1, 1.1, 1.1-
•
1e respondi$ al cuestionario e#perimental planteado.
LA'(RAT(RI( DE HIDRAULICA
&
VERTEDEROS •
Ing. Hidraulica
+efinimos ecuaciones te$ricas y e#perimentales y graficas de comparaciones entre las variables se
A. Q273 "- ,u-c9- d" * A.%. RECTA TEORICA: y =0.1701
A.2. RECTA EPERIMENTAL: y =0.1705 −0.000014 B. L!) Q "- ,u-c9- d" l!) ; B.%. RECTA TEORICA: y =−1.1538 +1.5
B.2. RECTA EPERIMENTAL: y =1.4987 −1.1556 C. G$(,c! "- ,u-c9- d" *
C$&' D& D&)*a+%a 1.111 1.-/+1 1.-/11
2345 6 1.104 ; 1.-/ Ce2. De Descarga
Linear 3Ce2. De Descarga5
1.-+1 1.-11 1.--+1 1.1&11 1.1&+1 1.1)11 1.1)+1 1.1*11 1.1*+1 1.1+11 1.1++1 1.1,11 1.1,+1
D. R"lac9- Q @ *. D.%. Cu$a T"9$ca: Q=0.0702 h
3 2
D.2. Cu$a "=>"$/"-&al: LA'(RAT(RI( DE HIDRAULICA
&/