Solutions Manual To Accompany
R.W. Clough and J. Penzien
D·YNAMICS OF STRUCTURES .
"."
Second Edition
Francisco Medina University of Puerto Rico, Mayaguez
McGraw-Hili, Inc. New York SI. Louis Son Francisco Auckland Bogota eOlacos Lisbon london Madrid Mexico City Mijon Monlreol New Delhi Sydr,·?y Tokyo TOlOnlo Son Juan Singapore
I.
i •.,.
,-
/,-
1
Solutions Manual to Accompany Clough/Peiwen
DYNAMICS OF STRUCTURES -
Second Edition
Copyright 0 1995 by McGraw-Hili, Inc. All rights reserved. Printed in the United States of Americo. The contents. or parts thereof. may be reproduced for use with DYNAMICS OF STRUCTURES - Second Edition Joseph Penzien Ray W. Clough provided such reproductions beor copyright notice. but may not be reproduced in any form for any other purpose wifhout permission of the publisher. ISBN 0-07-011395·5 1 2 3 4 5 6 7 8 9 0 BKM BKM 9 0 9 8 7 6 5
,
.-~_. ) r(:!··
PREFACE
This Solutions Manual contains the solution to all the problems proposed in the text Dynamics of Structures. To solve many of these problems, the student should be very familiar with trigonometric and hyperbolic relationships, integral and differential calculus, matrix algebra, and matrix structural analysis. The student also ~as to have some knowledge of differential equations, and probability and theory of residues (these last two topics for Part IV). The problems were solved from the first edition of the book, systematically and for no particular reason, when I was pursuing graduate studies at Berkeley in the late 70s, without haying in mind that these solutions would later be assembled in a Solutions Manual. Therefore, the way the solutions are carried out may not be optimally didactic.or elegant; however, they present the advantage of showing a step-by-step procedure that a regular student would perform in attempting to solve these problems in a homework or test framework, or simply just for fun. All the problems can be solved by hand, but in a small number of cases it was preferred to present a solution carried out with the help of a computer progra·m or a programmable calculator. Some of the problems may be solved differently (especially in Part IV); however, the answers are correct, and almost all have been independently checked. In order to prepare the Solutions Manual, the existing solutions for the first edition of the book were revised to C!mform to the new edition, and then transcribed into the manual's current format. This procedure was checked carefully. Nevertheless, if the reader notic~s any error, I would be pleased to be advised. Finally, I wish to thank the book's authors for allowing me to have an enjoyable time while studying in Berkeley. The transcription of the solutions was patiently done by Mr. Jose Orozco, who deserves to be given all the credit for it. Francisco Medina Mayagiiez, December 1994
---------
z-z
Pro blon
L Z' (z-:Ci-):
4.:.
tv'-:
~
_
W
=-,j~
I"
-'1-.47
y""c.
«-4'}) :
y(n =- fl. -sz:u{
:. ;;a)
=
[(V(O)+uJ:(O)~W) 5i'l uht
wt fl.- 5 ( [_ 51() { [ V(0)
-r.J(O~D v(0)5 V
t
W
_
-/- v(o) cos wot
uh -,)(0)] ::;i'11()Dt
y(w]- :5 ~)} sw-()(o)
5=- __ c__ = __c=-_--,z.n-p
=
c=-o
-?
5'"
0
0.0559 C
WI> - f
-'>
. -zJct=f)_
~1J(j) = -1.4
-i'1
,
0(1) =
f.
1
cos 0
+ [(~t
«~)(4.H)
( 0)
J
ity'6ec.,
D
+
t )
WD'-J veo)
E
t
(2-4C.):
!
'" 1<.1
T",zrr/J~
/1 - 3'"
,
.
T",
= 50.0
11}
~ /l,e k... =
0, ' ,
"
.
(el EZ
(z.. -
:
kips/, I /''l
5= tn=
'cl.;
(b)
f..Z
b
.<.mw
'vi
j
T=~
w
(~~5'1-) :
=
[1')
~ = 111 ~ Vh+1
VI
.
-. C '"
5ihc~
8 = 1."
1.20.=
0.333
0·8"
-
(Z-35) ;
c.
.,
D';rc.~·:'!'
.-
r
troT""1 ..J
6~qj
~.5 ==
77· ~' Z-55 ) : -
-...-.,.. 5=
5.3%
I
o
':IC .... "7
=- .)
05=0
;zoo k.iF'" 35" ',,/,,~c.
Pro!,"'" e - 2.
(co,,' d)
(b) c= 2.8-'>5== 0.0559(2.8)= ZU o '04.41
..
v(e=
f)
,;
==
1-(0.151'1
e-
Z
I
(0.1 5 7)( .. .41)
O.ISi'
= [
')()
_5_._"...:.+_°....:.1....:(:.....°_.'_5_1.:....:......_.4....:1..:. 5 ,'14.41
+
4.41
v U = ,) :(1
)
V't=1
== -
0.7" 4
7'1
-(0.15'1)(4.41) =~
0.151(5.,,)
+ "1-.41 (0.1)
::";1)"1-.'11 ]
-VI - (O.ISi-)e '
~v(1) =- 0.1(,,;.,
-iJ (,)
= I.'
"~/6'C'I' "
Probl.'tT1
El,:
2-3
(2-.33) :
~ (2- 24 ) :
"
VU=I,2)==
iJ~O)
s;nZ(I.2)+ '·8 cO!> 2(1.2)=1.8'
1J( 0)
v C-to == 2.4-):==
(Q)
~ 1J (2.4) =- ( 6)
£..z'
4.5;1"1
(2 - 37-) :
== 5.0;.,
I
Z{p
';n/,jltc.
9.2" ,5;n Z (2.4)
.<
+
J. B
cos Z(2.
I I
~ = 1[V(O)]
f ==-J ~f
== 9.
"-
+
(I.B}"-+ (
[~]
"-
').:"y-
'=4'37'
1'1
k.<-. ( 3 - 12) trom
:
'z- (:vl)
(3 ==
~
L
1\ UJt) =
_1(3"
.. 1\' (i:J t ) =[
i
= Zk.7[
](Si'liV-t -;S~;'l ~t)
~
I (!>" ] ( cos
wi: -
cos
I') l~;~
C05a.,
(3
= 0.8
-?
'\
oj') i.> "+' )
-+ -' ) - \ k 7[, k =
(wi) =
(3
2..1'5 6;'}
Wt -
0,1, ••.
2.ZZ
~;'7
(k.
1.2.5
800
1 - - - - - - Tr /:z. = wi!.
;ZZO
--------.M
2'1-0
320
(0)
0
80
1100
R(w-/:l
0
·551
1.11 -. tB.5
-3.~1
400
)
~ iiJt. , keo,f, •.. (La, on1} W~ll.rJt~~ (3
wt = (1
~{
480
.3G.0 '1.33
5"0 ~
IqZ
0,
on1 4 1
7. nil) sij1,$ -
wt
i
"40
120
800
880
-'1.Q2
0
4.92-
.In
(0)
(Q)£g.
'-
(3-38):
f\(wl)
= -.!.(~;~ Wt- wt
I\(wt
Blf)=-J.. (BIT) = -"l[ ;(
.R. (8rr) == -
".".1
~1\(87[)
8.01
== -
=
<.
c05ud)
-(110' Z.)(8l\)
[ .~(81t) == -
3.1
I
-
I
C05 8 Tr
= -
3. 10
-I:
V mo ,,-
=
V;""y.=
(c)
t
.. V mal<- =
1. 85 -in
I
_I V
1.<.
I t (2 5f3)~
[
J.0
(1 -(3"-)"-
,A + V
1
]
I/Z.
+ «3(3)"
[Z(O.4W
= 1.9<.1 i~
vJ ~
BOO 16
_ w .<.71J ='
(Z7fJ)~
j
_' + 1 TR.
-
1
C_l_.
0.03 ='
Tl\
0.005
tJ 1 = TR..
W
" l' I
.)t
'I<>oc. BCO'b .3z.~~ SfI54.<.'
[Z7f (2.0
'/, -!:
mll")<
'1-00
=
--='
50
50
Ib
[.2.1T(12.)
]
~
=
7f>4~D
Ibj. 'Si
O.J5~t"I
k
~
(b)
/1,/;n, ~
ZhOO·
j:"rohl
'zoo '''A '£1
~{("3-IOI:.),
5ez '" and
.3
ED
<1[1cf"
rj.
3-17 :
:2l1 1b.i.,
=
0.01'13
47f(~'j lb.;.,)
Tl"Otn
:. Cct '" -...,=-£D
JT
0("
2" lb.;" = - - -_ _....,,--
.7T( 10 V~c.)(0.\5in)'··
Cc.z: '" 3.'".8 Ib.=/;~ =
va)
44\
Ib.5U/jl
• .15 '" 7. 1/., C = O·H k;r"' 5«/J! (c.)
£t (3-18):
) '" z")
5= <. ") (3
(at T€50l]ance)
~ ".( (0.01'13)" 0.1-'""
.S
"142.'1.1
/
Problem
4-1
{
r(i)
hom Il~.
f~ ",i.,
3l(
t,
<.
t
<. Z7T
21f<.
f.
<. 371"
0
Tp o
,
r
( 4 - JI 2 ) : 00
r(.t)
: T
:= 0
0
+
00
L
Cln (05 Zlfr.
11~ I
T l'
1 Tp
Go = -
fTr rendt
t +
L
. b n 61n
~I
.
o
a.. . : -r- ' 1(
0"
= _"'_Fo. _1_ _ (' _ /.2.
Cl
r
3
'-4'l~
7(
Po
1
cos "'f 1fN):= "'7[l"o. __ 1_
{
9-4l]~
0.,1]=3,,,, ...
.= ~'-9---'T-l]-~ (:~r
l
''It 3.'-,."
21Tt)
--i: Tp -
P.obl~ln
e
ED
7T W
r'
~
zr, lb.;., 7f (:ow v"cc)( 0./5;., )'''
c"(. ~ /8.1- Ib.~
• S= ;<.11., (6)
c
= ZZI
~ o.zz
llo'''''Yff
s
!Ji:
k;r ' 6L
I
5~ I) ( ')) . ."f.on, p:;-c,c : ') ~ 14t,
.)
~
14
.1.1
(c) .5';he~ tl,. dO'tT>FtlIf 0 rtz: '1
ly,
.
r
J01"'!>
{e:sf ']rHuILn'l' 'th< ll~:s~n~tic . daTTlF i'j 0rfea,.,; m.,Jr~ rca!>O'Jablc . • H'fSTl:.RtTICI
3-8
T~om
·Z (.'3 -
t~~"
if
:sinert £D
r!-
G,G, \ :
f
b
=
3"t (z 11 ~ r~ ),
k Cll1 d \' do T10t el,0"J~ ,
5«
rf
5Z(i;) l7
£- D ( w) .
1Z '1
Problun 4-1 (con'd)
o
bl1 =
fo. __1_[C3+ZlJ)
l
q-4~2
5ilJC3-2n)~1f
-
3
b'l
{3' po +-37(
=
f3' f./(31T) 1-(~l1t
.{ 1,
,,= ',4,1, ...
-1 1 7]= 2,5/8,." .
Probl~m 4 -,2. ,0<.
-I:
T,. <.2.
'R-ob11l?11 4-'<' (con~d)
[
b, =
~
a.:
Po --, 4-
0, = a
Vet)
:;0 , a
,
"'l =
1,3, '"
1=
2,"!-, ...
b , =31"0 --
,
Jr"7
= -'
(ao +
1< '"
r[l -f3~)',"+
I
(r
n: I
1) 0,..,(3., +
[ [ Co
] • (2
s(:l'!
y"
6" (1 -j.3,,)"].s;tj niU,t +
l a" (1-f3t])< - 5/:'",£3" JC0511W,t } ) Z
"""Fro,..,
.104-1 :
00
f=_ IT
a an: [
ro •
, Z
I-t{
lT
fo /z ,
o (31 = 2.'4
tron,
'i:.S' (4-2,12.):
I
(->'1 = 71 (31
71
't] =
odd
'1 =
IlviZ....
= I
'tj ">
I
:
z~ 4-
t •• '
5;nc~
5
= 0.1
I
( I { --+ r. 11-1:)=-
1<..
7f"
9)2
(I - 1(,
[0.3"'1 sin z l1i{),
1 [~ (f _ 1.) oi~ t<.-4
-t + (1- ~ 1l~
C06
Z"'11O, t
n
I
====-=--='
f
Dr (t) '"
. -- r e. i (0 I: - 17 )
I (' t
'l.l.;
and
III
C.
.,..
=.
2_ 1''1 '/~j -
~
(:3 -22.)
Probl~m 4-4- (con'd)
I",
ItT)
fsr(~)
~F'" 39.3·
/
7T/4-
JDpal
/ ,,\71'/4-
1\..
-FaA
1\..
.hrCi ) .
JI{O JII'(iJ
JDr(t)
I ..
..
"Probl~m 4-5 00
-:ro,...
L
pCl:) =
b'l
6
1'1
, b"l
~n t
'T\::.1
2. 1". = -
( - I)
,.,
"l"J7f
bO
T rom "t.: (.3-::2.1) ::
I:
v(-I:) =
(""1 51'l ( w,; t -
-&", ) , w~a..,.e.
11= I
(~= ~" [( 1 - (3~' -{r,.,
=
r
t 0 l1- 1 [ 2 5 (3~
+
(~~(3'lf]
-Ijz
]
'J"I
Sa llow-i':3
(3-2<.)
rLL,:3-23)
1 - (3~
( COht 1 tlUed
e<..
Fo.,:'e )
;..
5;ncll.
(3
T rom
(3+ t
I
=
0
2
tI
+~
(6) Lost
ett·
- Trom
of
I
2 ( 0.15) '" _---:::...:....::..:..:...-=-_ =
+
I
T
~fZ.C
0.24-8
£.5-1
at (5-1)
I
Or"
O. 13;;'
Z Co· 15)
z.. 7f
_
O.B'<:~ <. 1 ----+ V"tna)<:. ;:;,;n F~45. I
0.2'1-8 "" Z (0.15)
jrom lh;rd ":t
1
. _ 0.82'" sill
+ (I/O.B2")
£5- 1:
2. 7[
)...;
. Ito.B.c.",
Vma;>:=/fmo:>< (
~)
"
., j.5, rna" = Fo f\ --±..= T
0.15
=
""O'le
O. ;;'05
0.24&
840
/\
jSf"""OX
=
840
Ib
16
841 lb
Prob1~m
(con' d)
4- - 5
=
Z f, ( -!!::. ~i'1 iJ -I: + -.£ ~it"] 20 / 7fk\f 5 Il I
- - /~, ~tt] 3W
/95
J
l ' 41
C;;,
w,* (0) 1.
f-
l'
I~V{Wl\.}
0
30
0
. ~ \4
120
150
180
I. 4{,'j- 1.50" 1.051
.431
0
,"0
90
\ 2./0
2.'1-0
z~o
300
330
-.431 -1.051' -t501 -L'WI ~914
3"0 0
t
(0)
...
.
-/
I r;Q" -:.f ?Jrr.ox
: : ( sin
j
wt + wt
5;11
wi:
CDswL ~
-i:Ql1w-l.
wi
='
-
/{J-!: +
"t]
11 =
7f ,
0
7
+
i: f.
!.
UJ
f:
eQ)
tvt )
=
0
0
=- W~
2. ,
-n =
?ro'ble1?1
cos
I
5-"'1-
~O"- l:h~ two la:,f QZ6. oj' horn +j. 5-1P,
tl/T
='
£5-1:
D.15
(0\
J5,moJr. '"
0.4("
(15)
='
".
-+
~
j,mo:x-:k.vmax =,\mo" f\mo.x. = 0."1-<0
kiF
r.
Problem 5 - 4 ( ron'd)
T=-
:2.-TT/ZU
vrnax = 7f.!:..!-
T
(b)
=- 7f Ttl
jS"I"T\Q?t.
T1~11
f
,.
q"d
uJ"-=
fa =-
7f (0.15)
k
k/'ftl
Vmax
"111
~
=-
)=
7.07- k;f'"
0.353
it')
ZO
=
7f(0.15)(1 5
'Ql 5, 1T'l(\;Ic.
RttlQX
=-
j'b Sf ma.;k... l
T -
tl
7f
O."l-G.
=-
=- o. '}8
0. 15
7r
( b)
~ VmQ"k =
0.35;., J .(
.J$,mo.x.
= "':.1 kirs ,
0·98
Problem 5- 5
T f
50
(<) 35
<... = /50
1
o .
IE 0.05
Ie
1. =- js,max
L :: (k Vrnax) L
~= -1:1 T <. 7f 1-rn/k'
1J(i:)" m w
• f\1o ~ '-
= 0.10
<
1/4 ,H,u",
pC-!:);<>
Q
:5~ort dW-o.1io n
[!..t p(Ildi]5if1wfe.z. tol tl J P( *)di . Jlf =- k 1 f (~ )d i 1
1
Vmo:x. =
,1< 0.05 '" 0.05 'I( 0.05 11 -4@t>t=t 1 ,I
1
(5-<.1)
0
-rn W o n ,
,j1<./m' "";
(1'0 +41'1
L V'k/m'
+ 21"" + -4/3 +
0
1'4) =-
23+0
kir<>J{1
10ad
Problem
5-2-
T~e system win (n)
A
be. assWfn"d undamped.
has to
5DOF
1JQrij} :
fo J... , t
{ _
P~Q5e.
I:
0
o "-
{
<:
t
-+- k v(i-)= ret) , c
= 0
1
I
o
< 10 <:
-1'll ,jet)
t = {-t 1
>. /
0
-1:. ,
COlTlFle",.,,~a,--) solu~io'J: Porticulor ::,olulio'1:
I
1.
...5tQt't1t1j
5
_ Pl,aslZ.::IT:
...
Yom
-II
1
, II
01. tes.t
,
t~-1:1 ,
v( {) =
V (b) .5;hW ~ + v(UC05kJ{, {= -l: --I:, 'l OJ W
su.
1'. k
(---it, __ I wi,
siT)
t
)
(conl.inued on .Jollowi~ ('03")
"-t (2-33)
Prob\on 5 - 2 (con'c1)
-.J(f)=~ (,- C05W-I::) .
HI
v' (t) = 5'" uJt = 0 <
-wi Z
= .." 7f
.( > 0
5ince
"Z,,:; V5 c~ose l~" J;'51. l~,,'l, l~q
·tT/O)(l"17jU7Tj
.1,., ~~;", ('o~,
tI
w~e'1
+. =
"
IVi
.:311"
1
-.v
,
,
"h1'll:i17Jurn
11 be
iT)
t~e.n the
-3..-1: .3
2po --
U,
"1
=
o.
, ." =
±
--
<.
I,
=
±Z
0 ,
•
',2., ...
-I." ~:>r <.£,
--'>-
,'),Q5e
."-w{,
5"1
I
j
"t11oxirnuh1
-i: I > ~7T ;5 "'1
r ~a~
I
I
"'\ cJ~tem
co~ oW i-
o
'-----l..----'--l"
t
,CO'1e) . ~
---------_
..•...
_-------'
Problem 5-3 (con'd) (al P},ase I:
r( t) = Fa co:, w-t + fa
sill
(kit + : )
<.1(-1:)= A ""nr.u-t + 5cos·wf. + 1"0 [
k
1)
5-l.ort;nJ Jrom v(o)=o=
.,
(40) = As; '1 1<) -t +
1
1
ot T~5"t
E>
COS 1<)
40 + ~ [1
k 1-(3'>.
1-(32
.--.,.. 4=
B,:
0,
cos
7f
2(3
l-f->2
y
(32
-
-t
Folk
1eo-=,fo-!:
;(
F, I k.. I -
r
]~i"(Wt+ 11")
"
1'0 I B + _._--;;k
1
1-(32
=
to -{I ::::-
0
Jam IZt (2.-33)
Pro 61 On 5 - 3
(
eOh'd)
~ow~ve"'-,
w7 e I"J
uJ =' W
((3= J) -t~e above
Qn~more. T~rzn. aFF1~;lj L' ~.3rlQ1 ruh.
The:r1ore
~n F~Qsrz J[,
I
vet)
vCO = ~ sll1W~ + zk.
.
ven = ~ J+ 2.1<1
,
'
Fo !<}"c <.1<. - Po Z
k
Po 7T
4k.
c05ZoI ,
oill (zvi -
4-
i
:S1l"]
W{f-t,)+tQn-I -7T] 2
= {-
-tl :::: 0
.
.2
,
Ff' . [
Frl cal
-e-) , -e-~ ~CI,;t (_ 7f)' =
• I :=>lh "l
!+ -
l~e n,ressions oj
Qt
win be. :
"jf4 '
4-
1 valid
e:l::FV"es6ions !:lore t] o
0
<
t<
-tl
5i.5°
llot£. to c~(}efn ~: T~~ .sol"i ;0>15 ~o l~~ cl,arte .... 6 rrob7e-ms !
ou't
U51ny
-re5u7fs
CI
cOn1F,.{(r FY')r(~m available. {~ro'j~
F
1T1ecl;rJa., T~e
FYe:-:-e"ted on t~;s 5 0 1u1;o'1 HJonual ore computed 7"
t~e .sa-rnll. jashiot') as i~a5e ob1ait'Jeci jo> £:tamF1es £. - 2. ,
-resfecf;w~ ,
(6im p1e 51J7T17T1Q{ioYj
4o'WfLver , l1 e
p,.o'ble,.,.,~
J
1
1T)ef~od
,-Jerll
conied oui
us", t~e clamped
'Z
diJ5enncQ
PG. -3
ronesFndi..,
and
{rare ~ida 1 -rule, and 6imison's n1e ),
~omFu1a 1io17-:'
'l1(}~UTQ 1 Jrrt(uencJ
T~iS
arrhed 'io -the
but
£6-1
would
on?; aJJecis
ond Pb-4-, s7j~t1y'
frye
TVSliU S
10
Proh1nn co -
1
JsU:) ==
w~erll
== fe/fe,
0(
(3
k
v(t)
--7
T
Jr
;cl,
wt r
==---=
=
7r
fE
tl
7f
==
Jr 2 lbjin
J,(t) =
-(~r (Oi'
If..i tot
tl
lb· ~~cl';n
I.
--5111
ZJf
21:,
I
=
f:
t,
Z o~(
)
1. 1 in 5ac.
:< to 1
5s (t) =
N
0 1
2 3
•, 6
N
0 1 2 3
,• 6
3:<7 ( 5 111 7f
-l: -
OJ"
0;" 1.<'
TIN) COL. I COL. 2 COL. J COL. • COL. 7 COL", a COL.I0 COL.l1 COL.14 COL.IS COL.l1 COL.18 COL.19 ooL.20
COL.21
COL. 22
0.00
0.00
0.00
0.000
0.000
0.00
0.00. 0.00 9.08 29.39
0.000 L811 6.268
0.000 18 .... 66 61.862
0.00-251.16251.16 49.23-208.53251.16
12.013 16.410 16.410
118.561 161.951 161.951
TVI) COL. 1 COL. 2 COL. 3 COL. .. COL. 1 COL . 8 COL.]O COL.ll ooL.14 COL.IS COL. 11 COL.18 COL.19 COL.20
COL.21
COL.22
0.00 0.00 0.00 0.00 0.00 29.39 23".18 23.78 141.14 102.39 43.62 58.18 318.61 98.46 -98.46 196.91 1.50-315.89 ]11.39 464.62 515.5] 0.00-515.5] ~15.5] 515.5] 91L 46-417.01 ~15. 5]
0.000 0.000 1.811 6.268 12.013 16 . .(10 16.410
0.000. 0.000 18.466 61.862 118.561 161. 95; 161.951
0.00 0.00 0.00 0.0000 1.0000 0.000 0.00 0.100 50.00 0.5879 0.8090 40.45 0.200 86.60 0.9511 0.3090 26.16 40.45 0.300 100.00 Q.'Sll-O.3090 -30.90 26.16 0.400 86.600:5818-0.8090 -10.06 -30.90
0.00 0.00 0.00
0.00
0.00 40.45
61.21 67.21 36.31 0.500· 50.00 0.0000-1.0000 -50.00 -10.06 36.31 -33.15 0.00 -50.00 -33.15 -83.15 0.00-0.5818-0.8090 0.600 40.H
0.00 0.00 0.00 0.000 0.00 0.0000 1.0000 0.00 0.00 0.00 40.45 0.100 50.00 0.5818 0.8090 40.45 0.200 86.60 0.9511 0.3090 26.76 40.45 40.45 ]07.66 0.300 100.000.9511-0.3090 -30.90 26.16 107.66 103.52 2.56 0.400 86.60 0.5818-0.8090 -10.06 -30.90 103.52 2.56-111.50 0.500 50.000.0000-1.0000 -50.00 -70.06 0.600 0.00-0.5818-0.8090 0.00 -50.00-111.50-161.50
0.00 29.39 82.36 95.11
50.90 0.00 0.00
0.00 29.39 82.36 95.11 50.90
o.po 0.00
0.00 0.00
0.00 0.00
0.00 29.39 92.36 29.39 9S.11 111.15 50.90206.86 0.00 251.16
0.00 0.00 29.39 82.]6 95.11 50.90 0.00
0.00 0.00 29.39 141.14 ]18.61 464.62 515.5]
0.00 0.00
29.39 111. 15
38.47 63.92 -34.53
98.46
206~86·. 21.34-161.35188.10
251.16 257.16
Probl~1T7 (0-1
(con'd)
(c) 5irnp!>on's Tu1~
" 0 1 2
1 4
5
•
COL. 1 COL. 2 COL. ] COL. 4 COL. ; COL. 8 COL.I0 COL.I] COL.14 COL.15 COl..]i COL.18 COL.I9 COL.20
T(N)
0.000
0.00 0",0000 1.0000
0.100
50.00 a.SOia 0.8090
0.00 0.00 0.00 0.00 4 O. 4 ~ 0.200 86.60 0.9511 0.]090 26.76 151.80 0.00 18B. ~ 1 0.]00 100.00 0.9511-0.3090 - 30 _90 0.400 86.60 0.5878-0.8090 -10.06-123.61 215.33 21. 66 0.500 50.00 0.0000-1.0000 -50.00 0.600 0.DO-0.5678-0.8090 0.00-200.00 -48.41-248.41
/VI dhod Q.
-f: ,
sec
5impla • 5ummahon
b. T rap,,~ 0 i.:io 1 I
0.0
COL. 21
COL. 22
0.00
0.000
O.ODO
95. 11 50.90 300.42 282.28 113.61
61.78 111.56
2.495
24.621
12. 1 3-511.32 590.05
12.521
123,580
0.0016<1.51 ?64.51
146.0]-618.51 164.51
16.224
160.120
0.00 0.00 29.39 112.36 111.56 0.00 0.00
o. ,
0.2-
0.00
0.00
0.00
0.00 199.92 179. )4
0·3
0.4
0.5
0."
0
0
18.5
"I. 9
119
I" 2-
Ii4Z
0
0
18.5
(;1.9
1/9
1"2
1~2
fh.l12 c. -S';rnfson's
0.00
55,/6 24.",
0
12.4
IC.O
R.u112 ez.-Cs:l)
0
3.3
24.0
H·9
/2.3
1""1-
1"0
P,ab1(:TT1
0-2
TIN) COL. I COL. 1 COL. 3 COL.
"
O.ODO 0.005 0.010 ) 0.015 4 0.020 0.025 0.030 L 1 0.035 0;040 9 0.045 10 0.050
0
, , , I
0.00 19.32 38.64 ~1. 96 11.28 96.60 17. 28
.4
0.0000 1.0000
0.00
0.98B8
19.10
0.9553 0.9004 0.B253 0.1)11 0.6216 0.4916 0.3624 0.2190 0.0101
36.9] 52.19 &3.78 10.68 4B.04
0.1494 0.2955 0.4350 0.5646
0.6816 0.1833 57.96 0.8614 38.64 0.9320 19.32 0.9751 0.00 0.9915
28.84 14.00 4. 23
COL. i COl.• 0.00 0.00 19.10 36.91
o COL.I0
0.00 0.00 19.10
0.00 19.10 15.12
15.12 164.22
52.19 164.22 63.78 280.20 10.68 414.66 4B.04 533.38 28.B4 610.26
0.00
COl•. J J (OL.14 COL.l~ (0L.11 COL.le C01.19 COL.20
280.20 414.66 533.38 610.26 653.10
14.00 653.10 611,33 4.23 671.33 615.56
0.00 2.89 11. 42 2'5.21 43.64
65.85 60.54 50.28
36.01 ] B. 85 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.B~ 2.8S 2.85 2.B9 2.89 11.19 22.20 16.0 11 .42 1'.19 53.82 11.43 4 B. 46 25.21 53.B2 122.61 158.21 101.24 43.601 122.61 232. n 282.65 169.86 65.85 232.15 358.53 '111.81 222.81 60.54 358.53 469.34 529.35 233.53 50.28 469.34 555.63 60B.7I 201.34 36.01 555.63 610.50 655.03 133.10 la.85 610.50 629.35 61].81 H.52
COL.21
0.00
295.82
0.000 0.000 0.160 0.639 1. Sa2 3.133 5.415 8.211
40"L37 521. J] 629.35
11.]}6 14.481 11 . HI1
0.00 5.11
22.91 56.91 112.79 194.94
COL.2
0.00 0.001 0.43.
1 . '2: " .21 J S", 459 14 .621
22.186 30.553 39.]00 41.201
£10-1
above
Tram
Vmc>J<..
= [(
r.,75.5C,)Z-
F
+
z.mW
Problun tl
o
T{N) COL. 1 COL. 2 COL. 3 COL. " COL. 1 COL.
O. 000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 go. 04 5 10 0.050 11 0.055 12 0.060 13 0.065 14 0.010 15 0.015 16 0.090 17 0.085 18 0.090 1 2 J 4 S 6 1 8
<;,-3
0.00 0.0000 1.0000 19.32 0.1493 0.9998 38.64 0.2952 0.9554 51.96 0.4345 0.9001 11.28 0.5640 0.8258 96.600.68100.1323 11.28 0.1926 0.6225 51.96 0.8668 0.4981 38.64 0.9315 0.3638 19.32 0.9154 0.2201 0.00 0.9914 0.0126 0.00 0.9910-0.0111 0.000.9144-0.2250 0.00 0.9299-0.3619 0.00 0.86~5-0.5026 0.00 0.1798-0.6260 0.00 0.6111-0.1354 0.00 0.5003-0.8283 0.00 0.4304-0.9026
0.00 19.10 36.92 52.20 63.81 10.14 48.11 28.91 14.06 4.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a
COL.I0 COL.ll COL.H COL.1S COL.n COL.IS COL.19 COL.20
0.00 0.00 0.00 0.00 19.10 0.00 18.96 IB.96 14.84 36.64 14.29 163.13 51.91 161.91 211.54 63.34 215.46 409.54 10.21 406.49 524.80 47.15520.88597.54 28.69 593.07 635.82 13.95 63}.06 649.28 4.23644.43 648.66 0.00 643.81 643.81 0.00 639.00 639.00 0.00634.23 634.23 0.00 ~29.49 629.49 0.00624.18624.18 0.00 620.12 620.12 0.00 615.48 615.49 0.00 610.88 610.BB
0.00 2.88 11.41 25.18 43.59 65.7B 60.48 50.24 35.99 18.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O.QO 0.00 2.86 11.32 24.99 43.26 65.29 60.03 49.86 35.72 18.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 2.88 2.86 11.13 17.00 53.50 53.10 121.68 120~77 229.82 228.10 353.87 351.22' 461.49 458:04 543.90 539.84 594.40 589.96 608.66 604.12 604.12 599.60 599.60 595.12 595.12 590.68 590.68 586.26 586.Z6 581.88 581.88 511.53 511.53 513.Z2 ')13.n
0.00 2.85 22.09 10.97
0.00 2.85 16.31 ~8.19
100.48 278.86 168.30 410".73 220.28 517.93230.15 592.26191.85 633.27 131.16 6~6.95 44.19 641-90 -46.56 622.61-134.92 589.14-218.95 5401.21-296.86 487.23-366.99 420.24-421.89 344.87-418. ]5 262.94-511. -10 156.5~
0.00 0.00 5.72 22.68 56.06 110.58 190.45 287.11 394.41 502.12 602.15 68B.45 157.53 008.70 Boll. 07 B54.22 848.13 02).23 100.3-1
COL.2l
(Ot.22
0.000 O.QOO 0.159 0.631 1.559 3.076 5.297 8.004 10.970 13.965 16.164 19.148 2L069 22.492 23.392 23.758 23.589 22.896 21.103
0.000 0.000 0.4}0 1.103 4.219 8.304 14.301 21.610 29.618 31.706 45.263 51. 699 56.886 60.728 63.159 64.147 63.689 6L819 58.599
T~" mC""TT1I-1"171 re"'pon5~ is r
~J5,mo."" ~
104.'
k; P5 1
" 0 I
, ,• •
TIN) COL. I COL. L COL. J COL. 0.000 0.120
0.240 0.360 0.480 0.600 0.120
0.00 0.0000 1.0000
1.00 0.6812 0.1321 4.000.9914 0.0119 9.000. 17 92-0.6268 9.000.1435-0.9897 6.00-0.5651-0.822] 0.00-0.9168-0.2143
~
0.00 0.73 0.29
COL. 1 COL. B COl•. 10 COL. J1 COL.14 COL. I:" COL.11 COL.IS COL. 19 COL.lO
0.00
0.(10
0.00
2.60
O.CO
2.80
-~.64
-e.91 -20.01
2.50 -26.41
-4.93
0.00 0.68 ].99 1.01
COL. 21
COL.n
,.
0.00
0.000
0.000
2.42
0.01'7
0.619
34.35
-].19 -]3.99
)0.20
0.967
1. "130
15.92
44 .24
41.65
1. 526
12.209
0.00
0.00
0.00
0.00
0 00
1.42
0.00
6.4]
2.88
0
24. 88
8.18
0.00 -12.11
28.04
1. 29
- 3.41
0.00 -17.50 -2'7.19 -45.29
f:.
1
V,
,,5tlC
o
-i'J
o
0.011'
0.4-8
O.7?
0.970
1.530
- 3.41
.:
T~e out
U5;')
()
.6olwl;ol1s
to t~O!
ChllFier -, Frob7ems zoczre carried
('omFufe r 1':1 ... (>177 available. 1hro~1 Po 17]O!di'7Q. Tljt °
Te51.1n~ I ore.sell{eJ 01-) this ..5o{I.I~;Of) l7Jarwal nre t!omp«ted 7'7 t?e . I .same ja.5 h ;o,?
.57
0 l/J
fJ
1
0'1
tl5
Til b7e
t?o.5e ob10i'1eof
'£"f- t
';'1
IhO! ~ ~arnF?e
,£
tf,e. book.., be.!: jar ('0IU~1")5
e "l-re.5S: O
col. (/(;, 1 :
jor
llV _ _ " ~o,V o
~
-'-2,
(I")
1:0 09i,
rv
"Followi'J
£. 7- Z. :
k(-l:)= kIt} = B+
,1
pC-/:)
COL. I COL. 2 COL. 1
0.000 0.120 0.240
0.000 1.000 4.000
0.360 0.480 0.600 0.120
9.000 9.000 6.000 0.000
=0
COL. 4 COL. S COL.
lit
-
30
COL. 1
COL.
0.0000
0.0000
0.010
0.2461 0.0199 0.0981
0.0224
4.1119
t
(:;<.C)
1.> (in)
(o. <. ) +
~c
ill _3_ (0."'1-)
30"1-
=
o
+
k;r/;"
3
0.1<'
(G,tn + 3C) il At
-
( .3m+Tc "t ) V..o
3
- - V. = - - . 1 l ) Z 0./2
a COL.
0.0000.0.0000 0.0000
1.3141 0.1365 3.5228 2.9680 0.903 4.8600 1.2216 1. 405 2.89101].2413 1. .(69 -2.219211. H90
+
"-1:,,
0
0.000 0.092 0.371
z.tTl
&1"(-1:) + 11.<.-VO + 0."2'!-Vo
E- .1 V
•
( O.I<.)Z.
= &f'U) +
"f(t)= LiV
(M)
.,
~
k(-l:)
"
+
9
1.000 3.000 5.000
0.5259 2.7316 13.6881 1.409] 4-622923.1142 o.aoo 1.9440 -0.1656 -0.9292 -3:000 ].lS64 -6.3917-31.9983 -6.000
COL.I0 COL. 11
0.0000 0.39-P 1.9062 4.7822
0.00 4.93 21.36 49.10
S.B121 2.70]5
4B.IO 9.12
. 31)0 -
ooL.12 COL.13 1.000 8.329
B.O
28.266 53.819
B.O B.O
SO.9]5
'.0
6.4~9
'.0 B.O
O.1Z·· tJo
--
(,
COL. 14 COL.15 101. 3 101. 3
101 :3 101.3 101.3 101.3
D
.0.12-
0.<.4-
0.3cD
0.403
O.coD
0.1'<'-
0
0.010
0.092
0.311
0·903
'.405
J. 4{,8
COL.16 COL.17
0.010 4.1119 0.2461 O.OB2 9.57631.0690 0.279 9.4261 2.2081 0.532-23.9424 1.3312 0.502-31.160]-1.9690 0.063-22.1933-5.1102
Probt~m
1'-.2.
k. (+)+ -"-
:3 C -t- __
171
!..I,
(M)'
~
k(t)~ kU)+
_fo_ (0.:<) (0. 1<.)"
11
p( t) =
LlF'(t \ + 1/.:<,
~
V(t) =
25 Ll'tl- 3.10 D COL.
Ot.· i COL. 2 COL. 3
COL. " COL. S COL. 6
COL. 1
0.000 0.010 0.092 O. J11 0.903
0.0000 0.0000 0.0000 0.2461 0.0189 0.0981
0.0000 0.0000 0.8224 4.1118 2.1316 13.6881
0.000 0.120
0.000 1.000
0.240 O. )60 O.4BO
9.000
0.600 0.120
6.000 0.000
4.000 9.000
(al
1.3141 0.136.5 0,5259
COL.
,
+ ~(0.4) =
k(t ) -t-
93.33
O. /2-
v. + 0."~4 -
f"~ p,.,
ii" }
O.O",vo
COL. 10 COL.ll
COL. 12 COL.l J
COL.14 COL. IS
COL.16 COL.
n
( bl 1.000
3.000 5.000
4.6228 23.1142 0.000 4.8600 1.2216 1.9-440 -0.1656 -0.8282 -].000
3.5228 2.9680 1.4091
2.9910 9.0000 1.1564 -3.1564-]5.1820 -6.000 1.582 -0.4011 9.0000
1.405
0.0000 0.3941 1.9062
4. 9]
1.000 8.329
21.36
28.266
4. 1822
49.10
53.879
5.8121 3.0904
a.l0
50.915. 16.S:H
0.00
19.44
0.010
101. 3
0.082
10L3
0.219 9.4261 2.2081 0.532-23.9424 1.3312 0.502-31.1601-1.9690 0.]1'-23.4039-3.2991
'.0
10l. 3 93.3
0.0
4.1118 0.2461 9 _5163 1.0680
101. 3
'.0 '.0 '.0 '.0
101. 3
eQ)
0.00
0.12.
0.000
0.010
0.24 0.31-1
0.4-5
O.W
0·72.
o. <)03
10405
1.562.
----------------'
Probl~",
7
-3
(J:;)o ccZ'(7'-Z<)
Tc, notoi~
a{[l- ~( ~vr]v L Ivl
=
k(t)=(-~:~t =8[1-(Z;tL ~
£..
7- - <.
k 0:)
= kCf)
<1.5
Iv l
+ ~3.33
from COL. I COL. 1 COL. 1 0.000
O.IZO
0.240 0.360 0.480
0.600 0.720
0.000 1.000
4.000 9.000 9.000 6.000 0.000
,
COL. 4 COL.· S'COL. 6
COL.
0.000 0.010 0.092 0.371
0.0000 0.0000 0.0000 0.2461 0.0789 0.0987 1.3147 0.7356 O~S259 3.5254 2.9084 1..001
0.0000 0.8224
0.901 I .461 1 .728
4.954) 6.3142 1.9811
COL. B COL.
0.0000 4.1118 2.1385 13.6921
,
1.000
3.000 5.000
4.6815 23.4015 0.000 O.6HI J.2205 -3.000
3.1434 7.992] 1.4974 -3.4894-17.4412 -6.000 0.2370 0.0000
f.
(~c)
0·00
V
(in\
o·oco
COL.10 COL. 11
COL.I2 COL. 13
0.0000 0.3941 1.9063 ... 7922 6.0224 4.0733
B.329 28.269 5-1.090
,.,
S1. 48
54.499
'.1
98.4
26.97
25.039
O••
.93.7
0.00 4. 93 21. 36 49.30
1.000
'.0 '.0 '.0
COL.14 COL.IS 101. ]
101.3 101. J
100.8
O. I ,
0.:<'4-
0.3<0
0.4'8
0."0
0·7:<-
0.010
0.092
O.:3'l'l
0·907'
1.4"1
1.125
0.010 0.082 0.219
Pt-Z
COL.16 COL. 11
4.11180.2H1 9.5164 1.0680 9.4586 .2.2106 0.536-22.9996 1.4289 0.554-26.6224-1.2109 0.267-23.5329-3.5056
K-oblnn
-
8- I
.5-ince
flt of
t yo no
we.",
is ~lAivQ1e"t :[0J7 ... 5t
£ 8-3 c.
k" /
111 '"
a nel
T =- .<- 7f /1
'Z.
--+-
J
T=.<-IT
0.228...,.,L
=
l."f-cO
7r 4 £1
.32 L..
T =-
5flC.
T
=-
8-4 ,
-Ir7n-"'-/-k-:"'~'
2][
L"-/-tn ' £1
3
f~ )"
J 110
lb·
~flC /1ft'
=
I
V 1~5){ 10' Ib.}!"-
/.1''1(,,-6Q.C
,,11
/I
111 ore.
1.'/'20 (200
of
QCCurare
L"
32.
T= '''Ll,'t~7fr ,\ 2.
Proble,...,
r
8-2-
ml/ f TI
L=200Jl
I,'
I:
VI=
4OOk;f'~
Cll ):
1-
co~ v ..
TTX
Trom
oz· of
£
111:0 1\0 lb. ~c/~P" £1.=
9 1"5.>< 10
!b.p"
I,'
2
L
B-3b:
11l~
and
K.
/-1<
=1mcx{lfexl]d L
==
(cO'1!i'1ued
0'"
fonow;~ P":.9 fl )
x:O o.2.<8iTiL
JL· 1/]'£I
"-
+-mY-'(L)
"
l
., mi'= 0.zZ8mL +
I
111111 'III
E
1f
1 flt ( 8 - la) : "rt't' =1 mcx)[fc.>') .J" .
Trom
4)L2.j T
_ n
jW
(I
)<
m'" _
0.228
("oI6·~q(/f!·)(~oof~)+
=-
400>03/b
17'430 Ib.~Qc/Jl
;;2.22 f~/".c"-
~
,"5 ><. loq IbJ1:"-
7f
k
=-
=
"2<'80
(200ft )3
.3.2.
Z7f
114.30
:0
3.311
sac.
,,2180
~T
= 3.31 "ac.1
1" : 111 ore "Qccurate
T=
I("L
/fr
+ 'NL ]/(.E) [( ~_4\)L20 .2. 1\ .2.1Trt j
Problem 8-3 LiZ
1<:
ret>
z
*
L..
(L t::=:::;~=R=!J=io=:=1'l1=Q=56=l:;e=ss=b=a=r;:::::====1 \}/z •
-<.11;pliCQl flal"
"t=
p(t I
is
I
I
I I.
coso<:::
-mass area.
Problem 8-3 (con'd) =
tr1
r
7T (L)(,c/2)
8
4
I
o
=
7r L
Z
8
r
= 7T L Z
r
LZ
torclZ.<; ac.f:i'j over -t~Q
+
(<:'/02)
"
ICo
5!f <;i ern :
pet- )
5s" -k. -U("-,tl= _k ~ <'(-1:)= _ 3 1c..~U) Sn =- c -0(-L/Z , t) = - C ~(-t) = -!.. c ~(tl 2.
3L/Z
-L/2
31../2
J~lJ
= -111
-i.i(-3.L/Z,
-l)=- r
3
7r(L)(J..JZ).
4
+ ~
C ~U)
~U) =0'
3.1.../2
+ ~L k ~(-n
(co"tinuqd on
-31../2
=
~L pet)
Solh:oi '9 r
P:J~)
7TL<
8
~(-I:)
Probkl71 8- 3 (con'cl)
T1 e
J(amino'1':S princip11l l
m· ~(i:) + co¥. ~(-I:)
+ k'" ~(t)
=:
-n'J~ ==jl..",C;C) [$U(.d"dx-m'"
C'i'
to¥: '-
=fL-rnm [f{):ltJ~ I...
== [ 0 =0
cex.)
+
]<: [PCX) J):. +
(\Od[P(:t>J~d"
j
+
o
Jir:;t
,"'(t)
+
L1·Tf1i
"1'/
oj
QZ,.'
+
5
8-
L i IoJ~·lt
Li (JOt + TT1i"'~) (1t:.J1. L
Q11.E.ICX)
[p'C):)]
"
d;x.
[L EI(:l:)[~'~x)tcix
+ ~i ci ~<:
+
E. Tw.2. f,
t
I
I(t
0
-J .
<-
L.
A!ex)[ Y"'cd .dJ<.
o
f~ru
==
/1.
('(X,t.) Y'(:I:)
dx +
L i F/I:) 5t;,(x)
o
=:
111
[\l'C-3L/2)f +I o [t'C-3{./.2)]'= 1Tl'1el)+51TL'i-1'(_f_)~ 8
1491f L~t I\5Z
or
[ 1. + m .j<
111
1497f L < 1/52.
=
c'" == c
'k... =o
r" U:) ~ m" =
=
If' (31.../ 2 )1 =(S7T L+ r 5
¥
[svc-L/zr"f'
)r
J.<.
= c (1/3)'= C/9 =
1cC Z /3)Z=4k/7
f' (t) $V ( 3 L/Z) =- ,P U)( I )
1497T L 115Z
~
(-31.../:2. ),] [
k"'= k [5l'c L 2
5/2.
0' , c"': ~ , 1<.~ = 41: , F''' (t) = f' (·n '3
1
+
1fL2. &
r.
3L/Z
2J( I
9L ~
I 31.../2-
)Zo
Pro bh11l 8-3 (co,,'d )
'--''''~-I )<.
S \Alp
t) =
= p(.1:) SV(31../Z
I
, . , ( .... Ofltl'i·.(1?o
I
on
r
-+0
J
no1Vlnq . ~
P ({) I
p~JQ )
'-
3'-/2 31../2
8;Z
Problem 8-4 (coh'd)
.
Toec~s art;"5 over t ~e bay-:
F= - [
~
~ ( -!o)
1"11
Jo =- cV
(3L, 1: )
1rAB:::: - l A"
11AB =o_(3 _
p(-!:l
l.: ~A =- 0:
flF
=0
F (3l...)
=0
-
[i
-m
=0
k Z (-0 ]
-
j3 '" - [1
1Tl
4
t-
L"-+
C
0
~ (-/:)
+m
lhnL"-) -r
(3L/Z)"]
ictJ 3L
~U) + k ~(t-) Je3L)
~fO=JD(3L)=O-C
0= -
+
~7nLi(t)-31
p(i) L2.
i<-t) 31.-
Prob1nn 8-4
I"
21.-
L
)I.
31~
L
)I
CD
T oq"1 ma"", = ,." (tmiJoTm
loadl l."j~~
OVal"
arQQ )
~)
I h~>:hT15i b1l!.
;r;;
~~;d unijorm bar
/ool..-M5s=m
cab1~
mossl"ss
1J(X,t)= F
"\1&
1\
VCl<.t I
0<
11
So
~({-)
L' I =m_ o
1<-
~ ~(-l:) 3L
-V(3L,t) =. L/:<
.3- i((1:) t...
I~=.,.." C3L)~= 3t'nL" rz. 4-
A
1----....",.:
(+) =
. d~ 1=1"11o g
lrs
I t- is Q5SlAmeci t~~ coblt on1; tron511lits cotnrre",sio'1 .
• TOrce<. QctinJ
QVil-r
t.he cli~k: js = - k ~(t) M
II. = - 1 0 F=
(L/2)
= - k
7
,.
<;>l.
-rnl..zz" = - - - - ~(t)
8 ~(tl (L../2)
1..-
=_..!--mL~(t)
1F
"'t
=.
F (LIZ)
( conhnu«d on
jol1ow;'j I"'j')
Problem 8-5 L
IE
L
'IE
)IE
pit)
~/z
~l<'
~/Z
'I
0) l~=~~:
R. jid massl."" bay~jiJ ~njorm ba ... ( To1al lT1a ",,= m)
~etT pH: I
v,
t
lIYm
I
A
VI:
<'1..
.5s~
SSI
Vz :
1SO Tvz
~
>
Xl
acl i llj
):" ~(tl LiZ
.
TorclZ. S
~ !jet)
0'.=
~(()
.L/Z
ovo- i~'l ~j5hm :
pit) Jo5l = - k 1.11 (X I "=' L. If) = - k ~
Jsz =-k [VI 51) L
"=' -
~A = 0:
(X,"=' 2.l..,
t)
+ 1J~
Cj(-I:)
(X- z =.L/z
c ilz (;x.z =-L/Z, -l:) =-c
~ P = Fet)
lSI (L)
0=
(-I) tIt)
L
~ hI =
1f~z =].sz
,-oJ = -k[ ~ (t) +~(-:)J
= - k ~ J(+.)
(2L)
p(-i:\L ..
i
L
=-kCj(t)-t {(-fl]e,u.. !
k
!J(f:)L -
~k [3(tl+ ~(t\J L
(conhnued on fonowin3 paje)
0
Problem 8-5 (con'd)
f = .MI~.z. 11
J (L/Z) = - k
m= in
h-orn
8:
CD:
11)
~
. . 111
Fr obl
=
(-L/Z)
fr1.r = - I I 0 0=
[J (f) T ~(iJ]
5Z
.;<
=-
ZCC:)(-L../Z-)
C
!:-<. ii..aJ
171
f<'
0
L../Z
0)
-~ k (Y(-I:)+~(4:)1.z. - ~ CZ(-I:)L -~111iilt)L
j(t) =:
-
Z(i) +
;
Pt\
~
r-;-
f
6/
if F(i)+~ k ~(-t)+ Z C~J-i:) +b1nZ(t-) ~ 111, c'" ~ e,k ±k'F f' 0= - ;
1<.
ZC-t) +
~
=:
(LIZ)
-=
1< (t-)
=:
-= -
(-IJ
8-& L
et
'1
:z
L
111~=l-mp<)[)I'():)]dx=l-m[(Zt(~-Z:)Jd/'<
(8-14):
--- - - L
111;r=rrll [:t(zf- ~GJ + Hzt]J~ 't11~-=m[~(~L)-~(~L)+~(~L)]=:
k~ -= tk:l(]C)[f'(~>fdx
=
fLU [L f( ~r(~ -z:)}f
k"=:£I[L1-[I-z. x + (X)ZJd?
J..
"Tt-o
Ilt·
(8- B): F'4< (t) -= [ I
F(X' t) f
(L
p'tW=Plt)}o .. m""=(33/140)mL,
r
-mL
~:LIL[~2 -3 ~ fdx
9EI(L_L+!..I..)= 3£1 L'"
L
L lTl
'=-
=:
1:
(~)dx2
.3
_
L
3
1P(t)( ~r (J - fLJ d"l<-L
-
-"
-(
\
~L3(~) -(~tJdx= FzL(L-~L)= ~
k~-=3EI/J..~, p·U)= (3/B)LpU11
F(t)L
R-obk..n 8- 8 Co) +i.. ",~
0flev~.
(8-.20):
j1 t( 4
111-1<
=
o
m*=j! -mC"k'J) [YC>:'J)] b
Q
::>1'1
"If:
:5;'7
0
111~ = a jQ 5ih z
71/
r
"-
d>:.J
y
d"dj
If: dx lCl 5ih"7f/ dJ =1 (f.~Sin" -rr; dj"<-
~Y=1'(; [:it1"~
d[7fq
X
l)=o
1(;r[(:~- ~in~¥)[r
m~=r(;r(;r=r~"<-
DI l b{[
2
Q
o
0
0
fL'(x,y.) + 0""
a","
_ (--V) [ 2. I
'f/ (x, .
..
"w dX
_O_T_
. 7f
'" _
0"'1'
OXaj C}2
JP
.. - - -tdX2.
q
L{ ) j
ax"
7r)<.
Q .
7l~
c o 5 - 5111-·_
q
Cl
OJ "-
0" PCX,}) a"-JVc:JCIJ.) _(
= sin 70< .5 in .".J.
a
Y!C)<'Jl)] '1.
~
OJ"'-
a"-jP(X'.}J)2.]}dxd aXa)
'j.
k1'
l" Cal
0/< 0=-
=:
hOI"T1
..
ez·
k - kG
(B - 1" )
3€.I
L
3
12<- (8-14-)
~
N
5
L
--
(, =
k: k
oj:
"I
l
LN
(,-
~) :<[( ~r-e~r+ ~(~tJd~
L
0=-
==
9:<1 [(zr-G(~r+
~(~r-~(~rJd~ 9 tJ (~L - -.: L+ ..!. L__ L) = ~ rJ L<:3 42:4 8 L I
:2
.,
Prahl.,,, 8-5 (co.,·cl)
f
a.
sir,
~.
rr;t.
d
-0-
t
f dJ =/ o Q
a
COS
o
o
k
x
4-
~L- D (1"
, k«=7f4~1 a" -> ._.
2
!lJaclx
~-
0
.
x
'i-'r -r-t ;
:3 "/:3
-,-I
I--+-.t" 1'()C) -== I L
/
Concrete;
I
d=
~
O_ISO
;:. == 0.43(",
-+-- -- -~ - - -
1
v
/
z= 100
-++----1'--'--1-11-- u
>" 10'"
I !:. =100 <.
-I:
qt _~, p(xj
o
X: i'ex) ~ (r* _lOb) ~
me,,)=_ (' A (x) =
1
, I
! i
0
2iMo~oh'!> I
X"
11'
=
(1'-< - t'b) : - t 1'b
\5*)
(5-l- )
0
8_co"'' ' '
I
100
2
ZOO
t11"
=
I
R.uh: n'\i
21t-t r (
h=
=:.
J
(k;,....'«: Yft')
-
co-' (,,,,1
0.1<'0331
3. "'(,"'1
0.01151-8
mi:=
I-C05~ Zl..
rb
J[2.1f-t rex))~
ex) TT-l:r"3ex l[1+ [.....i-J}
Iu(x)=
-
--j-
11I
-==
3
fV/':=
"" tei= n-tt';"E G'SC~5~ Elie~"t €oIi::
1Tli yt"(,:;""50('/.r,') (k;",,:f-t»
(II}!')
(~if'5/fl')
0
o.<'~28q
1
-
o
0.011548
[~ex) VJ~x)ch- =jT~J[t I iCX)](I- cos ~~P;t: =ZlTfrb;(0.D4015Z + 0.18"003 ;J=4J;~::l
k== [£I(X) [)!J'b:) rd
X
==[-{
dEl1'"~(x)
+ ~\ex)lH(:Jcos:~
fdx
Probh,." 8 - II
tn, '11111/11 '1111
t:.
vex)
~_
PL" = 1< EI
I
r-- {~}..----' /
I
z:
(8-25):
I
L
Y'(.~) ~ ~il] 1
~
-
r:. r
\
/
III I II
qr,d
(3.-) "'J
lI(X,-t)=
.'. ]V(X) = 3
1/
Tro~,
L...
"
e
L
[3 ~ -
/ 1/ I I
of..:.
(B-Z~): Tma~= ~ ;1{/[~(x.)[Cf(;t)]dx-
ez.:( 8-IB):
[m c):) [~OC) reI",
111 4( =-
+
L 111; ~< + .E I Oi (~;. t
'- . '.'
4-
Tlnnk=i~~~~{~I m[3~-(~r] dx.+ I1nOk .
,[3(1)-1"rl
~ ~"/ {z mf'- [g( ~r- 0(-:j\ (~r1dx +~ mr} o
I 2 Tmo)<=~~kJ
T-rnox=
m
a[Zm-(
3L.- 5G:,
1
L +f"L. ' ) +4-m,
l ~2 -z,} [Z(::)fi1L+4-tn,)
FJ( (31.< - 4,,');\48£1),
o~X'; ~
vex) =
. { ::>Jmrn~1:"'i~ n~l«ct to
;!:=
z/<.
"{.,(8-.<5) X :. }V(x) .: .(.
f,o,"" Cz.-
l3- (\2.1 Z) r
lI1n~X
(B-27:):
"l-
=0
~
-I 1/
max
Z
=:>:0 £1 -<.....:
I
LIZ
x't
':
o
TlTlal' =-ZI Zo2 1V2
[
Z
5;ZG,
1,-)3
1 3\2.
Z
51"~d;t.=;z. £1 - - ( ' - ="0
2. m
(
L""
'-.:
3' -L - -24 , L -
8
5.32
L"
L-) t + -,e.-'<..8 f
1'Tl
~
I
] = -Z.I ~ tvZ ( -r'f tn_ i- + m ) (•) "7.2
35
I I
(Ql
~T=
7r
z
jl'fTTiL'" "flO'S E.. I
7f
r122 mL+
=YV'10 5
£I
lr
ProblOl1
8 -" (con' d)
L...
3(31-_ 3"5tnL
)
+ m1
T=2.7r
.c (-;;-mL +4ffiL)
Cal
(, ,E I
",EI
( b)
is
~tnL...=O .3
-no"",,;
I
mL.-+ 2'J . _ _
35
. ''1
T=
-;'7 col~tiTn5
and
I
£1
L 3(3+-/ 35 mt... + ml ) 2..7f
" lSI -
4mL
+
0<. T1lT
-mL1-' _
£1
2+0( :3
=<7{
/Zq
-. 35
Probl.m 3 -
/2.
" 'oJ
vz, = 2'/ 3
u.
(0) ( I ) T '=
I~·
Vi
-l L
r,
'I~'t]
'u/ r2
(o)
~ 'lowinq
=( ,
', L r ZO' 0S1f1W
(o)
(0/
= Z/3,
(j/
~' (8- 33)
, (0)
/3
= 1/3
(.J
-<:... =
,
J
£. 8- G. :
J
Co)
(0\ Tmol<.
I 2
=---l/J
T mal: (o)
'[
1 [ 'Ol]~ 7.. Z '-
= -
V1'nQ.'L= ~ <-0 I [
(0)
1
Z.'01J2
)CO;
U mOk
CO\]'
-u./
f' [, ( 01J2 17, ki lJ. y 1
Ti=
,=...!..[':7;o,I]' ~ 'r." 9.
C01J2(-I I I ') . K. 1fT Z k ""i+ 3k If
Z ~~ I [
(<<) ..
.
Loadi~ f~e ~~rv
. Fl
(0) -
7,,2 171' '-'V
_,,'01 =
IV.
7. (o) W 2 -rn' CU(D) ~
, rl'
by
O? ,
: 8-~;r)
:
Y/77/77i77i~---,
, I)
V I·'
-Tn
W'-
--
lU ('\
T;
:?,
3
=
I
L: lTJ··. 41(°'''11(1) 3
( b)
Uma ): = .-ZI
Umax
- (I) Z
1
,(0)-(,\
7 '" -; ",-0
Z?
I·,
1
1
= - I Z.{o)-tlJ 7 0 111 2 ~ - '.:-
1
(I + -._ Z
3
4-)
3+ 1 _._ 5 :3 15
G7_ 4-5' , ,
4
10
~(O)
2.8 k
70
T R,OI
~ T"iOl (C)
('\ T mOle
T
(Il 1>10 le
=
f =-l(}
2..
= _1
z.
1U
o. (;,81'
,,[-til] ~.
s~c I :z.
,,[t(f)]~
3
~.,.,..,.[UJ L "/1 Ii
'" o. ~89 5ee
:z.
]
25
<..
322
Z~5
I
, :z. &[;z(\J q 1(,) =-;;-"W "-... tl1 ( /+-+ __ I
;;,
1<)
~ Tf\1I
(I)
111
(:) .,
... <. ~II
(0'
Zo'
=--.
... T1>.11 =
2.ll
~35
c,+ 7-. =--
32<'
v
~r,,;
/10
;
i
r
1r)
= 0.G8') sec
:<25
Frob1....,.,
8-/3
T
(0\
mll"j<
= -I w 2. [ "Zo'0)]2. -20 'l
Z.
v(O) =_1 [ mC\x Z
~
111
;01]2. 1<.(..1+..1.-+-') 9
9
'J
ZU
<:.
k.
3
=-R.oo 20 m
., T.~oo =47r-~ y ;1::.- = ~
T 1\00 -
0.5'7'4
5
0.51'4- '::>"'~
•
. w (II = I rI J
UfO! = ~
IZ
l.1J(I~--,-
2 0 ' 13 - Z
-
'Z·
(II
20""
== .3 1<.
P,.-ob1~,.." 8-/3
( b)
(I \
;)rna -.l.
7U
(l)
rro"
(CO.,'J) I
4
=-z,~' 2. = -
I
4-
W
Z
(0)
'70
_
(,) [
m(l)
70
~-'-
(0)_ (I)
~o}(o
-
-
7q
30
3m
(~)(~)]
111 (0)
<. ZU
I 10 k =.zo - - -.200 -=.-_ - .zoo -= _ _
-ff/'
ROj
(cj
T
(I) 11101<
(I)
:0
.1-1 Z
I
Tmo;Jc :::. Z kJ
[if. ('I]2.(rr, + 2m o
" [ -
~
\'
(I)J<'
Z89
.2 31
.23,
20 1t1
19
1T1
31.
+
3m
1.)
4
400
(~)
f.,39 zoom
;
z
~(O)
tUDJI = ~ ~
'\
?9 (eo) 3("3'1) .
20m
3"1<. , <. 79 k Z
T =:<7f ~II
.. TI\'I -
O. "32
",~c I
1"39 7-9
tn' = o. ~32 sac
k
Prob/un
10-1
kj
J
L
=-
1: IX) j I{
EI. I>.:)
I
II
("X) c1x.
•
j
k~3 =
l..
EL (x.)
~
If
(;>:)
~
1/ (;lee)
dX
o
£9- (10-/,-,6) :
-<--
f: ('):) = x (f _~)<-
k 23
=- /-2 E I. (_ Z L"
.. 4. 23
ProbllZ.111
""Z
--?
L
3
+
=-
5 Z
Cu"
I~ (X) .3
1 L
= -1- +- 02=.L~
+ ~ - ~) L =- _ 3
4
8El•
LZ-
10 - 2..
(10-28)
_._----------------'
~z-
(
10 - 34
f jL ;t
fi (f) = (-l: )
a) :
p~ U) ~. (10-.34):
=
(:t)
f (+)fL /((x) •
f(x,t)= X(X)jU)=
~. (:t) d;x. JO<.(X)
d;x.
F(Z +
:)~ilJwt
X(X)= <. [
.
~(X) =3(:r-Z(~r L
.. F«-I:)
=
FSiniJ-tj (2.+ o
F'" (of) = F
.
51n
-L (
"IV,
.<. -
,
4- --
5<.) '-- =.
<'9
I
-1- "
3 - - L_ 2/
L
=. -
F'-
<."'f -
-
5
No
.
-
1
511-) ""J"("
+ ):: <..
-+
.f (f) = F ~i'l wI.
P.-cblem
10-5
+
II
I
II 'I I
I' Go,
-~
2£1
- (,
Cc
1..3
31..
-31..
3L
-31..
=--
1~
k
~f
-
r
31..
31..
or
1),= I
--
~
k,,-+~ I
r--------,-------,
I I I I I
I
.
l~ ::".:J ... :~....-.)."?
~-
- ')
):0... ."
-
C;")~
'-
Problem
10-5
(cotl'd)
~1";lC:' .... l_. __ .
, 3'
Z
-
\
(3L)' 3
Z
.+
\ .2.
1.. 23 ./ 13
~
V,3=l
~~_------
<.
k l3 =-
£1
<.
L..
3
=
?
(~r
~
, ,
.2 .E.I
~~
L3
2..£I
L" .< I
I<:n'"
(3£.I.~
- - - ;::
13L)3
t I
~I ,<. ;_~)' +
lz-
_
.2
£1
Z(~
t
2
(.,,~ -\ -
2)-
30
~ -:L [ / 3 . ... -6 ....
i
I - - - - - - - - _ . - - -----_. - - - _ . _ - - - - - - - - - - - - - - - '
~ rr.:- ~'~(7-"-:
,.)- c..
( 52!
15(0
54-
22.L
-/3L
15'"
13L
-22i...
2ZL
13L
4'-. "
-3'-. <
V-'
-!3L
-22L
- 31..."
4L"-
V..,.
r
£7 r IO-?Q' . - . '. , I .
54
j]~
J;
'111L
,
l
(' 1 : -3
-7
r
420
ii, V"-
1 T
. _4
~
J
f'
'V"
I )V
ii~ (---'''''''--~111---~ f<'----
ii! = (
'I
_L
mL
-m II =
/5"
0·8".,
+
420 171
"-I
:= -
4
Z
15~
+
.eFn
Z
420
-mL
3L _
-rnL .,-:..-==-4'0
22L
-'---
420 -
ZL
0·8tr>
fTiL 420
:= -
420
z z- m31... rnL 4L + 2.~ 4
_
420
4:4-L
(3L)Z:=
420.
-rnL
2.
420
fTiL ~LZ 420
Jo,-
V.3
-
=_
= 1
L
O.Bm Z 2(.
1'11'3
(~)= 2
420
_ mL
4
4.
420
: - 'niL .§iL"-
m Z3
1-7l 33 =
420 :2
-m
4
3L 2.
420
4
(3L)"-
-
Z
( continued
+
Oh
0.8 m ; 4Z0
(L)"- = mL :--
4- -
~
lonowi~ FSe)
420
21.4L
"-
'-41'8.4
[1 =
~ m
mL
295(,,8
-440L
-88L
--HOL
iP20L
2.
_40SL
-BBl...
_405L2.
Z
8400
Problem 10-'1£f.' (10 - 3-2) :
Pl
(-l: )
=
i
L
548L2.
F' (~ , -t) St;.
(lI:) ci x.
lAJ~QH
, i = 1,",:3.-+
z' (
e
(l(,
fO -Iha)
(IO-lh6)
ee.(JO -Ih<)
eZ'
11, = ,
r-->l r-"T-------.----.
I~I 'f,
:
pCf)=j5L")Ctl, 'I
I I
\
If(
r
'. t~ J...
(10 -
J"d )
PraLle,,-, :0-7 (con'd)
I
I
! _" _
-X. ._"'_
j
i
'-/"-
f'----l.VI
1" CO ==
-j l"W ex ,"/:) [31-/-] -~ 1" 3J../<.
"'-/2.
"-
\
I" (1:\=1o f l"'(-t~ _X_(~ -l)dy ) 3L/Z 3L/2
-1
T
L/Z
o
"
. F - If f) ::::?L I [(.- X)" - (-X)\2.] , I " (tl= I 2. Jo \ 3LIZ LIZ
"
0')(" -
3
)
Iz - "
I
FL )(-t)~ + B f
L
I
1
= 32
; fL '((t)l' ,
x '''] ( :>:)~ - __ ",
-p \(-1:);;: I I 2
,
-4' ZL
'-1[
-3
4 t'
D~(t)~(-L - f] d x L/2 .L1:2 j LI"
=-
")(i)rJ.
4
[L../"-) ~ (X) dx.
(>':,-1) -
3 '2 I )
(-l: ) (-----P,-,(t ' I)?JL 3 .,.. \( r 4 3 Z -t I 1 \4
39f - "
(" (i\= - -4
I (/2 0
(3L/2
, .f.J.=_p,,3 - I -\ , .2 I
-
Liz
«;>e)
o
3
;;: F ~(-t)
(X t t \=
,~
-51-]
--------------_.
LIZ
o
') _'3 2 5 32
_
i
L
"'-
jet)
(<"12;
I dx
Problem 10-8 CQ)
[kitJ [kiil-]
20 : -IOL -51... ---------
-10 L
I
15L"
_ 8L<-
~l'tJ [~~]
-I
[k.]=-" 20- 7 [-10,£1
£1:,
:~ [-rOLl
'5["
-SLJ
£1 -L3
[
L
I]
-8 L
2
12L
2
3
1..
.
LOX
_1_ L~
-5L
-1
[
2
EoT
- - (-5L) 1..
3
1
25 [ ---2 [ki:J=.EX- 2 0£.I L"-
L3
lIfo
-
(b)
55
.EX
lie,
L?
,.E~. 17T'O{;O~' ::0'" unJl
-mV(;)+~o+
kvu:)=o
30mLv(t) _~.£I V(t)"-'o 1/0
1...3
,
~----------------.- - -
-------- -----
_J
ProbJl1.nJ
11- t
.,
-rrJa. t
(Q)
Z!~
Tro,.,..,
I
0
o
I
:
(.
.
OIei'1h1 n a
-J
] =-rriI
( 1/ - (., ) :
lI[k]- ",'[",]11 A _
•
-..:
-I 3-)..
-2.
~ J.' (.[-i
W<'....!!L
-~ ]~
5->"
. l" co,,-tl~··.ll.:-; ~
Q:';
.. '11· :-ottOW1-r9
.
---
\
~1.1,?iG;
......
-i _' z 5 :
k,Z =-1<.
_
.o .0
t"
P.-ohlvn
II-I (con'J)
A
, ==
0-411i, ;
r
I 0·.584
-I
i-I , 0 L
o
l!t"' ; j
VZI r ~
,,",584
-2.
-2.
4,5&4
V31 \
[0)° 0
A Z = 2,2'j: -!
-I. zq [
[
-I o
Jor
0:': -2.
-S'2~
A
V'Z =
1,
~
VZ'l. = -
1,2.9,
A
V 3 Z = - 0'52
-I
-I
- :3 ,2.'1
o
-2.
- I.
zq
-0. qS2.
(c.)
To
l.~e oriJ-,-=U oI1O 7iiy ('ol1di{ions, t~e rnodlZ '::>hQFQS e~ 5, (II - 3&) a 11 d (II - 3:;) :
-to
[ -U m
f
[m H vn}
=
0
{vmf [k] {V.,L=
0
r
, 'W m
have.
W'l
5~nc,,- {ArCC]{5} ={5rCcf{A} and [c]=[Cr,jor t~o5(l.l'
i-t.;s 110-t l1~C~SSQt',!
{o
make.
CD -mo.iriX
T11ur!iFlica.hon:> .
.I
- Orth0r,?-~ -;~~ u;;{ ~ H£pe.d: .'1: 0 [tn ~
J
0:..
,
= [Urn} T C
1"n] [
J;
vnJ = { Urn}
T
m I {
v,,} = 1'11 { -Um} -Dr] } T{
Probl<2l-n
(con'eJ)
11- 1
0,;
-== m
-< {
1 0.584- 1 0.<..55>- { -
J.~9
}
=: 0.003881'11
-0.'l52
O;;-==1T1<::/,O ..584,0.255>
m.
O.23 -==
-rn
<" -
1.29 ,-0.952
>
-~.Z9
{
)
=
0.001(,4
rn
B.20
{
-5~2q
) =: 0.0/71' m
8.Z0
Ok!
()rth~ona.lii; ,with re5FClcf..fo [k] :
O~l1 = f -Om k'
O'l.
=:;
k
0'3
=:.
< /t
<
r [k]{ -0~}
. 0.584,0.255>-
I, O.S84-, 0.255
k
> k
0.00191<,
k.
0.0/3<' k
Oz\=:< 1,-I.zq,-O.q5<-> k
okl
,,- z
Pro61~lTJ
To170Wi~
P 11- I ,
n1
k 2m
k 3m
'k /
'/////////
wf,?-rq:' .
r·-)
def,r -I L0 .:. w,
z
C~~A J -~ -I
Z-3A
] = - ( (,,)..2. -
/(" A
~+
IDA - 1 )
A=-W
2 111
T
-=- - c;, (A- 0, (:<3 r)(.:t- D,t580)(,H.t855)=oi
!
=
( 6) -I ;«1-)..)
-1
I
-~
" ] {
2-"'-" -
~:
·u 2
} = (
o}
Pmble.m 11-<.. (con 'd)
Jar
A, = 0.1<31 :
-I
o
/. 7'538
-I
-I
1.(,301
0.81 b 9 [
-1
o
]( V') VII
, --V2.1 3
(] C>
0
., , J or -J" = I , V21 = 0.81-" q , V3, = 0.53 i' iT
0
,
o. ?'586 :
;lz =
0.24:2.0 -1 0.484-0 [ -:-1
-I
o
J1V'~22z)
0
-1
-0.2740
<.132.
=
fO'1 Jar jo [0
,)1:<.=1,1)22= 0.2-120,V3Z = -0.883Z
)..3 = ,. 't855 : - 0·1855 [
-I
o
~ [V] [0.s'77-
0.24<-
:=
0.538
(c.)
-0.883
Ort~oq:J>-:Q1it~ wil~ '-
0,;
rfl5f
fa [1T11:
-J
[~ ~]f 0:"}~ ° ~ ]{-o~'"}. c [~ [~ ~]{ -0:8' }. - 00002'''0 0
=<
',0.817
7
0.538>
"Tn
2 0
0/;
0:" == {V.ny [111][-Jn }
:=
< 1, a. 8Tl',
0.538> TTl
-- 0.8&3
2 0
o~ = <.
OOOO.04m
3
O®%8m
:3
O.23"l
~
0.234-
Cl
: , 0.242., -O.883;>m
Z 0
ok! --
ProblQm 11-2. (con'd)
O.-lhC:J0r,c7ity W~:l ,.-e:sFec+ 10 [1
[ 0 '3k
= < I , 0.8:;'1, 0.53B /' 1<.
[
_I, - ~ o
-~I
0;" =c[v mr[kl[v,,}
_~]{ o. ~.qz} =
-1
Z
-I
O]!
-I
Z
Z -I
0.0004-15
k
-0.883
I
-0.1"80
0.234
lr =
0.000<10
k
j
f - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...- - _ - l
Probkm
1/- 3
..-.l
,../1. ---I
rt- II!- ~..
r"' r-
1"11 L/2.
j =
111
--'h-
0.3
£I L/Z
bps/jt
-1 I
W",
3 KirS
v~,:.!.. Un Z 11 _ (I)L3
" 'fBU -o
L
.. [mJ= m4
-
[ :
1
[ f~] =
(.3 [4z
In £I
ZJ 5
-
L
3
lIz~: - -
48,,:r
+-I !I,l. 2
I
'£r"CII-/B):
T -I. L
-
[
r", Jf 1I'" - l
l
11 -- d ~t
r
~l-
to'
_
\ _
-O_A_
12..+50.
:.2
+ _ /,('2+50J '_ -VI Zj
4811
(V~(lr2
Q.=Z+~=2.+ (.<'13!<;r:> -4in LS (O."ldF/.fl) (loft)
:. ;\. =
ICo
:!: 8 =
8, 2.4
-'/z
5;nc~
_ IT5.8A
W,
= ~5,59 lj.:jcC , t'h =
"'Z.'" l/:sec B
15-A
... Jo>-
[
]{-V,} _{a} -Vl. -
A r = 204- : - 12-
8
to
-9
]{ i~\1 ={:}
jor
/\
vII :=
I
/0
I V2.1
= 2/3
J.. z = 8
[
4 .:;,
8 "1
]{ ~~:1
=[ :}
~
Jar
~
V'Z =' 1 , Vn. = -
_,
~
~0;d sIal:,:
lola] mass, m
)"fc~hlleso, ~olumhS j!
-
horn Tj.
?
rf
r
I
s
£2&-G ,
I
UlT1T7 f
, / 2 £I. 1<..
=
(
L 3
1
,
o'} direction)
of
Cal £va7uofio,? ~{jJness ond -mass corz-ffic;e.-,-ts (l1~lecl;'J lor.siona7 diJJn(l~S)o DiredJen
--,
V, = I
~_ _~-=,::,-_ _..;I\
(VI = 1 )
~-\
"J\
'tnz I :: - !!.!
<-lr ~ 1 _----!I '. __ k T
~
k"" -
k
__ r:>. m/2.
k .._-J kll =4k_ _
-'---
~
~k
k
->fIr--
I
tTlfl1:3: m 3
I
of
H . .
.,
k
,
.
kilT , kif
.
. '=
:<.K
=
TTl II L
L
11111 - m:z.1 Z Z
Vz = I : (ii, = I)
b
/ - ..... ~_m 5 1:.
.
-
~zl:-z1c
,------'----..,--7--7
\
\
lI t
t1<3'=0
IlL..
5
=-
12.
mL
ttTl 3Z ::O
t
k3 z.=o k. kzz.=3k , - - -...., E-'------, --'> --'> 1'T1zz:::: .!. m :5
",-\~mL ~--
-mlz
I..
k,~=-2k
! - ,- - - - - - - - - ' -
+k
-
,
Probkm
II - 4
(
co.,'d ) -n-J,2
+
=
1112.2
tn 2-
m,2 -L + m 22 -L = - -5 m L Z
Z
_
1J3
(V 3
~
I :
"
I)
t :----n.---i k
J
17133=m
'k33=3k. f,-----.-----;;.
I~3='
"32=0
~---+-
(U3= J)
1----
Ii?.
~
t
~
'tT13Z=O
I
f1 -----
tn t
k3 ,=o
k.
1 - - - - - - - - - 1 _ --i>
1<
~
m31 =0
~] 1
12£ J
-20+)" 3-4A
o
-4-4 A
1< EI
-3 L..
-2.+A [
0
-20 +A 3
0
-4->"
o
0
.3
-c,).
} ]\ V,
' = {a} ~2.
v3
Preblem Tot"
AI
=
2. JOB . - I.
[
(con'J)
1/-4
0.47'3 :
521
/. 108
o
a
2.0
-1.5
-1.5
1.0
[
1)22
=
I
V".31 =
0
"
I
V 21
=
I. 37'9
-
0
A
o
1132
0
-0.508
- 0.8'f3
~
- 0.873
- 1.508
a
a
o
~ fw} =
A
VII
o-j!~lzl-!o]
o
o
o
[
for
-1.527
]! "1(}
0 jOt""
~13 V 23
- 3. 7'c>Z
=
A
"
V'3=1, V"3=-O.580
0
V33
0
{5.841~ ~
(.,
~. 0 I
mL
Probl~tT1 11-5
(el)
_ v, (ii,
= 1 = I)
;
--..jl~
,
I
k.
I I
I
-->11k-
--lIb--
,
1<
~k
31
I
k
11 = 3k
I
11
,
I
1<21
=
0
~
1<-
k
( cOhiinlJed on Jolla witlj p 3 e ) Q
l7]1I=m
I
k <:1 =-k.!:z
17121 = 1'11 31 = 0
R-o bletTl -
11- 5 (con' d)
V",- = 1 : (ii z = I )
lkZz. ~
~3z.f '~ k,2.
k
I -L
k
I
T
- V2! = I : (V 3 =1)
:'- ] , [ml=-rn L. 2. .
(6)
=
lZ£l /3 ~
Jd
o
o
I::>0." _
1
L/Z
3- A
(1- ;
~)(L/zf
]
e \.: --'
,
= 0./67'
1-1). <
{!fi l
,
-rnL3
,. L.Z
V,
0
3-,)",
0
Vz
-z
0
L.-
.cor-
2:.10283
(
3
\( L
- {o} ,
,..
,<-
1J:3
"2/-)\ Z} -
Liz
,
0
0.3805
,
,.A
~
VII
=
A
fOr-
0
V"ZI
0
2.':'283
L.-12
,..
: 0
0
5
1-
= 0.31'11"
Al
..J
i!frl nu.
= 0./10'
,.. 0
3- h
5inciZ
~
"
~
0
A
= I , V3 1= -5.Z51jl
11 11
1)"1
=
0
A
(92(',
V31
0
.A <. - 3 o
0
L../Z
,.. "
/0
V,<-
1\ ~
/.
o
0
0
Vzz
... Liz
0
-L.<-
" V3;1
A3
=
1)3Z
=0
1\
l~f
0
"
V'Z =
V ZZ
= I
0
= 3.228:
r
LIZ
- 0.228
0
o
-0.228
LI2
0
~
A
0
V'3 A
{w}=
- 4.38 (LIz. )'~
r4S3}~ O.'CO.
o.
/",1
EI
3
-
V 23
0
.
,
0
"
1J33
1\
0
1
, [V]
"jor- Vr!>= I, V33=O.45~ " =0 - > 1)'3
-
0
f
0
1
0
mL
-
5.2 r.. -Z-
0
0.4510 L
-
Probkm 1/- 6 (Cl )
----~~1
-Tl1
+ZI..-< - - , ,S.l.'" -£1
~
In
2£1
~
=-
}2.1
~
~
J" ~ P~1
+ (2L) 5';n-e-
+ (2L) -e- =
1q[3
-...,... esE-I
J ~L['9 -
.'
11,
3£I
4
4,]
=1 ~---r-
j,x = 1.Z iii (2 L)
11111
~ -rt1 L
=
3-
-""2.1 (2'-) -J~ ~ (ZL) -Hj2.1
=
I
=0
111 L
..3
~-- J~ =-
-~'---r
7Dzz
!- m (21..-) 2.
m = ~L
(con~inutd on ]o1\olVinj FCIj~)
[~ ~ ]
11-'" (con'c!)
P.ro hI em
d~t [ ~z ~ 9£1
, Jet [
! -mJ
-
~z
==
1 -] ~
0
1
"1.1]
-
==
[
9£1
(4<:.- .:l)(,,-:>..)- Z43 =).." -45)..
9
+9 =
{,-J..
0
.A"z'" 47.8/B, 0.188238
mL4-
'3£..1 )..,
A" :
[-S'r [
"l"]or-,."a,l.;
a
21 . -41. 818
41. 81Z
:<'7
'}
5.8118
..
v -
A
>c, ;
L
9
VII
_
0
ZI
-
{ 0
1\
b-)"
'!:!
= Q
}
jo..
V
A
_
~
AT
~
A 1\
1J
-
1.~4857'
1\
.,.,., v- '"
-m
==, 11
L
,
,
-VZ1
==
[o.B:'.O [
1.00
7()
I
~
'.110 ] - I. FO
1.00
~
o.zz.
V
~
u'u !l>'
1.54 85'{'
]
I
/
0.Z15ZZ
,
G ~. :.·~::4
-
=
v"" == -
V'Z ~ I ,
}
-
,
,
tv
=[~.Z:5n
=
:<'7-]
4:<.-}..
] ['} .o
r
M = -
-f
r
//1//
0.434 {11;I _ <1 'l1'1L
~
Wz=
rc9'
I ~~+
J
I
5.2.131 '"
.. {Ym} =
0. 05 94
{
234.3 24-15
~ ~ir'lJt J .
sit]" ( /2.1 t)
I
r I. 2<;'~ Sl~: ' ' ' ( I. 85.t)' 0 , 3
'For "')3
f
V:=(t) =
L
¢.3"'yt)(f)=-
0.0594 Sit," (IZ.,t)
r
h=1
- O.OOIB"<'
•. = ·:).~(-c.
. ",~!. BOc_;-.1-' 0 · ...~ -e"'i - --:, ~1h . ~ (I :C. 1') I.J:l8~''1 'C
'--------.:~------_.-
-
Si'1~ (3B.9t lJ
. ~ ( 38 .•0 0.00:)/<","5,'1.
1 I 'C)
---_._--
?':oblem
Ie - 1 (coh'd)
.....
0.8 -
..
0.6
- .....
- - . -
.....
.....
0.4 0.2 0.0 - + - " " - - - - - - - - - - -
--""-=.-£-_
-0.2 -1---+---+---t----1Ir---t---+I--r+-,----11 -to 0.0
0.5
1.0
1.5
(5H)
2.0 1'"1=
1;1"\-
.,, CQ1"Fol1owinq
PIZ-I, jrom "(: (3-11) Ol1J
1n(t) =
0.:2
~11 Kn
33~
~ (6inwt
1
1-(3.,
1_
?
J - (~)-
.
-(3'"
~i'11<>n-t)
~ 3.';'1 t - ~ Sil1 3."Jt:) 4 -1
------:(----::(.s"., _3..q :3." I t I - ( ~ . ~)2.
0.011 ;4
·4
-0.00034 0
(6il1
;
24.Z-
.;
(3-/:C) :
- 2. -4
_3._';'_1 5; 11 2"1. "2 24.2
.,
t)"
~
( r.
iI
•
.. (rr" ,. . = ~I
0.01:28 (~;,...,
l-a. o :C- ,...
00D 34?::
<:.'1:0a-f: - 0.1l!9
(~;r, 2..'f08f: -
ft
;:;;'1 24.:zf)
0.031-85
6in 7f7.7ft)
:=-
VI' 11 1
(t-):=
L ¢,n Yn (+)=- <
0.054, 0.28 3 , 0·95?-
>
{Y(-t}}
'1=' V,(i:)
=-
0.0.31f,9 Sih 2·10B-I: -
O.OZIC;Z.s;n 3."'l'I: -O.OOO35jZZ.s;nz"!.zi
-l~ V,
(t; =-
0·0000
I/!olo 61n :;l.7,';r-t
0.0311 ~;l; 2·11{- - 0.02/0 5ir; 3.10 I t - 0.000357' 6 i n 24.2{
t
0.0000 1/1 .sin H'ft
( b)
. 0.054-
0.283
0·951'
0·40(0
0·810
-0.28/
LO.913
-O·"l-Oz
{lIW} =-[p]{ym}:=
r
0.03 ''''95;11 2,'f0e,{ - 0.0211025;11 3. "I t
f Y W}
0.068
- O.OOO~ 51'2 5in 24.2 t
r ...1 'lU\::iJ=
0.'482'jsin ;;:."fOBt - 0.305(0 sin 3.(;'lt
l
+
o.oooS07-"l- 5il1 2
+ 0.0000008282 sih (cohlinued
on jollo?<..Jinj F~e)
Tf.1t
•
From et
(3-21)
,jo.- the st'1.0d:l-stQle
y.,..,(t)
= (.,..,
w~eH In = ~: [ ( I - (3~ -tf-n = -tan
(w =~
.sinCwt -(}-n)
r
(-3nrr liz,
+ (:<)h
2S,.,(3n
-I
resFonse,
1-:-
[3;
f.-om
WI)
ez· (3-22)
ez' C 3-23)
'J.-om
w
(311=w Frorn PJ<.-I
.rront 8'';( I .2.1.:
.
(Po} = 1:
2."1
t
kiF s
-0.843 )
:. + ~
. 3.~1.
4
21-.2
~ .
3.(.,1
-4
7' 7. t
.
"
!
0'-15
=
0·111
0.15 0.4315
q
O.0223B o.QB1'5
a.oobH
0.034B5
,
IB.Ql·
=
1.2QB·
O. 'jQB8
-
{Y(t:} -
O. ::>1125 ~il1 (2.108t - /.<.98°)-
-o.oIJOO31-9S .3
Tor
:)1,
5;1']
(2.:r02>{ - O.3g~13') .
_.
Vlt-t)=~1 ~,t1 YI'](-l:)=< 0.0.54,0.283,0.951> VI
{YU:l}
(-i:1 = 0·02 l' 2 B ,5in (2. 708t - /8.92°) + 0.00.3192. .:sin (2 .108t: - 1.2']8°) - 0.00003345 sin (2.10B-f -0.3998')
tJ>V1 (fl =
:).0%'1':-
~-;n('-'.1If- (8.;0)+0.003195;11(~.1I-t-1.3°:
. (2.71 t-o - 0.00')0334 :511-, 0.4 ';
•
a.3'l'l8
Probl~tn 12-< (con'd) .5incCL
{~e rOhtr',buLo'1 of !he
11')1,.,.. jrQcl'Q'1cies
almost .:;'muH"'1]Qous i/] o71-n-,Cls~Q? (WC~ -ma~5 15 :ober')~c:l by. ah IZ ' t~e :tJpe
.,.,-,('tlCi17lu-m 1?
for
is le,;s l~at') 1.<.10, l:~e
Z
V(f)=
q
s1n::5
wi
"+
1
Trye di5f1Cl~ef11llnt
-b~,.in'W{
_4__Z_1f_ ----T1
f.<-- 3
1
r
2l[
w
Vm(\,,-
is
JOl-
Vmn'X.
t:
_ 4.2-11" _ _ 1.2 5 :3 W
TTl
..
f
<
<
2. 7r 1.'1'5
W
l.I;,r<
wf <- '·15
Z7f
-t:
1.1' 1O
1.111
I:flc
1.1'13
1.1'1"1-
1.1 \ 5
11, (t )
0.05191
0.05191
0.05/98
0.05/98
0.0519t'
0.05/97
1..1 2 (f)
0.31' 95
0.3195
0.3;' 95
0.3;'95
0.3T'95
0.3195
0.82<'0
0.8211
0.B212
0.8212
0.827-2
0.8212.
'V3
(f. )
0.0520
0.827'
lO.3BO '
~~~--IllJ..I o.B21'
rzt (12 - 3) : "f'
liZ
(11
Yn
-2(,):
1~ [¢" Hy }
(t) ='
cz.-l§n w..,f [_Y.--...h--...(O....;.)_+_Y;_"_(O-,-)-::S_h_W_n si.., WOn i + r;:, (0)
COS
WOht]
!<.Ion
<1.0.
Z
I 0.3
Sincl2.
(1)(0)1:=
[
-O·B
o. '3
j
(n
of_'
£ IZ-1
.
in ,
{V(Ol} = {oJ :'
, srzll.
rz.t.s. (Z-50)to (2-52'
-1
T
.
{Yr.:)}=[t\1] (ep] em] {ve l} = [[¢]T[m][¢]l O
-1
Sh =0
,
¥n----+ YnCf )=
cos
/1."21:
[
0.30830
cos
,.5-C
o. 04i"sq
COS
45.Q
-I
= [¢]
{?JeD)}
I II !
ii
Yro) cosr.ul:
-0,05"23
{ y (f11 =
[¢] [mJ{veol)
-I
{Yeo)}:= [¢] [[¢]T[mll ([¢]T [-mJl{ veal} (Q)
-I,
I
•
1.
t··
Hi
I
.. [V(t= ~~)}=[¢]{Y(i= ~~)} ( -0.2.1BOO
.. { V (
~1T)} = ~
l
I
(6)
5''1
:=
1;
== O. J
,
-I
_0.00428 f 1'1 0.72000)
.If" -+ zoot] = /' -0.050,51
~
0.30980
It
. .
{ y ( 21T :: WI
O.
0.54- 0
1J}:=
~950
ZU.,
-o.JJ6Zi
cos
(1I.5(,,-t:--e-)
-2.'t-Sr.
.
-J
0
"'11~= tat) O.IDDS=5.'~
r -0.05:00
}
-ill
{-0'03"''32> 0.003453
f
0 . OS ""3 -
0.00584
0.0<::>3<:' I
O.0"'3~O
j
in
t~,,.~. "9· :3-2:): ,-'
Y,,(t; = IP,,""i,,(W{--8-r.)
Z::: 3 - 22 ;:
f~= ~Ut-f3~r+(2.)~(3,,)2r'/"-
2
Ph
!
IZZ-
('<'-1< 0):
e.z.
(1<'-
~f.:
I
(12-1<0.):
T
:. [Po} = [56]
fPh
f?h
'"
K
=
I1
r{Fo1
0"-
f1°)° '~
=
Fa,
f ¢,1 = 5
I. ,
I.:
11. G,:<. <,t.5
11."245·9
-
qt(IZ-IB):
0.4(04-8
?
=<.B5
[M]:[¢f[rnJ[¢J
[} { } I
5:00 .
=
0.54-8
.?:'< ;3
I-I
1.\
{Po} := [¢f{r.l
zu: If"
'1 JT [~J=2 ["[M]=[¢jmI(s6]:-m[¢
f (3} =
(0) , £ 12--2:
0.198
\. \
W
w..,
Jom ~.
I1n ={p"r [mJ{Pn} o~
ro.·
== -
]
........
2.1'4-. 0.99
=2 [1.
340
kirs
4.0H
18•
.1
ProbJI1.tr>
/2.-5
(con'd)
~.OI382.
.'. rf}
[(0.1)""
+
-I/~
(0.2.2.)''- ]
-2.
5.7'/9 >< 10
-'/'2.
=
0.00000/759 [( 0.72.15)'2.
+(0.0551)'2.
\
"
0.22
T~C1.f-] l~e. atnFht~de. ,
'<); 17 be..:
I [
/, 1'40 >< /0
l411.
of t~({.
[IV} =-
two ~.jhe ...
be.
win
r0'~84-15.1'19x I
f:.·:~o)
,ii":.
cornmoh, -&:: _ ,",5.5"
l' al1mocles
C'orrlributiotj
I ]!S.
r
{v J= PI} 1";
modes:
is cOllsiclend:
D)}
- 1.5..22.
-<:'.2.Go
t-19 x 10-" .:sin ( 'WI: + ,",S. 5<:' 8.181 x 10 4 -S;ll (.wt - 9.B54°)
0.198
-0.872.
1<../
'.f40XIO-"6i.,(UJ-t'-4.414°)
0.195
12./
J>{r}=
-0.&12
5.201' x 1()'2. cos wI. - '.400 x I~: COS wf. 1.1'.35>< fO C05ZUC
I ]{2'3,","X 10'2. 6;., wI: + ".<'Go
8.0(OO)C'~+ .sll1~t
0.051'4
f
0.0331
1
0.0112
ill, -(}-=-
- c..
f
10" it)
0
0.584-
I I {1./(t)}:. [ o.5B4- - '.52< -
x
r. 13<'
0.19&
the. Fha SIl Q~ le.
{1J(t)} =
-.,
1
9.854°
If':]l eet inj l he co.,h, bL
if
- /'2. J
.
0.0929(, 0.5352.
fowever-,
B.IBI >< 10
- "5.5"°
o. I
an d
-
0.000'4444 [(0.5352)"+(0.092.%)'2.J
8
O}
-(",7.7"
-"'9.0'
1
TO llowin.J
.£ I.e - 4- :
f::1 :~:1 ~[~~': '~::] 0
\
0
... [c J :=
O.298G> [tn]
-\-
{:: }
~
{
::}
= { :::::,:::: )
0.00"394·[1<.1
171, = tTl fZZl===~~ 11,
1112~tT1
-kl~=o
k,=k
tL=:zz==!--'>- V< '7'T1 "
~ '!'T1
•
'k.. = '< k.
P:zzZzZZZ
'1::
/1// / / / / / / / / /
[ l ttl
:=
., k;ps. ~~C/·· . m I ,m=..... I 'h
-:·::: l
-~ -~] = r ~
-2..
4 . .tq 3
.. [c]
-
- 3.8'1-
- 3.84/2. I ,
0
a
-7. Co l'
/2.
JO~
-1.(,,-:(3
0
-'1.
lOr-
~"" '5~C in
'-
-3.83«'
23."2 _
~
5< =
9.33%
Cl, ::
250:._ 'tJc
z'
e
5" = 5" - 5ct~: )
(/<.-57c):
(if:: Ic-5;Zc1)
:
[CJ = Q,[k] + [mJ[ L: C-I
.,'1: w <;; ':)M
{PH} f¢n }
n
11M
n= I
T ]
[
rn 1
trom PI2-(;'
:. [c ] = 25
3
ZU3
[('1 -
-I 0] + 2.[
2..(0./2)
45·9
:3
-2
-2
C.
2.. (O.OB -0.1:<'
2-
,~.;;) 11."'2
2.<080
1
Z-;Z 5'
< ',0.548,
.c.(O.IO-O.I<.
o. 1'18 >
)27'.5 {
1 _ 1.5 2 <. -o.B12.
0.548
0.19B
0.548
0.300
0.109
0.19B
o. 109
o.o~~.c.
i- _...:....-
.
4_5_.'1:..--.:.__
8.f5
[c] ::
3.1313
-\
-\
°
3
-20
+ 1.1212.
-
,.. +0.18%
l...
,
.
( COnt1""LllZ d
-1.522
-o.e'i'z.
- 1·522
2.31'-
1.327'
- o. B:r2.
1·32'7
D·nO
[O'~451' 0.198
]
<" -I. 5 22 ,- 0.812 >
Proble.m
[c]
12-1"
=
(con'd)
5.048
-2.483
0.1i'5
-2.4B3
/0.3(01'
-5.B3.5
0.175
• [c]
-
-5.835
5.050
- 2.480
o· !"f5
-2.480
10.400
':'5.840
.... o.
11-5
- 5·3+0
/q. 000
k;F~' ~"C/;h
-
L:J " r roDtUr
13-)
PII-I:
5 2]
{ V,'O}}
CD] II
f
5 2.
m "I<.
:c.
5
5
.2
'" .2
~
[V,"l}
{V~I) }
5
:z
;2
2.
( Vl(~)} {vi Z1 }
'15
1
O.CP(;," 7"
-
14.5334-
{ V,c31}
{VI (4 1 J
0.(,,000
8.5334
O.5IHZ
8.1498
0.58+8
8.434'/-
4-
0.2~r
3·1334-
0.25"9
3.10882-
0.2.55Z
3. <;,goo
0.25'1-9
~.jl1o.1 .6~tlFe. VIl(4j
I
::. - - - : : . - - - - -
- (5) VII
/4. -1-344-
9
O.58'\-3
f
}
/4.4498
14-.4-3/3
1.<)
31
~
~ lO.3333
2
[ u,t
m
G.k /4.43/3
k:
= 0.4(58~
Trom
P 11- , :
[J :0,.,., I Tn
~llowi'"'3
.
1
tTl
<.
= 2. bF~·"'c/. / ''1 , [k]=k.
[ -rnl-I = m1
£ /3-3 :
I -I 0]
[o -I
3
-2,
--2.
5
-I
-~ ]
L
£.t. (13-45):
[D]
-,
-,
=
k [ ,
[E.] =[rnl [k] =111 -~
3
-.2.
[E] -I
k
{V;Ol} 0 I
-I
3
-2.
0
-2.
5
111
[V~3)J
-I
{V;"lJ
{ii.i") r
2
=
-
-G>
0.2851'
1.14 <'8
-0.£1,511
{V~5)} 0.183/
0.8119
0.12.1'9"
-0.'-133
-4.15&5
-0.G.55<,-
G.. 44 "8
{V;51} 0.1<'4\
-4.0935
-0.G>481
[ V~wl}
{V~Wl}
0.1T28
0.12.2.1'
- 4-. 0702-
G.. 310<1-
-O.~"3
O!.
3
0·1"G.90 -4.0" l/b
1>
(5)
33
m -
~
'-.292("
'-·2.908
-
1133 0.1<'22. Z(}
{V",(T'l}
"·2.91'4
.. ru3 -
..
3G>
-4.3404-
- 0·7234-
~·11'l-<'
fv~")}
0.138"
o. eq
0.1102-
- 4.8.510
7
{v3 ( 3)}
{V~2)}.
{ ii~
{11",('1 }
-
2. 50 8/:' =
~ f~3} ::: {
o.
-
/22.1
o. ~45
['
35.1"1
°
" . .2908 _k tn
~/~~C
~
3 ::: 35.5 '/ .. (
R-obl~m 13-3
.
P /1-2 :
1TI
. =- I k'F"·
<0«
'"
[
I-I 0] k=800
[k] = k - I
/ ."1 ,•
2. - J ,
0.-1
2
[fJ=+[; ~ :] [DJ~';;[:: ~] ,•
fV/o, j (v/ 1 {viI]} \v/') fvi"}
[D]
m
k L
fU:,I}
{ii,t'lj
Ii
{V,'4J}
3
4-
3
I
:<
1-
3
0.(,,/,,"1
5."""8
0.85
(,.'1
~
0.81:,58
(;,·9134- 0.8141..
7.0944-
I
2
3
0.3333
2.3331-
o.--
3.75
0·503-
4.<'418
4.34-52
f1/"11f I
7.45
". "C,MJ
f• V,- 151} { V,r~n1 8. /I ,,4-
7r·
r-v,
"1·9734-
8.0944
0.53<'0
,~:~
f
8.12.
O.8n;5
"1. 1/ (,'!-
O.BIbB
0·5:,"8
4.3(.,31
0.537(;,
\ jina 1 .shnp
'-
.!'2. 8./2k
-
O. I.e 3;<
.. {,),1 =
~
-m
---';>-
[O~H} 0.538
,
GU 1
"ZU,
-=
0. 35
°9
'" 9.93
IF 'I~tC
= 9.'1<("
15H
'.;f"
,n
Problnn
13-4
[111]
= mI,
11/ =
h-om P/Z-5;
t. 340 m
tram PI2.-7:
f¢.} [pS,} , ==
[
05<1-5
0.5"/-8 0.300
O. log
0.198
0./09
0.0392.
I
0.198
]
t o I1O'
~_I [¢,}f¢,}' [111] =111,
[5,1 == I ==
[
1.340m
0.25373 -·0.40B9"
- 0.408% 0.71C.1z:.
-0. /47'1C. ] - 0.081343
-0./4+'1':'
-0.OBI3"'f3
0.91075
[0.~-18 '98 O.
0.548 0.300
0./09
0./09
0,1)392.
0./98 ]
.,.,,1
-,
[D,HDJ[ 5,]
=
[D z 1= ~ -'-
:3
k
[D
2]
4
=~ 4k
[
[
7 1][ :>
3
11
t ,
0.40<47 -0.",,345 -0.30299
0.25:37'3
-0.408%
- 0.4089(, -0./47l("
o. ",;reo J.2
-0.10/570
- O'OHa
/.02.0/4-
o.
0.2858<'
4k
[5,]
_ 0./471C.]
-
2. 83
O.08134~
0.9r 0 75
-0.0813<1-3
J
0.741(;,5
fU~D'J
[D",J 111
kl1 ~~ -:]mr
U J[m][S,J • [,([m][ 5,] •
f Vz
ll1 }
{V.,."))
{V2(Zl}
-
0.40/41
-0.<0,51'0
- 0.307"0
-0.""345
/.020/4
0.21334"1-
-I
-1.9/703
-/.44701'
-2.3;<43
0·141,,5
-,
- I. 3304"
- I. 00430
- 1.4" 1"1-3
-0. 30 299
0.213582
1.32"117
,.e.0 135
Prob llim
13-4
( COh
'J )
[V2 (3J)
Z(2')
{ V
I
[ V~31}
1.59509
I
/.592&2-
-2.3880
- 1.1-8('70
-'<.3B
-1.49501
-0.912&('
-1.403&2
-0.8799h
'Z(}
<. Z
1) (5) ZI ---
-
ZOz
=
h1
[
1J~4J } .I
- 1.49940
-/.3829.< -0.8&833
I
=
VZ.lCO.)
fvt 1}
(1)z(51} I. 59175
-2.3892
{ V~51}
f V;<-'}
I
1.59/43
/.50097
-1.37555
'K
= 2.5135 _ _
/.59143
'm
-qk
. 'fT
J. 5854
V-:;:;:;-
=
27.4(" 0
Ysec
Problem /3-5
'<"g.
(/3- G,,5) :
"-
( (3 - <:;,4-) ."
~!3-
,
:
[[S]
[EJ [fl =[~] {6} -pI][pJ =[1J{5} -7[£J =[rnr'[kJ-~[Il [s] =[m1 [kl -1
:
P:2 -(p
I
:::: 'tTl
~ .• ,
,
-I
=
"?
k;po; . .:>ec ';--. • I - / , 1t"1 ,
"3
-2
= 0.98 (-27.5)<' ...3c. =
In
~OO
k
,... _ _ _ "k [Zj
[-I~;CO I
m
-I
o
]
0.530
-2
-:2
3.530
6'
-+
[£]
_I
:;<£fl.\
--=
:2.<1-70,
300
[
5.31 'J
== ~ - 8.818 k -
- B.81 e, 12·9&2
7'·34.4
-
f.99"]
To 344-
-+.444
{V,'a'} [-<<1] 11<. tr 1)
-S·818
-
-0.5
- 0.818 12..9"'<' ... -4·'19(,
7.344
-0.0"'+
-[4-.0
21.1 4.444
0.5
1:2. 1
-15.21
-0."'''0<1- -15.196
23.03
22·998
13.:2 1 0.5730
0.513
13.19.z.
f'U,t"}
{ 11~3)} - 0.01008
-15.199
- 0 ·"'<008
23.001
0.573Co
\
Ji
h
13.19<1-
0·51'3<0
a.1 shorl1. =<.
'F..-om "0(' ( 13-"(8)
"W< :.
W
z
="u+
=
-=::-:--c== V C+)
7£f/.)
2<
<-+.4("
1<-
+ ---- _ 23.001 rn
Y.:stC
754.1
Y.:,tC 2
Rob/ern
/3-&
~ IloUJi"j
E 13 - <1- ;
N,
+ -N. I,
IJ. (.
tJ,
[k q1 -
~, IV. -+-
I,
I,
31J
[ K(,Jl = -21...
[~]
=
IJL Z
4
-Z
-Z
=>
o
_I
[
["
'(,,2£1
20
-
-31
{U ,C")
13
-15
-0.5
12
20
-IB
-0.5 -34- -0.57(,
-12 -38
- 0.525
59
3
fV,
(Zl}
{lit"}
-0.51/4-
-3/·"8
-0.5·"0
-0.5750
- 35.&<1-
-0.5749
(;1·99
I
=
V
(51 31
~
/IJ Cr =
~1.98
2.6/
AlL'"
I~ZEI
EI L'"
=
}
f1it
3
)}
-35.82
-0.5760
-35."8
(,2.19
~_
2I
-31·73
c,/. 98
I
{U:
-0.513"
\ .Ji nC\ 1 .s haF" V /.1 =_-",3,,-'-
tJ Z '<'/.3
-31.94-
[V,c·'} fii, (51}
{V,"'}
A cr
z:;:;t3
34-
18
'''2£1
AI
N - ZI./3 -
0
I...
N
-18
.{1J.'0'] f iI/'1}
tJ L "-
IJ
,1..13 + 2<'13 -
-'5]
- IZ- -38
[~]
- - iJ ,1../3
:0
Nz
Al. / ...
o
-:]
13
12
I-J.. -1<-
/.
-
0
!J AI .<.13+ L/.3
0
I,
£1 2.<014 _ _ , 1JL·
(,2.05
-
Tt-orn
P/3-0:
[k C,
J=~[-: -~ -~]:= 31C..: [-:
<::;
3
[
24
- C;;
-/(,2]
-22<04
3288
704
-/
;>:04
349
[
tollol"';"j .c
I
15
:=
rJ]= [1<..]
I
[D
1= [j' J[ l =
;~
1'n
7(,6983
:=
/9.
0./10
0.10~2.q O. II 0 19
~ -l O. 1O
/9
°]
-0.3'15 9 T O·//'1-
0.11019 0./24 <7 -0.19953
-
-
/53034
1.<-3
- /32<0 50
- /53034- 48 EI 2BBI
O. II 0Iq
- 0'/7'2.9 5 ] L 3
0·IZ-<121"
-0.19953
.E.I
0.315109
0.19953
- 0.34S?0]
- 0.399 oc" 0.7-5/38
{V;OI}
{u,(I]} {V;')}
-0.5 -0.5 1
-0.454 -0.'184
-0.5'" 0·938
-: ]
845/1 9531:2
-/32<050
-1 [0. /00,24
-0./7.2.95
[[)]
1
0-1
48'1' [8/84511
. -0.11295
[
_ I
L
/3-1:
:3
-~]
-;
0
L
-
-2<64
22(,0
3£1
[k ]= 51'oL.?
'-1
92 -88
I [ k- J-- [k 1- [k J= 243£ /1'08 L
-
0
ZL
{U,Ul}. [VI,2)} -0.4579
-0.550 -0.5z01
I
- o.q8"'!1'
-0.4581
-0.5511
-0.5210 0.9152
0.9448
{ V~~l}
1.055
-0.184G.
~
mL..
3
-0.55/2 I
/.029 / £.1
Vme
'
{V,c'l}
Probkm
11- I
m
I
k
m
- - I.:<,=-k
.2
1<.
m
-k=k.
3
i(
m
__
'1
-I
I -I
0
0
0
.2 -I :2 -I
-I
-I
"2
0
k~,= 0 -n1
1<.
=
0
mI
///////////
'1'
-
rro..-n
.. t,' ~ r~ 'f "
l0;' O~"] 0.50
0.25
0.25
0.0"
' , 1he c1 i5Cre~i~(ld
ep-~ =
m
¥
=
T
'f
T 111 _
=
[-03:"8 - r.2~75J
m
[b. 25
0.25J
0.25
'" ~ f}
0.3291-
O.34B-/k/m '
rl
. -0.238
0.539"
.0.0570
0.40<0
o. 190"
0.2<'1
0.1157
1.00
=
0.3294-
rz~1(l n va llA.fl Frob1e.m [k"'-r../mt]~=
t =
'<},
0"]
0.25
O. "<3
~
k[ 0."
1.00
LV<.
=
r.
034- /
kim'
4B
1.034-
0
0
P..-o61'ltn
14 -
,J/ (I)
1
... 'f(1)
<.. \b ( 0)
~
t1l --
k
L-
P..-oblcu'l1
JanOW5
1.50
10.24-
10.50
5.24
4.15
3."8
;2.50
/.81'
as
P 1"1 - I ,
k' = [ t
+
=
'teO)
1 -I
-~!!l_;
=-f!!21
['t(l)r
,!!:!,
cv (0)
l
'f JI-om
= _
P 14-1
bu~ u 5 i'j
171
'f
111
t(l)
T
1. K.
(0)
r;
.:,
: .:
.. ef =
0.,,35
- 0·23100
0.545
0.057iO
0.409
0.1909
0.ZZ8
o. /158
,
zu=f[' {"'4,}
-
tn
'.oc5
l0- f
k /1
d C06
tl- == .E.2-
,,'
It---'\!
y
/
d.si'1 tl- ==
.k.z
51;;
R.'
=: -
0<
q
-.,..
0<.
==
.
~,
Qrc.s1'l-
.
Q
I
~I
o<-==-=~=~
i'-(~r
Q
~(.(Ir.-fe):
T == -'m Vo2. +...!... I 2. 2.
v=
k
...!... Z
1J2. Ie
;t.== deo,"" ~ ~.
.
:1: 0
j
0
II
a
== -:2
=
.J0 =
(iT -o<)
a.
.
51'10( OC
26
.
.
b
+
:2
.
COSO
Q.
+ "2 COSo<
51 "0'0<.
.z 11·z = X. •
+J.·z
4
cos ex. -
d
cos
-e- 51 n ex
• 0<..
.2. =.\.'o.)Z. -:2 511"1 Z0< 0<..
+ (b)" -2 cos z
+(b\<'5inZo(~2.
+
2)
~2+bz • >. ~ V. = -=.:--,---
dsin-e-sino<
a 51n . 0( "2
coso< -
b.
+
51n ex
d 5;11 (-e- "';cx) = d sin -e-
jo = 2 "
= d cos-&- coso<.
+ -:2b
CO" - 0<.
Z
= -
0<'
0
• ,,(
0<
• "
\ 51Y1 0<.
.z -2 -a b51" . 0( 4
0<0<.
."
COSO(.O<
(a.)<'C06Zo
') + cos "ex =
Q
"+bz 4
4-
•
0<
<-
Probl~m
(con'd)
/(,-1
"dV
;:)~ '" k
. 1-(dT)_ OIT +~=_I ra6(a\b .. dt d~1 OIt, dZ' 3
2
Q.
.since
='-
(b)l: Q Z!
ii, (a~-:ln + 21.,iJ
2
)
(Ql: -,~n2
(0 ~
smQll;
.
+ k t~)~
F(-t)
(a2-tf)i,+{,jf +
f ~J
-~I~~
2
-
Zn
z
k{-~tt, = r(t)
'2.
:CJ
:Co, ~I ~
~
fa6(a +b )
2
2
0
~ + k(-~t~
=p(t)
Q
= p(.t)
/
a, a,; SFr;~ It~h5
I
I
T= Z m,
I
r- ~3
v, =
X z = ~,+ (a-l-fz).sin.t> ~
j.
.<
• ."2.
'l.
,2.
.2
2.
= x? + J? =~, + ~2. ':'in.(-3
"V<'.
COS'?'3
;< ~I
+
I
A:, ~ ~, ~
. Z
m.Vc
.
. . v, ={,
+
.
(Q-l-~z)
- (Q +,e.z)s';" t3~3
~
<
co:,
. .<
"..
•
.f.t,,_ + Z~2..5''lZ'' (Q+«) C05<"~3
<.z..2.
<:
'<'
+ Z<
c
=il+.tz5i,,~,,+(Q-l-{")COS~3~3
-+.!J.2. = ie COS.~_3
+R.z) c05f3
(Q
=
x?
•
v, + Z
-+ (Q+Z") ~'''' t3~3 - Z~".<>;n~3(Cl+t.. ;
.
C05Z. 3
<."
".
-l-<.(I~cSi"(3
(Cl +,(,,) C05{i{:!.
0; t," +
sinZ3 +
+~_~ + (Q+f".{-i.,3"
2trCCl+l:") COS(3i..
T = i 171,
i./ + ~ m 2 [ Z/ +
T ==- ~
+1-Ji~) ~ ," + ~ Tnz [:: i I~" .::rin{'.3 + -< ~I
tf,Qtl
(m I
t3
(a
-I-
~<) co!.Z__~ + N + (M~? )\:]
J
i
"l712tc~in~3 +m2.(at~.)coSt3(3
c1(0T\ -- -:. -. \ =
dI
oJ
1":1
7, ' . I
.. ~I
,.
-f
-m~ t, +
,
l'T1
2. [
~z sin (,3 + f."- C05Z3~3 + i< COSZ"?3 - (Cl + (. ;6;'1 t3 + (Q -I- t,,) Z.3 ~3! J C 05
;:;'T -.-:=. 1T'I:(
agv:
(.. I
9,
' ".
61tl
{z +
«
. , J'
( con{';~:I"C:
tiC' : _ ..,
f]
J
i
zt I
Problem
1(,--2
(con'd)
d: = 7l1:1.[~I(Qt{Z)C05Z3+ (Q+tzt~a] ~( d: ~ '" 1-l1:<'[~1 ~<)co5t3+ Z' ~z dial dZ:?
coSts -
(at
df.
t, (Q+ Z.2.)~in Z.3&
+ Z(C\+Z")~<.t.3 + (a+~
and aT = 0
a~1
-m,,[ ~I
:; =
aT 3 dt
Vk z
h"
[~1~" COS ~
" TIl" ..
Vl( I = X I =0
=0
t
COS z3 3
=0
ZJ -
+ (a+~z)~:] -
~, (Cl + z") 6inz3Z3]
C/o
,e" -
Jz '" - (
Q
:. V =~[I(~-qot+
+-
iz) cos ~3
1 kz~~
-7T')ZJ(q+~z)
CDSb
t'Jen
dV
--=0
,;) ~3
rz.~.(1('-15)
Problam 1(;,-.2 (coh'd)
111<
'tT1
(~<. r ~, ~3 COS~3+ ~, .5;ht3)_111C[(Cl+~<.)i: -~, t3COS{'3] + kcZ< -
Z{ (o.+tz)" i..3
+
1TlzJ cost3 = 0
Z(Cl+tz)~zi3 T[(Q+tz)~, + ~,tzJ COSZ3 - (Q+iZ)~'t3~in~>}
- "tl1<..[ ~, tz. C05t3 -
(q + Zz),t,
~3 ~ill.(3] + 7r12.j (C\ + ~<) ~ih~3
=0
,. =0
,, .
. t,j
= 1, 2, 3
~ (m, +m2)~, +mzq~3+kJ(~,-qo) = pet) 1112
iz t,
+ 1cz.tz +
=
m
= 0
-
51" 0(,::
3
. /3L)" ( €.'
..
. T ="2 mL
T:: ~ [ iH
m
- . _. . -.5L (::J:: d-i: Clnd
~J
Z
I - (~-' /3'-J2.
1-
3 (f!1/3 L j"
3] t,"
+
= ;: "-
.
(~1/31..)" Z!
{[5 -3(iJ!3L {)i,-(2/3L')g,
tn
10
[ I -
inLI- (~'/3L)") +[5-3(N34]t'(Z;9l)l,g~
C~I / 3L
n~
eH =~i.,2. -(ZI:3 L "J£,(I-(,fJ/3L)Z]+(2/91.."-)g,(S-3(i,/ 3L
oZ, -JE-!l:-.-",
I-(~S
.5 -
ai., :: ~
R.,
3L
[1-C.t)/31..)"-]'-
12
I
n
j
z
V '" T KVK
=
liZ.
Z
"-~,
~
av
--= a~,
i
Kl t
-) r2.L l
.
pm I :: (~"2
4L - c ~l
pet
::
xdx-c.(,
3L
] bi'
o
2.
-1 6~,
-
1
C(),npo,-;~ wi-l.~
:. Q, C'f'plllinq J
J
= .32
rz.t.
((G,
- ( ) F -{
H', (110-/5): Z.
-lie):
s ~(n ( = [~ p (t ) L - c,tJ b i I <5 'Nne = Q, Sz, -t Q" 62.z -t .. , -+
QIJ cS~/>J
Ct, .
L -
(dT) dT
d - . - - - -+ av- = Q I d-
al,
-{
at,
a~,
m ls- 3(,f,13L)'][ 1- U"!3L)2J~, -(Z/3L2)[I~(M3L)"]g"i./ -+ [ 5 - 3 CN3L)2)(z/9/) [I g~ GO
[
(J/9L'Jf.'~" -mo
Tn
[S-3(i J /3 LJ"]
1_
(~'/3L)"r
- (1/3L"-),g, i~ [1-ti'/3L)"]
[ )- (.e.'/3L)"]'
[5 - 3( ~1/3l.fJ[ 1- (t'/3L)"]
if - [I - (£'/3L)2J (~, i,2/3L') -+ [5-3(~/3L)2] (lfi,'l9L") [1-fl f /3L)"Y
iO
.!!:!... [5-3(.e'l3d2][I-(~'/3L)zH) -+ (~,i./2/9L2)Z " [I - (tf 13L)2]z'
if
~I
srnall:
Probkrn
110 - 4
bl.t
L~
Ie =-m IZ
6111 =<.
if
:0 - - _ _
.L../2
f.
,
T =
1
mL~
<
12
-2
1'.1
I -
but
V, =
~I + :<
V, = $<
(ztr
"' <
'-2
Froblllm
1" - 4-
or-->ImFihJ
(con'd)
~'vJnc =
f(-l:)
<5 ""Inc
Q,
b.t • aZ<: '
COtnf'QY;~ wit~
Ill.: ('''-lie):
=
,st, + Qz St~ t-- - + <{II ¢~'J
QI
= - C
Q<
=
tl
F (-0
l-(ClT) _ eJT a~i
d-!:
i, [,- (2Z t/L)"] + it~ (8/L2.) £1
111
[ I - (2~1/.l..)2.]"
3
•
111
[1-(.2~,IL..{H, +
3
+
aR.i
av
=
a~.i
Qi
2
-
k( 2(+202 )=-CQ,,-' [ 1-(2Z,/L)2] 2. + Iv.c "'-
111·" 2
co
Belli..
(g,t~/Lz)
[1-,(2Z,/L)')"
;! ~. ~ ~I ~mo i! ---.,... .tn"
-. 3
4
6(z - c~.!
t,
'k
+"5
~I
+
.z z'z,2.1 2.
~
""5 f (t) = -
0 C
.
2../ 5·
+T
jZl
6
tnall:
'l
c~ + Tl(t'=-F(-t)
aT a~2
- L (I J. ~ ~I
=Tn
2.'
d faT) =m : I" L / - ", d-i: \ d{"-I \ fo Z
I. )
+ T Z,,- + "8 Z.
---'r - ( - ,
eo, (1"-2.4):
ki; = "-~' I
"
!
II
EIex.)f[ (.tl'J Y/.
d+
/I
C<:)
I ...
f.
0
I
f.-
. •
oy(t+J-Z)d
~
..
:+)-1
1'J - ..:...=-
rJ L . I' . -;0. ():V~ :"".1
,
_ 1< -
(j-I)
'J
(HiIOt) ;' "
1tr J
0
I .. _ (Iti.l(ft)) .' £I
/{" -
2. 93 .. )
(itl)j X d;lO C1'1-1) U+ I) L . L
((+)+2)'-
L
.
T
J:t =fLEI(iJ-l)t, ;lOci-I) ,
'.'
" = (' )/'+I'Jii c I 1 t I IJ J ~ j
('aT) - ('" 8" 9 '= at3 =111£" -9z, + -Q2.+-
-d -
-
, .. ) + -;Zz...z<:>2 + --'" 8 z·
: f a;.'i,! -' /
i) .
L (itj-'J "
L (1+J+2l
£1
Frable".,
10-5
(cor;:d)
(Iti)(ltj) 00£1
J
I{ti -
"
1.j
i+j-I
L3
(Iti)(l+j) -
i+j +
IJ L
J
v(o,-i:)=o and v(o,t)=O,-fhl1X~ i5I1on~cll5Si~ toimFo5~ TIl5tric-fiolls,
I AI) 1', + .c---_ z. L '\.
av= 3 (£13 1...
aiz
av _ a~3-8 QJjo ( ItO -30) :
....
Q.t ( 110 - 3 I) :
~
(£1 4---9 - - Ai-) e.s IJ) "-z +2. (U e 3
L
g.
(£ ' IJJ (£1 tJ ) ,-3 __ 5 L/~1+2 9 /..3-T: ~z pi'"
Cj =
J
QIJ
+3Z
(it I)
p(X,.f:) ~o(x)dx = pCt)(1)
EI(x)
'l.3
1..."
I
{9 £1. "U L3 --=rLj{3
t5
== p(f)
,
1= I,Z,3
~/(XJ~"(XJd;J.< = 0
IJ
Ci\
=
pi -
4: c.j ~j
'"
F (I:)
J.~I·
to = 1, z., 3
Prohlem
(con'd)
(&-5
IOOB ''!20
.. -mL 2520
3<00
t,ff)
420
HO
3/5
~'(i)
3&0
315
5&0
f3 rtl
-4 3
+
zE.I 3
L
3
4 L
-4
- -IJ-
12
')
9
144
2101,.
5",0 3/5 3%
.NO
315 1'51;, 4<0
t~(i)
331;," 420 'j60
~lt)
1
= \ F(t)
I
Problan 1& - CO
XI = -(F\I+I\2.)5in~2~ X," - (1\.,+R~)C05~-9z I3Ql1 :>u~attac1 to lwo rotClttons
j,=
(1\,+F\,,)C05-e-,,~j,:-(f\.'+F\,,)sin-ez.-e.
- c.<3 rotates 1n -oz 1-e<>Fc-t to 0 - 5011 rotote5 ;n -&-, nrF"cl -1:0 cCi
I
- -52.m ,1\,Z
01 -
Problqm
(10-0
(co'1'd)
hi == .!f I
1(
V = mlj hi'
+hQ'l
V=m'j(RttRz)cos-9-z
..
ae:=-m'j(R,4R?;.sih1T2
= (fi', +- R::?) cos"tJz
av
Z
(el
). ft(/"-3g):
V==V(JlljzI""JC)-(A.ljl+Azfz+"'+AmIm) V
= t11lj ( R,
JI == .. If
~ I -Bj _.
+ ~z) COS-&-2
"2 tr
z =
0
== rnq(RI+fk)C05-e-~ - A, (Rdt·,- ~2-&,J ...J
i:/,<"",c
z. cC"-Gj-t--9z") -A\R. 1 =0 -mfR., .5
"
m I ( ~ I + R." {&-2. + ~
171 I ~~
(-ii; -t- 42.) - 171,J (" I + ~ 2. hi n -&" + A 11\" = 0
~ y{, f\'((1t+-&z) f\< + 1Jf, (~I+ ~2.)L~~ + ~ y1', ~~ (-8; +~z)'
-y(j (1\, t 1'\,,) 5il1-e-2.~
= 0
=0
111, (~l-t~2.)-ii-Z '2.-
m, (I<-, + lh)~L
I -&1 2N
.'. F =
A.
(d)
5.3
-&:= 2.
lTo m e{. of mO'..ill.mlmt
7' (~I + Ih)
-9-:-&:= "
.. ,
2.
I .2 --{},=
Z
2.
p.f:O, iT-&'=O. 2' 2.
0
HRI+Rz)
7(~t+
fh)
;Z(R,+R,,) =
.
COS
.
.51 n
-ez
-&-2
-5j
-5.3 ;Z(~I+Rz)
/0 j
--=--- ( r-
5.'3
6i 11 -&z
COS 11-2.
+A
+ A
.3
-9z) . .: - - coS -&-z = 0 1'\1+1\2 COS
" =-. 10 ----'.>- -e: = areca,; - /0 "IT, 11 r1' 2.
~
10
-&Z- orc cos -11 - =
PrDbl~m
,,, -
f
o
-----7' X
k
tn, , ~o~C11
(L)2
L
Z
(10)1 = Ie,,", +tn'lz =7?l,!Z:
..•
Xz
=tz. 5il1~:
~Xz=
j"-
= f.;e co:,; Z'
--7
.2.
'IJz
+
X2
iz 5in
L
z,-+ t.z.i, C05~
.2.
J"-
L..
MeG =- 2' Z
= -
zt
2.·Z
= f., + Zz. Zl I
h2. = - J
Z
I
+mI4=311lIL
T=~17I,L
= -
Z
jz= Zz co-; (, - i z t, 5';n
·2..2
=
moss
Z2.
I '2. 2.'2.) £'1 + 21'TJ2.(.e,,+z"-R..I
2.·z
cos Z, C05
Z,
Q,
( contInued
ot)
= Qz.
=0
jo/1 olUi r:J fa.Je)
Prohln'1
1(, -1'
(con'cl )
jor
Probln'1
"Fc>r-
i.::. 1,Z
'10- 8
Sma 11
amplitude.
{i ~.J' ~J ~j ~ ~
L
05C;
0,
..
3,e, + 1'l14~~
+
llo hons:
.5in,ei ~
Zi,
I
=0
2~1
cos
k {Z- =mz. j
f...i ~
I
(i,j=I,Z.)
... '