LINGKUNGAN PENGENDAPAN
Lingkungan Lingkungan pengendapan adalah bagian dari permukaan bumi dimana proses fisik, kimia dan biologi berbeda dengan daerah yang berbatasan dengannya (Selley, 1988). Sedangkan menurut Boggs (1995) lingkungan pengendapan adalah karakteristik dari suatu tatanan geomorfik dimana proses fisik, kimia dan biologi berlangsung yang menghasilkan suatu jenis endapan sedimen tertentu. Nichols (1999) menambahkan yang dimaksud dengan proses tersebut adalah proses yang berlangsung selama proses pembentukan, transportasi dan pengendapan sedimen. Perbedaan fisik dapat berupa elemen statis ataupun dinamis. Elemen statis antara lain geometri cekungan, material endapan, kedalaman air dan suhu, sedangkan elemen dinamis adalah energi, kecepatan dan arah pengendapan serta variasi angin, ombak dan air. Termasuk dalam perbedaan kimia adalah komposisi dari cairan pembawa sedimen, geokimia dari batuan asal di daerah tangkapan air (oksidasi dan reduksi (Eh), keasaman (Ph), salinitas, kandungan karbon dioksida dan oksigen dari air, presipitasi dan solusi mineral). Sedangkan perbedaan biologi tentu saja perbedaan pada fauna dan flora di tempat sedimen diendapkan
maupun
daerah
sepanjang
perjalanannya
sebelum
diendapkan.
Permukaan bumi mempunyai morfologi yang sangat beragam, mulai dari pegunungan, lembah sungai, pedataran, padang pasir (desert), delta sampai ke laut. Dengan analogi pembagian ini, lingkungan pengendapan secara garis besar dapat dibagi menjadi tiga kelompok, yakni darat (misalnya sungai, danau dan gurun), peralihan (atau daerah transisi antara darat dan laut; seperti delta, lagun dan daerah pasang surut) dan laut. Banyak penulis membagi lingkungan pengendapan berdasarkan versi masing-masing. Selley (1988) misalnya, membagi lingkungan pengendapan menjadi 3 bagian besar: darat, peralihan dan laut (Tabel VII.1). Namun beberapa penulis lain membagi lingkungan pengendapan ini langsung menjadi lebih rinci lagi. Lingkungan pengendapan tidak akan dapat ditafsirkan secara akurat hanya berdasarkan suatu aspek fisik dari batuan saja. Maka dari itu untuk menganalisis lingkungan pengendapan harus ditinjau mengenai struktur sedimen, ukuran
butir (grain size), kandungan fosil (bentuk dan jejaknya), kandungan mineral, runtunan tegak dan
hubungan
lateralnya,
geometri
serta
distribusi
batuannya.
Fasies merupakan bagian yang sangat penting dalam mempelajari ilmu sedimentologi. Boggs (1995) mengatakan bahwa dalam mempelajari lingkungan pengendapan sangat penting untuk memahami dan membedakan dengan jelas antara lingkungan sedimentasi (sedimentary environment) dengan lingkungan facies (facies environment). Lingkungan sedimentasi dicirikan oleh sifat fisik, kimia dan biologi yang khusus yang beroperasi menghasilkan tubuh batuan yang dicirikan oleh tekstur, struktur dan komposisi yang spesifik. Sedangkan facies menunjuk kepada unit stratigrafi yang dibedakan oleh litologi, struktur dan karakteristik organik yang terdeteksi di lapangan. Kata fasies didefinisikan yang berbeda-beda oleh banyak penulis. Namun demikian umumnya mereka sepakat bahwa fasies merupakan ciri dari suatu satuan batuan sedimen. Ciri-ciri ini dapat berupa ciri fisik, kimia dan biologi, seperti ukuran tubuh sedimen, struktur sedimen, besar dan bentuk butir, warna serta kandungan biologi dari batuan sedimen tersebut. Sebagai contoh, fasies batupasir sedang bersilangsiur (cross-bed medium sandstone facies). Beberapa contoh istilah fasies yang dititikberatkan pada kepentingannya: Litofasies: didasarkan pada ciri fisik dan kimia pada suatu batuan Biofasies: didasarkan pada kandungan fauna dan flora pada batuan Iknofasies: difokuskan pada fosil jejak dalam batuan Berbekal pada ciri-ciri fisik, kimia dan biologi dapat dikonstruksi lingkungan dimana suatu runtunan batuan sedimen diendapkan. Proses rekonstruksi tersebut disebut analisa fasies.
Tabel
VII.1:
Klasifikasi
lingkungan
pengendapan
(Selley,
1988)
Terestrial Padang pasir (desert) Glasial Daratan Sungai Encer (aqueous) Rawa (paludal) Lakustrin Delta Peralihan Estuarin Lagun Litoral (intertidal) Reef Laut Neritik (kedalaman Batial (kedalaman Abisal (kedalaman
0-200 200-2000 >2000
m) m) m)
butir (grain size), kandungan fosil (bentuk dan jejaknya), kandungan mineral, runtunan tegak dan
hubungan
lateralnya,
geometri
serta
distribusi
batuannya.
Fasies merupakan bagian yang sangat penting dalam mempelajari ilmu sedimentologi. Boggs (1995) mengatakan bahwa dalam mempelajari lingkungan pengendapan sangat penting untuk memahami dan membedakan dengan jelas antara lingkungan sedimentasi (sedimentary environment) dengan lingkungan facies (facies environment). Lingkungan sedimentasi dicirikan oleh sifat fisik, kimia dan biologi yang khusus yang beroperasi menghasilkan tubuh batuan yang dicirikan oleh tekstur, struktur dan komposisi yang spesifik. Sedangkan facies menunjuk kepada unit stratigrafi yang dibedakan oleh litologi, struktur dan karakteristik organik yang terdeteksi di lapangan. Kata fasies didefinisikan yang berbeda-beda oleh banyak penulis. Namun demikian umumnya mereka sepakat bahwa fasies merupakan ciri dari suatu satuan batuan sedimen. Ciri-ciri ini dapat berupa ciri fisik, kimia dan biologi, seperti ukuran tubuh sedimen, struktur sedimen, besar dan bentuk butir, warna serta kandungan biologi dari batuan sedimen tersebut. Sebagai contoh, fasies batupasir sedang bersilangsiur (cross-bed medium sandstone facies). Beberapa contoh istilah fasies yang dititikberatkan pada kepentingannya: Litofasies: didasarkan pada ciri fisik dan kimia pada suatu batuan Biofasies: didasarkan pada kandungan fauna dan flora pada batuan Iknofasies: difokuskan pada fosil jejak dalam batuan Berbekal pada ciri-ciri fisik, kimia dan biologi dapat dikonstruksi lingkungan dimana suatu runtunan batuan sedimen diendapkan. Proses rekonstruksi tersebut disebut analisa fasies.
Tabel
VII.1:
Klasifikasi
lingkungan
pengendapan
(Selley,
1988)
Terestrial Padang pasir (desert) Glasial Daratan Sungai Encer (aqueous) Rawa (paludal) Lakustrin Delta Peralihan Estuarin Lagun Litoral (intertidal) Reef Laut Neritik (kedalaman Batial (kedalaman Abisal (kedalaman
0-200 200-2000 >2000
m) m) m)
VII.1. LINGKUNGAN SUNGAI Berdasarkan morfologinya sistem sungai dikelompokan menjadi 4 tipe sungai, sungai lurus (straight), sungai teranyam (braided), sungai anastomasing, dan sungai kekelok (meandering) (Gambar VII.1).
Gambar VII.1 Sketsa empat tipe sungai VII.1.A Sungai Lurus (Straight) Sungai lurus umumnya berada pada daerah bertopografi terjal mempunyai energi aliran kuat atau deras. Energi yang kuat ini berdampak pada intensitas erosi vertikal yang tinggi, jauh lebih besar dibandingkan erosi mendatarnya. Kondisi seperti itu membuat sungai jenis ini mempunyai pengendapan pengendapan sedimen yang lemah, sehingga alirannya lurus tidak berbelok-belok (low sinuosity) (Gambar VII.1). Karena kemampuan sedimentasi yang kecil inilah maka sungai tipe ini jarang yang meninggalakan endapan tebal. Sungai tipe ini biasanya dijumpai pada daerah pegunungan, yang mempunyai topografi tajam. Sungai lurus ini sangat jarang dijumpai dan biasanya dijumpai pada jarak yang sangat pendek. VII.1.B Sungai Kekelok (Meandering) Sungai kekelok adalah sungai yang alirannya berkelok-kelok atau berbelok-belok (Gambar VII.1 dan VII.2). Leopold dan Wolman (1957) dalam Reineck dan Singh (1980) menyebut sungai meandering jika sinuosity-nya lebih dari 1.5. Pada sungai tipe ini erosi secara umum lemah sehingga pengendapan sedimen kuat. Erosi horisontalnya lebih besar dibandingkan erosi vertikal, perbedaan ini semakin besar pada waktu banjir. Hal ini menyebabkan aliran sungai sering berpindah tempat secara mendatar. Ini terjadi karena adanya pengikisan tepi sungai oleh aliran air utama yang pada daerah kelokan sungai pinggir luar dan pengendapan pada kelokan tepi dalam. Kalau proses ini berlangsung lama akan mengakibatkan aliran sungai semakin bengkok. Pada kondisi tertentu bengkokan ini terputus, sehingga terjadinya danau bekas aliran sungai yang berbentuk tapal kuda atau oxbow lake.
Gambar VII.2 Kelokan-kelokan sungai pada sungai meandering
VII.1.C Sungai Teranyam (Braided) Sungai teranyam umumnya terdapat pada daerah datar dengan energi arus alirannya lemah dan batuan di sekitarnya lunak. Sungai tipe ini bercirikan debit air dan pengendapan sedimen tinggi. Daerah yang rata menyebabkan aliran dengan mudah belok karena adanya benda yang merintangi aliran sungai utama (Gambar VII.1 dan VII.6). Tipe sungai teranyam dapat dibedakan dari sungai kekelok dengan sedikitnya jumlah lengkungan sungai, dan banyaknya pulau-pulau kecil di tengah sungai yang disebut gosong. Sungai teranyam akan terbentuk dalam kondisi dimana sungai mempunyai fluktuasi dischard besar dan cepat, kecepatan pasokan sedimen yang tinggi yang umumnya berbutir kasar, tebing mudah tererosi dan tidak kohesif (Cant, 1982). Biasanya tipe sungai teranyam ini diapit oleh bukit di kiri dan kanannya. Endapannya selain berasal dari material sungai juga berasal dari hasil erosi pada bukit-bukit yang mengapitnya yang kemudian terbawa masuk ke dalam sungai. Runtunan endapan sungai teranyam ini biasanya dengan pemilahan dan kelulusan yang baik, sehingga bagus sekali untuk batuan waduk (reservoir). Umumnya tipe sungai teranyam didominasi oleh pulau-pulau kecil (gosong) berbagai ukuran (Gambar VII.6 dan VII.7) yang dibentuk oleh pasir dan krikil. Pola aliran sungai teranyam terkonsentrasi pada zona aliran utama. Jika sedang banjir sungai ini banyak material yang terbawa terhambat pada tengah sungai baik berupa batang pepohonan ataupun ranting-ranting pepohonan. Akibat sering terjadinya banjir maka di sepanjang bantaran sungai terdapat lumpur yang mendominasi hampir di sepanjang bantaran sungai.
Gambar VII.6 Morfologi sungai teranyam VII.I.D Sungai Anastomasing Sungai anastomasing terjadi karena adanya dua aliran sungai yang bercabang-cabang, dimana cabang yang satu dengan cabang yang lain bertemu kembali pada titik dan kemudian bersatu kembali pada titik yang lain membentuk satu aliran. Energi alir sungai tipe ini rendah. Ada perbedaan yang jelas antara sungai teranyam dan sungai anastomosing. Pada sungai teranyam (braided), aliran sungai menyebar dan kemudian bersatu kembali menyatu masih dalam lembah sungai tersebut yang lebar. Sedangkan untuk sungai anastomasing adalah beberapa sungai yang terbagi menjadi beberapa cabang sungai kecil dan bertemu kembali pada induk sungai pada jarak tertentu (Gambar VII.1). Pada daerah onggokan sungai sering diendapkan material halus dan biasanya ditutupi oleh vegetasi (Gambar VII.11) . Gambar VII.11 Sistem Sungai Anastomasing (einsele p51) VII.2 LACUSTRIN Lacustrin atau danau adalah suatu lingkungan tempat berkumpulnya air yang tidak berhubungan dengan laut. Lingkungan ini bervariasi dalam kedalaman, lebar dan salinitas yang berkisar dari air tawar hingga hipersaline. Pada lingkungan ini juga dijumpai adanya delta, barried island hingga kipas bawah air yang diendapkan dengan arus turbidit. Danau juga mengendapkan klastika dan endapan karbonat termasuk oolit dan terumbu dari alga. Pada daerah beriklim kering dapat terbentuk endapan evaporit. Endapan danau ini dibedakan dari endapan laut dari kandungan fosil dan aspek geokimianya. Danau dapat terbentuk melalui beberapa mekanisme, yaitu berupa pergerakan tektonik
sebagai pensesaran dan pemekaran; proses glasiasi seperti ice scouring, ice damming dan moraine damming (penyumbatan oleh batu); pergerakan tanah atau hasil dari aktifitas volkanik sebagai penyumbatan lava atau danau kawah hasil peledakan. Visher (1965) dan Kukal (1971) dalam selley (1988) membagi lingkungan lacustrin menjadi dua yaitu danau permanen dan danau ephemeral (Gb VII.12). Danau permanen mempunyai 4 model dan danau ephemeral mempunyai 2 model seperti yang terlihat pada gambar. Gb VII.12 Model Lingkungan Danau (Selley, 1988) VII.2.A Danau permanen Danau permanen model pertama adalah danau yang terisi oleh endapan klastika yang terletak di daerah pegunungan. Danau ini mempunyai hubungan dengan lingkungan delta sungai yang berkembang ke arah danau dengan mengendapkan pasir dan sedimen suspensi berukuran halus. Ciri dari endapan danau ini dan juga endapan model lainnya adalah berupa varve yaitu laminasi lempung yang reguler. Pada endapan danau periglasial, varves berbentuk perselingan antara lempung dan lanau. Lanau diendapkan pada saat mencairnya es, sedangkan lempung diendapkan pada musim dingin dimana tidak ada air sungai yang mengallir ke danau. Contoh danau ini adalah Danau Costance dan Danau Zug di Pegunungan Alpen. Danau permanen model kedua adalah danau yang terletak di dataran rendah dengan iklim yang hangat. Material yang dibawa oleh sungai dalam jumlah yang sedikit. Endapan karbonat terbentuk pada daerah yang jauh dari mulut sungai disekitar pantai. Cangkang-cangkang molluska dijumpai pada endapan pantai, yang dapat membentuk kalkarenit jika energi gelombang cukup besar. Kearah dalam dijumpai adanya ganggang merah berkomposisi gampingan. Contoh danau ini adalah Danau Schonau di Jerman dan Danau Great Ploner di Kanada Selatan. Danau permanen model ketiga adalah danau dengan endapan sapropelite (lempung kaya akan organik) pada bagian dalam yang dikelilingi oleh karbonat di daerah dangkal. Endapan pantai berupa ganggang dan molluska. Danau permanen model ke empat dicirikan oleh adanya marsh pada daerah dangkal yang kearah dalam menjadi sapropelite. Contoh dari danau ini adalah Danau Gytta di Utara Kanada.
VII.2.B Danau Ephemeral Danau ephemeral adalah danau yang terbentuk dalam jangka waktu yang pendek di daerah gurun dengan iklim yang panas. Hujan hanya terjadi sesekali dalam setahun. Danau playa antar-gunung pada bagian dekat pegunungan berupa fan alluvial piedmont yang kearah luar berubah menjadi pasir dan lempung. Ciri dari danau playa ini adalah lempung berwarna merah-coklat yang setempat disisipi oleh lanau dan gamping. Contoh danau ini adalah Danau Qa Saleb dan Qa Disi di Jordania. Karena adanya pengaruh evaporasi, danau ephemeral ini dapat membentuk endapan evaporite pada lingkungan sabkha. Contoh dari danau ini adalah Danau Soda di Amerika Utara dan di Gurun Sahara dan Arab.
VII.3 LAGUN Lagun adalah suatu kawasan berair dangkal yang masih berhubungan dengan laut lepas, dibatasi oleh suatu punggungan memanjang (barrier) dan relatif sejajar dengan pantai (Gambar VII.15). Maka dari itu lagun umumnya tidak luas dan dangkal dengan energi rendah. Beberapa lagun yang dianggap besar, misalnya Leeward Lagoon di Bahama luasnya hanya 10.000 km dengan kedalaman + 10 m (Jordan, 1978, dalam Bruce W. Sellwood, 1990).
Gb. VII.15 Skema rekonstruksi geomorfik lingkungan lagun dan sekitarnya (Einsele) Akibat terhalang oleh tanggul, maka pergerakan air di lagun dipengaruhi oleh arus pasang surut yang keluar/masuk lewat celah tanggul (inlet). Kawasan tersebut secara klasik dikelompokkan sebagi daerah peralihan darat - laut (Pettijohn, 1957), dengan salinitas air dari tawar (fresh water) sampai sangat asin (hypersalin). Keragaman salinitas tersebut akibat adanya pengaruh kondisi hidrologi, iklim dan jenis material batuan yang diendapkan di lagun. Lagun di daerah kering memiliki salinitas yang lebih tinggi dibanding dengan lagun di daerah basah (humid), hal ini dikarenakan kurangnya air tawar yang masuk ke daerah itu. Berdasarkan batasan-batasan tersebut diatas maka batuan sedimen lagun sepintas kurang berarti dalam aspek geologi. Akan tetapi bila diamati lebih rinci mengenai aspek lingkungan pengendapannya, lagun akan dapat bertindak sebagai penyekat perangkap stratigrafi minyak. Transportasi material sedimen di lagun dilakukan oleh, air pasang energi ombak, angin yang dengan sendirinya dikendalikan iklim sehingga akan mempengaruhi kondisi biologi dan kimia lagun. Endapan delta (tidal delta) dapat terbentuk dibagian ujung alur pemisah tanggul, yaitu didalam lagun atau dibagian laut terbuka (Boggs, 1995). Material delta tersebut agak kasar sebagai sisipan pada fraksi halus, yaitu bila terjadi aktifitas gelombang besar yang mengerosi tanggul dan terendapkan di lagun melalui celah tersebut. VII.3.A Bentuk dan Genesa Lagun Bentuk dan genesa lagun berkaitan erat dengan genesa tanggul (barrier), sehingga dalam hal ini mencirikan pula kondisi geologi dan fisiografi daerah lagun. Bentuk lagun umunnya memanjang relatif sejajar dengan garis panti sedangkan yang dibatasi oleh atol reef bentuk lagunnya relatif melingkar. Bentuk lagun yang memanjang sejajar garis pantai terjadi apabila tanggul relatif sejajar dengan garis pantai yang disusun oleh reef ataupun berupa sedimen klasik yang lain misalnya satuan batu pasir. Lagun yang dibatasi atol reef terbentuk relatip bersamaan dengan pembentukan atol, akibat proses penurunan dasar cekungan (tempat reef tumbuh) kecepatnya seimbang dengan pembentukan reef. Kondisi muka-laut juga berpengaruh terhadap lagun. Pada laut yang konstan maka dibagian bawah lagun akan terendapkan sedimen klastik halus yang kemudian ditutupi oleh rawa rawa dengan ketebalan mencapai setengah tinggi air pasang. Kontak antara batuan sedimen dan batuan di bawahnya adalah horizontal. Satuan batuan fraksi halus dengan sisipan batubara muda (peat) di daerah rawa akan berhubungan saling menjari dengan batupasir di daerah tanggul. Selain itu batuan sedimen lagun yang menebal ke atas dan menumpang di bagian atas shoreface biasanya terjadi menyertai proses transgresi. Lagun juga dapat terbentuk pada daerah tektonik estuarine (Fairbridge RW, 1980 dalam Boggs, 1995) yang disebabkan oleh aktivitas tektonik sehingga terjadi pengangkatan di bagian tepi pantai dan membelakangi bagian rendahan yang membentuk lagun. VII.3.B Lingkungan Pengendapan Lingkungan lagun karena ada tanggul maka berenergi rendah sehingga material yang diendapkan berupa fraksi halus, kadang juga dijumpai batupasir dan batulumpur. Beberapa lagun yang tidak bertindak sebagai muara sungai, maka material yang diendapkan didominasi oleh material marin. Material pengisi lagun dapat berasal dari erosi barrier (wash over) yang berukuran pasir dan lebih kasar. Apabila ada penghalang berupa reef, dapat juga dijumpai pecahan-pecahan cangkang di bagian backbarier atau di tidal delta. Akibat angin partikel halus dari tanggul dapat terangkut dan diendapkan di lagun. Angin tersebut dapat juga menyebabkan terjadinya gelombang pasang yang menerpa garis pantai dan menimbulkan energi tinggi sehingga terjadi pengikisan dan pengendapan fraksi kasar. Struktur sedimen
yang berkembang umumnya pejal (pada batulempung abu-abu gelap) dengan sisipan tipis batupasir halus (batulempung Formasi Lidah di Kendang Timur), gelembur - gelombang dengan beberapa internal small scale cross lamination yang melibatkan batulempung pasiran. Struktur bioturbasi sering dijumpai pada batulempung pasiran (siltstone) yang bersisipan batupasir dibagian dasar lagun (Boggs, 1995). Batupasir tersebut ditafsirkan sebagai hasil endapan angin, umumnya berstruktur perarian sejajar dan kadang juga berstruktur ripple cross-lamination (Gambar VII.18).
Gb.VII.18 Komposit stratigrafi daerah barier - lagun berumur Kapur di Alberta selatan Canada, (Reinson G.E. 1984 dalam Boggs, 1995)
VII.4 DELTA Kata Delta digunakan pertama kali oleh Filosof Yunani yang bernama Herodotus pada tahun 490 SM, dalam penelitiannya pada suatu bidang segitiga yang dibentuk oleh oleh alluvial pada muara Sungai Nil. Sebagian besar Delta modern saat ini berbentuk segitiga dan sebagian besar bentuknya tidak beraturan (Gambar VII.19). Bila dibandingkan dengan Delta yang pertama kali dinyatakan oleh Herodotus pada sungai nil. Ada istilah lain dari Delta adalah seperti yang dikemukakan oleh Elliot dan Bhatacharya (Allen, 1994) adalah “Discrette shoreline proturberance formed a river enters an ocean or other large body of water”. when Proses pembentukan delta adalah akibat akumulasi dari sedimen fluvial (sungai) pada “lacustrine” atau “marine coastline”. Delta merupakan sebuah lingkungan yang sangat komplek dimana beberapa faktor utama mengontrol proses distribusi sedimen dan morfologi delta, faktor-faktor tersebut adalah regime sungai, pasang surut (tide), gelombang, iklim, kedalaman air dan subsiden (Tucker, 1981). Untuk membentuk sebuah delta, sungai harus mensuplai sedimen secara cukup untuk membentuk akumulasi aktif, dalam hal ini prograding system. Secara sederhana ini berarti bahwa jumlah sedimen yang diendapkan harus lebih banyak dibandingkan dengan sedimen yang terkena dampak gelombang dan pasang surut. Dalam beberapa kasus, pengendapan sedimen fluvial ini banyak berubah karena faktor diatas, sehingga banyak ditemukan variasi karakteristik pengendapan sedimennya, meliputi distributary channels, river-mouth bars, interdistributary bays, tidal flat, tidal ridges, beaches, eolian dunes, swamps, marshes dan evavorites flats (Coleman, 1982). Ketika sebuah sungai memasuki laut dan terjadi penurunan kecepatan secara drastis, yang diakibatkan bertemunya arus sungai dengan gelombang, maka endapan-endapan yang dibawanya akan terendapkan secara cepat dan terbentuklah sebuah delta Deposit (endapan) pada delta purba telah diteliti dalam urutan umur stratigrafi, dan sedimen yang ada di delta sangat penting dalam pencarian minyak, gas, batubara dan uranium. Delta -
delta modern saat ini berada pada semua kontinen kecuali Antartica. Bentuk delta yang besar diakibatkan oleh sistem drainase yang aktif dengan kandungan sedimen yang tinggi.
Gambar
VII.19
Geomorfologi
Delta
berdasarkan
citra
satelit
VII.4.A Klasifikasi dan pengendapan delta Berdasarkan sumber endapannya, secara mendasar delta dapat dibedakan menjadi dua jenis (Nemec, 1990 dalam Boggs, 1995) (Gambar VII.20), yaitu: 1. Non Alluvial Delta a. Pyroklastik delta b. Lava delta 2. Alluvial Delta a. River Delta Pembentukannya dari deposit sungai tunggal. b. Braidplain Delta Pembentukannya dari sistem deposit aliran “teranyam” c. Alluvial fan Delta Pembentukannya pada lereng yang curam dikaki gunung yang luas yang dibawa air. d. Scree-apron deltas Terbentuk ketika endapan scree memasuki air.
Gambar (Nemec,
VII.20
Klasifikasi 1990
Delta
didasarkan dalam
pada sumber Boggs,
endapannya 1995)
Pada tahun 1975, M.O Hayes (Allen & Coadou, 1982) mengemukakan sebuah konsep tentang klasifikasi coastal yang didasarkan pada hubungan antara kisaran pasang surut (mikrotidal, mesotidal dan makrotidal) dan proses sedimentologi. Pada tahun 1975, Galloway (Allen & Coadou, 1982) menggunakan konsep in dalam penerapannya terhadap aluvial delta, sehingga disimpulkan klasifikasi delta berdasarkan pada delta front regime dibagi menjadi
tiga 1. 2. 3.
Gambar (Allen
(Gambar
VII.21
Skema &
VII.21), Fluvial-dominated Tide-dominated Wave-dominated
klasifikasi
delta
yaitu
menurut Coadou,
Galloway
: Delta Delta Delta
(1975) 1982)
VII.4.B Fisiografi Delta Berdasarkan fisiografinya, delta dapat diklasifikasikan menjadi tiga bagian utama (Gambar VII.29), yaitu : 1. Delta plain 2. Front Delta 3. Prodelta
Gambar
VII.29
Fisiografi
Delta
(Allen
dan
Coadou,
1982)
Delta plain Delta plain merupakan bagian kearah darat dari suatu delta. Umumnya terdiri dari endapan marsh dan rawa yang berbutir halus seperti serpih dan bahan-bahan organik (batubara). Delta plain merupakan bagian dari delta yang karakteristik lingkungannya didominasi oleh proses fluvial dan tidal. Pada delta plain sangat jarang ditemukan adanya aktivitas dari gelombang yang sangat besar. Daerah delta plain ini ditoreh (incised) oleh fluvial distributaries dengan kedalaman berkisar dari 5 – 30 m. Pada distributaries channel ini sering terendapkan endapan batupasir channel-fill yang sangat baik untuk reservoir (Allen & Coadou, 1982). Delta front Delta front merupakan daerah dimana endapan sedimen dari sungai bergerak memasuki cekungan dan berasosiasi/berinteraksi dengan proses cekungan (basinal). Akibat adanya perubahan pada kondisi hidrolik, maka sedimen dari sungai akan memasuki cekungan dan terjadi penurunan kecepatan secara tiba-tiba yang menyebabkan diendapkannya materialmaterial dari sungai tersebut. Kemudian material-material tersebut akan didistribusikan dan dipengaruhi oleh proses basinal. Umumnya pasir yang diendapkan pada daerah ini terendapkan pada distributary inlet sebagai bar. Konfigurasi dan karakteristik dari bar ini umumnya sangat cocok sebagai reservoir, didukung dengan aktivitas laut yang mempengaruhinya (Allen & Coadou, 1982).
Prodelta Prodelta adalah bagian delta yang paling menjauh kearah laut atau sering disebut pula sebagai delta front slope. Endapan prodelta biasanya dicirikan dengan endapan berbutir halus seperti lempung dan lanau. Pada daerah ini sering ditemukan zona lumpur (mud zone) tanpa kehadiran pasir. Batupasir umumnya terendapkan pada delta front khususnya pada daerah distributary inlet, sehingga pada daerah prodelta hanya diendapkan suspensi halus. Endapanendapan prodelta merupakan transisi kepada shelf-mud deposite. Endapan prodelta umumnya sulit dibedakan dengan shelf-mud deposite. Keduanya hanya dapat dibedakan ketika adanya suatu data runtutan vertikal dan horisontal yang baik (Reineck & Singh, 1980).
VII.5 ESTUARIN Beberapa ahli geologi mengemukakan beberapa pengertian yang bermacam-macam tentang estuarin. Pritchard, 1967 (Reineck & Singh, 1980) mengemukakan bahwa estuarin adalah “a semi-enclosed coastal body of water which has a free connection with the open sea and within which sea water is measurably diluted with fresh water derived from land drainage”. Ada dua faktor penting yang mengontrol aktivitas di estuarin, yaitu volume air pada saat pasang surut dan volume air tawar (fresh water) serta bentuk estuarin. Endapan sedimen pada lingkungan estuarin dibawa dua aktivitas, yaitu oleh arus sungai dan dari laut terbuka. Transpor sedimen dari laut lepas akan sangat tergantung dari rasio besaran tidal dan disharge sungai. Estuarin diklasifikasikan menjadi tiga daerah (Gambar VII.31) , yaitu : 1. Marine atau lower estuarin, yaitu estuarine yang secara bebas berhubungan dengan laut bebas, sehingga karakteristik air laut sangat terasa pada daerah ini. 2. Middle estuarin, yaitu daerah dimana terjadi percampuran antara fresh water dan air asin secara seimbang. 3. Fluvial atau upper estuarin, yaitu daerah estuarin dimana fresh water lebih mendominasi, tetapi tidal masih masih berpengaruh (harian) Marine atau lower estuarin adalah estuarine yang secara bebas berhubungan dengan laut bebas, sehingga karakteristik air laut sangat terasa pada daerah ini. Daerah dimana terjadi percampuran antara fresh water dan air asin secara seimbang disebut middle estuarin. Sedangkan fluvial atau upper estuarin, yaitu daerah estuarin dimana fresh water lebih mendominasi, tetapi tidal masih masih berpengaruh (harian). Friendman & Sanders (1978) dalam Reineck & Singh mengungkapkan bahwa pada fluvial estuarin konsentrasi suspensi yang terendapkan lebih kecil (<160mg/l) dibanding pada sungai yang membentuk delta. Gambar VII.31 Skema system lingkungan pengendapan estuarin yang sangat dipengaruhi gelombang (Dalrymple, 1992) Berdasarkan aktivitas dari tidal yang mempengaruhinya, estuarin dapat diklasifikasikan menjadi tiga (Hayes, 1976 dalam Reading, 1978), yaitu : 1. Mikrotidal estuarin 2. Mesotidal estuarin 3. Makrotidal estuarin Pada mikrotidal estuarin, perkembangan daerahnya sering ditandai dengan kemampuan disharge dari sungai untuk menahan arus tidal yang masuk ke dalam sungai, meskipun kadang-kadang pada saat disharge sungai sangat kecil, arus tidal dapat masuk sampai ke sungai. Pada mesotidal estuarin, efektivitas dari tidal lebih efektif dibanding pada mikrotidal, khususnya ini terjadi pada sungai bagian bawah. Pada makrotidal estuarin sering ditemukan funnel shaped dan linier tidal sand ridges. Arus tidal sangat efektif dalam sirkulasi daerah ini, serta endapan suspensi umumnya diendapkan pada dataran (flats) intertidal pada daerah batas estuarin (Reading, 1978). Endapan pada daerah estuarin umumnya aggradational dengan alas biasanya berupa lapisan erosional hasil scour pada mulut sungai. Hal ini berbeda dengan endapan delta yang umumnya progadational yang sering menunjukan urutan mengkasar keatas. Pada daerah estuarin yang sangat dipengaruhi oleh tidal, endapannya akan sangat sulit dibedakan dengan
daerah lingkungan pengendapan tidal, untuk membedakannya harus didapat informasi dan runtunan endapan secara lengkap (Nichols, 1999). VII.6 TIDAL FLAT Tidal flat merupakan lingkungan yang terbentuk pada energi gelombang laut yang rendah dan umumnya terjadi pada daerah dengan daerah pantai mesotidal dan makrotidal. Pasang surut dengan amplitudo yang besar umumnya terjadi pada pantai dengan permukaan air yang sangat besar/luas. Danau dan cekungan laut kecil yang terpisah dari laut terbuka biasanya hanya mengalami efek yang kecil dari pasang surut ini, seperti pada laut mediterania yang ketinggian pasang surutnya hanya berkisar dari 10 – 20 cm. Luas dari daerah tidal flat ini berkisar antara beberapa kilometer sampai 25 km (Boggs, 1995). Berdasarkan pada elevasinya terhadap tinggi rendahnya pasang surut, lingkungan tidal flat dapat dibagi menjadi tiga zona, yaitu subtidal, intertidal dan supratidal (Gambar VII. 32). Gambar VII. 32 Pembagian serta hubungan antara zona-zona pada lingkungan tidal flat (Boggs, 1995) Zona subtidal meliputi daerah dibawah rata-rata level pasang surut yang rendah dan biasanya selalu digenangi air secara terus menerus. Zona ini sangat dipengaruhi oleh tidal channel dan pengaruh gelombang laut, sehingga pada daerah ini sering diendapkan bedload dengan ukuran pasir (sand flat). Pada zona ini sering terbentuk subtidal bar dan shoal. Pengendapan pada daerah subtidal utamanya terjadi oleh akresi lateral dari sedimen pasiran pada tidal channel dan bar. Migrasi pada tidal channel ini sama dengan yang terjadi pada lingkungan sungai meandering. Zona intertidal meliputi daerah dengan level pasang surut rendah sampai tinggi. Endapannya dapat tersingkap antara satu atau dua kali dalam sehari, tergantung dari kondisi pasang surut dan angin lokal. Pada daerah ini biasanya tidak tumbuh vegetasi yang baik, karena adanya aktifitas air laut yang cukup sering (Boggs, 1995). Karena intertidal merupakan daerah perbatasan antara pasang surut yang tinggi dan rendah, sehinnga merupakan daerah pencampuran antara akresi lateral dan pengendapan suspensi, maka daerah ini umumnya tersusun oleh endapan yang berkisar dari lumpur pada daerah batas pasang surut tinggi sampai pasir pada batas pasang surut rendah (mix flat). Pada daerah dengan pasang surut lemah disertai adanya aktivitas ombak pada endapan pasir intertidal dapat menyebabkan terbentuknya asimetri dan simetri ripples. Facies intertidal didominasi oleh perselingan lempung, lanau dan pasir yang memperlihatkan struktur flaser, wavy dan lapisan lentikular. Facies seperti ini menunjukan adanya fluktuasi yang konstan dengan kondisi energi yang rendah (Reading, 1978) Zona supratidal berada diatas rata-r ata level pasang surut yang tinggi. Karena letaknya yang lebih dominan ke arah darat, zona ini sangat dipengaruhi oleh iklim. Pada daerah sedang, daerah ini kadang-kadang ditutupi oleh endapan marsh garam (Gambar VII.33), dengan perselingan antara lempung dan lanau (mud flat) serta sering terkena bioturbasi (skolithtos). Pada daerah beriklim kering sering terbentuk endapan evaporit flat. Daerah ini umumnya ditoreh oleh tidal channel (incised tidal channel) yang membawa endapan bedload di sepanjang alur sungainya. Pengendapan pada tidal channel umumnya sangat dipengaruhi oleh arus tidal sendiri, sedangkan pada daerah datar di sekitarnya (tidal flat), pengendapannya akan dipengaruhi pula oleh aktivitas dari gelombang yang diakibatkan oleh air ataupun angin. Suksesi endapan pada lingkungan tidal flat umumnya memperlihatkan sistem progadasi dengan penghalusan ke atas sebagai refleksi dari batupasir pada pasang surut rendah (subtidal) ke lumpur pada pasang surut tinggi (supratidal dan intertidal bagian atas). Gambar VII.33 Blok diagram silisiklastik pada lingkungan tidal flat (Dalrymple, 1992 dalam Walker & James, 1992) VII.7 Neritik (Shelf Environment)
Daerah shelf merupakan daerah lingkungan pengendapan yang berada diantara daerah laut dangkal sampai batas shelf break (Gambar VII.34). Heckel (1967) dalam Boggs (1995) membagi lingkungan shelf ini menjadi dua jenis, perikontinental (marginal) dan epikontinental (epeiric). Perikontinental shelf adalah lingkungan laut dangkal yang terutama menempati daerah di sekitar batas kontinen (transitional crust) shelf dengan laut dalam
(Gambar VII.35). Perikontinental seringkali kehilangan sebagian besar dari endapan sedimennya (pasir dan material berbutir halus lainnya), karena endapan-endapan tersebut bergerak memasuki laut dalam dengan proses arus traksi dan pergerakan graviti (gravity mass movement). Karena keberadaannya di daerah kerak transisi (transitional crust), perikontinental juga sering menunjukan penurunan (subsidence) yang besar, khususnya pada tahap awal pembentukan cekungan, yang dapat mengakibatkan terbentuknya endapan yan tebal pada daerah ini (Einsele, 1992). Sedangkan epikontinental adalah lingkungan laut yang berada pada daerah kontinen (daratan) dengan sisi-sisinya dibatasi oleh beberapa daratan. Daerah ini biasanya dibentuk jauh dari pusat badai (storm) dan arus laut, sehingga seringkali terproteksi dengan baik dari kedua pengaruh tersebut. Jika sebagian dari daerah epeiric ini tertutup, maka ini akan semakin tidak dipengaruhi oleh gelombang dan arus tidal. Gambar VII.34 Skema penampang lingkungan pengendapan laut (Boggs, 1995) Ada enam faktor yang mempengaruhi proses sedimentasi pada lingkungan shelf (Reading, 1978), yaitu : 1. kecepatan dan tipe suplai sedimen 2. tipe dan intensitas dari hidrolika regime shelf 3. fluktuasi muka air laut 4. iklim 5. interaksi binatang – sedimen 6. faktor kimia Pasir shelf modern sebagian besar (70%) adalah berupa relict sedimen, meskipun kadang-kadang daerah shelf ini menerima secara langsung suplai pasir dari luar daerah, seperti dari mulut sungai pada saat banjir dan dari pantai pada saat badai (Drake et al, 1972 dalam Reading, 1978). Endapan sedimen pada lingkungan shelf modern umumnya sangat didominasi oleh lumpur dan pasir, meskipun kadang-kadang dijumpai bongkah-bongkah relict pada beberapa daerah. Ada empat tipe arus (current) yang mempengaruhi proses sedimentasi pada daerah shelf (Swift et al, 1971 dalam Boggs, 1995), yaitu : 1. Arus tidal 2. Arus karena badai (storm) 3. Pengaruh gangguan arus lautan 4. Arus density Sehingga berdasarkan pada proses yang mendominasinya, lingkungan shelf ini secara dibagi menjadi dua tipe (Nichols, 1999), yaitu shelf didominasi tidal (tide dominated shelves) dan shelf didominasi badai (storm dominated shelves). Pada lingkungan shelf modern pada umumnya tidak ada yang didominasi oleh pengaruh arus density. Shelf yang didominasi oleh arus tidal ditandai dengan kehadiran tidal dengan kecepatan berkisar dari 50 sampai 150 cm/det (Boggs, 1995). Sedangkan Reading (1978) mengungkapkan bahwa beberapa shelf modern mempunyai ketinggian tidal antara 3 – 4m dengan maksimum kecepatan permukaan arusnya antara 60 sampai >100 cm/det. Endapan yang khas yang dihasilkan pada daerah dominasi pasang surut ini adalah endapanendapan reworking in situ berupa linear ridge batupasir (sand ribbons), sand waves (dunes), sand patches dan mud zones. Orientasi dari sand ridges tersebut umumnya paralel dengan arah arus tidal dengan kemiringan pada daerah muka sekitar 50. Umumnya batupasir pada shelf tide ini ditandai dengan kehadiran cross bedding baik berupa small-scale cross bedding ataupun ripple cross bedding.
Gambar VII.35 Jenis epikontinental/epeiric
lingkungan (Heckel,
pengendapan perikontinental/marginal dan 1967 dalam Boggs, 1995)
Shelf yang didominasi storm dicirikan dengan kecepatan tidal yang rendah (<25 m/det). Pada daerah ini biasanya sangat sedikit terjadi pengendapan sedimen berbutir kasar, kecuali pada
saat terjadi badai yang intensif. Kondisi storm dapat mempengaruhi sedimentasi pada kedalaman 20 – 50 m. pada saat terjadi badai, daerah shelf ini menjadi area pengendapan lumpur dari suspensi. Material klastik berbutir halus dibawa menuju daerah ini dari mulut sungai dalam kondisi suspensi oleh geostrphik dan arus yang disebabkan angin (Nichols, 1999). Storm juga dapat mengakibatkan perubahan (rework) pada dasar endapan sedimen yang telah diendapkan terlebih dahulu. Pada suksesi daerah laut dangkal dengan pengaruh storm akan dicirikan dengan simetrikal (wave) laminasi bergelombang (ripple), hummocky dan stratifikasi horisontal yang kadang-kadang tidak jelas terlihat karena prose bioturbasi. VII.8 Oceanic (Deep-water Environment) Sekitar 70% daerah bumi ini merupakan daerah cekungan laut dengan alas kerak samudra tipe basaltis. Daerah cekungan laut dalam merupakan daerah yang pada bagian atanya dibatasi oleh lingkungan shelf pada zona break, secara topografi ditandai dengan kemiringan yang curam (lebih besar) dibandingkan dengan shelf. Berdasarkan dari fisiografinya, lingkungan laut dalam ini dibagi menjadi tiga daerah yaitu, continental slope, continental rise dan cekungan laut dalam (Gambar VII.36). Gambar VII.36 Prinsip elemen dari Kontinental margin (Drake, C.L dan Burk, 1974 dalam Boggs, 1995) Lereng benua (continental slope) dan continental rise merupakan perpanjangan dari shelf break. Kedalaman lereng benua bermula dari shelf break dengan kedalaman rata-rata 130 m sampai dengan 1500-4000 m. Kemiringan pada lereng benua ini sekitar 40, walaupun ada variasi pada lingkungan delta (20) dan pada lingkungan koral (450) (Boggs, 1995). Sedangkan kemiringan pada continental rise biasanya lebih kecil dibandingkan kemiringan pada lereng benua. Karena lerengnya yang cukup curam dibandingkan paparan, pada lereng benua ini sering merupakan daerah dari pergerakan arus turbidit. Continental rise biasanya tidak akan ada pada daerah convergen atau aktif margin dimana subduksi berlangsung. Morfologi pada lereng benua ini sering menunjukan bentuk cembung, kecuali pada daerahdaerah yang yang mempunyai stuktur sangat aktif. Volume endapan sedimen yang dapat mencapai lereng benua dan continental rise ini akan sangat bergantung pada lebarnya shelf dan jumlah sedimen yang ada. Continental rise dan cekungan laut dalam membentuk sekitar 80% dari total dasar laut. Bagian lebih dalam dari continental slope dibagi menjadi dua fisiografi, yaitu : 1. Lantai Samudra (ocean floor), yang dikarakteristikan dengan kehadiran dataran abisal, perbukitan abisal (< 1 km) dan gunungapi laut (> 1 km) 2. Oceanic Ridges Dataran abisal merupakan daerah yang relatif sangat datar, kadang-kadang menjadi sedikit bergelombang karena adanya seamount. Beberapa dataran abisal juga kadang-kadang terpotong oleh channel-channel laut dalam. Pada pusat cekungan laut dalam biasanya terendapkan sedimen dari material pelagik. Mid-oceanic ridges memanjang sejauh 60.000 km – dan menutupi sekitar 30 35% dari luas lautan.
Transport Laut Dalam Aliran turbidit merupakan salah satu jenis aliran yang sangat banyak dilakukan kajian oleh para peneliti. Aliran turbidit pada prinsipnya dapat terjadi pada berbagai macam lingkungan pengendapan, tetapi aliran turbidit lebih sering ditemukan pada lingkungan laut dalam. Pada lingkungan laut dalam sebenarnya terdapat beberapa proses transpor yang dapat terjadi (Boggs, 1995), yaitu : 1. Transport suspensi dekat permukaan oleh air dan angin 2. Transport nepheloid-layer 3. Transport arus tidal pada submarine canyon 4. Aliran sedimen gravitasi 5. Transpor oleh arus geostrophic contour 6. Transport oleh floating ice
Transport oleh aliran gravitasi adalah transpor yang mendominasi dan banyak dijadikan kajian sejak beberapa tahun kebelakang. Sedimen dengan aliran gravitasi merupakan material-material yang bergerak di bawah pengaruh gravitasi. Aliran gravitasi ini secara prinsip terbagi menjadi empat tipe dengan karakteristik endapannya masing-masing.Keempat tipe tersebut adalah : 1. Aliran arus turbidit 2. Aliran sedimen liquefied 3. Aliran butiran (Grain Flow) 4. Aliran Debris (Debris Flow) Kuenen dan Migliori (1950) dalam Allen (1978) memvisualisasikan aliran turbidit sebagai aliran suspensi pasir dan lumpur dengan densitas yang tinggi serta gravitasi mencapai 1,5 – 2,0. Ketika aliran melambat dan cairan turbulence berkurang, maka aliran turbidit akan kelebihan beban, dan diendapkanlah butiran-butiran kasar. Beberapa percobaan menunjukan bahwa aliran turbidit secara umum terbagi menjadi empat bagian, yaitu kepala, leher, tubuh dan ekor. Pengendapan dengan aliran turbidit merupakan suatu proses yang sangat cepat, sehingga tidak terjadi pemilahan dari butiran secara baik, kecuali pada grading yang normal pada sekuen Bouma (Nichols, 1999). Pasir yang terendapkan oleh aliran turbidit umumnya lebih banyak berukuran lempung, mereka sering diklasifikasikan sebagai wackes dalam klasifikasi Pettijohn. Kipas Laut Dalam Ngarai (canyons) pada shelf merupakan tempat masuknya aliran air dan sedimen ke dalam laut dalam (Gambar VII. 37). Hal ini dapat dianalogikan dengan pembentukan alluvial fan. Pada setting laut dalam, morfologi kipas juga dapat terbentuk, menyebar dari ngarai-ngarai dan membentuk menyerupai kerucut (cone) pada lantai samudera. Morfologi tersebut terkenal dengan sebutan kipas bawah laut (submarine fans). Ukuran dari kipas bawah laut ini sangat bervariasi, terbentang mulai dari beberapa kilometer sampai 2000 km (Stow, 1985). Proses sedimentasi yang terjadi pada kipas bawah laut ini umumnya didominasi oleh sistem aliran turbidit yang membawa material-material dari shelf melalui ngarai-ngarai. Proses sedimentasi ini membentuk trend yang sangat umum, dimana material yang kasar akan terendapkan dekat dengan sumber dan material yang halus akan terendapkan pada bagian distal dari kipas. Kipas bawah laut modern dan turbidit purba terbagi ke dalam tiga bagian, proximal (upper fan), medial (mid fan) dan distal (lower fan). Upper fan berada pada kedalaman beberapa meter sampai puluhan meter dengan lebar bisa mencapai ratusan meter. Kecepatan aliran yang sangat cepat pada daerah ini menyebabkan endapan yang terbentuk berupa endapan tipis, tanpa struktur sedimen atau perlapisan batuan yang kasar (Nichols, 1999). Jika didasarkan pada sekuen endapan turbidit dari Bouma, maka pada daerah ini banyak ditemukan endapan dengan tipe sekuen “a”, sedangkan pada overbank upper fan dan channel sering ditemukan sekuen Bouma bagian atas (Tcde atau Tde). Pada daerah mid fan, aliran turbidit menyebar dari bgian atas kipas (upper fan). Pada daerah ini endapan turbidit membentuk lobe (cuping) yang menutupi hampir seluruh daerah ini. Unit stratigrafi yang terbentuk pada mid fan lobe ini, idealnya berupa sekuen mengkasar ke atas (coarsening-up) serta adanya unit-unit channel. Pada mid fan lobe ini sering ditemukan sekuen boma secara lengkap “ Ta-e dan Tb-e”. Kadang-kadang aliran turbidit yang mengalir dari upper fan dan melintasi mid fan dapat pula mencapai daerah lower fan. Daerah lower fan merupakan daerah terluar dari kipas bawah laut, dimana material yang diendapkan pada daerah ini umumnya berupa pasir halus, lanau dan lempung. Lapisan tipis dari aliran turbidit ini akan membentuk divisi Tcde dan Tde. Hemipelagic sedimen akan bertambah pada daerah ini seiring dengan menurunnya proporsi endapan turbidit (Nichols, 1999).
Gambar laut
VII.37
Prinsip dalam
penyebaran
sedimen (Einsele,
pada
lingkungan 1992)
VII.9 SEDIMENTASI ANGIN Di samping air, angin merupakan salah satu energi yang dapat mengikis dan mengangkut bahan-bahan untuk diendapkan, khususnya pada daerah yang mempunyai iklim kering dan semi kering. Angin terjadi karena perbedaan temperatur antara dua daerah yang berbeda di muka bumi akibat ketidakseragaman pemanasan kedua tempat oleh sinar matahari yang menimbulkan beda tekanan. Kekuatan angin ditentukan oleh besarnya beda tekanan pada kedua tempat dan jarak antara kedua tempat tersebut (Sukendar Asikin, 1978). Kekuatan angin akan bertambah dengan bertambahnya jarak. Gerakannya akan laminer jika perlahan dan turbulen bila cepat. Endapan sedimen yang berasal dari proses pengendapan oleh angin disebut endapan eolian. PENGENDAPAN ANGIN Menurut Allen (1970), endapan oleh angin (eolian) dapat terjadi pada : a. Daerah gurun, dimana iklimnya tropis, subtropis dan lintang tengah. b. Daerah disekitar, outwash plain pada endapan glasial dan tudung es pada daerah lintang tinggi. c. Di daerah pantai, di puncak pulau penghalang (barrier island) atau di muka pantai terbuka dalam berbagai iklim. Gurun terjadi pada lintang tengah dan rendah yang berhubungan dengan daerah yang tertutup dengan curah hujan dari 30 cm. Daerahnya kira-kira 20 % - 25% dari total daratan sekarang (Boggs, 1995). Gurun modern yang terbesar dengan panjang 12.000 km dan lebar 3.000 km terletak antara Afrika Utara dan Asia Tengah. Dengan gurun lain yang luas adalah Australia Tengah, berukuran 1500 - 3000 km. Gurun yang berukuran kecil berada di Afrika baratdaya, Chili Peru dan Patagonia, dan di baratnya Afrika Utara. Pelapukan di gurun terjadi secara mekanis dan kimiawi. Pelapukan mekanis tergantung pada perubahan gradien temperatur oleh pemanasan pada siang hari dan pendinginan pada malam hari. Perbedaan temperatur permukaan batuan pada waktu siang dan malam dapat mencapai 50° C. Pada kondisi seperti ini batuan secara perlahan akan rekah dan pecah. Butiran tersebut akan terbawa oleh angin dan diendapkan sebagai bukit pasir. Bukit pasir dapat pula terbentuk di muka pantai. Meskipun demikian hanya terjadi pada pantai pada daerah kering dimana vegetasi (tumbuhan) tidak ada. Angin kering yang kuat dengan arah tegak lurus pantai secara aktif memindahkan pasir menjadi gundukan pasir. Hanya sedikit gugusan bukit pasir di muka pantai yang terjadi pada daerah curah hujan rendah. Selain itu, endapan angin dapat pula terjadi pada outwash plain dari arus air es glasial yang ditemukan pada daerah lintang tinggi. Allen (1970) menggambarkan bahwa angin mengangkut sedimen secara suspensi dan saltasi atau merayap dipermukaan (surface creep). Kecepatan geser pada perpindahan butir dapat ditulis sebagai : U
*
=
K1
dimana
(crit) ( : o
=
-
( U
* (crit) =
( )
(crit) =
0
(crit)
/ = densitas
/ )
kecepatan tegangan
g
) D geser geser butir
D
= =
k1
=
konstanta
yang
diameter densitas bergantung dengan
bilangan
butir fluida Reynold
Butiran yang halus (0 - 0,2 mm ) akan diangkat secara suspensi, yaitu sedimen dibawa oleh angin tanpa terjadi kontak dengan lapisan. Angin bertiup melalui alluvium yang mengering dan membawa butiran terbang di udara Lanau lempung adalah contoh batuan yang dapat diangkut dengan cara suspensi. Bahan ini umumnya akan diangkut melalui jarak yang lebih jauh. Cara kedua adalah saltasi dimana butiran dengan ukuran yang lebih besar (0,2 - 2 mm) akan diangkut dengan cara menggelinding, bergeser dan bertumbukan. Bila angin bertiup di atas permukaan pasri, maka kalau cukup kuat butiran pasir akan melaju melalui seretan lompatan yang panjang. Jika mendarat mereka akan terpantul dan meloncat kembali ke udara dan akan melontarkan butiran pasir lainnya. Batupasir sangat halus adalah yang pertama dapat dipindahkan dengan saltasi. Pengangkutan bahan yang berukuran pasir ini disebut sand storm. Pasir umumnya terdiri dari mineral kwarsa yang membulat. Butiran demikian akan mampu melompat dengan mudah bila terbentur dengan bahan yang keras seperti butiran pasir lainnya atau kerakal . Gambar 2 menunjukkan trajektori saltasi dari butiran batupasir, dimana butiran yang lebih kecil akan mempunyai trajektori yang lebih panjang dari pada butiran yang benar. Studi tentang kecepatan ambang yang dibutuhkan untuk memulai pergerakan butir menunjukkan bahwa kecepatan ambang bertambah dengan bertambahnya ukuran butir. Butiran yang lebih kecil akan mempunyai kecepatan awal yang lebih kecil dari pada butiran yang besar. Allen (1970) menggambarkan bahwa panjang trajektori lintasan butir dan besarnya kecepatan awal diberikan sebagai : L H
= =
Dimana H= k2 dan g
k2 k3
(( (( :
k3
=
konstanta =
U* U*
+ +
L= besarnya empiris yang
U* U*
(crit))2 (crit))2 Panjang
berhubungan percepatan
dengan
/ /
g g
) )
trajektori trajektori ukuran butir gravitasi
Proses pemindahan bahan-bahan oleh angin dapat terjadi dengan 2 cara, yaitu deflasi dan abrasi (Sukendar Asikin, 1978). Deflasi adalah proses pemindahan bahan dengan cara menyapu bahan- bahan Yang ringan. Proses ini menghasilkan relief di gurun-gurun pasir. Deflasi dapat pula menyebabkan lekukan yang dalam hingga beberapa ratus meter di bawah permukaan laut. Kalau mencapai batas permukaan air tanah, maka akan membentuk oase (mata air di gurun)
Abrasi adalah pengikisan oleh angin yang menggunakan bahan yang diangkutnya sebagai senjata. Daerahnya tidak luas. Contohnya adalah batuan bentuk jamur yang terjadi karena bahan yang diangkut tidak merata. Dibagian bawah lebih banyak dan lebih kasar dibandingkan dengan diatasnya. 3.
Macam
Endapan
Oleh
Angin
Bahan yang diangkut oleh angin akan menimbulkan tiga macam endapan yang sangat berbeda (Boggs, 1995) yaitu : • Endapan lanau (silt), kadang-kadang disebut loess yang berasal dari sumber yang cukup
jauh. • Endapan pasir yang terpilah sangat baik. • Endapan lag (lag deposit), terdiri dari partikel berukuran gravel yang diangkut oleh angin dengan kecepatan yang cukup besar. Endapan gurun dapat dikelompokkan ke dalam 3 sublingkungan pengendapan utama yaitu bukti pasir (sand dune), interdune dan sand sheet. 3.1
Bukit
pasir
(sand
dune)
Lingkungan bukit pasir pada umumnya yang diangkut dan diendapkan adalah pasir yang diakumulasi dalam berbagai bentuk dune . Sand dune (bukit pasir) dapat dibagi menjadi 4 tipe morfologi utama (Selley, 1988), yaitu : a. Barchan atau lunate dune, adalah bukit pasir yang paling indah. Bentuknya cembung terhadap arah angin umum (utama dengan kedua titik ujungnya seperti tanduk, dimana pada kedua arah tersebut kekuatan angin berkurang. Barchan mempunyai muka gelincir yang curam pada sisi cekung. Barchan terjadi pada daerah yang terisola (tertutup) atau disekitar sudut pantai. Pada permukaan yang turun biasanya ditutupi oleh lumpur (mud) atau granula. Hal ini menunjukkan bahwa barchan/lunate dunate terbentuk terbentuk dimana pengangkutan pasir lebih sedikit. b. Tipe stellate, piramida atau Matterhorn. Terdiri dari rangkaian sinus, tajam, punggung pasir yang tinggi, yang bergabung bersama-sama dalam satu puncak yang tinggi. Angin selalu meniup bulu-bulu pasir di puncak peramida, membuat dune tampak seperti berasap. Stellate dune kadang-kadang ratusan meter tingginya, terbentuk pada batas pasir laut dan jebel, menandakan titik interferensi dari arus angin dengan topografi yang resistan. c. Longitudinal atau Seif dune. Bentuknya panjang, tipis dengan batas punggung yang jelas. Dune secara individu dapat mencapai 200 km panjangnya, kadang-kadang dapat konvergen pada perbatasan seif dimana arah angin berkurang. Tingginya dapat mencapai 100 km dan batas dune lebarnya sampai 1 atau 2 km, dengan daerah interdune yang datar, terdiri dari pasir atau gravel. d. Tranversal dune, bentuknya kursus atau sinusoidal ramping dengan puncak tegak lurus arah angin rata - rata. Muka gelincir yang curam terdapat pada arah angin yang berkurang. Transversal dune jarang terjadi pada permukaan deflasi. Tranversal dune adalah tipe berkelompok, naik pada bagian belakang dari dune berikutnya.
3.2
Interdune
Interdune adalah antara dua dune, dibatasi oleh bukit pasir atau sand sheet. Interdune dapat terdeflasi (erosi) atau pengendapan. Sedikit sekali sedimen yang terakulasi pada interdune yang terdeflasi. Daerah interdune dapat meliputi dua arah endapan angin dan sedimen diangkut dan diendapkan oleh arus di daerah paparan.
3.3
Sand
Sheet
Sand sheet adalah badan pasir yang berundulasi dari datar sampai tegas yang terdapat di
sekitar lapangan bukit pasir. Dicirikan oleh kemiringan yang rendah (00-200). Lingkungan sand sheet berada di pinggiran bukit pasir. 4.
Bentuk
Perlapisan
Wilson (1991, 1992) dalam Walker (1992) menyatakan ada tiga skala utama bentuk perlapisan pada endapan eolin yaitu ripple, dune dan draa. Ripple yang disebabkan oleh angin lebih datar dari pada yang disebabkan oleh air dan biasanya mempunyai garis puncak yang lebih regular. Bentuk perlapisan dune lebih besar dari pada ripple dan ketinggiannya bervariasi dari 0,1 sampai 100 meter. Bentuk perlapisan draa adalah perlapisan pasir yang besar antara 20 sampai 450 meter tingginya dan dicirikan oleh melampiskan keatas (superimpose) dari dune yang lebih kecil. Tabel- 1 adalah klasifikasi perlapisan endapan eolian.
5.
Tekstur
Tekstur meliputi bentuk, ukuran dan susunan butir. Batupasir eolian mempunyai 3 sublingkungan pengendapan (Walker, 1992) yang membedakan 3 macam tekstur pada endapan eolian, yaitu : • terpilah baik sampai dengan sangat baik pada batupasr halus yang terjadi pada sublingkungan pantai. • terpilah sedang sampai baik pada batupasir dune di darat yang berbutir baik. • terpilah jelek pada batupasir interdune dan serir. Bukit pasir bervariasi dalam ukuran butir dari 1,6 - 0,1 mm. Endapan bukit pasir umumnya terdiri dari tekstur pasir yang terpilah baik dan kebundaran baik juga ;kaya akan kwarsa. Endapan bukit pasir di pantai mungkin kaya akan mineral berat dan fragmen batuan yang tidak stabil. Bukit pasir di pantai yang terjadi didaerah tropis banyak mengandung ooid, fragmen cangkang, atau butiran karbonat lainnya. Bukit pasir yang terdapat di daerah gurun dapat mengandung gypsum seperti White Sand, New Mexico
6.
Struktur
Sedimen
Pengangkutan dan pengendapan oleh angin membentuk tipe struktur sedimen ripple, dune dan silang siur (cross-bed) seperti yang dihasilkan pada pengangkutan oleh air (Boggs, 1995). Struktur sedimen yang terdapat pada bukit pasir adalah :
kumpulan perlapisan silang (cross-strata) berukuran sedang sampai besar, yang cirinya terdapat pada muka kemiringan arah sari angin bertiup pada sudut 300 - 340 . kumpulan perlapisan silang tabular-planar dalam arah vertikal yang terdapat pada bagian bawah. bidang batas antara kumpulan individu dan perlapisan silang yang umumnya horinsontal atau miring dengan sudut rendah. Tipe geometri struktur bagian dalam barchan dapat dilihat pada gambar-4. Selain itu beberapa jenis struktur sedimen internal pada skala kecil dapat pula berbentuk perarian lapisan datar (plane -bed lamination), perarian bergelombang (rippleform lamination),rippleforeset cross lamination, climbing ripple, grainfall lamination dan sandflow cross -strata.
Pada bukit pasir yang kecil terdapat perarian silang siur tunggal (single cross lamination) dan perlapisan silang siur yang tebal terdapat pada lapisan pasir yang cukup tebal. Struktur sedimen yang besar tidak tampak pada inti pemboran, sehingga struktur sedimen seolah-olah massive. Pengeboran melalui tranversal dan lunate dune mengungkapkan bahwa beberapa kumpulan dari puncak bukit pasir dipisahkan oleh permukaan erosi dan lapisan datar. Heterogenenitas perlapisan ini menggambarkan variasi yang tidak menentu dari morfologi bukit pasir secara kasar. Perlapisan silang siur diendapkan saat migrasi angin rendah pada muka gelincir dan unit perlapisan datar dan subhorisontal diendapkan pada sisi belakang dari bukit pasir. Endapan interdune dicirikan oleh perlapisan dengan sudut kemiringan yang rendah (< 100 ) karena interdune terbentuk oleh proses migrasi dari bukit pasir, banyak terdapat bioturbasi yang merusak struktur perlapisan. Sedimen yang di endapkan pada interdune dapat mencakup dua macam endapan yaitu subaquaeous dan subaerial, tergantung pada iklim dimana mereka diendapkan, basah, kering atau daerah yang banyak terjadi penguapan. Endapan pada interdune kering dibentuk oleh ripple karena proses pengangkutan oleh angin. Endapannya relatif kasar, bimodal dan terpilah jelek dengan kemiringan yang tegas, lapisannya membentuk perarian yang jelek. Endapannya banyak mengandung bioturbasi yang merupakan hasil acak binatang maupun bekas tumbuhan. Pada interdune yang terjadi di daerah basah dekat dengan danau, silt dan clay terperangkap oleh badan yang semipermanen. Endapan ini dapat mengandung spesies organisme air tawar seperti gastrododa, pelesipoda, diatome dan ostracoda (Boggs, 1995). Dapat pula terbentuk bioturbasi seperti jejak kaki binatang. Endapan sheet sand juga mengandung kemiringan yang tegas atau permukaan iregular dari erosi beberapa meter panjangnya, terdapat jejak bioturbasi yang disebabkan oleh serangga atau tumbuhan, struktur cut-and-fill pada skala kecil, kemiringan yang tegas, lapisan perarian yang jelek sebagai hasil dari perbatasan pengendapan grainfall, diskontinu, lapisan tipis pasir kasar yang interkalasi dengan pasir halus, dan kadang-kadang interkalasi dengan endapan eolian yang mempunyai sudut besar Gb.5 menunjukkan distribusi dan hubungan stratigrafi dari sheet sand dan endapan bukit pasir eolian. Gb.6,7,8,9 dan 10 adalah contoh-contoh struktur sedimen pada endapan eolian. .
Model
Perlapisan
dan
Batas
Permukaan
Hasil perlapisan dari migrasi bentuk lapisan sebagai pendakian/undakan pasir mempunyai sudut dan arah yang berbeda-beda (Gb.II). Model perlapisan yang sederhana meliputi sistem bentuk lapisan termigrasi dengan sederhana dan bentuk kumpulan arsitektur yang sederhana. Sebagai contoh bukit pasir tranversal migrasi melewati gurun dari lapisan silang siur tabular (tabular cross-bed) dipisahkan oleh permukaan bidang planar. Transversal dune migrasi melalui transversal draa dari bentuk yang sederhana ke bentuk yang lebih kompleks, termasuk permukaan orde kedua pada kemiringan arah angin berkurang. Meskipun demikian, bentuk lapisan dibangun oleh perpindahan pasir dan juga disebabkan oleh keberadaan struktur perbahan angin meyebabkan perubahan bentuk perlapisan yang ada dan perubahan bentuk lapisan juga berinteraksi dengan angin untuk menghasilkan bermacam-macam bentuk keseimbangan.
Gambar - 1 (b) glacial Gambar
-
:
2
Gambar - 3 atau Seif
:
Lingkungan outwash :
pengendapan pada endapan plain © pantai
Trajectori
Tipe dune
saltasi
dari
bukit pasir (a) Barchan (d) Stellate atau
angin (a) (Allen,
butiranpasir (b)
gurun 1970)
(Allen,
1970)
Tranversal © Longitudinal piramida (Allen, 1970)
Table 1 Morphology and classification of eolian bedforms. After McKee (1979) Morphology Sheet
Name like
-
Associations sand
Sheet
Thin elongate strips Streaks COMPOUND two or more of the same type combined by Circular to elliptical Dome overlap or superimposition shaped (Wilson”s draa) mound, dome Crescent
in
Connencted
plan
crescents
Barchan
Barchanoid
(akle)
Asymmetrical ridge Transverse (reversing) COMPLEX - two different basic types occurring together, either Symmetrical ridge Linear (seif) Superimposed (wilson”s draa), or adjacent
Gambar (Boggs,
-
4
:
Tipe
geometri
dan
strktur
bagian
dalam
dari
barchan
dune 1995)
TABLE
-
2
:
Basic
types
of
stratification
in
eolian
deposits.
Gambar - 5 : Distribusi dan hubungan stratigrafi dari sheet sand dan endapan Eolian (Boggs, 1995) Gambar - 6 : Perlapisan pearian sejajar pada Gambar - 7 : Penampang obligue melalui pasir kasar dan halus (Walker 1992) Grainfall laminasi dengan interbed sandflow di bagian atas (Walker, 1992) Gambar
-
8
:
Penampang
obligue
pada
Gambar Sejajar
-
9
:
Perlapisan
sandflow silang (Walker,
ukuran siur
besar pada
(Walker, lapisan
1992) perarian 1992)
Gambar -10 : Ripple karena angin pada pasir kasar (Walker, 1992) Gambar - 11 : Model stratifikasi untuk tipe dune yang simple dan kompleks. Penampang longitudinal dan tranversal sejajar dan tegak lurus. Dengan resultan arah angin (Walker, 1992) VII.10
GLASIAL
Pengertian tentang sistem pengendapan glasial dan macam - macam bentuknya penting dalam aplikasi. Pertama, data kandungan endapan glasial dapat digunakan menyelesaikan masalah tentang proses - proses geologi yang terjadi. Kedua, endapan glasial merupakan dasar untuk mempelajari lingkungan geologi. Dengan adanya investigasi karakteristik teknik geologi, pedoman hydrogeological, dan arus transportasi dalam sistem pengendapan glasial. Sistem pengendapan glasial merupakan suatu pendorong dalam penyelidikan tentang sistem pengendapan glasial ini juga merupakan pendorong untuk mempelajari / mengetahui tentang letak dari pengendapan klastik dan karbonat dari suatu reservoar hidrokarbon pada tahun 1950 an Setelah mempelajari aspek - aspek dari glasial dan hubungannya satu sama lain, kemudian diaplikasikan kedalam ilmu geologi ekonomi atau hasil penyelidikan geologi yang bernilai ekonomi. Selain itu diketahui pula bahwa dalam sistem pengendapan glasial juga membawa serta endapan -endapan mineral dan bermacam - macam batuan yang dibungkus oleh es. (Placer ; Eyles, 1990), dan sistem pengendapan glasial digunakan juga dalam penyelidikan untuk endapan mineral yang terdapat pada pelindung / pembungkusnya sendiri. (drift prospecting ; Dilabio and Coker, 1989). Dimana diketahui pula bahwa lapisan batu dari glasial mempunyai kebiasaan digunakan dalam geologi minyak, tetapi kandungan dari Paleozoic glasial lebih penting / berarti digunakan dalam penyelidikan minyak dan gas, seperti : Australia, Argentina, Brasil, Bolivia, Saudi Arabia, Yordan dan Oman. (Levll et al, 1988; Franca and Potter, 1991). Banyak orang berpikiran bahwa fasies dari pengendapan glasial masih karakteristik yang unik. Ini disebabkan oleh campuran yang tidak tersotir dengan baik, semua ukuran ada, mulai dari bongkah - bongkah / batu - batu besar sampai kelempung, Kadang - kadang endapannya tepat pada glasier dan lapisan - lapisan esnya. Bagaimana sedimen yang mempunyai penampilan singkapan sama dapat memberikan sebuah endapan luas baik itu lingkungan glasial dan nonglasial “Term diamitct” akan digunakan untuk sebuah deskripsi, masa nongenetic betul - betul dari fasies yang sortirannya kurang baik tanpa memperhatikan asal mulanya. Hanya dengan diamict dapat diketahui endapan yang langsung pada “ice glasier” dapat diidentifikasi dengan baik. Suatu permasalahan pokok dalam mempelajari stratigrafinya adalah untuk menentukan apakah fasies diamict spesifik
sumbernya dari glasial atau nonglasial. Banyak contoh dalam literatur dimana sedimen itu mula - mula terjadi ter jadi dan dapat ditunjukkan berasal dari sumber nonglasial. Diamict hanya tipe fasies dalam keadaan biasa dan produksinya dari lingkungan pengendapan dalam sebuah luas daerah tertentu dan juga pengaruh iklim. Dalam keadaan biasa tidak mungkin kita berkesimpulan bahwa sumber sebuah diamict berasal dari sebuah singkapan tunggal dan kecil. Yang penting selalu diperhatikan adalah hubungan antara facies dalam stratigrafi.
Agar dapat memperkirakan tanda - tanda untuk lingkungan pengendapan digunakan refensi asosiasi fasies. Dengan pendekatan yang dasar dapat ditarik kesimpulan bahwa itu adalah produksi facies diamict, sebagai contoh, aliran sedimen oleh gaya berat, yang cenderung faciesnya dipengaruhi oleh arus turbidit. Dimana asosiasi fasies ini berubah - rubah pada lingkungan pengendapan yang berbeda, dalam model 3 dimensi dapat memperlihatkan endapan dengan jelas. Untuk interprestasi yang baik memerlukan profil defosit v ertikal secara terinci, bersama - sama dengan informasi variasi lateral dan geometri deposit diluar singkapan lokal. Umumnya. Asosiasi glasial fasies beserta lingkungan pengendapannya terjadi khususnya pada sungai, danau, darat yang berbatu dan pada kemiringan. Dalam kebanyakan kasus glasier yang mempunyai volume besar diberikan oleh lingkungan pengendapan pengendapan dilaut atau lacustrine basin, dimana sedimen glasial primer lebih banyak bekerja dibandingkan dibandingkan proses sedimen nonglasial yang berbeda dan pengaruh lingkungan glasial dapat diidentifikasi dan juga asosiasi - asosiasi fasiesnya. Sistem pengendapan pengendapan glasial dapat terlihat dengan jelas pada geometri 3 dimensi, dimana proses hubungan fasiesnya mencatat bahwa elemen paleogemorphic basin yang terbesar. Berdasarkan pemisahan dan krnologis lingkage, li ngkage, sistem pengendapan ini diidentifikasi menjadi dua bagian yaitu glacioterrestrial dan glaciomarine Sistem Lingkungan
Glacioterestrial pengendapan
glacioterestrial
dapat
Tract. dibedakan
atas
4
1. 2. 3. 4.
jenis
yaitu
:
Subglacial Supraglacial Glaciolacustrine Glaciofluvial
Substrate relief dan lingkungan tektonik adalah berperan sebagai dasar dalam pengendapan glacialteretrial ini. Menurut hasil penyelidikan bahwa pertumbuhan lembar - lembar es dibumi ini dalam jumlah yang besar, tetapi kurang yang mengandung endapan - endapan. Glacial itu aktif pada basin akibat tektonik. Dalam jumlah yang besar ternyata glacial besar dari sedimen ocean basin. Iklim juga mempengaruhi endapan glacial terrestrial ditepi es.
Posisi
Glacioteretrial
Pada
Low
-
Relief.
Glasil low - relief ini ditunjukkan dengan baik dengan adanya distribusi glasial deposit pleistocene seperti yang terjadi di Amerika bagian utara. (gambar 2,3) Beberapa sistem pengendapan pada low - relief yang dapat terjadi dapat dilihat pada gambar 1. 1.
Sistem
Pengendapan
Subglacial
Kondisi / keadaan didasar lembaran - lembaran es yang besar akanberubah luasnya yang
diakibatkan oleh perbedaan temperatur es dan kecepatannya. Untuk es yang dasarnya basah dimana kondisi tertutup oleh tekanan titik lebur es, es tersebut meluncur serta berakhir pada substrate. (gambar 4a,b). Sedangkan dalam kondisi dasar yang kering es tetap pada lapisan Frozen dan kebanyakan berpindah / bergeraknya juga menyebabkan perubahan bentuk pada bagian dalamnya. Sedangkan deposit fasies subglasial diamict pada prinsipnya terjadi/terdapat dibawah bagian dasar es yang basah. (gambar 4c,d). Runtuhan Englacial didalam transportasi sebuah lapisan basal tipis (1m) itu terdiri dari lapisan - lapisan es yang tidak rata. Abrasi yang kuat itu terjadi diantara kedua partikel dalam lapisan dasar, dan diantara partikel dengan substrate. Runtuhan itu saling bertubrukan dengan lapisan, dapat membentuk subtratelagi sebagai akibat dari tekanan cairan dan yang dikeluarkan dari es. Sedangkan ciri dari “Glacially - shaped Clasts” dapat dilihat pada gambar 5. Kelanjutan dari produksi lodgement membuat lapisan lentircular menjadi tebal. (gambar 6,7,8). Pada yang poros yang panjang “Clast” mempunyai penjajaran pararel yang lebih lebih kuatyang ditimbulkan oleh aliran es. Pengukuran poros yang panjang berorientasi dengan sedikit clasts memberikan sebuah indikasi aliran es lansung yang cepat. Letak dari “lodgement till” ditentukan oleh lokal dan regional unconformity dan cenderung mempunyai memp unyai geometri regional “ sheet - like” (gambar 6,7). Dimana ketebalan totalnya tidak melebihi dari 50 meter Unit “lentircular till” yang kuat terjadi didalam bentuk “sheet - like”. Hubunganya merupakan potongan menyilang dan tumpang tindih sebagi akibat dari erosi pada substrate dalam merespon perubahan kecepatan gerak dari es. Perubahan aliran lengsung dari es dan runtuhan dari litologi yang berbeda hasilnya dapat dilihat sebagai suatu tumpukan dari beberapa “lodgement till” yang berlapis keatas selama sebuah glaciation tunggal. (gambar 6). Setiap unit till mengandung clasts dan matrix dari perbedaan sumber lapisan batuan (bedrock). Penekanan ini dibutuhkan untuk ketelitian dalam interprestasi maju/ mundurnya siklus dari “multiple - till” stratigrafi. Adanya tanah bercampur batu kerikil pada chanel sebagai hasil dari sungai - sungai kecil yang kering, juga kumpulan dari komponen-komponen dari stratigrafi subglasial (gambar 6) Chanel mempunyai sebuah planah pada permukaan bagian atas yang memotong diamict, dimana berorientasi pada aliran es langsung yang subparalel dan hubungan genetik dengan “ekers ridges” (gambar 6). Oleh karena itu kehadiran fasies glaciofluvial didalam lingkungan “lodgement - till” tidak terlalu penting sebagai petunjuk mundurnya glacier.
2.
Sistem
Pengendapan
Supraglasial
Bagian luar dari tepi lembaran - lembaran es biasanya merupakan batas dimana sisa daerah yang luas dari tofografi bukit-bukit kecil terdiri dari sedimen-sedimen yang bervariasi dengan geometri komplek. Selama proses glaciation yang terakhir, perluasan dari es berhenti sekitar seperempat kilometer seperti yang terjadi di Amerika bagian utara
(gambar 2,3). Perbedaan tekanan yang kuat antara “upglacier” yang aktif dengan penghalang - penghalang oleh bagian tepi es menghasilkan perlipatan yang kompleks dan perlapisan runtuhan basal yang tebal (gambar 9). Dimana “melt“melt-out till” bersama dengan perkembangan fasies “diamict” pada permukaan es adalah asosiasi dengan topografi bukit-bukit bukit-bukit kecil yang khusus dimana itu merupakan data kompleks dari pemisahan tepi-tepi es. (gambar 10 d). Jika bagian luar dari tepi es yang tipis menjadi “frozen” pada substrate maka lempengan dari “bedrock” yang besar juga glaciotectonized boleh tidak ikut dengan proses tersebut. Ini adalah pergerakan dari es tidak melakukan luncuran pada basal, tetapi terjadi deformasi dibawah substrate sedimen. Apabila proses ini tidak berjalan lagi, maka bentuk ini menjadi menutup oleh runtuhan-runtuhan englasial pada permukaan es. (gambar 9,10a,b,c). Penutupan ini tidak stabil dan pergerakan sedimen akibat aliran gravitasi untuk kedalam basin
yang berbentuk ketel, merupakan generasi penutupan oleh pencairan es pada suatu tempat tertentu. (gambar 10b,c). Dimana pencairan kearah bawah lebih cepat oleh produksi tofografi daerah rendah “diamict” supraglacial pada prosese sedimentasi ulang secara umum diakibatkan oleh aliran dari reruntuhan - reruntuhan yang ada, serta mempunyai lapisan berupa “clast” yang pararel dengan arah alirannya, dimana “clast” itu merupakan rancangan rancangan dari lapisan-lapisan paling atas, bagian-bagian berbentuk rakit dan fragmen-fragmen dari sedimen yang sudah lebih dulu, juga channelnya berbentuk bagian yang menyilang, terdapat geometri lenticular yang mengalami penebalan pada “down“down-slope” serta ketidak ketidak hadirin relief pada perlapisan atas dari permukaan dan adanya suatu kecendrungan untuk mengisi tofografi yang rendah. Massive dan lapisan kasar dari fasies “diamict” berpengaruh, dimana fasies lapisan - lapisan kasar sebagai hasil dari aliran massive yang tipis pada lapisan diatasnya. Dimana fasies “ diamict” adalah merupakan “interbedded” dengan “glaciofluvial” dan fasies “lacustrine”. Ini merupakan basal yang ada pada bagian atas sebagai hasil dari “melt“melt-out till” (gambar 9), yang boleh menutup lapisan batuan berbentuk rakit pada bagian atas yang sekarang merupakan pembentuk dari dasar es. Kondisinya berada dibawah sehingga struktur englasial berupa perlipatan dari rangkaian runtuhan basal yang merupakan kelanjutan dari “melt“melt-out” dalam bentuk perlapisan perlapisan berhubungan serta berorientasi melintang sebagai pembentuk aliran es langsung (Shaw, 1979). 3.
Sistem
Pengendapan
Glaciolacustrine.
Kolam glaciolacustrine sebagai hasil dari erosi glacial, disrupsi glacial bekas sistem drainase dan mengeluarkan / menghasilkan air akibat proses pencairan dalam jumlah yang besar. Berubahnya basin dari daerah yang sempit/terbatas, menyerupai tipe pegunungan dalam daerah high - relief, daratan yang luas dalam skala danau berada dibagian dalam dari seaways. Danau yang luas dalam statical yang sama menekan evaluasi bagian dalam dari daratan oleh lembaran es. Danau Agassiz adalah contoh yang terkenal, yang luasnya kira kira 1.000.000 km2 terdapat di Amerika bagian utara (Teller and Clayton, 1983). Sebuah perbedaan yang sederhana antara kontak es dengan badan danau dapat dilihat pada gambar dilihat pada gambar (11). Satu dari banyak karakteristik dari fasies glaciolcustrine, yang setiap tahun produksinya berantai dimana ukuran butirnya sangat kontras sebagai hasil dari kondisi sedimen yang berbeda dalam musim dingin dan musim panas. Dimana diketahui jika musim panas lapisannya kebanyakan terdiri dari sand dan silt, sedangkan pada musim dingin lapisannya terdiri dari cly (lempung). Untuk model klasik formasi varve dalam non ice contact danau-danau glacial menegaskan pengaruh musim kuat sangat kuat, misalnya pada musim panas tepi - tepi es pada supraglacial mencair sehingga endapan - endapannya dapat berpindah. Mencairnya supraglacial sangat berarti dalam menahan musim dingin. Dibawah pengaruh ini sedimentasinya didominasi oleh perkembangan delta yang berbentuk kipas, bulat dan menonjol. Dalam musim panas, sedimen dibebani kerapatan dibawah aliran. Tanda - tanda dari fasies lithologi suatu endapan itu menjadi jelas dalam setiap musim panas yang merupakan musim mencairnya es, (gambar 12) dan pencatatan mulai berawal dari penambahan penambahan dan menurunnya kerapatan aliran bawah yang aktif (Ashley, 1975). Pada musim panas tanda dari lapisan tipis dikategorikan ke dalam jenis silt dengan bungkus oleh ripple dan ripple - drift yang tipis dan mengalami laminasi yang menyilang. Bagian dasar umumnya umumnya kasar, tajam dan perlapisannya boleh meratakan tanah (gambar 12,13D). Kandungan / endapannya boleh dari multiple lamination yang mewakili endapan sebuah getaran tunggal. Boleh juga kontribusi kecil itu merupakan material pelagic dari interflow atau overflow yang menyerupai bulu atau sedimen yang melayang-layang. Unit lempung (clay) hitam boleh juga memperlihatkan indikasi tingkatan deposit normal yang merupakan sedimen melayanglayang dibawah pembungkus es yang menutupi danau. Ketebalan dari perlapisan umumnya seragam bersilangan dengan basin tetapi kandungan endapannya boleh “massive atau”crossatau”cross-
stratified sand” dan laminasi silt yang pada musim dingin menarik turun tingkatkan danau dan delta foreslope merosot turun. (gambar 12). Liang dan jejak fosil umumnya dijumpai pada perlapisan saat musim panas. Tetapi bukan pada musim dingin. Pada kenyataannya sistem pengendapan yang ada. Banyaknya perlapisan menggambarkan suatu perbangingan tunggal atau ganda dari unit kelas atau kualitas dari silt dan clay dengan divisi-visi yang tertentu. Ini boleh mempunyai deposit dengan bagian-bagian yang berlainan dan mempunyai ciri - ciri khusus berdasarkan arus turbiditnya dengan kontrol musiman yang kurang jelas. Penarikan kesimpulan ini boleh boleh dikatakan kurang tepat jika bagian perlapisan yang diakibatkan oleh turbidit pada daerah pusat itu berlainan. Bagaimana “thin- bedded” yang turbidit boleh juga “interbedded” dengan perlapisan yang dikontrol secara musiman dan memerlukan studi lapangan yang detail (Ashely, 1975). Ciri-ciri untuk danau yang bukan “ice-contact” dalam basin “low - relief” dimana sedimentasinya semata - mata ditentukan oleh musim dimana mencairnya permukaan lembaran-lembaran es. Sedangkan didalam “high-relief” basin dari danau itu berada pada “zona” pegunungan. Model sedimentasi dari danau glacial “ice-contact” sangat mengecewakan karena mempersulit pekerjaan dari bagian logistik pada danau “proglacial” yang modern dan basin danau modrn yang uikurannya kecil dibandingkan dengan pleistocene contoh-contoh yang lebih tua. Perluasan dari deposit glaciolacustrine pleistocene itu dapat dilihat disekitar danau-danau besar yang modern di Amerika utara adalah sangat penting untuk studi sedimentasi dalam skala besar, khusus danau “ice-contact” didalam posisi “low-relief”. (gambar 14,15). “Diamict” adalah butiran yang halus dan mempunyai geometri sebuah “blanket-like”, dimana mengalami penebalan pada tofografi rendah dan penipisan pada daerah yang sangat tinggi. Dimana pada bagian dalam, “diamict” mempunyai susunan komplek berupa massive dan fasies yang berlapislapis. (gambar 13e,14,15) fasies “diamict” massive sebagai hasil dari lapisan deras, sehingga sedimennya melayang-layang dan rakit-rakit es runtuh diatas dasar basin. Stratifikasi yang berikutnya boleh berkembang oleh proses pekerjaan ulang dari sedimen ini akibat arus yang menarik atau perulangan sedimentasi pada “down-slope”. “diamict” biasanya adalah “overlain” pada unit-unit chanel yang berupa laminasi lumpur-lumpur lempung, kemungkinan asalmula turbidit, kandungan dari “dropstone”. (gambar 13c). ini adalah perubahan :ovelain” oleh pengkasaran bagian atas yang berjalan dengan baik pada “ripplelaminated”, planar dan tembus dan tembus ke pasir “cross- bedded” yang menurut catatan letaknya pada pada progadasi delta yang merupakan akumulasi “diamict” 4.
Sistem
Pengendapan
Glaciofluvial.
Sistem pengendapannya membuat kandungan yang diatas mempunyai berarti bagi deposit dari sedimen-sedimen glacial sungai-sungai “melt-water”. (gambar 16) Ditepi es proses agradasi biasanya cukup deras sehingga menutupi bagian-bagian dari tepi es. Ini mengantarkan struktur deformasi dalam ukuran butir-butir kasar, lapisan kasar atau lapisan massive pada saat menutupi cairan es yang berikutnya. Lubang dari permukaan “out - wash” ditutupi oleh es yang mencair, dimana perluasannya dapat mencapai seperempat kilometer. Ini merupakan sisi “eskers” atau kontak es yang kompleks dari jajar “diamict” (gambar 9) Dimana sungai-sungai dari glacial “out -wash” ini kebanyakan bertipe “multiple-channel” atau “Teranyam”. Depositnya umunya didominasi bentuk dasar yang luas, dimana perluasannya itu merupakan sebuah aliran tunggal serta dapat berfungsi sebagai transportasi sedimen sepanjang tahun. Pengaruh angin dalam menghadirkan vegetasi, sebagai hasilnya adanya deposit akibat gerakan angin yaitu silt dan pasir. Dimana akumulasi dari “peat” yang tebal dapat menghasilkan batu bara. Proses glaciofluvial adalah penting karena boleh melengkapi pekerjaan ulang/kembali dari deposit sedimen pada glacier (gambar 16). Datadata dari bentuk endapan menunjukkan kehadiran dari es dapat menghancurkan/merusakkan. Ini adalah sebuah masalah dalam interprestasi deposit-deposit pada jaman dahulu/kuno,
karena deposit-deposit sungai teranyam terjadi dalam posisi/kedudukan dari banyak deposit. Sebuah hubungan glasial boleh menjadi sangat sulit, jika tidak mungkin diidentifikasi bukti/tanda harus mencari dari kehadiran atau ketidak hadirin iklim dingin struktur periglacial, atau dari kejadian glasial dari clast yang tajam-tajam, (gambar 5) dan kerut-kerut. Ini adalah masalah terutama dalam kedudukan high-relief. Sistem
Glaciomarine
Tract.
Sebuah bagian sederhana sistem peng endapan “glacial marine” yang membedakan posisi continental self dari continental slope dan teluk yang sepit dan panjang diantara karang yang tinggi. Dapat juga dipakai untuk menentukan tepi dari es apakah lingkungannya didominasi oleh proses glasial atau proses marine, (gambar 17). Iklim regional adalah kontrol yang lain dan penting karena berhubungan dengan volume es yang mencair dilingkungan marine. Lingkungan laut yang sederhana dicontohkan dengan terdapatnya volume dalam jumlah yang besar dari cairan es dan lumpur yang langsung mengisi paparan, (gambar 1). Lingkungan sediment-nourished dapat bertentangan dengan sediment-starved dalam hal hal posisi, itu adalah tipe frozen yang besar didaerah kutub masukan “melt-water” adalah sama sekali terbatas sehingga “deposition” kimia dan biogenic” relatife menjadi penting, ini terdapat di Antarctica, (gambar 18, Domack, 1988). Dengan jelas, bahwa penebalan deposit “glaciomarine” sederhana/sedang pada daerah laut adalah mungkin karena terlindungi oleh batu-batuan. V.4. (REEF)
LINGKUNGAN
TERUMBU
Terumbu atau reef merupakan lingkungan yang unik yang sangat berbeda dari bagian lingkungan pengendapan lainnya di lingkungan paparan (shelf). Terumbu ini umumnya dijumpai pada bagian pinggir platform paparan luar (outer-shelf) yang hampir menerus sepanjang arah pantai, sehingga merupakan penghalang yang efektif terhadap gerakan gelombang yang melintasi paparan tersebut. Disamping terumbu berkembang seperti massa yang menyusur sepanjang garis pantai diatas, juga dapat berk embang sebagai “patch” yang terisolir dalam paparan bagian dalam atau inner-shelf (gambar I-I dan I-2). Istilah lain untuk terumbu ini, ada yang menyebutnya dengan “carbonate buildup” atau “bioherm”. Tetapi para pekerja karbonat tidak menyetujui penggunaan istilah terumbu hanya dibatasi untuk carbonat-buildup atau inti yang kaku, pertumbuhan koloni organisme, atau carbonat - buildup lainnya yang tidak memiliki inti kerangka yang kaku. Wilson (1975) menggunakan istilah carbonat-buildup untuk tubuh yang secara lokal, terbatas secara lateral, merupakan hasil proses relief tofografi, dan tanpa mengaitkan dengan hiasan pembentuk internalnya. Sebelumnya Dunham (1970) mencoba memberikan solusi dilema peristilahan ini dengan mengusulkan dua tipe terumbu, yaitu : (a) Terumbu Ecologik : adalah terumbu yang dicirikan oleh bentuk kaku, struktur tofografi yang tahan terhadap gelombang, dihasilkan oleh pembentukan aktif dan pengikatan sedimen organisme. (b) Terumbu Stratigrafi : dicirikan oleh batuan yang tebal, terbatas secara lateral, dan merupakan batuan karbonat yang buruk sampai sangat buruk. Selanjutnya Longman (1981) memodifikasi definisi Heckel (1974), yang mengatakan bahwa terumbu sebagai karbonat yang tumbuh dipengaruhi secara biologi dan juga mempengaruhi
secara
II.
biologi
TERUMBU
dan
juga
mempengaruhi
MODEREN
II.I
DAN
daerah
LINGKUNGAN
Letak
sekitarnya.
TERUMBU Pengendapan
Kebanyakan terumbu terbentuk dalam lingkungan air dangkal,berupa terumbu linier yang hampir kontinyu disepanjang tepi platform dan dis ebut juga sebagai “barrier -reef” “Fringing reef”, letaknya berlawanan dengan garis pantai yang terbentuk akibat paparan yang sangat sempit. Sedangkan terumbu berbentuk seperti donat disebut “Atolls”, dimana bagian luarnya merupakan penghalang gelombang lagoon yang dilingkarinya dan terumbu yang lebih kecil lagi dan terisolisasi dinamakan “patch-reef” “pinnacle-reef, atau “table - reef” yang terbentuk sepanjang beberapa tepi paparan, tersebar pada paparan tengah (midle-shelf) Disamping dalam air dangkal, terumbu juga dapat dijumpai dalam air yang lebih dalam, seperti “mound” yang terbentuk secara organik dengan panjang 100 m dan tinggi 50 m (Neuman, Kofoed), dan Keller, 1977) “Mound” ini mengandung lumpur yang mengikat atau menyemen berbagai organisme air dalam, seperti : crinoid, ahermatypic hexacoral dan sponga. II.2
Organisme
Terumbu
Hampir semua terumbu tersusun oleh koral, meskipun banyak organisme lain yang turut menyumbang, seperti alga biru - hijau (cyanobacteria, alga merah coralline, alga hijau, kerangka foramnifera, brozoa, sponga, dan moluska (Heckel, 1974; James dan Macintyre, 1985). Dalam sejarah waktu geologi, beberapa kelompok organisme yang membentuk terumbu meliputi : archaeocyathids, stromatoporoids, fenestethid bryozoans, dan rudistid clams. Meskipun demikian, koral merupakan dominan terumbu modern, dan ada dua jenis koral, yaitu : (a) Hermatypic (zoanthellae) hexacoral : merupakan koral utama air dangkal yang melakukan hubungan simbiotik dengan beberapa macam organisme unicelluler terutama alga, yang kemudian dinakan secara kolektif sebagai zooxanthellae. Alga ini hidup dalam atau antara kehidupan sel koral dan mendapatkan energi dari proses photosistesis (Cowen, 1988). Selama proses photosintesis alga ini melepaskan CO2, sehingga membutuhkan sinar matahari, oleh karenanya coral hermatypic ini terbatas hidupnya hanya dalam air sangat dangkal. (b) Ahermatypic (azooxanthellae coral : coral ini hidupnya tidak terbatas pada air dangkal saja, tetapi dapat tersebar hingga pada kedalaman melebihi 2000m (stanley dan Cairs, 1988) dan jarang mempunyai hubungan simbotis, sehingga merupakan organisme utama sekarang yang membentuk “carbonat- buildup” dalam air yang lebih dalam.
Bentuk pertumbuhan terumbu yang terbentuk oleh organisme sangat dipengaruhi oleh energi air yang bekerja terhadap terumbu tersebut. Organisme yang hidup dalam energi air yang rendah akan cenderung menghasilkan terumbu terbentuk delicate, branching, dan plate-like. Sedangkan yang hidup dalam zona energi air yang lebih tinggi, terumbu cenderung berkembang membentuk hemisperical, encruting, dan tabular (Gambar II-I) dan biasanya lebih baik untuk untuk bertahan terhadap aksi gelombang yang kuat. II.3.
Lingkungan
Terumbu
Energi
Tinggi
II.3.I
Lingkungan
Terumbu
Energi
Tinggi
Pada gambar II-2, ditunjukkan secara skematik pembagian sub-fasies terumbu platform (platform margin reef), terdiri dari bagian inti tengah “Reef -framework”, yang berangsur kearah terumbu. Pada bagian lebih atas mendekati datar dan dangkal terdiri dari “reef -slo pe”, dan “fore-reef talus” berupa akumulasi jatuhan terumbu. Pada bagian lebih atas mendekati datar dan dangkal terdiri dari “reef -flat” dan lebih kearah darat berupa “back -reef coral algal sands “ dan “endapan lagoon sub-tidal” (Longman, M.W., 1981). Secara fisiografis, James (1983) membagi terumbu kedalam zona “fore-reef”, “reef -front”, “reef -crest‟ “reef -flat” dan “back -ref” . Masing-masing zona dicirikan oleh jenis material karbonat berbeda (Gambar II-3), sebagai berikut : • Kata “rudstone”, “floatstone”, “bafflestone” “bindstone” dan “frameston” mula-mula digunakan oleh Emery dan Klovan (1971) sebagai modifikasi klasifikasi batu gamping yang diusulkan oleh Dunham (1962) • “Floatstone” dan “rudstone” adalah butiran karbonat yang tidak terikat san mengandung lebih dari 10 % butiran berukuran lebih dari 2 mm, beda keduanya adalah “floatsone” merupakan mud-suported, sedangkan “rudstone‟” adalah grain-suported. • “Bufflestone” adalah komponen karbonat yang terbentuk pada waktu pengendapan berupa tangkai atau batang organisme yang terperangkap kedalan sedimen oleh aktifitas buffle. “Binstone” terbentuk selama pengendapan oleh pengerasan dan terikat organisme, seperti pengererasan foraminifera dan bryozoas, sedangkan “framestone” tersusun oleh organisme seperti lokal yang membentuk struktur kerangka yang kaku. Energi air, proses sedimentasi utama, jenis organisme, persentase komponen kerangka, ukuran butiran serta pemilahan sedimen berubah-ubah dalam setiap zona (fasies) terumbu. Pada tabel II-1 diperlihatkan ringkasan karakteristik seperti itu untuk setiap fasies atau zona yang ditunjukkan pada gambar II-2. Pada zona “reef -crest” dimana energi air paling tinggi, maka persentase kandungan kerangka paling tinggi. Kemudian pada kedua arah “fore-reef” dan “back -reef” energi air akan menurun, yang diikuti oleh penurunnan kandungan kerangka. Perlu diperhatikan bahwa seluruh komponen kerangka terumbu biasanya sangat lebih kecil volumenya dari pada volume kandungan non-kerangka. Longman (1981) membandingkan struktur terumbu dengan mudah, yang memiliki inti tengah atau kerangka dikelilingi oleh “edible fruit”. Fraksi non-kerangka terumbu terdiri dari organisme seperti echinodermata, alga hijau, dan moluska tidak membentuk struktur kerangka, bersamaan dengan pecahan bioklas dari terumbu yang terkena aktivitas gelombang dan dalam zona terumbu dengan energi lebih rendah, beberapa lumpur gamping (lime mud). Zona fore-reef, talus-slope, dan back-reef coral algal sands seluruhnya tersusun oleh kandungan non-kerangka yang terdiri dari terutama bioklas dan beberapa organisme yang relatif hidup pada zona ini. II.3.2
Lingkungan
atau
Fasies
terumbu
Energi
Rendah
Pada lingkungan energi tinggi, fasies moderen terumbu type tepi platform umumnya terdiri dari inti kerangka tengah yang mengandung sebagianbesar coral dan coralline alga. Inti berangsur ke arah laut melalui zona fore-reef talus sampai lumpur gamping pada air yang lebih dalam atau shales. Dan ke arah darat melalui back-reef coral algal sand sampai endapan lagoon dengan butiran yang lebih halus. Model ini menyajikan alasan yang baik untuk
perkembangan terumbu energi tinggi dalam banyak posisi; meskipun beberapa bentuk terumbu energi yang lebih randah juga dijumpai. Pembagian zona karakteristik terumbu energi rendah tidak begitu baik berkembang seperti terumbu energi tinggi dan terumbu cenderung membentuk bidang datar melingkar sampai elip. Pertumbuhan organisme pada terumbu energi rendah umumnya didominasi oleh bentukbentuk delicate, branching (gambar II-I), dan tersusun oleh pasir dan lumpur karbonat yang sederhana dengan organisme yang sangat mirip bagi komposisi organisme tipe terumbu (James, 1984). Bentuk pertumbuhan (buildups) energi rendah lainnya tersusun sebagian besar oleh organisme non-terumbu yang terdiri dari tiang-tiang fragmen skeletal berbentuk gundukan atau “mound” dan / atau lumpur gamping bioklastik yang kaya organisme skeletal dengan sedikit organisme boundstone. Bentuk struktur semacam ini dinamakan “reef -mound” atau “simply-mound”. James dan Bourque (1992) mengelompokkan “mound” seperti diatas kedalaman tiga tipe utama, yaitu : (a) Microbial-mounds, yang mengandung calcimicrobes, stromatolities, dan thrombolities. (b) Skeletal-mounds, mengandung sisa-sisa organisme yang terperangkap atau buffed dalam lumpur. (c) Mud-mounds, terbentuk oleh akumulasi lumpur plus berbagai sejumlah fosil.
III.
TERUMBU
PURBA
Terumbu purba biasanya dapat dibagi hanya menjadi fasies utama yaitu : (a) Inti - terumbu (“reef -core”), terdiri dari kerangka terumbu masif, tak berlapis, organisme pembentuk terumbu yang terkandung tersemen dalam matriks lumpur gamping atau lime mud. (b) Sayap-terumbu (“reef -flank”), biasanya terdiri dari gamping konglomeratan atau breksi taluis, berlapis, pemilahan buruk, dan atau gamping pasiran yang menipis dan miring menjauhi inti-terumbu. (c) “Inter -reef”, mengandung butiran halus, gamping lumpuran sub-tidal, atau kemungkinan lumpur silisiklastik. Salah satu contoh yang baik yang menggambarkan karakteristik umum kompleks terumbu purba adalah “carbonat- buildup di bagaian utara Meksixo disebut dengan Golden Lane „ Atol”, yang memperlihatkan perubahan biofasies dan lithofasies (Wilson, 1975). Pada bagian inti terumbu yang berada beberapa puluh meter diatas fasies karbonat yang lebih dalam, terdiri dari “rudistid clams”, “colonial corals”, “stromatoporoids”, dan “encrusting algae”. Beransur kearah pantai, terumbu berupa “oolitic- biogenic grainstone” sampai mikrit “back reef” “foraminiferal grainstone”, dan “bioturbated wackstone” dengan fauna menunjukkan sirkulasi terbatas, dan lebih kearah pantai berubah kedalam fasies yang lebih terbatas, dan lebih kearah pantai perubah kedalam fasies yang lebih terbatas berupa endapan evaporit. Selanjutnya kearah laut (basinward), fasies terumbu berubah ke fasies sayap-t erumbu (“reef flank”) yang terdiri dari interklastik kasar sampai boulder biogenik yang tertanam dalam mikrit, dan lebih kedalam lagi fasies terdiri dari batugamping mikrit dengan fauna organisme pelagik. Kandungan organisme pembentuk terumbu juga tergantung pada umur terumbu tersebut. Organisme utama pembentuk terumbu purba sangat berbeda dengan organisme terumbu moderen. Koral hermtypic yang mendominasi pembentukan terumbu koral moderen, pertama-tama muncul pada umur Mesozoik dan bukan komponen terumbu yang lebih tua.
Terumbu yang lebih tua dari Mesozoik umumnya didominasi oleh organisme pembentuk terumbu lainnya seperti : koral tabular, “stromatoporoids”, “hydrozoans”, “sponga”, “encrusting bryzoa”, “coralline algae”, dan “blue-green algae” (Stanley dan Fagerstrom, 1988). IV.
KESIMPULAN
• Terumbu atau reef adalah batuan sedimen yang sangat unik dengan karakteristik dan komponen penyusunan yang beragam dan umunya terbentuk pada lingkungan paparan, khususnya tepi paparan atau shelf margin. • Bentuk pertumbuhan terumbu ini sangat bervariasi tergantung letak dan besarnya energi air yang bekerja selama perkembangannya. Disamping itu komponen kerangka penyusunnya juga berbeda untuk setiap energi air dan posisinya. • Berdasarkan energinya itu, ada dua jenis koral penyusun utama terumbu, yaitu : pertama hermatypic coral, yang hidup pada air dangkal karena membutuhkan sinar matahari dalam hidupnya dan yang kedua ahermatypic coral yang dapat hidup dalam air yang lebih dalam bahkan melebihi kedalaman 2000m, sehingg a memungkinkan terbentuknya “carbonat buildup” pada air
d
• Komposisi utama pembentukan terumbu disamping berubah dengan posisi dan energi air yang bekerja selama pembentukannya, juga berbeda dengan umur terbentuknya terumbu tersebut, seperti “hermatypic coral” mendominasi pembentukannnn utama terumbu moderen yang muncul pada umur Mesozoik, sedangkan terumbu sebelum Mesozoik didominasi oleh koral tabular, “stromatoporoids”, “hydrozoans”, “sponga”, “encrusting bryzoa”, “coralline algae”, dan “blue-green algae”. • Terumbu atau reef adalah batuan sedimen yang sangat unik dengan karakteristik dan komponen penyusunannya yang beragam dan umumnya terbentuk pada lingkungan paparan, khususnya tepi paparan atau shelf margin. • Bentuk pertumbuhan terumbu ini sangat bervariasi tergantung letak dan besarnya energi air yang bekerja selama perkembangannya. Disamping itu komponen kerangka penyusunannya juga berbeda untuk setiap energi air dan posisinya. • Berdasarkan energinya itu, ada jenis koral penusun utama terumbu, yaitu : pertama hermatypic coral, yang hidup pada air dangkal karena membutuhkan sinar matahari dalam hidupnya dan yang kedua ahermatypic coral yang dapat hidup dalam air yang lebih dalam bahkan melebihi kedalaman 2000m, sehingga memungkinkan terbentukn ya “carbonat buildup” pada air • Komposisi utama pembentuk terumbu disamping berubah dengan posisi dan energi air yang bekerja selama pembentukkannya, juga berbeda dengan umur terbentuknya terumbu tersebut, seperti “hermatypic coral” mendominasi pembentuk utama terumbu modern yang muncul pada umur Mezozoik, sedangkan terumbu sebelum Mesozoik didominasi oleh koral tabular, “stramotoporids”, “hydrozoans”, “sponga”, “encrusting bryzoa”, “coralline algae”, dan “blugreen algae” Gambar I-I : Menunjukkan profil skematik lingkungan paparan (shelf) karbonat dengan pembagian sub-lingkungan fasiesnya, 1. Basin; 2. Open-sea shelf, 3. Deep-sea shelf; 4. Foreslofe ; 5. Organic buildup; 6 Winnowed platform edge (sands);7.Open-circulation shelf; 8. Restricted-circulation self, dan 9. Evaporites (P.A. Scholle, D.G. Bebout, dan C.H. Moore,
d
Carbonate
depositional
environment:
AAPG
Mem.
33,
Tulsa,
Okla).
Gambar 1-2 :Skematik tampak datar paparan karbonat moderen, rimmed, tropical yang menunjukkan posisi relatif terumbu, lime-sand shoal, lagoon, dan tidal - flat (James, N.P. 1984) Gambar II-1:Menunjukkan bentuk pertumbuhan organisme pembentuk terumbu energi dan tipe lingkungannya (James, N.P. 1983) Gambar II-2:Menunjukkan idealisasi fasies terumbu moderen, terumbu koral dengan perkembangan kerangka terumbu yang baik (Longman,-M.W., 1981) Gambar II-3:Menunjukkan penampang zona hipotek terumbu tepi (marginal-reef) dengan jenis batugamping dan bentuk pertumbuhan oarganismenya (Longman, M.W., 1981) Gambar II-4: Menunjukkan diagram skematik zonasi sebagai respon terhadap perbedaan kondisi energi, berkisar dari air tenang sampai air bergelombang (James, N.P., 1984). Tabel II-I: Proses Pengendapan dan karakteristik fasies utama dalam kompleks terumbu modern (modifikasi dari Longman, M.W., 1981) Gambar III-1: Menunjukkan karakteristik umum biofasies dan lithofasies kompleks terumbu purba pada penampang melintang “carbonat- buildup” berumur kapur Tengah, Mexsiko Tengah (Wilson, J.L., 1975). http://valentinomalau31.blogspot.com/2010/12/lingkungan-pengndapan.html?zx=b49f72118b299e25
BAB VII LINGKUNGAN PENGENDAPAN Lingkungan pengendapan adalah bagian dari permukaan bumi dimana proses fisik, kimia dan biologi berbeda dengan daerah yang berbatasan dengannya (Selley, 1988). Sedangkan menurut Boggs (1995) lingkungan pengendapan adalah karakteristik dari suatu tatanan geomorfik dimana proses fisik, kimia dan biologi berlangsung yang menghasilkan suatu jenis endapan sedimen tertentu. Nichols (1999) menambahkan yang dimaksud dengan proses tersebut adalah proses yang berlangsung selama proses pembentukan, transportasi dan pengendapan sedimen. Perbedaan fisik dapat berupa elemen statis ataupun dinamis. Elemen statis antara lain geometri cekungan, material endapan, kedalaman air dan suhu, sedangkan elemen dinamis adalah energi, kecepatan dan arah pengendapan serta variasi angin, ombak dan air. Termasuk dalam perbedaan kimia adalah komposisi dari cairan pembawa sedimen, geokimia dari batuan asal di daerah tangkapan air (oksidasi dan reduksi (Eh), keasaman (Ph), kadar garam, kandungan karbon dioksida dan oksigen dari air, presipitasi dan solusi mineral). Sedangkan perbedaan biologi (fauna dan flora) di tempat sedimen diendapkan maupun daerah sepanjang perjalanannya sebelum diendapkan. Permukaan bumi mempunyai morfologi yang sangat beragam, mulai dari pegunungan, lembah sungai, pedataran, padang pasir (desert), delta sampai ke laut.
Dengan analogi pembagian ini, lingkungan pengendapan secara garis besar dapat dibagi menjadi tiga kelompok, yakni darat (misalnya sungai, danau dan gurun), peralihan (atau daerah transisi antara darat dan laut; seperti delta, lagun dan daerah pasang surut) dan laut. Banyak pengarang membagi lingkungan pengendapan berdasarkan versi masing-masing. Selley (1988) misalnya, membagi lingkungan pengendapan menjadi 3 bagian besar: darat, peralihan dan laut (Tabel 7.1). Namun beberapa penulis lain membagi lingkungan pengendapan ini langsung menjadi lebih rinci lagi. Lingkungan pengendapan tidak akan dapat ditafsirkan secara akurat hanya berdasarkan suatu aspek fisik dari batuan saja. Maka dari itu untuk menganalisis lingkungan pengendapan harus ditinjau mengenai struktur sedimen, ukuran butir (grain size) , kandungan fosil (bentuk dan jejaknya), kandungan mineral, runtunan tegak dan hubungan lateralnya, geometri serta distribusi batuannya. Fasies merupakan bagian yang sangat penting dalam mempelajari ilmu sedimentologi. Boggs (1995) mengatakan bahwa dalam mempelajari lingkungan pengendapan sangat penting untuk memahami dan membedakan dengan jelas antara lingkungan sedimentasi (sedimentary environment ) dengan lingkungan facies (facies environment ). Lingkungan sedimentasi dicirikan oleh sifat fisik, kimia dan biologi yang khusus yang beroperasi menghasilkan tubuh batuan yang dicirikan oleh tekstur, struktur dan komposisi yang spesifik. Sedangkan facies menunjuk kepada unit stratigrafi yang dibedakan oleh litologi, struktur dan karakteristik organik yang terdeteksi di lapangan. Kata fasies didefinisikan yang berbeda-beda oleh banyak penulis. Namun demikian umumnya mereka sepakat bahwa fasies merupakan ciri dari suatu satuan batuan sedimen. Ciri-ciri ini dapat berupa ciri fisik, kimia dan biologi, seperti ukuran tubuh sedimen, struktur sedimen, besar dan bentuk butir, warna serta kandungan biologi dari batuan sedimen tersebut. Sebagai contoh, fasies batupasir sedang bersilangsiur (cross-bed medium sandstone facies). Beberapa contoh istilah fasies yang dititikberatkan pada kepentingannya: Litofasies: didasarkan pada ciri fisik dan kimia pada suatu batuan Biofasies: didasarkan pada kandungan fauna dan flora pada batuan Iknofasies: difokuskan pada fosil jejak dalam batuan Berbekal pada ciri-ciri fisik, kimia dan biologi dapat dikonstruksi lingkungan dimana suatu runtunan batuan sedimen diendapkan. Proses rekonstruksi tersebut disebut analisa fasies. Tabel 7.1: Klasifikasi lingkungan pengendapan (Selley, 1988) Terestrial
Padang pasir (desert) Glasial
Daratan Sungai
Encer (aqueous)
Rawa (paludal) Lakustrin
Delta Estuarin Peralihan Lagun Litoral (intertidal)
Reef Neritik (kedalaman 0-200 m) Laut Batial (kedalaman 200-2000 m) Abisal (kedalaman >2000 m)
7.1. LINGKUNGAN SUNGAI Berdasarkan morfologinya sistem sungai dikelompokan menjadi 4 tipe sungai, sungai lurus (straight) , sungai teranyam (braided), sungai anastomasing , dan sungai kekelok (meandering) (Gambar 7.1).
Gambar 7.1 Sketsa empat tipe sungai 7.1.A Sungai Lurus (Straight) Sungai lurus umumnya berada pada daerah bertopografi terjal mempunyai energi aliran kuat atau deras. Energi yang kuat ini berdampak pada intensitas erosi vertikal yang tinggi, jauh lebih besar dibandingkan erosi mendatarnya. Kondisi seperti itu membuat sungai jenis ini mempunyai kemampuan pengendapan sedimen kecil, sehingga alirannya lurusnya tidak berbelok-belok atau low sinuosity (Gambar 7.1). Karena kemampuan sedimentasi yang kecil inilah maka sungai tipe ini jarang yang meninggalakan endapan tebal. Sungai tipe ini biasanya dijumpai pada daerah
pegunungan, yang mempunyai topografi tajam. Sedimen sungai lurus ini sangat jarang dijumpai dan biasanya dijumpai pada jarak yang sangat pendek. 7.1.B Sungai Kekelok (meandering) Sungai kekelok adalah sungai yang alirannya berkelok-kelok atau berbelokbelok (Gambar 7.1 dan 7.2). Leopold dan Wolman (1957) menyebut sungai meandering jika sinuosity -nya lebih dari 1.5. Pada sungai tipe ini erosi secara umum lemah sehingga pengendapan sedimen kuat. Erosi horisontalnya lebih besar dibandingkan erosi vertikal, perbedaan ini semakin besar pada waktu banjir. Hal ini menyebabkan aliran sungai sering berpindah tempat secara mendatar. Ini terjadi karena adanya pengikisan horisontal pada tepi sungai oleh aliran air utama yang pada daerah kelokan sungai pinggir luar dan pengendapan pada kelokan tepi dalam. Kalau proses ini berlangsung lama akan mengakibatkan aliran sungai semakin bengkok. Pada kondisi tertentu bengkokan ini terputus, sehingga terjadinya danau bekas aliran sungai yang berbentuk tapal kuda atau oxbow lake .
Gambar 7.2 Kelokan-kelokan sungai pada sungai meandering Pada tipe sungai kekelok proses pengendapan terakumulasi pada 5 (lima) bagian yang berbeda (Boggs, 1995, Gambar 7.3), yaitu : 1. saluran utama (Main Channel dan channel fills), 2. gosong (point bar), 3. tanggul alam (natural levee), 4. dataran banjir (flood-plain), 5. danau oxbow (oxbow lake). Sedimen yang diendapkan pada saluran utama terdiri dari material yang umumnya berbutiran lebih kasar yang dapat berpindah hanya oleh aliran sungai dengan kecepatan maximum pada saat puncak banjir (peak flood). Butiran suspensi
seperti lempung dan lanau terbawa lebih cepat dan diendapkan pada daerah floodplain . Endapan pada saluran utama terdiri dari reruntuhan dinding sungai yang roboh akibat pengikisan oleh aliran arus (Walker dan Cant, 1979 dalam Walker, 1992), yang lebih dikenal dengan lag deposits . Karena saluran utama ini selalu bergerak (berpindah) dan pada dasar sungai selalu diendapkan butiran yang lebih kasar maka endapan ini merupakan dasar dari suatu gosong.
Gambar 7.3 Morfologi tipe sungai kekelok (Einsele,1992) Gosong (point bar) terakumulasi pada sisi dalam kelokan sungai, umumnya terjadi ketika material di sisi luar bank tererosi. Pada bagian gosong, endapan yang
terbentuk umumnya menghalus ke atas, dengan struktur silang siur dan “ dunes ” yang berkembang baik. Pada sungai kekelok tua kadang-kadang gosong yang telah terbentuk terpotong kembali oleh aliran akibat lekukan aliran yang sangat besar yang terjadi saat banjir. Hal ini bisa terjasi pada gosong yang mempunyai kemiringan lereng rendah dan mempunyai tingkat kelokan yang tinggi. Tanggul alam (natural levee ) adalah tanggul di kanan kiri sungai yang membatasi aliran sungai. Tanggul alam ini terbentuk bersamaan dengan terbentuknya aliran itu sendiri. Tanggul terbentuk selama banjir sedang yang hanya mencapai ketinggian sama dengan tebing sungai ( channel bank ). Dengan menurunnya kecepatan arus, terendapkanlah sedimen di sepanjang tebing sungai tersebut. Pada saat banjir berikutnya endapan baru akan terus terbentuk di atas tebing ini dan membentuk tanggul alam sehingga tanggul ini semakin lama semakin tinggi. Tinggi maksimum yang dibentuk oleh tanggul alam mengindikasikan permukaan air maksimum yang terjadi pada saat banjir. Pada umumnya endapan berbutir halus. Arus sewaktu banjir, juga akan menyebabkan terkikisnya endapan yang telah terbentuk pada gosong atau bahkan mengerosi tanggul alam dan memutuskannya. Sehingga air akan melimpah ke dataran bajir di kiri-kanan aliran sungai dan akan membentuk crevasse splays deposites . Crevasse ini akan membentuk pola dan sistem saluran tersendiri. Struktur sedimen yang berkembang antara lain grading , lapisan horisontal ripple cross bedding . Dataran banjir (floodbasin) merupakan bagian terendah dari floodplain . Ukuran dan bentuk dari dataran banjir ini sangat tergantung dari sejarah perkembangan banji, tetapi umumnya berbentuk memanjang (elongate). Endapan dataran banjir (floodplain) biasanya terbentuk selama proses penggenangan (inundations). Umumnya Endapan dataran banjir ini didominasi oleh endapan suspensi seperti lanau dan lumpur, meskipun kadang-kadang muncul batupasir halus yang terendapkan oleh arus yang lebih kuat pada saat puncak banjir. Kecepatan pengendapannya pada umumnya sangat rendah, berkisar antara 1 dan 2 cm lapisan lanau-lempung per periode banjir (Reineck dan Singh, 1980). Endapannya mengisi daerah relatif datar pada sisi luar sungai dan kadang-kadang mengandung sisa tumbuhan serta terbioturbasikan oleh organisme-organisme. Akibat proses pengikisan mendatar pada belokan sungai dan pengendapan yang terjadi di sisi lain mengakibatkan suatu saat dua buah kelokan aliran meander saling bertemu. Akibat dari peristiwa ini menyebabkan terjadinya aliran yang terputus yang menyerupai danau yang disebut oxbow lake (Gambar 7.4).
Gambar 7.4. Sketsa pembentukan oxbow lake
Penampang vertikal dari endapan sungai kekelok dicirikan oleh runtunan batuan sedimen dalam setiap sekuen mempunyai besar butir menghalus ke arah atas (Gambar 7.5). Dasar atau alas setiap sekuen merupakan bidang erosi yang kemudian ditindih oleh lapisan yang berbutir kasar-sangat kasar. Pada bagian bawahnya (di atas bidang erosi) sangat umum dijumpai lag deposits tadi. Fragmen dari lag deposits ini umumnya terdiri atas batulempung atau batuserpih yang
merupakan hasil runtuhan tebing sungai. Pada bagian bawah sekuen ini sering terbentuk silang siur mangkok dan kemudian berubah jadi planar ke arah atas. Bagian atasnya terdiri atas batuan berbutir halus (batuserpih, batulanau atau batulempung) dengan sisipan tipis batupasir. Struktur sedimen yang dijumpai umumnya berukuran kecil seperti laminasi, silang siur dan ripple mark. Bagian bawah dari sekuen yang berupa endapan berbutir kasar-sangat kasar merupakan hasil endapkan pada alur sungai, sedangkan endapan halus umumnya merupakan hasil endapan di daerah dataran banjir. Sisipan tipis batupasir pada bagian atas sekuen merupakan endapan limpahan banjir yang memotong tanggul alam.
Gambar 7.5 Penampang vertikal ideal dari endapan sungai meandering (Walker dan Cant, 1979 dalam Boggs,1995) . 7.1.C Sungai Teranyam (braided) Sungai teranyam umumnya terdapat pada daerah datar dengan energi arus alirannya lemah dan batuan di sekitarnya lunak. Sungai tipe ini bercirikan debit air dan pengendapan sedimen tinggi. Daerah yang rata menyebabkan aliran dengan mudah belok karena adanya benda yang merintangi aliran sungai utama (Gambar 7.1 dan 7.6). Tipe sungai teranyam dapat dibedakan dari sungai kekelok dengan sedikitnya jumlah lengkungan sungai, dan banyaknya pulau-pulau kecil di tengah sungai yang disebut gosong. Sungai teranyam akan terbentuk dalam kondisi dimana sungai mempunyai fluktuasi dischard besar dan cepat, kecepatan pasokan sedimen yang tinggi yang umumnya berbutir kasar, tebing mudah tererosi dan tidak kohesif (Cant, 1982). Biasanya tipe sungai teranyam ini diapit oleh bukit di kiri dan kanannya. Endapannya selain berasal dari material sungai juga berasal dari hasil erosi pada bukit-bukit yang mengapitnya yang kemudian terbawa masuk ke dalam sungai. Runtunan endapan sungai teranyam ini biasanya dengan pemilahan dan kelulusan yang baik, sehingga bagus sekali untuk batuan waduk (reservoir). Umumnya tipe sungai teranyam didominasi oleh pulau-pulau kecil (gosong) berbagai ukuran (Gambar 7.6 dan 7.7) yang dibentuk oleh pasir dan krikil. Pola aliran sungai teranyam terkonsentrasi pada zona aliran utama. Jika sedang banjir sungai ini banyak material yang terbawa terhambat pada tengah sungai baik berupa batang pepohonan ataupun ranting-ranting pepohonan. Akibat sering terjadinya banjir maka di sepanjang bantaran sungai terdapat lumpur yang mengusai hampir di sepanjang bantaran sungai. Struktur sedimen yang umum terbentuk adalah silang siur, gelembur gelombang dan ripple cross-lamination . Pada saat air surut terjadi silang siur dengan perkembangan pada gelembur gelombang dan perarian sejajar. Hal ini terjadi pula pada permukaan bar. Pola pengendapan pada sungai teranyam pada skala kecil tidak terlihat pada beberapa pembacaan well log , karena saluran dan bar dapat berubah-ubah, pengendapan akan terlihat dengan secara acak dalam ukuran yang besar dan distribusi lateral isi dari fragmen bar dan salluran tersebut.
Gambar 7.6 Morfologi sungai teranyam
Jika sungai sedang tidak dalam keadaan banjir maka yang terendapkan adalah butiran halus dengan laminasi di bagian atas dari kerikil. Sedangkan lempung banyak terbentuk pada bagian tanggul dari sungai. Diagram dari sungai teranyam seperti terlihat dalam Tabel 7.2, yang memperlihatkan jika semakin rendah energi arus aliran, maka terbentuklah gelembur gelombang (ripple) halus pada batuan pasir yang melaminasi di bagian atas. Pada umumnya sungai teranyam dicirikan bar yang banyak dan besar pada sungai (Gambar 7.7) dengan ukuran yang sangat bervariasi. Bar ini dapat dibagi dalam: 1. longitudinal 2. linguoid 3. tranverse
Tabel 7.2 Lingkungan Pengendapan Sungai Teranyam (Boggs halaman 310)
Bar longitudinal atau di Indonesia disebut gosong adalah pulau ditengah sungai yang mempunyai sumbu panjang sejajar dengan arah aliran sungai. Endapan yang berbutir kasar biasanya tersebar di sekitar sumbu dan bagian bawah dari gosong. Besar butir endapan ini mengecil ke arah atas dan bawah dari gosong. Struktur sedimen yang umumnya terdapat pada gosong adalah lapisan mendatar yang tebal yang diendapkan dalam kondisi upper-flow regim . Linguiod dan tranverse bars berada pada sudut garis potong ke arah alur sungai, keistimewaan karakteristik pasir pada aliran teranyam. Bentuk lobate atau rhombic Linguoid bars , dengan penurunan ketinggian paras muka sungai. Untuk transverse bars muncul akibat adanya riak air sungai yang besar sehingga dapat mengakibatkan banjir. Lateral bars, terdapat pada beberapa panjang tepi sungai, karena proses pengendapan dan erosi dan banjir pada setiap kali musim banjir yang ditimbulkan
Gambar 7.7. Struktur bar pada sungai teranyam (Boggs, 2001). Endapan sungai teranyam pada umumnya terdiri atas batu pasir kasar sampai krikil. Lumpur terendapkan pada bagian dasar aliran sungai. Pada longitudinal bar cenderung mengubah krikil menjadi pasir. Endapan dari sungai teranyam bervariasi atas besarnya beban pengendapan yang terkirim, kedalaman dari air sungai dan variasi pembelokan aliran sungai. Umumnya proses pengendapan rangkaian facies vertikal juga tidak menunjukan perbedaan khusus (Gambar 7.8). Scott-type , umumnya terdiri dari batuan kasar, krikil-krikil dan sedikit adanya sisipan batuan pasir pada sepanjang penampang vertikal dari type ini. Model ini menunjukan sedikitnya perkembangan dari pengendapan batuan krikil. Donjek-type , model ini teridi dari variasi lapisan pengendapan pada sungai teranyam dengan campuran beban pasir dan kekrikil. Batuan berpasir banyak mendominasi pada Linguoid dan transverse bars . Pada penampang vertikal ini terlihat variasi dari ketebalan pembentukan lapisan. Platte-type , pengendapan tidak begitu nampak, sekalipun terindikasi adanya rangkaian pengendapan pada sebagian longitudinal bar dan superiposes linguoid bars dan ada sedit tanda berupa coal. Bijou Creek-type, karakteristik proses pengendapan oleh pengendapan superimposes flood sejak akumulasi arus air pada setiap kali terjadinya banjir.
Gambar 7.8. Penampang tegak batuan berpasir pada teranyam (Boggs, 1995) Penampang tegak dari batuan berpasir untuk arus teranyam seperti ditunjukan pada Gambar 7.9. Rangkaian penampang ini berawal dari endapan yang menggosok permukaan lantai bawah (bed SS) menumpuk pada cross-bedding (bed A). Batuan pasir terlihat menumpuk pada lapisan di atas (bed B) dan adanya ketebalan besarnya planar tabular (bed C). Endapan memenuhi secara baik pada bagian atas saluran (bed D) dengan adanya isolasi (bed E) menumpuk pada lapisan tegak siltstone interbeded dengan batuan lumpur (bed F) dan yang terakhir batuan berpasir (bed G) Pada sungai teranyam cenderung membentuk variasi kedalaman dari lebar sungai dan karena arah aliran dan energi sungai membentuk lag deposit pada lantai dasar sungai, pasir teralirkan pada bedload system . Kedalaman sungai teranyam berkisar 3 meter atau lebih dengan membentuk adanya crossbedding . Pengendapan sungai dengan adanya Flood stage dapat gosong membentuk channels beds, preserving flood stage sedimentary structure . Pada muka arus penampang sungai terjadi ripple lapisan pasir dengan gradasi mendatar pada lapisan atas sungai. Karena kaya akan mineral makanan maka pada sebagian bantaran sungai dan juga bekas luapan-luapan banjir maka akan tumbuh-tumbuhan akibat biji-bijian tumbuhan itu terbawa banjir oleh sungai dan mengendap pada bantaran sungai (Gambar 7.10).
Gambar 7. 9. Penampang vertikal dari batuan berpasir untuk arus teranyam (Boggs, 1995)
Gambar 7.10. Block Diagram sungai teranyam dan terbentuknya beberapa lapisan pengendapan 7.I.D Sungai Anastomasing Sungai anastomasing terjadi karena adanya dua aliran sungai yang bercabang-cabang, dimana cabang yang satu dengan cabang yang lain bertemu kembali pada titik dan kemudian bersatu kembali pada titik yang lain membentuk satu aliran. Energi alir sungai tipe ini rendah. Ada perbedaan yang jelas antara sungai teranyam dan sungai anastomosing. Pada sungai teranyam, aliran sungai menyebar dan kemudian bersatu kembali menyatu masih dalam lembah sungai tersebut yang lebar. Sedangkan untuk sungai anastomasing adalah beberapa sungai yang terbagi menjadi beberapa cabang sungai kecil dan bertemu kembali pada induk sungai pada jarak tertentu (Gambar 7.1). Pada daerah onggokan sungai sering diendapkan material halus dan biasanya ditutupi oleh vegetasi (Gambar 7.11) .
Gambar 7.11 Sistem sungai anastomasing (Einsele, 1992)
7.2 LACUSTRIN Lacustrin atau danau adalah suatu lingkungan tempat terkumpulnya air yang tidak berhubungan dengan laut. Lingkungan ini mempunyai kedalaman bervariasi, lebar dan kadar garam yang berkisar dari air tawar hingga hipersaline. Pada lingkungan ini juga dijumpai adanya delta , pulau penghalang (barried island ) hingga kipas bawah air yang diendapkan dengan arus turbidit. Danau juga mengendapkan klastika dan endapan karbonat termasuk oolit dan terumbu dari alga. Pada daerah beriklim kering dapat terbentuk endapan evaporit. Endapan danau ini dibedakan dari endapan laut dari kandungan fosil dan aspek geokimianya. Danau dapat terbentuk melalui beberapa mekanisme, yaitu berupa pergerakan tektonik sebagai pensesaran dan pemekaran; proses glasiasi seperti ice scouring , ice damming dan moraine damming (penyumbatan oleh batu); pergerakan tanah atau hasil dari aktifitas volkanik sebagai penyumbatan lava atau danau kawah hasil peledakan. Visher (1965) dan Kukal (1971) membagi lingkungan lacustrin menjadi 2 yaitu danau permanen dan danau ephemeral (Gb 7.12). Danau permanen mempunyai 4 model dan danau ephemeral mempunyai 2 model seperti yang terlihat pada gambar tersebut.
7.2.A Danau permanen Danau permanen model pertama adalah danau yang terisi oleh endapan klastika yang terletak di daerah pegunungan. Danau ini mempunyai hubungan dengan lingkungan delta sungai yang berkembang ke arah danau dengan mengendapkan pasir dan sedimen suspensi berukuran halus. Ciri dari endapan danau ini dan juga endapan model lainnya adalah berupa varve yaitu laminasi lempung yang reguler. Pada endapan danau periglasial, varves berbentuk perselingan antara lempung dan lanau. Lanau diendapkan pada saat mencairnya es, sedangkan lempung diendapkan pada musim dingin dimana tidak ada air sungai yang mengallir ke danau. Contoh danau ini adalah Danau Costance dan Danau Zug di Pegunungan Alpen. Danau permanen model kedua adalah danau yang terletak di dataran rendah dengan iklim yang hangat. Material yang dibawa oleh sungai dalam jumlah yang sedikit. Endapan karbonat terbentuk pada daerah yang jauh dari mulut sungai disekitar pantai. Cangkang-cangkang molluska dijumpai pada endapan pantai, yang dapat membentuk kalkarenit jika energi gelombang cukup besar. Kearah dalam dijumpai adanya ganggang merah berkomposisi gampingan. Contoh danau ini adalah Danau Schonau di Jerman dan Danau Great Ploner di Kanada Selatan.
Danau permanen model ketiga adalah danau dengan endapan sapropelite (lempung kaya akan organik) pada bagian dalam yang dikelilingi oleh karbonat di daerah dangkal. Endapan pantai berupa ganggang dan molluska. Danau permanen model ke empat dicirikan oleh adanya marsh pada daerah dangkal yang kearah dalam menjadi sapropelite. Contoh dari danau ini adalah Danau Gytta di Utara Kanada. 7.2.B Danau Ephemeral Danau ephemeral adalah danau yang terbentuk dalam jangka waktu yang pendek di daerah gurun dengan iklim yang panas. Hujan hanya terjadi sesekali dalam setahun. Danau playa antar-gunung pada bagian dekat pegunungan berupa fan alluvial piedmont yang kearah luar berubah menjadi pasir dan lempung. Ciri dari danau playa ini adalah lempung berwarna merah-coklat yang setempat disisipi oleh lanau dan gamping. Contoh danau ini adalah Danau Qa Saleb dan Qa Disi di Jordania. Karena adanya pengaruh evaporasi, danau ephemeral dapat membentuk endapan evaporit pada lingkungan sabkha. Contoh dari danau ini adalah Danau Soda di Amerika Utara dan di Gurun Sahara dan Arab. 7.2.C Karakteristik endapan lacustrin Litologi dari endapan lacustrine dapat berupa batulumpur, batupasir, konglomerat; kimiawi-biokimiawi evaporit, karbonat, phosphorite , dan endapan yang terbentuk dari kehidupan seperti skeletal karbonate dan gambut. Endapan danau purba ditemukan dengan luas beberapa ratus km 2 hingga 130.000 km2, sedangkan danau moderen yang dijumpai, mempunyai luas puluhan km 2 hingga 436.000 km 2. Ketebalan sedimen endapan lacustrin berkisar dari beberapa meter hingga lebih dari 1000 m, namun pada umumnya kurang dari 300 m. Geometri endapan tersebut umumnya membentuk lingkaran dengan penampang vertikal berbentuk lensa. Fosil yang umum dijumpai pada endapan danau dengan kedalaman kurang dari 10 m adalah cangkang-cangkang bivalves, ostracoda, gastropoda, diatome, chloropites dan algae. Keberadaan fosil tersebut akan berkurang dengan bertambahnya kedalaman. Sapropelite dapat membentuk “oil -shales” yang mempunyai potensi sebagai source rock yang dapat menghasilkan minyak dan gas. Danau yang terletak pada temperatur sedang dapat membentuk batubara, sedangkan danau hipersaline membentuk endapan evaporites dalam jumlah yang cukup potensial. Air danau dapat dibagi menjadi 2 bagian, yaitu epilimnion dan hypolimnion , Epilimnion terdapat pada bagian atas dengan berat jenis rendah, terjadi photosintesa dari ganggang yang membentuk oksigen. Kombinasi dengan tumbuhan sebagai makanan dan oksigen membuat banyaknya kehidupan. Organisme yang
mati jatuh ke hypolimnion yang anoxic, terawetkan membentuk lapisan lumpur yang kaya akan zat organik. Setelah melalui proses pematangan, mateial organik tersebut dapat berubah menjadi kerogen sebagai bahan penghasil minyak. Contoh endapan ini adalah lempung endapan danau Formasi Green River berumur Eocene di daerah Utah dan Wyoming. Formasi tersebut selain menghasilkan oil shales , juga menghasilkan minyak yang bermigrasi ke pasir peripheral dan juga ke formasi yang lebih tua. 7.3 LAGUN Lagun (lagoon ) adalah suatu kawasan berair dangkal yang masih berhubungan dengan laut lepas, tetapi dibatasi oleh suatu tanggul memanjang ( barrier ) yang relatif sejajar dengan pantai (Gambar 7.13). Oleh sebab itu lagun umumnya tidak luas dan berair dangkal dengan energi rendah. Beberapa lagun yang dianggap besar, misal Lagun Leeward di Bahama luasnya 10.000 km 2 dengan kedalaman +10 m (Jordan, 1978, dalam Sellwood, 1990). Akibat terhalang oleh tanggul, pergerakan air di dalam lagun hanya dipengaruhi oleh arus pasang/surut yang keluar/masuk lewat celah tanggul ( inlet ). Kawasan tersebut secara klasik dikelompokkan sebagi daerah peralihan darat-laut (Pettijohn, 1957), dengan kadar garam air dari tawar (fresh water) sampai sangat asin (hypersalin). Keragaman kadar garam tersebut akibat adanya pengaruh kondisi hidrologi, iklim dan jenis material batuan yang diendapkan di lagun. Lagun di daerah kering memiliki kadar garam yang lebih tinggi dibanding dengan lagun di daerah basah (humid ), hal ini dikarenakan kurangnya air tawar yang masuk ke daerah itu. Berdasarkan batasan-batasan tersebut di atas maka batuan sedimen lagun sepintas kurang berarti dalam aspek geologi. Akan tetapi bila diamati lebih rinci mengenai aspek lingkungan pengendapannya, lagun akan dapat bertindak sebagai penyekat perangkap stratigrafi minyak.
Gb. 7.13: Skema rekonstruksi lingkungan lagun dan sekitarnya (Einsele, 1992) Transportasi sedimen di lagun dilakukan oleh air pasang-surut, ombak dan/atau angin yang dengan sendirinya dikendalikan iklim sehingga akan mempengaruhi kondisi biologi dan kimia lagun. Endapan delta (tidal delta) dapat juga terbentuk pada bagian ujung alur pemisah tanggul, yaitu di dalam lagun atau di bagian laut terbuka (Boggs, 1995). Sedimen delta pada bagian tersebut agak kasar sebagai sisipan pada fraksi halus, yaitu bila terjadi aktifitas gelombang besar yang mengerosi tanggul dan terendapkan di lagun melalui celah tersebut. 7.3.A Pembentukan Lagun Bentuk dan genesa lagun berkaitan erat dengan genesa tanggul (barrier), sehingga dalam hal ini mencirikan pula kondisi geologi dan fisiografi daerah lagun. Bentuk
lagun yang dibatasi tanggul sepanjang pantai umumnya memanjang relatif sejajar dengan garis pantai, sedangkan yang dibatasi oleh atol bentuk lagunnya relatif melingkar. Bentuk lagun yang memanjang sejajar garis pantai terjadi apabila tanggul relatif sejajar dengan garis pantai yang disusun oleh reef ataupun berupa sedimen klasik lain, misalnya batupasir. Lagun yang dibatasi atol pada karang terbentuk relatip bersamaan dengan pembentukan atol, disebabkan proses penurunan dasar cekungan (tempat karang tumbuh) yang kecepatnya seimbang dengan pertumbuhan karang itu sediri. Kondisi muka-laut juga berpengaruh terhadap lagun (Sander, 1978). Pada laut yang konstan maka di bagian bawah lagun akan terendapkan sedimen klastik halus yang kemudian ditutupi oleh endapan rawa dengan ketebalan mencapai setengah tinggi air pasang. Kontak antara batuan sedimen dan batuan di bawahnya adalah horizontal. Satuan batuan fraksi halus dengan sisipan batubara muda ( peat ) di daerah rawa akan berhubungan saling menjari dengan batupasir di daerah tanggul. Selain itu batuan sedimen lagun yang menebal ke atas dan menumpang di bagian atas shoreface biasanya terjadi menyertai proses transgresi. Lagun juga dapat terbentuk pada daerah tektonik estuarine (Fairbridge, 1980 dalam Boggs, 1995) yang disebabkan oleh aktivitas tektonik sehingga terjadi pengangkatan di bagian tepi pantai dan membelakangi bagian rendahan yang membentuk lagun. 7.3.B Proses Pengendapan Lagun berenergi rendah karena selalu dibatasi oleh tanggul, sehingga sedimen yang diendapkan berupa sedimen halus, namun kadang juga dijumpai batupasir dan batulumpur. Beberapa lagun yang tidak bertindak sebagai muara sungai, maka sedimen yang diendapkan didominasi oleh sedimen marin. Sedimen pengisi lagun dapat berasal dari erosi barrier (wash over) yang berukuran pasir dan lebih kasar. Apabila ada penghalang berupa reef, dapat juga dijumpai pecahan-pecahan cangkang di bagian backbarier atau di tidal delta. Akibat angin partikel halus dari tanggul dapat terangkut dan diendapkan di lagun. Angin tersebut dapat juga menyebabkan terjadinya gelombang pasang yang menerpa garis pantai dan menimbulkan energi tinggi sehingga terjadi pengikisan dan pengendapan fraksi kasar. Beberapa jenis batuan sedimen berumur muda dijumpai di Laguna Madre (JA Miller, 1973, dalam Friedman & Sanders, 1978). Batuan tersebut berupa batulempung lanauan sebagai hasil sedimentasi air pasang, batupasir kuarsa yang merupakan hasil aktivitas angin mengerosi tanggul (Padre Island), kerakal gampingan sebagai hasil rombakan batuan di pantai serta batuan karbonat dengan beberapa keratan didalamnya (seperti pasir cangkang dan pasir). Struktur sedimen yang berkembang umumnya pejal (pada batulempung abu-abu gelap) dengan sisipan tipis batupasir halus, gelembur-gelombang dengan beberapa perarian bersilang (cross lamination ) yang melibatkan batulempung pasiran. Struktur bioturbasi sering dijumpai pada batulempung pasiran ( siltstone ) yang bersisipan batupasir dibagian dasar lagun (Boggs, 1995). Batupasir tersebut ditafsirkan sebagai
hasil endapan angin, umumnya berstruktur perarian sejajar dan kadang juga berstruktur ripple cross-lamination (Gambar 7.14).
Gb.7.14 Komposit stratigrafi daerah barier - lagun berumur Kapur di Alberta selatan Canada, (Reinson G.E. 1984 dalam Boggs, 1995) Fosil di daerah lagun sangat bervariasi tergantung kadar garam air lagun (Boggs, 1995). Lagun dengan kadar garam normal mempunyai populasi fosil sama dengan fosil di laut terbuka. Fosil air payau yang dijumpai di lagun dapat sebagai indikasi bahwa adanya bagian muara sungai di lagun. Batulempung Formasi Lidah di Kendang Timur jarang dijumpai fosil jadi ditafsirkan daerah tersebut sebagian mungkin berair tawar. Selain itu sering dijumpai mineral pirit sehingga ditafsirkan lagun di Kendang Timur sebagian jauh dari inlet sehingga sangat terllindungkan proses reduksi berjalan normal. Selain itu pada sisipan batupasir di beberapa lokasi sering dijumpai gloukonit sehingga ditafsirkan merupakan hasil pengendapan dekat inlet (laut). Berdasarkan data tersebut di atas membuktikan bahwa lagun biasanya tidak lebar. Hal ini dikarenakan di daerah penelitian yang sempit dapat dijumpai beberapa bagian lagun. Batuan sedimen lagun kadang mengandung lumpur karbonat yang berasosiasi dengan rombakan cangkang. Hal ini ditafsirkan karena bagian lagun mengalami
pergerakan karena deformasi tektonik yang melibatkan bagian tanggul batugamping. Beberapa jenis moluska ( Ammonite dan Lamellibranchiata ) sering dijumpai pada batupasir karbonat sehingga ditafsirkan lokasi fosil tersebut berdekatan dengan lingkungan laut (Selley, 1980). Kesimpulan tersebut dikaitkan dengan keberadaan batupasir karbonatan yang ditafsirkan sebagai hasil sedimentasi tidal inlet (celah diantara barrier) serta ekologi fosil tersebut. 7.4 DELTA Kata delta digunakan pertama kali oleh filosof Yunani yang bernama Herodotus pada tahun 490 SM, dalam penelitiannya pada suatu bidang segitiga yang dibentuk oleh endapan sungai pada muara Sungai Nil. Delta didifinisikan oleh Bhattacharya dan Walker (1992) adalah “Discrette shoreline proturberance formed when a river enters an ocean or other large body of water ”. Proses pembentukan delta adalah akibat akumulasi dari sedimen sungai pada danau atau pantai. Delta merupakan sebuah lingkungan yang sangat kompleks dimana beberapa faktor utama mengontrol proses distribusi sedimen dan morfologi delta, faktor-faktor tersebut adalah energi sungai, pasang surut, gelombang, iklim, kedalaman air dan subsiden (Tucker, 1981). Untuk membentuk sebuah delta, sungai harus mensuplai sedimen secara cukup untuk membentuk akumulasi aktif, dalam hal ini prograding system . Hal ini berarti bahwa jumlah sedimen yang diendapkan harus lebih banyak dibandingkan dengan sedimen yang terkena erosi sebagai dampak gelombang dan/atau pasang surut. Dalam beberapa kasus, pengendapan sedimen sungai ini banyak berubah karena faktor di atas, sehingga banyak ditemukan variasi karakteristik pengendapan sedimennya, meliputi distributary channels, river-mouth bars, interdistributary bays, tidal flat, tidal ridges, beaches, eolian dunes, swamps, marshes dan evavorites flats (Coleman& Prior, 1982). Ketika sebuah sungai memasuki laut atau danau, terjadi penurunan energi tranportasi secara drastis, yang diakibatkan bertemunya arus sungai dengan gelombang, maka sedimen yang dibawanya akan terendapkan secara cepat dan terbentuklah sebuah delta (Gambar 7.15). Namun demikian, hal itu dapat terjadi apabila cairan dari sungai lebih pekat dari pada cairan laut/danau. Sebaliknya apabila cairan dari sungai lebih encer dibandingkan cairan laut/danau, maka sedimen yang dibawa sungai akan tersebar jauh ke arah laut, dan sedimen yang dibawa cairan laut akan mengendap di mulut sungai. Deposit (endapan) pada delta purba telah diteliti dalam urutan umur stratigrafi, dan sedimen yang ada di delta sangat penting dalam pencarian minyak, gas, batubara dan uranium. Delta modern saat ini berada pada semua kontinen kecuali Antartica. Bentuk delta yang besar diakibatkan oleh sistem drainase yang aktif dengan kandungan sedimen yang cukup tinggi. 7.4.A Klasifikasi dan pengendapan delta Pada tahun 1975, M.O Hayes (Allen & Coadou, 1982) mengemukakan sebuah konsep tentang klasifikasi coastal yang didasarkan pada hubungan antara kisaran pasang surut (mikrotidal, mesotidal dan makrotidal) dan proses sedimentologi. Pada tahun 1975, Galloway menggunakan konsep ini dalam penerapannya terhadap
aluvial delta, sehingga disimpulkan klasifikasi delta berdasarkan pada dominasi energinya (Gambar 7.16), yaitu : 1. Delta sungai (fluvial-dominated delta ) 2. Delta pasang-surut (tide-dominated delta ) 3. Delta ombak (wave-dominated delta )
Gambar 7.15: Geomorfologi suatu delta dari citra satelit
Gambar 7.16: Skema klasifikasi delta menurut Galloway (1975).
Delta Sungai (Fluvial - dominated Delta ) Delta sungai pada dasarnya dipengaruhi lingkungan yang disebabkan oleh energi sungai. Pengaruh energi sungai sangat dominan dan pengaruh dari pasang-surut serta gelombang sangat kecil (Gambar 7.17). Delta jenis ini umumnya terbentuk pada mikrotidal regime dengan kemiringan beting (shelf ) sangat besar (Nichols, 1999). Akibat dari pengaruh sungai yang sangat dominan, morfologi yang terbentuk sering memperlihatkan bentuk seperti kaki burung atau birdfoot dengan fluvial levees , interdistributary bays dan distributary mouth bar pada inlet.
Gambar 7.17 Fluvial - dominated Delta pada system delta Mississipi (Reineck dan Singh, 1980) Selanjutnya pada delta sungai dipengaruhi oleh prilaku air sungai sehingga dapat dapat diidentifikasi menjadi 3 ciri yaitu : 1. Homopycnal flow Pada proses ini air sungai yang memasuki cekungan mempunyai berat jenis sama dengan berat jenis air laut, kecepatan alirannya tinggi ( jet aot flow ), pengendapan terjadi dengan tiba-tiba, kandungan cairannya bercampur, endapannya kasar (Gambar 7.18)
Gambar 7.18 Homopycnal flow pada delta sungai. 2. Hyperpycnal flow
Pada ciri ini bila air sungai mempunyai densitas yang lebih besar daripada “basin water “ menghasilkan arah orientasi vertikal ini dikenal sebagai “plane - jet flow” (Gambar 7.19). Pada ciri ini densitas menghasilkan arus yang dapat mengerosi pada awalnya akan tetapi akhirnya endapannya berada sepanjang sebagian besar “slope” dari “delta front” pada aliran “turbidit”.
Gambar 7.19 Hyperpycnal flow 3. Hypopycnal flow
Pada ciri ini bila air sungai yang mengalir densitasnya lebih kecil dari “basin water”. Pada Hypopycnal flow sedimen yang halus dibawa dalam “supensi” keluar dari muara sebelum “flucullate” dan mengendap (Gambar 7.20). “Flocculate” meliputi gabungan sedimen halus dalam “small lump” memberikan keberadaan muatan ion positip dalam “sea water” yang menetralisir muatan negatif pada partikel lempung. Hypopycnal flow cenderung menghasilkan “delta front area” yang aktif dan besar, kemiringan nya 1 derajat atau kurang, berbeda
dengan sebagian besar delta yang ada sekitar 10 sampai 20 derajat (Bogg, 1995).
Gambar 7.20 Hypopycnal flow Delta Pasang-surut (Tide – dominated Delta ) Pada proses ini digambarkan bila pengaruh pasang surut lebih besar dari aliran sungai yang menuju muara sungai, arus yang dua arah dapat mendistribusikan kembali sedimen yang ada di muara, menghasilkan “sand filled”, “flumee -shaped distributariesd”. Delta pasang-surut biasanya terbentuk pada ujung teluk. Delta modern Ganga-Brahmaputra adalah sebuah contoh delta yang didominasi oleh pengaruh pasang surut (Gambar 7.21). Bila dibandingkan delta Missisippi ukuran luas delta Brahmaputra tiga kali lebih besar (Boggs, 1995). Rata-rata keluarannya dua kali dibandingkan dengan delta Missisippi, khususnya pada saat musim hujan. Rata-rata daerah “tidal” sangat besar, sekitar 4 m dan pengaruh gelombang sangat kecil. “sand” yang ditransportasikan sangat “intens” selama musim hujan, dimana “sand” yang diendapkan serupa dengan “braides stream”. Pada jenis delta ini dicirikan dengan lingkungan “tidal -flat”, “natural levees”, dan “fload basin”, yang mana sedimennya halus diendapkan dari “suspension”. Pengaruh arus pasang surut yang kuat dimanisfestasikan oleh kehadiran jaringan “tidal sand bars” dan “channel” yang diorientasikan b erbentuk kasar paralel terhadap arah aliran arus “tidal”. Tide dominated delta biasanya dapat dibedakan dari fluvial dominated delta dari munculnya struktur-struktur sedimen yang mencirikan tipe facies sedimen tidal (Allen & Coadou, 1982).
Gambar 7.26 Tide- Dominated delta pada Delta modern Ganges-Brahmaputra Delta Ombak (Wave-dominated Delta ) Penyebab pada system ini adalah aliran gelombang yang kuat dan perlambatan dari aliran sungai sehingga aliran sungai tertarik atau dibelokan di muara sungai. Distribusi endapan pada muara, dilakukan oleh gelombang dan di redistribusikan sepanjang “delta front” oleh arus “long -shore” sehingga bentuk gelombang yang timbul di “shore-line” lebih menonjol seperti di pantai yaitu “barrier bars” dan “spit” (menyebul) (Gambar 7.27).
Gambar 7.27 Skema sistem delta ombak Selanjutnya dapat dicirikan juga dengan adanya “smooth delta front” yang meliputi pengembangan yang baik dari punggungan “coalescent beach”, salah satu contoh pada wave dominated delta adalah Sao Fransisco delta (Gambar 7.28). Dimensi luasnya lebih kecil bila dibandingkan Missisippi delta. Perbedaan karakteristik dari wave dominated delta ini akan dicirikan dengan adanya high wave energy fringe pada delta front. Endapan-endapannya akan dicirikan
dengan kehadiran struktur-struktur sedimen seperti pada pantai, shoreface dan strom sedimen.
Gambar 7.28 Delta ombak pada Delta Sao Fransisco Berdasarkan sumber endapannya, secara mendasar delta dapat dibedakan menjadi dua jenis (Nemec, 1990 dalam Boggs, 1995) (Gambar 7.20), yaitu: 1. Non Alluvial Delta 1. Pyroklastik delta 2. Lava delta 2. Alluvial Delta 1. River Delta
Pembentukannya dari deposit sungai tunggal. 2. Braidplain Delta
Pembentukannya dari sistem deposit aliran “teranyam” 3. Alluvial fan Delta
Pembentukannya pada lereng yang curam dikaki gunung yang luas yang dibawa air. 4. Scree-apron deltas
Terbentuk ketika endapan scree memasuki air.
Gambar 7.20 Klasifikasi Delta didasarkan pada sumber endapannya (Nemec, 1990 dalam Boggs, 1995) 7.4.B Fisiografi Delta Berdasarkan fisiografinya, delta dapat diklasifikasikan menjadi tiga bagian utama (Gambar 7.29), yaitu : 1. Delta plain 2. Front Delta 3. Prodelta
Gambar 7.29 Fisiografi Delta (Allen)
Delta plain Delta plain merupakan bagian kearah darat dari suatu delta. Umumnya terdiri dari endapan marsh dan rawa yang berbutir halus seperti serpih dan bahan-bahan organik (batubara). Delta plain merupakan bagian dari delta yang karakteristik lingkungannya didominasi oleh proses fluvial dan tidal. Pada delta plain sangat jarang ditemukan adanya aktivitas dari gelombang yang sangat besar. Daerah delta plain ini ditoreh (incised) oleh fluvial distributaries dengan kedalaman berkisar dari 5 – 30 m. Pada distributaries channel ini sering terendapkan endapan batupasir channel-fill yang sangat baik untuk reservoir (Allen & Coadou, 1982). Delta front Delta front merupakan daerah dimana endapan sedimen dari sungai bergerak memasuki cekungan dan berasosiasi/berinteraksi dengan proses cekungan (basinal). Akibat adanya perubahan pada kondisi hidrolik, maka sedimen dari sungai akan memasuki cekungan dan terjadi penurunan kecepatan secara tiba-tiba yang menyebabkan diendapkannya material-material dari sungai tersebut. Kemudian material-material tersebut akan didistribusikan dan dipengaruhi oleh proses basinal. Umumnya pasir yang diendapkan pada daerah ini terendapkan pada distributary inlet sebagai bar. Konfigurasi dan karakteristik dari bar ini umumnya sangat cocok sebagai reservoir, didukung dengan aktivitas laut yang mempengaruhinya (Allen & Coadou, 1982). Prodelta Prodelta adalah bagian delta yang paling menjauh kearah laut atau sering disebut pula sebagai delta front slope . Endapan prodelta biasanya dicirikan dengan endapan berbutir halus seperti lempung dan lanau. Pada daerah ini sering ditemukan zona lumpur (mud zone) tanpa kehadiran pasir. Batupasir umumnya terendapkan pada delta front khususnya pada daerah distributary inlet, sehingga pada daerah prodelta hanya diendapkan suspensi halus. Endapan-endapan prodelta merupakan transisi kepada shelf -mud deposite. Endapan prodelta umumnya sulit dibedakan dengan shelf -mud deposite. Keduanya hanya dapat dibedakan ketika adanya suatu data runtutan vertikal dan horisontal yang baik (Reineck & Singh, 1980). 7.4.C Studi Kasus Delta Mahakam. Delta Mahakam terbentuk pada muara sungai Mahakam di Kalimantan Timur sekitar 50 km selatan Khatulistiwa. Delta Mahakam terletak dalam “Kutei basin” dengan tipe “Mixed Fluvial-Tide Dominated ” dengan umur Miocene tengah (Allen & Coadou, 1982). Daerah delta mahakam terdiri dari 1300 km 2 delta plain, 1000 km 2 delta front dan 2700 km2 prodelta. Delta ini karena terletak pada daerah khatulistiwa sangat dipengaruhi oleh musin, antara lain musim hujan dan musim panas. Maksimum curah hujan sangat tinggi pada bulan Januari, minimum pada bulan Agustus (Allen, 1994), temperatur relatif konstan antara 26 sampai 30 derajat.
Delta Mahakam Menunjukkan bentuk “fan”, dimana cabang “fluvial distributaries” keluar dari sungai Mahakam (Gambar 7.30) dan keluar melintasi “delta plain” pada jarak 50 km dari batas “upstream” dari delta. Volume sedimen yang dialirkan oleh sungai Mahakam ini sekitar 8 x 10 6 m3 pertahun Pada delta ini ada 3 sistem distribusi “fluvial” yang menjadi ciri khas dari delta Mahakam. Distribusi ini dikelompok kan dalam sistem “northen” dan “southern”. Umumnya gelombang yang mempengaruhi delta ini sangat kecil, ketinggiannya hanya sekitar 60 cm. Sedangkan aktivitas tidal pada daerah ini merupakan mesotidal.
Gambar 7.30 Delta Mahakam (Allen) 7.5 ESTUARIN Beberapa ahli geologi mengemukakan beberapa pengertian yang bermacam-macam tentang estuarin. Pritchard, 1967 (Reineck & Singh, 1980) mengemukakan bahwa estuarin adalah “a semi-enclosed coastal body of water which has a free connection with the open sea and within which sea water is measurably diluted with fresh water derived from land drainage”. Ada dua faktor penting yang mengontrol aktivitas di estuarin, yaitu volume air pada saat pasang surut dan volume air tawar (fresh water) serta bentuk estuarin. Endapan sedimen pada lingkungan estuarin dibawa dua aktivitas, yaitu oleh arus sungai dan dari laut terbuka. Transpor sedimen dari laut lepas akan sangat tergantung dari rasio besaran tidal dan disharge sungai. Estuarin diklasifikasikan menjadi tiga daerah (Gambar 7.31) , yaitu : 1. Marine atau lower estuarin, yaitu estuarine yang secara bebas
berhubungan dengan laut bebas, sehingga karakteristik air laut sangat terasa pada daerah ini. 2. Middle estuarin, yaitu daerah dimana terjadi percampuran antara fresh water dan air asin secara seimbang. 3. Fluvial atau upper estuarin, yaitu daerah estuarin dimana fresh water lebih mendominasi, tetapi tidal masih masih berpengaruh (harian) Marine atau lower estuarin adalah estuarine yang secara bebas berhubungan dengan laut bebas, sehingga karakteristik air laut sangat terasa pada daerah ini. Daerah dimana terjadi percampuran antara fresh water dan air asin secara seimbang disebut middle estuarin. Sedangkan fluvial atau upper estuarin, yaitu daerah estuarin dimana fresh water lebih mendominasi, tetapi tidal masih masih berpengaruh (harian). Friendman & Sanders (1978) dalam Reineck & Singh mengungkapkan bahwa pada fluvial estuarin konsentrasi suspensi yang terendapkan lebih kecil (<160mg/l) dibanding pada sungai yang membentuk delta.
Gambar 7.31 Skema system lingkungan pengendapan estuarin yang sangat dipengaruhi gelombang (Dalrymple,1992) Berdasarkan aktivitas dari tidal yang mempengaruhinya, estuarin dapat diklasifikasikan menjadi tiga (Hayes, 1976 dalam Reading, 1978), yaitu : 1. Mikrotidal estuarin 2. Mesotidal estuarin 3. Makrotidal estuarin Pada mikrotidal estuarin, perkembangan daerahnya sering ditandai dengan kemampuan disharge dari sungai untuk menahan arus tidal yang masuk ke dalam sungai, meskipun kadang-kadang pada saat disharge sungai sangat kecil, arus tidal dapat masuk sampai ke sungai. Pada mesotidal estuarin, efektivitas dari tidal lebih efektif dibanding pada mikrotidal, khususnya ini terjadi pada sungai bagian bawah. Pada makrotidal estuarin sering ditemukan funnel shaped dan linier tidal sand ridges . Arus tidal sangat efektif dalam sirkulasi daerah ini, serta endapan suspensi umumnya diendapkan pada dataran (flats) intertidal pada daerah batas estuarin (Reading, 1978).
Endapan pada daerah estuarin umumnya aggradational dengan alas biasanya berupa lapisan erosional hasil scour pada mulut sungai. Hal ini berbeda dengan endapan delta yang umumnya progadational yang sering menunjukan urutan mengkasar keatas. Pada daerah estuarin yang sangat dipengaruhi oleh tidal, endapannya akan sangat sulit dibedakan dengan daerah lingkungan pengendapan tidal, untuk membedakannya harus didapat informasi dan runtunan endapan secara lengkap (Nichols, 1999). 7.6 TIDAL FLAT Tidal flat merupakan lingkungan yang terbentuk pada energi gelombang laut yang rendah dan umumnya terjadi pada daerah dengan daerah pantai mesotidal dan makrotidal. Pasang surut dengan amplitudo yang besar umumnya terjadi pada pantai dengan permukaan air yang sangat besar/luas. Danau dan cekungan laut kecil yang terpisah dari laut terbuka biasanya hanya mengalami efek yang kecil dari pasang surut ini, seperti pada laut mediterania yang ketinggian pasang surutnya hanya berkisar dari 10 – 20 cm. Luas dari daerah tidal flat ini berkisar antara beberapa kilometer sampai 25 km (Boggs, 1995). Berdasarkan pada elevasinya terhadap tinggi rendahnya pasang surut, lingkungan tidal flat dapat dibagi menjadi tiga zona, yaitu subtidal, intertidal dan supratidal (Gambar 7. 32)
Gambar 7. 32 Pembagian serta hubungan antara zona-zona pada lingkungan tidal flat (Boggs, 1995) Zona subtidal meliputi daerah dibawah rata-rata level pasang surut yang rendah dan biasanya selalu digenangi air secara terus menerus. Zona ini sangat dipengaruhi oleh tidal channel dan pengaruh gelombang laut, sehingga pada daerah ini sering diendapkan bedload dengan ukuran pasir (sand flat). Pada zona ini sering terbentuk subtidal bar dan shoal . Pengendapan pada daerah subtidal utamanya terjadi oleh akresi lateral dari sedimen pasiran pada tidal channel dan bar. Migrasi pada tidal channel ini sama dengan yang terjadi pada lingkungan sungai meandering. Zona intertidal meliputi daerah dengan level pasang surut rendah sampai tinggi. Endapannya dapat tersingkap antara satu atau dua kali dalam sehari, tergantung dari kondisi pasang surut dan angin lokal. Pada daerah ini biasanya tidak tumbuh vegetasi yang baik, karena adanya aktifitas air laut yang cukup sering (Boggs, 1995). Karena intertidal merupakan daerah perbatasan antara pasang surut yang tinggi dan rendah, sehinnga merupakan daerah pencampuran antara akresi lateral dan pengendapan suspensi, maka daerah ini umumnya tersusun oleh endapan yang berkisar dari lumpur pada daerah batas pasang surut tinggi sampai pasir pada batas pasang surut rendah (mix flat). Pada daerah dengan pasang surut lemah disertai adanya aktivitas ombak pada endapan pasir intertidal dapat menyebabkan terbentuknya asimetri dan simetri ripples. Facies intertidal didominasi oleh perselingan lempung, lanau dan pasir yang memperlihatkan struktur flaser, wavy dan lapisan lentikular. Facies seperti ini menunjukan adanya fluktuasi yang konstan dengan kondisi energi yang rendah (Reading, 1978)
Zona supratidal berada diatas rata-rata level pasang surut yang tinggi. Karena letaknya yang lebih dominan ke arah darat, zona ini sangat dipengaruhi oleh iklim. Pada daerah sedang, daerah ini kadang-kadang ditutupi oleh endapan marsh garam (Gambar 7.33), dengan perselingan antara lempung dan lanau (mud flat) serta sering terkena bioturbasi (skolithtos). Pada daerah beriklim kering sering terbentuk endapan evaporit flat. Daerah ini umumnya ditoreh oleh tidal channel (incised tidal channel) yang membawa endapan bedload di sepanjang alur sungainya. Pengendapan pada tidal channel umumnya sangat dipengaruhi oleh arus tidal sendiri, sedangkan pada daerah datar di sekitarnya (tidal flat), pengendapannya akan dipengaruhi pula oleh aktivitas dari gelombang yang diakibatkan oleh air ataupun angin. Suksesi endapan pada lingkungan tidal flat umumnya memperlihatkan sistem progadasi dengan penghalusan ke atas sebagai refleksi dari batupasir pada pasang surut rendah (subtidal) ke lumpur pada pasang surut tinggi (supratidal dan intertidal bagian atas).
Gambar 7.33 Blok diagram silisiklastik pada lingkungan tidal flat (Dalrymple, 1992 dalam Walker & James, 1992) http://dc202.4shared.com/doc/_S9eES6b/preview.html