Chapter 12 12-1
Given: d max = 25 mm, b min = 25.03 mm, l/d = 1/2, W = 1.2 kN, = 55 mPas, and N = 1100 rev/min. b d max 25.03 25 0.015 mm cmin min 2 2 r 25/2 = 12.5 mm r/c = 12.5/0.015 = 833.3 N = 1100/60 = 18.33 rev/s P = W/ (ld) = 1200/ [12.5(25)] = 3.84 N/mm2 = 3.84 MPa
Fig. 12-16: Fig. 12-18:
ra ft
Eq. (12-7):
2 55 103 18.33 r N 2 0.182 833.3 S 6 c P 3.84 10
h 0 /c = 0.3
h 0 = 0.3(0.015) = 0.0045 mm
f r/c = 5.4
f = 5.4/833.3 = 0.006 48
Ans.
T =f Wr = 0.006 48(1200)12.5(103) = 0.0972 Nm
D
H loss = 2 TN = 2 (0.0972)18.33 = 11.2 W
Fig. 12-19:
Q/(rcNl) = 5.1
Ans.
Q = 5.1(12.5)0.015(18.33)12.5 = 219 mm3/s
Fig. 12-20: Q s /Q = 0.81 Q s = 0.81(219) = 177 mm3/s Ans. ______________________________________________________________________________ 12-2
Given: d max = 32 mm, b min = 32.05 mm, l = 64 mm, W = 1.75 kN, = 55 mPas, and N = 900 rev/min. b d max 32.05 32 0.025 mm cmin min 2 2 r 32/2 = 16 mm r/c = 16/0.025 = 640 N = 900/60 = 15 rev/s
Chapter 12, Page 1/26
P = W/ (ld) = 1750/ [32(64)] = 0.854 MPa l/d = 64/32 = 2 2 55 103 15 r N 2 0.797 S 640 c P 0.854
Eq. (12-7):
Eq. (12-16), Figs. 12-16, 12-19, and 12-21
l/d
y
y 1
y 1/2
y 1/4
y l/d
h 0 /c
2
0.98
0.83
0.61
0.36
0.92
P/p max Q/rcNl
2 2
0.84 3.1
0.54 3.45
0.45 4.2
0.31 5.08
0.65 3.20
h 0 = 0.92 c = 0.92(0.025) = 0.023 mm
Ans. Ans.
ra ft
p max = P / 0.065 = 0.854/0.65 = 1.31 MPa
Ans. Q = 3.20 rcNl = 3.20(16)0.025(15)64 = 1.23 (103) mm3/s ______________________________________________________________________________ Given: d max = 3.000 in, b min = 3.005 in, l = 1.5 in, W = 800 lbf, N = 600 rev/min, and SAE 10 and SAE 40 at 150F. b d max 3.005 3.000 cmin min 0.0025 in 2 2 r 3.000 / 2 1.500 in l / d 1.5 / 3 0.5 r / c 1.5 / 0.0025 600 N 600 / 60 10 rev/s W 800 P 177.78 psi ld 1.5(3)
D
12-3
Fig. 12-12: SAE 10 at 150F, µ 1.75 µreyn 2
6 r N 2 1.75(10 )(10) S 600 0.0354 c P 177.78
Figs. 12-16 and 12-21: h 0 /c = 0.11 and P/p max = 0.21 h0 0.11(0.0025) 0.000 275 in Ans. pmax 177.78 / 0.21 847 psi Ans. Fig. 12-12: SAE 40 at 150F, µ 4.5 µreyn
Chapter 12, Page 2/26
4.5 S 0.0354 0.0910 1.75 h0 / c 0.19, P / pmax 0.275 h0 0.19(0.0025) 0.000 475 in Ans. pmax 177.78 / 0.275 646 psi Ans. ______________________________________________________________________________
ra ft
Given: d max = 3.250 in, b min = 3.256 in, l = 3.25 in, W = 800 lbf, and N = 1000 rev/min. b d max 3.256 3.250 cmin min 0.003 2 2 r 3.250 / 2 1.625 in l / d 3 / 3.250 0.923 r / c 1.625 / 0.003 542 N 1000 / 60 16.67 rev/s W 800 P 82.05 psi ld 3(3.25) Fig. 12-14: SAE 20W at 150F, = 2.85 reyn 2
6 r N 2 2.85(10 )(16.67) S 542 0.1701 82.05 c P
From Eq. (12-16), and Figs. 12-16 and 12-21: h o /c
l/d
y
y 1
y 1/2
y 1/4
y l/d
0.923
0.85
0.48
0.28
0.15
0.46
0.923
0.83
0.45
0.32
0.22
0.43
D
12-4
P/p max
ho 0.46c 0.46(0.003) 0.001 38 in P 82.05 pmax 191 psi Ans. 0.43 0.43
Ans.
Fig. 12-14: SAE 20W-40 at 150F, = 4.4 reyn S 5422
4.4(10 6 )(16.67) 0.263 82.05
From Eq. (12-16), and Figs. 12-16 and 12-21:
l/d
y
y 1
y 1/2
y 1/4
y l/d
h o /c
0.923
0.91
0.6
0.38
0.2
0.58
P/p max
0.923
0.83
0.48
0.35
0.24
0.46
Chapter 12, Page 3/26
h0 0.58c 0.58(0.003) 0.001 74 in Ans. 8205 82.05 pmax 178 psi Ans. 0.46 0.46 ______________________________________________________________________________ Given: d max = 2.000 in, b min = 2.0024 in, l = 1 in, W = 600 lbf, N = 800 rev/min, and SAE 20 at 130F. 2.0024 2 b d max 0.0012 in cmin min 2 2 d 2 r 1 in, l / d 1 / 2 0.50 2 2 r / c 1 / 0.0012 833 N 800 / 60 13.33 rev/s W 600 300 psi P ld 2(1)
ra ft
12-5
Fig. 12-12: SAE 20 at 130F, µ 3.75 µreyn 2
6 r N 2 3.75(10 )(13.3) 833 S 0.115 300 c P
From Figs. 12-16, 12-18 and 12-19:
D
h0 / c 0.23, r f / c 3.8, Q / (rcNl ) 5.3 h0 0.23(0.0012) 0.000 276 in Ans. 3.8 f 0.004 56 833
The power loss due to friction is
2 f WrN 2 (0.004 56)(600)(1)(13.33) 778(12) 778(12) 0.0245 Btu/s Ans. Q 5.3rcNl 5.3(1)(0.0012)(13.33)(1) 0.0848 in 3 / s Ans. ______________________________________________________________________________ H
12-6
Given: d max = 25 mm, b min = 25.04 mm, l/d = 1, W = 1.25 kN, = 50 mPas, and N = 1200 rev/min.
Chapter 12, Page 4/26
bmin d max 25.04 25 0.02 mm 2 2 r d / 2 25 / 2 12.5 mm, l / d 1 r / c 12.5 / 0.02 625 N 1200 / 60 20 rev/s W 1250 P 2 MPa ld 252
cmin
2
50(10 3 )(20) r N S 6252 0.195 6 c P 2(10 ) From Figs. 12-16, 12-18 and 12-20: For µ = 50 MPa · s,
ra ft
h0 / c 0.52, f r / c 4.5, Qs / Q 0.57 h0 0.52(0.02) 0.0104 mm Ans. 4.5 f 0.0072 625 T f Wr 0.0072(1.25)(12.5) 0.1125 N · m The power loss due to friction is
H = 2πT N = 2π (0.1125)(20) = 14.14 W
Ans.
Q s = 0.57Q The side flow is 57% of Q Ans. ______________________________________________________________________________ Given: d max = 1.25 in, b min = 1.252 in, l = 2 in, W = 620 lbf, = 8.5 reyn, and N = 1120 rev/min. b d max 1.252 1.25 cmin min 0.001 in 2 2 r d / 2 1.25 / 2 0.625 in r / c 0.625 / 0.001 625 N 1120 / 60 18.67 rev/s W 620 P 248 psi ld 1.25(2)
D
12-7
2
8.5(10 6 )(18.67) r N S 6252 0.250 248 c P l / d 2 / 1.25 1.6 From Eq. (12-16), and Figs. 12-16, 12-18, and 12-19
Chapter 12, Page 5/26
l/d
y
y 1
y 1/2
y 1/4
y l/d
h 0 /c fr/c Q/rcNl
1.6 1.6 1.6
0.9 4.5 3
0.58 5.3 3.98
0.36 6.5 4.97
0.185 8 5.6
0.69 4.92 3.59
h 0 = 0.69 c = 0.69(0.001) =0.000 69 in
Ans.
f = 4.92/(r/c) = 4.92/625 = 0.007 87
Ans.
Ans. Q = 1.6 rcNl = 1.6(0.625) 0.001(18.57) 2 = 0.0833 in3/s ______________________________________________________________________________ Given: d max = 75.00 mm, b min = 75.10 mm, l = 36 mm, W = 2 kN, N = 720 rev/min, and SAE 20 and SAE 40 at 60C. bmin d max 75.10 75 0.05 mm 2 2 l / d 36 / 75 0.48 0.5 (close enough) r d / 2 75 / 2 37.5 mm r / c 37.5 / 0.05 750 N 720 / 60 12 rev/s W 2000 P 0.741 MPa ld 75(36)
ra ft
cmin
Fig. 12-13: SAE 20 at 60C, µ = 18.5 MPa · s
D
12-8
2
18.5(10 3 )(12) r N S 7502 0.169 6 c P 0.741(10 )
From Figures 12-16, 12-18 and 12-21: h0 / c 0.29, f r / c 5.1, P / pmax 0.315 h0 0.29(0.05) 0.0145 mm Ans. f 5.1 / 750 0.0068 T f Wr 0.0068(2)(37.5) 0.51 N · m
The heat loss rate equals the rate of work on the film H loss = 2πT N = 2π(0.51)(12) = 38.5 W p max = 0.741/0.315 = 2.35 MPa Ans.
Ans.
Fig. 12-13: SAE 40 at 60C, µ = 37 MPa · s Chapter 12, Page 6/26
S = 0.169(37)/18.5 = 0.338 From Figures 12-16, 12-18 and 12-21: h0 / c 0.42, f r / c 8.5, P / pmax 0.38 h0 0.42(0.05) 0.021 mm Ans. f 8.5 / 750 0.0113 T f Wr 0.0113(2)(37.5) 0.85 N · m H loss 2 TN 2 (0.85)(12) 64 W Ans. pmax 0.741 / 0.38 1.95 MPa Ans. _____________________________________________________________________________ Given: d max = 56.00 mm, b min = 56.05 mm, l = 28 mm, W = 2.4 kN, N = 900 rev/min, and SAE 40 at 65C. b d max 56.05 56 0.025 mm cmin min 2 2 r d / 2 56 / 2 28 mm r / c 28 / 0.025 1120 l / d 28 / 56 0.5, N 900 / 60 15 rev/s 2400 1.53 MPa P 28(56)
ra ft
12-9
D
Fig. 12-13: SAE 40 at 65C, µ = 30 MPa · s 2 30(10 3 )(15) r N S 11202 0.369 6 c P 1.53(10 )
From Figures 12-16, 12-18, 12-19 and 12-20:
h0 / c 0.44, f r / c 8.5, Qs / Q 0.71, Q / (rcNl ) 4.85 h0 0.44(0.025) 0.011 mm Ans. f 8.5 / 1000 0.007 59 T f Wr 0.007 59(2.4)(28) 0.51 N · m H 2 TN 2 (0.51)(15) 48.1 W Ans. Q 4.85 rcNl 4.85(28)(0.025)(15)(28) 1426 mm3 /s Qs 0.71(1426) 1012 mm3 /s Ans. _____________________________________________________________________________ 12-10 Consider the bearings as specified by minimum f :
d t0d , b0tb
maximum W:
d t0d , b0tb Chapter 12, Page 7/26
and differing only in d and d . Preliminaries:
l /d 1 P W / (ld ) 700 / (1.252 ) 448 psi N 3600 / 60 60 rev/s
Fig. 12-16: minimum f : maximum W:
S 0.08 S 0.20
Fig. 12-12:
µ = 1.38(106) reyn µN/P = 1.38(106)(60/448) = 0.185(106)
Eq. (12-7): S µN / P
ra ft
r c
For minimum f :
r 0.08 658 0.185(10 6 ) c c 0.625 / 658 0.000 950 0.001 in
b d = 2(0.001) = 0.002 in
D
If this is c min ,
The median clearance is
c cmin
t d tb t tb 0.001 d 2 2
and the clearance range for this bearing is t tb c d 2 which is a function only of the tolerances. For maximum W: r 0.2 1040 c 0.185(10 6 ) c 0.625 / 1040 0.000 600 0.0005 in
If this is c min
Chapter 12, Page 8/26
b d 2cmin 2(0.0005) 0.001 in t tb t tb c cmin d 0.0005 d 2 2 t tb c d 2
The difference (mean) in clearance between the two clearance ranges, c range , is t d tb t tb 0.0005 d 2 2 0.0005 in
crange 0.001
For the minimum f bearing b d = 0.002 in or d = b 0.002 in d = b 0.001 in
ra ft
For the maximum W bearing
For the same b, t b and t d , we need to change the journal diameter by 0.001 in. d d b 0.001 (b 0.002) 0.001 in
D
Increasing d of the minimum friction bearing by 0.001 in, defines d of the maximum load bearing. Thus, the clearance range provides for bearing dimensions which are attainable in manufacturing. Ans. _____________________________________________________________________________ 12-11 Given: SAE 40, N = 10 rev/s, T s = 140F, l/d = 1, d = 3.000 in, b = 3.003 in, W = 675 lbf. 3.003 3 b d max cmin min 0.0015 in 2 2 r d / 2 3 / 2 1.5 in r / c 1.5 / 0.0015 1000 675 W P 75 psi 3(3) ld Trial #1: From Figure 12-12 for T = 160°F, µ = 3.5 µ reyn, T 2(160 140) 40F 2
3.5(10 6 )(10) r N S 10002 0.4667 75 c P
From Fig. 12-24, Chapter 12, Page 9/26
9.70T 0.349 109 6.009 40(0.4667) 0.047 467(0.4667) 2 3.16 P P 75 T 3.16 3.16 24.4F 9.70 9.70 Discrepancy = 40 24.4 = 15.6°F Trial #2: T = 150°F, µ = 4.5 µ reyn, T 2(150 140) 20F 4.5 10 6 10 2 S 1000 0.6 75 From Fig. 12-24,
ra ft
9.70T 0.349 109 6.009 40(0.6) 0.047 467(0.6) 2 3.97 P P 75 T 3.97 3.97 30.7F 9.70 9.70
Discrepancy = 20 30.7 = 10.7°F Trial #3: T = 154°F, µ = 4 µ reyn,
D
T 2(154 140) 28F 4 10 6 10 2 S 1000 0.533 75 From Fig. 12-24,
9.70T 0.349 109 6.009 40(0.533) 0.047 467(0.533)2 3.57 P P 75 T 3.57 3.57 27.6F 9.70 9.70
Discrepancy = 28 27.6 = 0.4°F
O.K.
T av = 140 +28/2 = 154°F Ans. T1 Tav T / 2 154 (28 / 2) 140F T2 Tav T / 2 154 (28 / 2) 168F S 0.4 From Figures 12-16, 12-18, to 12-20:
Chapter 12, Page 10/26
h0 fr Q Qs 0.75, 11, 3.6, 0.33 c c rcN l Q h0 0.75(0.0015) 0.001 13 in Ans. 11 f 0.011 1000 T f Wr 0.0075(3)(40) 0.9 N · m 2 0.011 675 1.5 10 2 f WrN H loss 0.075 Btu/s 778 12 778 12
Ans.
Q 3.6rcN l 3.6(1.5)0.0015(10)3 0.243 in 3 /s Ans. 3 Qs 0.33(0.243) 0.0802 in /s Ans. _____________________________________________________________________________
12-12 Given: d = 2.5 in, b = 2.504 in, c min = 0.002 in, W = 1200 lbf, SAE = 20, T s = 110°F, N = 1120 rev/min, and l = 2.5 in. N = 1120/60 = 18.67 rev/s
ra ft
P = W/(ld) = 1200/(2.5)2 = 192 psi, For a trial film temperature, let T f = 150°F Table 12-1: Eq. (12-7): Fig. 12-24:
= 0.0136 exp[1271.6/(150 + 95)] = 2.441 reyn
6 2 2 r N 2.5 / 2 2.44110 18.67 S 0.927 192 c P 0.002
192 0.349 109 6.009 40 0.0927 0.047 467 0.0927 2 9.70 17.9F
D
T
T 17.9 110 119.0F 2 2 T f Tav 150 119.0 31.0F Tav Ts
which is not 0.1 or less, therefore try averaging for the new trial film temperature, let (T f ) new
150 119.0 134.5F 2
Proceed with additional trials using a spreadsheet (table also shows the first trial)
Chapter 12, Page 11/26
Trial Tf
'
S
T
T av
T f T av
New Tf
150.0 134.5 127.9 125.3 124.3 124.0 123.8
2.441 3.466 4.084 4.369 4.485 4.521 4.545
0.0927 0.1317 0.1551 0.1659 0.1704 0.1717 0.1726
17.9 22.6 25.4 26.7 27.2 27.4 27.5
119.0 121.3 122.7 123.3 123.6 123.7 123.7
31.0 13.2 5.2 2.0 0.7 0.3 0.1
134.5 127.9 125.3 124.3 124.0 123.8 123.8
Note that the convergence begins rapidly. There are ways to speed this, but at this point they would only add complexity. µ 4.545(106 ), S 0.1726
ra ft
(a)
From Fig. 12-16:
h0 0.482, h0 0.482(0.002) 0.000 964 in c
From Fig. 12-17: = 56°
Ans.
D
(b) e = c h 0 = 0.002 0.000 964 = 0.001 04 in Ans. f r (c) From Fig. 12-18: 4.10, f 4.10(0.002 /1.25) 0.006 56 c
Ans.
(d) T = f Wr = 0.006 56(1200)(1.25) = 9.84 lbf · in H
(e) From Fig. 12-19:
2 T N 2 (9.84)(1120 / 60) 0.124 Btu/s 778(12) 778(12)
Ans.
Q 4.16 rcNl
1120 3 Q 4.16(1.25)(0.002) (2.5) 0.485 in /s 60 Qs From Fig. 12-20: 0.6, Qs 0.6(0.485) 0.291 in 3/s Q
Ans.
Ans.
W / ld 1200 / 2.52 P (f) From Fig. 12-21: 0.45, pmax 427 psi pmax 0.45 0.45 From Fig. 12-22: pmax 16 Ans.
Ans.
Chapter 12, Page 12/26
(g) From Fig. 12-22: p0 82 Ans. (h) From the trial table, T f = 123.8°F Ans. (i) With T = 27.5°F from the trial table, T s + T = 110 + 27.5 = 137.5°F Ans. _____________________________________________________________________________ 12-13 Given: d = 1.250 in, t d = 0.001 in, b = 1.252 in, t b = 0.003 in, l = 1.25 in, W = 250 lbf, N = 1750 rev/min, SAE 10 lubricant, sump temperature T s = 120°F. P = W/(ld) = 250/1.252 = 160 psi,
N = 1750/60 = 29.17 rev/s
For the clearance, c = 0.002 0.001 in. Thus, c min = 0.001 in, c median = 0.002 in, and c max = 0.003 in. For c min = 0.001 in, start with a trial film temperature of T f = 135°F
= 0.0158 exp[1157.5/(135 + 95)] = 2.423 reyn
Eq. (12-7):
6 2 2 r N 1.25 / 2 2.423 10 29.17 S 0.1725 160 c P 0.001
Fig. 12-24:
ra ft
Table 12-1:
160 0.349 109 6.009 40 0.1725 0.047 467 0.17252 9.70 22.9F
T
T 22.9 120 131.4F 2 2 T f Tav 135 131.4 3.6F
D
Tav Ts
which is not 0.1 or less, therefore try averaging for the new trial film temperature, let 135 131.4 133.2F 2 Proceed with additional trials using a spreadsheet (table also shows the first trial) (T f ) new
Trial Tf
'
S
T
T av
T f T av
New Tf
135.0 133.2 132.5 132.2 132.1
2.423 2.521 2.560 2.578 2.583
0.1725 0.1795 0.1823 0.1836 0.1840
22.9 23.6 23.9 24.0 24.0
131.4 131.8 131.9 132.0 132.0
3.6 1.4 0.6 0.2 0.1
133.2 132.5 132.2 132.1 132.1
Chapter 12, Page 13/26
With T f = 132.1°F, T = 24.0°F, = 2.583 reyn, S = 0.1840, T max = T s + T = 120 + 24.0 = 144.0°F Fig. 12-16:
h 0 /c = 0.50, h 0 = 0.50(0.001) = 0.000 50 in
= 1 h 0 /c = 1 0.50 = 0.05 in Fig. 12-18:
r f /c = 4.25, f = 4.25/(0.625/0.001) = 0.006 8
Fig. 12-19:
Q/(rcNl) = 4.13, Q = 4.13(0.625)0.001(29.17)1.25 = 0.0941 in3/s
Fig. 12-20:
Q s /Q = 0.58, Q s = 0.58(0.0941) = 0.0546 in3/s
The above can be repeated for c median = 0.002 in, and c max = 0.003 in. The results are shown below.
ra ft
c min 0.001 c median c max 0.003 in 0.002 in in
Tf
132.1 2.583 0.184 24.0
125.6 3.002 0.0534 11.1
124.1 3.112 0.0246 8.2
h 0 /c
144.0 0.5
131.1 0.23
128.2 0.125
h0
0.00050
0.00069
0.00038
0.50 4.25 0.0068 4.13 0.0941
0.77 1.8 0.0058 4.55 0.207
0.88 1.22 0.0059 4.7 0.321
0.58
0.82
0.90
0.0546
0.170
0.289
D
S T max
fr/c f Q/(rcNl) Q Q s /Q Qs
_____________________________________________________________________________ 12-14 Computer programs will vary. _____________________________________________________________________________ 12-15 Note to the Instructor: In the first printing of the 9th edition, the l/d ratio and the lubrication constant were omitted. The values to use are l/d = 1, and = 1. This will be updated in the next printing. We apologize for any inconvenience this may have caused. Chapter 12, Page 14/26
In a step-by-step fashion, we are building a skill for natural circulation bearings. • Given the average film temperature, establish the bearing properties. • Given a sump temperature, find the average film temperature, then establish the bearing properties. • Now we acknowledge the environmental temperature’s role in establishing the sump temperature. Sec. 12-9 and Ex. 12-5 address this problem. Given: d max = 2.500 in, b min = 2.504 in, l/d = 1, N = 1120 rev/min, SAE 20 lubricant, W = 300 lbf, A = 60 in2, T = 70F, and = 1. 600 lbf load with minimal clearance: We will start by using W = 600 lbf (n d = 2). The task is to iteratively find the average film temperature, T f , which makes H gen and H loss equal. b d max 2.504 2.500 cmin min 0.002 in 2 2 N = 1120/60 = 18.67 rev/s W 600 96 psi ld 2.52
ra ft P
6 2 2 r N 1.25 10 18.67 S 0.0760 96 c P 0.002
= 0.0136 exp[1271.6/(T f + 95)]
Table 12-1:
2545 fr f r 2545 WNc 600 18.67 0.002 1050 c c 1050 fr 54.3 c
D
H gen
H loss
2.7 60 / 144 CR A T f T T f 70 11 1
0.5625 T f 70 Start with trial values of T f of 220 and 240F. Trial T f 220 240
0.770 0.605
S 0.059 0.046
f r/c 1.9 1.7
H gen 103.2 92.3
H loss 84.4 95.6
As a linear approximation, let H gen = mT f + b. Substituting the two sets of values of T f and H gen we find that H gen = 0.545 T f +223.1. Setting this equal to H loss and solving for T f gives T f = 237F. Chapter 12, Page 15/26
Trial T f 237
S 0.048
0.627
f r/c 1.73
H loss 94.0
H gen 93.9
which is satisfactory. Table 12-16:
h 0 /c = 0.21,
h 0 = 0.21 (0.002) = 000 42 in
Fig. 12-24: T
96 0.349 109 6.009 4 0.048 0.047 467 0.0482 9.7
6.31 F T 1 = T s = T f T = 237 6.31/2 = 233.8F
T max = T 1 + T = 233.8 + 6.31 = 240.1F Trumpler’s design criteria:
ra ft
0.002 + 0.000 04d = 0.002 + 0.000 04(2.5) = 0.000 30 in < h 0
O.K.
T max = 240.1F < 250F O.K.
Wst 300 48 psi 300 psi ld 2.52
O.K .
n d = 2 (assessed at W = 600 lbf)
O.K.
D
We see that the design passes Trumpler’s criteria and is deemed acceptable.
For an operating load of W = 300 lbf, it can be shown that T f = 219.3F, = 0.78, S = 0.118, f r/c = 3.09, H gen = H loss = 84 Btu/h, h 0 = , T = 10.5F, T 1 = 224.6F, and T max = 235.1F. _____________________________________________________________________________ 0.005 12-16 Given: d 3.5000.000 0.001 in, b 3.5050.000 in , SAE 30, T s = 120F, p s = 50 psi, N = 2000/60 = 33.33 rev/s, W = 4600 lbf, bearing length = 2 in, groove width = 0.250 in, and H loss 5000 Btu/hr. b d max 3.505 3.500 cmin min 0.0025 in 2 2 r = d/ 2 = 3.500/2 = 1.750 in
r / c = 1.750/0.0025 = 700 l = (2 0.25)/2 = 0.875 in
Chapter 12, Page 16/26
l / d = 0.875/3.500 = 0.25 W 4600 P 751 psi 4rl 4 1.750 0.875 Trial #1: Choose (T f ) 1 = 150°F. From Table 12-1,
= 0.0141 exp[1360.0/(150 + 95)] = 3.63 µ reyn 2
6 r N 2 3.63(10 )(33.33) S 700 0.0789 751 c P From Figs. 12-16 and 12-18: = 0.9, f r/ c = 3.6
From Eq. (12-24), T
0.0123 3.6 0.0789 46002 1 1.5(0.9) 2 50 1.7504
71.2F
ra ft
0.0123( f r / c)SW 2 1 1.5 2 ps r 4
T av = T s + T / 2 = 120 + 71.2/2 = 155.6F
Trial #2: Choose (T f ) 2 = 160°F. From Table 12-1
= 0.0141 exp[1360.0/(160 + 95)] = 2.92 µ reyn
D
2.92 S 0.0789 0.0635 3.63 From Figs. 12-16 and 12-18: = 0.915, f r/ c =3
T
T av
0.0123 3 0.0635 46002
1 1.5 0.9152 50 1.7504 = 120 + 46.9/2 = 143.5F
46.9F
Chapter 12, Page 17/26
Trial #3: Thus, the plot gives (T f ) 3 = 152.5°F. From Table 12-1
= 0.0141 exp[1360.0/(152.5 + 95)] = 3.43 µ reyn 3.43 S 0.0789 0.0746 3.63 From Figs. 12-16 and 12-18: = 0.905, f r/ c =3.4
T
T av
0.0123 3.4 0.0746 46002
1 1.5 0.9052 50 1.7504 = 120 + 63.2/2 = 151.6F
Result is close. Choose T f Table 12-1:
63.2F
152.5 151.6 152.1F 2
Try 152F
= 0.0141 exp[1360.0/(152 + 95)] = 3.47 µ reyn
D
ra ft
3.47 S 0.0789 0.0754 3.63 f r h0 3.4, 0.902, 0.098 c c 0.0123 3.4 0.0754 46002 T 64.1F 1 1.5 0.9022 50 1.7504 Tav 120 64.1 / 2 152.1F O.K. h 0 = 0.098(0.0025) = 0.000 245 in
T max = T s + T = 120 + 64.1 = 184.1F
Eq. (12-22):
50 1.750 0.00253 ps rc3 2 1 1.5 0.9022 Qs 1 1.5 6 3 l 3 3.47 10 0.875 1.047 in 3 /s
H loss = C p Q s T = 0.0311(0.42)1.047(64.1) = 0.877 Btu/s = 0.877(602) = 3160 Btu/h O.K. Trumpler’s design criteria: 0.0002 + 0.000 04(3.5) = 0.000 34 in > 0.000 245 Not O.K. T max = 184.1°F < 250°F O.K. P st = 751 psi > 300 psi Not O.K. n = 1, as done Not O.K. _____________________________________________________________________________
Chapter 12, Page 18/26
0.010 12-17 Given: d 50.000.00 0.05 mm, b 50.084 0.000 mm , SAE 30, T s = 55C, p s = 200 kPa, N = 2880/60 = 48 rev/s, W = 10 kN, bearing length = 55 mm, groove width = 5 mm, and H loss 300 W. b d max 50.084 50 cmin min 0.042 mm 2 2 r = d/ 2 = 50/2 = 25 mm
r / c = 25/0.042 = 595 l = (55 5)/2 = 25 mm l / d = 25/50 = 0.5 10 103 W P 4 MPa 4rl 4 25 25 Trial #1: Choose (T f ) 1 = 79°C. From Fig. 12-13, µ = 13 MPa · s. 2
ra ft
13(103 )(48) r N S 5952 0.0552 6 c P 4(10 )
From Figs. 12-16 and 12-18:
= 0.85, f r/ c = 2.3
From Eq. (12-25),
D
978(106 ) ( f r / c)SW 2 T 1 1.5 2 ps r 4 978(106 ) 2.3(0.0552)(102 ) 76.3C 1 1.5(0.85) 2 200(25) 4
T av = T s + T / 2 = 55 + 76.3/2 = 93.2C
Trial #2: Choose (T f ) 2 = 100°C. From Fig. 12-13, µ = 7 MPa · s. 7 S 0.0552 0.0297 13 From Figs. 12-16 and 12-18: = 0.90, f r/ c =1.6
T
978(106 ) 1.6(0.0297)(102 ) 26.9C 200(25)4 1 1.5(0.9) 2
T av = 55 + 26.9/2 = 68.5C
Chapter 12, Page 19/26
Trial #3: Thus, the plot gives (T f ) 3 = 85.5°C. From Fig. 12-13, µ = 10.5 MPa · s. 10.5 S 0.0552 0.0446 13 From Figs. 12-16 and 12-18: = 0.87, f r/ c =2.2 T
978(106 ) 2.2(0.0457)(102 ) 58.9C 1 1.5(0.87 2 ) 200(25) 4
ra ft
T av = 55 + 58.9/2 = 84.5C
Result is close. Choose T f
µ = 10.5 MPa · s 10.5 S 0.0552 0.0446 13 f r h0 0.87, 2.2, 0.13 c c 978(106 ) 2.2(0.0457)(102 ) T 58.9C 1 1.5(0.87 2 ) 200(254 ) Tav 55 58.9 / 2 84.5C O.K.
D
Fig. 12-13:
85.5 84.5 85C 2
or
138F
From Eq. (12-22) h 0 = 0.13(0.042) = 0.005 46 mm or 0.000 215 in T max = T s + T = 55 + 58.9 = 113.9C
or
237°F
200 25 0.0423 1 1.5 0.87 2 6 3µl 3 10.5 10 25 3156 mm3 /s 3156 25.4 3 0.193 in 3 /s
Qs (1 1.5 2 )
ps rc 3
H loss = C p Q s T = 0.0311(0.42)0.193(138) = 0.348 Btu/s = 1.05(0.348) = 0.365 kW = 365 W not O.K.
Chapter 12, Page 20/26
Trumpler’s design criteria: Not O.K. 0.0002 + 0.000 04(50/25.4) = 0.000 279 in > h 0 T max = 237°F O.K. P st = 4000 kPa or 581 psi > 300 psi Not O.K. n = 1, as done Not O.K. _____________________________________________________________________________ 12-18 So far, we’ve performed elements of the design task. Now let’s do it more completely. The values of the unilateral tolerances, t b and t d , reflect the routine capabilities of the bushing vendor and the in-house capabilities. While the designer has to live with these, his approach should not depend on them. They can be incorporated later. First we shall find the minimum size of the journal which satisfies Trumpler’s constraint of P st ≤ 300 psi. W 300 2dl
ra ft Pst
W 300 d 2d 2l / d d min
W 600(l / d )
900 1.73 in 2(300)(0.5)
D
In this problem we will take journal diameter as the nominal value and the bushing bore as a variable. In the next problem, we will take the bushing bore as nominal and the journal diameter as free.
To determine where the constraints are, we will set t b = t d = 0, and thereby shrink the design window to a point. We set
d = 2.000 in b = d + 2c min = d + 2c n d = 2 (This makes Trumpler’s n d ≤ 2 tight)
and construct a table.
Chapter 12, Page 21/26
c
b
d
Tf *
T max
h o P st T max n
fom
0.0010 0.0011 0.0012 0.0013 0.0014 0.0015 0.0016 0.0017 0.0018 0.0019 0.0020
2.0020 2.0022 2.0024 2.0026 2.0028 2.0030 2.0032 2.0034 2.0036 2.0038 2.0040
2 2 2 2 2 2 2 2 2 2 2
215.50 206.75 198.50 191.40 185.23 179.80 175.00 171.13 166.92 163.50 160.40
312.0 293.0 277.0 262.8 250.4 239.6 230.1 220.3 213.9 206.9 200.6
-5.74 -6.06 -6.37 -6.66 -6.94 -7.20 -7.45 -7.65 -7.91 -8.12 -8.32
*Sample calculation for the first entry of this column. T f 215.5F Iteration yields:
ra ft
With T f 215.5F , from Table 12-1
µ 0.0136(10 6 ) exp[1271.6 / (215.5 95)] 0.817(10 6 ) reyn 900 N 3000 / 60 50 rev/s, P 225 psi 4 2 6 1 0.817(10 )(50) S 0.182 225 0.001 e = 0.7,
f r/c = 5.5
D
From Figs. 12-16 and 12-18: Eq. (12–24):
0.0123(5.5)(0.182)(9002 ) 191.6F [1 1.5(0.7 2 )](30)(14 ) 191.6F Tav 120F 215.8F 215.5F 2
TF
For the nominal 2-in bearing, the various clearances show that we have been in contact with the recurving of (h o ) min . The figure of merit (the parasitic friction torque plus the pumping torque negated) is best at c = 0.0018 in. For the nominal 2-in bearing, we will place the top of the design window at c min = 0.002 in, and b = d + 2(0.002) = 2.004 in. At this point, add the b and d unilateral tolerances: d 2.0000.000 b 2.0040.003 0.001 in, 0.000 in
Now we can check the performance at c min , c , and c max . Of immediate interest is the fom of the median clearance assembly, 9.82, as compared to any other satisfactory bearing ensemble. Chapter 12, Page 22/26
If a nominal 1.875 in bearing is possible, construct another table with t b = 0 and t d = 0. c 0.0020 0.0030 0.0035 0.0040 0.0050 0.0055 0.0060
b 1.879 1.881 1.882 1.883 1.885 1.886 1.887
d 1.875 1.875 1.875 1.875 1.875 1.875 1.875
Tf 157.2 138.6 133.5 130.0 125.7 124.4 123.4
T max h o P st T max n fom 7.36 194.30 8.64 157.10 9.05 147.10 9.32 140.10 9.59 131.45 9.63 128.80 9.64 126.80
The range of clearance is 0.0030 < c < 0.0055 in. That is enough room to fit in our design window. b 1.8810.003 0.000 in
ra ft
d 1.8750.000 0.001 in,
The ensemble median assembly has a fom = 9.31. We just had room to fit in a design window based upon the (h 0 ) min constraint. Further reduction in nominal diameter will preclude any smaller bearings. A table constructed for a d = 1.750 in journal will prove this. We choose the nominal 1.875-in bearing ensemble because it has the largest figure of merit. Ans. _____________________________________________________________________________
D
12-19 This is the same as Prob. 12-18 but uses design variables of nominal bushing bore b and radial clearance c. The approach is similar to that of Prob. 12-18 and the tables will change slightly. In the table for a nominal b = 1.875 in, note that at c = 0.003 in the constraints are “loose.” Set b = 1.875 in d = 1.875 2(0.003) = 1.869 in For the ensemble b 1.8750.003 0.001 in,
d 1.869 0.000 0.001 in
Analyze at c min = 0.003, c = 0.004 in and c max = 0.005 in At cmin 0.003 in: T f 138.4, µ 3.160, S 0.0297, H loss 1035 Btu/h and the Trumpler conditions are met. At c 0.004 in: T f 130F, = 3.872, S = 0.0205, H loss = 1106 Btu/h, fom = 9.246 Chapter 12, Page 23/26
and the Trumpler conditions are O.K. At cmax 0.005 in: T f 125.68F, = 4.325, S = 0.014 66, H loss = 1129 Btu/h and the Trumpler conditions are O.K. The ensemble figure of merit is slightly better; this bearing is slightly smaller. The lubricant cooler has sufficient capacity. _____________________________________________________________________________ 12-20 Table 12-1:
( reyn) = 0 (106) exp [b / (T + 95)]
b and T in F
The conversion from reyn to mPas is given on p. 620. For a temperature of C degrees Celsius, T = 1.8 C + 32. Substituting into the above equation gives
(mPas) = 6.89 0 (106) exp [b / (1.8 C + 32+ 95)] = 6.89 0 (106) exp [b / (1.8 C + 127)]
Ans.
ra ft
For SAE 50 oil at 70C, from Table 12-1, 0 = 0.0170 (106) reyn, and b = 1509.6F. From the equation,
= 6.89(0.0170) 106(106) exp {1509.6/[1.8(70) + 127]} = 45.7 mPas
Ans.
From Fig. 12-13, = 39 mPas
Ans.
D
The figure gives a value of about 15 % lower than the equation. _____________________________________________________________________________ 12-21 Originally
d 2.0000.000 b 2.0050.003 0.001 in, 0.000 in
Doubled, d 4.000 0.000 b 4.010 0.006 0.002 in, 0.000 in
The radial load quadrupled to 3600 lbf when the analyses for parts (a) and (b) were carried out. Some of the results are: Part (a) (b)
c
0.007 0.0035
3.416 3.416
S 0.0310 0.0310
Tf 135.1 135.1
f r/c 0.1612 0.1612
Qs 6.56 0.870
h 0 /c 0.1032 0.1032
e 0.897 0.897
H loss 9898 1237
h0 0.000 722 0.000 361
Trumpler h0 0.000 360 0.000 280
f 0.005 67 0.005 67
The side flow Q s differs because there is a c3 term and consequently an 8-fold increase. H loss is related by a 9898/1237 or an 8-fold increase. The existing h 0 is related by a 2-fold increase. Trumpler’s (h 0 ) min is related by a 1.286-fold increase. Chapter 12, Page 24/26
_____________________________________________________________________________ 12-22 Given: Oiles SP 500 alloy brass bushing, L = 0.75 in, D = 0.75 in, T = 70F, F = 400 lbf, N = 250 rev/min, and w = 0.004 in. K = 0.6(1010) in3min/(lbffth)
Table 12-8:
P = F/ (DL) = 400/ [0.75(0.75)] = 711 psi V = DN/ 12 = (0.75)250/12 = 49.1 ft/min Tables 12-10 and 12-11:
f 1 = 1.8, f 2 = 1.0
Table 12-12: PV max = 46 700 psift/min, P max = 3560 psi, V max = 100 ft/min Pmax
4 F 4 400 905 psi 3560 psi O.K . DL 0.752
ra ft
PV = 711 (49.1) = 34 910 psift/min < 46 700 psift/min
O.K.
Eq. (12-32) can be written as w f1 f 2 K
4 F Vt DL
Solving for t,
DLw
0.75 0.75 0.004
4 1.8 1.0 0.6 1010 49.1 400
D
t
4 f1 f 2 KVF
833.1 h 833.1 60 49 900 min
Ans. Cycles = Nt = 250 (49 900) = 12.5 (106) cycles _____________________________________________________________________________ 12-23 Given: Oiles SP 500 alloy brass bushing, w max = 0.002 in for 1000 h, N = 400 rev/min, F = 100 lbf, CR = 2.7 Btu/ (hft2F), T max = 300F, f s = 0.03, and n d = 2. Estimate bushing length with f 1 = f 2 = 1, and K = 0.6(10-10) in3 · min/(lbf · ft · h) Using Eq. (12-32) with n d F for F, f1 f 2 Knd FNt 1(1)(0.6)(1010 )(2)(100)(400)(1000) L 0.80 in 3w 3(0.002) From Eq. (12-38), with f s = 0.03 from Table 12-9 applying n d = 2 to F
Chapter 12, Page 25/26
and CR 2.7 Btu/(h · ft 2 · °F) L
720 f s nd FN 720(0.03)(2)(100)(400) 3.58 in 778(2.7)(300 70) J CR T f T 0.80 L 3.58 in
Trial 1: Let L = 1 in, D = 1 in 4 nd F 4(2)(100) 255 psi 3560 psi O.K . DL (1)(1) nF 2(100) P d 200 psi DL 1(1) DN (1)(400) V 104.7 ft/min 100 ft/min Not O.K . 12 12
Pmax
ra ft
Trial 2: Try D = 7/8 in = 0.875 in, L = 1 in
4(2)(100) 291 psi 3560 psi O.K . (0.875)(1) 2(100) P 229 psi 0.875(1) (0.875)(400) V 91.6 ft/min 100 ft/min 12
Pmax
O.K .
D
PV = 229(91.6) = 20 976 psi · ft/min < 46 700 psi · ft/min f1 V 33 1.3 91.6 f 1
100
1.8
O.K.
91.6 33 f1 1.3 (1.8 1.3) 1.74 100 33 Lnew f1Lold 1.74 0.80 1.39 in
Trial 3: Try D = 7/8 in = 0.875 in, L = 1.5 in 4(2)(100) 194 psi 3560 psi O.K . (0.875)(1.5) 2(100) P 152 psi, V 91.6 ft/min 0.875(1.5) PV 152(91.6) 13 923 psi · ft/min 46 700 psi · ft/min D 7 / 8 in, L 1.5 in is acceptable Ans.
Pmax
O.K .
Chapter 12, Page 26/26
D
ra ft
Suggestion: Try smaller sizes.
Chapter 12, Page 27/26