TUGAS STRUKTUR JEMBATAN “PEMBEBANAN PADA JEMBATAN”
Oleh: RAHMAD RIFQI HERIAWAN 091910301018
JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS JEMBER 2012
PEMBEBANAN PADA JEMBATAN Secara umum beban – beban yang dihitung dalam merencanakan jembatan dibagi atas dua yaitu beban primer dan beban sekunder. Beban primer adalah beban utama dalam perhitungan tegangan untuk setipa perencanaan jembatan, sedangkan beban sekunder adalah beban sementara yang mengakibatkan tegangan – tegangan yang relatif kecil daripada tegangan akibat beban primer dan biasanya tergantung dari bentang, bahan, sistem kontruksi, tipe jembatan dan keadaan setempat. Beban primer jembatan mencakup beban mati, beban hidup dan beban kejut. Sedangkan Beban Sekunder terdiri dari beban angin, gaya rem, dan gaya akibat perbedaan suhu. 1. BEBAN PRIMER a.
Beban Mati
Beban mati adalah semua muatan yang berasal dari berat sendiri jembatan atau bagian jembatan yang ditinjau, termasuk segala unsur tambahan tetap yang dianggap mrupakan satu satuan dengan jembatan (Sumantri, 1989:63). Dalam menentukan besarnya muatan mati harus dipergunakan nilai berat volume untuk bahan-bahan bangunan. Contoh beban mati pada jembatan: berat beton, berat aspal, berat baja, berat pasangan bata, berat plesteran dll. b.
Beban Hidup
Yang termasuk dengan beban hidup adalah beban yang berasal dari berat kendaraan-kendaraan bergerak lalu lintas dan/atau pejalan kaki yang dianggap bekerja pada jembatan. Berdasarkan PPPJJR-1987, halaman 5-7, beban hidup yang ditinjau terdiri dari : i.
Beban Pedestrian / Pejalan Kaki (Tp)
Jembatan jalan raya direncanakan mampu memikul beban hidup merata pada trotoar yang besarnya tergantung pada luas bidang trotoar yang didukungnya. A = luas bidang trotoar yang dibebani pejalan kaki (m 2) Beban hidup merata q : Untuk A <= 10 m2 : q = 5 kPa Untuk 10 m2 < A <= 100 m2 : q = 5 - 0.033 * ( A - 10 ) kPa Untuk A > 100 m 2 : q = 2 kPa ii.
Beban Jalur lalu lintas “D” (TD) Beban kendaraan yg berupa beban lajur "D" terdiri dari beban terbagi
merata ( Uniformly Distributed Load ), UDL dan beban garis (Knife Edge Load ), KEL seperti pada Gambar 1. UDL mempunyai intensitas q (kPa) yang besarnya tergantung pada panjang total L yang dibebani lalu-lintas seperti Gambar 2 atau dinyatakan dengan rumus sebagai berikut : q = 8.0 kPa untuk L ≤ 30 m q = 8.0 *( 0.5 + 15 / L ) kPa untuk L > 30 m c.
Beban Kejut
Menurut Anonim (1987:10) beban kejut diperhitungkan pengaruh getarangetaran dari pengaruh dinamis lainnya., tegangan-tegangan akibat beban garis (P) harus dikalikan dengan koefisien kejut. Sedangkan beban terbagi rata (q) dan beban terpusat (T) tidak dikalikan dengan koefisien kejut. Besarnya koefisien kejut ditentukan dengan rumus: 2. k = 1 + ((20 / (50+L)) 3. BEBAN SEKUNDER a.
Beban Gaya Rem (TB)
Pengaruh pengereman dari lalu-lintas diperhitungkan sebagai gaya dalam arah memanjang dan dianggap bekerja pada permukaan lantai jembatan. Besarnya gaya rem arah memanjang jembatan Gaya rem, TTB = 250 kN untuk Lt <= 80 m Gaya rem, TTB = 250 + 2.5*(Lt - 80) kN untuk 80 < Lt < 180 m
Gaya rem, TTB = 500 kN untuk Lt <= 180 m b.
Gaya Akibat Perbedaan Suhu (ET)
Untuk memperhitungkan tegangan maupun deformasi struktur yang timbul akibat pengaruh temperatur, diambil perbedaan temperatur yang besarnya setengah dari selisih antara temperatur maksimum dan temperatur minimum rata-rata pada lantai jembatan. Temperatur maksimum rata-rata Tmax = 40 °C Temperatur minimum rata-rata Tmin = 15 °C c.
i.
Beban Gempa (EQ) Beban Gempa Statik Ekivalen Beban gempa rencana dihitung dengan rumus : Kh = C * S TEQ = Gaya geser dasar total pada arah yang ditinjau (kN) Kh = Koefisien beban gempa horisontal I = Faktor kepentingan Wt = Berat total jembatan yang berupa berat sendiri dan beban mati tambahan kN = PMS + PMA C = Koefisien geser dasar untuk wilayah gempa, waktu getar, dan kondisi tanah S = Faktor tipe struktur yang berhubungan dengan kapasitas penyerapan energi gempa (daktilitas) dari struktur jembatan. Waktu getar struktur dihitung dengan rumus : g = percepatan grafitasi (= 9.8 m/det 2) KP = kekakuan struktur yang merupakan gaya horisontal yg diperlukan untuk menimbulkan satu satuan lendutan (kN/m) WTP = PMS (str atas) + 1/2*PMS (str bawah) TEQ = Kh * I * Wt
T = 2 * p * √ [ WTP / ( g * KP ) ] d.
i.
Beban Angin (EW) Angin Yang Meniup Bidang Samping Jembatan Gaya akibat angin yang meniup bidang samping jembatan dihitung
dengan rumus : TEW1 = 0.0006*Cw*(Vw)2*Ab
kN
Cw = koefisien seret Cw = 1,25 Vw = Kecepatan angin rencana (m/det) Vw = 35,00 m/det Ab = luas bidang samping jembatan (m2) ii.
Angin Yang Meniup Kendaraan Gaya angin tambahan arah horisontal pada permukaan lantai jembatan
akibat beban angin yang meniup kendaraan di atas lantai jembatan dihitung dengan rumus : TEW2 = 0.0012*Cw*(Vw)2 * L / 2 dengan, Cw = 1,20