PT. TECHNICs SPREADER BEAM CALCULATION XXX METERING SKID : Tc- 14015 BEAM CHECKING
Total Weight (Wt) = Safety Factor (SF) = Test Load / Cal culated Weight (Wtc) = Length to CoG (Lc.g) = Total Length (Lt) = Height to Center (Hc) = Angle 1 (A1) = Angle 2 (A2) = Selected Beam : Area Elastic Modulus Elastic Modulus Modulus of gyrat ion Modulus of gyrat ion Material Max. Yied E= K=
A = (Sx) = (Sy) = (r xx) = (r yy) =
22046 1.5 33069 71 152 12.4 68 65
lbs
10000.0 kgs
lbs in in in degree degree
15000.0 180.3 386.1 31.5
WF 300X150X6.5X9 7.25 in^2 29.35 in^3 4.09 in^3 4.88 in 1.30 in
46.8 481.0 67.0 12.4 3.3
kgs cm cm cm
cm^2 cm^3 cm^3 cm cm
### 70.62992 ### 152.8346 ### 12.40157 0 0 0 ### 7 #REF! ###### 1.155607 ### 4 0.160968 ### 5 0.1922 3 1
A 36 (Ym) =
36000 psi 29000000 psi 1 17622.2961 lbs 15446.7039 lbs
7993.4 kgs 7006.6 kgs
7120 lbs 7203 lbs 7203 lbs
3229.6 kgs 3267.2 kgs 3267.2 kgs
W1 W2
= =
((Lt-Lc.g)/Lt)*Wtc = (Lc.g/Lt)*Wtc =
Fh1 Fh2 Fh
= = =
W1/tan(A1) = W2/tan(A2) = Biggest (Fh1,Fh2) =
2531.1 kg/cm^2 2038922.7 kg/cm^2
COMPRESSION STRESS Compression Stress,
fa = Fh/A =
Cc
'=
Check Compres sion BENDING STRESS M1 = M2 = Moment (Mx) = Moment (My) = Stress due to moment fbx = fby = All. Bending Stre ss Check Bending, = = = =
fa < Fa =
OK
Fh1*Hc = Fh2*Hc = biggest (M1,M2) = 5% * Mx =
88286 89316 89316 4466
Mx/Sx = My/Sy = (Fb) = 0.6*Ym = fb < Fb =
69.8 kg/cm^2
126.1 (For A 36 & 107 for A 50) (Pls. See tabel 5 of App. A Page 5.76) 31 117 0.25 0.93 0.93 0.444 15984 psi 1123.8 kg/cm^2
'= '= '= '= '= '= (Fa) =
KLx/r xx KLy/r yy (KLx/r xx)/Cc (KLy/r yy)/Cc Govern Ca = from table 4 All. Compression
Cm F'e F'ex F'ey
993 psi
lb/in lb/in lb/in lb/in
3043 psi 1092 psi 21600 psi
15766.3 15950.2 15950.2 797.5
kg.cm kg.cm kg.cm kg.cm
213.9 kg/cm^2 76.8 kg/cm^2 1518.6 kg/cm^2
OK 1
(12*pi^2*E)/(23(KL/r)^2 = 154166.3 10852.702
UNITY CHECK Checking against formula 1.6-1a fa/Fa + Cmx*fbx/((1-fa/F'ex)*Fbx) + Cmy*fby/((1-fa/F'ey)*Fby) =
0.25957 < 1 OK
Checking against formula 1.6-1b fa/0.6Ym + fbx/Fbx + fby/Fby =
0.23741 < 1 OK
PT. TECHNIC OFFSHORE JAYA SPREADER BEAM CALCULATION OCI METERING SKID : TOJ 14003 LUG CHECKING Generals Data: Total empty weight, W Safety factor, SF WSWL = 1.5 W WSF = W SF
= =
10000 kgs 2.50
=
22046 lbs
=
15000 kgs
=
33069 lbs
=
25000 kgs
=
55116 lbs
Min. angle, α Max vertical force, Fy = WSF / NL
= = =
2 45.0 deg 12500 kgs
= =
0.79 rad 27558 lbs
Max horizontal force (in-plane), Fz = Fy / tan (a)
=
12500 kgs
=
27558 lbs
Max lateral force (out-of-plane), Fx = 0.1 Fy
=
1250 kgs
=
2756 lbs
Max tension force in sling, Fsl = (Fz2 + Fy2 + Fx2)0.5
=
17722 kgs
=
39069 lbs
Shackles Data: (Shackle Crosby G-2130 1-1/8" 9.5T WLL) Shackle working load limit, WLLs =
9.5 Ton
=
20944 lbs
Safety factor of shackle, SFs
=
2.0
Shackle max. proof load, MPLs
=
19 Ton
=
41887 lbs
Pin diameter, DP
=
32 mm
=
1.26 in
Jaws width, WJ
=
46 mm
=
1.81 in
Jaws height, HJ
=
123 mm
=
4.84 in
Sling Data: (20T WLL) Diameter of sling, Ds
=
25 mm
=
0.98 in
Sling Working Load Limit, WLLsl
=
9 Ton
=
19841 lbs
Safety factor of sling, SFsl
=
5.0
Sling ultimate load, Usl
=
45 Ton
=
99207 lbs
Number of lug, NL
R
α
r FY
HT Z
X
DH HH
Y
WL
Lug Dimensions: Total Height of lift lug, HT
=
Height of hole centreline, HH Width of lug, WL
=
24.80 in
=
630 mm 555 mm
=
21.85 in
Radius of cheek, r Thickness of cheek, tC
= = = = = =
480 240 50 25 50 6
= = = = = =
18.90 9.45 1.97 0.98 1.97 0.24
Check shackle strength, Fsl / MPLs
Radius of lug, R Diameter of hole, DH Thickness of lug, tL
mm mm mm mm mm mm
in in in in in in
=
Safe
Ratio
=
93.27%
Check sling strength, Fsl / Usl
=
Safe
Ratio
=
39.38%
Check space of hole and pin, Dp / DH
=
Clear
Ratio
=
64.00%
Dp - DH
=
Check space of jaws and lug thickness, (tL+2tC) / WJ
=
Clear
Ratio
=
80.43%
(WJ - tL - 2 tC)/2 Check space of jaws, lug height and dia. of sling, (R + DS + DH/2) / HJ
= =
4.50 mm Clear Ratio
= =
0.18 in 60.98%
HJ - R - Ds + DH/2
=
-117.00 mm
=
-4.61 in
= =
199947.95 MPa 344.74 MPa
= =
29000000 psi 50000 psi
Material, Stress and Properties Data: Elastic Modulus, E Yield Stress, Sa Allowable stress based on AISC Code 9th Ed. : Allow. Tensile Stress, Sta = 0.6 Sa
18.00 mm
=
0.71 in
=
206.84 MPa
=
30000 psi
Allow. Bending Stress, Sba = 0.66 Sa
=
227.53 MPa
=
33000 psi
Allow. Shear Stress, Ssa = 0.4 Sa
=
137.90 MPa
=
20000 psi
Allow. Bearing Stress, Sbra = 0.9 Sa DH/2R
=
310.26 MPa
=
45000 psi
Section modulus of lugs, SLy
=
50.00 cm3
=
3.05 in3
Section modulus of lugs, SLx
=
960.00 cm3
=
58.58 in3
0.10 = 2.50 Stress-Concentration factor (near hole), K = (for flat plate with centrally located circular hole in tension based on D H/2R value)
Stresses at Lug: Tension stress z-axis, Stz = Fz /(WL tL)
Bending stress z-axis, Sbz = HH(Fy/SLx+Fx/SLy) Shear stress y-axis, Ssy = Fy / (WL tL)
= =
10.22 MPa 206.93 MPa
=
1482 psi
=
30013 psi
=
1482 psi
=
148 psi
=
10.22 MPa 1.02 MPa
Total stress, ST = (Stz2 + Sbz2 + Ssy2 + Ssx2)1/2
=
207.44 MPa
=
30087 psi
Check tension stress z-axis, Stz / Sta
=
Safe
Ratio
=
4.94%
Check bending stress z-axis, Sbz / Sba
=
Safe
Ratio
=
90.95%
Check shear stress y-axis, Ssy / Ssa
Shear stress x-axis, Ssx = Fx / (WL tL)
=
=
Safe
Ratio
=
7.41%
Check shear stress x-axis, Ssx / Ssa
=
Safe
Ratio
=
0.74%
Check total stress, ST / Sa
=
Safe
Ratio
=
60.17%
Stresses near the Hole: Tension stress, Stz = K Fz / [(WL - DH) tL]
=
Tension stress, Sty = K Fy / [(HH + R - DH) tL] Shear stress, Ssx = K Fx / [(WL - DH) tL] Total stress, ST = (Stz2 + Sty2 + Ssx2)1/2
= = =
28.51 MPa 16.45 MPa
=
4135 psi
=
2386 psi
2.85 MPa 33.04 MPa
=
413 psi
=
4792 psi
146.78 MPa 30.62 MPa
=
21289 psi
=
4442 psi
Bearing stress, Sbr = Fsl / [Dp (tL + 2tc)]
=
Pull-out shear, Ssp = Fsl / [tL(R - ½DH) + 2tc(r - ½DH)]
=
Check tension stress z-axis, Stz / Sta
=
Safe
Ratio
=
13.78%
Check tension stress y-axis, Sty / Sta
=
Safe
Ratio
=
7.95%
Check shear stress x-axis, Ssx / Ssa
=
Safe
Ratio
=
2.07%
Check total stress, ST / Sa
=
Safe
Ratio
=
9.58%
Check bearing stress, Sbr / Sbra
=
Safe
Ratio
=
47.31%
Check pull-out shear stress, Ssp / Ssa
=
Safe
Ratio
=
22.21%
Note: - SF including WCF, DAF, SKL, CF (Noble Denton 0027/NDI Rev 5, Guideline for Lifting Operation) - Lateral force is calculated based on 5% vertical force Book Reference : Teng H. Hsu, "Applied Offshore Structural Engineering", page : 67-72. Book Reference : Noble Denton 0027/NDI Rev 5 "Guideline for Lifting Operation", page : 14-19.