INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS DEPARTAMENTO DE IQI
ALUMNO: MORENO HERNANDEZ JORGE ALBERTO MATERIA: LABORATORIO DE FUNDAMENTOS DE LOS FENOMENOS DE TRANSPORTE BOLETA: 2014320594 GRUPO: 2IV32
Objetivos:
Reconocer las características característi cas específicas de cada uno de los diferentes tipos de régimen de flujo (Laminar, de transición y turbulento) Determinar el número de Reynolds de acuerdo a experimentaciones experimentac iones (mediante el indicador de tinta) y con los datos experimentales determinar el tipo de flujo al que corresponde la experimentación. Reconocer e identificar diferentes tipos de válvulas y sistemas de reciculacion y/o desecho de líquidos.
Consideraciones Consideraciones teóricas Relación de los números adimensionales más importantes en Ingeniería Química y a que se refiere cada uno y en donde se aplica Teorema π de Vaschy-Buckingham De acuerdo al Teorema π de Vaschy -Buckingham de análisis dimensional, la
dependencia funcional entre un cierto número de variables (n) puede ser reducida en el número de dimensiones independientes de esas n variables (k) para dar un número de cantidades adimensionales independientes (p = n - k). Así diferentes sistemas son equivalentes cuando tienen la misma descripción mediante números adimensionales. A continuación continuación se presenta presentara ra una lista con los números números adimensionales adimensionales más importantes importantes en la ingeniería química 1. El número de Arquímedes (Ar) (no (Ar) (no debe confundirse con la constante de Arquímedes Arquímedes denominada, denominada, π) se atribuye al físico griego Arquímedes griego Arquímedes en su esfuerzo de investigar el movimiento de los fluidos los fluidos en función de sus diferencias
En general se utiliza en transferencia de movimiento y en particular en flotación, fluidización y movimiento debido a diferencias de densidad. Es proporcional a:
2. Numero de biot El número de Biot se define como:
En donde: h es el coeficiente de transferencia de calor en la superficie en W/m 2K. También llamado coeficiente de película. L es una longitud característica en m, definida generalmente como el volumen del cuerpo dividido por su superficie externa total. k es la conductividad térmica del material del cuerpo W/mK. El significado físico del número de Biot puede entenderse imaginando el flujo de calor desde una esfera caliente sumergida al fluido que la rodea. El flujo de calor experimenta dos resistencias: la primera por conducción dentro del metal y la segunda por convección desde la esfera al fluido. Se presentan dos casos límite: En el caso que la esfera fuera metálica y el fluido fuera agua, la resistencia por
Donde: : Densidad del fluido : Velocidad característica del fluido : diámetro de la tubería a través de la cual circula el fluido o longitud característica del sistema : Viscosidad dinámica del fluido : Viscosidad cinemática del fluido (m²/s)
Como todo número adimensional es un cociente, una comparación. En este caso es la relación entre los términos convectivos y los términos viscosos de las ecuaciones de Navier-Stokes que gobiernan el movimiento de los fluidos. Por ejemplo, un flujo con un número de Reynolds alrededor de 100.000 (típico en el movimiento de una aeronave pequeña, salvo en zonas próximas a la capa límite) expresa que las fuerzas viscosas son 100.000 veces menores que las fuerzas convectivas, y por lo tanto aquellas pueden ser ignoradas. Un ejemplo del caso contrario sería un cojineteaxial lubricado con un fluido y sometido a una cierta carga. En este caso el número de Reynolds es mucho menor que 1 indicando que ahora las fuerzas dominantes son las viscosas y por lo tanto las convectivas pueden despreciarse. Otro ejemplo: En el análisis del movimiento de fluidos en el interior de conductos proporciona una indicación de la
En la siguiete tabla (t abla 8.1 Grupos adimensionales importantes en la mecánica de fluidos Pág. 94 Carlos Gherardelli Dezerega , Universidad de Chile) se presentan el re sto de números adimensionales considerados así los más utilizados en la ingeniería química
Equipo y materiales usados en la práctica Agua Cronometro Probeta 1L Aparato de Osborne-Reynolds Colorante azul de metilo
Una observacion importante en los materiales fue la falla del inyector de tinta del aparato de OsborneReynolds el cual fallo en las primeras mediciones pero en base a unas adaptaciones hechas se pudo realizer la experimentacion exitosamente.
Desarrollo experimental 1.-Verificar que todas las válvulas estén cerradas. 2.-Alimentar el depósito de tinta con azul de metilo. 3.-Coloque un recipiente en la salida de la toma de la muestra. 4.-Alimentar agua al aparato del número de Reynolds, abriendo la válvula de alimentación
5.-Espere que el aparato del número de Reynolds este lleno y que empiece a descargar el rebosadero, (evita que se formen remolino, esto causaría tener una mezcla de fluidos agua-aire). 6.-Abra las válvulas (VC3 yVC7) para descargar el gasto volumétrico hacia la recirculación del sistema. 7.-Abra la válvula del control del caudal del aparato de Reynolds (VC2), lentamente aproximadamente hasta un cuarto de válvula para controlar el gasto volumétrico y obtenga un flujo laminar. 8.-Ya que se encuentre a régimen permanente, cierre la válvula de descarga (VC3) y la válvula de recirculación del sistema (VC7), y abra la válvula del drenaje (VC8) y la válvula de muestreo (VC4). 9.-Adiciona gota a gota el colorante azul de metilo, abriendo la válvula del depósito de tinta (VC5) para comprobar que se trata de un flujo laminar. 10.-Determinar el gasto volumétrico por medio de una probeta de un litro y tome su tiempo de llenado. 11.-Una vez observado el flujo, cerrar la válvula de depósito de la tinta (VC5) y la válvula de muestreo (VC4). 12.-Abra la válvula de descarga (VC3) esperar que salga toda el agua pintada. 13.-Cerrar la válvula de drenaje (VC8) y abra la válvula de recirculación del sistema (VC7). 14.- Abrir más la válvula de control del caudal del aparo de Reynolds (VC2), lentamente
Gasto volumétrico (l) 4.761 15.284 33.333 8.695 11.769 14.2857 16.6666
Tiempo(s)
42 13 (en dos ocaciones) 6 23 17 14 12
Secuencia de calculos 1. AREA A=(π/4)*D2=(π/4)*(1cm)=0.7853 cm2
Donde: A= área (M2) D=diámetro (M) 2. VELOCIDAD Vel=Gv/A
Re1=99.8(6.066)=605.396 Re2= 99.8(19.598)=1955.9 Re3= 99.8(42.462)=4237.9 Re4= 99.8(11.077)=1105.510 Re5= 99.8(14.986)= 1495.69 Re6=99.8(18.1983)=1816.19 Re7=99.8(21.2314)=2118.89
Tabla de resultados T(seg)
42 13 6 23 17 14 12
Gv
=vol/t t
4.761 15.384 33.333 8.695 11.769 14.2857 16.666
Vel
=Gv/A
6.066 19.598 42.462 11.077 14.986 18.1983 21.2314
Flujo Re
=(Vel*D*ρ)/µ
690.396 1955.90 4237.78 1105.51 1995.69 1816.19 2118.89
Laminar Laminar Turbulento Laminar Laminar Laminar Trancitorio
Conclusión Para la determinación del tipo de régimen en un fluido se puede hacer de dos maneras diferentes una más exacta que la otra. Se puede determinar mediante un indicador por la maquina osborne-reynolds, tomando en consideración la constancia con la que el “hilo que se forma con el indicador dejando escapar el líquido por la recirculación o por los desechos de la misma máquina. La siguiente forma seria de la forma matemática la cual es más precisa pero para poder desarrollarla es necesario conocer datos implícitos en la formula, como la velocidad del fluido (se puede tener el gasto volumétrico realizado dividiéndolo entre el área de la tubería), el diámetro de la tubería, la densidad y la viscosidad del fluido, con lo que podemos decir que el número de Reynolds depende directamente del valor encontrado en los anteriores parámetros El régimen más difícil de reproducir experimentalmente es el régimen transitorio ya que se encuentra en medio de dos rangos (el de laminar que es <2000, y el de turbulento que es >4000 y por lo tanto es un poco menos probable encontrar el valor exacto de este régimen.
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS DEPARTAMENTO DE IQI
ALUMNO: MORENO HERNANDEZ JORGE ALBERTO MATERIA: LABORATORIO DE FUNDAMENTOS DE LOS FENOMENOS DE TRANSPORTE BOLETA: 2014320594 GRUPO: 2IV32
OBJETIVOS
Reconocer las propiedades físicas de un fluido (en este caso líquido) y cómo influye la temperatura, viscosidad y su densidad para mismos efectos. Medir y después calcular la densidad por medio de densímetros de diferentes rangos gravedad específica de cada fluido a diferentes temperaturas Encontrar por medio de experimentación la constante de Ubbelohde
DESARROLLO TEORICO DEFINICIÓN DE UN FLUIDO.
Para clasificar a los materiales que se encuentran en la naturaleza se pueden utilizar diversos criterios. Desde el punto de vista de la ingeniería, uno de los más interesantes lo constituye aquel que considera el comportamiento de los elementos frente a situaciones especiales. De acuerdo a ello se definen los estados básicos de sólido, plástico, fluidos y plasma. De aquí la definición que nos interesa es la de los fluidos, en la cual se clasifica en líquidos y gases. La clasificación de fluidos mencionada depende fundamentalmente del estado y no del material en sí. De esta forma lo que define al fluido es su comportamiento y no su composición. Los fluidos reaccionan de una manera característica a las fuerzas. Si se compara lo que ocurre a un sólido y a un fluido cuando son sometidos a un esfuerzo de corte o tangencial se tienen reacciones características que se pueden verificar experimentalmente y que permiten diferenciarlos. PROPIEDADES DE LOS FLUIDOS
DENSIDAD. Es una magnitud escalar referida a la cantidad de masa en un determinado volumen de una sustancia. Usualmente se simboliza mediante la letra rho ρ del alfabeto griego. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.
VOLUMEN ESPECÍFICO El volumen específico (v) es el volumen ocupado por unidad de masa de un material. Es el inverso de la densidad, por lo cual no dependen de la cantidad de materia. Ejemplos: dos pedazos de hierro de distinto tamaño tienen diferente peso y volumen pero el peso específico de ambos será igual.
Donde,
es el volumen,
es la masa y es la densidad del material. PESO ESPECÍFICO
VISCOSIDAD La viscosidad es una característica de los fluidos en movimiento, que muestra una tendencia de oposición hacia su flujo ante la aplicación de una fuerza. Cuanta más resistencia oponen los líquidos a fluir, más viscosidad poseen. Los líquidos, a diferencia de los sólidos, se caracterizan por fluir, lo que significa que al ser sometidos a una fuerza, sus moléculas se desplazan, tanto más rápidamente como sea el tamaño de sus moléculas. Si son más grandes, lo harán más lentamente. La viscosidad es medida con un viscosímetro que muestra la fuerza con la cual una capa de fluido al moverse arrastra las capas contiguas. Los fluidos más viscosos se desplazan con mayor lentitud. El calor hace disminuir la viscosidad de un fluido, lo que lo hace desplazarse con más rapidez. Cuanto más viscoso sea el fluido más resistencia opondrá a su deformación. Los fluidos no viscosos se denominan ideales, pues todos los flujos algo de viscosidad tienen. Los fluidos con menor viscosidad (casi ideal) son los gases. a) Viscosidad Dinámica La viscosidad solo se manifiesta en líquidos en movimiento, se ha definido la viscosidad como la relación existente entre el esfuerzo cortante y el gradiente de velocidad. Esta viscosidad recibe el nombre de viscosidad absoluta o viscosidad dinámica. Generalmente se representa por la etra griega b) Viscosidad Aparente La viscosidad aparente es la viscosidad de un fluido en unas determinadas condiciones de temperatura y agitación (no normalizadas).La viscosidad aparente no depende de las características del fluido, sino de las condiciones ambientales, y por tanto variará según las condiciones. c) Viscosidad Cinemática Se representa por . Para calcular la viscosidad cinemática basta con dividir la viscosidad dinámica
TENSIÓN SUPERFICIAL. La Tensión superficial de un líquido a la cantidad de energía necesaria para aumentar su superficie por unidad de área. Esta definición implica que el líquido tiene una resistencia para aumentar su superficie. La tensión superficial (una manifestación de las fuerzas intermoleculares en los líquidos), junto a las fuerzas que se dan entre los líquidos y las superficies sólidas que entran en contacto con ellos, da lugar a la capilaridad. Como efecto tiene la elevación o depresión de la superficie de un líquido en la zona de contacto con un sólido. La tensión superficial surge por las fuerzas que actúan cohesionando las moléculas de los líquidos. Dichas fuerzas no son iguales en la superficie y en el interior del líquido, aunque en promedio terminan anulándose. Como las moléculas de la superficie tienen más energía, el sistema tiende a minimizar el total de energía a partir de una reducción de las moléculas superficiales; de este modo, el área del líquido se reduce al mínimo. Una de las propiedades de la tensión superficial indica que, a medida que el líquido tenga mayores fuerzas de cohesión, contará con una tensión superficial mayor. De todas maneras, hay que tener en cuenta que la tensión superficial está vinculada a la temperatura, el medio y la naturaleza del líquido. Podemos entender la tensión superficial como una especie de membrana elástica que dificulta “ingr esar ” al líquido. Por este fenómeno, algunos insectos tienen la posibilidad de posarse sobre
el agua sin que se hundan.
EQUIPO Y MATERIAL
1. 2. 3. 4.
1. 2. 3. 4. 5.
3 probetas de vidrio de 250 ml. 1 probeta de vidrio de 500 ml 2 vasos de precipitado de 500 ml 1 termómetro de rango de -10-100°C 3 picetas de 200 ml. 1 cronómetro 1 perilla de 3 vías o jeringa de 50 ml 4 viscosímetros capilares Ubbelohde con los siguientes rangos de medición: 0.6-3 cp 2-10 cp 10-50 cp 60-300 cp Cinco densímetros de vidrio con los siguientes rangos de medición : 0.7-0.8 0.8-0.9 0.9-1.0 0.7-1.0 1.0-1.1 Parrilla de calentamiento con agitación.
DESARROLLO EXPERIMENTAL:
VISCOSIDAD 1. De acuerdo con el esquema del viscosímetro capilar de tipo Ubbelohde, medir el tiempo de caída de cada fluido para determinar su viscosidad. 2. Este viscosímetro consta de tres ramas (1,2 y 3) y un recipiente (4) que suele tener una capacidad de unos 50 ml. Cada rama tiene su propia utilidad: la más ancha(1) sirve para introducir el fluido al que se le determinará la viscosidad, la rama central (2) contiene el capilar por donde se succiona la muestra y la tercera (3) pone la base del capilar en contacto con la atmosfera igualando la presión exterior de los extremos del capilar 3. Para conseguir que el líquido ascienda por el capilar, se tapa la rama(3) y se succiona por la rama capilar mediante un jeringa o una perilla de 3 vías. Una vez el líquido ha alcanzado el bulbo superior (7), se destapa la rama para que el líquido empiece a descender por efecto de la gravedad. 4. Con el cronómetro se mide el tiempo que tarda el líquido contenido en el bulbo inferior(6) en recorrer el espacio comprendido entre los dos aforos (8) y (9). Este proceso se repite dos veces para asegurar reproducibilidad de los resultados. 5. Anotar los tiempos en minutos en la tabla 2 6. Utilizar el mismo fluido que en el experimento (d) de densidad medir el tiempo a diferentes temperaturas utilizando un baño María para el calentamiento. 7. Anotar los tiempos en minutos en la tabla 3
RESUTADOS EXPERMIENTALES PARA DENSIDAD DEL ETANOL T
spgr
ƿ exp
ƿ calculada
% Error
PARA LA DENSIDAD DEL AGUA TEMPERATURA ° 26 30 35 40 45 50
DENSIDAD (g/cm3)spgr
DENSIDAD CALCULADA
%ERROR
0.997 0.995 0.993 0.992 0.991 0.990
0.995 0.993 0.991 0.990 0.989 0.988
0.20% 0.20% 0.20% 0.20% 0.20% 0.20%
TABLA DE RESULTADOS: FLUIDO AGUA ETANOL SILICÓN
DENSIDAD (g/cm3) 0.999 0.789 0.9618
Viscosidad Dinámica(cP) 0.7934 1.0254 44.89
Conclusión Se logró comprender por completo dos de las principales propiedades de los fluidos en los que