COMBUSTION POWER CYCLES
Otto Cycle ( Basis of Comparison for Spar!I"nition En"ines # )R (&=C#
)A (&=C#
A$ T
L S=C
S=C
B$ B
A$ %& an' TS ia"ram
3 P
3
T
S=C
S=C
V=C
V=C 4
2
4
Wnet QT
2
V=C S=C S=C V=C
1 1
V
V2=V3
V1=V4
S
S1=S2
S3=S4
INTERNAL COMBUSTION ENGINE
ANAL*SIS O+ EAC, STATE%/ &/ T/ S/
0 3 0 =
%1 &1 T1 S1
0 = 0 0
%2 &2 T2 S2
3 0 3 =
%4 &4 T4 S4
3 = 3 3
%/ &/ T/ S/
B$ %&T %&T Relat Relatio ions ns.i .ip p Process 1-2 : ( S=C ) 1
k 1 1 k 1 K T P V 2 2 K 1 P V T 1 1 2
Isentropic Compression Ratio : r ks
V 1
V 2 V D
cV D V D
V 2 V 2 Where : c = percent cearance
cV D
C 1 C
Process 2-3 : ( V= C ) P 3
P 2
T 3 P 3 ; T 2 P 2
Presss!re Ratio " r p#=c p#=c = ( $%%ition o& heat) Compression
Process 3 ' 4 ( S = C ) 1
k 1 k 1 K 1 V 3 P 4 K T 4 P V T 3 3 4
V 4 V 3
= Isentropic e*pansion Ratio"
r es=c es=c
Process 4 ' 1 ( V = C )
P 4 P 1
T 4 P 4 ; T 1 P 1
Press!re Ratio " r p#=c p#=c ( Reection o& eat )
INTERNAL COMBUSTION ENGINE
C$ ,eat A''e' 5 )A = 6 7 A Process 2 ' 3 ( V = C ) Q $ = Q2-3 = mc#+T = mc#(T3-T2)
$ ,eat Re8ecte'5 )R = 6 9 A Process 4 '1 : ( V = C ) QR = Q4-1 = - mc#+T = - mc#(T4-T1)
E$ Net :or5 :NET W,T = . Q $ . - . QR . P V P 1V 1 P 4V 4 P 3V 3 = 2 2 1 K 1 K +$ T.ermal Efficiency5 e
W NET
e= =
Q A
x100%
1 ( r K ) K 1
= 1
T 4 T 1 T 3 T 2
x100%
x100 %
G$ Mean Effecti;e %ress
P/=
W NET V 1 V 2
=
W NET V D
INTERNAL COMBUSTION ENGINE
iesel Cycle 9 Basis of Comparison for Compression!I"nition En"ines )A (%=C# )R (&=C#
TC x
L
S=C
S=C
BCC
%& TS ia"ram 3 P
2
P=C
3
T
S=C
S=C 4
2
P=C 4
Wnet QT V=C S=C S=C
1
V=C 1
1 V
S
ANAL*SIS O+ EAC, STATE-
INTERNAL COMBUSTION ENGINE
%/ &/ T/ S/
0 3 0 =
%1 &1 T1 S1
= 0 0 0
%2 &2 T2 S2
3 0 3 =
%4 &4 T4 S4
3 = 3 3
%/ &/ T/ S/
A$ %&T Relations.ip Process 1-2 : ( S=C ) 1
k 1 k 1 K 1 T P V 2 2 K 1 P V T 1 1 2
Isentropic Compression Ratio : r ks
V 1
V 2 V D
cV D V D
V 2 V 2 Where : c = percent cearance
cV D
C 1 C
Process 2-3 : ( P= C ) V 3
V 2
T 3 T 2 C!t-o&& Ratio " r CP=C
Process 3 ' 4 ( S = C ) 1
k 1 k 1 K 1 V 3 P 4 K T 4 P V T 3 4 3
V 4 V 3
= Isentropic *pansion Ratio"
r es=c
Process 4 ' 1 ( V = C )
P 4 P 1
T 4 P 4 ; T 1 P 1
Press!re Ratio " r p#=c
B$ ,eat A''e' 5 )A = 6 7 A
INTERNAL COMBUSTION ENGINE
Process 2 ' 3 ( P = C ) Q $ = Q2-3 = mcp+T = mcp(T3-T2)
C$ ,eat Re8ecte'5 )R = 6 9 A Process 4 '1 : ( V = C ) QR = Q4-1 = - mc#+T = - mc#(T4-T1)
$ Net :or5 :NET W,T = . Q $ . - . QR . = . mcp(T 3-T2) . - . - mc#(T4-T1).
E$ T.ermal Efficiency5 e
e=
W NET Q A
=1-
= 1
x100%
C V (T 4 T 1 ) Cp (T 3 T 2 )
x100 %
(r ) 1 x100% ( 1 ) K r K
1
C
( r K ) K 1
C
G$ Mean Effecti;e %ress
P/=
W NET V 1 V 2
=
W NET V D
INTERNAL COMBUSTION ENGINE
at.e Cycle# 9>asis of comparison spar an' compression i"nition en"ines$
P
P=C
T S=C
IP
P=C
V=C
V=C
W,T
S=C
Q $
V=C S=C S=C
V=C
V
SP
T.ermal Efficiency5 e e =1-
1 (r P )
K 1
K (r C r P ) 1 x100% r Kr r ( 1 ) ( 1 ) P P C
Where : Compression Rato ( r 0) = C!t-o&& Ratio ( r C ) = Press!re Ratio ( r P) =
V 1 V 2
V 4 V 3 P 3 P 2
INTERNAL COMBUSTION ENGINE
IP
%ro>lems Sol
Sol
k 1 k 1 K 1 V 1 P 2 K T 2 P V T 1 2 1
r ks
V 1 V 2
V 2 V D
V 2
cV D V D
cV D
1
C 1 C
1
P K 3250 1.4 r 0S=C = 2 12.02 V 2 100 P 1 V 1
) So#in &or Percent Cearance
r ks
V 1 V 2
V 2 V D
V 2 c 1 122 = c 122 C = C > 1 122 C - C = 1
cV D V D cV D
C 1 C
C = ?@ or ?@ C) So#in &or ,etWor6 W,T = . Q $ . - . QR . = . mcp(T 3-T2) . - . - mc#(T 4-T1). 7here : T4 = T1(r C)0 c.o. c 0.06 0.0907 1.66 r C = = 0.0907 c soA T4 = 31B(199) 14 = 94951 0 an% " T 3 = T1(r 66-1)(r c) = 31B ( 122) 14-1(199)D T3 = 142@24 0 $so"
T2 = T1(r 6)6-1 = 31B(122) 14-1
INTERNAL COMBUSTION ENGINE
T2 = B5?@B 0 There&oreA W,T = . (5)(192)(142@24-B5?@B).-.(5)(@1B9)(31B-94951). W,T = 19@455 0W %) So#in &or the therma e&&icienc< e=
W NET Q A
W NET m air Cp air (T 3 T 2 )
167 .455 KW x100 ( 0.5)(1.0062 )(1427 .24 859 .78 )
e = 5B955 e) So#in &or the /ean &&ecti#e Press!re
P/=
W NET V 1 V 2
r ks ;!tA
V 1 V 2
=
W NET V D
A V 2
V 1 r KS C
P1V1 = maRaT1 maRaT 1 (0.5)(0.787)(318) m3 0.456 V1 = P 1 (100) s
So"
m3 0.456 3 V2 = s 0.037 m 12 .02 s There&oreA P/=
167.455 400 KPa (0.456 0.037)
INTERNAL COMBUSTION ENGINE
1$ $ heat e*chaner 7as insta p!rpose< to coo 5 6 o& as per secon% /oec!ar 7eiht is 2B an% 6=132 The as is cooe% &rom 15 C to B Water is a#aia;e at the rate o& 3 6.s an% at a temperat!re o& 12 C Cac!ate the e*it temperat!re o& the 7ater in C Ans$ 4? Sol
#as !onstant"
8.3143 28
0.297
kJ kg K
C k 1.32 C C 1.32 C C C R 1.32 C C 0.297 C 0.928 P V
P
V
P
V
V
V
V
1.32(0.928) 1.225 P
C
kJ kg K
HeatBalance : Heat gain by water Heat loss by gas
$ C w
P W
T W $g C P T g g
0.3( 4.187)(t 12) 0.5(1.225)(150 80) t 46.1C 2$ Eetermine the a#erae C p #a!e in 6F.6-0 o& a as i& 522 6F o& heat is necessar< to raise the temperat!re &rom 30 to B 0 ma6in the press!re constant a$ /$@44 ; 344
c 244 % 444
So!tion: Q = mCpT 522 = 1 Cp (B-3) Cp = 144 6F.6-0
INTERNAL COMBUSTION ENGINE
4$ What is the e&&icienc< o& an Gtto c
E 1
1 k 1
r
k
1
1 61.4 1
E 0.512 51 .2% $ $ %iese eneratin set cons!mes 235 iters o& &!e %!rin 1 ho!r operation an% pro%!ces ? 67 po7er The %ensit< o& &!e !se% is B?55 6. Eetermine the speci&ic &!e cons!mption o& the %iese eneratin set in 6 per 67-hr Ans$ @$124 a$ @$124 ; 25 Sol
c 24 % 29
G#er-a spec cons!mption = (235 i.? 67-hr)(B?55 6.i) = 234 6.67-hr ?$ The entrop< o& p!re s!;stance at a temperat!re o& a;so!te Hero is: a Gne c$ ero ; In&init< % $7a
c 555 % 545
Solatic efficiency of t.e compressor c Q=> ; Q=% Isentropic So!tion:
INTERNAL COMBUSTION ENGINE
$%ia;atic e&&icienc< o& the compressor = (isentropic 7or6.act!a &!i% 7or6) F$ What is the area o& the %iaram &rom the reation o& temperat!re an% entrop< pane a$ :or ; P/
c eat % ner<
/@$ The &irst a7 o& thermo%$ $ So!tion: Lrom: 1 x100 % e=1( r K ) K 1 7here : e=
W NET 1000 Q A Q A
So#in &or Q $ : Q $ = mc#( T3 ' T2 ) Q $ = (1) (@19)(31@3 '@@3 ) Q $ = 1@1B4
KJ Kg
Then A e=
1000 0.5819 58 .19% 1718.4
th!sA 5B1? = 1 -
1 r k
1.4 1
A r k 8.85
/1$ The compression ratio o& an GTTG c
c 2 2511 0Pa '$ 2 1/$/@ %a
So!tion : k
V k 1 r k P 1 V 2
P 2
INTERNAL COMBUSTION ENGINE
P 2 P 1 ( r k ) k
P 2 150(9) th!sA
1.4
P 2 3251.10 KPa
/2$ What is the &ina temperat!re a&ter compression o& a Eiese C
T 2 V 1 T 1 V 2
k 1
( r k ) k 1
T 2 T 1 ( r k ) k 1 7here : T 1 32 273 305 K 1 C 1 0.08 C 0.08 r k 13 .5 r k th!sA
T 2 305(13.5)1.4 1 T 2 863.84 K /4$ $n I%ea E!a Com;!stion C<ce operates on 5 ram o& air $t the ;einnin o& the compression" the air is at 1 0Pa" 45 C I& r p 1.5" r c 1.65" an! r k 10" %etermine the c
e
P
W NET Q A
P=C
T S=C
IP
P=C
V=C
V=C
W,T
S=C
Q $
V=C S=C S=C
V=C
7here : W NET Q A Q R
V
SP
INTERNAL COMBUSTION ENGINE
IP
Q A Q A# Q A" So#in &or Q A# an% Q A" Q A# mC V (T 3 T 2 ) Q A" mC P (T 4 T 3 )
$t point 1
V 1
mRT 1 P 1
0.5 0.287 45 273 0.456 m 3 100
$t point 2
V 2
V 1 r k
0.456 0.0456m 3 10
T 2 V 1 T 1 V 2
k 1
r k k 1
T 2 45 273 10
1.4 1
798 .78 K
K
V k 1.4 P 2 P 1 1 P 1 r k 10010 2511 .89 KPa V 2 $t point 3 P 3 P 2 r p 2511 .891.5 3767.84 KPa
P 3 3767.84 798.78 1193 .17 K 2511 .89 P 2
T 3 T 2
$t point 4 V 4 V 3 r c 0.0456 1.65 0.075m 3
V 4 T 3 r c 1198.17 1.65 1976.98 K V 3
T 4 T 3 $t point 5
V T 5 T 4 4 V 5
k 1
0.075 T 5 1976.98 0.456
1.4 1
960.375 K
ThenA
Q A# mc $ T 3 T 2 0.5 0.7186 1198 .17 798 .78 143 .50 KJ Q A" mc p T 4 T 3 0.5 1.0062 1976 .98 1198 .17 391 .82 KJ Q A 143 .50 391 .82 535 .32 Q R mc $ T 3 T 1 0.50 0.7186 960 .375 318 230 .81 KJ W NET Q A Q R 535 .32 230 .81 304 .51 KJ th!sA e
304.51 535.32
56.88%
INTERNAL COMBUSTION ENGINE
/$ The sto6e o& a petro enine is B@5 mm an% the cearance is eM!a to 125 mm$ compression pate is no7 &itte% 7hich has the e&&ect o& re%!cin the cearance to 1 mm $ss!min the compression perio% to ;e the 7hoe stro6e" the press!re at the 1 .35 C " ;einnin o& compression as ?B2? 0Pa an% the a7 o& compression PV 135 an% the a7 o& compression PV =C" Cac!ate the press!re at the en% o& compression ;e&ore an% a&ter the compression pate is &itte% a$ /?1$/@ %a c 1@2B1 0pa ; 152B1 0Pa % 1B2B1 0Pa So!tion : 1.35
P 1V 1
P 2V 2
1.35 1
98.29 87.5 12.5 th!sA P 2 1628.10 KPa
1.35
P 2 12.5
1.35
/?$ The compression ratio o& a petro enine 7or6in on the constant #o!me c
T 2 V 1 T 2 8.5 1.35 1 40 273 T 1 V 2 T 2 661.97 K th!sA T 2 388.97C
INTERNAL COMBUSTION ENGINE
/D$ When the piston is mo#in !p in a t7o-stro6e %iese enine" the sca#ene ports are cose% 7hen the piston is 9@5 mm &rom the top o& its stro6e" the press!re an% temperat!re o& the air in the c<in%er 7hen ;ein 13B 0Pa an% 43 C The cearance is eM!a to 95 mm an% the %iameter o& the c<in%er is 95 mm Cac!ate the mass o& air compresse% in the c<in%er ta6in the atmospheric press!re as 11325 0Pa an% R &or air as 2B@ 0F.6-0 a 21 6 >$ @$2/ " So!tion :
c 41 6 % 51 6
P1V1 = mRT1 Where : P 1 13.8 101.325 115.125 KPa T 1 43 273 316 K V 1
4
0.65 2 0.675 0.065 0.2456m 2
R 0.287
KJ kg K
S!;stit!te
115 .125 0.2456 m 0.287 316 th!sA m= 31 6 /$ I& the compression ratio an% the c!t-o&& ratio o& a Eiese nine are 15 an% 3 respecti#e<" 7hat is the e*pansion ratio a$ 4 c 9 >$ % @ So!tion : V r k 1 15 V 2
r c r e
V 3 V 2 V 4 V 3
3
r k r c
15 3
r e 5
INTERNAL COMBUSTION ENGINE
/F$ The air is compresse% to 1.5 o& its oriina #o!me in an Gtto c
V 1 T 1 V 2
T 2
k 1
7here: T 1 25 273 298 K V 2
1 5
V 1 1.4 1
V T 2 1 298 1 V 1 5 T 2 561.58 K T 2 288.58C 1@$ $t the ;einnin o& compression in an i%ea %!a com;!stion c
INTERNAL COMBUSTION ENGINE
1/$ $n i%ea %!a com;!stion c$ @$D/ % 45@1 So!tion : c
e 1
a
7here:
A r k
k 1
12 1.31 2.11 r p r c 1 k
C
1.6 1.5 1.3 1 1.04 1 r p k ( r c 1) 1.6 1 1.61.5 1
r p
e 1
1.04 2.11
50.71%
or K (r C r P ) 1 e =1 x100% 50.71% (r P ) K 1 (r P 1) Kr P (r C 1)
1
11$ What is the press!re ratio in an i%ea %!a com;!stion c
12$ In an i%ea com;!stion c
r c
V 4 V 3
V 4 0.055
1.5; t&'s; V 4 0.0825m 3
INTERNAL COMBUSTION ENGINE
14$ In an air stan%ar% GTTG c
1 A
(&ere : A r k
k 1
sol$ing or r k : r k
1 c c
1 0.18
0.18
6.556
t&en; A 6.556
1.4 1
2.12
t&'s ; e 1
1 2.12
0.53
1$ The compression ratio o& an i%ea GTTG c
c 12445 0Pa" 9 C % 12445 0Pa" 5???9 C
So!tion : k
V k 1 r k P 1 V 2 k P 2 P 1 r k P 2
P 2 101 .3 6
1.4
P 2 1244.5 KPa
V 1 T 1 V 2
T 2
T 2 T 1 r k
k 1
r k
k 1
k 1
T 2 20 273 6
1.4 1
T 2 599.96 K
INTERNAL COMBUSTION ENGINE
INTERNAL COMBUSTION ENGINE