ELECTRONIC SPECTROSCOPY OF ATOM ATOM
By Yusuf Yusuf Wicaksono and Regi Kusuaa!ad"a
INTO#$CTION ●
E%ec!&onic S'ec!&osco'y of a!o is !(e s!udy of !&ansi!ions ) a*so&'!ion a*so&'!ion o& o& eission eission + + *e!,een e%ec!&onic s!a!es of s!a!es of an a!o-
●
A!os a&e uni.ue in !(is &es'ec! as !(ey (a/e on%y e%ec!&onic deg&ee of f&eedo-
●
To unde&s!and e%ec!&onic s'ec!&osco'y of a!o0 i! is &e.ui&e !o unde&s!and s'ec!&a s'ec!&a of of a!o f&o a%ka%i e!a%0 1yd&ogen0 1e%iu0 a%ka%ine ea&!( e!a% and o!(e& 'o%ye%ec!&onic a!o-
INTO#$CTION ●
E%ec!&onic S'ec!&osco'y of a!o is !(e s!udy of !&ansi!ions ) a*so&'!ion a*so&'!ion o& o& eission eission + + *e!,een e%ec!&onic s!a!es of s!a!es of an a!o-
●
A!os a&e uni.ue in !(is &es'ec! as !(ey (a/e on%y e%ec!&onic deg&ee of f&eedo-
●
To unde&s!and e%ec!&onic s'ec!&osco'y of a!o0 i! is &e.ui&e !o unde&s!and s'ec!&a s'ec!&a of of a!o f&o a%ka%i e!a%0 1yd&ogen0 1e%iu0 a%ka%ine ea&!( e!a% and o!(e& 'o%ye%ec!&onic a!o-
O$TLINE ●
T(eo&y of E%ec!&onic S'ec!&osco'y of A!o
●
A''a&a!us of E%ec!&onic S'ec!&osco'y of A!o
●
A''%ica!ion of E%ec!&onic S'ec!&osco'y of A!o
●
Pa'e& A*ou! E%ec!&onic S'ec!&osco'y of A!o A!o
T1EORY OF ELECTRONIC SPECTROSCOPY ●
A!os and 2uan!u Nu*e& of A!o
●
Angu%a& Moen!u of E%ec!&ons in A!o
●
S'ec!&a of 3a&ies A!os
1AMILTONIAN OF POLYELECTRONIC ATOM ●
Reca%% 1ai%!onian fo& (yd&ogen a!o o& (yd&ogen4%ike ions ) 1e 50 Li650 e!c- + ,(ic( is (a/e sing%e e%ec!&on7 2 ℏ2 2 Ze H = ∇ − 2μ 4 π ϵ0 r
●
Mean,(i%e fo& 'o%ye%ec!&onic a!o0 !(e 1ai%!onian s(ou%d *e 2 2 ℏ2 Ze e 2 H = ∑ ∇ i −∑i 4 π ϵ r +∑ 2μ i i < j 4 π ϵ 0 r ij 0 i
,(ic( !(e !(i&d !e& is e%ec!&on4e%ec!&on &e'u%sion in!e&ac!ion●
Sc(&oedinge& e.ua!ion f&o 1ai%!onian a*o/e is difficu%! !o *e so%/e0 $sing 1a&!&ee8s a''&o9ia!ion !(e 1ai%!onian *ecae 2 ℏ 2 Ze 2 H = ∑ ∇ i −∑i 4 π ϵ r +∑i V (r i) 2μ i 0 i
,(ic( ean !(e con!&i*u!ion !o !(e 'o!en!ia% ene&gy due !o e%ec!&on &e'u%sion as a su of con!&i*u!ion f&o indi/idua% e%ec!&on
EFFECT OF ELECRON REP$LSION ●
T(e effec! of e%ec!&on &e'u%sion is &eo/e degene&acy ene&gy in (yd&ogen a!o-
●
In 'o%ye%ec!&onic a!o0 !(e ene&gy no! on%y de'ends !o .uan!u nu*e& n *u! a%so .uan!u nu*e& l
●
T(e /a%ue of E i fo& 'a&!icu%a& o&*i!a% inc&eases ,i!( !(e nuc%ea& c(a&ge of !(e a!o 1yd&ogen a!o ene&gy %e/e%
Po%ye%ec!&onic a!o ene&gy %e/e%
:s
POLYELECTRONIC ENER;Y LE3EL ●
Feeding in e%ec!&on !o ene&gy %e/e% fo%%o,s !,o '&inci'%e< Aufbau's '&inci'%e and Pauli e9c%usion '&inci'%e
●
T(e !,o '&inci'%es fo&*id e%ec!&on !o (a/e sae se! of .uan!u nu*e& n, l, m l and m s
●
T(e !o!a% e%ec!&on can fi%% ene&gy %e/e% fo& any 'a&!icu%a& of n and l is 6)6l 5 :+-
●
In 'o%ye%ec!&onic a!o0 !(e&e a&e !e& of configu&a!ion and s!a!e0 ,(ic( is *o!( of !(e is diffe&en! – Configu&a!ion desc&i*e !(e ,ay in ,(ic( e%ec!&ons a&e
dis!&i*u!ed aong /a&ious o&*i!a% – Configu&a!ion ay gi/es &ise !o o&e !(an one s!a!es
MOMENT$M AN;$LAR OF ELECTRON ●
Eac( e%ec!&on in an a!o (as !,o 'ossi*%e kinds of angu%a& oen!u< o&*i!a% angu%a& oen!u and s'in angu%a& oen!u
●
T(e agni!ude of o&*i!a% angu%a& oen!u is 1/ 2
*
[l ( l + 1)] ℏ=l ℏ ●
T(e agni!ude of s'in angu%a& oen!u is
[ s ( s + 1 )]1 /2 ℏ= s * ℏ ●
Fo& e%ec!&on (a/ing o&*i!a% and s'in angu%a& oen!u !(e&e is a .uan!u nu*e& " ) angu%a& oen!u !o!a% + ,(ic( is (a/e agni!ude
[ j ( j + 1 )]1/ 2 ℏ= j * ℏ
MA;NETIC MOMENT OF ELECTRON ●
E%ec!&on ci&cu%a!ing in an o&*i! gi/e a&ise cu&&en! f%o, and cause agne!ic oen!
●
Magne!ic oen! ,(ic( is a&ise f&o o&*i!a% oen!u angu%a& is ca%%ed agne!ic oen! o&*i!a% )=L+-
●
E%ec!&on s'inning a*ou! i!s o,n a9is a&ise agne!ic oen! ca%%ed agne!ic oen! s'in )=S+-
●
T(e /ec!o& *e!,een % and =L a%so s and =S o''osi!e eac( o!(e&-
MOMENT$M AN;$LAR CO$PLIN; ●
In!e&ac!ion *e!,een o&*i!a% and s'in agne!ic oen! gi/e a&ise cou'%ing of !(e angu%a& oen!u
●
T(e s!&eng!( of cou'%ing )s'in4o&*i! cou'%ing+ de'ends on !(e a!o conce&ned
●
T(e 'ossi*i%i!y in!e&ac!ion *e!,een angu%a& oen!u is – S'in one e%ec!&on ,i!( s'in o!(e& e%ec!&on – S'in one e%ec!&on ,i!( o,n o&*i!a% angu%a& oen!u – O&*i!a% one e%ec!&on ,i!( o&*i!a% o!(e& e%ec!&on
●
T(e&e a&e !,o a''&o9ia!ion !o s!udy a*ou! in!e&ac!ion *e!,een angu%a& oen!u7 – Cou'%ing *e!,een s'in4s'in and o&*i!a%4o&*i!a% oen!a neg%ec!ed0 *u!
cou'%ing *e!,een !o!a% oen!u )"+ ,eek *u! a''&ecia*%e – Cou'%ing *e!,een s'in4o&*i!a% (as *een neg%ec!ed *u! assue cou'%ing
*e!,een o&*i!a%4o&*i!a% is s!&ong and *e!,een s'in4s'in is ,eek *u! a''&ecia*%e- )Russe%4Saunde&s cou'%ing+-
NON E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION ●
Non4e.ui/a%en! e%ec!&ons ? !(ose !(a! (a/e diffe&en! /a%ue of ei!(e& n o& %- ) e9a'%e7 @' : @d: o& @': ':+-
●
[ ll coupling ] 7 Conside& !,o e%ec!&on0 n :%: )e%ec!&on :+ and n 6%6 )e%ec!&on 6+ (a/e %% cou'%ing- T(e !o!a% o&*i!a% angu%a& oen!u is
L=l 1 + l 2, l 1 + l 2 −1,.... ,|l 1−l 2| ,i!( agni!ude
[ L ( L + 1 )]1/ 2 ℏ= L* ℏ ●
E9a'%e 7 T(e !,o e%ec!&on ? 6' :@d:0 To!a% angu%a& oen!u )L+ ? @06 o& : and !(e agni!ude is :6 :B60 :B6 o& 6:B6 (*a&-
NON E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION )6+ ●
T(e !e& of !(e a!o a&e %a*e%%ed S0 P0 #0 F0 ;0 Dco&&es'onding !o L ? 0 :0 60 @0 0 D-
●
E9a'%e 7 configu&a!ion !,o e%ec!&on ? 6' :@d:< L ? :06 o& @< !e& ? P # F-
●
●
Fo& fi%%ed su*4s(e%%0 L ? - I! is *ecause M L ? L0 L4:0 D- 0 4L0 ,(e&e ML ? i)%+i ? E9a'%e 7 ,e (a/e a!o Ca&*on in e9i!ed configu&a!ion ? :s 6 6s6 6': @d:- In :s: and 6s60 L ? and 6': @d:0 L ? @06 o& : a&ises !e& F # P-
NON E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION )@+ ●
[ ss coupling ] 7 Conside& !,o e%ec!&on ,i!( s ? G0 !(e agni!ude is )@6+:B6- T(e !o!a% s'in angu%a& oen!u )S+ is
S =s 1 + s 2, s1 + s2 −1,.... ,|s1 −s 2| fo& !,o e%ec!&on !(e /a%ue of S ,i%% *e : o& - And !(e agni!ude of S is
[ S ( S + 1 )] / ℏ= S ℏ 1 2
*
and !(e /a%ue of agni!ude of S ,i%% *e on%y o& 6 :B6 (*a&●
To!a% s'in angu%a& oen!u indica!e !o!a% s!a!es in !e& S0 P0 #0 F0 D- ,(e&e !o!a% s!a!es can *e &e'&esen!ed *y 6S5:- ) e9a'%e7 S ? 0 !o!a% s!a!es ? : )sing%e!+- If S ? :0 !o!a% s!a!es ? @ )sing%e!+ +
NON E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION )+ ●
T(e %a*e% of !o!a% s!a!es ,&i!e as '&e4su'e&sc&i'! !o !(e S0 P0 #0 F0 Do& ,e can ,&i!e 6S5:)S0 P0 #0 F0 D-+
●
Fo& !,o e%ec!&on0 S ? *ecause M S ? S0 S4:0 D-0 4S ,(e&e i)s+i ? so MS ? i)s+i ? -
●
Fo& a%% occu'ied o&*i!a% a&e fi%%ed0 !(e !e&s ,i%% *e a&ise on%y :S-
●
So if ,e (a/e Ca&*on a!o ,i!( configu&a!ion :s 6 6s6 6': @d: !(e !e& ,i%% *e (a/e is :P :# :F fo& sing%e! and @P @# @F fo& !&i'%e!-
NON E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION )H+ ●
To kno, ,(a! s!a!es is 'ossi*%e in one !e&0 i! ,i%% *e using !o!a% angu%a& oen!u )+0 ,(e&e is
J = L + S , L + S −1,.... ,| L −S| and !(e agni!ude is
[ J ( J + 1 )] / ℏ= J ℏ 1 2
*
●
T(e s!a!es of !e& is e9'&ess *y
●
In e9a'%e if ,e (a/e Ca&*on a!o ,i!( configu&a!ion :s 6 6s6 6': @d:0 !(e 'ossi*i%i!y s!a!es is
6S5:
LI
P: @PE @P: @P6 :#6 @#: @#6 @#@ :F@ @F6 @F@ @FA
:
E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION ●
E.ui/a%en! e%ec!&on ? !(ose !(a! (a/e sae n and % e9a'%e 7 Ca&*on ) g&ound configu&a!ion + ? :s6 6s6 6'6
●
In e.ui/a%en! e%ec!&on ,e us! conside& !o no! /io%en! Pau%i e9c%usion '&inci'%e< 'ai& of .uan!u nu*e& )s+ and )%+ canno! siu%!aneous%y (a/e sae /a%ue fo& diffe&en! e%ec!&on-
●
E%ec!&on is indis!inguis(a*%e
E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION )6+ ●
Conside& Ca&*on ,i!( configu&a!ion :s 6 6s6 6'6- T(e !e& a&ising f&o 6 e.ui/a%en! ' e%ec!&on is
E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION )@+ ●
●
Co'a&ing *e!,een non4e.ui/a%en! !e& Ca&*on ,(ic( is :S @S :P @P :# @# )fi&s! e9ci!a!ion configu&a!ion+ and e.ui/a%en! !e& of Ca&*on ,(ic( is :S @P :# s(o, !(a! Pau%i e9c%usion &u%e fo&*id @S :P @#Ano!(e& co'a&ison s(o, *e%o,7
E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION )+ ●
1$N# R$LES ? #e!e&ine ,(ic( of !(e !e& a&ising f&o e.ui/a%en! e%ec!&on %ies %o,es! in ene&gy
●
1$N# R$LES 7 :+ Of !(e !e& a&ising f&o e.ui/a%en! e%ec!&on !(ose ,i!( !(e (ig(es! u%!i'%ici!y %ie %o,es! ene&gy6+ Of !(ese0 !(e %o,es! is !(a! ,i!( !(e (ig(es! /a%ue of L e9a'%e 7 g&ound configu&a!ion Ca&*on (as !e& :S @P :#- T(e !e& ,i!( (ig(es! u%!i'%ici!y ? @P- So !(e g&ound s!a!e
●
Conside& !(e&e is s'%i!!ing of !e& *y LJS cou'%ing0 ,(ic( is '&o'o!iona% ,i!(
E J − EJ −1 = A J If A u%!i'%e! no&a% and if A u%!i'%e! in/e&!ed ●
So !(e&e is addi!iona% &u%es fo& g&ound !e&s ,(ic( !e%% us ,(e!(e& a u%!i'%e! a&ising f&o e.ui/a%en! e%ec!&on is no&a% o& in/e&!ed
E2$I3ALENT ELECTRON R$SSEL4 SA$N#ERS CO$PLIN; APPRO>IMATION )H+ ●
No&a% u%!i'%e!s a&ise f&o e.ui/a%en! e%ec!&on ,(en a 'a&!ia%%y fi%%ed o&*i!a% is %ess !(an (a%f fu%% e9a'%e 7 Ca&*on g&ound configu&a!ion ? :s6 6s6 6'6 – E.ui/a%en! and %ess !(an (a%f4fu%% ? no&a% u%!i'%e! – T(e %o,es! !e& is @P ,i!( s!a!es @P6 @P: @P – T(e g&ound s!a!es is @P
●
In/e&!ed u%!i'%e!s a&ise f&o e.ui/a%en! e%ec!&ons ,(en a 'a&!ia%%y fi%%ed o&*i!a% is o&e !(an (a%f4fu%% e9a'%e 7 O9ygen g&ound configu&a!ion ? :s 6 6s6 6' – E.ui/a%en! and o&e !(an (a%f4fu%% ? in/e&!ed u%!i'%e! – T(e %o,es! !e& is @P ,i!( s!a!es @P6 @P: @P – T(e g&ound s!a!es is @P6
T1E FINE STR$CT$RE OF 1Y#RO;EN ATOM SPECTR$M ●
T(e se%ec!ion &u%e fo& (yd&ogen a!o is n ? any!(ing0 % ? : on%y
●
T(e&e is se%ec!ion &u%e fo& "0 ,(ic( is " ? 0 :
T1E SPECTR$M OF LIT1I$M AN# OT1ER 1Y#RO;EN4LIKE SPECIES ●
T(e se%ec!ion &u%e fo& (yd&ogen %i!(iu and o!(e& (yd&ogen4%ike is %ike (yd&ogen ,(ic( is n ? any!(ing0 % ? : on%y
●
T(e&e is se%ec!ion &u%e fo& " is %ike (yd&ogen !oo0 ,(ic( is " ? 0 :
T1E SPECTR$M OF 1ELI$M AN# T1E ALKALINE EART1S ●
T(e &e%e/an! se%ec!ion &u%es fo& any4e%ec!&on sys!es a&e7 S ? 0 L ? :0 ? 0 :
●
No!e !(a!0 ,i!( ? canno! ake a !&ansi!ion !o ano!(e& ? s!a!es-
APPARAT$S OF ELECTRONIC SPECTROSCOPY OF ATOM ●
P(o!oe%ec!&on S'ec!&osco'y T(eo&y
●
E9'e&ien!a% Me!(od – Sou&ce of Monoc(&oa!ic Ioniing Radia!ion – E%ec!&on /e%oci!y ana%yse&s – E%ec!&on de!ec!o&
●
Ionia!ion '&ocess and Koo'ans8 !(eo&e
●
P(o!oe%ec!&on s'ec!&a and !(ei& in!e&'&e!a!ion – $3 '(o!oe%ec!&on s'ec!&a of a!o – >4&ay '(o!oe%ec!&on s'ec!&a of a!o
P1OTOELECTRON SPECTROSCOPY )T1EORY+ ●
S'ec!&osco'y ,i%% *e use fo& e%ec!&onic s'ec!&osco'y of a!o is '(o!oe%ec!&on s'ec!&osco'y
●
P(o!oe%ec!&on s'ec!&osco'y in/o%/es !(e e"ec!ion of e%ec!&on f&o a!os fo%%o,ing *o*a&den! *y '(o!on
●
E%ec!&on ,i%% *e e"ec!ed if !(&es(o%d f&e.uency is &eac(ed0 *ecause !(e ene&gy f&o '(o!on e.ua% !o ,o&k func!ion of !(e sa'%ehυt = Φ
●
If f&e.uency of '(o!on (ig(e& !(an !(&es(o%d f&e.uency0 e%ec!&on ,i%% (a/e kine!ic ene&gy ,(en e"ec!ed hυt = Φ + ½ m ev 2
●
Fo& sa'%es in !(e gas '(ase e.ua!ion a*o/e ,i%% *e hυt = I + ½ m ev 2
P1OTOELECTRON SPECTROSCOPY )T1EORY+ 6Q ●
P(o!oe%ec!&on s'ec!&osco'y (a/e any !y'e0 *u! !(e os! essen!ia% e!(ods fo& a!o is $%!&a/io%e! P(o!oe%ec!&on0 >4&ay P(o!oe%ec!&on
●
P&ocess in >PS and $PS is e"ec!ion of '(o!oe%ec!&on fo%%o,ing in!e&ac!ion of !(e a!o ,(ic( is ionied !o '&oduced sing%y c(a&ged A 5 M 5 ( M 5 5 e
E>PERIMENTAL MET1O# ●
In $3 o& >4&ay '(o!oe%ec!&on s'ec!&oe!e&0 sa'%e in !(e !a&ge! c(a*e& is *o*a&ded ,i!( '(o!ons and !(en '(o!oe%ec!&on a&e e"ec!ed in a%% di&ec!ion
●
E%ec!&on ene&gy ana%yse& ,i%% *e se'a&a!es !(e e%ec!&ons acco&ding !o !(ei& kine!ic ene&gy
●
Af!e& !(a! s'ec!&u ,i%% *e &eco&ded *y e%ec!&ons de!ec!o& in !(e nu*e& of e%ec!&on 'e& uni! !ie as a func!ion of *inding ene&gy o& ionia!ion ene&gy
E>PERIMENTAL MET1O# MONOC1ROMATIC SO$RCE $LTRA3IOLET Q ●
$%!&a/io%e! P(o!oe%ec!&on S'ec!&osco'y 7 –
Sou&ce '&o/iding 6 e3 H e3 !(e ene&gy &e.ui&ed !o ionied e%ec!&on f&o %o,es! ene&gy ionia!ion ) a&ound : e3 + and (ig(e&4ene&gy ionia!ion
–
Sou&ce '&oduced *y a disc(a&ge in 1e o& Ne gas &esu%!ing in eission of fa&4$3 &adia!ion f&o !(e a!o o& 'osi!i/e ion ●
1e%iu I &adia!ion 7 1e%iu disc(a&ged '&oduce 6:-66 e3 &adia!ion due !o !(e 6 :P:):s: 6':+ ::S):s6+
●
1e%iu II &adia!ion 7 1e%iu is ionied '&edoinan!%y !o 1e5- T(e &adia!ion is due ain%y f&o n ? 6 !o n ? : ,i!( ene&gy -U: e3-
●
Neon &adia!ion 7 Neon disc(a&ged '&oduce :-V e3 and :-UH e3-
E>PERIMENTAL MET1O# MONOC1ROMATIC SO$RCE >4RAY Q ●
>4&ay P(o!oe%ec!&on S'ec!&osco'y –
Sou&ce used of >4&ay &adia!ion a&e MgK and A%K ) K ean !(a! an e%ec!&on (as *een e"ec!ed f&o !(e K s(e%% and !(e /acancy ,i%% fi%% *y e%ec!&on in L s(e%%-
–
T(e MgK '&oduce ene&gy '&ia&i%y :6H@-V e3 and :6H@- e3< !(e A%K '&oduce ene&gy '&ia&i%y :U-V e3 and :U-@ e3-
E>PERIMENTAL MET1O# MONOC1ROMATIC SO$RCE BREMSSTRA1L$N; Q –
In addi!ion !(e&e a&e is a ,eak bremsstrahlung &adia!ion and a%so se/e&a% sa!e%%i!es %ines acco'anying *o!( dou*%e!s
–
B&ess!&a(%ung &adia!ion is &esu%!s f&o co%%isions *e!,een !(e e%ec!&on of !(e *ea and !(e a!os of !(e !a&ge! a!e&ia% ,(ic( is ake !(e e%ec!&on dece%e&a!ed and a '(o!on >4&ay ene&gy is '&oduced-
–
T(e *o!( of !(e can *e &eo/e *y onoc(&oa!o&
E>PERIMENTAL MET1O# MONOC1ROMATIC SO$RCE >4RAY MONOC1ROMATOR Q –
–
Co'onen! and a&&angeen! of onoc(&oa!o& is 7 ●
2 is 2ua&! c&ys!a% ,(ic( is *en! !o fo& a conca/e >4&ay diff&ac!ion g&a!ing- ) 2ua&! used !o ge! na&&o, *and +
●
>4Ray sou&ce and Ta&ge! C(a*e& '%aced in 'osi!ion on !(e Ro,%and ci&c%e
Monoc(&oa!o& is usefu% !oo fo& na&&o,ing !(e o!(e&,ise *&oad %ines-
E>PERIMENTAL MET1O# MONOC1ROMATIC SO$RCE SYNC1ROTRON RA#IATION SO$RCE Q ●
An i'o&!an! sou&ce of *o!( fa&4$3 and >4&ay &adia!ion is sync(&o!&on &adia!ion sou&ce )SRC+-
E>PERIMENTAL MET1O# 4 ELECTRON 3ELOCITY ANALYSER ●
Measu&een! of !(e kine!ic ene&gy of !(e '(o!oe%ec!&on in/o%/es easu&een! of !(ei& /e%oci!y
●
Measu&een! of !(e /e%oci!y of '(o!oe%ec!&on (as *een ac(ie/ed *y /a&ious !y'e of ana%yse&s0 !,o *asic !y'es of e%ec!&on ana%ye&s a&e encou!e&ed7 –
–
Re!a&ding fie%d ana%yse& ●
S%o!!ed g&id ana%ayse&
●
T(e s'(e&ica% g&id ana%yse&
#is'e&sion ana%yse& ●
T(e Cy%ind&ica% ana%ayse&
●
T(e 1eis'(e&ica% ana%yse&s
E>PERIMENTAL MET1O# 4 ELECTRON 3ELOCITY ANALYSER SLOTTE# ;RI# ANALYSER Q ●
●
Co'onen! of ana%yse&7 –
T(e s%o!!ed g&id
–
T(e &e!a&ding g&id
–
Co%%ec!o&
1o, !(e ana%yse& ,o&k is7 –
T(e '(o!oe%ec!&on a&e gene&a!ed a%ong !(e a9is of cy%ind&ica% e%ec!&on co%%ec!o&-
–
A &e!a&ding 'o!en!ia%0 a''%ied !o !(e cy%ind&ica% &e!a&ding g&id
–
An inc&easing 'o!en!ia% diffe&ence a''%ied ac&oss !(e g&ids !o &e!a&d !(e e%ec!&on f%o,ing f&o !(e sou&ce !o !(e co%%ec!o&
–
A! a (ig( enoug( 'o!en!ia% diffe&ence0 e%ec!&ons of ene&gy E6 ,i%% *e &e!a&ded and !(e co%%ec!o& signa% ,i%% *e dec&ease
E>PERIMENTAL MET1O# 4 ELECTRON 3ELOCITY ANALYSER SP1ERICAL ;RI# ANALYSER Q ●
T(e s'(e&ica% g&id ana%yse& (as !(e ad/an!age of co%%ec!ing a%% !(e '(o!oe%ec!&ons gene&a!ed a! !(e cen!e&0 in ,(a!e/e& di&ec!ion !(ey a&e !&a/e%%ing
●
T(e&e a&e !,o s'(e&ica% &e!a&ding g&id in !(is design
●
T(e uses of !,o g&id is sae in s%o!!ed g&id ana%yse&
●
S%o!!ed g&id ana%yse& and s'(e&ica% g&id ana%yse& usefu% ain%y fo& gaseous sa'%e
●
Re!a&ding4fie%d ins!&uen!s a&e &e%a!i/e%y si'%e and efficien! *u! do no! (a/e !(e (ig( &eso%u!ion of dis'e&sion sys!e
E>PERIMENTAL MET1O# 4 ELECTRON 3ELOCITY ANALYSER CYLIN#RICAL ANALYSIS Q ●
Cy%ind&ica% ana%yse& used !o gaseous sa'%e and so%id sa'%e-
●
T(e '&ocess of !(e ana%yse& is7
●
–
In !(is ana%yse& e%ec!&on *ea is def%ec!ed *y an e%ec!&os!a!ic fie%d in suc( a ,ay !(a! !(e e%ec!&on !&a/e% in a cu&/ed 'a!(-
–
T(e &adius of cu&/a!u&e is de'enden! u'on !(e kine!ic ene&gy ene&gy of !(e e%ec!&on and !(e agni!ude of !(e fie%d
–
By /a&ying !(e fie%d0 e%ec!&on of /a&ious kine!ic ene&gies can *e focused on !(e de!ec!o&
T(e &e%a!ions(i' *e!,een !(e '%a!e /o%!age 3 : and 36 and !(e ene&gy of !(e e%ec!&on E k is gi/en *y V 2− V 1=2 E k R log (
R1 R2
)
E>PERIMENTAL MET1O# 4 ELECTRON 3ELOCITY ANALYSER 1EMISP1ERICAL ANALYSER Q ●
T(e ,o&k sae as cy%ind&ica% ana%yse& *u! (as !(e ad/an!age of co%%ec!ing o&e '(o!oe%ec!&on-
●
Consis!ing of !,o concen!&ic '%a!es ,(ic( a&e 'a&!s of (eis'(e&es0 so4 ca%%ed s'(e&ica% sec!o& '%a!es
●
T(is ana%yse& of!en used in a s'ec!&oe!e& ,(ic( o'e&a!es fo& *o!( $PS and >PS
E>PERIMENTAL MET1O# ELECTRON #ETECTOR ●
#e!ec!o& ay *e a si'%e e%ec!&oe!e& ,(en using a cy%ind&ica% o& s'(e&ica% g&id ana%yse&
●
O!(e& !y'e ana%yse& need e%ec!&on u%!i'%ie& !o inc&ease sensi!i/i!y-
●
E%ec!&on u%!i'%ie& consis!s of a nu*e& of dynodes0 eac( of ,(ic( '&oduces o&e e%ec!&on !(an i! &ecei/es-
●
A%!e&na!i/e%y0 u%!ic(anne% e%ec!&on u%!i'%ie& in !(e foca% '%ane of !(e ana%yse& can *e used !o co%%ec! siu%!aneous%y e%ec!&on ,i!( a &ange of ene&gies
E>PERIMENTAL MET1O# RESOL$TION ●
>PS is usua%%y %ii!ed *y !(e %ine ,id!( of !(e ioniing &adia!ion
●
Reso%u!ion in $PS de'ends on suc( fac!o& as
●
–
T(e efficiency of s(ie%ding of !(e s'ec!&oe!e& f&o s!&ay agne!ic fie%d
–
T(e c%ean%iness of !(e ana%yse& su&face
Reso%u!ion of $PS dec&ease ,(en !(e kine!ic ene&gy of '(o!oe%ec!&on is *e%o, a*ou! H e3< T(e (ig(es! &eso%u!ion o*!ained is a*ou! e3
IONIXATION PROCESS AN# KOOPMANS8 T1EOREM ●
Ionia!ion '&ocess in >PS and $PS as *efo&e can *e ,&i!e as7 M 5 ( M 5 5 e –
W(en M is an a!o !(e !o!a% c(ange in angu%a& oen!u fo& '&ocess a*o/e us! o*ey se%ec!ion &u%e % ? :
–
Mean,(i%e !(e '(o!oe%ec!&on can !ake a,ay any aoun! of oen!u
–
E9a'%e7 ●
E%ec!&on &eo/ed f&o d o&*i!a% of M ,(ic( is % ? 60 so !(e '(o!oe%ec!&on ca&&ies a,ay % ? : o& @ de'end on % ? 4: o& 5:-
●
So !(e ,a/efunc!ion of of a f&ee e%ec!&on (as "us! ' and f c(a&ac!e&
●
T(e ene&gy &e.ui&ed !o e"ec! an e%ec!&on f&o an o&*i!a% is a di&ec! easu&e of !(e o&*i!a% ene&gy-
●
Koo'ans !(eo&e 7 fo& a c%osed4s(e%% a!o !(e ionia!ion ene&gy of an e%ec!&on in a 'a&!icu%a& o&*i!a% a''&o9ia!e%y e.ua% !o !(e nega!i/e of !(e o&*i!a% ene&gy ca%cu%a!ed *y a se%f4consis!ency fie%d e!(od
IONIXATION PROCESS AN# KOOPMANS8 T1EOREM 6Q ●
In e.ua!ion Koo'ans8 !(eo&e can *e ,&i!e as SCF
I i≃−ϵ i
T(e nega!i/e sign is due !o !(e con/en!ion !(a! o&*i!a% ene&gies i a&e nega!i/e ●
In !(e %e/e% of si'%e /a%ence !(eo&y !(is !(eo&e is s!&ong0 *u! ,i!( o&e accu&a!e !(eo&y !(is !(eo&e no %onge& s!&ong
●
T(e !(&ee os! i'o&!an! fac!o& !(a! ay con!&i*u!e !o Koo'ans8 !(eo&e &e%a!e !o !(e ain deficiencies in SCF ca%cu%a!ions 7 –
E%ec!&on &eo&gania!ion- T(e o&*i!a% in M 5 a&e no! .ui!e !(e sae as in M *ecause !(e&e is one e%ec!&on fe,e&+ SCF M ϵSCF ( )≠ϵ ( M ) i i
–
E%ec!&on co&&e%a!ion
–
Re%a!i/is!ic effec!
P1OTOELECTRON SPECTRA AN# T1EIR INTERPRETATION ●
T(e os! i'o&!an! info&a!ion de&i/ed f&o '(o!oe%ec!&on s'ec!&a is !(e ionia!ion ene&gies fo& /a%ence and co&e e%ec!&ons
●
Befo&e !(e de/e%o'en! of '(o!oe%ec!&on s'ec!&osco'y /e&y fe, of !(ese ,a&e kno,n
●
Fo& co&e e%ec!&ons ionia!ion ene&gies ,e&e '&e/ious%y uno*!aina*%e and i%%us!&a!e !(e e9!en! !o ,(ic( co&e o&*i!a%s diffe& f&o !(e 'u&e a!oic o&*i!a% 'ic!u&ed in si'%e /a%ence !(eo&y
●
$sing Koo'ans8 !(eo&e fo& c%osed4s(e%% a!o ionia!ion0 ,e s(a%% see $3 '(o!oe%ec!&on s'ec!&a and >4&ay '(o!oe%ec!&on s'ec!&a
P1OTOELECTRON SPECTRA AN# T1EIR INTERPRETATION $3 P1OTOELECTRON SPECTRA Q ●
T(e a!o ,i%% *e use fo& e9a'%e is A& ,i!( $3 sou&ce is 1e I )6:-66 e3+
●
1e I gi/e &eo/a% of e%ec!&on a! @' o&*i!a% A&)KL @s6 @'+ A& 5)KL @s6 @'H+
●
S!a!e a&ising f&o A& ? :S and s!a!e a&ising f&o A&5 ? 6P:6 and 6P@6 ,i!( 6P@6 is g&ound s!a!e- T(e&e a&e s'%i!!ing *y -:VU e3 *ecause s'in4o&*i! cou'%ing
●
T(e Ionia!ion '&ocess A&5)6P@6+ A&) :S+ is a''&o9ia!e%y !,ice as in!ense as A&5)6P:6+ A&):S+ *ecause of degene&acy
P1OTOELECTRON SPECTRA AN# T1EIR INTERPRETATION >4RAY P1OTOELECTRON SPECTRA Q ●
If ionia!ion is done *y o&e ene&ge!ic >4&ay sou&ces0 o&e 'eak a&e o*se&/e in !(e s'ec!&a of A&gon
●
T(e (o&ion!% sca%e gi/es !(e *inding ene&gy ,(ic( is !(e ene&gy &e.ui&ed !o &eo/e !(e e%ec!&on !o fo& a 'a&!icu%a& s!a!e of !(e ion and is ca%cu%a!ed *y su*!&ac!ing !(e '(o!oe%ec!&on ene&gy f&o !(e '(o!on ene&gy