Rectangular Tank Calculation Sheet
TANK CALCULATION SHEET I. DESIGN PARAMETERS: - Code Design - Design pressure - Design temperature - Operating pressure - Operating temperature - Corrosion Allowance - Liquid Specific Gravity - Joint Efficiency - Elastic Modulus
MATERIAL SPECIFICATION: - Shell, Roof & Bottom - Allowable Stress - Nozzle Neck - Flange - Pipe Fittings - Bolts & Nuts - Stiffeners TANK GEOMETRY: - Height - Length - Width
: API 650 & Roark's Formulas Pd : Full water + 5 kPag = 22.27 kPa o : 60 C / AMB : ATM o : 27 C C.A : 0 mm : 1.00 : 0.85 (For Shell) : 1.00 (For Roof & Bottom) E : 2.9*E+7 psi = 199947962 kPa retangular : : SS 316L Sa : 16700 psi = 115142 kPa : A 182 F 316L : A 182 F 316L : A 312 TP 316L : A 193 Gr B8M / A 194 Gr 8M : SS 316L
Height (H)
H: L: W:
Width (W)
II. DESIGN Page 1 of 28
1760 mm 1219 mm 1066 mm
Rectangular Tank Calculation Sheet II.1 Side Wall Plate Calculation (Height x Length) II.1.1 Wall Thickness Calculation (As per Roark's Formulas 7Th Ed, Table 11.4 Case 1a)
b
b
b
a
a
a
Height (H)
a
b
Stiffeners
Length (L)
Vertical length without reinforced Horizontal length without reinforced Ratio, α β Required thickness tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
587 mm 406 mm 1.44 0.0797 0.4658
= ta :
3.86 mm 6.00 mm
=
1.12 mm
II.1.2 Top Edge Stiffener R1 = 0.03*Pd*a
=
0.39 kN/m
R2 = 0.32*Pd*a
=
4.18 kN/m
Adopted thickness Maximum deflection Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.12mm < 3mm Therefore, adopted thickness is satisfactory
Moment inertia required: Jmin = R1*b4/(192*E*ta)
=
Moment inertia of used stiffener (Flat bar 65x6): Jx = Jy Therefore, Top edge stiffener is satisfactory II.1.3 Horizontal Stiffener Moment inertia required: Jmin = R2*b4/(192*E*ta)
4 46.38 mm
=
4 0.0046 cm
=
4 13.7 cm
=
= Moment inertia of used stiffener (Flat bar 65x6): Jx = Jy = Therefore, Horizontal stiffener is satisfactory
II.1.4 Vertical Stiffener
Page 2 of 28
4 494.69 mm 4 0.0495 cm 4 13.7 cm
Rectangular Tank Calculation Sheet Maximum bending moment at Hy = 0.5773*amax
=
Maximum bending moment: Mmax = 0.0641*Pd*b*Hy2 Required section modulus: Zr = Mmax/Sa
338.68 mm
=
0.07 kNm
=
3 5.78E-07 mm
=
3 0.58 cm
Section modulus of used stiffener (Flat bar 65x6): Z = Therefore, Vertical stiffener is satisfactory
3 4.2 cm
II.2 Side Wall Plate Calculation (Height x Width) II.2.1 Wall Thickness Calculation (As per Roark's Formulas 7Th Ed, Table 11.4 Case 1a) b
b
b
a
a
a
Height (H)
a
b
Stiffeners
Width (W)
Vertical length without reinforced Horizontal length without reinforced Ratio, α β Required thickness tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
587 mm 355 mm 1.65 0.0934 0.5301
= ta :
3.60 mm 6.00 mm
=
0.77 mm
II.2.2 Top Edge Stiffener R1 = 0.03*Pd*a
=
0.39 kN/m
R2 = 0.32*Pd*a
=
4.18 kN/m
Adopted thickness Maximum deflection Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 0.77mm < 3mm Therefore, adopted thickness is satisfactory
Moment inertia required: Jmin = R1*b4/(192*E*ta)
=
Moment inertia of used stiffener (Flat bar 65x6): Jx = Jy Therefore, Top edge stiffener is satisfactory
4 27.12 mm
=
4 0.0027 cm
=
4 13.7 cm
II.2.3 Horizontal Stiffener
Page 3 of 28
Rectangular Tank Calculation Sheet Moment inertia required: Jmin = R2*b4/(192*E*ta)
=
4 289.30 mm
=
4 0.0289 cm
Moment inertia of used stiffener (Flat bar 65x6): Jx = Jy = Therefore, Horizontal stiffener is satisfactory
4 13.7 cm
II.2.4 Vertical Stiffener Maximum bending moment at Hy = 0.5773*amax
=
Maximum bending moment: Mmax = 0.0641*Pd*b*Hy2 Required section modulus: Zr = Mmax/Sa
338.68 mm
=
0.06 kNm
=
3 5.05E-07 mm
=
3 0.51 cm
Section modulus of used stiffener (Flat bar 65x6): Z = Therefore, Vertical stiffener is satisfactory
3 4.2 cm
II.3 Roof Plate Calculation b
a
Width (W)
a
b
Stiffeners
Length (L)
Loads on roof plate: - Roof area: - Live load: - Roof weight: - Roof structure weight: - Roof Equipment weight: - Dead load: Total load on roof plate:
= = = = = = =
Distance without reinforced in width Distance without reinforced in length Ratio, α β Required thickness: tr = Sqrt(β*Pd*b2)/Sa) + C.A
1.299454 1.5 111 116 120 2.6 4.1
a: b: a/b : = =
533 mm 609.5 mm 0.87 0.0332 0.2297
= ta :
1.75 mm 6.00 mm
=
0.44 mm
Adopted thickness Maximum deflection: Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 0.44mm < 3mm Therefore, adopted thickness is satisfactory II.4 Bottom Plate Calculation b
b
b
b
a
a
Page 4 of 28
h (W)
m2 kPa kg kg kg kPa kPa
Rectangular Tank Calculation Sheet b
b
b
a
a
a
Width (W)
a
b
Stiffeners
Length (L)
Distance without reinforced in width Distance without reinforced in length Ratio, α β Required thickness: tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
533 mm 609.5 mm 0.87 0.0332 0.2297
= ta :
4.06 mm 8.00 mm
=
1.00 mm
Adopted thickness Maximum deflection: Ymax = α*Pd*b4/(E*ta3) Ymax
1/2 ta < 1mm < 4mm Therefore, adopted thickness is satisfactory
Page 5 of 28
Rectangular Tank Calculation Sheet
TANK CALCULATION SHEET I. DESIGN PARAMETERS: - Code Design - Design pressure - Design temperature - Operating pressure - Operating temperature - Corrosion Allowance - Liquid Specific Gravity - Joint Efficiency - Elastic Modulus
MATERIAL SPECIFICATION: - Shell, Roof & Bottom - Allowable Stress - Nozzle Neck - Flange - Pipe Fittings - Bolts & Nuts - Stiffeners TANK GEOMETRY: - Height - Length - Width
: API 650 & Roark's Formulas Pd : Full water + 5 kPag = 24.62 kPa o : 60 C / AMB : ATM o : 27 C C.A : 0 mm : 1.00 : 0.85 (For Shell) : 1.00 (For Roof & Bottom) E : 2.9*E+7 psi = 199947962 kPa retangular : : SS 316L Sa : 16700 psi = 115142 kPa : A 182 F 316L : A 182 F 316L : A 312 TP 316L : A 193 Gr B8M / A 194 Gr 8M : SS 316L
Height (H)
H: L: W:
Width (W)
Page 6 of 28
2000 mm 5600 mm 1100 mm
Rectangular Tank Calculation Sheet II. DESIGN II.1 Side Wall Plate Calculation (Height x Length) II.1.1 Wall Thickness Calculation (As per Roark's Formulas 7Th Ed, Table 11.4 Case 1a)
b
b
b
a
a
a
Height (H)
a
b
Stiffeners
Length (L)
Vertical length without reinforced Horizontal length without reinforced Ratio, α β Required thickness tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
667 mm 622 mm 1.07 0.0504 0.3185
= ta :
5.13 mm 8.00 mm
=
1.82 mm
II.1.2 Top Edge Stiffener R1 = 0.03*Pd*a
=
0.49 kN/m
R2 = 0.32*Pd*a
=
5.25 kN/m
Adopted thickness Maximum deflection Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.82mm < 4mm Therefore, adopted thickness is satisfactory
Moment inertia required: Jmin = R1*b4/(192*E*ta)
=
4 240.32 mm
=
4 0.0240 cm
Moment inertia of used stiffener (angle 65x65x6): Jx = Jy = Therefore, Top edge stiffener is satisfactory
4 29.4 cm
II.1.3 Horizontal Stiffener Moment inertia required: Jmin = R2*b4/(192*E*ta)
=
4 2563.43 mm
=
4 0.2563 cm
Moment inertia of used stiffener (angle 65x65x6): Jx = Jy = Therefore, Horizontal stiffener is satisfactory
4 29.4 cm
Page 7 of 28
Rectangular Tank Calculation Sheet II.1.4 Vertical Stiffener Maximum bending moment at Hy = 0.5773*amax
=
Maximum bending moment: Mmax = 0.0641*Pd*b*Hy2 Required section modulus: Zr = Mmax/Sa
384.87 mm
=
0.15 kNm
=
3 1.26E-06 mm
=
3 1.26 cm
Section modulus of used stiffener (angle 65x65x6): Z = Therefore, Vertical stiffener is satisfactory
3 6.26 cm
II.2 Side Wall Plate Calculation (Height x Width) II.2.1 Wall Thickness Calculation (As per Roark's Formulas 7Th Ed, Table 11.4 Case 1a) b
b
b
a
a
a
Height (H)
a
b
Stiffeners
Width (W)
Vertical length without reinforced Horizontal length without reinforced Ratio, α β Required thickness tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
667 mm 550 mm 1.21 0.0624 0.38
= ta :
4.96 mm 8.00 mm
=
1.37 mm
II.2.2 Top Edge Stiffener R1 = 0.03*Pd*a
=
0.49 kN/m
R2 = 0.32*Pd*a
=
5.25 kN/m
Adopted thickness Maximum deflection Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.37mm < 4mm Therefore, adopted thickness is satisfactory
Moment inertia required: Jmin = R1*b4/(192*E*ta)
=
4 146.71 mm
=
4 0.0147 cm
Moment inertia of used stiffener (angle 65x65x6): Jx = Jy = Therefore, Top edge stiffener is satisfactory
4 29.4 cm
Page 8 of 28
Rectangular Tank Calculation Sheet II.2.3 Horizontal Stiffener Moment inertia required: Jmin = R2*b4/(192*E*ta)
=
4 1564.91 mm
=
4 0.1565 cm
Moment inertia of used stiffener (angle 65x65x6): Jx = Jy = Therefore, Horizontal stiffener is satisfactory
4 29.4 cm
II.2.4 Vertical Stiffener Maximum bending moment at Hy = 0.5773*amax
=
Maximum bending moment: Mmax = 0.0641*Pd*b*Hy2 Required section modulus: Zr = Mmax/Sa
384.87 mm
=
0.13 kNm
=
3 1.12E-06 mm
=
3 1.12 cm
Section modulus of used stiffener (angle 65x65x6): Z = Therefore, Vertical stiffener is satisfactory
3 6.26 cm
II.3 Roof Plate Calculation b
a
Width (W)
a
b
Stiffeners
Length (L)
Loads on roof plate: - Roof area: - Live load: - Roof weight: - Roof structure weight: - Roof Equipment weight: - Dead load: Total load on roof plate: Distance without reinforced in width Distance without reinforced in length Ratio, α β Required thickness: tr = Sqrt(β*Pd*b2)/Sa) + C.A
= = = = = = =
6.16 1.5 340 116 120 0.9 2.4
m2 kPa kg kg kg kPa kPa
a: b: a/b : = =
1100 mm 700 mm 1.57 0.0886 0.5076
= ta :
2.29 mm 6.00 mm
=
1.19 mm
Adopted thickness Maximum deflection: Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.19mm < 3mm Therefore, adopted thickness is satisfactory
Page 9 of 28
Rectangular Tank Calculation Sheet II.4 Bottom Plate Calculation b
b
b
a
a
a
Width (W)
a
b
Stiffeners
Length (L)
Distance without reinforced in width Distance without reinforced in length Ratio, α β Required thickness: tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
550 mm 622 mm 0.88 0.0341 0.2341
= ta :
4.40 mm 8.00 mm
=
1.23 mm
Adopted thickness Maximum deflection: Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.23mm < 4mm Therefore, adopted thickness is satisfactory
Page 10 of 28
Rectangular Tank Calculation Sheet
TANK CALCULATION SHEET I. DESIGN PARAMETERS: - Code Design - Design pressure - Design temperature - Operating pressure - Operating temperature - Corrosion Allowance - Liquid Specific Gravity - Joint Efficiency - Elastic Modulus
MATERIAL SPECIFICATION: - Shell, Roof & Bottom - Allowable Stress - Nozzle Neck - Flange - Pipe Fittings - Bolts & Nuts - Stiffeners TANK GEOMETRY: - Height - Length - Width
: API 650 & Roark's Formulas Pd : Full water + 5 kPag = 24.62 kPa o : 60 C / AMB : ATM o : 27 C C.A : 0 mm : 1.00 : 0.85 (For Shell) : 1.00 (For Roof & Bottom) E : 2.9*E+7 psi = 199947962 kPa retangular : : SS 316L Sa : 16700 psi = 115142 kPa : A 182 F 316L : A 182 F 316L : A 312 TP 316L : A 193 Gr B8M / A 194 Gr 8M : SS 316L
Height (H)
H: L: W:
Width (W)
Page 11 of 28
2000 mm 5700 mm 1250 mm
Rectangular Tank Calculation Sheet II. DESIGN II.1 Side Wall Plate Calculation (Height x Length) II.1.1 Wall Thickness Calculation (As per Roark's Formulas 7Th Ed, Table 11.4 Case 1a)
b
b
b
a
a
a
Height (H)
a
b
Stiffeners
Length (L)
Vertical length without reinforced Horizontal length without reinforced Ratio, α β Required thickness tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
667 mm 633 mm 1.05 0.0487 0.3096
= ta :
5.15 mm 8.00 mm
=
1.88 mm
II.1.2 Top Edge Stiffener R1 = 0.03*Pd*a
=
0.49 kN/m
R2 = 0.32*Pd*a
=
5.25 kN/m
Adopted thickness Maximum deflection Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.88mm < 4mm Therefore, adopted thickness is satisfactory
Moment inertia required: Jmin = R1*b4/(192*E*ta)
=
4 257.95 mm
=
4 0.0258 cm
Moment inertia of used stiffener (angle 65x65x6): Jx = Jy = Therefore, Top edge stiffener is satisfactory
4 29.4 cm
II.1.3 Horizontal Stiffener Moment inertia required: Jmin = R2*b4/(192*E*ta)
=
4 2751.49 mm
=
4 0.2751 cm
Moment inertia of used stiffener (angle 65x65x6): Jx = Jy = Therefore, Horizontal stiffener is satisfactory
4 29.4 cm
Page 12 of 28
Rectangular Tank Calculation Sheet II.1.4 Vertical Stiffener Maximum bending moment at Hy = 0.5773*amax
=
Maximum bending moment: Mmax = 0.0641*Pd*b*Hy2 Required section modulus: Zr = Mmax/Sa
384.87 mm
=
0.15 kNm
=
3 1.29E-06 mm
=
3 1.29 cm
Section modulus of used stiffener (angle 65x65x6): Z = Therefore, Vertical stiffener is satisfactory
3 6.26 cm
II.2 Side Wall Plate Calculation (Height x Width) II.2.1 Wall Thickness Calculation (As per Roark's Formulas 7Th Ed, Table 11.4 Case 1a) b
b
b
a
a
a
Height (H)
a
b
Stiffeners
Width (W)
Vertical length without reinforced Horizontal length without reinforced Ratio, α β Required thickness tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
667 mm 625 mm 1.07 0.0504 0.3185
= ta :
5.16 mm 8.00 mm
=
1.85 mm
II.2.2 Top Edge Stiffener R1 = 0.03*Pd*a
=
0.49 kN/m
R2 = 0.32*Pd*a
=
5.25 kN/m
Adopted thickness Maximum deflection Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.85mm < 4mm Therefore, adopted thickness is satisfactory
Moment inertia required: Jmin = R1*b4/(192*E*ta)
=
4 244.64 mm
=
4 0.0245 cm
Moment inertia of used stiffener (angle 65x65x6): Jx = Jy = Therefore, Top edge stiffener is satisfactory
4 29.4 cm
Page 13 of 28
Rectangular Tank Calculation Sheet II.2.3 Horizontal Stiffener Moment inertia required: Jmin = R2*b4/(192*E*ta)
=
4 2609.51 mm
=
4 0.2610 cm
Moment inertia of used stiffener (angle 65x65x6): Jx = Jy = Therefore, Horizontal stiffener is satisfactory
4 29.4 cm
II.2.4 Vertical Stiffener Maximum bending moment at Hy = 0.5773*amax
=
Maximum bending moment: Mmax = 0.0641*Pd*b*Hy2 Required section modulus: Zr = Mmax/Sa
384.87 mm
=
0.15 kNm
=
3 1.27E-06 mm
=
3 1.27 cm
Section modulus of used stiffener (angle 65x65x6): Z = Therefore, Vertical stiffener is satisfactory
3 6.26 cm
II.3 Roof Plate Calculation b
a
Width (W)
a
b
Stiffeners
Length (L)
Loads on roof plate: - Roof area: - Live load: - Roof weight: - Roof structure weight: - Roof Equipment weight: - Dead load: Total load on roof plate: Distance without reinforced in width Distance without reinforced in length Ratio, α β Required thickness: tr = Sqrt(β*Pd*b2)/Sa) + C.A
= = = = = = =
7.125 1.5 386 116 120 0.9 2.4
m2 kPa kg kg kg kPa kPa
a: b: a/b : = =
1250 mm 712.5 mm 1.75 0.0989 0.5559
= ta :
2.40 mm 6.00 mm
=
1.39 mm
Adopted thickness Maximum deflection: Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.39mm < 3mm Therefore, adopted thickness is satisfactory
Page 14 of 28
Rectangular Tank Calculation Sheet II.4 Bottom Plate Calculation b
b
b
a
a
a
Width (W)
a
b
Stiffeners
Length (L)
Distance without reinforced in width Distance without reinforced in length Ratio, α β Required thickness: tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
625 mm 633 mm 0.99 0.0435 0.283
= ta :
4.93 mm 8.00 mm
=
1.68 mm
Adopted thickness Maximum deflection: Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.68mm < 4mm Therefore, adopted thickness is satisfactory
Page 15 of 28
Rectangular Tank Calculation Sheet
TANK CALCULATION SHEET I. DESIGN PARAMETERS: - Code Design - Design pressure - Design temperature - Operating pressure - Operating temperature - Corrosion Allowance - Liquid Specific Gravity - Joint Efficiency - Elastic Modulus
MATERIAL SPECIFICATION: - Shell, Roof & Bottom - Allowable Stress - Nozzle Neck - Flange - Pipe Fittings - Bolts & Nuts - Stiffeners TANK GEOMETRY: - Height - Length - Width
: API 650 & Roark's Formulas Pd : Full water + 5 kPag = 24.62 kPa o : 60 C / AMB : ATM o : 27 C C.A : 0 mm : 1.00 : 0.85 (For Shell) : 1.00 (For Roof & Bottom) E : 2.9*E+7 psi = 199947962 kPa retangular : : SS 316L Sa : 16700 psi = 115142 kPa : A 182 F 316L : A 182 F 316L : A 312 TP 316L : A 193 Gr B8M / A 194 Gr 8M : SS 316L
Height (H)
H: L: W:
Width (W)
II. DESIGN Page 16 of 28
2000 mm 2100 mm 1250 mm
Rectangular Tank Calculation Sheet II.1 Side Wall Plate Calculation (Height x Length) II.1.1 Wall Thickness Calculation (As per Roark's Formulas 7Th Ed, Table 11.4 Case 1a)
b
b
b
a
a
a
Height (H)
a
b
Stiffeners
Length (L)
Vertical length without reinforced Horizontal length without reinforced Ratio, α β Required thickness tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
500.0 mm 525 mm 0.95 0.0401 0.2652
= ta :
3.95 mm 6.00 mm
=
1.74 mm
II.1.2 Top Edge Stiffener R1 = 0.03*Pd*a
=
0.37 kN/m
R2 = 0.32*Pd*a
=
3.94 kN/m
Adopted thickness Maximum deflection Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.74mm < 3mm Therefore, adopted thickness is satisfactory
Moment inertia required: Jmin = R1*b4/(192*E*ta) Moment inertia of used stiffener (Flat bar 65x6): Jx = Jy Therefore, Top edge stiffener is satisfactory II.1.3 Horizontal Stiffener Moment inertia required: Jmin = R2*b4/(192*E*ta)
=
4 121.80 mm
=
4 0.0122 cm
=
4 13.7 cm
=
= Moment inertia of used stiffener (Flat bar 65x6): Jx = Jy = Therefore, Horizontal stiffener is satisfactory
II.1.4 Vertical Stiffener
Page 17 of 28
4 1299.20 mm 4 0.1299 cm 4 13.7 cm
Rectangular Tank Calculation Sheet Maximum bending moment at Hy = 0.5773*amax
=
Maximum bending moment: Mmax = 0.0641*Pd*b*Hy2 Required section modulus: Zr = Mmax/Sa
288.65 mm
=
0.07 kNm
=
3 6.00E-07 mm
=
3 0.60 cm
Section modulus of used stiffener (Flat bar 65x6): Z = Therefore, Vertical stiffener is satisfactory
3 4.2 cm
II.2 Side Wall Plate Calculation (Height x Width) II.2.1 Wall Thickness Calculation (As per Roark's Formulas 7Th Ed, Table 11.4 Case 1a) b
b
b
a
a
a
Height (H)
a
b
Stiffeners
Width (W)
Vertical length without reinforced Horizontal length without reinforced Ratio, α β Required thickness tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
500 mm 417 mm 1.20 0.0616 0.3762
= ta :
3.74 mm 6.00 mm
=
1.06 mm
II.2.2 Top Edge Stiffener R1 = 0.03*Pd*a
=
0.37 kN/m
R2 = 0.32*Pd*a
=
3.94 kN/m
Adopted thickness Maximum deflection Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.06mm < 3mm Therefore, adopted thickness is satisfactory
Moment inertia required: Jmin = R1*b4/(192*E*ta)
=
Moment inertia of used stiffener (Flat bar 65x6): Jx = Jy Therefore, Top edge stiffener is satisfactory
4 48.32 mm
=
4 0.0048 cm
=
4 13.7 cm
II.2.3 Horizontal Stiffener
Page 18 of 28
Rectangular Tank Calculation Sheet Moment inertia required: Jmin = R2*b4/(192*E*ta)
=
4 515.46 mm
=
4 0.0515 cm
Moment inertia of used stiffener (Flat bar 65x6): Jx = Jy = Therefore, Horizontal stiffener is satisfactory
4 13.7 cm
II.2.4 Vertical Stiffener Maximum bending moment at Hy = 0.5773*amax
=
Maximum bending moment: Mmax = 0.0641*Pd*b*Hy2 Required section modulus: Zr = Mmax/Sa
288.65 mm
=
0.05 kNm
=
3 4.76E-07 mm
=
3 0.48 cm
Section modulus of used stiffener (Flat bar 65x6): Z = Therefore, Vertical stiffener is satisfactory
3 4.2 cm
II.3 Roof Plate Calculation b
a
Width (W)
a
b
Stiffeners
Length (L)
Loads on roof plate: - Roof area: - Live load: - Roof weight: - Roof structure weight: - Roof Equipment weight: - Dead load: Total load on roof plate:
= = = = = = =
Distance without reinforced in width Distance without reinforced in length Ratio, α β Required thickness: tr = Sqrt(β*Pd*b2)/Sa) + C.A
2.625 1.5 174 116 120 1.5 3.0
a: b: a/b : = =
1250 mm 700 mm 1.79 0.1011 0.5662
= ta :
2.70 mm 6.00 mm
=
1.70 mm
Adopted thickness Maximum deflection: Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.7mm < 3mm Therefore, adopted thickness is satisfactory II.4 Bottom Plate Calculation b
b
b
b
a
a
Page 19 of 28
h (W)
m2 kPa kg kg kg kPa kPa
Rectangular Tank Calculation Sheet b
b
b
a
a
a
Width (W)
a
b
Stiffeners
Length (L)
Distance without reinforced in width Distance without reinforced in length Ratio, α β Required thickness: tr = Sqrt(β*Pd*b2)/Sa) + C.A
a: b: a/b : = =
625 mm 525 mm 1.19 0.0607 0.3718
= ta :
4.68 mm 8.00 mm
=
1.11 mm
Adopted thickness Maximum deflection: Ymax = α*Pd*b4/(E*ta3) Ymax 1/2 ta < 1.11mm < 4mm Therefore, adopted thickness is satisfactory
Page 20 of 28
THANG LONG
ITEM NO. T-6601 T-6603 T-6605 T-6607 T-6621 T-6622 T-6623 T-6624 T-6629 T-6636
DESIGN CAPACITY (m3) 2.22 12.02 2.22 2.22 DONG DO CORROSION INHIBITOR TANK 2.22 POUR POINT DEPRESSANT TANK 13.93 DEMULSIFIER TANK 2.22 H2S SCAVENGER TANK 5.13 BACK UP CHEMICAL TANK 2.22 SCALE INHIBITOR TANK 2.22 NAME CORROSION INHIBITOR TANK POUR POINT DEPRESSANT TANK BACK UP CHEMICAL TANK DEMULSIFIER TANK
LENGTH (mm) 1219 5600 1219 1219
WIDTH (mm) 1066 1100 1066 1066
HEIGHT (mm) 1760 2000 1760 1760
1219 5700 1219 2100 1219 1219
1066 1250 1066 1250 1066 1066
1760 2000 1760 2000 1760 1760
HEIGHT X LENGTH
HEIGHT X WIDTH
ROOF PLATE
BOTTOM PLATE
t (mm)
a (mm)
b (mm)
t (mm)
a (mm)
b (mm)
t (mm)
a (mm)
b (mm)
t (mm)
a (mm)
b (mm)
6 8 6 6
587 667 587 587
406 700 406 406
6 8 6 6
587 667 587 587
355 550 355 355
6 6 6 6
533 1100 533 533
609.5 700 609.5 609.5
8 8 8 8
533 550 533 533
609.5 700 609.5 609.5
6 8 6 6 6 6
587 667 587 500 587 587
406 712.5 406 525 406 406
6 8 6 6 6 6
587 667 587 500 587 587
355 625 355 417 355 355
6 6 6 6 6 6
533 1250 533 1250 533 533
609.5 712.5 609.5 700 609.5 609.5
8 8 8 8 8 8
533 625 533 625 533 533
609.5 712.5 609.5 700 609.5 609.5
A(L) A(U) (mm2) (mm2)
binh (kg)
tang cung Base mw nozz accessary (kg) frame
dry
specific gravity
4 4 4 10 4 4 4 4
4 4 4 4
4 3 4 4
3 2 3 3
3 9 3 3
3 3 3 10 3 3 3 3
390 753 390 390
1160 1160 1160 1160
517 2344 517 517
119 766 119 119
63 63 63 63
20 20 20 20
20 20 20 20
53 144 53 53
792 3357 792 792
0.99 0.91 0.781 1.02
4 4 4 10 4 4 5 5 4 4 4 4
4 4 4 5 4 4
4 3 4 4 4 4
3 2 3 2 3 3
3 9 3 4 3 3
3 3 3 10 3 3 3 5 3 3 3 3
390 753 390 390 390 390
1160 1160 1160 1160 1160 1160
517 2513 517 913 517 517
119 776 119 195 119 119
63 63 63 63 63 63
20 20 20 20 20 20
20 20 20 20 20 20
53 148 53 77 53 53
792 3541 792 1289 792 792
0.99 0.91 1.02 0.998 0.78 1.3
capacity luu chat hydro operating working (kg) test 2 10.85 2 2
1980 9873.5 1562 2040
2772 13231 2354 2832
3013 15379 3013 3013
2 12.63 2 4.6 2 2
1980 11493.3 2040 4590.8 1560 2600
2772 15034 2832 5879 2352 3392
3013 17471 3013 6422 3013 3013