design of roof hangemonorail beam in excelFull description
design of roof hangemonorail beam in excelFull description
beamFull description
Monorail Beam DesignFull description
Monorail Beam DesignFull description
Descripción: Monorail Beam Design
wegfwg
This is the design of various type of beam . You have to input data in yellow cell of required concrete property , load from IS code and beam size And you will get bottom and top area of ste…Full description
Full description
civil engineeringFull description
Monorail BeamFull description
Full description
T beamDeskripsi lengkap
capping beam design
Descripción completa
T Beam DesignFull description
Design of Cantilever BeamDescripción completa
NUS coursewotkFull description
Full description
design of steel beam for crane girders
aisc crane runway beam designFull description
Descripción: Design of trolley lift beam example
Title
MONORAIL CRANE BEAM DESIGN CALCULATIONS Doc. No.
Pr o j ec t
GLADSTONE LNG PROJECT
Pac k ag
POLYMER DOSING AREA
Client
BECHTEL INTERNATIONAL INC. BECHTEL PO NO. 25576-140-POA-MW00-00002
Rev . No . Dat e
130111900-09-010 B 13/5/2015
MONORAIL CRANE BEAM DESIGN CALCULATIONS
B
24/8/2015
ISSUED FOR APPROVAL
ID
SS
A
13/5/2015
ISSUED FOR APPROVAL
ID
SS
REV NO
DATE
DESCRIPTION
CHECKED BY
APPROVED B Y
Page 1 of 6
Title
MONORAIL CRANE BEAM DESIGN CALCULATIONS Doc. No.
Project
GLADSTONE LNG PROJECT
Packag
POLYMER DOSING AREA
Client
BECHTEL INTERNATIONAL INC. BECHTEL PO NO. 25576-140-POA-MW00-00002
NOMENCLATURE
E
Modulus of elasticity (2.1x E6 Kg/cm²)
Fa
Actual axial stress (Kg/cm²) Allowable axial stress K /cm²
Fy
Minimum yield strength of the beam material(36000 psi)
K
Effective length factor
L
Unbraced length of compression member
N
Constant (1.10 for Stress level 1 cases; as per AISC ASD)
r
Radius of gyration of the member (cm)
Page 2 of 6
Rev. No. Date
130111900-09-010 B 13/5/2015
Title
MONORAIL CRANE BEAM DESIGN CALCULATIONS Doc. No.
Project
GLADSTONE LNG PROJECT
Packag
POLYMER DOSING AREA
Client
BECHTEL INTERNATIONAL INC. BECHTEL PO NO. 25576-140-POA-MW00-00002
130111900-09-010
Rev. No.
B
Date
13/5/2015
DESIGN FOR MONORAIL CRANE SUPPORTING BEAMS: Procedure followed for design of monorail beam as per Crane Manufacturers Association of America(CMAA) Specification No. 74 ("Specifications for Top running & Under running single girder electric travelling cranes utilizing under running trolley hoist")
INPUT PARAMETERS :
l=600
a=150
a=150
x=0
b="&400
c=200
I beam 150 x 100 x 26.81kg/m
A
B
C
P=669.7
Crane continous beam carrying the hoist; is supported at two points @ 520 cm apart and running along the bottom flanges of the beams. Runway Length of the crane T e of su ortin each I beams
rovided for
: :
mp y
uppor e
8.2 mts.
eams w
over ang n g . m s span on o
Provided beam for the crane bridge is I-Beam 150x100x6x9 x 26.81 kg/m. Maximum unbraced Span length for I beam
L
:
520 cm
Maximum overhanging span length
a
:
150 cm
b
:
300 cm
c
:
220 cm
When point load considered between supports
Page 3 of 6
s es.
Title
MONORAIL CRANE BEAM DESIGN CALCULATIONS Doc. No.
Project
GLADSTONE LNG PROJECT
Rev. No.
Packag
POLYMER DOSING AREA
Client
BECHTEL INTERNATIONAL INC. BECHTEL PO NO. 25576-140-POA-MW00-00002
Date
130111900-09-010 B 13/5/2015
Uniform Load acting on the span for each I beam: Uniform Load on the selected span Dead Load Factor for uniform load Effective Uniform Load
:
.78 kg/cm
FDL
:
1.10
w
:
.85 kg/cm
Beam Overhangin g One Suppor t-Concentrated Load at End of Overhang: Crane Bridge Assembly weight
Bwt
Hoist weight
Hwt
25 kg
Dead Load Factor for point load
DLF
1.05
Effective dead load
:
89 kg
(Bwt+Hwt)xDLF
:
120 kg
Live Load/Hoist capacity of crane
Hcap
:
500 kg
Hoist Load Factor
HLF
:
1.10
Effective Live Load
HcapxHLF
:
550.00
Effective total load
(Bwt+Hwt)xDLF+(HcapxHLF)
:
670 kg
P
:
670 kg
Pax
:
67 kg
Total Load acting at the selected span of each beam
Axial Load
As Per CMAA No.74 code
As Per CMAA No.74 code
As Per AISC ASD, The axial load is 10 % of point load acting in-line or longitudinally. As Per AISC ASD, The lateral load is 2 0 % o f o in t l oa d a cti n n or ma l t o or perpendicluar to the beam.
Page 4 of 6
Title
MONORAIL CRANE BEAM DESIGN CALCULATIONS Doc. No.
Project
GLADSTONE LNG PROJECT
Packag
POLYMER DOSING AREA
Client
BECHTEL INTERNATIONAL INC. BECHTEL PO NO. 25576-140-POA-MW00-00002
130111900-09-010
Rev. No.
B
Date
13/5/2015
1. Check for BENDING :
Maximum bending moment due to concentrated load at overhung
Maximum bending moment due to uniform dead load of beam at B due to overhang length.
Actual major axis bending moment (In-plane bending)
Mmax@ B=Pa
:
100455 kg.cm
Mmax@ B=Pa²/2
:
9603 kg.cm
p =
max+
.
max'
Maximum bending allowable stress
f s
:
1519 kg/cm2
Required Section Modulus
Zxx
:
72.5 cm3
Zxx
:
168 cm3
:
DESIGN SAFE
As in our case (Stress Level 1 per CMAA) the bending allowable stress is 0.60*Fy. Where Fy=36000psi (2531kg/cm ²)
Selected beam IB 100 x 100 x 17.2 kg/m Section modulus for the selected I beam Check for Bending for selected beam
Page 5 of 6
Property of selected beam
Title
MONORAIL CRANE BEAM DESIGN CALCULATIONS Doc. No.
Project
GLADSTONE LNG PROJECT
Rev. No.
Packag
POLYMER DOSING AREA
Client
BECHTEL INTERNATIONAL INC. BECHTEL PO NO. 25576-140-POA-MW00-00002
Date
130111900-09-010 B 13/5/2015
2. Check fo r DEFLECTION :
Deflection due to concentrated load at overhung point C.
Yc={Pa²(L+a)}/3EI
:
.35 cm
Deflection due to concentrated load between supports A and B
Yc'={Pbc(b+2c) Sqrt3b(b+2c)} / 27EIL
:
.89 cm
We consider the bigger of the two (Yc & Yc') to check for limits of deflection for the worst case.
Maximum deflection of the beam
max
:
.89 cm
Selected beam IB 100 x 100 x17.2 kg/m Moment of Inertia for selected I beam