RENCANA PELAKSANAAN PEMBELAJARAN (RPP)
Sekolah Mata Pelajaran Kelas/Semester Materi Pokok Sub Materi Alokasi Waktu
`
: SMA ... : Matematika : X /Satu : Persamaan dan pertidaksamaan nilai mutlak linier satu variabel : Pertidaksamaan rasional : 2 x 40 Menit (1 Pertemuan)
A. Kompetensi Inti 3. Memahami pengetahuan (faktual, konseptual, dan prosedural) berdasarkan rasa ingin
tahunya tentang ilmu pengetahuan, teknologi, seni, budaya terkait fenomena dan kejadian tampak mata. 4. Mencoba, mengolah, dan menyaji dalam ranah konkret (menggunakan, mengurai, merangkai, memodifikasi, dan membuat) dan ranah abstrak (menulis, membaca, menghitung, menggambar, dan mengarang) sesuai dengan yang dipelajari di sekolah dan sumber lain yang sama dalam sudut pandang/teori. B. Kompetensi Dasar dan Indikator
No
Kompetensi Dasar
Indikator
3
3.2 Menjelaskan dan menentukan penyelesaian pertidaksamaan rasional dan irasional satu variable
3.2.2
Menentukan pertidaksamaan variabel
penyelesaian rasional satu
4
4.2 Menyelesaikan masalah yang berkaitan dengan pertidaksamaan rasional dan irasional satu variabel
4.2.1
Menyelesaikan masalah yang berkaitan dengan pertidaksamaan rasional satu variabel
C. Tujuan Pembelajaran
KI 3 dan KI 4 Setelah mengikuti serangkaian kegiatan pembelajaran : 1. Peserta didik mampu menentukan himpunan penyelesaian pertidaksamaan rasional 2. Peserta didik mampu mendeskripsikan pertidaksamaan rasional dalam meyelesiakan masalah matematika;
3. 4.
Peserta didik mampu menganalisis daerah penyelesaian pertidaksamaan rasional Peserta didik mampu membaca daerah penyelesian pertidaksamaan rasional
D. Materi Pembelajaran Pertidaksamaan rasional adalah suatu bentuk pertidaksamaan yang memuat fungsi rasional,
yaitu fungsi yang dapat dinyatakan dalam bentuk
f(x) g(x)
dengan syarat g(x) ≠ 0.
Bentuk umum pertidaksamaan rasional : f(x) g(x) f(x) g(x)
> 0 atau
< 0 atau
f(x) g(x) f(x) g(x)
) ≥ 0 ; g(x) ≠ 0
≤ 0 ; g(x) ≠ 0.
Berikut hal-hal yang tidak dibenarkan dalam menyederhanakan bentuk pertidaksamaan rasional karena akan merubah domain fungsi tersebut : 1. Kali silang f(x) g(x)
>c ≢ f(x) > c.g(x)
2. Mencoret fungsi ataupun faktor yang sama pada pembilang dan penyebut f (x) .g(x) g(x)
>c ≢ f(x) > c
Himpunan penyelesaian suatu pertidaksamaan rasional dapat ditentukan dengan langkahlangkah sebagai berikut : 1. Nyatakan dalam bentuk umum. 2. Tentukan pembuat nol pada pembilang dan penyebut. 3. Tulis pembuat nol pada garis bilangan dan tentukan tanda untuk tiap-tiap interval pada garis bilangan. 4. Tentukan daerah penyelesaian. Untuk pertidaksamaan ">" atau "≥" daerah penyelesaian berada pada interval yang bertanda positif dan untuk pertidaksamaan "<" atau "≤" daerah penyelesaian berada pada interval yang bertanda negaitf. 5. Dengan memperhatikan syarat bahwa penyebut tidak sama dengan nol, tulis himpunan penyelesaian yaitu interval yang memuat daerah penyelesaian.
E.
Model Pembelajaran PBL ( Problem Based Learning ) F. Media, Alat, dan Sumber Pembelajaran
Media Alat Sumber Pembelajaran
: power point, LKPD : Komputer, infocus, : buku siswa kelas 10 berbasis kurikulum 2013
G. Langkah-langkah Kegiatan Kegiatan pembelajaran Kegiatan guru
Kegiatan siswa
Alokasi waktu
Pendahuluan 1. Mengucapkan salam, mempersilahkan 1. Menjawab salam guru, berdo’a dan siswa untuk berdo’a dan mengecek ketua kelas melaporkan kehadiran. kehadiran. 2. Memperhatikan penjelasan guru. 2. Apersepsi Mengingatkan kembali materi prasyarat 3. Mencatat tujuan pembelajaran yaitu persamaan dan pertidaksamaan satu variabel 3. Menyampaikan tujuan pembelajaran Kegiatan inti
5 menit
Fase 1: Orientasi peserta didik kepada masalah 1. Memberikan motivasi kepada siswa untuk terlibat aktif dalam pemecahan masalah yang akan disajikan tentang pertidaksamaan rasional 2. Mengajukan sebuah masalah kontekstual yang berkaitan dengan pertidaksamaan rasional Misalnya : Tentukan himpunan penyelesaian dari pertidaksamaan berikut −6 ≤ 3 ≠ −2 +2 3. Menstimulus siswa untuk bertanya tentang masalah yang telah diberikan.
1. Siswa mengamati masalah yang telah diberikan
2. Siswa memahami masalah yang diberikan guru Tentukan himpunan penyelesaian dari pertidaksamaan berikut −6 ≤ 3 ≠ −2 +2
3. Menanyakan tentang masalah yang telah diamati.
10 menit
Kegiatan pembelajaran Kegiatan guru 4. Menjelaskan masalah yang dipahami oleh siswa
5. Membimbing masalah
siswa
belum
Kegiatan siswa 4. Mendengarkan penjelasan guru
menyelesaikan
5. Menyelesaikan masalah diberikan oleh guru Fase 2 : Mengorganisasikan siswa
yang
1. Membentuk siswa dalam kelompok yang beranggotakan 3 – 4 orang. 2. Membagikan LKPD 3. Membimbing siswa menyelesaikan masalah 1 di LKPD secara bersama sama 4. Meminta semua kelompok menyelesaikan masalah yang ada dalam LKPD dengan cara diskusi dengan teman kelompoknya
1. Siswa Bergabung dengan teman kelompok 2. Siswa Menerima LKPD 3. Bersama guru menyelesaikan masalah nomor 1 4. Siswa Bekerjasama dalam kelompok menyelesaikan masalah yang ada dalam LKPD
Fase 3 : Membimbing penyelidikan individu dan kelompok 1. 2.
Memantau dan membimbing kelompok yang mengalami masalah. Memberikan Bantuan berkaitan dengan kesulitan yang dialami siswa dalam menyelesaikan masalah yang ada dalam LKPD baik individu, kelompok atau klasikal.
Alokasi waktu
30 menit
1. Siswa diminta membaca dan memahami soal di LKPD 2. Bertanya soal yang belum dipahami dan belum dimengerti untuk dikerjakan
3. Menalar bersama dalam kelompok dan mengerjakan soal di LKPD 4. Meyakinkan bahwa tiap anggota telah mengerti dan mengetahui jawaban dari LKPD. 5. Mengamati penjelasan guru.
Fase 4 : Mengembangkan dan menyajikan hasil karya 1. Memilih kelompok secara random untuk 1. Kelompok yang ditunjuk mencoba mempresentasikan tugas tersebut sesuai mempersentasikan hasil diskusi dengan hasil kerja kelompoknya. kelompoknya
15 menit
Kegiatan pembelajaran Kegiatan guru Kegiatan siswa 2. Memberi kesempatan kepada anggota lain 2. Mengamati presentasi yang disajikan bertanya atau berkomentar mengenai hasil oleh kelompok yang telah ditunjuk diskusi kelompok yang mempresentasikan oleh guru. 3. Memberikan kesempatan kepada 3. Menanyakan apabila ada jawaban kelompok yang mempresentasikan yang tidak sesuai dengan hasil kerja tugasnya untuk menanggapi pertanyaan kelompoknya dari kelompok lain. 4. Kelompok yang mempresentasikan menanggapi pertanyaan atau komentar kelompok lain.
Alokasi waktu
Fase 5 : Menganalisa dan mengevaluasi proses pemecahan masalah 1. Menjelaskan tentang hal-hal yang belum 1. Mengamati penjelasan yang diketahui dalam LKPD yang telah diberikan guru. diberikan. 2. Menanyakan apabila masih ada yang 2. Memberikan evaluasi hasil belajar untuk belum dimengerti mengenai LKPD masing-masing siswa (tes tertulis) yang telah dijelaskan. 3. Mengerjakan secara individu evaluasi yang diberikan guru.
15 menit
Penutup 1. Menyimpulkan materi yang dipelajari 1. Bersama guru menyimpulkan materi 2. Meminta siswa untuk mempelajari materi 2. Mempelajari materi selanjutnya di pertemuan berikutnya rumah 3. Menyampaikan salam penutup 3. Memberi salam H. Penilaian PENILAIAN PENGETAHUAN
a.
Teknik Penilaian : Tes Tertulis
b.
Bentuk Instrumen: Tes Uraian
5menit
KISI-KISI LKPD Langkah Pemecahan Masalah
Materi
Memahami Masalah
Pertidaksamaan rasional
Merencanakan Pemecahan Masalah
Indikator Pemecahan Masalah
- Menuliskan apa yang diketahui
Nomor Soal
- Menuliskan apa yang ditanyakan
1a, 2a 3a, 4a
Pertidaksamaan rasional
- Menuliskan teori atau metode yang digunakan dalam menyelesaikan masalah
1b, 2b 3b, 4b
Menyelesaikan masalah
Pertidaksamaan rasional
- Melakukan perhitungan dari rancangan penyelesaian soal yang telah direncanakan.
1c, 2c 3c, 4c
Memeriksa kembali
Pertidaksamaan rasional
- Memeriksa kembali jawaban yang diperoleh.
1d, 2d 3d, 4d
PEDOMAN PENSKORAN LKPD Aspek yang dinilai
Memahami masalah
Menyusun rencana penyelesaian
Memecahkan masalah
Memeriksa kembali
Langkah-langkah pemecahan masalah
Tidak ada jawaban sama sekali Tidak menuliskan yang diketahui atau ditanyakan Salah menuliskan yang diketahui dan ditanyakan Menuliskan yang diketahui, ditanyakan dengan benar tapi tidak lengkap Menuliskan yang diketahui dan ditanyakan dengan benar dan lengkap Tidak ada jawaban sama sekali Strategi yang digunakan tidak relevan atau tidak sesuai dengan masalah sama sekali Strategi yang digunakan kurang dapat dilaksanakan dan tidak dapat dilanjutkan Strategi yang digunakan benar, tapi mengarah pada jawaban yang salah atau tidak mencoba strategi yang lain Strategi yang dibuat sudah mengarah pada jawaban yang benar Tidak ada jawaban sama sekali Hasil perhitungan salah Beberapa prosedur yang mengarah pada jawaban yang benar Sebagian hasil salah, tetapi hanya salah perhitungan saja Hasil dan prosedur benar Tidak ada pemeriksaan sama sekali Ada pemeriksaan tetapi salah
Skor
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1
Ada pemeriksaan tetapi tidak tuntas atau tidak lengkap Pemeriksaan dilaksanakan denngan lengkap untuk melihat kebenaran hasil =
2 3
PENILAIAN KETERAMPILAN
No
Baik Sekali
Kriteria
1.
Kemampuan memahami masalah
2.
Kemampuan merencanakan penyelesaian
3.
Melaksanakan rencana penyelesaian
4.
Melakukan Pemeriksaan Kembali
Baik
Cukup
4 3 2 Mampu Mampu Mampu memahami memahami memahami sebagian masalah masalah secara sebagian namun masih terdapat keseluruhan masalah kesalahan Mampu Mampu Mampu merencanakan merencanakan merencanakan sebagian daari penyelesaian penyelesaian penyelesaian masalah secara masalah secara namun masih terdapat keseluruhan sebagian kesalahan Mampu Mampu Mampu menyelesaiaka menyelesaikan menyelesaikan n masalah sebagian masalah masalah secara secara namun masih terdapat sebagian keseluruhan kesalahan Mampu Mampu melakukan Mampu melakukan melakukan pemeriksaan pemeriksaan kembali pemeriksaan kembali namun masih sebagian kembali namun masih dan terdapat kesalahan sebagian
=
Perlu Bimbingan 1
Belum mampu memahami masalah Belum mampu merencanakan penyelesaian masalah Belum mampu menyelesaikan masalah Belum mampu melakukan tahap pemeriksaan kembali
Kepala Sekolah
Bengkulu, 2017 Guru Mata Pelajaran
_______________
ANITA, S.Pd