English A CXC / CSEC 2013 English A CXC past papers 2013 English A CXC past papers 2013 CXC English A 2013
CSEC Mathematics 2017 June P2
CXC CSEC HSB January 2017
CXC CSEC HSB January 2017
CXC CSEC Physics 2017 June P2
CXC CSEC Chemistry 2017 June P2Full description
CSEC English A 2017 June P2Full description
Csec Maths Jan 2018 Solutions
CXC CSEC Biology January 2017Full description
CXC CSEC Biology 2017 June P2Full description
past paper sample for csec add mathsFull description
CXC January 2016 Human and Social Biology Paper 2 Past PaperFull description
CXC CSEC Information Technology January 2017Full description
CSEC Spanish 2017 June P2
CSEC Social Studies 2017 June P2
1.(a ) f ( x) = x 3 − x 2 − 14 x + 24 Factor (x + 4)
(i ) f ( x ) =
(i) ( x + 4) x 3 − x 2 − 14 x + 24 -1
-14
+24
↓ -4
20
-24
6
0
1
-5
x + 2
fg ( x ) =
Through Synthetic Division -4 1
2 x − 1
fg ( x ) = fg ( x ) =
Since the Remainder is Zero we can
( x + 1) + 2 2 x + 2 − 1 x + 1 + 2 2 x + 1 x + 3
(ii)The other other linear linear factor factorss can be found from from the the quadratic expression.
5 3 x − 2 = 7 x + 2
( x + 4)( x 2 − 5 x + 6)
( c ) G i v e n 5 3 x
−2
(3 ( 3 x − 2 ) lo g 5 = ( x + 2 ) lo g 7 3 x lo g 5 − 2 lo g 5 = x lo g 7 + 2 lo g 7
Factorize : ( x2 − 5 x + 6)
( x 2 − 2 x)( −3 x + 6)
3 x lo g 5 − x lo g 7 = 2 lo g 7 + 2 lo g 5
x( x − 2) − 3( x − 2)
x (3log 5 − lo g 7) 7) = 2 ( lo g 7 + lo g 5 )
( x − 2)( x − 3)
Therefore there are 3 factors. ( x + 4)( x − 2)( x − 3)
(b )G iv e n
2 x − 1
f ( x ) =
(i) In v e r s e
f
− 1
x + 2
( x )
f ( x ) = y
=
x =
2 x − 1 x + 2 2 x − 1 x + 2 2 y − 1 y + 2
x ( y + 2 ) =
2 y − 1
x y + 2 x =
2 y − 1
x y − 2 y =
2( x + 1) − 1
= 7 x + 2 S h o w th a t 2 ( lo g 5 + lo g 7 ) x = ( lo g 12 12 5 − l o g 7 )
concl nclude ude that ( x + 4) is a factor of f (x ).
; g (x) = x + 1
− 1 − 2 x y ( x − 2 ) = − 1 − 2 x − 1 − 2 x y = x − 2 − 1 − 2 x 1 = f − x − 2
x = x =
2 ( lo g 7 + lo g 5) 5) ( 3 lo lo g 5 − lo g 7 ) 2 ( lo g 5 + lo g 7 ) ( lo g 12 12 5 − lo g 7 )
3.( a ) ( x − h) 2 + ( y − k ) 2 = r 2
2.(a) f (x) =3x +6x −1 2
(i) Express f (x) in the formof a ( x+ h)2 + k
( x − 2) 2 + ( y − 1) 2 = r 2
Find the value of the radius (r),
3 x2 +6x −1
Note that tha t the radius radiu s r is the distance di stance AB.
3( 3( x2 +2) −1
r=
( x2 − x1 ) 2 + ( y2 − y1 ) 2
3( 3( x2 +2x +12) −1−3
r =
(1 (10 − 2) 2 + (7 − 1) 2
3( 3( x +1)2 −4
r =
64 64 + 36
(ii) Therefore Therefore the minimum inimumis k = - 4.
r = 100 r = 10
(iii) The The minimumvalue value of x = -1. -1.
2 (b) Find the values of x for which:
( x − 2)( x − 2) + ( y − 1)( y − 1) = 100
2 x2 +3x −5≥ 0
(2 (2 x +5x)(−2x −5) ≥0 2
x ≥
2
(x −1) ≥0 Zero Product Theorem
2
x 2 − 4 x + y 2 − 2 y = 100 − 4 − 1 x 2 − 4 x + y 2 − 2 y = 95 95
x 2 + y 2 − 4 x − 2 y − 95 = 0 x 2 + y 2 + hx + gy + k = 0
(2 (2 x +5)(x −1) ≥0
−5
2
x(2 (2x +5) −1(2x +5) ≥0
(2 x +5) ≥ 0
x − 4 x + 4 + y − 2 y + 1 = 100
2 x2 +5x −2x −5 ≥ 0 Factorize AC Method
( x − 2) 2 + ( y − 1) 2 = 10 2
(ii )Equa )Equati tion on of of line line AB. AB. Use points given, A and B.
x ≥1
7 −1
m=
10 − 2 3 m = gradient of line 4 3 y = x + c 4 3 1 = (2) + c 4 3 1= +c 2 1 c=− 2 3 1 AB → y = x − 4 2 Equation of line l is perpendicular therefore; y = −
7 =− c=
3 4 4
3 61
x+c
(10) + c
3 3
61
4
3
∴ y = − x +
5.( a) y = x − 3x + 2 3
2
∫
6 .( a ) 5 x 2 + 4 d x =
(i ) S tati tation onar ary y Poi Point ntss of of y. y. y = x − 3x + 2 3
2
=
y ' = 3x − 6 x = 0 2
∴ Factorizing 3 x( x − 2) = 0 3 x = 0; ( x − 2) = 0 x = 0; x=2 to find the y coordinates of these stationary points. y = (0) − 3(0) + 2 3
2
y = 2
∴ (0,2) y = ( 2) − 3( 2) + 2 3
2
y = ( 2, −2)
To determine the nature of the points. we find the second derivative and test: y '' = 6 x − 6
= 6( 6( 0 ) − 6 =-6
since -6 -6 ≤ 0 we we can can conc conclu lude de its its a maxi maximu mum m. y '' = 6 x − 6
= 6( 6(2) − 6 = 6;
sinc sincee 6 ≥ 0 we can can con concl clud udee its its a mini minimu mum. m.
5 x 2 +1 2 +1
5 x 3 3
+
4 x 0 +1 0 +1
+C
+ 4 x + C
π
2
∫
(b ) 3 s i n x − 5 c o s x d x 0 π
π
2
2
0
0
= 3 ∫ si xd x − 5 ∫ co s xdx s in xdx = 3(co s x ) − 5( − sin x) = 3 cos x + 5 sin x π π ⎞ ⎛ = ⎜ 3 co s + 5 si n ⎟ − ( 3 co s 0 + 5 si n 0 ) 2 2⎠ ⎝ = ( 3(0) + 5(1) ) − ( 3(1) + 5(0) )
= (5) − (3) =2
3. (b)
(c)
Given that they are prependicular then we know that the dot product is Zero. Dot Product
×
a · b= a
×
b
× cos ( 90°)
a · b = a
×
b
×0
b
× cos(θ )
0
∴a · b = ax × bx + ay × by
0 = 10× λ + −8×10
0 = 10λ − 80
−10 10λ = −80 λ = 8
OA = −2i + 5 j
OB = 3i − 7 j
a · b= a
a · b =
Given vectors
AB = AO + OB note the change in direction
of vector OA .
= 2i − 5 j + 3i − 7 j = 5i − 12 j Now we find the magnitude of the resultant resultant vector. 2 2 AB = 5 + (12)
AB = 25 + 144 AB = 169 AB = 13 square square root of 169. 169.
∴ the unit vector in the direction of AB. 1 13
( 5i − 12 j )
4(a ) Ar ea of sec to = or =
1
θ
360
× π r
2
r θ
2 we nee to find the radius "r".
we are given the perimeter, tha is, the arc lenght plus the rad us twice. Recall hat: Arc lenght = r θ , w ere θ is in adians. 5
∴ r θ θ + r + r = (12 + π ) r θ r (θ
dy
= 2 - 2 x is the deriv tive dx th n integrati g would gi e us the
6( ) Given that
fu ction of th curve.
∫2−
x dx
= 2 x x 2 + C = 2 x x 2 + 8 C 8; since C is the y int rcept,(0,8).