Project Name: ___________ ___________
Calveston Calveston Resort Resort ___ ___ Window Wall Calcs Calcs
_
Typical Window Panel : 1014mm x 2608mm (Wind Load 6.40kPa) Load Data Wind Pressure
P
=
6.4 kPa
Width of Panel
a
=
1014 mm
Length of Panel
L
=
2608 mm
Uniformly Distributed Load
w = P a w = 6
(Refer to Appendices for Formula Used)
N mm
Result Data •
Required Flexural Strength,
Mau = 4.37 kN m
Analysis Soft ware ware Output Result
•
Required Flexural Strength,
Mab = 4.37 kN m
Analysis Soft ware ware Output Result
•
Required Shear Strength,
Va
7.82 7.82 kN
Analysis Soft ware ware Output Result
Reference Number:
=
Prepared By: Romil Sampayo
Checked By: Joenel Tajonera
Date Prepared: October 29, 2015
Project Name: ___________
Calveston Resort ___ Window Wall Calcs
_
Material Data
Aluminum Member :
6063-T6
Dimension Unsupported Length, Unsupported Length for bending,
Typical Mullion Section Lu = 2608 mm Lb = 2608 mm
Material Properties 69600 MPa
Modulus of Elasticity (),
E
Tensile ultimate strength,
Ftu
=
205 MPa
Tensile yield strength,
Fty
=
170 MPa
Compressiv e yield strength,
Fcy
=
170 MPa
Shear ultimate strength,
Fsu
=
130 MPa
=
Section Properties 2
Cross-sectional area,
Ag = 1444 mm
Shear area,
Av
Moment of Inertia about x-axis,
Ix
Moment of Inertia about y-axis,
I y = 384190 mm
Modulus of Elasticity (steel),
Est := 200GPa
Steel Insert Height,
h := 50mm
Steel Insert Width,
b := 5mm
=
=
2
419 mm
4
3353335 mm 4
3
Moment of Inertia about x-axis (steel insert),
I xst :=
bh
12
4
=
52083 mm
=
521 mm
3
Moment of Inertia about y-axis (steel insert), Total Moment of Inertia with Steel,
I yst :=
b h 12
I xtot := I x
+
I xst
4
Est E
Est I ytot := I y + Iyst E Extreme Fiber Distance
x e = 29 mm
Extreme Fiber distance
ye = 94 mm
Radius of Gyration about x-axis
r x
Radius of Gyration about y-axis
r y = 16 mm
Section modulus
Sc
=
Torsion constant
J
3372459 mm
Reference Number:
=
=
4
=
3503000 mm
=
385687 mm
4
48 mm
3
125956 mm
Prepared By: Romil Sampayo
4
Checked By: Joenel Tajonera
Date Prepared: October 29, 2015
Project Name: ___________
Calveston Resort ___ Window Wall Calcs
_
Check for Deflection Maximum deflection,
max = 13.8 mm
Analysis Software Output Result
Δ
Lu
limit = min 175 , 19mm
Δ
Δ
limit
=
15 mm
> Δmax
OK
Δ
Deflection Ratio,
max
Δ
=
< 0.90 N OT OK
0.93
limit
Actual Stresses Maximum Bending Stress at the Support •
Bending moment on mullion,
Mmu = Mau
•
Maximum stress due to bending
f mu =
Mmu Sc
;
Mmu
;
f mu
=
=
4.37 kN m
34.67 MPa
Maximum Bending Stress at Unbraced Segment ; Mmb
4.37 kN m
•
Bending moment on mullion,
Mmb = Mau
•
Maximum stress due to bending
Mmu f mb = Sc
;
f mb
=
34.67 MPa
Vm = Va
;
Vm
=
7.82 kN
=
Maximum Shear Stress •
Shear stress on mullion,
Vm
•
Stress due to shear force
Reference Number:
f vm = Av
Prepared By: Romil Sampayo
;
f vm = 18.6635 MPa
Checked By: Joenel Tajonera
Date Prepared: October 29, 2015
Project Name: ___________
Calveston Resort ___ Window Wall Calcs
_
Structural Check
Allowable Bending Stress for 6063-T6
Aluminum,
Compression i n Beams, extreme fiber, gross section Tubular shapes Slenderness limit, Section Slenderness, Since
Allowable Stress,
(ADM2005 Sec.3.4.11, page I-A-33) S1
S= S1
;
130
=
Lb
;
r y
<
S
<
S
=
Lb = 2608 mm
576
r y = 16 mm
S2
1
Bc ny
Fb =
(Table 2-23 Sec.3.4.11, page VII-71)
S2 = 2434
−
Lb Sc
1.6 Dc
Fb = 91 MPa
0.5 Cb
>
f mb
=
Iy J
(Table 2-23 Sec.3.4.11, page VII-71)
35 MPa
OK
Compression i n Beams, uniform compression, gross section Flat element supported on one edge Element B
(ADM2005 Sec.3.4.15, page I-A-33)
Slenderness Limit,
(Table 2-23 Sec.3.4.15, page VII-71)
Section Slenderness, Since Allowable Stress,
S1
=
S= S1
;
7
b = 19 mm
b
;
t
<
S2 = 12
S
<
S
=
9.5
b
Fb = 95 MPa
>
f mb
=
35 MPa
Flat element supported on both edges Element C Slenderness Limit,
S1
Section Slenderness,
S=
Since Allowable Stress,
S1
=
Fb =
23
;
S2 = 40
;
S
(Table 2-23 Sec.3.4.16, page VII-71) b = 23 mm
t S 1
<
=
7.67
t
=
3 mm
S2
b
B − 1.6 Dp ny p t
Fb = 103 MPa
Reference Number:
OK (ADM2005 Sec.3.4.16, page I-A-34)
b
>
2 mm
(Table 2-23 Sec.3.4.15, page VII-71)
B − 5.1 Dp ny p t
Fb =
=
S2
1
t
>
Prepared By: Romil Sampayo
f mb
=
35 MPa
Checked By: Joenel Tajonera
OK
Date Prepared: October 29, 2015
Project Name: ___________
Calveston Resort ___ Window Wall Calcs
_
Compression in Beam elements, bending in own plane, gross section Flat element supported on both edges Element A Slenderness Limit, S1 = 22 Section Slenderness, Since
Allowable Stress,
S= S1
(ADM2005 Sec.3.4.18, page I-A-35) ;
h = 77 mm
h
;
t S
>
(Table 2-23 Sec.3.4.18, page VII-71)
S2 = 26
<
S
=
25.67
t
=
3 mm
S2
1.3Fcy
Fb =
ny
Fb = 124 MPa
Allowable Shear Stress for 6063-T6
>
f mb
=
35 MPa
OK
Aluminum,
Shear in elements, gross section Unstiffened flat elements supported on both edges Element A
(ADM2005 Sec.3.4.20, page I-A-36)
Slenderness Limit,
S1
(Table 2-23 Sec.3.4.20, page VII-71)
Section Slenderness,
S=
Since Allowable Stress,
S1
39
=
h t
>
;
S2 = 78
;
S
=
h = 63 mm
21
t S
<
=
3 mm
S2
Fty
Fsm =
3 ny
Fsm = 59 MPa
>
f vm = 18.6635 MPa OK
Stress Ratio, Limit to 0.90 or 90% ratio Bending Stress Ratio, f mb Fb Shear Stress Ratio,
f vm Fsm
=
=
0.28
<
0.90
0.31
<
0.90
OK
OK
Conclusion:
Fr om the above analysi s result, 6063-T6 Mullion S ection is not satis factory.
Reference Number:
Prepared By: Romil Sampayo
Checked By: Joenel Tajonera
Date Prepared: October 29, 2015