UNIVERSIDAD CATÓLICA DE SANTA MARÍA
CURSO:
CIRCUITOS ELECTRÓNICOS - PRÁCTICAS DISEÑO DE POLARIZACIÓN Y ANÁLISIS DE AMPLIFICACIÓN DE TRANSISTORES BJT GRUPO
:
02
DOCENTE
:
ING. CHRISTIAN COLLADO OPORTO
ALUMNOS
:
- QUISPE GUTIERREZ, ERICK MARTINS - MAMANI RAMOS, DIEGO ENRIQUE - SALAZAR NEIRA, ALVARO BENJAMIN - CARDENAS CUENTAS, CESAR KEVIN - ESPINOZA KOCTONG, IAN CARLO
AREQUIPA-PERÚ 2018 1
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
ÍNDICE:
1.- INTRODUCCIÓN-----------INTRODUCCIÓN------------------------------------------------------------------------------------------------------------------------3 -------3 2.- OBJETIVOS--------------OBJETIVOS----------------------------------------------------------------------------------------------------------------------------------------3 -3 3.- MARCO TEÓRICO----------------TEÓRICO-----------------------------------------------------------------------------------------------------------------3 ------3 4.- MATERIALES--------------MATERIALES----------------------------------------------------------------------------------------------------------------------------------7 --7 5.- PROCEDIMIENTO EXPERIMENTAL-RESULTADOS------EXPERIMENTAL-RESULTADOS--------------------------------------------------9 ---9 6.- CUESTIONARIO FINAL------------------FINAL--------------------------------------------------------------------------------------------17 ----------17 7.- OBSERVACIONES Y CONCLUSIONES------------CONCLUSIONES------------------------------------------------------------------19 ---------19 8.- BIBLIOGRAFÍA------------BIBLIOGRAFÍA----------------------------------------------------------------------------------------------------------------------------20 ----20 ANEXO--------------------------------------------------------------------------------------21
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
I.- INTRODUCCIÓN: En la siguiente practica se analizará el comportamiento del amplificador BJT, en el cual las señales de entrada son amplificadas a la salida, comparando los resultados prácticos con los teóricos calculados.
II.- OBJETIVOS: Comprobar las principales características de este tipo de d e configuración. Comprobar el diseño de polarización midiendo el punto Q. Analizar el comportamiento de un amplificador de audio en configuración emisor común. Comparar resultados prácticos respecto de los teóricos calculados.
III.- MARCO TEÓRICO: El transistor bipolar o BJT es un dispositivo electrónico, mediante el cual se puede controlar una cierta cantidad de corriente por medio de otra cantidad de corriente, este dispositivo consta de 3 patitas, terminales o pines, cada uno de estos pines tienen un nombre especial, es importante no olvidase de esos nombres, los cuales son el colector, la base y el emisor. Figura Nª1
Figura
Nª1:
Transistor bipolar o BJT.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
apreciar en la Figura Nº2, Nº2, el funcionamiento del transistor se basa en movimientos de electrones (negativos) y de huecos (positivos), de allí el nombre de transistor bipolar o BJT (transistor de unión bipolar).
Figura Nª2:
Tipos de transistores bipolares NPN y PNP.
Para un mejor entendimiento, se puede imaginar interiormente el transistor bipolar como se muestra en la figura, se ve que entre la base y el emisor hay un diodo, lo mismo entre la base y el colector hay otro diodo, el transistor bipolar tiene 3 zonas diferentes en los cuales puede operar, los cuales se conoces como región activa, región de corte y región de saturación. Para que opere en la región de saturación, el diodo base emisor tiene que estar polarizado en forma directa y el diodo base colector también tendrá que estar polarizado en forma directa. Para que opere en la región de corte, el diodo base emisor tiene que estar polarizado en forma inversa y el diodo base colector también tendrá que estar polarizado también forma inversa Para que opere en la región de activa, el diodo base emisor tiene que estar polarizado en forma directa y el diodo base colector tendrá que estar polarizado en forma inversa; cuando el transistor bipolar se prepara para que opere en la región activa, se cumple
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
matemática a la cual se le llama ganancia del transistor y se le simboliza con β, esto es β=IC/IB .
Entonces:
•
Ic (corriente que pasa por la patilla colector) es igual a b (factor de amplificación) por Ib (corriente que pasa por la patilla p atilla base).
•
Ic = β * Ib
•
Ie (corriente que pasa por la patilla emisor) es del mismo valor que Ic, sólo que, la corriente en un caso entra al transistor y en el otro caso sale de él, o viceversa. Según la fórmula anterior las corrientes no dependen del voltaje que alimenta el circuito (Vcc), pero en la realidad si lo hace y la corriente Ib cambia ligeramente cuando se cambia Vcc.
Gráfico Nª1:
Vce vs Ic.
Gráfico Nª2:
las corrientes de base
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Figura Nª 3 y 4:
Configuración electrónica de los transistores. Figura Nª 5:
Medidas de un transistor
Regiones operativas del transistor Región de corte: Un transistor está en corte cuando: Corriente de colector = corriente de emisor emisor = 0, (Ic = Ie = 0) En este caso el voltaje entre el colector y el emisor del transistor es el voltaje de alimentación del circuito. (como no hay corriente circulando, no hay caída de voltaje, Ley de Ohm). Este caso normalmente se presenta cuando la corriente de base = 0 (Ib =0)
Región de saturación: Un transistor está saturado cuando: Corriente de colector = corriente de emisor = corriente máxima, (Ic = Ie = I máxima) En este caso la magnitud de la corriente depende del voltaje de alimentación del circuito y de las resistencias conectadas en el colector o el emisor o en ambos, ley de Ohm. Este caso normalmente se presenta cuando la corriente de base es lo
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Región activa: Cuando un transistor no está ni en su región de saturación ni en la región de corte entonces está en una región intermedia, la región activa. En esta región la corriente de colector (Ic) depende principalmente de la corriente de base (Ib), de β (ganancia
de corriente de un amplificador, es un dato del fabricante) y de las resistencias resistencias que hayan conectadas en el colector y emisor). Esta región es la más importante si lo que se desea es utilizar el transistor t ransistor como un amplificador.
IV.- MATERIALES:
Protoboard FIGURA Nº6: Observamos el protoboard usado en la práctica
Resistencias 1/2W 22KΩ, 82KΩ, 820Ω, 180Ω, 2.7KΩ FIGURA Nº7: Observamos las resistencias usadas en la práctica
Potenciómetro lineal 500KΩ FIGURA Nº8: Observamos los potenciómetros lineales
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
FIGURA Nº10: Transistor BC548
Transistor 2N3904 (equivalente) (equivalente)
FIGURA Nº11: Transistor 2N3904
Switch (2) FIGURA Nº12: Switch de 4 y 8 terminales
Amperímetro
Voltímetro FIGURA Nº13: Multímetro usado para las mediciones
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Generador de señales FIGURA Nº15: Generador de señales
Osciloscopio FIGURA Nº16: Osciloscopio
V.- PROCEDIMIENTO EXPERIMENTAL - RESULTADOS: PARTE 1: AUTOPOLARIZACIÓN 1. Determine la polarización del transistor de la Figura, para un punto de trabajo ICQ = 5.5 mA y VCEQ = 6 V. Considere Vcc=12v. Determine el valor de hfe = β (por medición, hoja técnica o cálculo).
Calcule RC, RB Coloque aquí los cálculos teóricos necesarios para determinar la polarización solicitada
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
2.
Construya el circuito utilizando resistencias de valores comerciales comerciales o utilice potenciómetros y recalcule el punto de trabajo con estos valores. Luego mida experimentalmente los valores del punto de reposo y todas las variables eléctricas del circuito.
3.
Anotar en una tabla los valores teóricos y luego luego los valores valores prácticos o medidos para para todas las variables eléctricas del circuito.
Valores Teóricos β Ic Ib Vce Vbe Rb Rc
345 5.5mA 36.67µA 6V 700mV 144.47kΩ 1.084kΩ Tabla 2.
PARTE 2: Polarización por Divisor de Tensión
Esquema
Valores Prácticos 218.34 6.19mA 31.752µA 5.246V 644.708mV 144.47kΩ 1.084kΩ
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
3. Anotar en una tabla los valores teóricos y luego los valores prácticos o medidos para todas todas las variables eléctricas del circuito.
Valores Teóricos ß Vre Ic Ie Vce Vbe R1 PARTE 3: Medición del Punto Q
1.
Construya el circuito de la figura.
150 1000mV 1mA 1.0067mA 5V 0.7V 1181.25kΩ Tabla 2.
Valores Prácticos 149.93 988.318mV 988.187µA 994.904µA 5.059V 0.610V 1200kΩ
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Realizar aquí los cálculos
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Calibre Vipp = 1 V; f = 1 kHz en el generador de señales. Mida la tensión Vipp con el osciloscopio y transfiera la curva a la rejilla.
V/Div=0.5 V/Div
1V
92.485ms
4.
Cierre el S1 y mida la tensión de salida Vopp con el osciloscopio y transfiera a la rejilla anterior la curva en fase con Vi. Complete la siguiente tabla:
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
5.
Medida de la Impedancia de entrada. (Configuración con Ce) Conecta un potenciómetro entre Vi y e l condensador de entrada Ci. Variamos la resistencia del potenciómetro hasta que la amplitud de la tensión de salida sea Vopp/2. Entonces se mide la resistencia del potenciómetro ya que ésta coincide con la impedancia de entrada. Mida este valor de resistencia y completa la tabla. Realizar aquí los cálculos Zi = 10kΩ
Dato Medido Dato Calculado Error Absoluto Error Relativo
Zi = 9.161kΩ 0.84kΩ 0.084
Tabla 7
6.
Medida de la Impedancia de entrada. (Configuración sin Ce) Calcule la impedancia de salida Conecta un potenciómetro entre Vi y e l condensador de entrada Ci. Variamos la resistencia del potenciómetro hasta que la amplitud de la tensión de salida sea Vopp/2. Entonces se mide la resistencia del potenciómetro ya que ésta coincide con la impedancia de entrada. Mida este
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Donde RL viene a ser nuestro potenciómetro y lo regulamos hasta obtener Vo = 50% a 90% de Vg , siendo 50% el valor más exacto puesto que Vm para x = 0.5, por lo que será el valor más cercano a la respuesta.
8.
Medida de la ganancia en tensión. (Configuración con Ce) Calibre Vipp = 0.3 V; f = 1 kHz en el generador de señales. Mida la tensión Vipp con el osciloscopio y transfiera la curva a la rejilla.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
=
2.7
Tabla 9
10. Medida de la Impedancia de entrada. entrada. (Configuración (Configuración con Ce) Conecta un potenciómetro entre Vi y e l condensador de entrada Ci. Variamos la resistencia del potenciómetro hasta que la amplitud de la tensión de salida sea Vopp/2. Entonces se mide la resistencia del potenciómetro ya que ésta coincide con la impedancia de entrada. Mida este valor de resistencia y completa la tabla.
Realizar aquí los cálculos
Dato Medido
Zi = 10kΩ
Dato Calculado
Zi = 9.161kΩ
Error Absoluto
0.84kΩ
Error Relativo
0.084
Tabla 10
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
aplane antes uno de los lugares y después el otro. El aplanamiento de las crestas indica que el transistor entra en corte o saturación. Representa las dos situaciones que se encuentran al ir aumentando la amplitud de la señal de entrada. Indica, para cada figura, dicha amplitud Vi.
5 V Div Div 5.8487
0.9
5 V Div Div 5.8487
5
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
En general es preferible operar donde la ganancia del dispositivo es constante o lineal para garantizar que la amplificación a lo largo de toda la excursión de la señal de entrada sea la misma. 4 Explique el desfase entre entrada y salida. Si en un circuito se encuentran varios generadores de tensión o de corriente, se elige uno de ellos como generador de referencia de fase. Si la verdadera tensión de generador de referencia es cos() , para el cálculo con las impedancias se escrie su tensión como . Si la tensión de otro generador tiene un avance de fase de con respecto al generador de referencia y su corriente como 1 cos( cos( + ) , para el cálculo con las impedancias se escribe su corriente como 1 . El argumento de las tensiones y corrientes calculadas será desfase de esas
tensiones o corrientes con respecto al generador tomado como referencia. referencia.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Re= 80k
Rb = 50,16k
Rc = 451,41k
Datos del circuito creado: Re= 80k Rb = 50,16k Rc = 451,41k = 200
6 Describa la función que cumplen los condensadores de acoplo y desacoplo.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Aprendimos a identificar las características físicas y eléctricas de un transistor BJT. Comprobamos que al hacer la gráfica Ic vs Vce se genera la curva de los transistores BJT. Podemos encontrar el Datasheet de un transistor donde nos indica los valores de Beta, las corrientes que puede soportar y su límite útil, comercial. La comparación entre datos prácticos y teóricos en ocasiones suelen tener un error máximo absoluto mayor al 6%, por lo que se recomienda revisar y tomar cuidadosamente los datos, intentando evitar los errores lo más que se pueda. La ganancia de Voltaje es un dato muy importante, porque nos indica cuánto puede amplificar un determinado transistor en un circuito. No confundir entre el voltaje que se le da a un determinado circuito con
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
ANEXOS:
Circuito Nº 01 Circuito armado mediante
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world’s largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.