07/10/2015
Ecole Supérieure de Technologie de Salé
Systèmes Photovoltaïques raccordés au réseau électrique destinée aux Doctorants Marocains des filières photovoltaïques Université Mohammed V -Rabat Ecole Supérieure de Technologie de Salé
Professeur: Med TAJAYOUTI
[email protected] Réseau électrique, power quality et étude de l’impact de l’injection de l’énergie électrique PV 05-08 Octobre 2015
1
Les modules Module 1 : Le réseau électrique Module 2 : Aperçu sur la qualité d’un réseau électrique et les normes appliquées aux PV connectés au réseau Module 3 : Aperçu sur le réseau national marocain Module 4 : Contraintes d’intégration des productions PV Décentralisée au réseau électrique
1
07/10/2015
Module 1 : Le réseau électrique
Le PLAN La topologie du réseau électrique Modélisation du réseau électrique Ecoulement de l’énergie
Gestion des réseaux électriques Protection des réseaux électriques L’injection des ER dans les réseaux électriques élect riques
2
07/10/2015
La topologie du réseau électrique Modélisation du rése réseau au électrique Ecoulement de l’énergie
Gestion des réseaux électriques Protection des réseaux électriques L’injection des ER dans les réseaux électriques
La Topologie Topologie du réseau électrique Les consommateurs : L’industrie Le transport Le bâtiment L’agriculture
3
07/10/2015
La Topologie Topologie du réseau électrique Les producteurs : Les centrales thermiques Les barrages Le Centrales solaires thermiques Les éoliennes Les panneaux photovoltaïques
La Topologie Topologie du réseau électrique Les producteurs hydrauliques, s, STEP Centrales hydraulique
moyennes et de grandes puissances, mise en marche rapide Centrales thermiques
moyennes et grandes puissances, démarrage supérieur à 30 mn, Centrales à gaz
Prix élevé par rapport aux centrales thermiques et hydrauliques, démarrage rapide Renouvelables Energies Renouvelables
Prix élevé à l’installation, elles sont Intermittentes Intermittentes Interconnexion avec d’autres réseaux
4
07/10/2015
La Topologie Topologie du réseau électrique Les Liaisons électriques : Le réseau de transport Le réseau de répartition Le réseau de distribution Le réseau basse tension Les transformateurs transformateurs
La Topologie Topologie du réseau électrique
5
07/10/2015
La Topologie Topologie du réseau électrique Le réseau de transport
La Topologie Topologie du réseau électrique Le réseau de répartition
6
07/10/2015
La Topologie Topologie du réseau électrique Le réseau de distribution
La Topologie Topologie du réseau électrique Le réseau basse tension
7
07/10/2015
La Topologie Topologie du réseau électrique
La Topologie Topologie du réseau électrique Le réseau est alternatif triphasé sinusoïdal Les réseaux électriques actuels utilisent un courant alternatif triphasé sinusoïdal pour les raisons suivantes : Nécessité de transporter l'électricité à une tension élevée Courant alternatif ou continu ? (Westinghouse vs Edison) Pourquoi une tension sinusoïdale ? Un système monophasé ou triphasé ? Fréquence des réseaux électriques
8
07/10/2015
La Topologie Topologie du réseau électrique Le courant continue est néanmoins présent dans les interconnexions de grandes longueurs. C’est le réseau dit HVDC (High Voltage Direct Current).
La Topologie Topologie du réseau électrique Les pertes et les niveaux de tension Les pertes électriques ‘Pertes’ sont dues aux résistances ‘R’ des conducteurs. Si on note : ‘S’ la puissance apparente de la charge. ‘P’ la puissance active de la charge. ‘Q’ la puissance réactive de la charge. On a alors Pertes = 3 x R x I² et puisque S= 3 x U x I ; il vient alors que : Pertes = [R x S²] /U² = [R x (P² + Q²)]/U²
Si U alors Pertes
9
07/10/2015
La Topologie Topologie du réseau électrique Les niveaux de tension
Avant 1989
Aprés 1989 : UTE C 18 -510
La Topologie Topologie du réseau électrique Le schéma du réseau
10
07/10/2015
La Topologie Topologie du réseau électrique Le transport
La Topologie Topologie du réseau électrique La répartition
11
07/10/2015
La Topologie Topologie du réseau électrique La distribution
La topologie du réseau électrique Modélisation du rése réseau au électrique Ecoulement de l’énergie
Gestion des réseaux électriques Protection des réseaux électriques L’injection des ER dans les réseaux électriques
12
07/10/2015
La modélisation du réseau électrique d’adopter des modèles pratiques pour analyser et Le but est d’a
dimensionner le réseau électrique. Il faudrait alors concevoir des modèles pour les différentes composantes du réseau: l’alternateur
la ligne électrique
le transformateur transformateur
les charges
La modélisation du réseau électrique L’alternateur La tension e(t) délivrée par l’alternateur dépend de la vitesse de rotation et de l’excitation . Elle est en série avec une résistance R et une réactance X. C’est le schéma en régime établi.
13
07/10/2015
La modélisation du réseau électrique Le liaisons Une ligne électrique est constituée par un faisceau de conducteurs cylindriques aériens ou souterrains parallèles entre eux et au sol. Chaque conducteur est caractérisé par:
Sa résistance linéique ‘R’ en /m. Son inductance linéique ‘L’ ‘L’ en H/m. (X = L x ) Sa capacité linéique ‘C’ en F/m.
Les lignes électriques et les câbles sont des systèmes à constantes réparties, c'est à dire que ces grandeurs physiques sont réparties sur toute la longueur de la ligne.
La modélisation du réseau électrique Le liaisons Le schéma équivalent en :
14
07/10/2015
La modélisation du réseau électrique Le liaisons Les expressions de R[Ohm], L [H] et C [F] (X=L x ) R=/S S : la section du câble en mm : La résistivité du conducteur
La modélisation du réseau électrique Le liaisons Les valeurs de R, L et C
15
07/10/2015
La modélisation du réseau électrique Le liaisons : Les lignes aériennes vs les câbles souterrains Les lignes
Les câbles
Avantages :
Avantages :
Défaillances décelables Problèmes rapidement résolus
Espace requis réduit Acceptation par la population
Inconvénients :
Inconvénients :
Pannes très fréquents Répercussion sur le paysage
Travaux de réparation longs Travaux neufs ou de renouvèlement couteux
La modélisation du réseau électrique Le Transformateur Le transformateur permet d’élever l’amplitude de la tension alternative disponible à la sortie de l’unité de production pour l’amener aux niveaux requis pour le transport. A l’autre extrémité de la chaîne, les transformateurs sont utilisés pour abaisser la tension et la ramener aux valeurs utilisées dans les réseaux de répartition et de distribution
U1/U2=n1/n2 N étant le nombre de spires
16
07/10/2015
La modélisation du réseau électrique Le Transformateur Outre la transmission de l’énergie électrique avec modification des tensions, les transformateurs peuvent être utilisés pour contrôler les tensions de nœuds des réseaux . Ce contrôle de tension utilise la variation du nombre de spire des transformateurs. transformateurs. (réglage hors charge ou en charge de la tension)
La modélisation du réseau électrique Le Transformateur – un schéma équivalent Un schéma équivalent du transformateur est comme suit :
17
07/10/2015
La modélisation du réseau électrique Caractéristiques Caractéristi ques pratiques du transformateur transformateur Essai à vide et essai en court circuit Sn Puissance apparente nominale (VA) Vpn, Vsn tensions primaire et secondaire (V) Upn, Usn tensions primaire et secondaire (V) Ipn, Isn courants primaire et secondaire (I) Rendement, Température, Couplage, indice horaire Rapport de transformation fixe, fixe, variable, plots de variation de V au primaire
La modélisation du réseau électrique Les charges Les charges peuvent être modélisées en fonction des puissances actives P et réactives Q appelées et son admittance ad mittance Y. Y. (Y=G – jB)
18
07/10/2015
La modélisation du réseau électrique Mise en équation du réseau L’établissement du modèle a pour but de déterminer les équations
algébriques représentant les interconnexions entre les lignes, les générateurs générateurs les transformateurs transformateurs et les charges. Le réseau électrique peut être décrit sous la forme matricielle suivante: [I] = [Y] x [V] Où : [I] : le vecteur des courants injectés aux nœuds du réseau . [V] : le vecteur des tensions aux nœuds du réseau. [Y] : la matrice d’admittance du réseau.
La modélisation du réseau électrique Mise en équation du réseau la matrice admittance [Y] se compose de termes diagonaux [Yii] et des termes non-diagonaux [Yij]. les termes [Yii] , (self admittance), représentent la somme de toutes les admittances connectées aux nœuds i. les termes [Yij], (l’admittance mutuelle), représentent la somme de toutes les admittances joignant les nœuds i et j.
19
07/10/2015
La topologie du réseau électrique Modélisation du rése réseau au électrique Ecoulement de l’énergie
Gestion des réseaux électriques Protection des réseaux électriques L’injection des ER dans les réseaux électriques
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’
Définition Dans un réseau électrique, on a d’une part des charges électriques et d’autre part des générateurs dispersés et reliés entre eux par un réseau de lignes et de câbles. Les capacités de production des différents générateurs étant connues, comment calculer l'état électrique complet du réseau, c'est à dire les courants, tensions et puissances ? Ce problème général est connu sous le nom de calcul de répartition de charges ou load flow.
20
07/10/2015
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’
Définition
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’ But Le calcul des écoulements d’énergie permet en régime permanent d’investiguer les points suivants :
la détermination des tensions en tout point du réseau
la détermination des puissances actives et réactives
l’effet de la modification de la topologie du réseau l’étude du
niveau N-1 (perte d’un générateur, d’une ligne ou
autre) l’optimisation du fonctionnement du réseau l’optimisation des pertes
21
07/10/2015
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’
Bilan de puissance La sommes des puissances des générateurs générateurs est égale à la somme des puissances des charges augmentées des puissances du réseau.
Le bilan de puissance active : ∑PG= ∑ PL + pertes actives du réseau L’ordre de grandeur des pertes est de 5 %.
Le bilan de puissance réactive : ∑Q G= ∑ Q L + générations générations ou consommations réactives du réseau.
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’
Cas d’une situation élémentaire Considérons le problème élémentaire d'un générateur (V G,PG) alimentant une charge (PL, Q L) à travers une ligne triphasée.
Les équations des puissances apparentes complexes complexes sont : SG= VG x IG*=PG + j Q G SL= VL x IL*=PL + j Q L
22
07/10/2015
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’
Cas d’une situation élémentaire Les équations régissant ce modèles sont : Où : arguments de VG ; VL et l’impédance G ; L ; sont respectivement les arguments Z de la ligne.
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’
Cas d’une situation élémentaire Position du problème : ‘L’ sous une tension donnée et les On voudrait alimenter la charge ‘L’ caractéristiques caractéristiques de le ligne ‘Z’ sont connues. Il vient donc que : Les deux dernières lignes du système système consistent consistent en un jeu de deux équations à inconnues (V G et G). Sa résolution permet de déterminer les valeurs de l’ensemble des tension en module et en phase. les deux premières lignes du système permettent ensuite le calcul P G G. et Q G.
23
07/10/2015
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’
Cas d’une situation réelle Formulation à l’aide de la matrice des admittance On a d’une part [ I] = [Y] x [V] soit Ii=∑Yik x Uk
et aussi : Si= Ui x Ii* ; il vient donc que :
Si= Ui x(∑Yik* x Uk*)=Pi + j x Q i En exprimant les composantes réelles et imaginaires de l’équation on a alors :
L’écouleme écoulement nt de l’ l’énergie énergie ‘ LOAD FLOW ’
Cas d’une situation réelle La résolution est généralement plus complexe au fur et à mesure que le nombre de nœuds croît. La résolution manuelle d’un tel problème n’est pas envisageable. On peut se servir de l’outil informatique ou encore d ’autres solutions, basées sur les méthodes itératives de Gauss-Seidel et NewtonRaphson.
24
07/10/2015
La topologie du réseau électrique Modélisation du réseau électrique Ecoulement de l’énergie
Gestion des réseaux électriques Protection des réseaux électriques L’injection des ER dans les réseaux électriques élect riques
Gestion des réseaux électriques Introduction Le but premier d'un réseau d'énergie est de pouvoir alimenter la demande des consommateurs. Comme on ne peut encore stocker économiquement et en grande quantité l'énergie électrique il faut pouvoir maintenir en permanence l'égalité :
Production = Consommation Consommation + pertes C’est le problème de la gestion et de conduite du réseau
25
07/10/2015
Gestion des réseaux électriques Introduction Une action prévisionnelle à court terme (heure, jour, semaine) est obligatoire pour faire face à la demande en temps réel et aux défaillances des composantes du réseau. La fourniture de l’énergie électrique doit être assurée dans les conditions optimales sur les plans :
Économique
Fiabilité et sécurité
Qualité
Gestion des réseaux électriques Le diagramme de charge La consommation varie au cours du même jour, d’un jour à l’autre, d’une saison à l’autre et d’une année à l’autre.
Pour le cas du réseau national et depuis 2005, on a l’apparition de deux pointes au lieu d’une seule et le passage d’une pointe d’hiver à une pointe d’été. La différence entre la pointe du matin et celle du soir devient plus faible.
26
07/10/2015
Gestion des réseaux électriques Le diagramme de charge
Source : ONE : Rabat ,le 21 septembre 2012 ; RABAT ENERGY FORUM Programme National des Energies Energies Renouvelables et perspectives d’intégration régionale
Gestion des réseaux électriques Les contrain contraintes tes Une demande en énergie variable
Les objectifs
Réglage de la tension
Réglage de la fréquence
La stabilité des générateurs générateurs
27
07/10/2015
Gestion des réseaux électriques La stabilité en tension La stabilité de tension est la capacité d’un système de puissance de maintenir des valeurs de tensions acceptables à tous les nœuds du système après avoir subi une perturbation. L’instabilité résultante se produit très souvent sous forme de décroissance progressive de tensions à quelques nœuds.
Généralement, l’instabilité de tension se produit lorsqu’une perturbation entraîne une augmentation de puissance réactive demandée au-delà de la puissance réactive possible.
Gestion des réseaux électriques Expression de la chute de tension La chute de tension dans une ligne de résistance R et de réactance X dans laquelle transite P et Q est :
U/U= [R . P + X . Q] Q ] / U² Les mesures à prendre
un contrôle automatique des condensateurs shunts.
un blocage des régleurs en charge automatique.
une nouvelle répartition de la génération.
une régulation de tension secondaire.
un plan de délestage.
28
07/10/2015
Gestion des réseaux électriques La stabilité en fréquence La stabilité de la fréquence d’un système définit sa capacité sa fréquence proche de la valeur nominale (50 Hz) suite à une perturbation. Le maintien de la fréquence à 50 Hz est lié à l’équilibre global entre les puissances actives produites et consommées (y compris les pertes). La fréquence est une image de la vitesse de rotation des alternateurs. Cette fréquence est unique pour tout le réseau.
Gestion des réseaux électriques La
stabilité
en
fréquence –
l’équilibre production
consommation
29
07/10/2015
Gestion des réseaux électriques Les différents réglages
Réglage primaire
Réglage secondaire
Réglage tertiaire
Gestion des réseaux électriques
Réglage primaire (les premières secondes après perturbation) : Sans disposition particulière, si le couple résistant augmente, la fréquence chute pour trouver trouver un nouvel équilibre. Ce n’est pas admissible, il faut donc une action automatique (menée par les régulateurs de vitesse de chaque centrale) sur les organes d’admission du fluide moteur des turbines pour maintenir la fréquence. Le réglage primaire répartit les fluctuations de charge au prorata des capacités nominales du groupe en pondérant par un gain (notion de statisme « s » compris entre 2 et 6%) :
30
07/10/2015
Gestion des réseaux électriques Réglage secondaire(les 15 minutes après la perturbation) : Ce réglage, également automatique, agit après le réglage primaire. Il est centralisé (émis par un centre de conduite), agissant et faisant appel à plusieurs groupes spécifiques et internes à la zone perturbatrice.
Gestion des réseaux électriques Réglage tertiaire Il faut procéder à un réajustement des programmes de fonctionnement des centrales (en prenant en compte les coûts de production marginaux) pour rétablir un optimum économique. Ce réglage est également centralisé au sein de la zone initialement en défaut. Ce réglage a pour but de rétablir l’optimum économique et aide à reconstituer la réserve secondaire.
31
07/10/2015
Gestion des réseaux électriques Le dispatching La gestion et la conduite des réseaux est réalisé dans un ou plusieurs dispatchings dont les fonctions sont : La surveillance (Mesures, transmission de données, …)
(analyse des données, Sécurité, Sécurité, Plan de tension, tension, L’analyse critique (analyse …) La
prise de décision
(manœuvre
d’urgence, réajustement
production, …) L’action
Gestion des réseaux électriques La stabilité des alternateurs Suite à une défaillance du réseau électrique, les alternateurs peuvent jusqu’à l’arrêt de la machine subir un dysfonctionnement dysfonctionnement pouvant aller jusqu’à
et par suite l’indisponibilité de l’énergie électrique.
32
07/10/2015
Gestion des réseaux électriques Etude du cas élémentaire : un alternateur raccordé à un jeu de barre infini. Si on note le déphasage de e(t) par rapport à u(t) alors la puissance P délivrée par l’alternateur est :
Gestion des réseaux électriques Etude du cas élémentaire : Evolution de la puissance. Si on note le déphasage de e(t) par rapport à u(t) alors la puissance P délivrée par l’alternateur est :
33
07/10/2015
Gestion des réseaux électriques Etude du cas élémentaire : stabilité statique La stabilité statique d’un alternateur est son aptitude à répondre à une variation lente de la charge. Le fonctionnement n’est stable que si l’angle Interne noté reste inférieur à un angle limite proche de 90°,
Gestion des réseaux électriques Etude du cas élémentaire : stabilité dynamique Les problèmes de stabilité dynamique résultent du passage de la machine d’un état stable à un autre. On a un passage brusque d’une puissance P1 à P2. L’angle passe de 1 à 2 brusquement. L’inertie amène jusqu’au
point D. De celui-ci, la décélération jusqu’au jusqu’au point C finit par stabiliser le phénomène, après éventuellement quelques oscillations.
34
07/10/2015
Gestion des réseaux électriques Etude du cas élémentaire : stabilité dynamique Si la différence différence entre entre P1 et P2 est très importante, l’alternateur jusqu’au point X : accélère du point B au point C, puis jusqu’au à ce point, il continue à accélérer en restant sur la courbe et la puissance transmise au réseau diminue. Il y a perte de synchronisme par survitesse. .
La topologie du réseau électrique Modélisation du rése réseau au électrique Ecoulement de l’énergie
Gestion des réseaux électriques Protection des réseaux électriques L’injection des ER dans les réseaux électriques
35
07/10/2015
La protection des réseaux électriques Le rôle Les dispositifs de protection surveillent en permanence l’état électrique des éléments d’un réseau et provoquent leur mise hors tension (par exemple l’ouverture d’un disjoncteur), lorsque ces éléments sont le siège d’une perturbation indésirable: court-circuit, défaut d’isolement, surtension,…etc.
Le choix d’un dispositif de protection est fait suite à l’analyse du comportement des matériels électriques (moteurs, transformateurs, câbles, …) sur défauts et des phénomènes qui en découlent.
La protection des réseaux électriques La définition La Commission Electrotechnique Internationale (C.E.I) définie la protection comme l’ensemble des dispositions destinées à la détection des défauts et des situations anormales des réseaux afin de commander le déclenchement d’un ou de plusieurs disjoncteurs et, si nécessaire d’élaborer d’autres ordres de signalisations.
36
07/10/2015
La protection des réseaux électriques L’étude des protections L’étude des protections d’un réseau se décompose en deux étapes
distinctes :
La définition du système de protection, appelée plan de protection,
La détermination des réglages de chaque unité de protection, appelée coordination des protections ou sélectivité.
La protection des réseaux électriques L’étude des protections Le système de protection se compose d’une chaîne constituée des éléments suivants :
Les capteurs capteurs de mesure (courant et tension) fournissant les informations de mesure nécessaires à la détection des défauts,
Les relais de protection, chargés de la surveillance permanente de l’état électrique du réseau.
Les organes de coupure dans leur fonction d’élimination de défaut : disjoncteurs, interrupteurs fusibles.
37
07/10/2015
La protection des réseaux électriques Les court-circuit Les différents composants des réseaux sont conçus, construits et entretenus de façon à réaliser le meilleur compromis entre coût et risque de défaillance. Les courts circuits guettent les différents composants composants du circuit. Les court-circuit sont caractérisés par leur forme, leur durée et l’intensité du courant.
Un court-circuit dans les réseaux électriques peut être : Monophasé ; Biphasé ou Triphasés
La protection des réseaux électriques La sélectivité des protections La sélectivité est une capacité d’un ensemble de protections à faire la distinction entre les conditions pour lesquelles une protection doit fonctionner de celles où elle ne doit pas fonctionner. fonctionner.
Les types de sélectivité les plus important sont les suivants:
Sélectivité ampérmétrique par les courants,
Sélectivité chronométrique par le temps,
Sélectivité par échange d’informations, dite sélectivité logique.
38
07/10/2015
La protection des réseaux électriques Les relais de protection le rôle des relais de protection est de détecter tout phénomène anormal pouvant se produire sur un réseau électrique tel que le courtcircuit, variation de tension. …etc. Un relais de protection protection détecte l’existence de conditions anormales par la surveillance continue, détermine quels disjoncteurs ouvrir et alimente les circuits de déclenchement.
On utilise de plus en plus les relais statiques et numériques
La protection des réseaux électriques Les différentes protections du réseau électriques
Protection à maximum de courant phase : Protection différentielle Protection contre la surtension La protection thermique
39
07/10/2015
La topologie du réseau électrique Modélisation du rése réseau au électrique Ecoulement de l’énergie
Gestion des réseaux électriques Protection des réseaux électriques L’injection des ER dans les réseaux électriques
L’injection des ER dans les réseaux électriques
La courbe de charge On rappelle aussi que la demande en énergie électrique varie aussi d’un jour à l’autre et d’une saison à l’autre.
40
07/10/2015
L’injection des ER dans les réseaux électriques
La courbe de charge On rappelle que la demande en énergie électrique varie selon la journée
41
07/10/2015
Module 2 : Aperçu sur la qualité d’un réseau électrique et les normes appliquées aux PV connectés au réseau
PLAN Qualité d’un réseau électrique Spécifications techniques relatives à la protection des personnes et
des biens dans les installations photovoltaïques raccordées au réseau BT ou HTA
42
07/10/2015
Qualité d’un réseau électrique Spécifications techniques relatives à la protection des personnes et
des biens dans les installations photovoltaïques raccordées au réseau BT ou HTA
La qualité de l’énergie La qualité de l’énergie électrique
La qualité de l’énergie électrique concerne deux aspects :
La continuité & la qualité de l’onde
M. TAJAY TAJAYOUTI OUTI
86
43
07/10/2015
La qualité de l’énergie La qualité de l’ l’énergie énergie électrique : les perturbations Creux de tension et coupures
M. TAJAY TAJAYOUTI OUTI
87
La qualité de l’énergie La qualité de l’ l’énergie énergie électrique : les perturbations Déséquilibre
M. TAJAY TAJAYOUTI OUTI
88
44
07/10/2015
La qualité de l’énergie La qualité de l’ l’énergie énergie électrique : les perturbations Variation de la fréquence
M. TAJAY TAJAYOUTI OUTI
89
La qualité de l’énergie La qualité de l’ l’énergie énergie électrique : les perturbations Variation de tension
M. TAJAY TAJAYOUTI OUTI
90
45
07/10/2015
La qualité de l’énergie La qualité de l’ l’énergie énergie électrique : les perturbations Surtension
M. TAJAY TAJAYOUTI OUTI
91
La qualité de l’énergie Les harmoniques Les grandeurs électriques courants et tensions des réseaux industriels alternatifs, s’éloigne significativement de la sinusoïde pure. La variation est en fait composée d’un certain nombre de sinusoïdes de fréquences différentes, comprenant entre autres, une sinusoïde à fréquence industrielle dite sinusoïde fondamentale ou plus simplement : le fondamental. fondamental.
M. TAJAY TAJAYOUTI OUTI
92
46
07/10/2015
La qualité de l’énergie Les harmoniques : définitions harmonique C’est une des composantes sinusoïdales de la variation de la grandeur
physique possédant une fréquence multiple de celle de la composante fondamentale. L’amplitude de l’harmonique est généralement de quelques pour cent de celle du fondamental. Rang de l’harmonique C’est le rapport de sa fréquence fn à celle du fondamental
(généralement la fréquence industrielle, 50 ou 60 Hz) : n = fn/f1 Par principe, le fondamental fondamental f1 a le rang 1. Spectre C’est l’histogramme donnant l’amplitude
de chaque harmonique en fonction du rang L'amplitude des harmoniques décroît généralement avec la fréquence. Selon les normes, on prend en considération les harmoniques jusqu'au rang 40. M. TAJAY TAJAYOUTI OUTI
93
La qualité de l’énergie Les harmoniques : définitions Expression de la grandeur déformée déformée : Le développement développement en série de FOURIER de tout phénomène périodique est de la forme :
où : Y0 = amplitude de la composante continue, généralement généralement nulle null e en distribution électrique en régime permanent, n = valeur efficace de la composante de rang n, ϕn = déphasage de la composante harmonique au temps initial.
M. TAJAY TAJAYOUTI OUTI
94
47
07/10/2015
La qualité de l’énergie Les harmoniques : définitions Valeur efficace d’une grandeur déformée La valeur efficace de la grandeur déformée conditionne les échauffements, donc habituellement les grandeurs harmoniques sont exprimées en valeurs EFFICACES. Pour une grandeur sinusoïdale, la valeur efficace est la valeur maximale divisée par racine de deux. Pour une grandeur déformée et, en régime permanent, l’énergie dissipée par effet JOULE est la somme des énergies dissipées par chacune des composantes harmoniques.
M. TAJAY TAJAYOUTI OUTI
95
La qualité de l’énergie Les harmoniques : définitions Taux individuel C’est le rapport de la valeur efficace de l’amplitude de l’harmonique de rang n à celle
du fondamental. Exemple : taux de In en % = 100 (In/I1) Taux global de distorsion (distorsion)
Il donne une mesure de l’influence thermique de l’ensemble des harmoniques ; c’est le rapport de la valeur efficace des harmoniques à celle de la valeur efficace du fondamental fondamental seul (CEI 61000-2-2) :
M. TAJAY TAJAYOUTI OUTI
96
48
07/10/2015
La qualité de l’énergie Les perturbations causées par les harmoniques :
Dysfonctionnement des systèmes de protection et des relais
Vibration et bruits
Risque de résonance
Perturbation des convertisseurs statique et des matériels électroniques
Les effets à moyen et long terme :
Echauffement des condensateurs
Echauffement des câbles et des équipements
Echauffement dû aux pertes supplémentaires des machines et transformateur
M. TAJAY TAJAYOUTI OUTI
97
La qualité de l’énergie Les harmoniques : Limites Limites acceptables acceptables
machines synchrones : distorsion en courant statorique admissible = 1,3 à 1,4 % ;
machines asynchrones : distorsion en courant statorique admissible = 1,5 à 3,5 % ;
câbles : distorsion admissible en tension âme- écran = 10 % ;
condensateurs de puissance : distorsion en courant = 83 % ce qui donne une surcharge de 30 % (1,3 I nominale) la surcharge en tension pouvant atteindre atteindre 10 % ;
électronique sensible : distorsion en tension 5 %, taux individuel 3 % suivant le matériel.
M. TAJAY TAJAYOUTI OUTI
98
49
07/10/2015
La qualité de l’énergie Les harmoniques : Limites Limites normatives normatives CEI 61000-3-2 qui définit des limites d'émission de courant harmonique par les appareils consommant moins de 16 A par phase CEI 61000-3-4 traite le cas des appareils consommant consommant au-delà de 16 A CEI 61000-2-4 qui définit les niveaux de compatibilité dans les réseaux d'installations industrielles. La norme EN 50160 concerne les caractéristiques de la tension fournie par les réseaux publics de distribution. CEI 61000-2-2 qui définit les niveaux de compatibilité de tensions harmoniques sur les réseaux publics basse tension
M. TAJAY TAJAYOUTI OUTI
99
La qualité de l’énergie Les harmoniques : Limites normatives normatives de la CEI 61000-2-2
M. TAJAY TAJAYOUTI OUTI
100
50
07/10/2015
La qualité de l’énergie Les appareils de mesures
La tension Le courant Les spectre des harmoniques La puissance active La puissance réactive La fréquence
L’enregistrement des mesures
M. TAJAY TAJAYOUTI OUTI
101
Qualité d’un réseau électrique Spécifications techniques relatives à la protection des personnes et
des biens dans les installations photovoltaïques raccordées au réseau BT ou HTA
51
07/10/2015
Les normes PV
La norme NF C15-100 qui traite des installations électriques à basse-tension basse-tension (BT).
Les installations photovoltaïques rentrent dans son champ d’application depuis 2008.
Le guide UTE C 15-712 traite précisément des installations photovoltaïques sont traitées dans.
Ce guide, a été rédigé par une Commission de l’Union Technique de l’Electricité (UTE).
Depuis le 1 er janvier 2011, une nouvelle version de ce guide est entrée en vigueur : le guide UTE C15-712-1 datant de juillet 2010. Une nouvelle version de ce guide vient d’être publiée au 1er juillet 2013.
M. TAJAY TAJAYOUTI OUTI
103
Les normes PV l a protection des personnes D’autres normes et guides techniques traitent aussi le domaine lié à la et des biens dans les installations photovoltaïques raccordées au réseau BT ou HTA. On cite notamment : Textes réglementaires :
le décret n° 88-1056 du 14 novembre 1988 et ses arrêtés pour la protection des travailleurs qui mettent en œuvre des courants électriques,
Le décret n° 92-587 du 26 juin 1997 relatif à la compatibilité électromagnétique des appareils électriques et électroniques, électroniques,
La circulaire DRT 89-2, 6 février 1989 modifiée le. 29 juillet 1994 - Application du décret 881056,
Les règlements de sécurité contre l'incendie dans les établissements recevant du public et/ou des travailleurs M. TAJAY TAJAYOUTI OUTI
104
52
07/10/2015
Les normes PV Normes et guides :
NF EN 50380 (C 57-201) Spécifications particulières et informations sur les plaques de constructeur pour les modules photovoltaïques
NF EN 60269-1-6 Fusibles basse tension - Partie 6: Exigences supplémentaires concernant les éléments de remplacement utilisés pour la protection des systèmes d'énergie solaire photovoltaïque. NF EN 50380 Spécifications particulières et informations sur les plaques de constructeur pour les modules photovoltaïques
NF EN 50521 Connecteurs pour systèmes photovoltaïques – Exigences de sécurité et essais
NF EN 60947-1-2-3 Appareillage basse tension – Partie 1 : Règles générales – Partie 2 : Disjoncteurs – Partie 3 : Interrupteurs, sectionneurs, interrupteurs-sectionneurs et combinés-fusibles
NF EN 61000-1-2-3 Compatibilité électromagnétique (CEM) – Partie 3-2 : limites - Limites pour les émissions de courant harmonique (courant appelé par les appareils inférieur ou égal à 16 A par phase).
NF EN 61439 Ensembles d’appareillages à basse tension
NF EN 61643-11 (C 61-740) Parafoudres basse-tension - Partie 11: Parafoudres connectés aux systèmes de distribution basse tension - Prescriptions et essais
Les normes PV Normes et guides : (suite)
NF EN 61646 (C 57-109) Modules photovoltaïques (PV) en couches minces pour application terrestre Qualification de la conception et homologation
NF EN 61730-1 (C 57-111-1) Qualification pour la sûreté de fonctionnement des modules photovoltaïques (PV) - Partie 1: Exigences pour la construction
NF EN 61730-2 (C 57-111-2) Qualification pour la sûreté de fonctionnement des modules photovoltaïques (PV) - Partie 2: Exigences pour les essais
NF EN 62262 (C 20-015) Degrés de protection procurés par les enveloppes de matériels électriques contre les impacts mécaniques externes (Code IK)
NF EN 62305-1 (C 17-100-1) Protection contre la foudre - Partie 1: Principes généraux
NF EN 62305-2 (C 17-100-2) Protection contre la foudre - Partie 2: Evaluation du risque
NF EN 62305-3 (C 17-100-3) Protection contre la foudre - Partie 3: Dommages physiques sur les structures et risques humains NF C 14-100 Installations de branchement à basse tension
NF C 15-100 Installations électriques à basse tension NF C 17-100 Protection contre la foudre Protection des structures contre la foudre - Installation de paratonnerres
NF C 17-102 Protection contre la foudre - Protection des structures et des zones ouvertes contre la foudre par paratonnerre à dispositif d'amorçage
53
07/10/2015
Les normes PV Normes et guides : (suite)
UTE C 15-105 Guide pratique - Détermination des sections de conducteurs et choix des dispositifs de protection - Méthodes pratiques
UTEC15-400Guidepratique Raccordement des générateurs d’énergie électrique dans les installations alimentées par un réseau public de distribution
UTE C 15-443 Choix et mise en œuvre des parafoudres basse tension
UTE C 15-520 Guide pratique : Canalisations - modes de pose - connexions
UTE C 17-100-2 Guide pratique - Protection contre la foudre - Partie 2: Evaluation des risques
UTE C 18-510-1 Recueil d'instructions générales de sécurité d'ordre électrique,
UTE C 61740-52 Parafoudres basse tension Parafoudres pour applications spécifiques incluant le courant continu - Partie 52: Principes de choix et d’application - Parafoudres connectés aux installations photovoltaïques
UTE C 17-108 Guide Pratique – Analyse simplifiée du risque foudre
DIN VDE 0126-1-1 Dispositif de déconnexion automatique entre un générateur et le réseau public basse tension
ADEME Guide ADEME (2007) : Systèmes photovoltaïques raccordés au réseau – Guide de rédaction du cahier des charges techniques de consultation à destination du maître d’ouvrage
Les normes PV Dimensionnement des câbles côté DC En fonctionnement fonctionnement normal, le courant maximal d’emploi coté DC doit être pris égal à . × cc Choisir des sections de câble dont le courant admissible = , × cc Dans le cas de N chaines en parallèle, le courant max d’emploi dans le câble de groupe = × , × : le nombre de chaînes en parallèle.
54
07/10/2015
Les normes PV Dimensionnement des câbles côté DC -section-
Les normes PV Dimensionnement des câbles côté DC –chute de tension et fusible-
55
07/10/2015
Les normes PV Dimensionnement des câbles côté DC -Para -Parafoudre foudre – La présence d’un parafoudre parafoudre est obligatoire obligatoire si Si la longueur totale des câbles (somme des longueurs empruntés par le même chemin) est = à la longueur critique .
: nombre d'impact de foudre par an et par km²dans une région
Les normes PV Dimensionnement des câbles côté AC – section Le courant admissible d’un câble en AC Celui-ci va dépendre de la canalisation (souterraine ou aérienne) et du type de câble à savoir s’il est en cuivre ou en aluminium et du nombre de conducteur. La normes NF C15-100 dresse des tableaux donnant la valeur du courant admissible z en fonction de la section du câble, du type de câble, de la nature de la canalisation et du nombre de conducteur conduc teur..
56
07/10/2015
Les normes PV Dimensionnement des câbles côté AC – section –
Les normes PV Dimensionnement des câbles côté AC – section –
57
07/10/2015
Les normes PV Dimensionnement des câbles côté AC – Chute de tension – La chute de tension autorisée entre l’onduleur et le point de livraison (bornes de sortie de l’Appareil Général de Commande et de Protection) est de 3 % à puissance nominale de l’onduleur et de la limiter à une valeur de 1% en basse tension, selon la norme NF C 15-100.
PLAN Le réseau électrique marocain Stratégie Stratégie et Perspectives du Développement du réseau marocain. Projets ER pilotés par l’ONEE
Source : documentation ONEE
58
07/10/2015
PLAN Le réseau électrique marocain Stratégie et Perspectives du Développement du réseau marocain. Projets ER pilotés par l’ONEE
118
Architecture du réseau électrique Marocain Le terme « Réseau » désigne la totalité du système constitué par des centrales électrique, les réseaux de transmission et les consommateurs. Le réseau électrique Marocain est hiérarchisé par niveau de tension, celui-ci est fractionné en trois principales subdivisions à savoir le réseau de transport, de répartition et de distribution. Une notion de frontière peut être définie entre les niveaux de tension du réseau électrique, ces frontières sont assurées par les postes sources et les transformateurs.
Direction DOS
119
59
07/10/2015
Architecture du réseau électrique Marocain Réseau Transport HTB : 60kV, 150kV, 225kV et 400kV
Sur ce réseau sont connectées les centrales de production classique comme les centrales thermiques de l’ordre du centaines de mégawatts assurant 88% de la production électrique
au Maroc. Ces réseaux ont une architecture maillée, ainsi les productions ne sont pas isolées mais toutes reliées entre elles. Cette structure permet une sûreté de fonctionnement accrue par rapport à une structure de réseau dite radiale puisqu’elle assure la continuité du service en cas d’aléas comme la perte d’une ligne, d’une productions , etc.
Réseau Distribution HTA/BT : Réseau MT : 5kV , 20kV et 22kV. Réseau BT : 380V
Ce réseau a pour fonction d’alimenter l’ensemble de la clientèle principalement connectée à ce réseau. Son exploitation est gérée par des Gestionnaires de Réseaux de Distribution (GRD). Les réseaux de distribution ont principalement une structure radiale (arborescente). 120
Architecture du réseau électrique Marocain
Marge de variation de la fréquence f 0.5 Hz en régime normal
121
60
07/10/2015
Architecture du réseau électrique Marocain
La distinction entre Gestionnaire du Réseau de Transport (GRT) et Gestionnaire du Réseau de Distribution (GRD) permet de distinguer entre les responsabilités claires, de transport de l’électricité entre les producteurs de grande taille (unités thermiques, grand hydraulique…etc.) et les niveaux inférieurs du réseau où le GRD pourra distribuer cette électricité au consommateur.
La différence entre un réseau de transport et un réseau de distribution n’est pas une distinction administrative. Elle recouvre une réalité technique entre le niveau local et le niveau global.
122
Architecture du réseau électrique Marocain Le niveau global se réfère au réseau de transport et à la sécurité du réseau ; on y retrouve :
Le contrôle de la fréquence/ puissance
Le contrôle de la tension au moyen de la puissance réactive
Les systèmes de protection
Les procédures de contrôle d’urgence
Les plans de défense
La restauration du système
Le niveau local concerne les réseaux de distribution, il inclut :
Le contrôle de la tension
Les surcharges
La protection
La qualité de l’électricité
Le risque d’îlotage 123
61
07/10/2015
Sources de satisfaction de la demande
Interconnexion Maroc - Espagne
Réseau du transport Electrique
Interconnexion Maroc – Algérie
Auto-producteurs
124
Direction DOS
Réseau de Transport de l’Energie
62
07/10/2015
Réseau de Transport de l’Energie
Dispatching Régional
Dispatching National
Un système de téléconduite à haute disponibilté – Architecture générale Zaïr (Dispatching Secours)
Dispatching de Secours ROCHES NOIRES (Dispatching National)
Dispatching National
TIT MELLIL (Dispatching de Repli)
Double anneau optique à 100 MB
Dispatching de Repli
63
07/10/2015
Réseau de Transport de l’Energie – Dipatching national Organismes externes
Dispatchings pays voisins
Marché de l’électricité
RESEAU INFORMATIQUE
Bureautique
Inte In tern rnet et,, SAP SAP, . SYSTEME DE DEVELOPPEMENT ET SIMULATEUR
DISPATCHING NATIONAL
DISPATCHING DISPATCHIN G REG IONAL
Réseau de Transport de l’Energie – Dipatching national
64
07/10/2015
Interconnexions électriques avec les pays voisins
Interconnexions électriques avec les pays voisins
Maroc – Espagne : DE (700MW depuis 1997) à 1400 MW (2006) Maroc – Algérie : DE 400 MW (88/92) à 1200 MW (2010)
65
07/10/2015
Interconnexions électriques avec les pays voisins
ENTSO-E, association européenne des gestionnaires de réseaux de transport européens, a été créée en juillet 2009 par la fusion d’associations de gestionnaires de réseaux antérieures, dont en particulier l’UCTE (Union pour la Coordination du Transport de (www.entsoe.eu) l’Electricité) à laquelle adhérait l’ONEE depuis 1997. (www.entsoe.eu)
Interconnexions électriques avec les pays voisins
Apports techniques des interconnexi interconnexions ons : Réaction de façon ‘’solidaire’’ des systèmes électriques interconnectés face aux
événements imprévisibles
Amélioration de la qualité de service des clients (stabilité de la fréquence, continuité de service par l’appui mutuel des réseaux interconnectés, etc.)
Apports économiques des interconnexions : d’énergie Opportunités pour l es échanges d’énergie Optimisation de l’utilisation des moyens de production (partage de la réserve
tournante, etc.)
Optimisation des investissements (décalage des investissements investissements et introduction des unités plus puissantes)
66
07/10/2015
Développement des Interconne Interconnexions xions Internationales L’interconnexion Maroc -Algérie
a joué un rôle important dans la stabilité du réseau
Maghrébin en général et marocain en particulier et a contribué d’une façon significative à la résorption du déficit de production qu’à connue l’ONE entre 1991 et 1993.
Les
résultats encourageant ainsi enregistrés ont conduit les organismes maghrébins de
l’électricité à renforcer ces interconnexions par l’introduction du réseau 400KV dans les
réseaux interconnectés du Maghreb qui est aussi une condition nécessaire pour la réalisation d’un marché maghrébin de l’électricité.
Développement des Interconne Interconnexions xions Internationales L’interconnexion
Maroc-Espagne est composée actuellement de deux câbles sous Marins
Ferdioua ( Maroc) – Tarifa ( Espagne) d’une capacité de 700MW chacun en régime permanent. La capacité commerciale commercial e de cette interconnexion est de 900 MW dans le sens Espagne –Maroc et 600 MW dans le sens Maroc-Espagne. Le renforcement de cette interconnexion par la réalisation d’un
3ème câble ou le passage
en courant continu des câbles existant pour augmenter la capacité à 2100 MW est en cours d’étude.
Projet d’Interconnexion
entre le Maroc et la Mauritanie
67
07/10/2015
modes d’organisation du réseau électrique
Réseau maillé
Réseau radial
Evolution de la demande
*y compris l ’énergie éolienne via réseau client
68
07/10/2015
Evolution de la puissance installée depuis 1990 En MW
6,7 %
138
Evolution de la longueur des lignes THT-HT
Direction DOS
139
69
07/10/2015
l’énergie énergie Evolution du Maxima annuel de la puissance et l’ appelée
Direction DOS
140
d’électricité par habitant Evolution de la consommation d’électricité
Direction DOS
141
70
07/10/2015
Evolution du taux de pertes du réseau de transport depuis 2001
142
Direction DOS
Evolution de l’énergie non distribuée
Direction DOS
143
71
07/10/2015
Evolution du temps de coupure équivalent
Direction DOS
144
Evolution du taux de microcoupures sur 100 km
Direction DOS
145
72
07/10/2015
Bilan offre-demande : 2013 PRODUCTION ONEE:
PRODUCTION IPP:
JLEC : 9915.334GWh (30,75%) - TAHADDART TAHADDART : 2662.674 GWh (8.26%) - CED : 160.473 GWh (0,5%)
-
-Thermique
: 9806.928 GWh (30,41%) -Hydraulique : 2990.358 GWh (9,27%) -Eolien : 660.404 GWh (2,05%)
AUTO PRODUCTEURS
(imports) INTERCONNEXIONS INTERCONNEXIONS
INTERCONNEXIONS
110.900 GWh (0.34%)
MarocMaroc - Espagne : 5373. 912-Espagne (16,66%) MarocMaroc -GWh Espagne MarocMaroc -Alg Algé éé rie - Algérie : 177.165 GWh (0.55 MarocMaroc -Alg Algé rie %)
Eolien loi 13-09
394,015 GWh (1,22%)
ONEE Acheteur Unique ONE 32,252 TWh, PointeUnique max: 5 580 MW Acheteur 0.6 % /2012 Distribution ONE DISTRIBUTION ONE DISTRIBUTION ONE (HT) 13 959.6 959.6 GWh (HT) (46.0%) Clients ClientsMT MT&&BT BT
RRéégies gieset etConcessionnaires Concessionnaires (THT ,,HT ou 11(THT, 764.52 (38,7%) (THT, (THT HTGWh ou MT) MT)
Clients Directs THT/HT 4 637.21 GWh (15,3%)
Clients ClientsMT MT&&BT BT
Equilibre Offre-Demande
Direction DOS
147
73
07/10/2015
Satisfaction de la pointe maximale
148
Direction DOS
Livraisons d’énergie année 2013
8 Régies de distribution urbaines
3 Distributeurs privés Lydec, Redal, Amendis
12,5% 26.2% LIVRAISONS année 2013
30 361GWh Var 2013/2012 : +3, +3,1 %
Clients directs ONEE THT-HT
15,3% Direction DOS
10 Directions ONEE de distribution
46,0% 149
74
07/10/2015
PLAN Le réseau électrique marocain Stratégie et Perspectives du Développement du réseau marocain. Projets ER pilotés par l’ONEE
150
PLAN Le réseau électrique marocain Stratégie et Perspectives du Développement du réseau marocain. Projets ER pilotés par l’ONEE
155
75
07/10/2015
Programme marocain de l’énergie éolienne 1/3
1.5 Millions TEP
Vitesse moyenne de vent entre 7 et 11 m/s avec un potentiel dépassant 6000 MW
Programme Marocain de l’énergie éolienne 2/3 Objectif
2000 MW de capacité éolienne en 2020 Entre 2012 et 2014
n e i l o é W M 0 0 0 2 e d f i t c e j b o ’ l
e d n o s i a n i l c é D
Capacité Installée 650 MW Abdelkhalek Tores: 50 MW (IPP/ONE)
Capacité en cours de développement 220 MW
Programme Intégré d’Energie
Eolienne (PEI) 1000 MW + 200 MW (Abdelkhalek Tores II) Taza: 150 MW
Jbel Khalladi: 120 MW (LER)
Amougdoul: 60 MW (ONE) Tanger: 140 MW (ONE)
Entre 2014 et 2020
Repowering à 100 MW du parc existant Abdelkhalek Tores
Tanger II: 150 MW Jbel Hdid : 200 MW Tiskrad: 300 MW
Lafarge: 30 MW (Auto production)
Boujdour: 100 MW
Tarfaya: 300 MW (IPP/ONE)
Extension Abdelkhalek Tores II 200 MW
Midelt: 100 MW
Laâyoune: 50 MW (LER) Haouma: 50 MW (LER) Akhefenir: 200 MW (LER)
157
76
07/10/2015
Programme Marocain de l’énergie éolienne 3/3 Rôle de l’ONEE dans les projets éoliens :
Dans le cadre du Programme Eolien Intégré (PEI):
Qualification des sites et évaluation du gisement éolien ;
Mise à disposition des développeurs retenus de l’assiette foncière des sites;
Prise en charge, à travers des PPP, du développement et de la réalisation des projets du PEI;
Participation au capital des Sociétés de Projet avec le Fonds Hassan II et la SIE;
Contribution au financement à travers des prêts concessionnels accordés à l’ONE et rétrocédés aux Sociétés de Projets;
Promotion de l’industrie nationale par l’exigence d’une intégration industrielle locale dans le Programme
Lancement des études d’intégration de d’intégration de l’éolien au l’éolien au réseau de transport;
Contraintes d’intégration
En résumé : Problématique Les ressources renouvelables dépendent des conditions météorologiques et sont disponibles d’une façon irrégulière. Ceci peut engendrer des fluctuations de la production de l’énergie éclectique. Un déficit ou un surplus peut s’en suivre. Les projections faites pour les centrales conventionnelles ne sont pas suffisantes pour les ER. L’intégration de centrales à ER à grande échelle est donc un véritable
défi.
77
07/10/2015
Contraintes d’intégration
Quelques éléments de réponse
La nécessité de la présence dans le réseau de centrales centrales conventionnelles conventionnelles flexibles. (ex : les Turbines Turbines à Gaz)
L’amélioration des
prévisions météo : une meilleure prévision à court terme est nécessaire.
Le réseau intelligent (smart grid) : charges télécommandables, onduleurs solaires télécommandables...
Le stockage de l’électricité .
Merci
173
78