a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
Universidad de Jaén
Escuela Politécnica Superior Electrónica Industrial
Control electrónico de Motores(Conceptos) Juan Domingo Aguilar Peña Departamento de Electrónica 6 Diciembre de 2003
S . P . E Control Motores.Conceptos 1
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E
1. INTRODUCCIÓN A LOS MOTORES MOTORES ELÉCTRICOS 2. MOTORES DE CORRIENT CORRIENTE E CONTINUA 3. MOTORES DE CORRIENT CORRIENTE E AL ALTERNA TERNA Fraile,J;
Máquinas elétricas.MacGrawhill
Faure,R;
Máquinas y accionamientos eléctricos. Fondo editorial de Ingenieros naval. Madrid 2000 Cortes
Cherta,M; Curso moderno de maquinas eléctricas rotativas.Tomos I a IV. Editores Técnicos Asociados. Barcelona 1990. Hans,T
at ali; Regulación digital electrónica.
Paraninfo Control Motores.Conceptos 2
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
Se basa en la ley de Faraday que Faraday que indica que "en cualquier conductor que se mueve en el seno del campo magnético se generará una diferencia diferencia de potencial entre sus extremos, proporcional a la velocidad de desplazamiento".
S . P . E Control Motores.Conceptos 3
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e Si en lugar de un conductor rectilíneo se introduce una í r l e o r espira con los extremos conectados a una determinada i t n n resistencia y se le hace girar en el interior del campo, e o g C de forma que varíe el flujo magnético abrazado por la n I misma, se detectará la aparición de una corriente S . P . E
eléctrica que circula por la resistencia y que cesará en el momento en que se detenga el movimiento. El sentido de la corriente viene determinado por la ley de Lenz. Control Motores.Conceptos 4
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E Control Motores.Conceptos 5
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E Control Motores.Conceptos 6
a c i Mediante el sistema descrito se genera una corriente eléctrica a partir de un n ó r movimiento mecánico, lo que corresponde al principio de funcionamiento de un t c generador. e l E . Al ser dicho efecto reversible, el funcionamiento como motor se consigue p s s invirtiendo los papeles. E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E Control Motores.Conceptos 7
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P .
MOTORES ELÉCTRICOS En los motores eléctricos las espiras rotativas del conductor son guiadas mediante la fuerza magnética ejercida por el campo magnético y la corriente eléctrica. Se transforma la energía eléctrica en energía mecánica . W=2Pif=pWm=p2Pin/60 Wm velocid velocidad ad de giro espir as as rad/seg P pares pares polos polos
Colector de delgas
Colector de anillos
E Control Motores.Conceptos 8
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
Corriente en un Motor DC
Cuando una corriente eléctrica pasa a través de un cable conductor inmerso en un campo magnético,, la fuerza magnética produce un magnético par el cual provoca el giro del motor
S . P . E Control Motores.Conceptos 9
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
Par en el Motor DC
Cuando una corriente eléctrica pasa a través de un cable conductor inmerso en un campo magnético,, la fuerza magnética produce un magnético par el cual provoca el giro del motor
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P .
CONSTITUCIÓN MOTOR DC
polos
escobillas Inducido rotor
ventilador colector
E Control Motores.Conceptos 11
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
CLASIFICACIÓN MOTORES
Atendiendo a la naturaleza de la corriente eléctrica utilizada, los motores eléctricos rotativos pueden dividirse en: - Motores de Corriente Continua. - Motores de Corriente Alterna. - Motores Universales.
Los motores de c.a., a su vez, por la naturaleza de la corriente de excitación pueden clasificarse en: - Motores Síncronos . - Motores Asíncronos o de Inducción .
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
-Excitación por imanes permanentes -Excitación independiente -Excitación serie -Excitación paralelo -Excitación compuesta
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTOR CC
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTOR CC
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTOR CC
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTORES DC IMAN PERMANENTE
Imán permanente
Estator bobinado
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E
Los
motores con campos magnéticos originados por imanes permanentes, tienen las siguientes ventajas: - No necesitan corriente magnetizante, reduciéndose así el gasto energético de la misma al no producirse, en el circuito de excitación, pérdidas por efecto Joule. - Se consigue un primer abaratamiento en su construcción, al suprimirse los conductores que constituyen el devanado de excitación. - Poseen una excitación estable. Sin
embargo, presentan grandes inconvenientes, que hacen limitado su uso exclusivamente en máquinas de muy baja potencia, los cuales pasamos a enumerar: - Poseen un campo magnético fijo sin posibilidad de regulación. - El campo magnético es relativamente débil, presentando la máquina unas elevadas dimensiones con relación a la potencia desarrollada. - La tecnología de elaboración e imantación de los imanes permanentes es compleja y por tanto, costosa. Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTORES DC EXCITACIÓN INDEPENDIENTE INDUCTOR INDUCIDO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
Régimen permanente
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTORES DC IMAN PERMANENTE (Flujo cte)
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E
AUTOEXCITACIÓN DC-SERIE
El motor universal es un motor dc con excitación serie que puede ser alimentado con ca ya que las alternancias de la corriente se producen al mismo tiempo( en fase) en el inductor y en el inducido Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P .
Par de arranque elevado
•
Muy inestable, tendencia a embalarse •
Utilizado en tracción eléctrica
•
E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
APLICACIÓN A TRACCION ELÉCTRICA DC-SERIE
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E
Las propiedades tan valiosas de este motor lo hacen apropiado para la tracción eléctrica: trenes, tranvías, trolebuses y también en grúas donde son necesarios altos pares abajas velocidades y viceversa. La regulación de la velocidad de estos motores, a diferencia con el motor derivación, se realiza solamente por control de la tensión aplicada al motor. Este procedimiento puede realizarse de manera económica si se dispone por lo menos de dos motores (pueden ser también cuatro o seis), como sucede en los ferrocarriles eléctricos urbanos o interurbanos. Cada coche motor va equipado con dos motores serie, uno acoplado al boje (o bogie) delantero que impulsa las ruedas motrices delanteras y otro acoplado al boje trasero impulsando sus respectivas ruedas traseras . Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P .
Las velocidades de ambos motores son iguales en todo momento. La variación de velocidad se consigue con la conexión serie-paralelo de ambos motores, de esta forma pueden obtenerse dos velocidades básicas de trabajo con un buen rendimiento energético. Inicialmente los motores están conectados en serie a través de una resistencia variable que se va eliminando gradualmente hasta que se obtiene una tensión en bornes de cada motor, mitad de la linea. Con ello se obtiene la primera posición de marcha. En este momento, al no existir ninguna resistencia externa en el circuito, se obtiene un gran rendimiento del conjunto. Cuando se desea aumentar la velocidad del vehículo se cambia la conexión en serie de los motores y se pasa a paralelo insertando al mismo tiempo entre ellos y la línea una resistencia exterior. Esta resistencia se va eliminando poco a poco hasta que los motores funcionan a plena tensión de linea, obteniendo la segunda posición estable de funcionamiento
E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E
AUTOEXCITACIÓN DC-SHUNT
Utilizado en máquinas y herramientas por su estabilidad Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E
AUTOEXCITACIÓN DC-COMPUESTO
Maquinas herramientas y tracción Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
DC-COMPARACIÓN
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
DC-GENERADOR EJEMPLO
Un generador excitación independiente 20 kW, 250 V, 1300 rpm,con resistencia de Ra = 0.3 ohm, y Rf = 180 ohms. •
•
Sin carga, el terminal voltaje es de 250 V, la corriente 1.5 A. A plena carga, el terminal voltaje es tambiem 250 V. 0.3W
a) Dibuja el circuito equivalente. b) A plena carga, calcula: –
El generador voltaje Ea
–
El par entregado
–
Corriente y voltaje de excitación
180W
Ia Ea
Vf
If 250V
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P .
GENERATOR: •
Cálculo de k de la maquina sin carga: wm= –
2 p n/60 =2 p 1300/60 = 136.13 1/sec
Ea_nl = K F f
wm
K m = Ea_nl / I f
= K m I f
wm =
wm
250 / (1.5 )( 136.13) = 1.224 Ia = 20000 / 250 = 80 A
•
Corriente carga:
•
Voltaje generador:
•
Par: Te = Ea Ia / wm = (274)(80) / 136.131 = 161.0 Newton m
•
Corriente excitación y voltaje a plena carga:
I f = Ea / (K m
wm )
Ea = Vt + Ia R a = 250 + (80)(0.3) =274 V
= 274/ (1.224) (136.131) =1.64 A
Vf = R f I f = (1.64)(180) = 296 V
E Control Motores.Concept
a c i n ó r t c e l E . p s s Un shunt motor de 15 kW, 240 V, tiene una resistnia de armadura R = 0.25 a E e r : l o ohm, y de excitación Rf = 120 ohms. La corriente es de 8 A y una velocidad de t a i r o 1000 rpm. t s m u e d d Diagrama equivalente n I o c a i c i na) Dibuja el diagrama equivalente. Im 0.25 n ó r b) Calcula la constante del motor c t é c ec) Calcula la velocidad y el Par T l Ia e a í r l e o r Ea i t 240 V n n 120 e o Ff g C n I
DC-SHUNT EJEMPLO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P .
MOTOR. •
Corriente de excitación I f = 240 / 120 = 2 A
•
Corriente de armadura sin carga:
•
Voltaje generador sin carga:
238.5 V •
Velocidad sin carga:
sec •
Constante de maquina:
1.139 •
Corriente carga:
•
Corriente armadura:
wm_nl =
Ia = 8 - 2 = 6 A
Ea = Vt - Ia R a = 240 - (6)(0.25) = 2 p n / 60 = 2 p 1000 / 60 = 104.72 /
Ea = K F f
wm_nl
= K m I f
K m = Ea / I f
wm_nl =
238.5 / (2) (104.72) =
wm_nl
Im = 15000 / 240 = 62.5 A Ia = 62.5 - 2 = 60.5 A
E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P .
•
Voltaje generador a plena carga:
Ea = Vt - Ia R a = 240 - (60.5)(0.25) = 224.9 V •
Velocidad motor a plena carga:
Ea = K F f wm = K m I f
wm
wm = Ea / K m I f = 224.8 / (1.139)( 2) = 98.8 rad./sec nm = 60 wm / 2 p = 942.7 rpm. •
Par:
Te = Ea Ia / wm = (224.8)(60.5) / 98.8 = 137.65 Newton m
E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
DC-ARRANQUE
Motor arranque. Circuito equivalente de arranque a) Calcula la corriente de arranque del ejemplo anterior. 0.2 W •
•
El voltaje de inducido es cero porque la velocidad e cero. La corriente de arranque es :
4V
Ia
Im
Ea=0 Ff
150 W
I start = (300 -4) / 0.2 = 1480 A.
S . P . E Control Motores.Concept
300V
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P .
Motor síncrono de imán permanente
•
Motor síncrono de rotor bobinado
•
MOTOR AC-SINCRONO Al conectar el devanado trifásico del estator a una red exterior de alimentación, las corrientes trifásicas que circularán por las bobinas del estator darán origen a una onda de f.m.m. giratoria y será determinante, a su vez, de un campo giratorio de igual velocidad
síncrono de imán permanente: motores de pequeñas potencias
E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
Motor síncrono de rotor bobinado Motores de grandes potencias, la alimentación del devanado de excitación se hace mediante anillos rozantes o mediante un alternador y un puente de diodos acoplados girando con el eje del motor Estos motores se suelen emplear en accionamientos que requieren velocidades constantes.
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
Motor síncrono de rotor bobinado
S . P . E
Se suelen emplear como generadores para producir energía eléctrica de ca ( alternadores) en las centrales eléctricas a partir de energía hidráulica, térmica o nuclear. Las centrales eléctricas de bombeo constituyen un ejemplo singular de funcionamiento de máquinas síncronas en sus dos formas básicas ( generador y motor). Estas centrales están constituidas por un grupo binario turbina y máquina sincrona. Durante el dia se aprovecha el salto de agua para producir electricidad ( alternador) y durante la noche en horas de bajo consumo, coincidiendo con el valle de la curva de demanda, la máquina síncrona funciona como motor aprovechando la energía sobrante de la red bombeando agua de un embalse situado aguas abajo hasta un embalse superior Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
AC MONOFASICO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E
MOTOR AC ASÍNCRONO INDUCCIÓN.FUNDAMENTO Se basa en la concepción de campos giratorios ( Arago 1822,Ferraris 1885,Tesla 1886). Si sobre un mismo eje se colocan un disco de metal y un imán en forma de herradura; al girar éste, el campo magnético corta el disco e induce corrientes en él. Al estar estas corrientes en el seno de un campo magnético también se mueven, de tal forma que se desarrolla una fuerza entre corrientes y el campo.Es tal que hace que el disco siga al imán en su rotación. El disco gira en el mismo sentido que el campo del imán, pero a menor velocidad, de tal forma que nunca puede alcanzar la velocidad del iman. Si llega a alcanzarla se para Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTOR AC ASÍNCRONO INDUCCIÓN (jaula de ardilla)
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTOR AC ASÍNCRONO INDUCCIÓN
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTOR AC ASÍNCRONO INDUCCIÓN
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
Modelo motor AC
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
motor AC
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTORES AC CARACTERISTICAS
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
MOTORES PASO A PASO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO: Secuencias
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO: Secuencias
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO Reluctancia variable: El rotor es de un material no imantado. Tiene forma cilíndrica cuya base no es circular, lo que conlleva una variación de la reluctancia del circuito magnético en función de su posición angular
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO
S . P . E Control Motores.Concept
a c i n ó r t c e l E . p s s E e : r l o t a i r o t s m u e d d n I o c a i c i n n ó r c t é c e T l a e í r l e o r i t n n e o g C n I
PASO A PASO Controla la limitación de corriente. El bloqueo del transistor se produce cuando la tensión en la resistencia shunt alcanza el valor del potenciómetro
ALIMENTACIÓN UNIPOLAR DE MOTOR DE CUATRO FASES
S . P . E Control Motores.Concept