ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﺣﻤﻦ ﺍﻟﺮﺣﻴﻢ ﻭﺍﻟﺼﻼﺓ ﻭﺍﻟﺴﻼﻡ ﻋﻠﻰ ﺃﺷﺮﻑ ﺍﻟﻤﺨﻠﻮﻗﻴﻦ ﻣﺤﻤﺪ ﺳﻴﺪ ﺍﻟﻤﺮﺳﻠﻴﻦ ﻭﻋﻠﻰ ﺁﻟﻪ ﻭﺻﺤﺒﻪ ﺃﺟﻤﻌﻴﻦ ﺃﻣﺎ ﺑﻌﺪ ٬ ﻳﺴﺮﻧﻲ ﺃﻥ ﺃﻗﺪﻡ ﻟﻜﻢ ﻫﺬﺍ ﺍﻟﻌﻤﻞ ﺍﻟﻤﺘﻮﺍﺿﻊ ﻭﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻠﻰ ﻣﻠﺨﺼﺎﺕ ﻣﻊ ﺗﻘﻨﻴﺎﺕ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻟﻤﺴﺘﻮﻯ ﺍ ﻟﺠﺬﻉ ﺍﻟﻤﺸﺘﺮﻙ ﻋﻠ ﻤ ﻲ ﻣﺠﻤﻌﺔ ﻓﻲ ﻛﺘﺎﺏ ﻭﺍﺣﺪ ﻭﻫﻲ ﻟﻸﺳﺘﺎﺫ ﺣﻤﻴﺪ ﺑﻮﻋﻴﻮﻥ sefroumaths.site.voila.fr
ﺗﺠﻤﻴﻊ ﻭﺗﺮﺗﻴﺐ ALMOHANNAD
ــــ دئ اــــ ﺏـــــــــ ت
(2 . 0 ". 6 -! !3! . 0 , ! ". 0 . a ". c $) b ". c a ". b $ !%& . 6 -! !3! 8 ". 1 -! . 9 ". . 1 , ! "# 1 -
(* (* (* (* (* (*
25,11,9,5,4,3,2 () &* + (3 " (a $ # α r 7..... 7 α 3 7 α 2 7 α1 7 α 0 $-
{0,1, 2,3, 4,5, 6, 7,8,9}
%-! -! -& α r α r −1 ...α 0 6 - ............ 7 α1 ! "# 7 α 0 ! "#
- (b :- a = α r α r −1 ...α 0 -! α 0 ∈ {0, 2, 4, 6,8} $ !%& 2 6.-! . a (* 3 / α 0 + α1 + α 2 + + α r $ !%& 3 6.-! . a (* 4 / α 0α1 $ !%& 4 6.-! . a (*
α 0 ∈ {0,5} $ !%& 5 6.-! . a (* 9 / α 0 + α1 + α 2 + + α r $ !%& 9 6.-! . a (* $
a !%& 3 6.-! . (* 11 / (α 0 + α 2 + α 4 + ......) − (α1 + α 3 + α 5 + .....)
{
}
α1α 0 ∈ 00, 25,50, 75 $ !%& 25 6.-! . a (*
. $"% &* (4 . $ 1 $ $ b a $- !" " 1 "# , b a $ - 3! 4-! ".-! . a ∧ b PGCD (a , b ) - . 5 4
. /)' 0 - (5 . a ≥ b IN * $ b a $: 6- 6# ;# PGCD (a, b ) $ ".-! < ". "= b a 6. $ " # !%, # -! . " 1 # *> , PGCD (a, b ) : ?-! @%, A* $ a r1
b q1
r1
r2
q2
q3
r1
r2
...
...
...
...
...
rn
0
(I IN = {0,1, 2,3, 4,5.......}
IN * = {1, 2,3, 4,5.......}
– (II a (1 . k ∈ IN a = 2 k a (2 . k ∈ IN a = 2 k − 1 a = 2 k + 1
(3 . ! "# $ !%& $ (a . ! "# $ !%& $ (b . a + b $) $ b a $ !%& (* (c . a + b $) $ b a $ !%& (* . a + b $) b $ a $ !%& (* . ab $) $ b a $ !%& (* (d . ab $) $ b a $ !%& (* . ab $) b $ a $ !%& (* *+! , $) $ $ b a $ !%& (e .
(III . $ $ b a $- !" (1 a $ !%& b - /0 a -! $& . . k ∈ IN a = b k
(2 . /0 0 (* . 0 , ! /0 - 0 (* $) c /0 b b /0 a $ !%& (* . b - /0 a
# $"% ! (3 . $ 1 $ $ b a $- !" /0 2 , b a $ - 23! 4-! /0-! PPCM (a, b ) - . 5 4 " 1 . a ∨b
(4
PPCM (a, b ) = a $) b - /0 a -! $ !%& (* PPCM (a, a ) = a (*
& ' (IV . $ $ b a $- !" (1 ". b -! $& 7 b 6.- # a -! $& . a b /0 a $ !%& a . b / a . k ∈ IN a = b k
(V - a - ! !" (1 . a 1 . $#
(2 . 8 - a -! , B. - (a p ≤ a B. -! p 6-3! !3! 8 . - 1 a $) a ". !3! @%, $ !%& . - a $) a ". C !3! @%, 8 ; !%& , 100 $ 23! 6-3! !3! (b 47 ,43 ,41 ,37 ,31 ,29 ,23 ,19 ,17 ,13 ,11 ,7 ,5 ,3 ,2 .97 ,89 ,83 ,79 ,73 ,71 ,67 ,61 ,59 ,53 7 , p ≠ 2 - (c . - E- 1 -! (d 2
0 2 3 (4 $." (3 < 6. a ≥ 2 : a = p1α1 . p 2α 2 . p 3α3 ...... p rα r
. 6- ! p r 7..... 7 p 3 7 p 2 7 p1 . 6 1 6 ! α r 7..... 7 α 3 7 α 2 7 α1 . 6- ! F! -& a -! 49 6 -! @%, 54 = 2 × 3
3
54 27 9 3 1
$%& $%&
25
2 3 3 3
- :54 -! 49-
. +" (4 F! , b a $ - 23! 4-! /0-! (a b a 9 $ 6-! 1 6-! 6-3! ! -! . E -& 6 ! -! F! , b a $ - 3! 4-! ".-! (b . E 2 -& 6 b a 9 $ 6-! 6-3! 76 ∨ 632 و76 ∧ 632
76 2 38 2 19 19 1
76 = 22.19
632 316 158 79 1
25 $-
2 2 2 79
632 = 23.79
76 ∨ 632 = 23.19.79 = 12008
:-
76 ∧ 632 = 22 = 4
$%&
a ≥ 2 $- (c ! F! -& a -! 49 a = p1 . p 2 . p 3α3 ...... p rα r . 6- (1 + α1 )(1 + α 2 ) (1 + α r ) , a -! "!# α1
α2
ا ب ا :
&'( IK وIJ + 2 (a .(... + α IJ + β IK = 0 + IJ = α IK 9) 3; &*2 IK وIJ :2 ! .9 AC وAB &8-. < = IK = 6AB − 3AC IJ = 2AB − AC 9 * . IK = 3IJ 3IJ = 6 AB − 3DC = IK + MA = 3MB >2 & M 989 ( ABC ) (b
:8 @* & 8 M 73 3? MA = 3 ( MA + AB ) MA = 3MB
MA − 3MA = 3 AB
3 2
. AM = AB 2 AM = 3 AB −2MA = 3 AB
(A
v وu 1 ( ) u .!" v AB = − BA 2 (.$% &'() AB + BC = AC 3 . A = B ) AB = 0 4 u +v v v u + v ** $+ 5 u $-. v u , ./0+ 1 u /0+ 1 ( ABCD ) (23 6 5* 4 C D :& 3% I AB = DC (a A B AD = BC (b AC = AB + AD (c .7- [ BD] [ AC ] 3 (d B I A [ AB ] & 7- I 7 1 AI = AB 2
IA = − IB (*
(*
IA + IB = 0
AI = IB (* 1 BI = BA 2
(*
(*
: 1 AI = AB 2
$ [ AB ] 7- I (a
+ 2 + [ AB ] 7- I + 2 (b IA + IB = 0 BC [ ] 7- I 989 ( ABC ) 1 . AI = AB + AC C 2
A
(
I
B
B
*
.989 ( ABC ) 9 [ AC ] 7- J [ AB ] 7- I
A I
)
8
J C
1 IJ = BC 2
*
v وu (a 10 . v وu (b . u = α v + v = α u AC وAB 4 & C وBوA (c AC = α AB + AB = α AC CDوAB 4 ( CD ) ( AB ) (d .
( BC ) ( D) . 77 ( ABC ) (3 N ( AC ) M ( AB) A AM AN MN : ! = = AB AC BC M N AB AC BC = = AM AN MN B C MA NA MN = ≠ " MB NC BC . 86 I 3* 89 ( ABCD) (4
B
A I D
IA IB AB = = : ! IC ID CD IC ID AB = = IA IB CD AI AB C BI = ≠ " BD AC CD
. (I O ( L) ( D) ( P) M (D ) M ( L) M ' . ( D) M M M ' M ' (L ) . ( D) ( L)
. !" # $ % #& ' ( L) M (a . O ' ( D) M (b ) ' ( D) ( L) ( (c . ( P) * ( P) p . p( M ) = M ' - M ' M ' + ,$ ! ( p . ( D) ⊥ ( L) ,$ (d . ( L)
. ! (II
: " # "! (5 + 3 ( L3 ) ( L2 ) ( L1 ) (a # 6 ( D ') ( D) A A ' C B A (L1 ) B B ' . C' B' A' (L 2 ) C C ' (L 3 ) ( L1 ) //( L2 ) ( L1 ) //( L2 ) //( L3 ) . AB A ' B ' ,$ = AC A ' C ' ( AC ) N ( AB ) M . 77 ( ABC ) (b
( MN ) //( BC ) .
AM AN = ,$ AB AC
: " < +": 4;3;2;1 +": (1 . 0 < = 9 . > !# (5) ": . D C B A + ,$ (2 AB = kCD ? AB = kCD
:
/0 1 * ( (1 {( A,α ), ( B, β )} /0 G ,$ p(G ) = G ' p( B) = B ' p( A) = A '
{( A ',α ), ( B ', β )} [ A ' B ']
/0 G' .
:
3" 1 * ( (2 /0 I' . [ AB ] 3" I ,$ p( B) = B ' p( A) = A ' 4*
:
#0 1 * ( (3 A ' B ' = kC ' D ' . AB = kCD ,$ D C B A " ' D ' C' B' A' .
(III + 5 ( L4 ) ( L3 ) ( L2 ) ( L1 ) (1 C B A # 6 ( D ') ( D) : ! . D ' C' B' A' D A A ' CA C ' A ' AB A ' B ' B B ' ...... BD = B ' D ' CD = C ' D ' C C ' D D ' ( L3 ) ( L2 ) ( L1 ) (2 ( D ') ( D) + 3 A A ' C B A # 6 (L1 ) B ' . C' B' A' (L 2 ) B : ! C ' (L 3 ) C CB C ' B ' AB A ' B ' ...... = = AB A ' B ' AC A ' C '
IR ا- ا ب . '",.ور ا01( ا4
ا*يb ,ﺝ.د ا$% ا. هa د$%& '*ر ا)ﺏ+ ا. a ∈ IR .
( a )n = a n
a = b
a
و
b
. x = − a أوx =
ab =
(∗
x2 = x a
a ≥ 0 (∗ ab = a b
(∗
a a = b b
(∗
.
. IR ا ب
"ی
a = b ,4 و. b 2 = a : 123ی . ــــــت%ﺥ + . IR b وa (a
a 2 = ( a ) 2 = a (∗
.
+
x ∈ IR (b
b : نab > 0 ( إذا آنc
a یـــــــx 2 = a a ∈ IR + (d
. '2ـــــــــﺱ4( ا5
. IR ( ا ا ب1 . IR d وc وb وa a + c = b + c یـــــــa = b (a (c ≠ 0) a.c = b .c یـــــــa = b (b a + c = b + d a = b ـــــن و ( إذا آن وc a.c = b .d c = d . b = 0 أوa = 0 یـــــــa.b = 0 (d . b ≠ 0 وa ≠ 0 یـــــــa.b ≠ 0 (e a c (a ≠ 0 وb ≠ 0) a.d = b .c = یـــــــ (g b d a c ac a c ad + bc . = و (h + = b d bd b d bd a a a 1 b b = a ⋅ d (i = وb = و a a c b c c bc b d
IR ( اى2
: إذا آن82 إذا وd وc ' ' ن674 b وa دی$%ل إن ا.2 (a
a b = c d a a a : ن1 = 2 = = n : ( إذا آنb b1 b 2 bn a1 a2 a k a + k 2a2 + + k n an = = = n = 1 1 b1 b 2 b n k 1b1 + k 2b 2 + + k n b n
. 5 6ئ ا81( ا6 x 22د ﺡ$: ; آ: ( "یa k ≤ x < k + 1 : 7% یk + 1 أوE (x ) = k ,4 وx د$%& >3=@ئ ا+ اA< یk <7د ا$%ا [x ] = k
وk %ﺏ44 < دی$: ر ﺏ.=3
.
: '(*ﺡ x ;B )ة$ﺝ.< ا*ي ی7د ا$% ا. هx د$%& >3=@ئ ا+∗( ا . IR x ; E ( x ) ≤ x < E ( x ) + 1 (∗
.
IR
( اـــــــــــــــII ـــــــت%( ﺥ1
a − b ≥ 0 یـــــــa ≥ b (∗ (a a − b ≤ 0 یـــــــa ≤ b (∗ a − b > 0 یـــــــa > b (∗ (b a − b < 0 یـــــــa < b (∗ . a = b أوa < b 7% یa ≤ b (∗ (c . >3) ﺹD % واa ≤ b نa < b ∗( إذا آن a + c ≥ b + c یـــــــa ≥ b (∗ (d a + c > b + c یـــــــa > b (∗ a ≤ b . a ≤ c ن ( ∗( إذا آن وe b ≤ c
(a ≠ 0) a = 1 (∗ a = 1 (∗ * (n ∈ IN − {1} ) a n = a . a. a..... a (∗ 1
0
( "یa
n fois
1 (∗ an ـــــــت%( ﺥb * . Z n وm وIR b وa (a 1 a − n = n (∗ a m . a n = a m + n (∗ a n n (ab ) = a .b n (∗ (a m ) n = a mn (∗ n a an a ( ) n = n (∗ = a n − m (∗ m b b a 2 2 a = b نa = b ( إذا آنb 2 2 . a = b ارة نb وa وa = b ( إذا آنc a −n =
. a = −b أوa = b یـــــــa = b (d ی "! أن أنa = b : أن '*ﺡ(ـــــ 2
ارةb وa وa = b 2
2
2
'ـــــت ه,- (3 (a + b ) 2 = a 2 + 2ab + b 2 (a (a − b ) 2 = a 2 − 2ab + b 2 (b a 2 − b 2 = (a − b )(a + b ) (c (a + b )3 = a 3 + 3a 2b + 3ab 2 + b 3 (d (a − b )3 = a 3 − 3a 2b + 3ab 2 − b 3 (e a 3 − b 3 = (a − b )(a 2 + ab + b 2 ) (f a 3 + b 3 = (a + b )(a 2 − ab + b 2 ) (g
ت9ــــــــ1.( ا3
[a, b ] = {x ∈ IR / a ≤ x ≤ b } [a, b [ = {x ∈ IR / a ≤ x < b } ]a, b ] = {x ∈ IR / a < x ≤ b } ]a, b [ = {x ∈ IR / a < x < b } [a, +∞[ = {x ∈ IR / x ≥ a} ]a, +∞[ = {x ∈ IR / x > a} ]−∞, a ] = {x ∈ IR / x ≤ a} ]−∞, a[ = {x ∈ IR / x < a}
(a (a (a
a ≤ b a + c < b + d ن ∗( إذا آن و c < d
(a (a
a ≤ b ac ≤ bc ن ( ∗( إذا آن وg c ≥ 0
(a (a (a
ـــــــــــ:;( ا4
وa ≤ x < b وa < x < b : وﺕت4 اFوﺕ4 ; آ: "ی . b − a K4%6 x د$%& )اPQ ﺕA< ﺕa ≤ x ≤ b وa < x ≤ b
. 'ــــــــ,.' ا.( ا5 م.2 ، r FB$ ﺏx د$%& 8)ی4 ﺏF)ﺏ2 FB x 0 ( إذا أرد أن أنi (a
0 ≤ x − x 0 ≤ r $+76 وx − x 0 )PQ4ﺏ م.2 ، r FB$ ﺏx د$%& ﺏ )اطF)ﺏ2 FB x 0 ( إذا أرد أن أنii .
a ≤ b ∗( إذا آن و b < c a ≤ b . >3) ﺹD % واa + c ≤ b + d ن ( ∗( إذا آن وf c ≤ d . a < c ن
− r ≤ x − x 0 ≤ 0 $+76 وx − x 0 )PQ4ﺏ
م.2 ، r FB$ ﺏx د$%& F)ﺏ2 FB x 0 ( إذا أرد أن أنiii
− r ≤ x − x 0 ≤ r $+76 وx − x 0 )PQ4ﺏ . x − x 0 ≤ r 7%ی
a ≤ b ∗( إذا آن و c ≤ 0 0 ≤ a ≤ b . >3) ﺹD % واac ≤ bd ن ( ∗( إذا آن وf 0 ≤ c ≤ d 0 ≤ a ≤ b ac < bd ن ∗( إذا آن و 0 < c < d 1 1 ≥ یـــــــa ≤ b (∗ . b > 0 وa > 0 (i a b 1 1 ≥ یـــــــa ≤ b (∗ . b < 0 وa < 0 (j a b a 2 ≤ b 2 یـــــــa ≤ b (∗ b ≥ 0 وa ≥ 0 (k . ac ≥ bc ن
a≤ b
x د$%) اPQ4م ﺏ.2 x د$%& F)ﺏ2 FB د$3 ( إذا أرد أنb : & أن یT474< 7 و ه: a ≤ x ≤ b r = b − a FB$ ﺏx د$%& 8)ی4 ﺏF)ﺏ2 اF2 ه اa (i r = b − a FB$ ﺏx د$%& ﺏ )اطF)ﺏ2 اF2 ه اb (ii b −a a +b r= FB$ ﺏx د$%& F)ﺏ2 اF2ه ا (iii 2 2 '( *ﺡ(ــــــc : F4)ات اPQ4ى ا$ إﺡ7ی$ V )ة إذا آx د$%& F)ﺏ2 FB $ی$3ی ﺕ r FB$ ﺏx د$%& 8)ی4 ﺏF)ﺏ2 FB x 0 ن.46 و0 ≤ x − x 0 ≤ r (i r FB$ ﺏx د$%& ﺏ )اطF)ﺏ2 FB x 0 ن.46 و− r ≤ x − x 0 ≤ 0 (ii
یـــــــa ≤ b (∗
$+76 و
x − x 0 ≤ r أو− r ≤ x − x 0 ≤ r (iii
r FB$ ﺏx د$%& F)ﺏ2 FB x 0 ن.46و
. ( ای ا"=يd . IR x n
E (10 x ) )يW%د ا$%( اi 10n −n . 10 FB$ﺏ n E (10 x ) د$%& ﺏ )اطF)ﺏ2 اF)یW% اF2 اA<ی + 1 )يW%د ا$%( اi 10n −n . 10 FB$ ﺏx
x د$%& 8)ی4 ﺏF)ﺏ2 اF)یW% اF2 اA<ی
a 2 ≥ b 2 یـــــــa ≤ b (∗ b ≤ 0 وa ≤ 0 (l a 2 ≤ b 2 یـــــــa ≤ b IR b وa (m b = 0 وa = 0 نa + b = 0 ارة وb وa ( إذا آن ـn '(*ﺡ رن2 ، F%*ور ا)ﺏ+ اA&: ین.43 یb وa دی$%إذا آن ا 2 2 G ﺙb وa إرة1234 وb وa رن2 ی "! أنb وa . (l ( وk 4ﺹI; ا%4<
. '-.' ا.( اــــــــــ2 K @) د ا*ي$% ه اx د$%& F2&J اF2 ا. IR x :
"ی
x ; x ≥0 x = : &)ف ﺏ ی% واx ب −x ; x ≤ 0 . K< هx د$%& F2&J اF2 ن اx ≥ 0 ∗( إذا آن: 7%ی . K&ﺏ2 هx د$%& F2&J اF2 ن اx ≤ 0 ∗( إذا آن ـــــــــــت%ﺥ x ≥ 0 (∗ −x = x (∗ (a x x n = (∗ x n = x (∗ xy = x y (∗ y y . .
x = −r أوx = r یـــــــx = r (∗ (b
x = − y أوx = y یـــــــx = y (∗ − r ≤ x ≤ r یـــــــx ≤ r (∗ (c x ≤ − r أوx ≥ r یـــــــx ≥ r (∗
III u
/ A :3/ 1 u 1# A # )# (D ) u ! # M # " i A . ( D ) D ( A, u ) 1 u AM .
u
AM
: !"
/ M ∈ D ( A, u ) (a
( ∆ ) # .) ( D ) (b . (D)
. AB 1 A ( AB ) )# (c (D ) i B A . % &' 2
:($ u ( a, b )
(D) :
1# A ( x , y ) # )# ( D ) 0
x = x0 + at y = y0 + bt
( t ∈ IR )
0
- ( D ) )! 2# $
I ( i, j )
1 u . B = ( i, j ) 2 # $#% ( x, y ) # u = xi + y j !" i
.j
. u x u ( x, y ) y
B
u
&
.& u # '$#% #(% : !" #(% . j i * u # ) B = ( i, j ) . u ( x, y ) ( x, y ) - u $#% +, u = xi + y j . B = ( i, j ) 3
j ( 0,1)
i (1, 0 ) (a v ( x′, y′ ) u ( x, y ) # / (b α u (α x,α y ) u − v ( x − x′, y − y′ ) u + v ( x + x′, y + y′ ) v ( x′, y′ ) u ( x, y ) # / (c /# . B & v u # (* : ! 3/# det ( u, v ) 1 2(# x x′ = xy′ − yx′ det u , v = y y′ , #(% v u # (* det u , v ≠ 0 . j i (1 α = β = 0 +, α i + β j = 0 #(% (* . β = β ′ α = α ′ +, α i + β j = α ′i + β ′ j #(% (*
( )
# # " - ( D ) / 2## $# #(. t ∈ IR 6 (1 + 3t , 2 − 4t ) !" $##
'$## !" 8 IR t 9" ! / . (D) . M ( 4, −2 ) ∈ ( D ) (% y = −2 x = 4 t = 1 "' . ) $ 3 1# A ( x , y ) # )# ( D ) (a : ! : ( D ) / !" 8! u ( a, b ) det ( AM , u ) = 0
/ M ( x, y ) ∈ ( D ) 0
0
x − x0
a
y − y0
b
=0
b ( x − x0 ) − a ( y − y0 )
/
/ : Ax + By + C = 0 !" / !" 8 ) ( D ) / - ( A, B ) ≠ ( 0, 0 ) . ( D ) : Ax + By + C = 0 ( D ) : a x + b y + c = 0 "# / (b . u ( −b, a ) 1 ) ( D ) # ( D ) #(% (* (c (D ) c i (1, 0 ) # +, 8,;# j . y = c !" 1/ 1 O i # ( D ) #(% (* (D ) j ( 0,1) # +, #;# j . x = c !" 1/ 1 O i c 1# o ( 0, 0 ) # )# - 8,;# (* . y = 0 1/ i (1, 0 )
#(%
( ) : !"
# +, 65$ C B A ' #(% (2 . ! . AC AB j
i
o
$ II 6 ( o, i, j ) 6!$ !/ 1
. ( ) )!/# / 2 OM # 7# M # $#% ( x, y ) # OM = xi + y j !" R = o, i, j
x M y
( o, i, j ) )!/!
M ( x, y )
R
)!/!
M
'$#% #(% : !" #(% . j i * OM ) . M ( x, y ) +, . R = ( o, i, j ) )!/# / 3 B ( x , y ) A ( x , y ) # / . AB ( x − x , y − y ) (* # '$#% +, [ AB ] 38 I #(% (* M
OM = xi + y j
B
B
A
A
B
: -
I
yI =
+,
y A + yB 2 C
,
B
A
xI =
A
B
A
x A + xB 2
# ' #(% : !" .)!/ ( A, AB, AC ) 6!$#
# ( ∆′) ( ∆ ) #(% (c ( ∆′) v ( ∆ ) u <
( )
det u , v
. /
( ) ( )
( ∆ ) // ( ∆′) +, det u, v = 0 ( ∆′) ( ∆ ) +, det u, v ≠ 0
#(% (i
#(% (ii
-; 2 +, ( ∆ ) // ( ∆′) #(% (d .
/ ) a ≠ 0 : u ( a, b ) 1 ) ( ∆ ) (b . m b - ( ∆ ) 1# /# ( ( ∆ ) // ( y′ο y ) a
( ∆′) : y = m′x + p′ ( ∆ ) : y = mx + p # / (c ( ∆ ) // ( ∆′ ) m = m′
, #(%
1#
o ( 0, 0 )
# )# - #;# (* . x = 0 1/ j ( 0,1) .)$ % &' * + ) $ 4 :' , 2# $ !" 8! ( ∆ ) : x + 2 y − 1 = 0 )# / (a x = t y = t : ( ∆ ) < ( ∆ ) .<=#
(% x = 1 − 2t / x + 2t − 1 = 0 (% y = t :9 :"' . ( ∆ ) x = 1 − 2t y =t
/
!" 8!
x = 1 + 2t (1) ( ∆ ) : y = 3 + t ( 2 )
)# / (b
< ( ∆ ) .7<;# , >/ ( 2 ) (1) (1) , >/ t = − y − 3 ( 2 ) :5$ . ( ∆ ) : x + 2 y + 5 = 0 (% x = 1 − 2 y − 6 : - . 5 ?# ( ∆′) ( ∆ ) # : # (a : !
,
t
x = x1 + a′t ′ y = y1 + b′t ′
( ∆′ ) :
( ∆′) ( ∆ ) +,
@ ( ∆ ) : xy == xy
x + at = x + a′t ′ 1 (S ) 0 y + bt = y + b′t ′ 1 0
0
+ at
0
+ bt
#(% (i
A # )
t = . # 5 ( S ) #(% (* $ , t >/ $#% !" 8 , / . (∆) . ( ∆ ) = ( ∆′) +, !# 1 * ( S ) A ! #(% (* t′ = .
x = 1+ t y = −1 + 2t
( ∆′ ) : 2 x − 3 y + 1 = 0 ( ∆ ) :
#(% (ii
(1) ( 2 ) A # ) 2 x − 3 y + 1 = 0 ( 3) x =1+ t
( S ) y = −1 + 2t
# / !" 8 ( 3) , y x >/ . , / ( ∆′) ( ∆ ) , /# B( #(% (* .!" 8 ( 2 ) (1) , t >/ ./C ( ∆′) ( ∆ ) +, * /# ' #(% (*
+, !# 1 * /# ' #(% (* . ( ∆ ) = ( ∆′ ) A # ) ( ∆′) : 2 x − y + 1 = 0 ( ∆ ) : x + 2 y − 1 = 0 #(% (iii .(i '* D ( S ) 2 x − y + 1 = 0 x + 2 y −1 = 0
( ∆ ) : ax + by + c = 0 ( ∆′ ) : a′x + b′y + c′ = 0
A # / ( ∆′) ( ∆ ) +,
# / (b
a b ≠0 a′ b′
#(% (i
.:# !" 8! ( ∆′ ) // ( ∆ ) +,
a b =0 a′ b′
#(% (ii
./C ( ∆ ) // ( ∆′) +,
b c ≠0 b′ c ′
a c ≠0 a′ c′
#(% (*
. ( ∆ ) = ( ∆′) +,
b c =0 b′ c ′
a c =0 a′ c′
#(% (*
ا ودت -ا ت ا دت وا ات ﻡ ا ر ا ﻥ ﻡ&ﺡ:
(Iا ودت
(aا%د ) ( E ) : ax 2 + 2b ′x + c = 0ی&( b = 2b′ G 3ا Cا0 ∆′ H Dض ا . ∆ Cوی&∆′ = b′2 − ac % *( إذا آ%ن A. ∆′ 〉 0ن ا%د ) ( Eﺕ 29 D 9 3ه.%
1ﺕ » xا
P ( x ) = an x n + an −1 x n −1 + .... + a1 x + a0
an ,...., a1 , a0أاد و *( ) P ( xأو Pﺕ ودی ار nو . deg P = n *( ا!اد an ,...., a1 , a0ﺕ $%ت ا"ودی . P (bﺕ0ن ودی & إذا و -.إذا آ$% ( ) %ﺕ'.& % (cا"ودی ا& ) ' %در. (dﺕ0ن ودی %ن %وی %ن إذا و -.إذا آ$% ) %ت ا"ود 12ار %وی. (eآ 3ودی ار P ( x ) = ax + b :1ﺕ ا . (fآ 3ودی ار P ( x ) = ax 2 + bx + c :2ﺕ 7$7 ا"ود. deg ( P + Q ) ≤ sup(deg P , deg Q ) (a 2 deg ( P − Q ) ≤ sup(deg P , deg Q ) (b (c deg ( P ⋅Q ) = deg P + deg Q an ≠ 0
3ا x − α !" #$ P ( x ) (aودی0 .ل إن اد : αر "9ودی Pأو ;2 "9ودی Pإذا و -.إذا آ%ن P (α ) = 0 P ( x ) (bودی. ) P ( xﺕ 3ا x − α 9إذا و -.إذا آ%ن . P (α ) = 0
ﻡ&ﺡ:
(aإذا أرد %أن "= ه P ( x ) 3ﺕ 3ا 0 x − α 9م ﺏ"%ب ) . P (α *( إذا آ%ن A. P (α ) = 0ن ) P ( xﺕ 3ا . x − α 9 *( إذا آ%ن A. P (α ) ≠ 0ن ) B P ( xﺕ 3ا . x − α 9 (bإذا أرد %أن "= ه P ( x ) 3ﺕ 3ا 0 x + α 9م ﺏ"%ب ) . P ( −α
(IIا دت وا ات ﻡ ا ر .II 1ﺡ* ا د ax 2 + bx + c = 0 ا%د a ≠ 0 ( E ) : ax 2 + bx + c = 0 أ 3 3ا%د ) 0 ( Eم ﺏ"%ب اد ∆ = b 2 − 4ac *( اد ∆ ی Cا %د ) . ( E *( إذا آ%ن A. ∆ 〉 0ن ا%د ) ( Eﺕ 29 D 9 3ه.% ∆ −b − 2a
= x1
∆ −b + 2a
= x2
−b *( إذا آ%ن A. ∆ = 0ن ا%د ) ( Eﺕ $ 3وا 2a *( إذا آ%ن A. ∆ 〈 0ن ا%د ) B ( Eﺕ 3أي .3
=x
−b′ − ∆ ′ a
−b′ + ∆ ′ a
= x1
= x2
−b′ *( إذا آ%ن A. ∆′ = 0ن ا%د ) ( Eﺕ $ 3وا a *( إذا آ%ن A. ∆′ 〈 0ن ا%د ) B ( Eﺕ 3أي .3
=x
(bإذا آ%ن A. ∆ = α 2ن ا%د ﺕ9 3 −b − α 2a
−b + α 2a
= x1
= x2
ﺕ* ﺙ&ﺙ ا ود
2 7$7ا"ود a ≠ 0 ( P ( x ) = ax + bx + c 2 أ 3ﺕ0 P ( x ) 3م ﺏ" 3ا%د ( E ) ax + bx + c = 0 *( إذا آ%ن A. ∆ 〉 0ن ا%د Eﺕ x1 9 3و x2وی0ن ﺕ3 ) P ( xهP ( x ) = a ( x − x1 )( x − x2 ) 0 *( إذا آ%ن A. ∆ = 0ن ا%د ) ( Eﺕ $ 3وا x0وی0ن 2
ﺕ P ( x ) 3هP ( x ) = a ( x − x0 ) 0 2
وا"ودی ) P ( x
*( إذا آ%ن A. ∆ 〈 0ن ا%د ) 3 %' 1 ( E %' 1ﺕ.3 ﻡ&ﺡ: إذا آ%ن A. ∆ = 0ن ا"ودی ) % P ( xرة %Jﺏ ه.%
3إ-رة ﺙ&ﺙ ا ود.
ا"ودة ( a ≠ 0 ) P ( x ) = ax 2 + bx + c 0م إ%Lرة ) P ( x دراﺱ أ3 2 ا%د ( E ) : ax + bx + c = 0 *( إذا آ%ن A. ∆ 〉 0ن ا%د ) ( Eﺕx 1 29 D 9 3و وﺕ0ن إ%Lرة ) P ( xهG x1
x2 x2 a a a 0 0
ﺏ"3 x2
x ax 2 + bx + c
*( إذا آ%ن A. ∆ = 0ن ا%د ) ( Eﺕ $ 3وا x0وﺕ0ن إ%Lرة ) P ( xه:G x x0 2 a a ax + bx + c 0 إ%Lرة ) P ( x
*( إذا آ%ن A. ∆ 〈 0ن ا%د ) 3 %' 1 ( Eوﺕ0ن ه:G x ∞− ∞+ 2 a ax + bx + c
. 1627 و8ﻥ ﻡد ﻡ ا ر ا
2
ax + by = c b′ وa ′ وb وa ( ا!ادS ) S& ا a ′x + b′y = c′
.& %'9) آ .% ب ا"دات ا%"م ﺏ0 ( S ) S& ا3 3 أ ∆x = ∆y =
c b = cb′ − c′b c ′ b′ a c = ac′ − a ′c a′ c′
∆=
.II ع و اء ري ﻡد ﻡ ا ر12ﻡ
. ∆ ≥ 0 N و د% ا3 ﺏون9"ذی ا%ع واء ه0N ب% *( ی −b x1 + x2 = a % اQHل ا% ﺱ%ﺏ x ⋅x = c 1 2 a
a b = ab′ − a ′b a ′ b′
.%' 9 β وα ن0 یII د ار% ﺕ"ی% ( إذا أردb α ⋅ β = P وα + β = S N αβ وα + β ب%"م ﺏ0 x 2 − Sx + P = 0 Gد ه% اR:ن ه0وﺕ
. وا$ 3 ﺕS&ن اA. : ∆ ≠ 0 ن%( إذا آa S = {( x, y )}
y=
∆y ∆
x=
∆x ∆
: ∆ = 0 ن%( إذا آb ∆ ≠ 0 s = ∅ 3 %' 1 ( S ) S&ن اA. y ∆ أوx ≠ 0 ن%*( إذا آ \ إى.% ( ﺕS ) S&ن اA. ∆ y = 0 ∆ وx = 0 ن%*( إذا آ . د%ا ax + by + c ـــــــــرة-إ 3 ء%] Aﺏ م0 ax + by + c رة%Lإ دراﺱ 3أ ( D ) : ax + by + c = 0 T ا . ( P2 ) وP ( 1 ) ى0 G2H ( إP ) ى0 اT ( یD ) T ا 9 3H" %& A. ( P1 ) J ت أي%7اA ﺏy وx %&^0 إذا . ﺏ%7 رة%Lإ 9 3H" %& A. ( P2 ) J ت أي%7اA ﺏy وx %&^0 وإذا y وx ض0 رة%LY اR: ه. و.ﺏ%رة ا%LY ا1 رة%Lإ θ ت%7دة إا% : ( _ﺥP2 ) ( أوP1 ) J ت%7اAﺏ . y = 0 وx = 0 Gه
4
( E ) : ax 2 + bx + c = 0 د%( اa ∆ ب%"م ﺏ0 9 3 ( ﺕE ) د% أن أن ا% *( إذا أرد
3"ﺏ
م0
x + y = S S&ا x⋅ y = P
3
% أرد
إذا
(c
t 2 − St + P = 0 د%ا
x = x2 x ≡ x1 أو نA. 9" ا% هx2 وx1 ن%إذا آ y = x1 y = x2 S = {( x1 , x2 ) , ( x2 , x1 )}
:ﻡ&ﺡ . ax + bx + c = 0 د% اG9 β وα (1 2
b α + β = − a أنT9 αβ = c a
β وα 9 ي0 "ب ی% % إذا أرد
. αβ وα + β ر%'Uول إ%" 2 α + β 2 = (α + β ) − 2αβ (* :9Vأ 2
α 3 + β 3 = (α + β ) (α 2 + β 2 + αβ )
= (α + β ) (α + β ) − 2αβ + αβ (* 2
2 = (α + β ) (α + β ) − αβ
.
1
α2
+
1
β2
α 2 + β 2 (α + β ) − 2αβ = (* 2 α 2β 2 (αβ ) 2
=
دراﺱ3 أ. %Vد ار ا% G9 x2 وx1 (2 . x 1 ⋅ x 2 وx 1 + x 2 ب%"م ﺏ0 x2 وx1 رة%Lإ .%ﺥ ﺱX وا0 x2 وx1 ن أ ادA. x1 x2 〈0 ن%*( إذا آ Gرة وه%LY ا12 %' x2 وx1 نA. x1 x2 〉 0 ن%*( إذا آ . x1 + x2 رة%Lإ
45 ( ا ــــت اIII : 1627 I ا دت ﻡ ا ر
1 Z b أوa ( أ ادی1) ax + by + c = 0 د% ا أوa ≠ 0 ن% إذا آy B ﺏx " (1) د% ا3 3 أ.&م a ≠ 0 ن% إذا آ$V . b ≠ 0 ن% إذا آx Bﺏ y " −by − c −by − c S = , y / y ∈ » إذنx = N a a
ا ب ا l
B
α O
. (3
A
o (C ) R . )* B, A . % /8 9 6 :5 (* "% α (* AOB , ; +8 S AB " ! l
(I
R
1 S = α R2 2
l =αR
B
AM
M
1
1+ +
x M 0 ≤ x ≤ π 1+ U x AM " !
b
π
x
-1
a
0
1A
.( π x≠ 2
sin x tan x = cos x
.
b
: (b
sin x = b
"%
+ 2π R = 2π .1 = 2π + ( - 2π = π + *$ AOB
2
π
!<( a
cos x = a
AOC
= xrad AOM M
U
"% $ ! (* ( α ) α rad AOM . )* + "% ,( "% α $ '( ! (*
:)% (1
2
1 A
O
π 0 ! " #$$ % & ' ( II π
.1 o A (1, 0 ) , B ( 0,1) , C ( −1, 0 ) " ! α . U M (a
C -1
(1 ( o, i , j )
M
1
"% .
AOC
"% *$
AOC
AOB
π
π
"% *$
2
AC
π
2
AB
" ! *$
AB
" !
" ! π rad .π
2
:"* (2
x≠
π 2
(a 2 2 cos x + sin x = 1 (* 1 1 + tan 2 x = (* cos 2 x sin x tan x = (* cos x
!
x≠
π 2
!
0 ≤ sin x ≤ 1 −1 ≤ cos x ≤ 1 (b 0 ≤ x ≤ π ! sin x ≥ 0 (∗ (c 0≤ x≤
cos x ≥ 0 =<
π
cos x ≥ 0 =<
2
π
2 *$ (∗
≤ x ≤π
*$ (∗
cos x tan x (∗ 2
0
+
cosx
x
π
0
sinx 0
+
0
+
−
0
π
2
0
+
π
− +
u / 0(
S , R, Q, P, N , M
= 2π AOQ 3
3
=π AOP 3
3
π
5π 6
π −
.
2
2π 3π 3 4
π
1 2
=π AON 4 5 π = AOS 6
3 3
=π AOM 6 3 π = AOR 4
3 π 4 π 6
1 2
1 2
0
. (2
%4 5 " 6( + 7 x y z = = 180 200 π : . 5 " x 1+ . " y . " z
: ο
π
x tanx
(d
π
x
(c :1+
. 200 gra,180 , π rad 8 "%
π −x .& #/ Sinus + (b >> ( ABC ) . + ; R
A
B
C
x
%& & ' ( ! % (3
π
cos (π − x ) = − cos x
2
π −x π
π 2
sin (π − x ) = sin x
(b
tan (π − x ) = − tan x
(c
x 0
AB AC BC = = = 2R SinC SinB Sin A
−x
(a
x %& & ' ( ! % (4
π cos − x = sin x (a 2 π sin − x = cos x (b 2 1 π tan − x = (c 2 tan x
π
π
2
2
π
−x
x 0
0
+, ' ( (5 x
0
cos x
1
π
π
π
π
6
4
3
2
3 2
2 2
1 2
0 1
sin x
0
1 2
2 2
3 2
tan x
0
1 3
1
3
×
2π 3
3π 4
5π 6
−1 2
− 2 2
− 3
3 2
2 2
1 2
− 3
−1
π
2
−
−1 0
1 3
0
π
3π 4
2
2π 3
π
1 3
3
2
2 2
4
1 2
5π 6
2 2
2
-1 3 2
1 2
π 6
2
π
π
1 2
0
3 2
0 1
- .& #/ % (6 B < -% >> ( ABC ) (a C
AB AC BC Sin A= AC
Cos A= A
Aˆ
B
Tan A=
BC AB
اوال اد . I L.
. I L. OP
. I L. 3QP,
. I L. OP 3QP,
. I L. 9I
f f f f f
A& A& A& A& A&
. T 0# U T ( x, y ) ≥ 0 @ "# (∗ T ( x, y ) > 0 @ "# (∗ T ( x, y ) ≤ 0 @ "# (∗ T ( x, y ) < 0 @ "# (∗ T ( x, y ) = 0 @ "# (∗
( اI f
(1
D f p( x) Q( x) : (2 ( )* + % . Q ( x) ≠ 0 ! "# $%& "# & f ( x)
f ( x) =
'()
D f = R − { ( - ./ } , Q( x) = 0 f ( x ) = P ( x ) : (3
\ 3 ] >3
0# 1 + % P ( x) ≥ 0 ! "# $%& "# & f ( x)
D f = P ( x) ≥ 0 ( 23& 456 7) , P( x)
. I L. 3QP, : W! "# I -V L. & f " #$% (3 < [89 , I Y ZQ C f X I L. f (a [89 , I -V Y ^B, C f X I L. 3QP, f (b \ 3 ] >3 <
. ( دا زوﺝ دا دII ) : ;%89 D f 89 + % f (1 . f (− x) =>* + % ? − x ∈ D f , D f < x
G ZB K3%9> < H C f X I L. 9I f (c . I -V Y )3& L. 3QP, [ 5,9] [1,3] < )! L. f ,
#!*
. 4RS9 -@ L > -@ Y _ `a. [ 3,5]
. 3@B f A& f (− x) = f ( x) @ "# (∗ . & f A& f (− x) = − f ( x) @ "# (∗ . & 5 3@B 5 5 : < E (a C/D x n زوﺝn −x = x (b (− x) = n − x ديn G H>, )I 9 C f F8,( ! "# $%& "# f (2 n
. J3
f ( x) = ax + b ! (4
) H>, )I 9 C f F8,( ! "# $%& "# f (3 . K. (
R L. f A& a > 0 ! "# (a
R L. f A&
a > 0 !
"# (b
R L. 9I f A& a = 0 ! "# (c . 3%9> f F8, (d
! (5 . 3@B f < 9 (a . –I L. 3QP, f A& I L. f W! "# (∗ . –I L. f A& I L. 3QP, f W! "# (∗ . & f < 9 (b . –I L. f A& I L. f W! "# (∗ . –I L. 3QP, f A& I L. 3QP, f W! "# (∗
. − I = [ −b, − a ] A& I = [ a, b ] ! "# (c
. رف دا# (IV : \H b x0 Y QP 3P )H% f : \H : : "# (1 Q% 3% d_ x0 L. Z 9c I - Y f ( x) ≤ f ( x0 ) . f ( x0 )
. ( ﺕ! ات دا أو رﺕ داIII N3* I < y x M9 I - L. f ! (1 . I L.
. I L. OP
. I L. 3QP,
. I L. OP 3QP,
. I L. 9I
. f ( y ) f ( x) % x < y f A& f ( x) ≤ f ( y ) @ "# (∗ f A& f ( x) < f ( y ) @ "# (∗ f A& f ( x) ≥ f ( y ) @ "# (∗ f A& f ( x) > f ( y ) @ "# (∗ f A& f ( x) = f ( y ) @ "# (∗
I < y x M9 I - L. f
T ( x, y ) =
! (2
f ( x) − f ( y ) RS9 - =>* + % x ≠ y N3* x− y
Y=
γ X = x −α mHQ ( "# kl ? y − β = X x −α Y = y − β . Ω(α , β ) k (Ω, i , j ) K. Y γ
: \H b x0 Y 3P )H% f : \H : : "# (2 3% d_ x0 L. Z 9c I - Y f ( x) ≥ f ( x0 ) . f ( x0 ) Y f ( x) ≤ α : \H b f . QP 3P α : \H (a (3 . f ( x0 ) = α N3* I < x0 < N8H I -
. +, - . / 0 123 04!$ (5 . A(0, f (0)) O%, J3 e k C f kn% (a ( )* + % )3& e k C f F8,( kn% ] (∗ (b
Y f ( x) ≥ α : \H b f . 3P α : \H (b . f ( x0 ) = α N3* I < x0 < N8H I -
kn%9 $% A& … x2، x1 - .o d_ W! "# f ( x) = 0 . … B ( x2 , 0) b A( x1 , 0)
) 0 L. f 4RS -@ ! "# (4 x0 Y f . QP 3P α A& . x1 Y f . 3P β
e k C f kn% $% )3&: f ( x) = 0 ( - ./ (∗ . )3&
) 0 L. f F8, ! "# (5
. 5323 04!$ (6
x0 Y f . QP 3P α A&
( )* + % C g C f F8,( kn% ] (∗ kn%9 $% A& … x2، x1 - .o d_ W! "# f ( x) = g ( x) . … B ( x2 , f ( x2 )) b A( x1 , f ( x1 )) C g k C f kn% $% )3&: f ( x) = g ( x) ( - ./ (∗ 0# 1 + % C g C f
. 5323- 673 08 (7 \3,8, . p>, kq U (a
. x1 Y f . 3P β
. ( اوال ا ﺝV x
f
(a ≠ 0) f ( x) = ax 2 (1
0
f 4RS -@ A& a > 0 ! "# (a
0
d e K. ( ): T1: f.0 C f . L. ] T@ d % J3 e
f ( x) − g ( x) . C g r & @ C f A& f ( x) − g ( x) ≥ 0 ! "# (∗ . C g W7 @ C f A& f ( x) − g ( x) ≤ 0 ! "# (∗
f 4RS -@ A& a < 0 ! "# (b d e K. ( ): T1: f.0 C f
(∆) : y = m K3%9>( C f kn% $% )3&: ( E ) ( - ./
. )g1 ] T@ d % J3 e a (2 (a ≠ 0) f ( x) = x f 4RS -@ A& a > 0 ! "# (a K. ( ): d! 5 _ C f
. C f !;)<% g ( x) = f ( x) 123 9!:%" (9
. K. ( Z e d%
g ( x) = f ( x) A& )3& e r & C f X f ( x) ≥ 0 ! "#
f 4RS -@ A& a < 0 ! "# (b
. C f k ;HO, C g "# X f ( x) ≤ 0 ! "#
K. ( ): d! 5 _ C f
.)3& G H> C f )Is C g "# g ( x) = − f ( x) h@ )Is )3& e r & @ ( C f h@ < C g ^9
(a ≠ 0) f ( x) = ax 2 + bx + c (3
45V 7 f ( x) ≤ g ( x) 8@9( - ./ (b C g W7 C f 23&
( E ) : f ( x) = m ! - ( (8
A& )3& e W7 C f
. )3& G H>, )3& e W7 @ ( C f
. C f !;)<% g ( x) = f ( x ) 123 9!:%" (10 3@B g "# g (− x) = f ( − x ) = f ( x ) = g ( x) , : x ∈ [ 0, +∞[ ) , . J3 G H>, )I 9 ,8, ^9 x =x
. C f k ;HO, C g T, g ( x) = f ( x) "#
G H>, T.Is [ 0, +∞[ Y @ ( C f h@ < C g ^9 . J3
D f = R*
. K. ( Z e d%
f ( x) J9 _. C f - Q9j ] C f hi# )@: < X y = f ( x) < %.O, ? f ( x) = a( x − α )2 + β ) 0L. X = x −α kl ? y − β = a( x − α )2 X y = a( x − α )2 + β Y y = − β Ω (α , β ) k (Ω, i , j ) K. Y Y = aX 2 mHQ ( "# f ( x) =
ax + b cx + d
(4
f ( x) J9 _. C f Q9j ] C f hi# )@: < γ X y = f ( x) < ;.O, ? f ( x) = β + ) 0 L. x −α
ا ــت ا ــ دـــــ (Iا ـــــــــــــ آــــــ (Aﺕ!"# Ωو kد م M ' . اآ اي آ Ωو "! kه $ا!# اي ﺏـ ) h (Ω, kواي یﺏ( M آ* ( P ) Mﺏ ' Mﺏ+ Ω " . ΩM ' = k ΩM (Bا ( ا''&ة ﺕ$ن ا ن ' Mو ' $0 Nرﺕ ا Mو 12 Nا$ا ﺏآ hإذا و ( 6إذا و 3د k ≠ 1ﺏ+ . M ' N ' = k MN (Cﺥ (ــــ ت hﺕآ آ Ωو "! k . h (M ) = M ' (1ﺕΩM ' = k ΩM 76
(2إذا آن ' h (M ) = Mو ' h (N ) = N M ' N ' = k MN $ ) h (Ω) = Ωل إن 0 Ωة ﺏآ ( h (a (3 h (M ) = MﺕM = Ω 76 (b ) ها ی أن Ωه ا ا $ة ا> ة ﺏآ ( h (4إذا آن ' 86 h ( M ) = Mن Ωو Mو ' . ? " M 86ن
(a (5
اآ ی 12 A6ا? @3ی :
إذا آن @3 G
}) {( A,α ), ( B, β
86ن '@3 G
}) {( A ',α ), ( B ', β
(bاآ ی 12 A6ا?> Cی : إذا آن C> I
] [ AB
86ن '@3 I
]' [ A ' B
(cاآ ی * 12 A6اﺱ DEی :
إذا آن 86 AB = αCDن ' A ' B ' = αC ' D
(dاآ ی 12 A6اﺱ ( 3ی : إذا آ Hا ( Aو Bو 86 ? " Cن $0ره ' Aو ' Bو '. ? " C
(6
اآ Iی 12 A6ا?" 6ی .
إذا آن ' h (A ) = Aو ' 86 h (B ) = Bن A ' B ' = k AB ∧
∧
(7اآ یK * A6س اوای ا Dﺱ ی ' BAC = B ' A 'C $0(a (8رة ا ] [ ABﺏآ hه ا ]' [ A ' B
$0(bرة ا?" ( AB) Lﺏآ h $0 (cرة " ( D ) Lه ( D ') L " $ی$ازي ) . ( D (dأ *3ﺕ ی $0رة " ( D ) Lﺏـ hی Nﺕ ی $0رة Aو ( D ) Bوﺱ$ن )' h ( D ) = ( A ' Bأو ﺕ ی $0رة وا ة Aوﺱ$ن ) h ( Dه $ا?" Lا?ر ' Aوا?$ازي L "?2 ) ( h (A ) = A ' ) . (D (eإذا آن ) ? " ( Dرا 86 Ωن ) . h ( D ) = ( D ) $ل إن ) 0 ( Dإ. ( ?3 $0 (9رة ا اOة ) C (O , rﺏآ hه ا اOة ) . C '(O ', k r ه ا?" . ( A ' B ') L
. O ' = h (O ) P
E (a (10و F ) h (E ∩ F ) = h (E ) ∩ h (F (bإذا آ 86 M ∈ E ∩ F Hن ) h (M ) ∈ h (E ) ∩ h (F O3ا?"$ى .
(11اآ ی 12 A6ا وا$ازي ی : $0رة " ? ی ه? " ?ن ان و $0رة " ? $ازی ه? " ?ن $ازین .
(12ا *+ا آ . Nض أن ا?"$ى "$ب إ. (O , i , j ) L2 1 - (aل h : 1ﺕآ آ ) Ω(1, 2و "! . k = 2 أ *3ﺕ ی ا> Tا P! h 2 22ی: 2 ) M ( x , yو )' M ( x ', yﺏ h ( M ) = M ' +و $م ﺏ"ب ' xو ' yﺏ x Iو . y ی ' h (M ) = Mی ΩM ' = 2ΩM و ی ) ΩM '(x '− 1, y '− 2و )2ΩM (2x − 2, 2 y − 4 x ' = 2x − 1 x '− 1 = 2x − 2 ی إذن y ' = 2y − 2 y '− 2 = 2 y − 4 x ' = 2x − 1 إذن ا> Tا 22ـ hه : h: y ' = 2y − 2 ﺡ : /إذا أرد ﺕ ی $0رة Aﺏـ $ hض xو yﺏ 8اVت Aو >* 12إ اVت ) . h ( A - (bل . 2 x ' = 3 x + 2 f :
! ا! f #اي T0ا 22ه : y ' = 3y − 4 x ' = x أ *3ﺕ ی +! f !Wا ( ا> ة ﺏ* ا?X y ' = y x = −1 3x + 2 = x إذن fﺕ !* 0ة و ة ی ی y =2 3 y − 4 = y ه ). Ω( −1, 2 M (x , y ) YZ LVو )' M (x ', yﺏh (M ) = M ' + x ' = 3x + 2 . و ی ) ΩM '( x + 1, y '− 2ی ی إذن y ' = 3y − 4 ) ΩM '(3x + 2 + 1,3 y − 4 − 2ی )ΩM '(3x + 3,3 y − 6
و ی ) 3ΩM (3x + 3,3 y − 6إذن ΩM ' = 3ΩM وﺏ fﺕآ آ ) Ω( −1, 2و "! . k = 3 4# (13ا 23ت . (aد آ ﺕآ A +! Ω ?" . hو B و$0رﺕه? ' Aو ' . Bی ' h ( A ) = Aإذن Ωو Aو'? " A و )' . Ω ∈ ( AAو ی ' h ( B ) = Bإذن Ωو Bو 'B " ? و )' Ω ∈ ( BBوﺏ Ωه ﺕ ( AA ') PWو )' (BB
(IIIازاﺡــــــــــــــــــ
(bأ *3ﺕ ی " ﺕآ k ?" hو هك إ ن : *( ! +ا?آ Ωو Aو$0رﺕ. A' D
ی ' h ( A ) = Aإذن ، ΩA ' = k ΩAو $م ﺏ"ب ' ΩAﺏ I
ΩA ' = α ΩA ]^ E ΩAو "_ أن k = αأو ? إ 1ا س
' ΩA ا!Eي ΩA ' = k ΩMی ΩM *( ! A +و Bو$0رﺕه? ' Aو ' . Bی A ' B ' = k ABو ! `N Pای ا"ﺏ . (cإذا أرد أن ! أن ' I +! [ A ' B '] C> Iو Aو B = . k
ﺏ h ( A ) = A ' +و ' h ( B ) = Bو ' h ( I ) = Iو " ?* ا0a
. (5bی [ AB ] C> Iإذن ' . [ A ' B '] C> I
. O ' = t u (O ) P
ﺡ/ t u ( M ) = M ' (aﺕ. MM ' = u 76 (bإذا آن ' t u ( M ) = Mو ' 86 t u ( N ) = Nن
(IIIا 'ــــ ﺙ 6ا'ـــــري (Aﺕ. !"# )∆( " ? ا? *Vا?$ري اي $ر )∆( ه $ا! #اي ﺏـ ) ∆ ( Sواي یﺏ( آ* ( P ) Mﺏ ' Mﺏ+
M
(Bا ( ا''&ة
ﺏ? *Vآي S Ωإذا و ( 6إذا آن . M ' N ' = − MN
(Cﺥ (ــــ ت P?3ا0aت ا? 2ﺏآ ﺕ! 0 1ﺏ"! *V?2ا?آي P ﺕ $ﺏ k cﺏـ ، -1ا ) (6و ) + (9ﺕ>!@ .
) . C '(O ', r
. O ' = S Ω (O ) P
ﺡ/ S Ω (M ) = M ' (aﺕ. [ MM '] C> Ω 76
(b
إذا آن ' S Ω (M ) = Mو ' 86 S Ω ( N ) = Nن
. M ' N ' = − MN
. M ' N ' = MN
ﺕ$ن ا ن ' Mو ' $0 Nرﺕ ا Mو 12 Nا$ا
(9
$0 (9رة ا اOة ) C (O , rﺏfزا t uه ا اOة ) . C '(O ', r
(IIا 'ـــــــ ﺙ 6ا'"آـــ&ي
$0رة ا اOة ) C (O , rﺏ? *Vا?آي S Ωه ا اOة
إذا آن ) ( Dی$ازي * ) uی D3$ uـ ) 86 ( ( Dن
) . t u ( D ) = ( D
*( " ?* ا یΩM ' = k ΩM C *( إذا آن . (5b) *? " [ AB ] K C> M *( إذا آ . (5c) *? " AM = α AB H *( إذا آ M Hﺕ . (10) *? " O3 PW ) ی M ∈ E ∩ Fإذن ) ( h ( M ) ∈ h ( E ) ∩ h ( F *( إذا آ Hی ا> Tا. D2? " 22
(6ا? *Vا?آي ی 12 A6ا?" 6ی . إذا آن ' h (A ) = Aو ' 86 h (B ) = Bن A ' B ' = AB
P?3ا0aت ا? 2ﺏآ ﺕ! 0 1ﺏ"! gزا ،ا )(1 و ) (2و ) (3و) (4و ) (6و ) (8cdeو ) (9و ) (12و ) (13abdو ی :
(8e
(eد $0رة Mهك ة Wق ﺏ: D
آ* (P ) Mﺏ ' M M ﺏMM ' = u " + (Bا ( ا''&ة ﺕ$ن ا ن ' Mو ' $0 Nرﺕ ا Mو 12 Nا$ا ﺏfزا t uإذا و ( 6إذا آن . M ' N ' = MN (Cﺥ (ــــ ت (6اfزا ﺕ 12 A6ا?". 6
! (dأن Ωو Iو ? " Jی Nأن ! أن . h( Ω , k ) ( I ) = J
' M (Aﺕ. !"# Ωا? *Vا?آي اي آ Ω Ω ه $ا! #اي ﺏـ S Ωواي یﺏ( آ* ( P ) Mﺏ ' Mﺏ+ " ΩM ' = −ΩMی . [ MM '] C> Ω
(Aﺕ. !"#
. DE uاfزا ا u DDEه ' M ا! #اي ﺏـ t uواي یﺏ(
u
ی$ن
)∆( واﺱ( ا ]' [ MM
)∆(
M
' M
.
(Bﺥ (ــــ ت P?3ا0aت ا? 2ﺏآ ﺕ! 0 1ﺏ"! *V?2ا?$ري ، ا ) (1و ) (2و ) (3و) (4و (6) (5و ) (8eو ) (9و ) (13abdو ی : (6ا? *Vا?$ري ی 12 A6ا?". 6
(8e
*( إذا آن ) ∆ ( ⊥ ) 86 ( Dن ) . t ( ∆ ) ( D ) = ( D *( إذا آن ) ∆(86 ( D ) //ن ) . t ( ∆ ) ( D ) //(D
$0 (9رة ا اOة ) C (O , rﺏ? *Vا?$ري ) ∆ ( Sه ا اOة ) . C '(O ', r
. O ' = S ( ∆ ) (O ) P
ﺡ/ S ( ∆ ) ( M ) = M ' (aﺕ ( ∆) 76واﺱ( ا ]' . [ MM
(bإذا آن S ( ∆ ) (M ) = MﺕM ∈ (∆) 76 ا?" 0 ( ∆ ) Lﺏ .
ااء ا : 678 6+3+ 6+M +O v u 6+ 2"+3 41(e
( I
u .v = − u . v u .v = 0 S8+Q u ⊥ v (f u .v = v .u (∗ (g u .(v + w) = u .v + u .w (∗ u .(v − w) = u .v − u .w (∗ (α u ).v = u .( α v ) = α (u .v ) (∗ (u + v ) 2 = u 2 + v 2 + 2u .v (∗ (u − v ) 2 = u 2 + v 2 − 2u .v (∗ (u + v ).(u − v ) = u 2 − v 2 (∗
A
. $%
H
= AC. AK ∧
= AB. AC.cos( BAC ) AB. AC = 0 678 AC 5 AB / 01 2"+3 41 (2
(II
: +* +WW ( ABC )
B
C
'()* +,- (2
[ AB ] T A XY I
A
+WW ( ABC )
BC 2 : +* 2 1 BC 2 AI 2 = ( AB 2 + AC 2 − ) 5 2 2
AB 2 + AC 2 = 2 AI 2 +
B
I
C
H [ BC ] XY
. ./ 01& 23 4 )* & (3 A ' A Z T*% [\+B +WW ( ABC ) (a : +* . ( BC ) A (L^ +8 TB_ ) AB + AC = BC 2
2
2
(∗
BA = BH .BC = BH .BC (∗ 2
A
CA2 = CH .CB = CH .CB (∗ B H
I
B A
B
AH 2 = − HB.HC = HB.HC (∗ 1 AA ' = BC (∗ 2 C : +* . A Z T*% [\+B +WW ( ABC ) (b AC BA cos Bˆ = cos Bˆ = BC BC AC A tan Bˆ = AB : +* . +WW ( ABC ) (c sin Aˆ sin Bˆ sin Cˆ C = = BC AC AB C
( AB) C H ( AC ) B K AC AB ! " B : * +, -& AB. AC # $ %&" ' () AB. AC = AB. AH
& (1
BC 2 = AB 2 + AC 2 − 2 AB. AC.cos Aˆ AC 2 = BA2 + BC 2 − 2 BA.BC.cos Bˆ AB 2 = CA2 + CB 2 − 2CA.CB.cos Cˆ
. AC AB (1
K
!"# (III A
C
D
. CD AB (1
( AB ) C C '
C A
( AB ) D D ' AB.CD = AB.C ' D ' +* B
: <1 =+ &> /&?@ / 01 " AB.CD 9+0 :; . +AB+, +C+AD5 E F " G + +AD5 E +# H+(0I JG K! L+
2
. J#& * AB
%&+# AB. AB %&"(a (2
2 AB = AB 2 +* (b : 678 M N(" +O CD AB 6+ 2"+3 41(a (3 AB.CD = AB.CD : 678 6+3+ 6+M +O CD AB 6+ 2"+3 41 (b AB.CD = − AB.CD 6+ 3 6+3 41 8 41 6+Q + CD AB 61 P" (a (4 AB ⊥ CD R" . * + (CD) ( AB ) AB.CD = 0 S8+Q AB ⊥ CD +* (b 678 T D C B A 2"+3 41
(5
A B C D AB.CD = AB.CD UV " 3 C B A v u (a (6 AC = v AB = u v C u .v = AB. AC : +* v : v u (b ∧ A B u.v = u . v cos(u, v ) +* u 2 u u2 = u (c u .v = u . v : 678 M N(" +O v u 2"+3 41 (d
.,'$ %' (b I (ABC ) AB <1 [ ]
A I
[ AC ]
J
B
! (I
<1 J . ( IJ ) ( BC )
C
. %$ # (I . . ( D′) ( D ) ( D′) ( D ) (*
: * , %$- (c ( ∆′) ( ∆′′) ( ∆ ) ?
( P ) ∩ (Q ) = ( ∆ ) ( ∆′ ) ⊂ ( P ) ( ∆′′ ) ⊂ (Q ) ( ∆′ ) ( ∆′′ )
: )' (*
( ∆′ ) ( ∆ ) ?
(D)
# ! # ( D′) ( D ) (* $ # .% # &' " ()*
(D)
: )' (*
(∆) //(∆ ') (∆ ') //(∆ '')
(D)
( P ) // ( Q )
( P ) + @ ( D ) 4 : . ( P ) A' ( D ) B A (* ."> " & ( D ) // ( P ) (* ( P ) + ( D ) 5 . D ⊄ ( P ) A "> " & ( P ) ( D ) / 5 , ( P ) ( D ) "> " 5 ,0 . ( D ) ( P ) ( D′) ( Q ) ( P ) 6 A05 $10 . ( P ) ≠ ( Q ) "> " & ( Q ) ( P ) : / ( Q ) ( P ) B A > 5 , (* . ( AB ) / * ( Q ) ( P ) ( ∆′′) ( ∆′) A "> " 5 , (* . ( ∆′) // ( ∆′′) ( ∆′′) ⊂ Q ( ∆′) ⊂ ( P ) , A ( ∆ ) / * ( Q ) ( P ) . ( ∆′′) ( ∆′) $ 3! " K J I ,-. 7 ( Q ) ( P ) 0B "> & ." & = & / A'
θ
O
" ( P ) ( D ) / (*
01 ( P ) + ( D ) / (* . ! ( P ) ( D ) ' " ()*
(D) $
? ( H ) ∩ ( P ) = ( ∆ ) )' (e ( H ) ∩ ( Q ) = ( ∆′ )
& %$ # (II ,-. .+ ( P ) ( D ) (D) ( P ) + ( D ) / (*
P
)'
P
( ∆ ) // ( ∆′)
." ( D′) ( D ) (*
(D')
: )' (*
. (d ( ∆ ) // ( ∆′) ?
. ! ( D′) ( D ) (*
(D')
( P) ∩ (Q) = (∆) (∆ ') ⊂ ( P ) (∆ ') //(Q) ( P) ∩ (Q) = (∆) (∆ ') //( P ) (∆ ') //(Q)
( ∆′) ( ∆ ) ?
(D) (D')
P
. %$ # (III ,-. . ( Q ) ( P ) . ( Q ) ( P ) (* q p
&' $ -1 ( Q ) ( P ) (* . !
q (D)
p. ( D )
/ 2 ( Q ) ( P ) (*
' (IV ( P ) + 3! ( D ) / 1 . ( P ) ( D′) 3! ( D ) ( Q ) + 3! ( P ) +
2 Q ! ( P ) (* ! ( P ) (* . ( Q ) :& 2 45 6* ! 3 %$( )*+# (a (...< => – – 9- : 3!)
. (II + A05 35 ( ∆ ) )' (a 1 A05 35 ( ∆ ) ( P ) . ( P ) ? ( P ) + A05 5 ( ∆ ) / )' (b . ( P ) / 3 A05 5 ( ∆ ) ( Q ) + A05 35 ( P ) + 2 . ( Q ) A05 35 ( P ) @ ( ∆ ) :& 2 45 6* 3 "& $>: (a /% ,0. – – – $ – ) (..."!
A
B M
B
A
I
[ AB ] * 4% ( ) (b M ∈ () ( AM ) ⊥ ( BM )
C
3 ,0. ( ABC ) (c [ BC ] <1 I A . ( AI ) ⊥ ( BC )
( ∆ ) ⊥ ( ∆′) ?
( ∆ ) ⊥ ( ∆′ ) ( ∆′ ) ⊥ ( ∆′′ )
( ∆ ) ⊥ ( ∆′) ?
)' (d
( ∆ ) ⊥ ( P ) ( ∆′ ) ⊂ ( P )
)' (e :%/01
( ∆′) / A05 35 ( ∆ ) / )' .=05 35 ( ∆ ) ( ∆′) ( P ) + 5 ,
. B A 4 + B A 5 " " "5@ + * [ AB ] "0 + A . [ AB ) A05 3 [ AB ] <1 ( Q ) ( P ) / ( ∆ ) 5 ( ∆ ) ⊥ ( Q ) ?
( ∆ ) ⊥ ( P ) ( P ) // ( Q )
)'
+ ( P ) ( ∆′) ( ∆ ) 6 ( ∆′ ) ⊥ ( P ) ?
( ∆ ) // ( ∆′ ) ( ∆ ) ⊥ ( P )
)'