LTE Radio Network Planning Introduction www.huawei.com
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Agenda 1
LTE RNP Overview
2
LTE RNP Dimensioning Coverage Dimensioning Capacity Dimensioning
Active User Dimensioning S1&X2 Dimensioning
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 2
LTE Network Life Cycle 100 90 80 70 60 50
Optimization after commercial launch
45
48
30
33
36
39
Number of Sites
42
15
18
21
24
27
0
3
6
9
12
40 30 20 10 0
Mature Network
RNP is the first and important step in the LTE network life cycle.
Launch
Existing Site Resources LTE Radio Network Planning Pre-Launch Radio Optimization
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 3
Huawei RNP Guideline 3C1Q theory Coverage
Capacity
Seamless coverage gives operators a competitive advantage. Coverage from the outdoor to the indoor Wider coverage saves investment
Cost
Limited radio frequency resource requires capacity improvement Data Service requires much more resource
Quality
Network quality competition among operators Higher requirement of network quality from subscribers
1.
2.
3.
4.
RNP aims to find out the best balance among coverage, capacity, quality and cost. HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 4
Huawei LTE RNP Main Steps 1.
Dimensioning 2.
Preplanning
Inputs: Coverage, Capacity & Service Requirement Outputs: eNodeB coverage radius and site numbers based on coverage and capacity calculation
3. Inputs: Calculated coverage radius, digital map and subscriber distribution information
Detailed Planning
Outputs: Preliminary eNodeB numbers
Inputs: Coverage target and site survey result Outputs: Actual site location and engineering parameters HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 5
Detail LTE RNP Flow Agreement achieved by operator and Huawei
Preparation
Coverage area (Dense urban, Urban, Suburban ) Quality objective (QoS criteria) Capacity requirement (Subscriber, traffic model) Link budget parameters (Penetration loss, Propagation model)
Huawei delivers Link budget Capacity dimensioning Site numbers/configuration Cell radius in each morphology Network development solution
The output of dimensioning is important criteria to assess RNP solution
Background Interference Test (optional) Propagation model tuning (optional)
Site location/ RF parameters configurations Search ring specifications Prediction & Simulation Cluster definition for project management
Nominal Planning
Site survey/candidate site search Neighbor cell configuration Cell parameters configuration Algorithm configuration
The operator provides: Naming conventions Existing sites information
Detailed Planning
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Network Deployment
Page 6
LTE RNP Output Overview Input
Output Site Type
Coverage Requirements -- Coverage Area
Power/Channel
-- Polygon Definition -- Cell Edge Throughput -- Coverage Probability
eNodeB Number
…
Capacity Requirements
Active Users
-- Frequency Bandwidth -- Subscriber Forecast -- Traffic Model
S1&X2 Throughput
…
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 7
Agenda 1
LTE RNP Overview
2
LTE RNP Dimensioning Coverage Dimensioning Capacity Dimensioning Active User Dimensioning S1&X2 Dimensioning
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 8
LTE Radio Network Dimensioning Flow Start
Coverage Requirement
Link Budget Cell Radius
Capacity Requirement
Capacity Dimensioning
Satisfy Capacity Requirement?
Adjust eNodeB Number
No
Yes Active User/S1&X2 Dimensioning eNodeB Amount & Configuration End
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 9
Agenda 1
LTE RNP Overview
2
LTE RNP Dimensioning Coverage Dimensioning Capacity Dimensioning Active User Dimensioning S1&X2 Dimensioning
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 10
LTE Coverage Dimensioning Flow Geometrical Calculation
Start Link Budget Propagation Model
Cell Radius eNodeB Coverage Area
Total Coverage Area/ eNodeB Coverage Area
eNodeB Number End
Aim of coverage dimensioning
to obtain the cell radius
to estimate eNodeB number for coverage
requirement
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 11
LTE Link Budget Model – Uplink Tx Power
MIMO Gain
UE Ant Gain
Slow fading margin
Gain Margin Loss
Interference margin
Power level
Body Loss
Penetration Loss
EIRP Objective: Max. Allowed Path Loss
Path Loss Cable Loss eNB Ant Gain
Link segments HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 12
Rx Sensitivity
LTE Link Budget Model – Downlink Tx Power
MIMO Gain
Gain Margin Loss
Slow fading margin
Cable Loss Interference margin
Power level
eNB Ant Gain
EIRP
Path Loss
Objective: Max. Allowed Path Loss
Penetration Loss Body Loss
UE Ant Gain
Link segments HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 13
Rx Sensitivity
Factors Affecting LTE Link Budget Scenario
Frequency Band
Data Rate
RB Number
ICIC
Factors Affecting LTE Link Budget Cell Load
MCS
TX Power
Channel Model MIMO
Some other factors such as antenna height, BPL, TMA, coverage probability… HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 14
LTE Link Budget Example Scenario FDD/TDD Morphology UE Location Channel Bandwidth (MHz) Channel Model DL/UL MIMO Scheme Cell Edge Rate(kbps) MCS Tx Max Tx Power (dBm) Required RB Tx Antenna Gain(dB) Tx Cable Loss(dB) Tx Body loss(dB) EIRP / Subcarrier(dBm) Rx SINR (dB) Rx Noise Figure (dB) Receiver Sensitivity/subcarrier(dBm) Rx Antenna Gain(dBi) Rx Cable Loss(dB) Rx Body loss(dB) Target Load Interference Margin(dB) Min Signal Reception Strength/subcarrier (dBm)
HUAWEI TECHNOLOGIES CO., LTD.
PDSCH
PUSCH FDD Dense Urban Indoor 20 ETU 3 2×2 SFBC 1×2 1024 256 QPSK 0.25 QPSK 0.31 PDSCH PUSCH 46 23 18 4 18.0 0.0 0.5 0.0 0.0 0.0 32.7 6.2 PDSCH PUSCH -2.3 -1.6 7 2.5 -127.5 -131.3 0.0 18.0 0.0 0.5 0.0 0.0 70% 50% 5.0 1.1 -122.5 -147.7
Huawei Confidential
Path Loss & Cell Radius Penetration Loss(dB)
PDSCH
PUSCH 20
Std.of Shadow Fading (dB)
11.7
Area Coverage Probability
95%
Shadow Fading Margin(dB)
9.7
Max Allowed Path Loss(dB)
Propagation Model eNodeB/UE Antenna Height (m)
125.5
124.2
Cost231-Hata(Huawei) 30
Frequency (MHz)
1.5 2600
Cell Radius (km)
0.29
Page 15
0.26
Coverage Comparison b/w HSPA+ and LTE
HUAWEI TECHNOLOGIES CO., LTD.
LTE has better coverage than HSUPA and R99 under the same data rate
Loading increase will have more significant impact on UMTS coverage especially under high traffic loading.
About 13% reduction in UMTS cell radius when loading increases from 50% to 70%
LTE is more robust against loading and cell radius reduction is only around 2.5% when loading increases from 50% to 70%
Huawei Confidential
Page 16
Agenda 1
LTE RNP Overview
2
LTE RNP Dimensioning Coverage Dimensioning Capacity Dimensioning Active User Dimensioning S1&X2 Dimensioning
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 17
LTE Capacity Dimensioning Flow Start Configuration Analysis
Cell Average Throughput Calculation
Traffic Model Analysis
Subscribers Supported per Cell eNodeB Number (initialized by Coverage Dimensioning)
Total Subscribers
Satisfy Capacity Requirement?
No
Yes eNodeB Number End
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 18
Adjust eNodeB Number
Factors Affecting Cell Capacity Spectrum Bandwidth eNodeB Power
MIMO
Users’ Distribution
Own Cell Load
Factors Affecting Capacity Neighboring Cell Load
Scheduling
UE Performance
IRC
User Speed
Capacity is controlled not only by hardware resources, but also radio condition HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 19
LTE Cell Average Throughput (FDD)
LTE Cell Average Throughput from Simulation Bandwidth 5MHz
10MHz
15MHz
20MHz
Scenario
DL 2x2 (Mbps)
UL 1x2 (Mbps)
DL 4x2 (Mbps)
UL 1x4 (Mbps)
Urban
8.2
4.7
9.0
6.4
Suburban
6.3
3.3
6.9
4.5
Urban
16.9
9.8
18.6
13.2
Suburban
13.0
6.9
14.3
9.3
Urban
25.5
14.7
28.1
19.9
Suburban
19.6
10.4
21.5
14.1
Urban
34.3
19.8
37.8
26.7
Suburban
26.3
14.0
29.0
19.0
LTE Cell Average Throughput from Field Test Commercial
Downlink Cell Average Throughput
Uplink Cell Average Throughput
Remark
VDF Phase3
16.8Mbps / 1.68 bps/Hz (High Load)
-
10MHz system, 100% Load, OL-MIMO
N4M
31.1Mbps / 1.55 bps/Hz
22 Mbps / 1.1 bps/Hz
20MHz system, after optimization
TeliaSonera Norway
35Mbps / 1.75 bps/Hz
-
20MHz system, after optimization
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 20
LTE Cell Average Throughput (TDD)
LTE Cell Average Throughput from Simulation DL 2x2
Bandwidth
10MHz 20MHz
UL 1x2
DL 4x2
UL 1x4
Scenario
Throughput (Mbps)
Efficiency (bps/Hz)
Throughput (Mbps)
Efficiency (bps/Hz)
Throughput (Mbps)
Efficiency (bps/Hz)
Throughput (Mbps)
Efficiency (bps/Hz)
DU/U
8.2
1.46
3.5
0.80
9.3
1.65
4.6
1.04
SU/RU
6.8
1.22
2.5
0.57
8.0
1.43
3.3
0.74
DU/U
16.6
1.49
7.4
0.84
18.9
1.69
9.6
1.09
SU/RU
14.0
1.25
5.3
0.60
16.1
1.44
6.9
0.78
DL:UL=2:2; DwPTS:GP:UpPTS=10:2:2 DL 2x2 Bandwidth
10MHz 20MHz
UL 1x2
DL 4x2
UL 1x4
Scenario
Throughput (Mbps)
Efficiency (bps/Hz)
Throughput (Mbps)
Efficiency (bps/Hz)
Throughput (Mbps)
Efficiency (bps/Hz)
Throughput (Mbps)
Efficiency (bps/Hz)
DU/U
11.2
1.46
1.9
0.80
12.6
1.65
2.4
1.04
SU/RU
9.3
1.22
1.3
0.57
10.9
1.43
1.7
0.74
DU/U
22.8
1.49
4.0
0.84
25.8
1.69
5.1
1.09
SU/RU
19.1
1.25
2.8
0.60
22.0
1.44
3.7
0.78
DL:UL=3:1; DwPTS:GP:UpPTS=10:2:2 HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 21
Capacity Comparison b/w HSPA+ and LTE UL Cell Average Throughput(Mbps) 19.80
20.00 9.76 10.00
3.00
2.30
2.10
4.72
0.00 HSUPA 10ms
HSUPA 2ms
HSUPA 16QAM
LTE 5 MHz
LTE 10MHz
LTE 20MHz
DL Cell Average Throughput(Mbps) LTE 20MHz, 34.34
40.00 30.00 20.00
LTE 10MHz, 16.92 HSPA(16QAM), 6.00
HSPA+(MIMO), 6.98
10.00
0.00
HSPA+(64QAM), 6.41
HUAWEI TECHNOLOGIES CO., LTD.
HSPA+(DC+16QAM), 6.43
HSPA+(MIMO+64QAM), 7.12
LTE 5MHz, 8.17
HSPA+(DC+64QAM), 6.89
Huawei Confidential
Page 22
Traffic Model Analysis (Sample) UL Traffic Parameters
DL
Bearer Rate (Kbps)
PPP Session Time(s)
PPP Session Duty Ratio
BLER
Bearer Rate (Kbps)
PPP Session Time(s)
PPP Session Duty Ratio
BLER
Video Conference
62.53
1800
1
1%
62.53
1800
1
1%
IMS Signalling
15.63
7
0.2
1%
15.63
7
0.2
1%
Web Browsing
62.53
1800
0.05
1%
250.11
1800
0.05
1%
File Transfer
140.69
600
1
1%
750.34
600
1
1%
P2P file sharing
250.11
1200
1
1%
750.34
1200
1
1%
Traffic Penetration Ratio
BHSA
Video Conference
0.00%
IMS Signalling
User Behavior
Busy Hour Throughput Per User (bps) UL
DL
0.2
6316
6316
0.00%
5
31
31
Web Browsing
100.00%
0.4
632
2526
File Transfer
20.00%
0.2
4737
25264
P2P file sharing
20.00%
0.4
33685
101055
-
-
8355
27853
Total
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Traffic Model varies from different operators which is mainly used to calculate Busy Hour Average Throughput per User.
Page 23
Agenda 1
LTE RNP Overview
2
LTE RNP Dimensioning Coverage Dimensioning Capacity Dimensioning Active User Dimensioning S1&X2 Dimensioning
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 24
Active User Dimensioning
Active User Definition
Active users is also called RRC-Connected Users which refer to the users having a RRC connection with the network Directly influences eNodeB quotation and controlled by software license
PPP Session Data call (session) WWW
Data call (session) WWW
time
• PPP Time: Duration of PPP Session
RRC_Connected (Active User)
RRC
RRC1
RRC2
RRC3 RRC_Idle
Packets
• BHSA: Busy Hour Session Attempt
time
• Ratio of RRC to PPP: Percentage of RRC during one PPP session • Number of User: Number of users using service i
Packet2 Packet1
Packet3
time
Number _ ActiveUser _ i BHSA * PPP _ Session _ Time * RatRrcToPP P * Number _ User / 3600 Total _ Number _ ActiveUser Number _ ActiveUser _ i * Percentage _ Service _ i i
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 25
Active User Dimensioning Case Study Traffic Volume based Dimensioning Step 1
Cell Capacity
Step 2
Monthly traffic volume per user
Step 3
Daily traffic
Step 4
BH throughput (Mbps)
Step 5
Subscribers supported in a cell
Step 6
Subscribers supported in a site
HUAWEI TECHNOLOGIES CO., LTD.
a b c
10MHz*1.5bps/Hz/cell 10GByte package per user
Assumptions: • S111 • 10MHz • 10GB package
= b / 30 days = c x 8x 10%/3600s x 0.8 x 1000
d e f
(BH carries 10% of daily traffic assumed, DL:UL=4:1)
=a/d
= e x 3 = 760 subscribers
Huawei Confidential
Page 26
Agenda 1
LTE RNP Overview
2
LTE RNP Dimensioning Coverage Dimensioning Capacity Dimensioning Active User Dimensioning S1&X2 Dimensioning
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 27
S1&X2 Interface of LTE 2G/3G: Legacy Architecture
LTE: Flat Architecture
MME / S-GW
MSC/SGSN/GGSN
MME / S-GW
S1
S1
RNC
S1
S1
BSC
X2
E-UTRAN eNB
eNB
X2
X2 eNB
BTS
BTS
NodeB
HUAWEI TECHNOLOGIES CO., LTD.
NodeB
Huawei Confidential
Page 28
S1&X2 Dimensioning Case Study (1)
Assumptions: 1. Uplink and downlink busy hour data traffic volume per subscriber is 25kbps 2. Traffic data ratio for uplink and downlink is 1:4 3. Peak to average traffic ratio is 1.2
4. Number of subscribers per eNodeB is 1000 5. Assuming IPV4 and IPsec with tunnel mode is used for IP over Ethernet transmission 6. Assuming the ER is 1.37 (for packet size 300 bytes)
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 29
S1&X2 Dimensioning Case Study (2) Control Plane
T _ control plane T _ Total _ user _ Plane / Site * 2% 41.1* 2% 0.82Mbps S1 Bandwidth
T _ S1 / Site T _ control _ Plane / Site T _ Total _ user _ plane / Site 0.82 41.1 41.92Mbps X2 Bandwidth
T _ X 2 / Site T _ S1 / Site * 3% 41.92 * 3% 1.26Mbps
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 30
Thank you www.huawei.com