You simply have to enter details in the red column and get the optimized answer in the relevant tabs.Full description
Description complète
Full description
Deskripsi lengkap
Cantilever Retaining Wall ExampleFull description
Cantilever Retaining Wall Design Example
designFull description
Semoga BermanfaatDescripción completa
Full description
RCC RCC RET RETAINI AINING NG WAL WALL( L(CA CANT NTIL ILEV EVER ERTY TYPE) PE) MAX MAX 6.0 6.0 MTR MTR HEIG HEIGHT HT INC INCL L COL COL (WHERE WATER TABLE IS BELOW BASE OF FOO
(Ex 15.1 15.1 RCC ! BC P"#$%& P"#$%& ' Ex 1.1 V&*% V&*% INPUT INPUT
INPUT DATAS GRADE OF CONCRETE GRADE OF STEEL !
INPUT INPUT INPUT INPUT INPUT
INPUT INPUT
INPUT INPU T INPU PUT T
INPU IN PUT T INPUT INPUT INPUT
/
5 15
N/mm2 N/mm2
ANGLE OF REPOSE OF SOIL 2 BUL DENSITY OF SOIL W7 SOIL SAFE BEARING CAPACITY SBC ANGLE OF SURCHARGE OF FILL C
30 18 15 0 10
DEG KN/m3 KN/m2 DEG
COEFFT OF FRICTION 9 CO S C CO S 2 COEFFT OF ACTIVE PRESSURE & COEFFT OF PASSIVE PRESSURE ; HEIGHT OF FILLING H MIN DEPTH OF FDN < PROVIDE DEPTH OF FDN D <=> TOTAL HT OF WALL H,>H@D CONST T4 L4#,< H44 L4#,< CALCULATED BASE WIDTH B( B(MIN) PROV PR OVID IDE E BA BASE SE WI WIDT DTH H B SURCH CHA ARG RGE E ;7
BA BASE SLAB THIC D(MIN) PROV PR OVID IDE E BASE BASE SLA SLAB B THIC THIC D WALL THIC AT BOTTOM T( T(MIN) PROVIDE PROV IDE WAL ALL L THI THIC C AT AT BOTT BOTTOM OM PROVIDE WALL THIC AT TOP T
CHEC FOR BEARING PRESSURE WT OF BASE SLAB=FOOTING WT OF STEM= WALL WALL RECTANGLE PART PART WT OF STEM= WALL WALL TRIANGLE PART PART WT OF REAR SOIL OVER HEEL WT= AXIAL LOAD FROM COLUMN TOTAL STABILISING VERTICAL FORCE HORIONTAL EARTH PRESSURE HORIONTAL SURCHARGE TOTAL HORIONTAL PRESSURE DISTANCE OF W1 FROM TOE FRONT TIP X1 DISTANCE OF W FROM TOE FRONT TIP DISTANCE OF W3 FROM TOE FRONT TIP DISTANCE OF W3 FROM TOE FRONT TIP
DISTANCE OF W3 FROM TOE FRONT TIP HT OF HORT FORCE Y1 FROM TOE TOP HT OF SUR FORCE Y FROM TOE TOP DIST OF VERT REACTION FROM TOE FRONT TIP
CALCULATION OF PRESSURE CALCULATION REACTION OF FORCES DIST OF REACTION FROM TOE X ECCENTRICITY 4 FROM CETRE OF BASE SLAB PRESSURE AT AT TOE TIP P$&x PRESSURE AT AT HEEL TIP P$&x PRESSURE AT AT TOE FACE OF VER STEM PRESSURE AT AT HEEL FACE OF VER STEM FOS AGAINST OVERTURNING FOS AGAINST SLIDING
INPUT
INPUT
DESIGN OF SHEAR EY PERMISSIBLE SHEAR STRESS T/ THICNESS OFEY DEPTH OF EY EY REINFORCEMENT PROVIDE DIA OF STEEL BAR SPACING OF BARS
OR INCREASE WIDTH OF FDN N/mm2 0.33 0 mm m 0.00 0 mm2 mm 10 0 mm
150 150
0
DESIGN OF BASE SLAB DESIGN OF TOE SLAB EFFECTIVE DEPTH OF TOE + SPAN OF TOE L1 WT OF FOOTING W MAX BM AT BASE OF TOE M, SHEAR FORCE V$&x
0 5 0.?5 ?.00 .8 ?.
DESIGN OF TOE SLAB TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a 01 "!f&2/fc#$ % -01 f c m M'/!%d&2$ $> M"=(+)
DISTANCE OF W3 FROM TOE FRONT TIP HT OF HORT FORCE Y1 FROM TOE TOP HT OF SUR FORCE Y FROM TOE TOP DIST OF VERT REACTION FROM TOE FRONT TIP
CALCULATION OF PRESSURE CALCULATION REACTION OF FORCES DIST OF REACTION FROM TOE X ECCENTRICITY 4 FROM CETRE OF BASE SLAB PRESSURE AT AT TOE TIP P$&x PRESSURE AT AT HEEL TIP P$&x PRESSURE AT AT TOE FACE OF VER STEM PRESSURE AT AT HEEL FACE OF VER STEM FOS AGAINST OVERTURNING FOS AGAINST SLIDING
INPUT
INPUT
DESIGN OF SHEAR EY PERMISSIBLE SHEAR STRESS T/ THICNESS OFEY DEPTH OF EY EY REINFORCEMENT PROVIDE DIA OF STEEL BAR SPACING OF BARS
OR INCREASE WIDTH OF FDN N/mm2 0.33 0 mm m 0.00 0 mm2 mm 10 0 mm
150 150
0
DESIGN OF BASE SLAB DESIGN OF TOE SLAB EFFECTIVE DEPTH OF TOE + SPAN OF TOE L1 WT OF FOOTING W MAX BM AT BASE OF TOE M, SHEAR FORCE V$&x
0 5 0.?5 ?.00 .8 ?.
DESIGN OF TOE SLAB TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a 01 "!f&2/fc#$ % -01 f c m M'/!%d&2$ $> M"=(+)
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction S8mm 0 +se mm Dia %ars as distri% INPUT 10 )rea of ,ne Bar 104 S8mm .
RESULT S(acin= of Distri%'tion Bars
18 0
$$
10
DESIGN= CHEC FOR TOE SLAB TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
5 00 80 10 104 180
mm mm mm S8mm mm
Max Shear Force w>/2
?.
KN
0.
INPUT
For
21
0.3 N/ S8m C&/"&,4+ V&"4 mm thic# sla%? #
DESIGN OF HEELSLAB SPAN OF HEEL L
:
0366
N/ S8m
Nominal Shear stress @' @'/%d
026
N/ S8m
Shear Chec#
S&4
.60
M
PRESSURE AT HEEL W; WT OF SOIL OVER HEEL W5 WT OF HEEL W6 MAX BM AT HEEL M< SHEAR FORCE V$&x
63.55 ?0.56 ?.00 ?.36 50.
DESIGN OF HEEL SLAB TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a 01 "!f&2/fc#$ % -01 f c m M'/!%d&2$
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction S8mm 0 +se mm Dia %ars as distri% INPUT 1 )rea of ,ne Bar ..30.6 S8mm .2
RESULT S(acin= of Distri%'tion Bars
60
$$
1
DESIGN= CHEC FOR HEEL SLAB TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
DESIGN OF STEM WALL SPAN OF WALL L3 MAX BM AT BOTTOM OF WALL MSHEAR FORCE V$&x
3.80 116.6 63.?3
DESIGN OF STEM WALL TO RESIST BENDING MOMENT 5 Grade of Concrete M Grade of Steel Fe 15 1.0 Base width Max BM Mx 116.6 3. BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% 18 RESULT )do(t Effecti*e De(th d 30 INPUT +se Dia of Stem all rft 1 ?5 )do(t Co*er for Stem wall ,*er all De(th of Base Sla% D 00 idth of Sla% considered for Cal . Grade of Concrete M 5 15 Grade of Steel Fe a 01 "!f&2/fc#$ 4553063 % -01 f -37.04 c m M'/!%d&2$ .0.6
M KN-m KN
Mtr KN-M %d&2 mm mm mm mm mm mm
A, 1068
S8mm
Min area of 9ension Steel )o014"%d/f
744
S8mm
Min )rea of Steel 0.4 : !9em( ;ft$
7
S8mm
; > ( 7*,(&/)
$> M"=(+)
.0.6
:
0333
313
Max area of 9ensile Steel 06 %D
.7
S8mm
1068
S8mm
..30.6
S8mm
.2
100
$$
1
Min )rea of Steel 0.2 :
61
S8mm
Chec# for Min rft
O
)rea of ,ne Bar
RESULT S(acin= of Main Bars
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction S8mm 600 INPUT 1 +se mm Dia %ars as distri% )rea of ,ne Bar ..30.6 S8mm .2
RESULT S(acin= of Distri%'tion Bars
180
$$
1
CURTAILMENT REINFORCEMENT DE<9A F;,M 9,< ,F EMB)NKMEN9 );E) ,F ;ENF,;CEMEN9 +se Dia of Stem all rft )rea of ,ne Bar S(acin= of Distri%'tion Bars
.1 53 1 ..30.6 00
M,* S8mm mm S8mm $$
0
1
DISTRIBUTION STEEL DE<9A F;,M 9,< ,F EMB)NKMEN9 );E) ,F ;ENF,;CEMEN9 +se Dia of Stem all rft )rea of ,ne Bar S(acin= of Distri%'tion Bars
.1 600 1 ..30.6 180
M,* S8mm mm S8mm $$
16
1
DESIGN= CHEC FOR STEM WALL TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
1 J 160 mm c/c (TO RESIST VERTICAL DOWN PRESSURE)
58
1 J 60 mm c/c
0.00
10 J 0 mm c/c 0 L UP PR) T> 0 0
0 B>
6 00
3?50
SIONS ARE IN MILLIMETRES
KN/M S+;CA);GE M M)DE +< G>
W5 0.00 ,>
0.0 ANGLE OF SURCHARGE C
EARTH FILLING SIDE
P7 15.3? P< 8.3?
W 1:.60 W3 :.80
W 18.1:
R
E
0.01
?5
HEEL
0.0
.60
W1 6.5 3.?5
6.?6
6.?
6.6
RCC RETAINING WALL(CANTILEVERTYPE) MAX 6.0 MTR HEIGHT AND CL (WHERE WATER TABLE IS BELOW BASE OF FOO
(Ex 1.1 D<&!&*&,#&$' Ex 1:.3 INPUT INPUT
INPUT DATAS GRADE OF CONCRETE GRADE OF STEEL !
INPUT INPUT INPUT INPUT INPUT
INPUT INPUT
/
5 15
N/mm2 N/mm2
ANGLE OF REPOSE OF SOIL 2 BUL DENSITY OF SOIL W7 SOIL SAFE BEARING CAPACITY SBC ANGLE OF SURCHARGE OF FILL C
35 1? 00 0
DEG KN/m2 KN/m2 DEG
COEFFT OF FRICTION 9 COS C COS 2 COEFFT OF ACTIVE PRESSURE & COEFFT OF PASSIVE PRESSURE ; HEIGHT OF FILLING H MIN DEPTH OF FDN < PROVIDE DEPTH OF FDN D <=> TOTAL HT OF WALL H,>H@D
0.5 1 0.81: 0.?1 3.68? 3 0.8? 1.80 .80
0.?5
CONST (S44/, FACTOR *$ ,<4 *4 )
INPUT INPUT
INPUT INPUT INPUT
>
0.?0
mtr mtr mtr mtr 06
CALCULATED BASE WIDTH B(MIN) PROVIDE BASE WIDTH B SURCHARGE ;7
.00 .60 0
mtr mtr KN/m
BASE SLAB THIC D(MIN) PROVIDE BASE SLAB THIC D WALL THIC AT BOTTOM T(MIN) PROVIDE WALL THIC AT BOTTOM PROVIDE WALL THIC AT TOP T
30 30 00 00 00
mm mm mm mm mm
T1
CHEC FOR BEARING PRESSURE WT OF BASE SLAB=FOOTING W1 WT OF STEM= WALL W WT OF REAR SOIL OVER HEEL W3 TOTAL STABILISING VERTICAL FORCE
V
HORIONTAL EARTH PRESSURE P< HORIONTAL SURCHARGE P7 TOTAL HORIONTAL PRESSURE DISTANCE OF W1 FROM TOE FRONT TIP X1 DISTANCE OF W FROM TOE FRONT TIP X DISTANCE OF W3 FROM TOE FRONT TIP X3 HT OF HORT FORCE Y1 FROM TOE TOP HT OF SUR FORCE Y FROM TOE TOP
36.80 33.60 5:.18 3:.58
KN/m KN/m KN/m KN/m
6.? 0.00 6.?
KN/m KN/m KN/m
.30 1.00 .:0 1.: .
$,* mtr mtr mtr mtr
1.80 014.
.60
0 0 0
DIST OF VERT REACTION FROM TOE FRONT TIP CALCULATION OF PRESSURE REACTION OF FORCES DIST OF REACTION FROM TOE X ECCENTRICITY 4 PRESSURE AT TOE TIP P$&x PRESSURE AT HEEL TIP P$&x PRESSURE AT TOE FACE OF VER STEM FOS AGAINST OVERTURNING FOS AGAINST SLIDING
INPUT
INPUT
.6
mtr
33.8 KN .0 m 0.10 m 81. KN/m2 61.88 KN/m2 ?8.03 KN/m2 1.58 3.1 IF FOS1.5 PROVIDE SHEAR EY OR INCREASE WIDTH OF FDN
DESIGN OF SHEAR EY PERMISSIBLE SHEAR STRESS T/ THICNESS OFEY DEPTH OF EY EY REINFORCEMENT PROVIDE DIA OF STEEL BAR SPACING OF BARS
0.33 1000 0.00 100 16 160
N/mm2 mm m mm2 mm mm
5 0.80 8.00 3.16 5:.3?
mm m KN/m KN-m KN
1000
DESIGN OF BASE SLAB DESIGN OF TOE SLAB EFFECTIVE DEPTH OF TOE + SPAN OF TOE L1 WT OF FOOTING W MAX BM AT BASE OF TOE M, SHEAR FORCE V$&x DESIGN OF TOE SLAB TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a 01 "!f&2/fc#$ % -01 f c m M'/!%d&2$ ; > ( 7*,(&/)
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 8?.5 S8mm +se mm Dia %ars as distri% INPUT 16 )rea of ,ne Bar 2.0.6 S8mm .7
RESULT S(acin= of Distri%'tion Bars
10
$$
16
DESIGN= CHEC FOR TOE SLAB TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
5 0 35 16 2.0.6 00
Max Shear Force w>/2
5:.3?
Desi=n Shear Stren=th For
324
DESIGN OF HEELSLAB SPAN OF HEEL L PRESSURE AT HEEL W; WT OF SOIL OVER HEEL W5
DESIGN OF HEEL SLAB TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a 01 "!f&2/fc#$ % -01 f c m M'/!%d&2$
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 5?.5 S8mm +se mm Dia %ars as distri% INPUT 16 )rea of ,ne Bar 2.0.6 S8mm .7
RESULT S(acin= of Distri%'tion Bars DESIGN= CHEC FOR HEEL SLAB TO RESIST SHEAR
360
$$
16
Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
DESIGN OF STEM WALL SPAN OF WALL L3 MAX BM AT BOTTOM OF WALL MSHEAR FORCE V$&x
.0 103.63 6.?
DESIGN OF STEM WALL WALL TO RESIST BENDING MOMENT 5 Grade of Concrete M Grade of Steel Fe 15 1.0 Base width Max BM Mx 103.63 3. BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% 1?3 RESULT )do(t Effecti*e De(th d 310 INPUT +se Dia of Stem all rft 16 ?5 )do(t Co*er for Stem wall ,*er all De(th of Base Sla% D 3:5 idth of Sla% considered for Cal . Grade of Concrete M 5 15 Grade of Steel Fe a 01 "!f&2/fc#$ 4553063 % -01 f -37.04 c m M'/!%d&2$ .01
M KN-m KN
Mtr KN-M %d&2 mm mm mm mm mm mm
A, :?8
S8mm
Min area of 9ension Steel )o014"%d/f
736056
S8mm
Max area of 9ensile Steel 06 %D
.41
S8mm
; > ( 7*,(&/)
$> M"=(+)
.01
03.4
:
30:
:?8
S8mm
2.0.6
S8mm
.7
0 0
$$
16
Min )rea of Steel 0.2 :
66
S8mm
Chec# for Min rft
O
RESULT S(acin= of Main Bars
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 5:.5 S8mm +se mm Dia %ars as distri% INPUT 16 )rea of ,ne Bar 2.0.6 S8mm .7
DE<9A F;,M 9,< ,F EMB)NKMEN9 );E) ,F ;ENF,;CEMEN9 ;ENF,;CEMEN9 +se Dia of Stem all rft )rea of ,ne Bar
0 0
S(acin= of Distri%'tion Bars
M,* S8mm mm S8mm
0
$$
16
DISTRIBUTION STEEL . 5:.5 16 2.0.6
DE<9A F;,M 9,< ,F EMB)NKMEN9 );E) ,F ;ENF,;CEMEN9 ;ENF,;CEMEN9 +se Dia of Stem all rft )rea of ,ne Bar
33 0
S(acin= of Distri%'tion Bars
M,* S8mm mm S8mm
16
$$
16
DESIGN= CHEC FOR STEM WALL WALL TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
16 J 60 mm c/c (TO RESIST VERTICAL DOWN PRESSURE)
16 J 360 mm c/c 16 J 160 mm c/c 1000 T> 00 600 E IN MILLIMETRES
300
RCC COUNTERFORT RETAINING WALL (HT ABOVE 6 MTR) INCL COLUM (WHERE WATER TABLE IS BELOW BASE OF FOO
(Ex 15. RCC ! BC P"#$%& ' Ex 1.5 V&*% INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT
INPUT INPUT
INPUT INPUT
INPUT INPUT INPUT
INPUT DATAS GRADE OF CONCRETE GRADE OF STEEL !
/
5 15
N/mm2 N/mm2
THICNESS OF COUNTERFORT T/ C=C SPACING OF COUNTERFORT L/ BASE WIDTH OF FRONT COUNTERFORT B HT OF FRONT COUNTERFORT ABOVE BASE SLAB
30 16 00 15 3.00 0.30 3.30 1.5 3.00
DEG KN/m3 KN/m2 DEG mtr mtr mtr mtr mtr
COEFFT OF FRICTION 9 COS C COS 2 COEFFT OF ACTIVE PRESSURE & COEFFT OF PASSIVE PRESSURE ; HEIGHT OF FILLING H MIN DEPTH OF FDN < PROVIDE DEPTH OF FDN D <=> TOTAL HT OF WALL H,>H@D CONST
ANGLE OF REPOSE OF SOIL 2 BUL DENSITY OF SOIL W7 SOIL SAFE BEARING CAPACITY SBC ANGLE OF SURCHARGE OF FILL C 3.
CLEAR SPACING OF COUNTERFORT L
1.5
T4 L4#,< TL H44 L4#,< CALCULATED BASE WIDTH B(MIN) PROVIDE BASE WIDTH B BASE WIDTH OF REAR COUNTERFORT B1 SURCHARGE ;7 BASE SLAB THIC D(MIN) PROVIDE BASE SLAB THIC D WALL THIC AT BOTTOM T(MIN) PROVIDE WALL THIC AT BOTTOM PROVIDE WALL THIC AT TOP T
0.:0 HL B$ B
0.33 mtr mtr mtr mtr
;7
1.5 3.5 3.? .?5 3.5 .00
mtr mtr mtr mtr mtr KN/m
50
0: 0: 50 50 50
mm mm mm mm mm
W1 W W3 W W5 W P<
8.53 .3 0.00 3?1.05 0.00 63.:0 150.1
T1
CHEC FOR BEARING PRESSURE WT OF BASE SLAB=FOOTING WT OF STEM= WALL RECTANGLE PART WT OF STEM= WALL TRIANGLE PART WT OF REAR SOIL OVER HEEL WT= AXIAL LOAD FROM COLUMN TOTAL STABILISING VERTICAL FORCE HORIONTAL EARTH PRESSURE
CALCULATION OF PRESSURE REACTION OF FORCES DIST OF REACTION FROM TOE X ECCENTRICITY 4 FROM CETRE OF BASE SLAB PRESSURE AT TOE TIP P$&x PRESSURE AT HEEL TIP P$&x PRESSURE AT TOE FACE OF VER STEM PRESSURE AT HEEL FACE OF VER STEM FOS AGAINST OVERTURNING FOS AGAINST SLIDING
HORIONTAL SURCHARGE TOTAL HORIONTAL PRESSURE DISTANCE OF W1 FROM TOE FRONT TIP X1 DISTANCE OF W FROM TOE FRONT TIP DISTANCE OF W3 FROM TOE FRONT TIP DISTANCE OF W3 FROM TOE FRONT TIP DISTANCE OF W3 FROM TOE FRONT TIP HT OF HORT FORCE Y1 FROM TOE TOP HT OF SUR FORCE Y FROM TOE TOP
INPUT
INPUT
DESIGN OF SHEAR EY PERMISSIBLE SHEAR STRESS T/ THICNESS OFEY DEPTH OF EY EY REINFORCEMENT PROVIDE DIA OF STEEL BAR SPACING OF BARS
0 0
OR INCREASE WIDTH OF FDN N/mm2 0.33 :10 mm m 0.00 10: mm2 10 mm ?0 mm
00 00
0
DESIGN OF BASE SLAB DESIGN OF TOE SLAB EFFECTIVE DEPTH OF TOE SPAN OF TOE L1 WT OF FOOTING W
+
MAX BM AT BASE OF TOE BOTTOM NEAR COUNTERFORT EDGE M,
SHEAR FORCE V$&x DESIGN OF TOE SLAB TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D
33 1.5 10. 56.3 15.35
mm m KN/m KN-m KN
5 15 1.0 56.3 3. 18 330 10 ?5 10
Mtr KN-M %d&2 mm mm mm mm mm
3
idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a % c
01 "!f&2/fc#$ -01 f m M'/!%d&2$
$> M"=(+)
; > ( 7*,(&/)
. mm 5 15 4553063 -37.04 042
A, 85
S8mm
Min area of 9ension Steel )o014"%d/f
7405
S8mm
Max area of 9ensile Steel 06 %D
.76
S8mm
6?6
S8mm
104
S8mm
.
110
$$
10
Min )rea of Steel 0.2 :
652
S8mm
Chec# for Min rft
O
042
0.6
RESULT S(acin= of Main Bars
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 615 S8mm +se mm Dia %ars as distri% INPUT 10 )rea of ,ne Bar 104 S8mm .
RESULT S(acin= of Distri%'tion Bars
10
$$
10
DESIGN= CHEC FOR TOE SLAB TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
Stren=th of Shear rft @'s@'-9c %d Dia of Shear rft
6.337 1
N mm
..30.6
S8mm Nos
64204 .3
mm mm
idth of Beam
INPUT
)rea of ,ne Bar INPUT No of le==ed *ertical stirr'(s )rea of @ertical Stirr'( ;ft )s*
RESULT
5
S(acin= of Shear rft x01 f )s* d/ @'s
Chec# for S(acin= Min )rea of Shear rft 06 % x /f Chec# for min Shear rft )rea
DESIGN OF HEELSLAB SPAN OF HEEL L PRESSURE AT HEEL W; WT OF SOIL OVER HEEL W WT OF HEEL W1& MAX BM AT HEEL TOP &, C"#,4**, M< SHEAR FORCE V$&x DESIGN OF HEEL SLAB TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a 01 "!f&2/fc#$ % -01 f
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 615 S8mm INPUT 1 +se mm Dia %ars as distri% )rea of ,ne Bar ..30.6 S8mm .2
RESULT S(acin= of Distri%'tion Bars
180
$$
1
DESIGN= CHEC FOR HEEL SLAB TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
Stren=th of Shear rft @'s@'-9c %d Dia of Shear rft
..355 10
N mm
104
S8mm Nos
idth of Beam
INPUT
)rea of ,ne Bar INPUT No of le==ed *ertical stirr'(s )rea of @ertical Stirr'( ;ft )s*
RESULT
.40.6 .76
S(acin= of Shear rft x01 f )s* d/ @'s
mm mm
O
Chec# for S(acin= Min )rea of Shear rft 06 % x /f
66012
Min S(a S8mm
NOT O
Chec# for min Shear rft )rea
0
f N,9
DESIGN OF STEM WALL SPAN = HT OF STEM WALL L3
P<
HORIONTAL PRESSURE ON STEM WALL CLEAR SPACING OF COUNTERFORT L
L
MV
MAX BM AT BOTTOM OF WALL MSHEAR FORCE V$&x
?.0: 0.:0 3.00 6.01 61.35
DESIGN OF STEM WALL TO RESIST BENDING MOMENT Grade of Concrete M 5 15 Grade of Steel Fe Base width 1.0 6.01 Max BM Mx BM !Const"fc#$ %d&2 3. 116 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d 00 INPUT +se Dia of Stem all rft 1 0 )do(t Co*er for Stem wall 5 ,*er all De(th of Base Sla% D idth of Sla% considered for Cal . 5 Grade of Concrete M Grade of Steel Fe 15 a 01 "!f&2/fc#$ 4553063 % -01 f -37.04 c m M'/!%d&2$ .0.4 ; > ( 7*,(&/)
$> M"=(+)
.0.4 Min area of 9ension Steel )o014"%d/f
033
M KN/m2 M KN-m KN
Mtr KN-M %d&2 mm mm mm mm mm mm
A, 6?5
S8mm
65076
S8mm
00
Max area of 9ensile Steel 06 %D
51
S8mm
6?5
S8mm
..30.6
S8mm
.2
160
$$
1
Min )rea of Steel 0.2 :
256
S8mm
Chec# for Min rft
O
)rea of ,ne Bar
RESULT S(acin= of Main Bars
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 36?.5 S8mm INPUT 1 +se mm Dia %ars as distri% )rea of ,ne Bar ..30.6 S8mm .2
RESULT S(acin= of Distri%'tion Bars
300
$$
1
CURTAILMENT REINFORCEMENT DE<9A F;,M 9,< ,F EMB)NKMEN9 );E) ,F ;ENF,;CEMEN9 +se Dia of Stem all rft )rea of ,ne Bar S(acin= of Distri%'tion Bars
3.?5 33?.5 1 ..30.6 30
M,* S8mm mm S8mm $$
0
1
DISTRIBUTION STEEL DE<9A F;,M 9,< ,F EMB)NKMEN9 );E) ,F ;ENF,;CEMEN9 +se Dia of Stem all rft )rea of ,ne Bar S(acin= of Distri%'tion Bars
3.?5 36?.5 1 ..30.6 300
M,* S8mm mm S8mm $$
16
1
DESIGN= CHEC FOR STEM WALL TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
DESIGN OF FRONT COUNTER FORT (OVER TOE) TO RESIST BENDING MOMENT .024 18.?8 60.30 30
Mtr KN/S8m KN/S8m Mtr
C/C dist %etween Co'nter Fort
303
Mtr
Max BM d'e to Earth
..056
KN M
Max SF d'e to Earth
.730..
KN
>en=th of Front Co'nter Fort Earth
Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a % c
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction S8mm 5?0 INPUT 16 +se mm Dia %ars as distri% )rea of ,ne Bar 2.0.6 S8mm .7
RESULT S(acin= of Distri%'tion Bars INPUT
150
350
$$
16
mm
150
Shear Force at d awa from Stem
DESIGN= CHEC FOR FRONT COUNTER FORT WALL TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar No of Bars
DESIGN OF REAR COUNTER FORT (OVER HEEL) TO RESIST BENDING MOMENT Aei=ht of Front Co'nter Fort
04
Mtr
Base idh of Front Co'nter Fort
3.5
Mtr
0615
;adian
nclination of Co'nter Fort At of Earth Fillin= )%o*e G>
05
Mtr
Max BM wh&3"!.-sinP$/!.sinP$"3/7
54057
KN m
SF/Aori9hr'st wh&2"!.-sinP$/!.sinP$"3/2
6203
KN
Effecti*e de(th d h"sin -co*er
2?52
mm
23063
De=ree
Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a % c
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 18:0 S8mm INPUT 16 +se mm Dia %ars as distri% )rea of ,ne Bar 2.0.6 S8mm .7
RESULT S(acin= of Distri%'tion Bars
110
$$
DESIGN= CHEC FOR REAR COUNTER FORT WALL TO RESIST SHEAR SF/Aori9hr'st wh&2"!.-sinP$/!.sinP$"3/2
Net SF F-M"tan /dQ
6203
KN
102.
KN
Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar No of Bars
ANGLE OF REPOSE OF SOIL 2 BUL DENSITY OF SOIL W7 SOIL SAFE BEARING CAPACITY SBC ANGLE OF SURCHARGE OF FILL C CLEAR SPACING OF COUNTERFORT L THICNESS OF COUNTERFORT T/ C=C SPACING OF COUNTERFORT L/ BASE WIDTH OF FRONT COUNTERFORT B HT OF FRONT COUNTERFORT ABOVE BASE SLAB
30 0 00 0 3.00 0.30 3.30 .30 3.00
DEG KN/m2 KN/m2 DEG mtr mtr mtr mtr mtr
COEFF OF FRICTION 9 COS C COS 2 COEFFT O ACTIVE PRESSURE & COEFFT O PASSIVE PRESSURE ; HEIGHT OF FILLING H MIN DEPTH OF FDN < PROVIDE DEPTH OF FDN D TOTAL HT OF WALL H,>H@D
0.55 1 0.866 0.33 .::8 ?.5 1.11 1.50 :.00
mtr mtr mtr mtr
CONST (S44/, FACTOR *$ ,<4 *4 )
INPUT INPUT
INPUT INPUT INPUT
>
0.?
0.?
CALCULATED BASE WIDTH B(MIN) PROVIDE BASE WIDTH B BASE WIDTH OF REAR COUNTERFORT B1 SURCHARGE ;7
5.00 5.00 .0 0
mtr mtr mtr KN/m
BASE SLAB THIC D(MIN) PROVIDE BASE SLAB THIC D WALL THIC AT BOTTOM T(MIN) PROVIDE WALL THIC AT BOTTOM PROVIDE WALL THIC AT TOP T
50 50 300 300 150
mm mm mm mm mm
185.63 158.?1 ?6.:5 5.88 131.0 16?8.36
KN KN KN KN KN KN
?31.?
KN
T1
CHEC FOR BEARING PRESSURE WT OF BASE SLAB=FOOTING W1 WT OF STEM= WALL W WT OF REAR COUNTERFORT W/1 WT OF FRONT COUNTERFORT W/ WT OF REAR SOIL OVER HEEL W3 TOTAL STABILISING VERTICAL FORCE V OVER C=C CF DIST
HORIONTAL EARTH PRESSURE P<
HORIONTAL SURCHARGE P7 TOTAL HORIONTAL PRESSURE
0.00 3.06
KN
DISTANCE OF W1 FROM TOE TIP X1 DISTANCE OF W FROM TOE TIP X DISTANCE OF W/1 FROM TOE TIP X/1 DISTANCE OF W/ FROM TOE TIP X/ DISTANCE OF W3 FROM TOE TIP X3 TOTAL MOMENT DUE TO VERT FORCE K TOE TIP
.50 .5 3.0 1.53 3.0 530.:
mtr mtr mtr mtr mtr KN-mtr
DIST OF RESULTANT VERT FORCE FROM TOE TIP
3.18
mtr
?31.? 0.00 3.06
KN KN
HORIONTAL EARTH PRESSURE P< HORIONTAL SURCHARGE P7 TOTAL HORIONTAL PRESSURE
mtr VERT HT OF HORT FORCE Y1 ABOVE BASE SLAB .85 VERT HT OF SUR FORCE Y ABOVE BASE SLAB .8 mtr TOTAL MOMENT DUE TO HORI FORCE K WALL BOTTO 08.?0 KN-mtr
NET MOMENT ABOUT TOE
355.5: KN-mtr
CALCULATION OF EARTH PRESSURE C 4 > (&74/=/ ",*477 +%7,=) FOR ;1 C 4 > (&74/=/ ",*477 +%7,=) FOR ; DIST FROM TIP OF TOE FOR SOIL REACTION P1 DIST FROM TIP OF TOE FOR SOIL REACTION P NET SOIL REACTION CO EFF NET MOMENT DUE TO SOIL REACTION CO EFF SOIL PRESSURE P1 SOIL PRESSURE P SOIL PRESSURE P3 SOIL PRESSURE P
CALCULATION OF EARTH PRESSURE RESULTANT FORCES R>SRT(H@V) 1830.83 KN DIST OF RESULTANT FORCE FROM TOE TIP X 1.?8 m m ECCENTRICITY 4 0.? MAX PRESSURE P$&x (P1) 18. KN/m2 MIN PRESSURE P$%#(P) ?5.0 KN/m2 PRESSURE BELOW LEFT SIDE OF STEM WALL P3 :.8 KN/m2 PRESSURE BELOW RIGHT SIDE OF STEM WALL P :.3 KN/m2 FOS AGAINST OVERTURNING .56 FOS AGAINST SLIDING 1.6 IF FOS1.5 PROVIDE SHEAR EY OR INCREASE WIDTH OF FDN DESIGN OF SHEAR EY N/mm2 PERMISSIBLE SHEAR STRESS T/ 0.33 THICNESS OFEY 1110 mm
DESIGN OF TOE SLAB EFFECTIVE DEPTH OF TOE + SPAN OF TOE L1 WT OF FOOTING W MAX BM AT BASE OF TOE M, SHEAR FORCE V$&x
3?5 1.85 11.5 :0.15 5:.3
mm m KN/m KN-m KN
DESIGN OF TOE SLAB TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla%
5 15 1.0 :0.15 3. 16
Mtr KN-M %d&2 mm
RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a % c
01 "!f&2/fc#$ -01 f m M'/!%d&2$
3?0 1 ?5 50 . 5 15 4553063 -37.04 077
mm mm mm mm mm
A, 6:?
S8mm
Min area of 9ension Steel )o014"%d/f
4013
S8mm
Max area of 9ensile Steel 06 %D
.1
S8mm
?58
S8mm
..30.6
S8mm
; > ( 7*,(&/)
$> M"=(+)
077
0.11
RESULT S(acin= of Main Bars
150
$$
Min )rea of Steel 0.2 :
46
S8mm
Chec# for Min rft
O
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 6?5 S8mm +se mm Dia %ars INPUT 1 )rea of ,ne Bar ..30.6 S8mm
RESULT S(acin= of Distri%'tion Bars
1?0
$$
DESIGN= CHEC FOR TOE SLAB TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
5 3?0 50 1 ..30.6 150
mm mm mm S8mm mm
Max Shear Force w>/2
5:.3
KN
0.0
0.33
INPUT
For
64
C&/"&,4+ mm thic# sla 0336
Nominal Shear stress @'/%d
U# 7&4
Shear Chec#
DESIGN OF HEELSLAB SPAN OF HEEL L PRESSURE AT HEEL W; WT OF SOIL OVER HEEL W5 WT OF HEEL W6 MAX BM AT HEEL M< SHEAR FORCE V$&x
0
.13 :8 1?1 11 ?3 3.?
DESIGN OF HEEL SLAB TO RESIST BENDING MOMENT 5 Grade of Concrete M Grade of Steel Fe 15 1.0 Base width Max BM Mx ?3.3? 3. BM !Const"fc#$ %d&2 16 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d 00 INPUT +se Dia of Sla% rft 1 )do(t Co*er for Sla% 50 55 ,*er all De(th of Base Sla% D idth of Sla% considered for Cal . 5 Grade of Concrete M Grade of Steel Fe 15 a 01 "!f&2/fc#$ 4553063 % -01 f -37.04 c m M'/!%d&2$ 067
M KN/m2 KN/m KN/m KN-m KN
Mtr KN-M %d&2 mm mm mm mm mm mm
A, 50
S8mm
Min area of 9ension Steel )o014"%d/f
1.5021
S8mm
Max area of 9ensile Steel 06 %D
.12
S8mm
81:
S8mm
..30.6
S8mm
; > ( 7*,(&/)
$> M"=(+)
067
RESULT S(acin= of Main Bars
0.3
10
$$
Min )rea of Steel 0.2 :
467
Chec# for Min rft
O
S8mm
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction 68.5 S8mm +se mm Dia %ars INPUT 1 )rea of ,ne Bar ..30.6 S8mm
RESULT S(acin= of Distri%'tion Bars
1?0
$$
DESIGN= CHEC FOR HEEL SLAB TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
5 00 55 1 ..30.6 10
mm mm mm S8mm mm
Max Shear Force w>/2
3.?
KN
0.0
INPUT
For
644
DESIGN OF STEM WALL TO RESIST BENDING MOMENT Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Stem RESULT )do(t Effecti*e De(th d INPUT +se Dia of Stem rft )do(t Co*er for Stem ,*er all De(th of Stem D
0332 047
U# 7&4
Shear Chec#
DESIGN OF STEM WALL SPAN OF WALL L3 MAX BM AT BOTTOM OF WALL MSHEAR FORCE V$&x
0.33 C&/"&,4+ mm thic# sla
8.?0 0.53 ?31.?
M KN-m KN
5 15 1.0 0.53 3. ?? 600 1 50 655
Mtr KN-M %d&2 mm mm mm mm mm
idth of Stem considered for Cal Grade of Concrete M Grade of Steel Fe a % c
01 "!f&2/fc#$ -01 f m M'/!%d&2$
$> M"=(+)
; > ( 7*,(&/)
07
. mm 5 15 4553063 -37.04 07
A, :6
0.7
S8mm
.221052 S8mm
Min area of 9ension Steel )o014"%d/f
Max area of 9ensile Steel 06 %D
272
S8mm
1:
S8mm
..30.6
S8mm
)rea of ,ne Bar
RESULT S(acin= of Main Bars
:0
Min )rea of Steel 0.2 :
17
Chec# for Min rft
O
$$ S8mm
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction :8.5 S8mm +se mm Dia %ars INPUT 8 )rea of ,ne Bar 4025 S8mm
RESULT S(acin= of Distri%'tion Bars
50
$$
DESIGN= CHEC FOR STEM WALL TO RESIST SHEAR Grade of Concrete M Effecti*e De(th ,*er all De(th of Stem Dia of Shear rft )rea of ,ne Bar S(acin= of Bars
5 600 655 1 ..30.6 :0
mm mm mm S8mm mm
Max Shear Force w>/2
?31.?
KN
0.0
INPUT
For
744
0.33 C&/"&,4+ mm thic# sla 0336
Nominal Shear stress @'/%d
.022
U# 7&4
Shear Chec#
DESIGN OF FRONT COUNTER FORT TO RESIST BENDING MOMENT
At of Front Co'nterfort )%o*e Base Sla%
203 18 8.? .04
Mtr KN/S8m KN/S8m Mtr
C/C dist %etween Co'nter Fort
303
Mtr
Max BM d'e to Earth
.25507
>en=th of Front Co'nter Fort Earth
Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2 Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a % c
RESULT No of Main Bars Min )rea of Steel 0.2 : Chec# for Min rft
.0.74
: .636
N7 S8mm
O
9em( rft 0.4 : of =ross area will %e (ro*ided in the lon=it'dinal direction
INPUT
+se )rea of ,ne Bar
1?:.5 16 2.0.6
RESULT S(acin= of Distri%'tion Bars INPUT
150
S8mm mm Dia %ars S8mm
110
$$
mm
150
Shear Force at d awa from Stem
DESIGN= CHEC FOR REAR COUNTER FORT WALL TO RESIST SHEAR SF/Aori9hr'st
Net SF F-M"tan /dQ
.6046
KN
6506
KN
Grade of Concrete M Effecti*e De(th ,*er allDe(th of Sla% Dia of Shear rft )rea of ,ne Bar No of Bars
5 1130 11:5 5 65.0 :
mm mm mm S8mm Nos
Max Shear Force w>/2
?:.?
KN
1.30
INPUT
For
..54
0.?0? C&/"&,4+ mm thic# sla
0 062
S&4
DESIGN OF REAR COUNTER FORT TO RESIST BENDING MOMENT Aei=ht of Front Co'nter Fort
50
Mtr
Base idh of Front Co'nter Fort
203
Mtr
nclination of Co'nter Fort At of Earth Fillin= )%o*e G>
0242 04
;adian Mtr
Max BM wh&3"!.-sinP$/!.sinP$"3/7
.6702
KN m
SF/Aori9hr'st wh&2"!.-sinP$/!.sinP$"3/2
47204.
KN
Grade of Concrete M Grade of Steel Fe Base width Max BM Mx BM !Const"fc#$ %d&2
.6036
5 15 Mtr 0.3 106.? N-MM 3. %d&2
Calc'lated Eff De(th of Sla% RESULT )do(t Effecti*e De(th d INPUT +se Dia of Sla% rft )do(t Co*er for Sla% ,*er all De(th of Base Sla% D idth of Sla% considered for Cal Grade of Concrete M Grade of Steel Fe a % c
Max De(th of N'tral )xis ! X$>0.0035=([email protected]?!=E7) E7> 00000 N=S$$ 24 043 d 6.4 061 d 4 067 d 44 066 d >imitin= Moment of resistance M; Const " %"d&2 N mm C#7,> 0.36/X$(10.X$)
2 .02
.4 .024
C#/*4,4 15 0 5 30 35
.2
mm Dia
1
$$ D%&
as distri%'tion ;ft 1
8
F4 50 20225 2052 30.4 60641 402.
Steel F4 15 207 2044 3. .133 60122
F4 500 .055. 20744 3.318 3.:8 60764
F4 550 .0565 20451 3.8 3.8:? 6046
mm Dia
$$ D%&
M&x S<4&* S,*477 5 G*&+4 C#/*4,4 M M&x SS N=S$$ 3.1 / 5 D47%# S<4&* S,*4#,<
RCC RETAINING WALL(CANTILEV (WHERE WATER TABLE IS ABOVE
INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT
INPUT INPUT INPUT INPUT INPUT
INPUT INPUT
INPUT INPUT
INPUT DATAS GRADE OF CONCRETE / GRADE OF STEEL ! ANGLE OF REPOSE OF SOIL 0 SUBMERGED DENSITY OF SOIL W7" BUL DENSITY OF SOIL W7 SAFE BEARING CAPACITY SBC ANGLE OF SURCHARGE OF FILL C COEFFT OF FRICTION " COS C COS 0 COEFFT O ACTIVE PRESSURE & HEIGHT OF FILLING H HT OF WATER TABLE FROM TOP OF FILL H1 HT OFSUBMERGED EARTH H MIN DEPTH OF FDN < PROVIDE DEPTH OF FDN TOTAL HT OF WALL H, RATIO ALPHA AS PER FORMULAE BASE WIDTH B(MIN) PROVIDE BASE WIDTH B SURCHARGE ;7 BASE SLAB THIC D(MIN) PROVIDE BASE SLAB THIC D WALL THIC T(MIN) PROVIDE WALL THIC T CHEC FOR SBC WT OF BASE SLAB W1 WT OF STEM WALL W WT OF SOIL OVER HEEL TOTAL STABILISING FORCE W SAT SOIL PRESSURE P1 SUB SOIL PRESSURE P VERTICAL COMP OF EARTH PRESSURE HORIONTAL EARTH PRESSURE P SURCHARGE P7 DISTANCE OF W1 FROM HEEL X1 DISTANCE OF W FROM HEEL X DISTANCE OF W3 FROM HEEL X3 HT OF HORT FORCE P1 FROM HEEL HT OF HORT FORCE P FROM HEEL HT OFSUR FORCE Y FROM HEEL DIST OF VERT REACTION FROM HEEL CALCULATION OF PRESSURE REACTION OF FORCES DIST OF REACTION FROM HEEL X ECCENTRICITY 4
mm mm mm mm KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m mtr mtr mtr mtr mtr mtr mtr
4.056 KN 20.. mtr -035 m
9AS S S9)B>SN
MAX PRESSURE P$&x MIN PRESSURE P$%# FOS AGAINST OVERTURNING FOS AGAINST SLIDING
INPUT
INPUT
INPUT INPUT
INPUT
INPUT INPUT
INPUT
65045 KN/m2 .37027 KN/m2
3.?: 1.0 IF FOS1.5 PROVIDE SHEAR EY 0R INCREASE WIDTH OF FDN
DESIGN OF SHEAR EY PERMISSIBLE SHEAR STRESS T/ THICNESS OFEY DEPTH OF EY PROVIDE DIA OF STEEL BAR SPACING OF BARS EY REINFORCEMENT DESIGN OF BASE SLAB DESIGN OF TOE SLAB EFFECTIVE DEPTH OF TOE + SPAN 0F TOE L1 WT OF FOOTING W MAX BM AT BASE OF TOE M, DEPTH OF SLAB RED +1 PROVIDE DEPTH M"=/++ PERCENTAGE OF STEEL ; AREA OF MAIN RFT A7, PROVIDE DIA OF BAR SPACING OF BARS AREA OF DIST RFT A7, PROVIDE DIA OF BAR SPACING OF BARS
CHEC FOR SHEAR STRESS SHEAR FORCE V$&x NOMINA SHEAR STRESS T
.105. KN 023 N/mm2
DESIGN OF HEELSLAB SPAN OF HEEL L PRESSURE AT HEEL W; WT OF SOIL OVER HEEL W5 WT OF HEEL W6 MAX BM AT HEEL M< DEPTH RED +3 PROVIDE DEPTH M<=++ PERCENTAGE OF STEEL ; AREA OF MAIN RFT A7, PROVIDE DIA OF BAR SPACING OF BARS AREA OF DIST RFT A7, PROVIDE DIA OF BAR
CHEC FOR SHEAR STRESS SHEAR FORCE V$&x NOMINA SHEAR STRESS T
63104 KN 052 N/mm2
DESIGN OF STEM WALL SPAN OF WALL L3 MAX BM AT BOTTOM OF WALL M-
407 M 74203 KN-m
PROVIDE DEPTH M<=++ PERCENTAGE PERCENTAGE OF STEEL ; AREA OF MAIN RFT A7, PROVIDE DIA OF BAR SPACING OF BARS AREA OF DIST RFT A7, PROVIDE DIA OF BAR SPACING OF BARS