RENCANA PELAKSANAAN PEMBELAJARAN (RPP )
Satuan Pendidikan
: SMA Negeri 2 Singaraja
Kelas/Semester
: XI-IIS/IBB/Ganjil
Mata Pelajaran
: Matematika
Materi
: Program Linear
Waktu
: 2 x 45 menit
A. Kompetensi Inti
1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2. Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan proaktif dan menunjukkan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia. 3. Memahami, menerapkan, menganalisis pengetahuan faktual, konseptual, prosedural berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan humaniora dengan wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait penyebab fenomena dan kejadian, serta menerapkan pengetahuan prosedural pada bidang kajian yang spesifik sesuai dengan bakat dan minatnya untuk memecahkan masalah. 4. Mengolah, menalar, dan menyaji dalam ranah konkret dan ranah abstrak terkait dengan pengembangan dari yang dipelajarinya di sekolah secara mandiri, dan mampu menggunakan metode sesuai kaidah keilmuan. B. Kompetensi Dasar dan Indikator
1.1. Menghayati dan mengamalkan ajaran yang dianutnya 1.1.1. Menghayati dan mengamalkan ajaran agama yang dianutnya dalam proses pembelajaran
2.1. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap disiplin, rasa percayadiri, dan sikap toleransi dalam perbedaan strategi berpikir dalam memilih dan menerapkan strategi menyelesaikan masalah. 2.1.1. Disiplin dalam kegiatan pembelajaran matematika dengan materi sistem persamaan dan pertidaksamaan linier dua variabel 2.2. Mampu mentransformasidiri dalam berpilaku jujur, tangguh mengadapi masalah, kritis dan disiplin dalam melakukan tugas belajar matematika. 2.2.1. Tangguh dalam menghadapi masalah yang berkaitan dengan sistem persamaan dan pertidaksamaan linier dua variabel 2.3. Menunjukkan sikap bertanggungjawab, rasa ingin tahu, jujur dan perilaku peduli lingkungan. 2.3.1. Menunjukkan rasa tanggung jawab dalam melaksanakan tugas yang diberikan. 3.1. Mendeskripsikan konsep sistem persamaan dan pertidaksamaan linier dua variabel dan menerapkannya dalam pemecahan masalah program linear. 3.1.1. Menganalisis dan menyimpulkan konsep sistem persamaan dan pertidaksamaan linier dua variabel. 3.1.2. Menerapkan sistem persamaan dan pertidaksamaan linier dua variable dalam pemecahan masalah terkait 4.1 Merancang dan mengajukan masalah nyata berupa masalah program linear, dan menerapkan berbagai konsep dan aturan penyelesaian sistem pertidaksamaan linier dan menentukan nilai optimum dengan menggunakan fungsi selidik yang ditetapkan. 4.1.1 Terampil memilih dan menggunakan sistem persamaan dan pertidaksamaan linear yang sesuai dalam pemecahan masalah nyata serta memberikan alasannya. C. Tujuan Pembelajaran
Melalui proses pengamatan, bertanya, mengumpulkan informasi, bernalar/ mengasosiasi dan diskusi, peserta didik dapat: 3.1.1
Menganalisis dan menyimpulkan konsep sistem persamaan dan pertidaksamaan linier dua variabel.
3.1.2
Menerapkan sistem persamaan dan pertidaksamaan linier dua variable dalam pemecahan masalah nyata
4.1.1
Terampil memilih dan menggunakan sistem persamaan dan pertidaksamaan linear yang sesuai dalam pemecahan masalah nyata serta memberikan alasannya.
D. Materi Pembelajaran Fakta Masalah 1
Sekelompok tani transmigran mendapatkan 10 hektar tanah yang dapat ditanami padi, jagung dan palawija lain. Karena keterbatsan sumber daya petani harus menentukan berapa bagian yang harus ditanami padi dan berapa bagian yang harus ditanami jagung, sedangkan palawija lainnya ternyata tidak menguntungkan. Untuk suatu masa tanam, tenaga yang tersedia hanya 1550 jam per orang, pupuk juga terbatas, tak lebih dari 460 kg. Sedangkan air dan sumber daya lainnya cukup tersedia. Diketahui pula bahwa untuk menghasilkan 1 kuintal padi diperlukan 10 jam per orang tenaga dan 5 kg pupuk dan untuk 1 kuintal jagung diperlukan 8 jam per orang tenaga dan 3 kg pupuk. Kondisi tanah memungkinkan menghasilkan 50 kuintal padi per hektar atau 20 kuintal jagung per hektar. Pendapatan petani dari 1 kuintal padi adalah Rp 40.000,00. Sedang dari 1 kuintal jagung Rp 30.000,00 dan dianggap bahwa semua hasil tanamnya selalu habis terjual. Masalah bagi petani ialah bagaimanakah rencana produksi yang memaksimumkan pendapatan total? Artinya berapa hektar tanah harus ditanami padi, dan berapa hektar tanah harus ditanami jagung. Konsep
1) Sistem persamaan linear dua variable 2) Sistem pertidaksamaan linear dua variabel Prinsip
1) Sistem persamaan linear dua variable adalah gabungan dari dua atau lebih persamaan
+ = + =
linear dua variable dapat dituliskan sebagai berikut.
2) Sistem pertidaksamaan linear dua variabel adalah gabungan dari dua atau lebih persamaan linear dua variabel. Pertidaksamaan ini secara umum ditulis dengan bentuk ax + by ≤ c atau ax + by ≥ c Prosedur
Langkah – langkah penyelesaian sistem pertidaksamaan linier dua variabel: 1. Pertidaksamaan linear dua variabel diubah menjadi persamaan linear dua variabel. 2. Menggambar grafik persamaan linear dua variabel tersebut. 3. Menyelidiki daerah yang merupakan daerah penyelesaian. 4. Mengarsir daerah yang merupakan daerah penyelesaian E. Metode Pembelajaran :
Pendekatan Pembelajaran
: Pendekatan saintifik (scientific)
Model Pembelajaran
: Problem-based learning
Metode Pembelajaran
: Penemuan terbimbing, pemecahan masalah, diskusi, tanya jawab, dan penugasan
F. Alat/Media/Sumber Belajar 1. Alat/Bahan
: Spidol
2. Media
: Papan Tulis/White Board
3. Sumber Belajar :
Buku siswa (matematika wajib kelas XI Semester 1 kurikulum 2013) -
Buku Siswa Matematika Kelas XI (matematika wajib kelas XI Semester 1 kurikulum 2013)
-
Buku Guru Matematika Kelas XI
-
Kreatif Matematika Kelas XI Semester 1, Viva Pakarindo
G. Langkah -langkah Pembelajaran
Kegiatan
Pendahuluan
Alokasi
Deskripsi Kegiatan
Waktu
1. Guru mengucapkan salam kepada siswa
15 menit
2. Guru mengecek kahadiran siswa. 3. Guru
memberikan
gambaran
tentang
pentingnya
memahami system persamaan dan pertidaksamaan linear serta memberikan gambaran tentang penggunaannya dalam kehidupan sehari-hari.
4. Sebagai apersepsi untuk mendorong rasa ingin tahu siswa sehingga
diharapkan
dapat
aktif
dalam
proses
pembelajaran, siswa diajak memecahkan Masalah 1. 5. Guru menyampaikan tujuan pembelajaran yang ingin dicapai 6. Guru menyampaikan cakupan materi yang akan di bahas hari ini. Inti
60 menit
Fase 1: Mengorientasi siswa kepada masalah Mengamati Tahap 1
1. Guru
memberi
kesempatan
siswa
untuk
melakukan
pengamatan Masalah 1. 2. Siswa mencermati Masalah yang diberikan 3. Siswa mendeskripsikan data-data yang terdapat dalam masalah tersebut. Menanya
4. Guru
membimbing
siswa
agar
mampu
mengajukan
pertanyaan tentang hasil pengamatan masalah . Fase 2: Mengorganisasikan siswa Mengumpulkan Informasi Tahap 1
1. Guru membagi siswa dalam kelompok-kelompok diskusi yang sudah disusun sebelumnya. 2. Siswa mengumpulkan informasi berkaitan dengan masalah 1 3. Guru memperhatikan siswa dan mendorong siswa untuk terlibat aktif dalam diskusi. Guru mengamati diskusi siswa dan melakukan penilaian sikap. Fase 3: Membimbing penyelidikan individu dan kelompok Menanya
1. Guru memberi stimulan agar siswa bertanya bagaimana system pesamaannya jika palawija lain juga menguntungkan? Mengasosiasikan
2. Guru membimbing siswa untuk membedakan fungsi dan bukan fungsi serta menentukan hasil operasi aljabar fungsi untuk nilai x yang lain pada masalah 2. 3. Siswa berdiskusi untuk menentukan mana fungsi dan bukan fungsi dari suatu relasi yang diberikan 4. Siswa berdiskusi untuk menentukan domain, kodomain dan range dari fungsi yang diberikan 5. Siswa berdiskusi untuk menentukan hasil operasi aljabar fungsi pada masalah 2 dengan nilai x yang berbeda. Fase 4: Mengembangkan dan menyajikan hasil karya Mengasosiasikan 1. Dengan bekerja sama dalam kelompok diskusi siswa
menerapkan
konsep
yang
diperolehnya
untuk
menyelesaikan masalah pada Latihan di Lembar Aktivitas Siswa (LAS). Fase 5: Menganalisa dan mengevaluasi proses pemecahan masalah Mengasosiasikan
1. Guru membimbing siswa untuk mengkaji kembali cara menyelesaikan masalah yang berkaitan dengan system persamaan dan pertidaksamaan linear kemudian membuat ringkasan mengenai pembelajaran hari ini. Mengkomunikasikan
2. Siswa membuat rangkuman dan kesimpulan hasil diskusi.
3. Siswa
mempresentasikan
pengertian
fungsi
dan
hasil
diskusinya
operasi
tentang
aljabarnya
serta
penerapannya dalam menyelesaikan masalah terkait. Penutup
1. Siswa
diminta
menyimpulkan
tentang
merumuskan
masalah program linear.
menit
2. Guru menyimpulkan kembali apa yang sudah dipelajari hari ini sambil memberikan kesempatan siswa untuk bertanya jika ada yang belum dipahami. 3. Siswa diarahkan untuk kembali ke tempat duduk masingmasing kemudian guru menghapus papan. 4. Guru memberikan kuis individu kepada siswa 5. Guru mengumpulkan hasil kuis siswa setelah waktunya berakhir. 6. Guru memberikan tugas mandiri
sebagai pelatihan
keterampilan. 7. Guru mengakhiri kegiatan belajar dan berpesan untuk mempelajari Menyelesaikan Masalah Program Linear untuk pertemuan berikutnya. 8. Guru berterima kasih atas perhatian dan kerja sama siswa selama proses pembelajaran. 9. Guru mengucapkan salam H. Penilaian Hasil Belajar
a. Teknik Penilaian : 1. Penilaian Sikap
: Penilaian diri
2. Penilaian Pengetahuan
: tes tertulis, lisan dan penugasan
3. Penilaian Keterampilan
: proyek
b. Prosedur Penilaian
15
No.
1.
Aspek yang dinilai
Sikap a. Disiplin dalam kegiatan pembelajaran. b. Tangguh dalam menyelesaikan
Teknik Penilaian
Pengamatan dan penilaian diri
Waktu Penilaian
Selama proses pembelajaran dan di akhir pembelajaran
permasalahan maupun tugas-tugas yang diberikan. c. Tanggung jawab dalam kegiatan melaksanakan tugas yang diberikan 2.
Pengetahuan a. Menganalisis dan menyimpulkan
Pengamatan dan tes
konsep sistem persamaan dan
Penyelesaian tugas individu dan kelompok
pertidaksamaan linier dua variabel b. Menerapkan sistem persamaan dan pertidaksamaan linier dua variabel dalam pemecahan masalah nyata. 3.
Keterampilan
proyek
a. Terampil memilih dan menggunakan sistem persamaan dan pertidaksamaan linear yang sesuai dalam pemecahan masalah nyata serta memberikan alasannya.
Setelah laporan selesai (dengan batas waktu yang ditentukan ±2 minggu), penilaian saat presentasi untuk tugas projek.
c. Instrumen Penilaian Hasil belajar Instrumen Penilaian Pegetahuan Tes tertulis 1. Tentukan penyelesaian sistem persamaan linear berikut.
2 + = 9 + 3 = 21 2 ++3 ≤≥ 1221 ≥≥ 00
2. Tentukan daerah penyelesaian system pertidaksamaan linear berikut.
3. PT Anugrah adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000m2 berencana akan membangun dua tipe rumah, yaitu tipe Mawar dengan luas 130 m2 dan tipe Melati 90 m2. Jumlah rumah yang akan dibangun tidak lebih 150 unit. Pengembang merancang laba tiap-tiap tipe rumah Rp. 2.000.000,00 dan Rp.1.500.000,00. Modelkan permasalahan di atas! Penyelesaian dan Rubrik Pensekoran No.
1.
No.
No.
KD
Ind.
3.1
3.1.1
Soal
Tentukan
Penyelesaian
22 +6+ 2==249 −5 =−15= 3 62 +6+6 == 2724 4 = 33 =4
penyelesaian Dengan
melakukan
Skor
eliminasi
system persamaan linear terhadap variabel : berikut.
2 + = 9 + 3 = 21
-------------------------- -
Dengan
melakukan
8
eliminasi
terhadap variabel :
-------------------------- -
Jadi penyelesaian dari system tersebut adalah
8
dan
2.
3.1
3.1.2
Tentukan
daerah
Untuk
= 34 = 3 2 + = 12
penyelesaian system
titik potong terhadap sumbu
pertidaksamaan
adalah: (6,0)
2 ++3 ≤≥ 1221 ≥≥ 00
linear berikut.
titik potong terhadap sumbu
(2.0+0,00)≤ 12 ( 0 , 0 ) + 3 = 21
adalah: (0,12)
4
5
Uji di titik
Jadi
daerah
5
penyeesaiannya 5
menuju titik Untuk
titik potong terhadap sumbu adalah: (21,0) titik potong terhadap sumbu
(0+ 03.,00)≤ 21 (0,0)
adalah: (0,7)
Uji di titik
Jadi
daerah
5
penyeesaiannya
menuju titik
Daerah yang diarsir adalah daerah penyelesaiannya.
15
3.
4.1
4.1.1
PT Anugrah adalah suatu Misalkan: pengembang perumahan di Banyak rumah tipe Mawar = daerah pemukiman baru. Banyak rumah tipe Melati = PT tersebut memiliki tanah
5
seluas 12.000m2 berencana Kendala bahwa luas tanah yang akan membangun dua tipe tersedia
hanya
12.000
m2,
rumah, yaitu tipe Mawar sedangkan tipe Mawar dengan dengan luas 130 m2 dan memiliki luas 130 m2 dan tipe tipe Melati 90 m2. Jumlah Melati 90 m2. rumah yang akan dibangun tidak
lebih
Pengembang
150
unit.
130 + 90 ≤ 12.000
10
merancang Kendala bahwa jumlah rumah
laba tiap-tiap tipe rumah yang akan dibangun tidak lebih Rp.
2.000.000,00
dan 150 unit.
+ ≤ 150 ≥≥ 00 130++90 ≤≤15012.000 = 2.000.000 + 1.500.000 Nilai = sskkoror permaksoleimhanal
Rp.1.500.000,00.
10
Modelkan permasalahan di Kendala atas!
10
Tujuan memaksimumkan
Skor maksimal
10 100
INSTRUMEN PENILAIAN NAMA PESERTA
:
NO. PESERTA
:
Format Perancangan Instrumen Penilaian Kelas XI: Kompetensi Dasar
: 1.1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2.1 Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap disiplin, rasa percaya diri dan sikap toleransi dalam perbedaan strategi berfikir dalam memilih dan menerapkan strategi menyelesaikan masalah. 2.2 Mampu menstransformasi diri dalam berperilaku jujur, tangguh menghadapi masalah, kritis dan disiplin dalam melakukan tugas belajar matematika 2.3 Menunjukkan sikap bertanggungjawab, rasa ingin tahu, jujur dan berperilaku peduli lingkungan 3.1 Mendeskripsikan konsep sistem persamaan dan pertidaksamaan linier dua variabel dan menerapkannya dalam pemecahan masalah program linear. 4.1 Merancang dan mengajukan masalah nyata berupa masalah program linear, dan menerapkan berbagai konsep dan aturan penyelesaian sistem pertidaksamaan linier dan menentukan nilai optimum dengan menggunakan fungsi selidik yang ditetapkan.
Topik/Materi Sub Topik/Sub Materi
:
Program linear
:
Merumuskan masalah program linear
1. Instrumen Penilaian Sikap
LEMBAR PENGAMATAN PENILAIAN SIKAP PENILAIAN OBSERVASI
Satuan Pendidikan
: SMA Negeri 2 Singaraja
Mata Pelajaran
: Matematika
Topik
: Program Linear
Kelas/Semester
: XI-IIS/IBB/ Ganjil
Tahun Pelajaran
: 2014/2015
Waktu Pengamatan
: Selama proses pembelajaran
Kompetensi Dasar
2.1 Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap disiplin, rasa percaya diri dan sikap toleransi dalam perbedaan strategi berfikir dalam memilih dan menerapkan strategi menyelesaikan masalah. 2.2 Mampu menstransformasi diri dalam berperilaku jujur, tangguh menghadapi masalah, kritis dan disiplin dalam melakukan tugas belajar matematika. 2.3 Menunjukkan sikap bertanggungjawab, rasa ingin tahu, jujur dan berperilaku peduli lingkungan. Indikator:
1. Menunjukkan sikap disiplin dalam kegiatan pembelajaran. 2. Menunjukkan sikap tanggung jawab dalam kegiatan melaksanakan tugas yang diberikan. 3. Menunjukkan sikap tangguh dalam menyelesaikan permasalahan maupun tugas -tugas yang diberikan. Rubrik:
Indikator sikap disiplin dalam kegiatan pembelajaran: 1. Kurang baik jika sama sekali tidak disiplin dalam kegiatan pembelajaran. 2. Cukup jika menunjukkan ada sedikit sikap disiplin dalam kegiatan pembelajaran tetapi masih sedikit dan belum ajeg/konsisten. 3. Baik jika menunjukkan sudah ada
usaha untuk bersikap disiplin dalam kegiatan
pembelajaran cukup sering dan sudah mulai ajeg/konsisten. 4. Sangat baik jika menunjukkan adanya pembelajaran.
usaha untuk selalu disiplin dalam kegiatan
Indikator sikap tanggung jawab dalam kegiatan melaksanakan tugas yang diberikan:
1. Kurang baik jika tidak menunjukkan sama sekali tanggung jawab dalam melaksanakan tugas yang diberikan. 2. Cukup jika menunjukkan ada sedikit tanggung jawab dalam melaksanakan tugas yang diberikan tetapi masih sedikit dan belum ajeg/konsisten. 3. Baik jika menunjukkan sudah ada usaha untuk tanggung jawab dalam melaksanakan tugas yang diberikan cukup sering dan sudah mulai ajeg/konsisten. 4. Sangat baik jika menunjukkan usaha untuk selalu tanggung jawab dalam melaksanakan tugas yang diberikan secara terus menerus dan ajeg/konsisten. Indikator sikap sikap tangguh dalam menyelesaikan permasalahan maupun tugas-tugas yang diberikan:
1. Kurang baik jika tidak menunjukkan sama sekali sikap tidak tangguh dalam menyelesaikan permasalahan yang diberikan. 2. Cukup jika menunjukkan ada sedikit sikap tangguh dalam menyelesaikan permasalahan yang diberikan tetapi masih sedikit dan belum ajeg/konsisten. 3. Baik jika menunjukkan sudah ada sikap tangguh dalam menyelesaikan permasalahan yang diberikan sudah mulai ajeg/konsisten. 4. Sangat baik jika menunjukkan usaha untuk sikap tangguh dalam menyelesaikan permasalahan yang diberikan secara terus menerus dan ajeg/konsisten.
Bubuhkan tanda √ pada kolom -kolom sesuai hasil pengamatan. Sikap No
Nama Siswa
Disiplin
Tangguh
Bertanggung jawab
r
o
k
S K a t.
Keterangan:
KB : Kurang baik Kat. : Kategori
C : Cukup
B : Baik
S : Sangat baik
PEDOMAN PENILAIAN Keterampilan
Sikap
A
4.00
Sangat Baik
A-
3.66
B+
3.33
B
3.00
B-
2.66
C+
2.33
C
2.00
C-
1.66
D+
1.33
D
1.00
Rentang Skor
95 - 100 91 - 95 86 - 90 80 - 84 75 - 79 70 - 74 65 - 69 60 - 64 55 - 59 54
Baik
Cukup
Kurang
LEMBAR PENILAIAN SIKAP PENILAIAN DIRI
SatuanPendidikan
: SMA Negeri 2 Singaraja
Mata Pelajaran
: Matematika
Topik
: Program Linear
Kelas/Semester
: XI-IIS/IBB/Ganjil
Tahun Pelajaran
: 2014/2015
Waktu Pengamatan
: Setelah/sebelum evaluasi akhir/UH/Kuis
Kompetensi Dasar
2.1. Memiliki motivasi internal, kemampuan bekerja sama, konsisten, sikap disiplin, rasa percaya diri, dan sikap toleransi dalam perbedaan strategi berpikir dalam memilih dan menerapkan strategi menyelesaikan masalah. 2.2. Menunjukkan sikap bertanggung jawab, rasa ingin tahu, jujur dan perilaku peduli lingkungan. Indikator
1.
Bekerjasama dalam menyelesaikan tugas kelompok.
2.
Menunjukkan sikap disiplin dalam menyelesaikan tugas individu maupun kelompok.
3.
Menunjukkan rasa percaya diri dalam mengemukakan gagasan, bertanya, atau menyajikan hasil diskusi.
4.
Memiliki rasa ingin tahu berkaitan dengan materi yang disampaikan.
5.
Menunjukkan
sikap
toleransi
dalam
perbedaan
strategi
berpikir
dalam
menyelesaikan masalah. 6.
Tanggung jawab dalam menyelesaikan tugas-tugas yang diberikan, baik individu maupun kelompok.
7.
Menunjukkan sikap jujur saat sedang ulangan/ evaluasi maupun dalam menyelesaikan tugas.
Format Lembar Penilaian Diri PENILAIAN DIRI
Nama
: …………………………….…………... : …………………………………………
Kelas
Untuk pertanyaan 1 sampai dengan 7, tulis masing-masing huruf sesuai dengan pendapatmu!
A = Selalu (4)
B = Sering (3)
C = Jarang (2)
D = Tidak pernah (1)
1
Saya bekerjasama dalam menyelesaikan tugas kelompok
2
Saya menunjukkan sikap disiplin dalam menyelesaikan tugas individu maupun kelompok
3
Saya menunjukkan rasa percaya diri dalam mengemukakan gagasan, bertanya, atau menyajikan hasil diskusi
4
Saya menunjukkan sikap toleransi dalam perbedaan strategi berpikir dalam menyelesaikan masalah.
5
Saya bertanggung jawab terhadap tugas-tugas yang diberikan, baik dalam tugas individu maupun kelompok
6
Saya berusaha untuk selalu jujur dalam mengerjakan soal-soal latihan maupun saat ulangan/ evaluasi
7
Saya memiliki rasa ingin tahu berkaitan dengan materi yang disampaikan
LEMBAR TES TERTULIS
Satuan Pendidikan
: SMA Negeri 2 Singaraja
Mata Pelajaran
: Matematika
Topik
: Program Linear
Kelas/Semester
: XI-IIS/IBB / Ganjil
Tahun Pelajaran
: 2014/2015
Waktu Penilaian
: Diberikan saat proses pembelajaran untuk mendalami materi
Kompetensi Dasar dan Indikator
3.1 Mendeskripsikan konsep sistem persamaan dan pertidaksamaan linier dua variabel dan menerapkannya dalam pemecahan masalah program linear. a) Menganalisis dan menyimpulkan konsep sistem persamaan dan pertidaksamaan linier dua variabel. b) Menerapkan sistem persamaan dan pertidaksamaan linier dua variable dalam pemecahan masalah nyata. Permasalahan
Kerjakan soal di bawah ini :
2 + = 9 + 3 = 21 2 ++3 ≤≥ 1221 ≥≥ 00
1. Tentukan penyelesaian sistem persamaan linear berikut.
2. Tentukan daerah penyelesaian system pertidaksamaan linear berikut!
3. PT Anugrah adalah suatu pengembang perumahan di daerah pemukiman baru. PT tersebut memiliki tanah seluas 12.000m 2 berencana akan membangun dua tipe rumah, yaitu tipe Mawar dengan luas 130 m 2 dan tipe Melati 90 m 2. Jumlah rumah yang akan dibangun tidak lebih 150 unit. Pengembang merancang laba tiap-tiap tipe rumah Rp. 2.000.000,00 dan Rp.1.500.000,00. Modelkan permasalahan di atas!
PEDOMAN PENSKORAN
KRITERIA YANG DINILAI
Siswa mengerjakan dengan benar soal yang diberikan, lengkap dan jelas Siswa dapat mengerjakan sebagian soal dengan benar, lengkap namun kurang jelas Siswa dapat mengerjakan sebagian soal dengan benar, namun belum lengkap dan tidak jelas Siswa dapat mengerjakan sebagian soal yang diberikan tapi sebagian besar salah, tidak lengkap dan tidak jelas Siswa tidak mengerjakan tugas-tugas yang diberika
SKOR MAKSIMAL
4
3
2
1 0
LEMBAR PENILAIAN PROYEK
Satuan Pendidikan
: SMA Negeri 2 Singaraja
Mata Pelajaran
: Matematika
Topik
: Program Linear
Kelas/Semester
: XI-IIS/IBB/ Ganjil
Tahun Pelajaran
: 2014/2015
Waktu Penilaian
: ± 2 minggu setelah tugas proyek diberikan
Kompetensi Dasar dan Indikator Pencapaian Kompetensi
3.1 Mendeskripsikan konsep sistem persamaan dan pertidaksamaan linier dua variabel dan menerapkannya dalam pemecahan masalah program linear. 1.1.1
Menganalisis dan menyimpulkan konsep sistem persamaan dan pertidaksamaan linier dua variabel.
1.1.2
Menerapkan sistem persamaan dan pertidaksamaan linier dua variable dalam pemecahan masalah nyata.
Rubrik Tugas
Mencari permasalahan-permasalahan yang berkaitan dengan materi program linear dengan aturan: 1. Siswa diminta membentuk kelompok yang terdiri dari 4
– 5 orang, masing-masing
kelompok mencari permasalahan-permasalah yang berkaitan dengan materi program linear lengkap dengan penyelesaiannya di internet atau buku sumber lain yang relevan. 2. Masing-masing kelompok mengumpulkan 3 permasalahan yang berbeda lengkap dengan penyelesainnya. 3. Hasil pencarian tersebut disusun menjadi sebuah kliping/makalah singkat dan dijilid dengan rapih. 4. Batas waktu pengerjaan tugas ± 2 minggu, dan bagi siswa yang tidak mengumpulkan tepat waktu, akan diberikan sanksi. 5. Masing-masing kelompok diminta mempresentasikan 1 masalah yang dibuat di depan kelas.
Rubrik Penilaian Proyek
Kriteria
Materi sesuai dengan yang ditugaskan (aplikasi program linear)
Laporan memuat permasalahan dan jawaban yang benar serta terinci
Permasalahan dan jawaban yang diajukan bervariasi (ragam soal lebih
Skor
4
banyak)
Permasalahan dan jawaban yang dibuat sendiri sama banyaknya dengan mengambil dari sumber lain (aspek kreatif lebih menonjol)
Laporan memuat sumber perolehan data (aplikasi program linear diambil dari internet atau sumber lain)
Laporan dikumpulkan tepat waktu sesuai dengan kesepakatan
Kerjasama kelompok sangat baik
Materi sesuai dengan yang ditugaskan (aplikasi program linear)
Laporan memuat permasalahan dan jawaban yang benar namun belum
3
terinci
Permasalahan dan jawaban yang diajukan kurang bervariasi (soal kurang beragam)
Memuat beberapa permasalahan dan jawaban yang dibuat sendiri namun tidak sebanyak mengambil dari sumber data (aspek kreatif kurang menonjol)
Laporan memuat sumber perolehan data ((aplikasi program linear) diambil dari internet atau sumber lain)
Laporan dikumpulkan tepat waktu sesuai dengan kesepakatan
Kerjasama kelompok baik
Materi kurang sesuai dengan yang ditugaskan (aplikasi program linear)
Laporan memuat permasalahan dan jawaban yang kurang benar dan tidak terinci
Permasalahan dan jawaban yang diajukan kurang bervariasi (ragam soal tidak banyak)
Permasalahan dan jawaban ada yang dibuat sendiri namun tidak sebanyak dengan mengambil dari sumber data (aspek kreatif kurang menonjol)
2
Kriteria
Skor
Laporan memuat sumber perolehan data (aplikasi program linear diambil dari internet saja)
Laporan dikumpulkan tepat waktu sesuai dengan kesepakatan
Kerjasama kelompok baik
Materi tidak sesuai dengan yang ditugaskan (aplikasi program linear)
Laporan memuat permasalahan dan jawaban yang kurang benar
Permasalahan dan jawaban yang diajukan tidak bervariasi
Tidak ada permasalahan dan jawaban yang dibuat sendiri
Laporan tidak memuat sumber perolehan data
Laporan dikumpulkan tidak tepat waktu
Kerjasama kelompok kurang baik Tidak melakukan tugas proyek
1
0
Singaraja, Agustus 2014 Mengetahui, Kepala SMA Negeri 2 Singaraja
Drs. Made Sumatra NIP. 196112221989031009
Guru Mata Pelajaran
Dra. Ni Putu Wendri NIP. 19621231 1988032112
LEMBAR AKTIVITAS SISWA Model Matematika dari Masalah Program Linear
Petunjuk kerja : 1. Baca dan pahamilah soal-soal yang ada pada LKS. 2. Diskusikanlah soal-soal yang adapada LKS dengan teman kelompok. 3. Tulislah hasil diskusi pada lembarjawaban yang telah disediakan.
1.
Amati masalah berikut! Seorang pedagang mempunyai gudang yang hanya dapat menampung paling banyak 90 peti barang. Setiap peti barang A dibeli dengan harga Rp 200.000,00 dan akan dijual dengan laba Rp 40.000,00. Setiap peti barang B dibeli dengan harga Rp 100.000,00 akan dijual dengan laba Rp 15.000,00. Jika modal yang tersedia Rp 13.000.000,00, Tentukan system pertidaksamaan
2. Isi data data dari masalah no 1 pada tabel berikut Barang
Barang
A
B
Persediaan
Daya tampung Harga beli Laba 3.
Misalkan
Banyak Barang A = ...... Banyak barang B =.......
4.
Kalimat ”Paling banyak ” dinyatakan dengan tanda pertidaksamaan :....................... Kalimat ”Tersedia” dinyatakan dengan tanda pertidaksamaan:................................
5.
Masalah diatas dapat di nyatakan menjadi model matemat ika berikut:
{… +…⋯+ ≤⋯13.≤09000.000
Banyak barang A dan Barang B selalu positif sehingga model matematikanya
{ ≥≥ ⋯.⋯.
adalah
6.
Sebutkan langkah-langkah membuat model matematika dari masalah program linear ................. ................ .................
7.
Bentuk umum model matematika dari masalah program linear dengan m kendala dan n variabel adalah......
ax + ax + ⋯…….+ax (≥,≤)b ax + ax + ⋯…….+ax(≥,≤)b ax + ax + ⋯…….+ax(≥,≤)b x ≥ 0, x ≥ 0, … ……. . x ≥ 0
………………………………………….
Kesimpul an :
................................................................................................................................... ................................................................................................................................... ...................................................................................................................................
Anggota Kelompok No Urut
No Absen
Nama Siswa
Nilai
Paraf Guru