Page 1 of 3
STRUCTURAL DESIGN SOFTWARE This web site provides structural design spreadsheets, which created using Microsoft Excel. Each spreadsheet contains both the formulas used and the reference code sections, as well as graphic drawings. The Example is intended for reuse and is loaded with floating comments as well as ActiveX pull-down menus for variable choices. All intermediate calculations are intended for submittal with the calculations to explain the results results of the input. It is free to download, by click spreadsheet name, for non-business. For a package professional version of entire listed spreadsheets, Special Buy, the current price is l ess than $13 per spreadsheet. And single copy of each professional spreadsheet is available with $33. Our licenses are "on your honor". We trust our customers to decide if they need to purchase more licenses for multi-user.
Special Buy
(User's Book)
A Package Only $1260 (Total 104 software listed)
Foundation Design Pad Footing
Flagpole
Eccentric Footing
Deep Footing
Wall Footing
Footing for DSA & OSHPD
Combined Footing
Boundary Spring Generator
Grade Beam
Plain Concrete Footing
Concrete Retaining Wall
Conventional Slab on Grade
Retaining Wall for DSA & OSHPD Masonry Retaining /Fence Wall
PT Slab on Ground
Restrained Retaining Wall
Concrete Pile Footing At Piping
Concrete Design SMRF-ACI
Column
Shear Wall - IBC
Circular Column
Shear Wall - CBC
Column Supporting Discontinuous
Tilt-up Panel
Corbel
Wall Pier
Composite Member
Slab
Development & Splice in Concrete
Anchorage To Concrete
Friction
Beam
Prestressed Member Mechanical Unit Anchorage
Deep Beam
(Concrete & Wood)
Punching
PT Concrete Floor
Coupling Beam
Masonry Design Masonry Shear Wall
(ACI 530)
Masonry Shear Wall
(UBC 97)
Masonry Bearing Wall UBC)
Girder at Wall
Bending Post at Top Wall Anchorage To Masonry
(ACI 530
& UBC) (ACI 530 &
Horizontal Bending Wall Development & Splice in Masonry
Page 3 of 3
programs. The licensed owners will receive updated spreadsheets if requested, or new spreadsheets for the package owners only. When you email us your questions, please tell us your name, purchased license number, phone number, and give a decent problem description.
Disclaimer We do not provide unprotected spreadsheet, original software code. DO NOT UNPROTECT the UNPROTECT the spreadsheets, using "brute force" methods or VBA procedure in particular, otherwise some steps and database will be inadequate at random times. We intend that the analysis contained in the spreadsheets is accurate and reliable, but it is entirely the responsibility of the program user to verify the accuracy and applicability of any results obtained from the spreadsheets. Daniel T. Li Engineering International’s entire liability shall be limited to the purchase price of the spreadsheets. Copyright © 2002-2005 Daniel T. Li Engineering International, International, All Rights Reserved.
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW REVIEW BY :
DATE :
Pad Footing Design Based on ACI 318-02 INPUT DATA
DESIGN SUMMARY
COLUMN WIDTH
c1
=
5
in
FOOT ING W IDT H
B
=
3.00
ft
COLUMN DEPTH
c2
=
5
in
FOOT ING LENGT H
L
=
4.00
ft
BASE PLATE PLATE W IDTH
b1
=
16
in
FOOT ING T HICKNESS
T
=
12
in
BASE PLATE DEPTH
b2
=
16
in
LONGIT UDINAL REINF.
3
#
5
@
15
in o.c.
FO OT OT IN ING CO NC NCRET E ST RE RENG TH TH
f c'
=
2.5
ksi
T RANSVERSE REINF.
4
#
5
@
14
in o.c.
REBAR YIELD STRESS
fy
=
60
ksi
AXIAL DEAD LOAD
PDL
=
25
k
AXIAL LIVE LOAD
PLL
=
4.5
k
LAT ER ERAL LO AD AD (0=W IN IND, 1=SEISMIC) PLAT SEISMIC AXIAL LOAD
= =
1 -6
Seismic,SD k, SD
SURCHARGE
qs
=
0
ksf
SOIL W EIGHT
ws
=
0.11
kcf
FOOTING EMBEDMENT DEPTH
Df
=
2
ft
T
=
12
in
ALLOW SOIL PRESSURE
Qa
=
2.5
FOOTING W IDT H FOOTING LENGT H BOTTOM REINFORCING REINFORCING
B L
= = #
3 4 5
= = =
37 29 17
kips kips kips
FOOTING THICKNESS
ksf ft ft
THE PAD DESIGN IS ADEQUATE.
ANALYSIS DESIGN LOADS (IBC LOADS (IBC SEC.1605.3.2 & ACI 318-02 SEC.9.2.1) CASE 1: DL + LL P = 30 kips CASE 2: DL + LL + E / 1.4 P = 25 kips CASE 3: 0.9 DL + E / 1.4 P = 18 kips
1.2 DL + 1.6 LL 1.2 DL + 1.0 LL + 1.0 E 0.9 DL + 1.0 E
CHECK SOIL BEA BEARING RING C APA APACITY CITY (ACI 318-02 SEC.15.2.2) CASE 1 P q MAX = + q + (0.1 5 − w S )T = 2.50 ksf, S BL
CASE 2 2.14 ksf,
q MAX
<
k Q a ,
Pu Pu Pu
CASE 3 1.56 ksf [Satisfactory]
where k = 1 for grovity grovity loads, 4/3 for lateral loads. DESIGN FOR FLEXURE (ACI FLEXURE (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5)
0.85 f c 1 − 1 − '
ρ =
M u ' 2 0.383b d c
'
0.85 β 1 f c ρ MAX = 2.5 f
y
f y
ρ MIN
LONGIT UDINAL 8.69 36 3.10 11.35
d b q u,max Mu
# 5 18 in o.c. 3 # 5 0.013 [Satisfactory]
=
MIN 0.001 8
T d
,
4 3
ρ
T RANSVERSE 8.38 48 3.10 7.00
0.001 0.001 0.39
ρ ρmin As ReqD Max. Spacing USE ρmax Check ρ Check ρprod < ρmax
ε u ε u + ε t
0.000 0.001 0.25
2
1 @ 15 in o.c.
# 5 18 in o.c. 4 # 5 0.013 [Satisfactory]
@ 14 in o.c.
(cont'd) CHECK FLEXURE SHEAR (ACI 318-02 SEC.9.3.2.3, 15.5.2, 11.1.3.1, & 11.3)
φV n n
'
=
2φ bd f c Vu
φ φ Vn Check Vu < φ < φV Vn
LONGIT UDINAL 7.80
T RANSVERSE 4.52
0.75 23.5 [Satisfactory]
0.75 30.2 [Satisfactory]
CHECK PUNCHING SHEAR (ACI 318-02 SEC.15.5.2, SEC.15.5.2, 11.12.1.2, 11.12.6, & 13.5.3.2)
φ V n = ( 2 + y ) φ f c' A p where
=
97.42
kips
φ βc
= =
0.75 ( AC ACI 318- 02 02, Se Sec ttiion 9. 3. 3.2.3 ) ratio of long side to short side of concentrated load
b0
=
c1 + c2 + b1 + b2 + 4d
=
b0 d
y
=
MIN(2 , 4 / βc , 40 d / b0)
1
BL
649.4
in
Ap
V u = Pu, max max 1 −
=
=
b1 + c1 + + d b2 c2 + d = 2 2
76.1
=
1.00
in
2
=
2. 2.0
29.4 29.40 0 ft-k ft-kip ips s
<
φ V
n
[Satisfactory]
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Eccentric Footing Design Based on ACI 318-02 INPUT DATA
DESIGN SUMMARY
COLUMN WIDTH
c1
=
5
in
FOOTING WIDTH
B
=
16.00
ft
COLUMN DEPTH
c2
=
5
in
FOOTING LENGTH
L
=
7.00
ft
BASE PLATE W IDTH
b1
=
16
in
FOOTING THICKNESS
T
=
12
in
BASE PLATE DEPTH
b2
=
16
in
LONGITUDINAL REINF., TOP
1#5
FOOTING CONCRET E ST RENGT
f c'
=
2.5
ksi
LONGITUDINAL REINF., BOT.
23 # 5 @ 8 in o.c.
TRANSVERSE REINF., BOT.
6 # 5 @ 15 in o.c.
REBAR YIELD STRESS
fy
=
60
ksi
AXIAL DEAD LOAD
PDL
=
50
k
AXIAL LIVE LOAD
k
PLL
=
4.5
LAT ERAL LO AD ( 0= WIND, 1=SEISMIC) PLAT SEISMIC AXIAL LOAD
= =
1 1
Seismic,SD k, SD
SEISMIC MOMENT LOAD
MLAT
=
15
ft-k, SD
SEISMIC SHEAR LOAD
VLAT
=
10
k, SD
SURCHARGE
qs
=
0.1
ksf
SOIL WEIGHT
ws
=
0.11
kcf
FOOTING EMBEDMENT DEPTH
Df
=
2
ft
FOOTING THICKNESS
T
=
12
in
ALLOW SOIL PRESSURE
Qa
=
3
ksf
FOOTING WIDTH
B1
=
10
ft
B2
=
6
ft
L1
=
6
ft
L2
=
1
ft
#
5
FOOTING LENGTH REINFORCING SIZE
THE FOOTING DESIGN IS ADEQUATE.
ANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318-02 SEC.9.2.1) CASE 1: DL + LL P = 55 kips M = 136 ft-kips e = 2.5 ft, fr cl ftg CASE 2: DL + LL + E / 1.4 P = 55 kips M = 149 ft-kips e = 2.7 ft, fr cl ftg CASE 3: 0.9 DL + E / 1.4 P = 46 kips M = 125 ft-kips e = 2.7 ft, fr cl ftg
1.2 DL + 1.6 LL
1.2 DL + 1.0 LL + 1.0 E
0.9 DL + 1.0 E
CHECK OVERTURNING FACTOR MR / MO = Where MO =
4.5
>
F = 1 / (0.9x1.4)
MLAT + VLAT Df - PLATL2 =
[Satisfactory] 34
k-ft
Pftg =
(0.15 kcf) T B L =
16.80
k, footing weight
Psoil =
ws (Df - T) B L =
12.32
k, soil weight
MR =
PDLL2 + 0.5 (Pftg + Psoil) L =
152
k-ft
F = 1 / (0.9x1.4) for seismic, IBC 1605.3.2
FOR REVERSED LATERAL LOADS, MR / MO = Where MO = MR =
13.9
>
[Satisfactory]
F = 1 / (0.9x1.4)
MLAT + VLAT Df - PLATL1 =
29
k-ft
PDLL1 + 0.5 (Pftg + Psoil) L =
402
k-ft
Pu Mu eu Pu Mu eu Pu Mu eu
= = = = = = = = =
67 168 2.5 66 179 2.7 46 130 2.8
kips ft-kips ft, fr cl ftg kips ft-kips ft, fr cl ftg kips ft-kips ft, fr cl ftg
(cont'd) CHECK SOIL BEARING CAPACITY (ACI 318-02 SEC.15.2.2) Service Loads P e
CASE 1 54.5 2.5
CASE 2 55.2 2.7
CASE 3 45.7 2.7
11.2
11.2
0.0
k, (surcharge load)
(0.15-ws)T B L ΣP eL
4.5 70.2 1.9
> L/6
4.5 70.9 2.1
> L/6
4.0 49.7 2.5
> L/6
k, (footing increased) k ft
eB
1.6
< B/6
1.6
< B/6
1.8
< B/6
qL
30.0
33.7
33.6
k / ft
qmax
3.0
3.3
3.5
ksf
qallow
3.0
4.0
4.0
ksf
qs B L
Where
6e L ( ΣP ) 1 + L L , for e L ≤ L 6 q L = 2 ( ΣP ) L , for e L > L 3(0.5 ) 6 − e L
q MAX
k ft (from center of footing)
ft
6e B q L 1 + B B , for e B ≤ = 6 B 2q L B , for e B > 6 3(0.5 B − e B )
[Satisfactory]
DESIGN FLEXURE & CHECK FLEXURE SHEAR (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, 12.5, 15.5.2, 11.1.3.1, & 11.3)
6eu ( Σ Pu ) 1 + L L , for eu ≤ BL 6 qu, MAX = 2 ( Σ Pu ) L , for eu > 3 (0.5 ) 6 − B L e u
0.85 f c 1 − 1 − '
ρ =
'
ρ MAX =
M u ' 2 0.383b d f c
0.85 β 1 f c
ε u
f y
ε u + ε t
16
4 T ρ MIN = MIN 0.0 018 ρ , d 3
f y
FACTORED SOIL PRESSURE Factored Loads CASE 1
CASE 2
CASE 3
Pu
67.2
65.5
46.0
eu
2.5
2.7
2.8
γ qs B L γ [0.15T + ws(Df - T)]BL Σ Pu eu
ft
17.9
11.2
0.0
k, (factored surcharge load)
34.9
34.9
26.2
k, (factored footing & backfill loads)
120.1
111.6
72.2
1.4
qu, max
k
> L/6
1.6
2.381
> L/6
1.8
2.450
k > L/6
ft
1.770
FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 1 0.25 L1 0.50 L1 0.75 L1 ColL Section 0
ColR
ksf
0.25 L2 0.50 L2 0.75 L2
L
Xu (ft, dist. from left of footing)
0
1.50
3.00
4.50
5.56
6.44
6.25
6.50
6.75
7.00
Mu,col (ft-k)
0
0
0
0
0
-29.4
-16.8
-33.6
-50.4
-67.2
Vu,col (k)
0
0.0
0.0
0.0
0.0
67.2
67.2
67.2
67.2
67.2
Pu,surch (klf)
2.56
2.56
2.56
2.56
2.56
2.56
2.56
2.56
2.56
2.56
Mu,surch (ft-k)
0
-2.9
-11.5
-25.9
-39.6
-53.0
-50.0
-54.1
-58.3
-62.7
Vu,surch (k)
0
3.8
7.7
11.5
14.2
16.5
16.0
16.6
17.3
17.9
Pu,ftg & fill (klf)
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
Mu,ftg & fill (ft-k)
0
-5.6
-22.5
-50.5
-77.2
-103.4
-97.5
-105.5
-113.7
-122.3
Vu,ftg & fill (k)
0
7.5
15.0
22.5
27.8
32.1
31.2
32.4
33.7
34.9
qu,soil (ksf)
0.00
0.51
1.02
1.53
1.89
2.19
2.13
2.21
2.30
2.38
Mu,soil (ft-k)
0
189.5
288.9
316.3
302.3
275.2
282.0
272.8
262.9
252.2
Vu,soil (k)
0
-48.2
-84.1
-107.8
-117.2
-120.3
-120.0
-120.3
-120.4
-120.1
Σ Mu (ft-k)
0
181.1
254.9
239.8
185.5
89.3
117.7
79.7
40.5
0
Σ Vu (kips)
0
-36.9
-61.5
-73.8
-75.2
-4.5
-5.6
-4.0
-2.2
0
(cont'd) FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2 0.25 L1 0.50 L1 0.75 L1 ColL Section 0
ColR
0.25 L2 0.50 L2 0.75 L2
L
Xu (ft, dist. from left of footing)
0
1.50
3.00
4.50
5.56
6.44
6.25
6.50
6.75
7.00
Mu,col (ft-k)
0
0
0
0
0
-13.7
-1.4
-17.8
-34.1
-50.5
Vu,col (k)
0
0.0
0.0
0.0
0.0
65.5
65.5
65.5
65.5
65.5
Pu,surch (klf)
1.60
1.60
1.60
1.60
1.60
1.60
1.60
1.60
1.60
1.60
Mu,surch (ft-k)
0
-1.8
-7.2
-16.2
-24.8
-33.2
-31.3
-33.8
-36.5
-39.2
Vu,surch (k)
0
2.4
4.8
7.2
8.9
10.3
10.0
10.4
10.8
11.2
Pu,ftg & fill (klf)
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
4.99
Mu,ftg & fill (ft-k)
0
-5.6
-22.5
-50.5
-77.2
-103.4
-97.5
-105.5
-113.7
-122.3
Vu,ftg & fill (k)
0
7.5
15.0
22.5
27.8
32.1
31.2
32.4
33.7
34.9
qu,soil (ksf)
0.00
0.52
1.05
1.57
1.95
2.25
2.19
2.27
2.36
2.45
Mu,soil (ft-k)
0
175.5
263.2
282.2
264.2
235.4
242.4
232.9
222.8
212.0
Vu,soil (k)
0
-47.0
-81.4
-103.3
-111.1
-112.8
-112.8
-112.8
-112.4
-111.6
Σ Mu (ft-k)
0
168.1
233.6
215.4
162.2
85.1
112.3
75.9
38.5
0
Σ Vu (kips)
0
-37.1
-61.7
-73.6
-74.4
-4.9
-6.1
-4.4
-2.4
0
FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3 0.25 L1 0.50 L1 0.75 L1 ColL Section 0
ColR
0.25 L2 0.50 L2 0.75 L2
L
Xu (ft, dist. from left of footing)
0
1.50
3.00
4.50
5.56
6.44
6.25
6.50
6.75
7.00
Mu,col (ft-k)
0
0
0
0
0
-5.1
3.5
-8.0
-19.5
-31.0
Vu,col (k)
0
0.0
0.0
0.0
0.0
46.0
46.0
46.0
46.0
46.0
Pu,surch (klf)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Mu,surch (ft-k)
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Vu,surch (k)
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Pu,ftg & fill (klf)
3.74
3.74
3.74
3.74
3.74
3.74
3.74
3.74
3.74
3.74
Mu,ftg & fill (ft-k)
0
-4.2
-16.8
-37.9
-57.9
-77.6
-73.1
-79.1
-85.3
-91.7
Vu,ftg & fill (k)
0
5.6
11.2
16.8
20.8
24.1
23.4
24.3
25.3
26.2
qu,soil (ksf)
0.00
0.00
0.76
1.14
1.41
1.63
1.58
1.64
1.71
1.77
Mu,soil (ft-k)
0
0.0
167.5
175.2
160.3
139.1
144.2
137.4
130.2
122.7
Vu,soil (k)
0
0.0
-55.2
-69.2
-73.6
-73.7
-74.0
-73.6
-73.0
-72.2
Σ Mu (ft-k)
0
-4.2
150.6
137.3
102.3
56.4
74.6
50.3
25.4
0
Σ Vu (kips)
0
5.6
-44.0
-52.3
-52.7
-3.6
-4.6
-3.3
-1.8
0
DESIGN FLEXURE Location Top Longitudinal Bottom Longitudinal Bottom Transverse
Mu,max -4.2 ft-k 254.9 ft-k 1 ft-k / ft
d (in) 9.69 8.69 8.38
ρmin ρreqD ρmax smax 0.0001 0.0001 0.0129 no limit 0.0025 0.0041 0.0129 18 0.0004 0.0003 0.0129 18
use 1#5 23 # 5 @ 8 in o.c. 6 # 5 @ 15 in o.c.
ρprovD 0.0002 0.0043 0.0026 [Satisfactory]
CHECK FLEXURE SHEAR Direction
φVc = 2 φ b d (fc')0.5
Vu,max
Longitudinal Transverse
75.2 4.3
k k / ft
125 8
check Vu < φ Vc [Satisfactory] [Satisfactory]
k k / ft
CHECK PUNCHING SHEAR (ACI 318-02 SEC.15.5.2, 11.12.1.2, 11.12.6, & 13.5.3.2) v u ( psi)
=
P u − R A P
+
0.5γ v M u b1
AP
J
=
2 ( b1 + b 2) d
1+
A f
Pu b1b2
φ vc( psi) = φ ( 2 + y )
1
γ v = 1 −
2 d b3 1 1 + d + 3 b 2 J = 6 b1 b1
R
=
2 3
y
b1 b2
= BL
=
MIN 2,
b0 =
AP d
4
β c
, 40
f 'c d
b0
, b1 = ( 0.5c1 + 0.5b1+ d ) , b 2 = ( 0.5c 2 + 0.5b 2 + d )
A f
Case 1
Pu 67.2
Mu 168.0
b1 18.9
b2 18.9
b0 0.5
γ v 0.4
βc 1.0
y 2.0
Af 112.0
Ap 4.4
R 1.5
J 1.9
vu (psi) 105.3
2 3
65.5 46.0
178.8 130.0
18.9 18.9
18.9 18.9
0.5 0.5
0.4 0.4
1.0 1.0
2.0 2.0
112.0 112.0
4.4 4.4
1.4 1.0
1.9 1.9
102.7 72.2
φ
=
0.75
where
( ACI 318- 02, Sec tion 9. 3.2.3 )
φ vc 150.0 150.0 150.0 [Satisfactory]
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Footing Design of Shear Wall Based on ACI 318-02 INPUT DATA WALL LENGTH
Lw =
30.5
ft
h =
42
ft
WALL HIGHT WALL THICKNESS
t =
12
in
FOOTING LENGTH
L =
38.5
ft
L1 =
4
ft
FOOTING WIDTH
B =
10
ft
FOOTING THICHNESS
T=
24
in
FOOTING EMBEDMENT DEPTH
D =
3
ft
ALLOWABLE SOIL PRESSURE
qa =
2.5
ksf
DEAD LOAD AT TOP WALL
Pr,DL =
54.115
kips
LIVE LOAD AT TOP WALL
Pr,LL =
54.115
kips
TOP LOAD LOCATION WALL SELF WEIGHT
a =
2
Pw =
26.04
LATERAL LOAD TYPE (0=wind,1=seismic)
1
ft kips seismic
SEISMIC LOAD (E/1.4 , ASD)
F =
43.21
CONCRETE STRENGTH
fc' =
3
ksi
kips
REBAR YIELD STRESS
fy =
60
ksi
THE FOOTING DESIGN IS ADEQUATE.
TOP BARS, LONGITUDINAL
3
#
5
BOTTOM BARS, LONGITUDINAL
11
#
10
6
@
12
BOTTOM BARS, TRANSVERSE
#
in o.c.
ANALYSIS CHECK OVERTURNING FACTOR F = MR / MO =
1.53
Pf =
Where
>
1.0 / 0.9
for seismic
[Satisfactory]
111.65 kips (footing self weight)
MO = F (h + D) =
1944
ft-kips (overturning moment)
MR = (Pr,DL) (L1 + a) + Pf (0.5 L) + Pw (L1 + 0.5Lw) =
2975
ft-kips (resisting moment without live load)
CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps =
77
kips (soil weight in footing size)
P = (Pr,DL + Pr,LL) + Pw + (Pf - Ps) =
168.92
kips (total vertical net load)
MR = (Pr,DL + Pr, LL) (L1 + a) + Pf (0.5 L) + Pw (L1 + 0.5Lw) = e = 0.5 L - (MR - MO) / P =
q MAX
11.23
3300
ft-kips (resisting moment with live load)
ft (ec centricity from middle of footing)
6e P 1 + L , for e ≤ L = 6 BL 2P L , for e > 6 3 B(0.5 L − e)
=
1.40
ksf
<
4 / 3 qa [Satisfactory]
Where
e=
11.23
ft, > (L / 6)
CHECK FOOTING CAPACITY (STRENGTH DESIGN) Mu,R =
1.2 [Pr,DL (L1 + a) + Pf (0.5 L) + Pw (L1 + 0.5Lw)] + 0.5 Pr, LL(L1 + a) =
Mu,o =
1.4 F(h + D) =
Pu =
1.2 (Pr,DL + Pf + Pw ) + 0.5 Pr, LL =
eu = 0.5L - (Mu,R - Mu,O) / Pu =
q u ,MAX
2722
15.32
3733
ft-kips
ft-kips 257
kips
ft
6e u P u 1 + L L , for eu ≤ = 6 BL L 2P u , for e u > 6 3 B(0.5L − e u)
=
4.37
ksf
2.5
(cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION Section
0
1/10 L
2/10 L
3/10 L
4/10 L
5/10 L
6/10 L
7/10 L
8/10 L
9/10 L
L
Xu (ft)
0
3.85
7.70
11.55
15.40
19.25
23.10
26.95
30.80
34.65
38.50
Pu,w (klf)
0.0
0.0
23.3
16.9
10.5
4.0
-2.4
-8.8
-15.2
0.0
0.0
Mu,w (ft-k)
0
0
-188
-720
-1503
-2440
-3438
-4400
-5232
-5839
-6314
Vu,w (kips)
0
0
-98
-175
-228
-255
-259
-237
-191
-123
-123
Pu,f (ksf)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Mu,f (ft-k)
0
-26
-103
-232
-413
-645
-928
-1264
-1651
-2089
-2579
Vu,f (kips)
0
-13
-27
-40
-54
-67
-80
-94
-107
-121
-134
-4.4
-2.9
-1.5
-0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Mu,q (ft-k)
0
288
1012
1961
2951
3941
4931
5922
6912
7902
8893
Vu,q (kips)
0
141
226
257
257
257
257
257
257
257
257
Σ Mu (ft-k)
0
263
722
1008
1035
856
565
258
29
-26
0
Σ Vu (kips)
0
127
102
42
-24
-65
-82
-74
-41
13
0
qu (ksf)
1500 1000 500 M
0 -500
200 100 V
0 -100
Mu,max
Location Top Longitudinal
d (in)
ρreqD
ρprovD
Vu,max
φVc = 2 φ b d (fc')
0.5
-26
ft-k
20.69
0.0001
0.0004
127
kips
231
Bottom Longitudinal
1035
ft-k
20.37
0.0049
0.0057
127
kips
228
kips
Bottom Transverse
7
ft-k / ft
19.36
0.0018
0.0019
3
kips / ft
22
kips / ft
1−
'
0.85 f c 1 − Where
ρ =
ρ MAX =
M u ' 2 0.383bd f c
ρ min =
f y 0.85 β 1 f
f y
'
c
ε u ε u + ε t
=
0.0155
0.0018
[Satisfactory]
kips
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Combined Footing Design Based on ACI 318-02 INPUT DATA c1 c2
COLUMN WIDTH
COL#1
COL#2
=
18
18
in
18 13
18 26
in k k
COLUMN DEPTH AXIAL DEAD LOAD
PDL
= =
AXIAL LIVE LOAD
PLL
=
6.25
12.5
1 -300
Seismic SD 300 k
LATERAL LOAD (0=WIND, 1=SEISMIC) SEISMIC AXIAL LOAD, SD
PLAT
= =
SEISMIC SHEAR LOAD, SD
VLAT
=
84.14
86.38
k
SEISMIC MOMENT, SD
MLAT
=
4.578
4.578
k-ft
CONCRETE STRENGTH
fc'
=
3
REBAR YIELD STRESS
fy
=
60
ksi
Qa
=
2
ksf
DISTANCE TO LEFT EDGE
L1
=
36
ft
DISTANCE BETWEEN COLUMNS
S
=
30
ft
DISTANCE TO RIGHT EDGE
L2
=
36
ft
7.5
ft ft
ALLOWABLE SOIL PRESSURE
FOOTING WIDTH
ksi
B
=
Df
=
5
T
=
48
in
SURCHARGE
qs
=
0.1
ksf
SOIL WEIGHT
ws
=
0.11
kcf
LONGITUDINAL REINFORCING BAR SIZE
#
TRANSVERSE REINFORCING BAR SIZE
#
FTG EMBEDMENT DEPTH FOOTING THICKNESS
BAND WIDTH
be =
10
LONG. REINF AT TOP
10 # 10 @ 9 in o.c., cont.
5
LONG. REINF AT BOTTOM
13 # 10 @ 7 i n o.c., cont.
TRANS. REINF. AT BAND WIDTH
7 # 5 @ 14 in o.c., bottom
7.5
ft
DESIGN SUMMARY FOOTING LENGTH
L
=
FOOTING WIDTH FOOTING THICKNESS
B T
= =
102.00 ft 7.50 48
ft in
P
=
THE FOOTING DESIGN IS ADEQUATE.
ANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318 SEC.9.2.1) SERVICE LOADS
COL # 1
CASE 1 : DL + LL
19
COL # 2 k
39
TOTAL k
58 (e
CASE 2 : DL + LL + E / 1.4
5.00
k ft, fr CL ftg )
P
=
-195
k
253
k
58
k
M
=
3.3
ft-k
3.3
ft-k
6.5
ft-k
V
=
60
k
62
k
122
P
=
-203
k
238
k
35
k
M
=
3.3
ft-k
3.3
ft-k
6.5
ft-k
V
=
60
k
62
k
Pu
=
26
k
51
k
(e CASE 3 : 0.9 DL + E / 1.4
=
(e
=
=
116.43 ft, fr CL ftg ) k
188.34 ft, fr CL ftg ) 122
k
77 5.00
k ft, fr CL ftg )
FACTORED LOADS CASE 1 : 1.2 DL + 1.6 LL
( eu CASE 2 : 1.2 DL + 1.0 LL + 1.0 E
Pu
=
-278
k
344
k
Mu
=
4.6
ft-k
4.6
ft-k
66
Vu
=
84
k
86
k
171
k
Pu
=
-288
k
323
k
35
k
Mu
=
4.6
ft-k
4.6
ft-k
( eu CASE 3 : 0.9 DL + 1.0 E
( eu Vu
=
84
k
86
CHECK OVERTURNING FACTOR MR / MO = > 2.99081 F = 1 / (0.9x1.4) [Satisfactory] MLAT 1 + MLAT 2 + (VLAT 1 + VLAT 2) Df - PLAT 1(L - L1) - PLAT 2L2 = Where MO = Pftg =
(0.15 kcf) T B L =
459.00
k, footing weight
Psoil =
ws (Df - T) B L =
84.15
k , s oi l w ei ght
MR
PDL 1(L - L1) + PDL 2L2 + 0.5 (Pftg + Psoil) L =
F = 1 / (0.9x1.4) for seismic, IBC 1605.3.2
=
29495
k-ft
9862
k
k-ft
=
=
k
9.2 ft-k 142.44 ft, fr CL ftg )
9.2 ft-k 261.67 ft, fr CL ftg ) 171
k
(cont'd) CHECK SOIL BEARING CAPACITY (ACI 318 SEC.15.2.2) Service Loads
CASE 1
CASE 2
CASE 3
P
57.8
57.8
35.1
k
e qs B L
5.0 76.5
116.4 76.5
188.3 0.0
ft k, (surcharge load)
(0.15-w s)T B L
122.4
122.4
110.2
k, (footing increased)
Σ P
256.7
256.7
145.3
e qmax
1.1 0.4
qallow
2.0
Where
< L/6
26.2 0.9
> L/6
45.5 2.4
2.7
k > L/6
ft ksf
2.7
6e ( ΣP ) 1 + L , for e ≤ L 6 q MAX = BL 2 ( ΣP ) L , for e > 6 3 B(0.5L − e)
ksf
[Satisfactory]
DESIGN FLEXURE & CHECK FLEXURE SHEAR (ACI 318 SEC.15.4.2, 10.2, 10.5.4, 7.12.2, 12.2, 12.5, 15.5.2, 11.1.3.1, & 11.3)
6eu ( Σ Pu ) 1 + L L , for eu ≤ 6 BL qu , MAX = 2 ( Σ Pu ) L , for eu > B L 3 (0.5 ) 6 − e u
ρ MAX =
0.85 β 1 f
'
ρ =
c
ε u ε u + ε t
f y
0.85 f c 1 − 1 −
T 4 ρ MIN = MIN 0.0018 , ρ d 3
'
M u ' 2 0.383bd c
f y
FACTORED SOIL PRESSURE Factored Loads Pu
CASE 1 76.8
CASE 2 65.6
CASE 3 35.1
eu
5.0
142.4
261.7
γ qs B L
130.1
76.5
0.0
γ [0.15 T + ws (Df - T)] B L
760.4
651.8
488.8
967.3
793.8
523.9
Σ Pu eu
0.4
qu, max
< L/6
11.8
1.294
< L/6
17.5
1.756
k ft k, (factored surcharge load) k, (factored footing & backfill loads) k > L/6
ft
1.391
FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 1 0.5 L1 L1 left L1 right Section 0 0.2 S 0.4 S Xu (ft) 0 18.00 36.00 36.00 42.00 48.00
ksf
0.6 S 54.00
0.8 S 60.00
L2 left
L2 right
0.5 L2
66.00
66.00
84.00
L 102.00
Mu,col (ft-k)
0
0
0
0
-154
-307
-461
-614
-768
-768
-2,150
-3,533
Vu,col (k)
0
0.0
0.0
25.6
25.6
25.6
25.6
25.6
25.6
76.8
76.8
76.8
Pu,surch (klf)
1.28
1.28
1.28
1.28
1.28
1.28
1.28
1.28
1.28
1.28
1.28
Mu,surch (ft-k)
0
-207
-826
-826
-1469
-1859
-2295
-2777
-2777
-4498
-6633
1.28 -1125
Vu,surch (k)
0
23.0
45.9
45.9
53.6
61.2
68.9
76.5
84.2
84.2
107.1
130.1
Pu,ftg & fill (klf)
7.455
7.455
7.455
7.455
7.455
7.455
7.455
7.455
7.455
7.455
7.455
7.455
Mu,ftg & fill (ft-k)
0
-1208
-4831
-4831
-6575
-8588
-10869
-13419
-16237
-16237
-26301
-38781
Vu,ftg & fill (k)
0
134.2
268.4
268.4
313.1
357.8
402.6
447.3
492.0
492.0
626.2
760.4
qu,soil (ksf)
1.23
1.25
1.26
1.26
1.26
1.26
1.27
1.27
1.27
1.27
1.28
1.29
Mu,soil (ft-k)
0
1505
6035
6035
8222
10749
13617
16827
20380
20380
33103
48946 -967.3
Vu,soil (k)
0
-167.4
-336.2
-336.2
-392.8
-449.6
-506.5
-563.5
-620.7
-620.7
-793.3
Σ M u (ft-k)
0
90
378
378
369
385
428
499
598
598
154
0
Σ Vu (kips)
0
-10.3
-21.9
3.7
-0.6
-4.9
-9.4
-14.1
-18.9
32.3
16.8
0
700 600 500 400 300 200 100 0
M
40 20 0 -20 -40
V
(cont'd) FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2 0.5 L1 L1 left L1 right Section 0 0.2 S 0.4 S Xu (ft) 0 18.00 36.00 36.00 42.00 48.00
0.6 S 54.00
0.8 S 60.00
L2 left
L2 right
0.5 L2
66.00
66.00
84.00
L 102.00
Mu,col (ft-k)
0
0
0
5
1,673
3,342
5,011
6,680
8,349
8,345
7,174
5,994
Vu,col (k)
0
0.0
0.0
-278.2
-278.2
-278.2
-278.2
-278.2
-278.2
65.6
65.6
65.6
Pu,surch (klf)
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
Mu,surch (ft-k)
0
-122
-486
-486
-662
-864
-1094
-1350
-1634
-1634
-2646
-3902
31.5
36.0
40.5
45.0
49.5
49.5
63.0
76.5
6.39
6.39
6.39
6.39
6.39
6.39
6.39
0.75
Vu,surch (k)
0
13.5
27.0
27.0
Pu,ftg & fill (klf)
6.39
6.39
6.39
6.39
Mu,ftg & fill (ft-k)
0
-1035
-4141
-4141
-5636
-7361
-9317
-11502
-13917
-13917
-22544
-33241
Vu,ftg & fill (k)
0
115.0
230.0
230.0
268.4
306.7
345.1
383.4
421.7
421.7
536.8
651.8
qu,soil (ksf)
0.32
0.57
0.83
0.83
0.91
1.00
1.08
1.16
1.25
1.25
1.50
1.76
Mu,soil (ft-k)
0
491
2375
2375
3419
4709
6267
8117
10282
10282
18890
31148 -793.8
6.39
Vu,soil (k)
0
-60.3
-154.7
-154.7
-193.8
-236.7
-283.4
-333.9
-388.2
-388.2
-573.9
Σ M u (ft-k)
0
-666
-2252
-2247
-1205
-174
868
1946
3080
3076
874
0
Σ Vu (kips)
0
68.3
102.3
-175.9
-172.1
-172.2
-176.0
-183.7
-195.1
148.6
91.4
0
4000 3000 2000 1000 0
M
-1000 -2000 -3000
200 100 0 -100
V
-200 -300
FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3 0.5 L1 L1 left L1 right Section 0 0.2 S 0.4 S 18.00
36.00
36.00
42.00
0.6 S
0.8 S
L2 left
L2 right
0.5 L2
L
60.00
66.00
66.00
84.00
102.00
6924
8654
8,649
8,026
7,395
-288.3
-288.3
35.1
35.1
35.1
0.00
0.00
0.00
0.00
0.00
0
0
0
0
0
0
0.0
0.0
0.0
0.0
0.0
0.0
0
Mu,col (ft-k)
0
0
0
5
1734
3464
5194
Vu,col (k)
0
0.0
0.0
-288.3
-288.3
-288.3
-288.3
Pu,surch (klf)
0.00
0.00
0.00
0.00
0.00
0.00
Mu,surch (ft-k)
0
0
0
0
0
0
Vu,surch (k)
0
0.0
0.0
0.0
0.0
0.0
Pu,ftg & fill (klf)
4.79
4.79
4.79
4.79
4.79
4.79
4.79
4.79
4.79
4.79
4.79
Mu,ftg & fill (ft-k)
0
-776
-3106
-3106
-4227
-5521
-6987
-8627
-10438
-10438
-16908
-24931
Vu,ftg & fill (k)
0
86.3
172.5
172.5
201.3
230.0
258.8
287.6
316.3
316.3
402.6
488.8
qu,soil (ksf)
0.00
0.23
0.48
0.48
0.56
0.64
0.73
0.81
0.89
0.89
1.14
1.39
Mu,soil (ft-k)
0
77
706
706
1143
1732
2494
3452
4629
4629
9695
17536 -523.9
0.00
4.79
48.00
54.00
Xu (ft)
Vu,soil (k)
0
-14.0
-61.5
-61.5
-84.9
-111.9
-142.7
-177.3
-215.6
-215.6
-352.9
Σ M u (ft-k)
0
-700
-2400
-2395
-1350
-325
700
1749
2844
2840
813
0
Σ Vu (kips)
0
72.3
111.0
-177.3
-171.9
-170.2
-172.2
-178.0
-187.6
135.8
84.7
0
4000 3000 2000 1000 0
M
-1000 -2000 -3000
200 100 0 -100
V
-200 -300
DESIGN FLEXURE Location
Mu,max
Top Longitudinal
-2400
Bottom Longitudinal
3080
Bottom Transverse, be
1
ft-k
d (in)
ρmin
ρreqD
ρmax
smax(in)
use
ρprovD
45.37
0.0019
0.0030
0.0155
no limit
10 # 10 @ 9 in o.c., cont.
0.0031
ft-k
44.37
0.0019
0.0041
0.0155
18
13 # 10 @ 7 in o.c., cont.
0.0041
ft-k / ft
43.42
0.0006
6.9E-06
0.0155
18
7 # 5 @ 14 in o.c.
0.0006 [Satisfactory]
(cont'd) CHECK FLEXURE SHEAR φVc = 2 φ b d (fc')
Vu,max
Direction Longitudinal
195
Transverse
0
0.5
check Vu < φ Vc
k
328
k
[Satisfactory]
k / ft
43
k / ft
[Satisfactory]
CHECK PUNCHING SHEAR (ACI 318 SEC.15.5.2, 11.12.1.2, 11.12.6, & 13.5.3.2)
v u ( psi)
=
Pu − R
+
A P
0.5γ v M ub1 J
A P = 2 ( b1 + b 2 ) d
d b3 d 2 b 2 1 1 + + 3 6 b1 b1
γ v = 1 −
Pub1b2
A f = B b e
J =
R
=
2 1+ 3
y
b1 b2
=
b0
MIN 2,
=
A f
Column Col. 1
Col. 2
' f c
φ vc( psi ) = φ ( 2 + y )
1
4
β c
, 40
d
b0
A P , b1 = ( c1 + d ) , b2 = ( c2 + d ) d
Case
Pu
Mu
b1
b2
γ v
βc
y
Af
Ap
R
J
vu (psi)
φ vc
1
25.6
0.0
61.4
61.4
0.4
1.0
2.0
56.3
74.1
11.9
363.8
1.3
164.3
2
0.0
0.0
61.4
61.4
0.4
1.0
2.0
56.3
74.1
0.0
363.8
0.0
164.3
3
0.0
0.0
61.4
61.4
0.4
1.0
2.0
56.3
74.1
0.0
363.8
0.0
164.3
1
51.2
0.0
61.4
61.4
0.4
1.0
2.0
56.3
74.1
23.8
363.8
2.6
164.3
2
343.7
4.6
61.4
61.4
0.4
1.0
2.0
56.3
74.1
160.1
363.8
17.3
164.3
3
323.4
4.6
61.4
61.4
0.4
1.0
2.0
56.3
74.1
150.6
363.8
16.3
164.3
[Satisfactory]
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Seismic Design for Combined Footing, Based on ACI 318-02 DESIGN SUMMARY CONCRETE STRENGTH
f c' =
3
ksi
REBAR YIELD STRESS FOOTING WIDTH FOOTING THICKNESS DISTANCE BETWEEN COLUMN
f y = W = D = L =
60 90 48 30
ksi in in ft
COMBINED FOOTING LONGITUDINAL REINFORCING TOP 12 # 10 ( d = 43.74 in ) ( 1 Layer) BOTTOM 13 # 10 ( d = 43.74 in ) ( 1 Layer)
7.5
COMBINED FOOTING HOOPS (ACI 21.3.3) LOCATION AT END LENGTH 96 in
AT SPLICE 70 in 0.5
MAX{0.075fyαβγ db /[(fc') (c+Ktr)/db], 12} 7 Legs # 5 @ 4 in o.c.
( 2h ) 7 Legs # 5 @ 10 in o.c.
BAR SPACING
MIN(d/4, 8db, 24dt, 12)
MIN(d/4, 4)
THE SEISMIC DESIGN IS ADEQUATE. ANALYSIS CHECK GB SECTION REQUIREMENTS (ACI 21.3.1) Ln=L - c1 =
28.50
W /D= W =
90
>
ft
>
1.88
4d=
14.58
ft
[Satisfactory]
0.3 [Satisfactory]
> <
in
10 in c1+1.5D = 90
[Satisfactory] in
[Satisfactory]
CHECK SEISMIC FLEXURAL REQUIREMENTS (ACI 21.3.2.1)
ρtop =
0.004
ρbot = (ACI 21.3.2.2)
0.004
>
Mn,top where
>
ρmin =MIN[3(f c')0.5 /fy, 200/fy ]=
<
ρmax =
0.025
[Satisfactory]
>
ρmin =
0.003
[Satisfactory]
<
ρmax =
0.025
[Satisfactory]
(1/2)Mn,bot
0.003
[Satisfactory]
[Satisfactory]
2
3433
ft-kips
2
3181
ft-kips
Mn,bot = ρbot bd fy (1 - 0.588ρbot fy /fc') = Mn,top = ρtop bd fy (1 - 0.588ρtop fy /fc') =
CHECK GB SHEAR STRENGTH (ACI 21.3.4) Ve = (Mpr, top + Mpr,bot) / Ln =
286.5
kips
< <
where
0.5
3929
ft-kips
2
4235
ft-kips
Mpr,bot = ρbot bd fy (1.25 - 0.919ρbot fy /fc') = φ = 0.75 (ACI 9.3.2.3) 2.17
2
in
1293.7
φ[2(f c') bd + Avfyd/s ] =
2
Mpr,top = ρtop bd fy (1.25 - 0.919ρtop fy /fc') =
Av =
0.5
8φ(fc') bd =
kips 750.5
[Satisfactory] kips
[Satisfactory]
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Grade Beam Design Based on ACI 318-02 INPUT DATA & DESIGN SUMMARY CONCRETE STRENGTH
fc' =
3
ksi
REBAR YIELD STRESS
fy =
60
ksi
COLUMN DISTANCE
B T W D L
= = = = =
8 16 36 36 22
ft in in in ft
GRADE BEAM EXTENSION
Le =
5
ft
SQUIRE PAD SIZE GRADE BEAM SIZE
FRAME AXIAL LOADS, ASD
PD,1 =
25
kips
PD,2 =
25
kips
(Dead Load)
PL,1 =
15
kips
PL,2 =
15
kips
(Live Load)
PE,1 =
-30
kips
PE,2 =
30
kips
(Seismic Load)
SEISMIC SHEAR LOADS, ASD
VE,1 =
50
kips
VE,2 =
30
kips
(Seismic Load)
SEISMIC MOMENTS, ASD
ME,1 =
50
ft-kips
ME,2 =
50
ft-kips
(Seismic Load)
6
@ 12 o.c., Each Way, Bottom.
ALLOW SOIL PRESSURE
Q a =
2.5
8
#
PAD REINFORCING
ksf
GRADE BEAM LONGITUDINAL REINFORCING TOP 7 # 7 ( d = 31.94 in ) ( 1 Layer) BOTTOM 7 # 7 ( d = 31.94 in ) ( 1 Layer) GRADE BEAM HOOPS (ACI 21.3.3) LOCATION AT END LENGTH 72 in
-30
AT SPLICE 48 in 0.5
MAX{0.075fyαβγ db /[(fc') (c+K r)/db], 12}
( 2h ) BAR
4
SPACING
Legs # 5 4 Legs # 5 (Legs to alternate long bars supported, ACI 7.10.5.3) @ 7 in o.c. @ 4 in o.c.
MIN(d/4, 8db, 24dt, 12)
MIN(d/4, 4)
THE GRADE BEAM DESIGN IS ADEQUATE. ANALYSIS CHECK OVERTURNING AT CENTER BOTTOM OF PAD 2 MO =
ME,1 + ME,2 + (VE,1+VE,2)(D+T) - PE,1L
=
2
(PD,1 + γ conc B T) L + 0.5γ conc(L + 2Le) L D W =
MR =
1106.7 ft-kips 1306.8
>
M / 0.9 =
1230
ft-kips
[Satisfactory]
<
4/3 Qa
[Satisfactory]
CHECK SOIL BEARING CAPACITY 2 M O P D ,2 + P L ,2 + ( γ C ONC − γ S OI L) B T + WD ( 0.5 L + L e ) = Q MAX = 2 + 2 B L B
where
γ conc =
0.15 kcf
γ soil =
0.11 kcf
1.55
CHECK PAD FLEXURAL REINFORCING '
0.85 f c 1 − 1 − ρ =
M u ' 0.383 Bd 2 f c
f y where
d=
=
0.0020
< ρprovd =
12.25
Qu,max = 1.5 Qmax =
0.0030
in 2.33
ksf, factor 1.5 for SD
2
Mu = 0.125 (B-W) B Qu,max =
ρmax =
0.0155
(ACI 10.2.7.3 & 10.3.5)
ρmin =
0.0018
(ACI 7.12.2.1)
128
ft-kips
[Satisfactory]
ksf, (net pressure)
(cont'd) CHECK PAD ONE WAY SHEAR CAPACITY
<
Vu where
[Satisfactory]
φVn
Vu = 0.5 (B - W) B Qu,max - d B Qu,max = 0.5
φVn = φ 2 d B (fc') = φ = 0.75
96.6
27.6
kips
kips
CHECK GB SECTION REQUIREMENTS (ACI 21.3.1) Pu = 1.5(VE,1 - VE,2) = Ln=L - B =
14.00
W /D=
30
36
>
ft
>
1.00
W =
<
0.1Agfc' =
4d=
10.65
kips
0.3
388.8
kips
ft
[Satisfactory]
[Satisfactory]
[S at isfac tory]
> <
B+1.5D =
0.004
>
ρmin=MIN[3(fc')0.5 /fy, 200/fy ]=
<
ρmax =
0.025
[Satisfactory]
>
ρmin =
0.003
[Satisfactory]
<
ρmax =
0.025
[Satisfactory]
in
10
in
[Satisfactory] 150
in
[Satisfactory]
CHECK GB FLEXURAL REQUIREMENTS
ρtop =
(ACI 21.3.2.1)
ρbot = (ACI 21.3.2.2)
0.004
>
Mn,top
(1/2)Mn,bot
[Satisfactory]
[Satisfactory]
2
642
ft-kips
>
Mu,bot / φ [Satisfactory]
2
642
ft-kips
>
Mu,top / φ [Satisfactory]
Mn,bot = ρbot bd fy (1 - 0.588ρbot fy /fc') =
where
0.003
Mn,top = ρtop bd fy (1 - 0.588ρtop fy /fc') = φ = 0.9
M u ,top = 1.5 M GB,wt + ( P D ,1 + P L,1 + PE ,1 + Wt PAD ,1 − Q MIN B ) L − 0.5V E ,1D − M E ,1− Q MIN ( V E ,1+ V E ,2 ) / ( Q MAX + QMIN ) ( 0.5 D + T ) = 2
2 M u ,bot = 1.5 − M GB,wt − ( P D ,2 + PL ,2 + PE ,2 + Wt PAD,1 − Q MAX B ) L − 0.5V E ,2D − M E ,2 − Q MAX (V E ,1 + V E ,2 ) / ( QMAX + Q MIN ) ( 0.5D + T ) =
where
Q MAX =
M O 2
B L
QMIN =
P D,2 + P L ,2 + γ CONC B T + WD ( 0.5L + L e )
453
ft-kips
217
ft-kips
2
+
B
0.38
2
=
1.95
ksf, (full ASD pressure)
377.8
kips
[Satisfactory]
349.0
kips
ksf, (full ASD pressure)
Factor 1.5 is for SD CHECK GB SHEAR STRENGTH (ACI 21.3.4) Ve = (Mpr, top + Mpr,bot ) / Ln =
113.3
kips
< <
where
0.5
bd =
0.5
φ[2(fc') bd + Avfyd/s ] =
2
793
ft-kips
2
793
ft-kips
Mpr,top = ρtop bd fy (1.25 - 0.919ρtop fy /fc') = Mpr,bot = ρbot bd fy (1.25 - 0.919ρbot fy /fc') = φ = 0.75 (ACI 9.3.2.3) Av =
8φ(fc')
1.24
2
in
[Satisfactory]
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Retaining Wall Design Based on ACI 318-02
INPUT DATA & DESIGN SUMMARY CONCRETE STRENGTH
fc'
=
3
ksi
REBAR YIELD STRESS
fy
=
60
ksi
LATERAL SOIL PRESSURE Pa=ka γ b
=
30
pcf (equivalent fluid pressure)
BACKFILL SPECIFIC WEIGHT
γ b
=
100
pcf
SATURATED SPECIFIC WEIGHT
γ sat
=
118
pcf
WATER TABLE
h
=
6
PASSIVE PRESSURE
Pp
=
450
psf / ft
SURCHARGE WEIGHT
ws
=
200
psf
FRICTION COEFFICIENT
µ
=
0.3
ALLOW SOIL PRESSURE
Qa
=
3
ksf
THICKNESS OF TOP STEM
tt
=
8
in
THICKNESS OF KEY & STEM
tb
=
12
in
TOE WIDTH
LT
=
3
ft
HEEL WIDTH
LH
=
6
ft
HEIGHT OF TOP STEM
HT
=
4
ft
HEIGHT OF BOT. STEM
HB
=
4
ft
FOOTING THICKNESS
hf
=
12
in
KEY DEPTH
hk
=
12
in
SOIL OVER TOE
hp
=
12
in
TOP STEM REINF. (As,1)
ft
#
6
As,1 L OCATION (0=at soil face, 1=at mi ddle)
0
@
BOT. STEM REINF. (As,2)
20
in o.c., (Caution > 18"o.c. max. ACI 14.3.5)
8
in o.c.
at soil face
#
7
As,2 L OCATION (0=at soil face, 1=at mi ddle)
0
@
TOP REINF.OF FOOTING (A s,3)
#
6
@
20
in o.c., (Caution > 18"o.c. max. ACI 7.12.2.2)
BOT. REINF.OF FOOTING (As,4)
#
5
@
14
in
at soil face [THE WALL DESIGN IS ADEQUATE.]
ANALYSIS SERVICE LOADS Hb = 0.5 Pa h2 + h Pa H + 0.5 [Pa (γ sat - γ w) / γ b +γ w] H2
= Where h = 6 ft , Hs = ws Pa (HT + HB + hf) / γ b Hp = 0.5 Pp (hp + hf + hk)
2
Ws = ws (LH + tb - tt) Wb = Wb1 + Wb2 Where Wb1 = 3.73 kips , Wf = hf (LH + tb + LT) γ c Wk = hk tb γ c Ww,t = tt HT γ c Ww,b = tb HB γ c FACTORED LOADS γ Hb = 1.6 Hb γ Hs = 1.6 Hs γ Ws = 1.6 Ws γ Wb = 1.2 Wb γ Wf = 1.2 Wf γ Wk = 1.2 Wk γ Ww,t = 1.2 Ww,t γ Ww,b = 1.2 Ww,b
= = = = = = = =
1.44 H=
= = = = Wb2 =
= = = =
3
kips ft
0.54
kips
2.03
kips
1.27
kips
4.40
kips
0.67
kips
1.50
kips
0.15
kips
0.40
kips
0.60
kips
12
2 .30 k ip s 0 .86 k ip s 2 .03 k ip s
OVERTURNING MOMENT H
γ H
y
Hy
γ H y
1 .80 k ip s
Hb
1.44
2.30
2.69
3.87
6.19
0 .18 k ip s
Hs
0.54
0.86
4.50
0 .48 k ip s
Σ
1.98
3.16
5.28 kips
2.43
3.89
6.30
10.07
0 .72 k ip s
RESISTING MOMENT W
γ W
x
Wx
γ W x
Ws
1.27
2.03
6.83
8.66
13.85
Wb
4.40
5.28
6.90
30.38
36.46
Wf
1.50
1.80
5.00
7.50
9.00
Wk
0.15
0.18
3.50
0.53
0.63
Ww,t
0.40
0.48
3.33
1.33
1.60
Ww,b
0.60
0.72
3.50
Σ
8.32
10.49
2.10
2.52
50.50
64.06
OVERTURNING FACTOR OF SAFETY
SF =
ΣWx Σ Hy
=
8.02
>
[Satisfactory]
1.5
CHECK SOIL BEARING CAPACITY (ACI 318-02 SEC.15.2.2)
L = L T + t b + L H
=
10.00
e=
ft
6e ΣW 1 + L , for e ≤ L q MAX = BL 6 ΣW L , for e > 6 3 B(0.5L − e)
=
0.67
L
ksf
2
−
<
ΣWx − ΣHy ΣW
=
Qa
-0.31
ft
[Satisfactory]
CHECK FLEXURE CAPACITY, A S,1 & AS,2, FOR STEM (ACI 318-02 SEC.15.4.2, 10.2, 10.5.4, 7.12.2, 12.2, & 12.5) h= 6 ft , A = ws Pa / γ b =
H' =
B = h Pa =
2
60
plf
180
plf
ft
C = [Pa (γ sat - γ w) / γ b + γ w] H' 158 At base of top stem Mu = 1.28
ft-kips
Vu =
0.77
kips
Pu =
0.48
kips
plf
At base of bottom stem Mu = 7.27 ft-kips Vu = 2.46 kips Pu =
1.20
kips At top stem
φ M n = φ A S f y d −
A S f y − P u
'
1.7bf c
=
3.98
At base of bottom stem
ft-k ips ,
>
24.25
ft-kips >
M u
[Satisfactory] where
ρ MAX =
0.85 β 1 f
f y
'
c
d
=
4.56
in ,
8.56
in
b
=
12
in ,
12
in
φ
=
0.7
0.7
As
=
0.264
, in2 ,
ρ
=
0.005
=
0.015
ε u ε u + ε t
ρ MIN = 0.0018
t d
0.9
in2
0.009 0.015
>
>
ρ
[Satisfactory] =
M u
[Satisfactory]
ρ
[Satisfactory]
0.003
0.002
<
<
ρ
[Satisfactory]
ρ
[Satisfactory]
CHECK SHEAR CAPACITY FOR STEM (ACI 318-02 SEC.15.5.2, 11.1.3.1, & 11.3) At top stem
=
'
V allowable = 2φ bd f c
4.50 >
At base of bottom stem
kips ,
8.44
kips >
V u
[Satisfactory]
V u
[Satisfactory]
where φ = 0.75 (ACI 318-02, Section 9.3.2.3 ) CHECK HEEL FLEXURE CAPACITY, A S,3, FOR FOOTING (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5)
ρ MAX =
0.85 β 1 f
f y
'
c
ε u ε u + ε t
=
0.015
ρ MIN =
0.0018 h f 2
d
=
0.001
L H γ w s + γ wb + 2 M u ,3 = L H 2 γ ws + γ w b + '
0.85 f c 1 − 1 −
ρ =
L H γ w f L
L ( q u ,3 + 2q u, heel ) b L H , for e u ≤ − 6 6 2
= 7.21 ft-kips
2 L q u ,3b S L H , for e u > γ w f − L 6 6
M u ,3 ' 0.383b d 2 f c
=
0.002
8.63 in
qu, toe
-0.15 ft
qu, heel
= = =
f y where
= = =
d eu S
( A S, 3 ) required
=
n/a
qu, 3 2
in / ft
0.19
A S, 3
<
0.96
ksf
1.14
ksf
0.71
ksf
[Satisfactory]
CHECK TOE FLEXURE CAPACITY, A S,4, FOR FOOTING (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5)
ρ MAX =
M u ,4
=
(q
u ,4
0.85 β 1 f
'
c
f y
+ 2q u, toe ) b L T 2 6
ε u ε u + ε t
=
0.015
0.0018 h f 4 ρ MIN = MIN ρ , d 2 3
=
2
−
LT γ w f 2 L
=
3.21
ft-kips where
M u ,4 0.85 f c 1 − 1 − ' 0.383b d 2 f c ρ =
d qu, 4
= =
8.69
in
0.77
ksf
'
=
0.001
f y
( A S, 4 ) required
=
0.11
2
in / ft
<
A S, 4
[Satisfactory]
CHECK KEY CAPACITY FOR FOOTING 1.5 (Hb + Hs ) =
2.96 kips
Hp + µ ΣW = < [Satisfactory]
4.52
kips
Techincal References: 1. Alan Williams: "Structuiral Engineering Reference Manual", Professional Publications, Inc, 2001. 2. Alan Williams: "Structuiral Engineering License Review Problems and Solutions", Oxford University Press, 2003.
0.001
Daniel
PROJECT : CLIENT : JOB NO. :
Tian Li
PAGE : DESIGN BY : REVIEW BY :
DATE :
Retaining Wall Design Based on ACI 318-02
INPUT DATA & DESIGN SUMMARY CONCRETE STRENGTH
f c'
=
3
ksi
REBAR YIELD STRESS
fy
=
60
ksi
LATERAL SOIL PRESSURE
Pa
=
30
pcf (equivalent fluid pressure)
PASSIVE PRESSURE
Pp
=
450
psf / ft
SURCHARGE WEIGHT
psf
ws
=
200
FRICTION COEFFICIENT
µ
=
0.3
ALLOW SOIL PRESSURE
Qa
=
3
ksf
THICKNESS OF TOP STEM
tt
=
8
in
THICKNESS OF KEY & STEM
tb
=
12
in
TOE WIDTH
LT
=
3
ft
HEEL WIDTH
LH
=
6
ft
HEIGHT OF TOP STEM
HT
=
6.5
ft
HEIGHT OF BOT. STEM
HB
=
6.3
ft
FOOTING THICKNESS
hf
=
12
in
KEY DEPTH
hk
=
12
in
SOIL OVER TOE
hp
=
12
in
TOP STEM REINF. (A s,1)
1
#
6
BOT. STEM REINF. (As,2)
2
@
16
in o.c., at middle
#
7
@
8
in o.c., at each face
TOP REINF.OF FOOTING (A s,3)
#
6
@
10
in
BOT. REINF.OF FOOTING (A s,4)
#
5
@
14
in
= = = = = = = = =
2.86
kips
0.83
kips
2.03
kips
1.27
kips
7.90
kips
1.50
kips
0.15
kips
0.65
kips
0.95
kips
[THE WALL DESIGN IS INADEQUATE.]
ANALYSIS SERVICE LOADS 2 Hb = 0.5 P a (HT + HB + hf) Hs = ws Pa (HT + HB + hf) / γ b Hp = 0.5 P p (hp + hf + hk)
2
Ws = ws (LH + tb - tt) Wb = [HT (LH + tb - tt) + HB LH] γ b Wf = hf (LH + tb + LT) γ c Wk = hk tb γ c Ww,t = tt HT γ c Ww,b = tb HB γ c FACTORED LOADS γ Hb = 1.6 H b γ Hs = 1.6 H s γ Ws = 1.6 W s γ Wb = 1.2 W b γ Wf = 1.2 W f γ Wk = 1.2 W k γ Ww,t = 1.2 W w,t γ Ww,b = 1.2 W w,b
= = = = = = = =
6
4.57 kips 1.32 kips 2.03 kips
OVERTURNING MOMENT
9.48 kips
H
γ H
y
Hy
γ H y
13.14
21.02
1.80 kips
Hb
2.86
4.57
4.60
0.18 kips
Hs
0.83
1.32
6.90
0.78 kips
Σ
3.68
5.90
5.71
9.14
18.85
30.17
1.13 kips
RESISTING MOMENT W
γ W
x
Wx
γ W x
Ws
1.27
2.03
6.83
8.66
13.85
Wb
7.90
9.48
6.91
54.59
65.51
Wf
1.50
1.80
5.00
7.50
9.00
Wk
0.15
0.18
3.50
0.53
0.63
Ww,t
0.65
0.78
3.33
2.17
2.60
Ww,b
0.95
1.13
3.50
3.31
3.97
Σ
12.41
15.40
76.75
95.56
OVERTURNING FACTOR OF SAFETY
SF =
ΣWx Σ Hy
=
4.07
>
1.5
[Satisfactory]
CHECK SOIL BEARING CAPACITY (ACI 318-02 SEC.15.2.2)
L = L T + t b + L H
=
10.00
e=
ft
6e Σ W 1 + L , for e ≤ L q MAX = 6 BL ΣW L , for e > 6 3 B(0.5 L − e)
=
1.49
L
ksf
2
−
<
Σ Wx − ΣHy ΣW
=
Qa
0.33
ft
[Satisfactory]
CHECK FLEXURE CAPACITY, A S,1 & AS,2, FOR STEM (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5)
P a y 3 Pa y 2 ws + M u = γ 2γ b 6
=
4.23
ft-kips ,
P u = γ W w
=
0.78
kips ,
=
4.26
ft-kips ,
At top stem
AS f y − P u
φ M n = φ A S f y d −
'
1.7bf c
>
At base of bottom stem 24.64
1.91
24.29
ρ MAX =
0.85 β 1 f
'
ε u
c
f y
ε u + ε t
ρ MIN = 0.0018
d
=
4.00
in ,
in in
=
12
in ,
12
φ
=
0.7
0.7
As
=
0.33
, 2 in ,
ρ
=
0.007
0.009
=
0.015
0.015
> =
M u
[Unsatisfactory] 8.56
0.9
2
in
>
ρ
[Satisfactory]
d
ft-kips <
b
t
kips
M u
[Satisfactory] where
ft-kips
ρ
[Satisfactory]
0.004
0.002
<
<
ρ
[Satisfactory]
ρ
[Satisfactory]
CHECK SHEAR CAPACITY FOR STEM (ACI 318-02 SEC.15.5.2, 11.1.3.1, & 11.3)
P a y 2 ws P a y + V = γ γ b 2 '
V allowable = 2φ bd f c
At top stem
At base of bottom stem
=
1.64
kips ,
5.16
kips
=
3.94
kips ,
8.44
kips
>
>
V
[Satisfactory]
V
[Satisfactory]
where φ = 0.75 (ACI 318-02, Section 9.3.2.3 ) CHECK HEEL FLEXURE CAPACITY, A S,3, FOR FOOTING (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5)
ρ MAX =
0.85 β 1 f
f y
'
c
ε u ε u + ε t
=
0.015
ρ MIN =
0.0018 h f 2
d
=
0.001
L H γ w s + γ wb + 2 M u ,3 = L H 2 γ w s + γ w b + '
0.85 f c 1 − 1 − ρ =
LH γ w f L
L ( q u ,3 + 2q u, heel ) b L H , for eu ≤ − 6 6 2
=
2 L q u ,3b S LH , for eu > γ w f − L 6 6
M u ,3 ' 0.383b d 2 f c
=
0.005
8.63 in
qu, toe
0.75 ft
qu, heel
= = =
18.42 ft-kips
f y where
= = =
d eu S
( A S, 3 ) r e
u ir ed
=
n/a
qu, 3 2
in / ft
0.50
A S, 3
<
2.24
ksf
0.84
ksf
1.53
ksf
[Satisfactory]
CHECK TOE FLEXURE CAPACITY, A S,4, FOR FOOTING (ACI 318-02 SEC.15.4.2, 10.2, 10.5.4, 7.12.2, 12.2, & 12.5)
ρ MAX =
M u ,4 =
(q
u ,4
0.85 β 1 f
'
f y
+ 2q u ,toe ) b L T 2 6
ε u
c
ε u + ε t
=
0.015
4
0.0018 h f
ρ MIN = MIN ρ ,
3
d
2
=
2
−
L T γ w f 2 L
=
8.46
ft-kips where
' M u ,4 0.85 f c 1 − 1 − ' 0.383b d 2 f c ρ =
d qu, 4
=
= =
8.69 in 1.71 ksf
0.002
f y
( A S, 4 ) required
=
0.22
2
in / ft
<
A S, 4
[Satisfactory]
CHECK KEY CAPACITY FOR FOOTING 1.5 (Hb + Hs ) =
5.53 kips
Hp + µ ΣW = < [Satisfactory]
5.75
kips
Techincal References: 1. Alan Williams: "Structuiral Engineering Reference Manual", Professional Publications, Inc, 2001. 2. Alan Williams: "Structuiral Engineering License Review Problems and Solutions", Oxford University Press, 2003.
0.001
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Retaining Wall Design Based on CBC 2001 Chapter A
INPUT DATA & DESIGN SUMMARY CONCRETE STRENGTH
fc'
=
3
ksi
REBAR YIELD STRESS
fy
=
60
ksi
LATERAL SOIL PRESSURE
Pa
=
45
pcf (equivalent fluid pressure)
PASSIVE PRESSURE
Pp
=
300
psf / ft
PE
=
34.3
psf / ft, ASD
S EIS MIC GROUND SHAKI NG
(PE only for H > 12 ft, CBC 1611A.6) SURCHARGE WEIGHT
ws
=
100
FRICTION COEFFICIENT
µ
=
0.35
ALLOW SOIL PRESSURE
Qa
=
3
ksf, (w/o 4/3 increasing)
tt
=
20
in
THICKNESS OF KEY & STEM
tb
=
20
in
TOE WIDTH
LT
=
4.67
ft
HEEL WIDTH
LH
=
7.5
ft
HEIGHT OF TOP STEM
HT
=
8
ft
HEIGHT OF BOT. STEM
HB
=
8
ft
FOOTING THICKNESS
hf
=
24
in
KEY DEPTH
hk
=
38
in
SOIL OVER TOE
hp
=
6
in
#
10
@
10
@
THICKNESS OF TOP STEM
TOP STEM REINF. (As,1)
As,1 LOCATION ( 1 = at middle, 2 = at soil face) BOT. STEM REINF. (As,2)
#
psf
2
As,2 LOCATION ( 1 = at middle, 2 = at soil face)
2
5
in o.c.
at soil face 5
in o.c. [THE WALL DESIGN IS ADEQUATE.]
at soil face
TOP REINF.OF FOOTING (As,3)
#
8
@
10
in
BOT. REINF.OF FOOTING (As,4)
#
6
@
18
in
= =
7.29
kips
0.81
kips
= = = = = = = =
4.82
kips
4.39
kips
0.75
kips
ANALYSIS SERVICE LOADS 2
Hb = 0.5 Pa (HT + HB + hf)
Hs = ws Pa (HT + HB + hf) / γ b γ b = 100 pcf, soil weight where 2 Hp = 0.5 Pp (hp + hf + hk) 2
HE = 0.5 PE (HT + HB) Ws = ws (LH + tb - tt)
Wb = [HT (LH + tb - tt) + HB LH] γ b Wf = hf (LH + tb + LT) γ c Wk = hk tb γ c Ww,t = tt HT γ c Ww,b = tb HB γ c
12. 00 kips 4.15
kips
0.79
kips
2.00
kips
2.00
kips
FACTORED LOADS γ Hb = 1.7 Hb γ Hs = 1.7 Hs γ HE = 1.4 HE γ Ws = 1.7 Ws γ Wb = 1.4 Wb γ Wf = 1.4 Wf γ Wk = 1.4 Wk γ Ww,t = 1.4 Ww,t γ Ww,b = 1.4 Ww,b
= = = = = = = = =
12.39 kips 1. 38 kips 6. 15 kips
OVERTURNING MOMENT H
γ H
y
Hy
γ H y
16.80 kips
Hb
7.29
12.39
6.00
43.74
74.36
5.81 kips
4.39
6.15
12.67
55.61
77.86
1. 11 kips
HE Hs
0.81
1.38
9.00
2. 80 kips
Σ
12.49
19.92
1.28 kips
2. 80 kips
7.29
12.39
106.6
164.61
(cont'd) RESISTING MOMENT W
γ W
x
Wx
γ W x
Ws
0.75
1.28
10.09
7.57
12.86
Wb
12.00
16.80
10.09
121.04
169.46
Wf
4.15
5.81
6.92
28.72
40.21
Wk
0.79
1.11
5.50
4.36
6.10
Ww,t
2.00
2.80
5.50
11.01
15.41
Ww,b
2.00
2.80
5.50
11.01
15.41
Σ
21.69
30.59
183.69
259.44
OVERTURNING FACTOR OF SAFETY
SF =
ΣWx Σ Hy
=
>
1.72
1.5
[Satisfactory]
CHECK SOIL BEARING CAPACITY (CBC 2001 SEC.1915A.2.2)
L
= L T + t b +
e=
L 2
−
=
L H
13.84
ΣWx − ΣHy
ft
=
ΣW
3.37
<
ft
L/4 =
3.46
ft, (CBC 1611A.6)
[Satisfactory]
6e ΣW 1 + L , for e ≤ L q MAX = 6 BL L ΣW , for e > 6 3 B(0.5 L − e)
=
2.04
4 / 3 Q a =
<
ksf
4.00
ksf
[Satisfactory]
CHECK FLEXURE CAPACITY, A S,1 & AS,2, FOR STEM (CBC 2001 1915A.4.2, 1910A.2, 1910A.5.4, 1907A.12.2, 1912A.2, & 1912A.5)
P a y 3 P a y 2 ws γ P E y 2 ( 3 H − y ) + = M u = γ + 6 2 6 γ b Pu
= γ W w
=
φ M n = φ A S f y d −
A S f y − P u '
1.7bf c
=
At top stem
At base of bottom stem
29.46
ft-kips ,
2.80
kips ,
143.19 ft-kips ,
127.58
5.60
143.68
ft-kips
kips
ft-kips
M u
>
>
[Satisfactory] where
0.85 β 1 f c 87 + f y 87 f y
[Satisfactory]
d
=
16.37
in ,
16.37
in
b
=
12
in ,
12
in
φ
=
0.7
, in ,
0.7
As
=
3.048
ρ
=
0.016
=
0.016
2
M u
3.048
in
2
0.016
'
ρ MAX
=
0.75
ρ MIN = 0.0018
0.016
>
>
ρ
[Satisfactory]
t =
d
0.002
ρ
[Satisfactory] 0.002
<
<
ρ
[Satisfactory]
ρ
[Satisfactory]
CHECK SHEAR CAPACITY FOR STEM (CBC SEC.1915A.5.2, 1911A.1.3.1, & 1911A.3)
P y w P y γ P E y ( 2H − y ) = V = γ a + s a + 2 2 γ b 2
V allowable
=
2φ bd
'
f c
=
At top stem
At base of bottom stem
7.67
kips ,
17.16
kips
18.29
kips ,
18.29
kips
>
V
[Satisfactory] where φ = 0.85 (CBC 2001, Section 1909A.3.2.3 )
>
V
[Satisfactory]
(cont'd) CHECK HEEL FLEXURE CAPACITY, AS,3, FOR FOOTING (CBC 2001 1915A.4.2, 1910A.2, 1910A.5.4, 1907A.12.2, 1912A.2, & 1912A.5)
0.85 β 1 f 'c 87 ρ MAX = 0.75 87 + f y f y L H γ ws + γ wb + 2 M u ,3 = L H 2 γ ws + γ wb + '
0.85 f c 1 − 1 −
ρ =
=
2 ( q u ,3 + 2q u, heel ) b L H LH , for eu γ w f − L 6 2
q u ,3b S LH γ w f − , for eu L 6
M u ,3 ' 0.383b d 2 f c
=
0.0018 h f
ρ MIN =
0.016
>
≤
2
=
d
L 6
= 78.06 ft-kips
L 6
0.004
f y where
S ( A S, 3 ) r e
u ir ed
7.5
= = =
d eu
0.001
=
20.50 in
qu, toe
3.82 ft
qu, heel
2.96 ft
qu, 3 2
in / ft
0.88
<
= = = A S, 3
3.29
ksf
n/a
ksf
1.05
ksf
[Satisfactory]
CHECK TOE FLEXURE CAPACITY, AS,4, FOR FOOTING (CBC 2001 1915A.4.2, 1910A.2, 1910A.5.4, 1907A.12.2, 1912A.2, & 1912A.5)
0.85 β 1 f 'c 87 ρ MAX = 0.75 + 87 f f y y
=
M u ,4
(q
u ,4
+ 2q u ,toe
) bL
6
2
T
=
0.016
4
ρ MIN = MIN
3
' M u ,4 0.85 f c 1 − 1 − ' 2 b 0.383 f d c
( A S, 4 ) required
=
25. 29
ft-ki ps
0.28
2
in / ft
=
0.001
<
A S, 4
[Satisfactory]
CHECK KEY CAPACITY FOR FOOTING 1.5 (Hb + Hs ) =
12.2 kips
d qu, 4
f y =
2
2
L T − γ w f 2 L
where
ρ =
d
0.0018 h
ρ ,
Hp + µ ΣW = < [Satisfactory]
12.41
kips
= =
20.63 in 1.638 ksf
=
0.001
Daniel
PROJECT : CLIENT : JOB NO. :
Tian Li
PAGE : DESIGN BY : REVIEW BY :
DATE :
Retaining Wall Design Based on ACI 530-02 & ACI 318-02
INPUT DATA & DESIGN SUMMARY SPECIAL INSPECTION ( 0=NO, 1=YES )
1
Yes
TYPE OF MASONRY ( 1=CMU, 2=BRICK )
1
CMU
MASONRY STRENGTH
f m'
=
1.5
ksi
CONCRETE STRENGTH
fc'
=
4.5
ksi
REBAR YIELD STRESS
fy
=
60
ksi
LATERAL SOIL PRESSURE
Pa
=
30
pcf (equivalent fluid pressure)
PASSIVE PRESSURE
Pp
=
400
psf / ft
SURCHARGE WEIGHT
ws
=
100
psf
w Lat
=
20
psf
FRICTION COEFFICIENT
µ
=
0.3
ALLOW SOIL PRESSURE
Qa
=
3
ksf
THICKNESS OF TOP STEM
tt
=
8
in
THICKNESS OF KEY & STEM
tb
=
12
in
TOE WIDTH
LT
=
3
ft
HEEL WIDTH
LH
=
6
ft
HEIGHT OF FENCE STEM
HF
=
4
ft
HEIGHT OF TOP STEM
HT
=
3.3
ft
HEIGHT OF BOT. STEM
HB
=
5.5
ft
FOOTING THICKNESS
hf
=
12
in
KEY DEPTH
hk
=
12
in
SOIL OVER TOE
hp
=
12
in
#
6
SERVICE LATERAL FORCE
TOP STEM REINF. (A s,1)
[THE WALL DESIGN IS ADEQUATE.] @
16
in o.c.
2
a t e ac h fa ce
As,1 LO CA TIO N ( 0=a t s oil f ac e, 1 =a t mid dl e, 2 =a t e ac h f ac e) BOT. STEM REINF. (A s,2)
8
in o.c.
As,2 LO CA TIO N ( 0=a t s oil f ac e, 1 =a t mid dl e, 2 =a t e ac h f ac e)
#
7
@
2
a t e ac h fa ce
TOP REINF.OF FOOTING (A s,3)
#
6
@
20
in o.c., (Caution > 18" o.c. max. ACI 7.12.2.2)
BOT. REINF.OF FOOTING (A s,4)
#
5
@
14
in
= = = = = = = = = =
1.44
kips
0.29
kips
1.80
kips
0.24
kips
0.63
kips
5.39
kips
1.50
kips
0.15
kips
0.54
kips
0.61
kips
ANALYSIS SERVICE LOADS 2 Hb = 0.5 Pa (HT + HB + hf) Hs = ws Pa (HT + HB + hf) / γ b 2
Hp = 0.5 Pp (hp + hf + hk)
HLat = wLat (HF + HT + HB - hp) Ws = ws (LH + tb - tt) Wb = [HT (LH + tb - tt) + HB LH] γ b Wf = hf (LH + tb + LT) γ c Wk = hk tb γ c Ww,t = t t (HT +HF) γ m Ww,b = tb HB γ m
8
FACTORED LOADS γ Hb = 1.6 H b γ Hs = 1.6 H s γ HLat = 1.6 H Lat γ Ws = 1.6 W s γ Wb = 1.2 W b γ Wf = 1.2 W f γ Wk = 1.2 W k γ Ww,t = 1.2 Ww,t γ Ww,b = 1.2 W w,b
= = = = = = = = =
2 .3 0 k ip s 0 .4 7 k ip s 0 .3 8 k ip s OVERTURNING MOMENT
1 .0 1 k ip s
H
γ H
y
Hy
γ H y
Hb
1.44
2.30
3.27
4.71
7.53
0 .1 8 k ip s
Hs
0.29
0.47
4.90
1.44
2.30
0 .6 4 k ip s
HLat
0.24
0.38
7.90
1.86
2.98
0 .7 3 k ip s
Σ
1.97
3.15
8.01
12.82
6.47 kips 1 .8 0 k ip s
RESISTING MOMENT W
γ W
x
Wx
γ W x
Ws
0.63
1.01
6.83
4.33
6.92
Wb
5.39
6.47
6.94
37.38
44.86
Wf
1.50
1.80
5.00
7.50
9.00
Wk
0.15
0.18
3.50
0.53
0.63
Ww,t
0.54
0.64
3.33
1.78
2.14
Ww,b
0.61
0.73
3.50
Σ
8.81
10.83
2.12
2.54
53.64
66.09
OVERTURNING FACTOR OF SAFETY
SF =
Σ Wx Σ Hy
=
6.70
>
[Satisfactory]
1.5
CHECK SOIL BEARING CAPACITY (ACI 318-02 SEC.15.2.2)
L = L T + t b + L H
=
10.00
e=
ft
6e ΣW 1 + L , for e ≤ L q MAX = 6 BL ΣW L , for e > 6 3 B(0.5L − e)
=
0.79
L 2
−
Σ Wx − Σ Hy ΣW
<
ksf
=
-0.18
ft
[Satisfactory]
Qa
CHECK FLEXURE CAPACITY FOR MASONRY STEM (ACI 530 2.3.3) 3
M =
2
At top stem
P a y P y ws + a + M Lat 6 2γ b
P = W w
At base of bottom stem
=
0.88
ft-k ips ,
6.20
ft-kips
=
0.54
kips ,
1.14
kips
1 kd kd t e kd te M allowable = MIN b wkd F b d − − P d − , As F s d − + P − 3 2 3 2 3 2 At top stem where
and
At base of bottom stem
te
=
7.63 in ,
11.63
in
d
=
4.26 in ,
8.19
in
bw
=
12
in
Fb
=
Fs
=
As
=
ksi , 2 0.33 in ,
ρ
=
0.006
Em
=
1350 ksi ,
1350
ksi
Es
=
29000
ksi ,
29000
ksi
n
=
21.48
k
=
0.41
0.46
M allowable
=
1.55 ft-kips ,
6.25
12
in ,
0.495 ksi ,
0.495
ksi
24
ksi 2 in
24
>
0.9 ,
0.009
21.48 ft-kips
>
M
[Satisfactory]
M
[Satisfactory]
CHECK SHEAR CAPACITY FOR MASONRY STEM (ACI 530 2.3.5) 2
V =
At top srem
w P y P a y + s a + V Lat 2 γ b
(
'
V allow able = d bwMIN
f m , 50
)
At base of bottom stem
=
0.41
kips ,
1.66
kips
=
1.98
kips ,
3.81
kips
>
>
V
[Satisfactory]
V
[Satisfactory]
CHECK HEEL FLEXURE CAPACITY, A S,3, FOR FOOTING (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5) '
ρ MAX =
0.85 β 1 f c
f y
ε u ε u + ε t
=
0.023
ρ MIN =
0.0018 h f 2
d
=
0.001
L H γ ws + γ wb + 2 M u ,3 = L H 2 γ ws + γ wb + '
0.85 f c 1 − 1 − ρ =
LH γ w f L
2 L ( q u ,3 + 2q u, heel ) b L H , for eu ≤ − 6 6
=
2 L q u ,3b S LH γ w f − , for eu > 6 6 L
M u ,3 ' 0.383b d 2 f c
=
0.002
8.63 in
qu, toe
0.08 ft
qu, heel
= = =
8.35 ft-kips
f y where
= = =
d eu S
( A S, 3 ) required
=
n/a
qu, 3 2
in / ft
0.22
<
A S, 3
1.14
ksf
1.03
ksf
0.83
ksf
[Satisfactory]
CHECK TOE FLEXURE CAPACITY, A S,4, FOR FOOTING (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5) '
ρ MAX =
M u ,4 =
(q
u ,4
0.85 β 1 f c
f y
ε u ε u + ε t
+ 2q u ,toe ) b LT 2 6
=
4 3
ρ MIN = MIN ρ ,
0.023
0.0018 h f 2 d
=
2
−
L T γ w f 2 L
=
3.95
ft-kips where
M u ,4 0.85 f c 1 − 1 − ' 0.383b d 2 f c ρ = '
d qu, 4
=
= =
8.69 in 0.90 ksf
0.001
f y
( A S, 4 ) required
=
0.13
2
in / ft
<
A S, 4
[Satisfactory]
CHECK KEY CAPACITY FOR FOOTING 1.5 (Hb + Hs + HLat) =
2 .9 6 k ip s
Hp + µ ΣW = < [Satisfactory]
4.44
kips
Techincal References: 1. "Masonry Designers' Guide, Third Edition" (MDG-3), The Masonry Society, 2001. 2. Alan Williams: "Structural Engineering Reference Manual", Professional Publications, Inc, 2001. 3. Alan Williams: "Structural Engineering License Review Problems and Solutions", Oxford University Press, 2003.
0.001
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Restrained Retaining Wall Design Based on ACI 530-02 & ACI 318-02
INPUT DATA & DESIGN SUMMARY SPECIAL INSPECTION ( 0=NO, 1=YES )
1
Yes
TYPE OF MASONRY ( 1=CMU, 2=BRICK )
1
CMU
MASONRY STRENGTH
fm'
=
1.5
ksi
CONCRETE STRENGTH
fc'
=
2.5
ksi
REBAR YIELD STRESS
fy
=
60
ksi
LATERAL SOIL PRESSURE
Pa
=
45
pcf (equivalent fluid pressure)
PASSIVE PRESSURE
Pp
=
350
psf / ft
SURCHARGE WEIGHT
ws
=
100
psf
SERVICE LATERAL FORCE
wLat
=
30.1
psf
SERVICE GRAVITY LOAD
P
=
0.386
ECCENTRICITY
e
=
6
FRICTION COEFFICIENT
µ
=
0.35
ALLOW SOIL PRESSURE
Qa
=
2.25
ksf
THICKNESS OF STEM
=
8
in
TOE WIDTH
t LT
=
0.917
ft
HEEL WIDTH
LH
=
0.917
ft
HEIGHT OF FENCE STEM
HF
=
5
ft
HEIGHT OF STEM
H HR
=
7
ft
=
9
ft
=
12
in
RESTRAINED HEIGHT
hf FOOTING THICKNESS RESTRAINED BOTTOM ? (1=Yes, 0=No)
1
KEY DEPTH
hk
=
20
SOIL OVER TOE
hp
=
6
#
8
STEM REINF. (As,1)
kips / ft in
Yes
[THE WALL DESIGN IS INADEQUATE.]
<=No ReqD
in @
8
As,1 LOCATION (0=at inside face, 1=at middle, 2=at each face)
in o.c.
0
at inside face
BOT. REINF.OF FOOTING (A s,2)
#
4
@
24
in
TOP REINF.OF FOOTING (As,3)
#
4
@
18
in
= = = = = = = = =
1.10
kips
0.32
kips
1.75
kips
0.35
kips
0.09
kips
0.64
kips
0.38
kips
0.17
kips
0.88
kips
0.67
kips
1.09
kips
1.27
kips
ANALYSIS SERVICE LOADS 2 Hb = 0.5 Pa H Hs = ws Pa H / γ b Hp = 0.5 Pp (hp + hf + hk)2 HLat = wLat (HF + H - hp) Ws = ws LH Wb = H LH γ b Wf = hf (LH + t + LT) γ c Wk = hk t γ c Ww = t ( HF + H ) γ m
RT = 0.5HLat(HF /HR + hp /HR +H/HR) + Pe/HR + 0.5HsH/HR + HbH/3HR RB = HLat + Hs + Hb - RT VB = Ww + P FACTORED LOADS γ Hb = 1.6 Hb γ Hs = 1.6 Hs γ HLat = 1.6 HLat γ Ws = 1.6 Ws γ Wb = 1.2 Wb γ Wf = 1.2 Wf γ Wk = 1.2 Wk γ Ww = 1.2 Ww γ P = 1.6 P
= = = = = = = = =
= = =
1 .7 6 k ips 0 .5 0 k ips 0 .5 5 k ips
γ RT = 1.6 RT
0 .1 5 k ips
γ RB = 1.6 RB
= =
1.07
kips
1.75
kips
0 .7 7 k ips 0 .4 5 k ips
OVERTURNING MOMENT H
γ H
y
Hy
1 .0 6 k ips
RB
1.09
1.75
1.00
1.09
0 .6 2 k ips
Σ
1.09
1.75
0.20 kips
1.09
γ H y
1.75 1.75
RESISTING MOMENT W
γ W
x
Wx
γ W x
Ws
0.09
0.15
2.04
0.19
0.30
Wb
0.64
0.77
2.04
1.31
1.57
Wf
0.38
0.45
1.25
0.47
0.56
Wk
0.17
0.20
1.25
0.21
0.25
0.39
0.62
1.25
0.48
0.77
0.88 2.54
1.06 3.24
1.25
1.10 3.76
1.32 4.78
P Ww
Σ
OVERTURNING FACTOR OF SAFETY
SF =
ΣWx Σ Hy
=
3.44 [Satisfactory]
>
1.5
CHECK SOIL BEARING CAPACITY (ACI 318-02 SEC.15.2.2)
L = L T + t b + L H
=
2.50
e=
ft
6e ΣW 1 + L , for e ≤ L q MAX = 6 BL ΣW L , for e > 6 3 B(0.5L − e)
=
1.51
L 2
−
Σ Wx − Σ Hy
=
ΣW
0.20
ft
ksf
Qa
<
[Satisfactory]
CHECK FLEXURE CAPACITY FOR MASONRY STEM (ACI 530 2.3.3)
5
S = Pa-1{ ( PaH + wLat + Hs / H) + [( PaH + wLat + Hs / H)2-2Pa(RB +wLat hp)]0.5 } P = VB - Ww S / (H + HF)
=
3.58 ft
=
1.00 kips, @ Mmax section
2
MMax = S RB - 0.5 HS S / H - 0.5 P a S3 - Pa (H-S) S2 /6 - 0.5 wLat (S - hp)2 =
1 kd M allowable = MIN b wkd F b d − 3 2
2.12
kd te − P d − , A sF s d − 2 3
ft-kips
t e kd +P − 2 3
=
2.06
< where
te
=
7.63 in
ρ
=
0.024
d
=
4.13 in
Em
=
1350
ksi
bw
=
Es
=
29000
ksi
Fb
=
0.495 ksi
n
=
21.48
Fs
=
=
0.62
=
24 ksi 2 1.185 in
k
As
12
in
M
[Unsatisfactory]
CHECK SHEAR CAPACITY FOR MASONRY STEM (ACI 530 2.3.5) At restrained stem
V = Max. Horiz. Shear
(
V allow able = d bwMIN
'
f m , 50
)
At bottom of stem
=
0.58
kips ,
1.09
kips
=
1.97
kips ,
1.92
kips
>
>
V
[Satisfactory]
V
[Satisfactory]
CHECK HEEL FLEXURE CAPACITY, A S,3, FOR FOOTING (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5) '
ρ MAX =
0.85 β 1 f c
f y
ε u ε u + ε t
L H γ ws + γ wb + 2 M u ,3 = L H 2 γ ws + γ w b + '
0.85 f c 1 − 1 − ρ =
=
L H γ w f L
ρ MIN =
0.013
d eu S
( A S, 3 ) required
=
= = =
=
0.000
8.75 in
qu, toe
0.32 ft
qu, heel
= = =
n/a 0.13
qu, 3 2
2
d
=
2
= 0.27 ft-kips
f y where
0.0018 h f
L ( q u ,3 + 2q u, heel ) b L H , for e u ≤ − 6 6
2 L q u ,3b S L H , for e u > γ w f − 6 6 L
M u ,3 ' 0.383b d 2 f c
in / ft
<
A S, 3
ft-kips
2.28
ksf
0.31
ksf
0.99
ksf
[Satisfactory]
0.001
CHECK TOE FLEXURE CAPACITY, A S,2, FOR FOOTING (ACI 318-02 SEC.15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2, & 12.5) '
0.85 β 1 f c
ρ MAX =
M u ,2 =
(q
u ,4
f y
ε u ε u + ε t
+ 2q u ,toe ) b L T 2 6
=
0.013
4 3
ρ MIN = MIN ρ ,
0.0018 h f
2
d
= =
8.75 in
=
2
−
L T γ w f 2 L
=
0.78
ft-kips where
d qu, 2
M u ,2 0.85 f c 1 − 1 − ' 0.383b d 2 f c ρ =
=
in2 / ft
<
1.53 ksf
'
0.000
f y
( A S, 2 ) required
=
0.03
A S, 2
[Satisfactory]
CHECK KEY CAPACITY FOR FOOTING 1.5 RB =
1.64
kips
< Hp + µ ΣW = [Satisfactory]
N/A
(Restrained)
Techincal References: 1. "Masonry Designers' Guide, Third Edition" (MDG-3), The Masonry Society, 2001. 2. Alan Williams: "Structural Engineering Reference Manual", Professional Publications, Inc, 2001. 3. Alan Williams: "Structural Engineering License Review Problems and Solutions", Oxford University Press, 2003.
0.000
Daniel T. Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Flagpole Footing Design Based on Chapter 18 both IBC & UBC INPUT DATA & DESIGN SUMMARY I S F OOT ING RE ST RA IN ED @ G RA DE L EV EL ? (1 =Y ES ,0= NO) LATERAL FORCE @ TOP OF POLE P= HEIGHT OF POLE ABOVE GRADE H= DIAMETER OF POLE FOOTING B= LATERAL SOIL BEARING CAPACITY S= ISOLATED POLE FACTOR (IBC 1804.3.1 or UBC note 3 on Tab 18-I-A) F= FIRST TRIAL DEPTH ===> D =
0 29.843 62.11 6 0.2 2 8
no k ft ft ksf / ft
P
H
ft
Use 6 ft dia x 19.75 ft deep footing unrestrained @ ground level
D
ANALYSIS LATERAL BEARING @ BOTTOM : LATERAL BEARING @ D/3 :
S 3
=
FSD
S1
=
0.33S 3
A
REQUIRD DEPTH :
2.34 P =
B S 1
A 4.36H 1 + 1 + , FOR NONCONSTRAINED A 2 D = PH 4.25 , FOR CONSTRAINED B S 3
LATERAL FORCE @ TOP OF POLE HEIGHT OF POLE ABOVE GRADE DIAMETER OF POLE FOOTING LATERAL SOIL BEARING CAPACITY 1ST TRIAL
P => H => B => FS => TRY D1 =>
LAT SOIL BEARING @ 1/3 D
S1
=>
LAT SOIL BEARING @ 1.0 D
S3
=>
CONSTANT 2.34P/(BS1) REQD FOOTING DEPTH 2ND TRIAL : LAT SOIL BEARING @ 1/3 D LAT SOIL BEARING @ 1.0 D CONSTANT 2.34P/(BS1) REQD FOOTING DEPTH 3RD TRIAL : LAT SOIL BEARING @ 1/3 D LAT SOIL BEARING @ 1.0 D CONSTANT 2.34P/(BS1) REQD FOOTING DEPTH 4TH TRIAL : LAT SOIL BEARING @ 1/3 D LAT SOIL BEARING @ 1.0 D CONSTANT 2.34P/(BS1) REQD FOOTING DEPTH 5TH TRIAL : LAT SOIL BEARING @ 1/3 D LAT SOIL BEARING @ 1.0 D CONSTANT 2.34P/(BS1) REQD FOOTING DEPTH
A => RQRD D => TRY D2=> S1 => S3
=>
A => RQRD D => TRY D3=> S1 => S3
=>
A => RQRD D => TRY D4=> S1 => S3
=>
A => RQRD D => TRY D5=> S1 => S3
=>
A => RQRD D =>
NONCONSTRAINED 29.84 k 62.1 ft 6.00 ft 0.40 ksf / ft
CONSTRAINED 29.84 k 62.1 ft 6.00 ft 0.40 ksf / ft
8.00
ft
8.00
ft
1.06
ksf
1.06
ksf
3.20
ksf
3.20
ksf
11.02 33.38
ft
20.26
ft
20.69 2.73
ft ksf
14.13 1.86
ft ksf
8.28
ksf
5.65
ksf
4.26 19.25
ft
15.24
ft
19.97 2.64
ft ksf
14.69 1.94
ft ksf
7.99
ksf
5.87
ksf
4.42 19.64
ft
14.95
ft
19.80 2.61
ft ksf
14.82 1.96
ft ksf
7.92
ksf
5.93
ksf
4.45 19.73
ft
14.88
ft
19.77 2.61
ft ksf
14.85 1.96
ft ksf
7.91
ksf
5.94
ksf
4.46 19.75
ft
14.87
ft
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Deep Footing Design Based on ACI 318-02 INPUT DATA PEDESTAL DIAMETER SQUARE FOOTING LENGTH
c L
FOOTING EMBEDMENT DEPTH
= =
60 18
in ft
Df
=
10.5
ft
FOOTING THICKNESS WATER TABLE
T h
= =
18 8
in ft
CONCRETE STRENGTH
f c'
=
3
ksi
REBAR YIELD STRESS
fy
=
60
ksi
AXIAL DEAD LOAD
PDL
=
73.1
AXIAL LIVE LOAD
PLL
=
365.4 k
LAT ERAL LOAD (0=W IND, 1=SEISMIC) PLAT WIND AXIAL LOAD
= =
0 Wind,ASD -79.175 k, ASD, uplift
WIND MOMENT LOAD
MLAT
=
867.41 ft-k, ASD
WIND SHEAR LOAD
VLAT
=
11.95 k, ASD
SURCHARGE
qs
=
0.1
ksf
BBACKFILL SOIL WEIGHT
ws
=
0.1
kcf
ALLOW SOIL PRESSURE
Qa
=
4
ksf
FOOTING REINFORCING SIZE PEDESTAL VERT. REINF. SIZE PEDESTAL SHEAR. REINF.
# # 4
22 #
k
10 10 vertical in o.c. spiral @ 3
DESIGN SUMMARY TOP FOOTING REINF., E. W AY => BO T. FO OT ING REINF., E. WAY =>
6 # 10 29 # 10 @ 7 in o. c.
THE FOOTING DESIGN IS ADEQUATE.
ANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318-02 SEC.9.2.1) CASE 1: DL + LL P = 439 kips CASE 2: DL + LL + 1.3 W P = 336 kips M = 1128 ft-kips e = 3.4 ft, fr cl ftg CASE 3: DL + LL + 0.65 W P = 387 kips M = 434 ft-kips e = 1.1 ft, fr cl ftg
1.2 DL + 1.6 LL 1.2 DL + LL + 1.6 W
0.9 DL+ 1.6 W
Pu Pu Mu eu Pu Mu eu
= = = = = = =
CHECK OVERTURNING FACTOR MR / MO = Where MO =
2.28444
>
F = 1.5
[Satisfactory]
MLAT + VLAT Df - 0.5 PLATL =
1705
Pftg =
(0.15 kcf) [T L2 + (π c2 / 4)(Df - T)] =
wsat =
ws + 0.018 kcf =
wwater =
k-ft 99.41
k, footing weight
0.118 kcf, saturated soil weight
0.0625 kcf, water specifc weight
Psoil =
[ws MIN(h, Df -T)+ (wsat - wwater) MAX(Df - T - h, 0)] (L2 - π c2 / 4) =
MR =
0.5 (PDL + Pftg + Psoil) L =
3896
260.38 k, soil wt
k-ft
F = 1.5 for wind, IBC 1609.1.3
CHECK UPLIFT CAPACITY FGravity / FUplift = Where FUplift =
7.55168
>
- PLAT = 79.2
1.0
[Satisfactory]
k
Pftg =
99.41
k, footing weight
Psoil =
425.40
k, soil weight with 30o pyramid
FGravity = PDL+ Pftg+ Psoil =
597.9 k
4
672 326 1388 4.3 -61 1388 -22.8
kips kips ft-kips ft, fr cl ftg kips ft-kips ft, fr cl ftg
(cont'd) CHECK SOIL BEARING CAPACITY (ACI 318-02 SEC.15.2.2) Service Loads P e
CASE 1 438.5 0.0
CASE 2 335.6 3.4
CASE 3 387.0 1.1
qs L2
32.4
32.4
32.4
k, (surcharge load)
∆Pftg Σ P
33.1 504.0
33.1 401.1
33.1 452.6
k, (footing increased) k
k ft, (from center of footing)
Σ M
0.0
e
0.0
qmax
1.6
2.6
1.9
ksf
qallow
4.0
5.3
5.3
ksf
1290.8 < L/6
3.2
496.4 > L/6
1.1
Where [Sati
k-ft, (VLat included) < L/6
ft
(cont'd) FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 2 ColL Section 0 0.09 L 0.18 L 0.27 L
ColR
0.73 L
0.82 L
0.91 L
L
13.13
14.75
16.38
18
Xu (ft, dist. from left of footing)
0
1.63
3.25
4.88
6.50
11.50
Mu,pedestal (ft-k)
0
0
0
0
0
772.52
Vu,pedestal (k)
0
0.0
0.0
0.0
0.0
326.4
326.4
326.4
326.4
326.4
Pu,surch (klf)
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
Mu,surch (ft-k)
0
-2.4
-9.5
-21.4
-38.0
-119.0
-155.0
-195.8
-241.3
-291.6
Vu,surch (k)
0
2.9
5.9
8.8
11.7
20.7
23.6
26.6
29.5
32.4
Pu,ftg & fill (klf)
23.99
23.99
23.99
23.99
23.99
23.99
23.99
23.99
23.99
23.99
Mu,ftg & fill (ft-k)
0
Vu,ftg & fill (k)
0
39.0
78.0
116.9
155.9
275.8
314.8
353.8
392.8
431.7
qu,soil (ksf)
0.81
1.10
1.40
1.69
1.99
2.89
3.19
3.48
3.78
4.07
Mu,soil (ft-k)
0
21.5
95.3
235.5
456.0
1787.6
2480.9
3325.9
4336.5
5526.7
Vu,soil (k)
0
-27.9
-64.4
-109.5
-163.3
-382.9
-471.9
-569.5
-675.7
-790.6
Σ Mu (ft-k)
0
-12.56 -40.888 -70.959 -88.746 854.97
501.96
232.45
60.449
0
Σ Vu (kips)
0
240.1
193.0
137.3
73.0
0
- 31. 669 - 126.68 - 285.02 - 506.71 - 1586.1
14.0
19.4
16.2
4.3
FOOTING MOMENT & SHEAR AT LONGITUDINAL SECTIONS FOR CASE 3 ColL Section 0 0.09 L 0.18 L 0.27 L
242.06 -288.41 -818.87 -1349.3
- 2066
-2609.2 -3215.8 -3885.7
ColR
0.73 L
0.82 L
0.91 L
L
Xu (ft, dist. from left of footing)
0
1.63
3.25
4.88
6.50
11.50
13.13
14.75
16.38
18.00
Mu,pedestal (ft-k)
0
0
0
0
0
1740.8
1839.8
1938.7
Vu,pedestal (k)
0
0.0
0.0
0.0
0.0
-60.9
-60.9
-60.9
-60.9
-60.9
Pu,surch (klf)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Mu,surch (ft-k)
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Vu,surch (k)
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Pu,ftg & fill (klf)
17.99
17.99
17.99
17.99
17.99
17.99
17.99
17.99
17.99
17.99
Mu,ftg & fill (ft-k)
0
Vu,ftg & fill (k)
0
29.2
58.5
87.7
116.9
206.9
236.1
265.3
294.6
323.8
qu,soil (ksf)
0.00
0.00
0.00
0.00
0.00
2.10
2.40
2.70
3.00
3.29
Mu,soil (ft-k)
0
0
0
0
0
1491.4
1361.3
1189.6
990.32 777.68
Vu,soil (k)
0
0.0
0.0
0.0
0.0
-291.0
-297.0
-294.4
-283.0
-262.9
Σ Mu (ft-k)
0
-23.8
-95.0
-213.8
-380.0
2042.6
1651.6
1171.4
616.1
0
Σ Vu (kips)
0
29.2
58.5
87.7
116.9
-145.0
-121.8
-89.9
-49.3
0
d (in) 15.37 14.37
ρmin 0.0021 0.0023
ρreqD 0.0017 0.0118
2037.7 2136.6
- 23. 752 - 95. 007 - 213.77 - 380.03 - 1189.6 - 1549.5 -1956.9 -2411.9 -2914.3
DESIGN FLEXURE Location Top Longitudinal Bottom Longitudinal
Mu,max -380.0 ft-k 2042.6 ft-k
ρmax smax 0.0155 no limit 0.0155 18
use 6 # 10 29 # 10 @ 7 in o.c.
ρprovD 0.0023 0.0119 [Satisfactory]
CHECK FLEXURE SHEAR φVc = 2 φ b d (fc') 0.5
Direction
Vu,max
Longitudinal
242.8 k
255
check Vu < φ Vc
k
[Satisfactory]
CHECK FOOTING PUNCHING SHEAR (ACI 318-02 SEC.15.5.2, 11.12.1.2, 11.12.6, & 13.5.3.2) vu ( psi)
=
Pu
−
R
=
R
=
0.5 ( d
+
+
c]
A P
J
A P
J
0.5γ v M u [ d
+
γ
v
2 d +c d 3 + 3 2
c) π d
Puπ ( d + c ) 4 A f
=
=
A f
b 0d
φ v c ( psi ) = φ ( 2 + y )
0.4
=
' f c
d 4 , 40 β b0 c
y = MIN 2,
L 2
b 0 = π ( c + d )
2
Case
Pu
Mu
b0
γ v
βc
y
Af
Ap
R
J
vu (psi)
φ vc
1 2 3
704.2 358.2 -37.0
0.0 1559.9 1559.9
233.6 233.6 233.6
0.4 0.4 0.4
1.0 1.0 1.0
2.0 2.0 2.0
324.0 324.0 324.0
23.3 23.3 23.3
65.6 33.4 -3.4
113.7 113.7 113.7
27.4 31.0 15.6
164.3 164.3 164.3
φ
=
0.75
[Satisfactory] where
(ACI 318-02, Section 9.3.2.3 )
(cont'd) CHECK PEDESTAL REINF. LIMITATIONS ρmax = 0.08 (ACI 318-02, Section 10.9) ρmin = 0.01 (ACI 318-02, Section 10.9) smax smin
= =
3 1
(ACI 318-02, Section 7.10.4.3) (ACI 318-02, Section 7.10.4.3)
ρprovd
=
0.011 [Satisfactory]
sprovd
=
3
in [Satisfactory]
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Grade Beam Design Based on ACI 318 & CBC 1633A.2.12 DESIGN CRITERIA THE CBC 1633A.2.12, FACTOR Ω0, IS ONLY FOR FOOTING SHEAR AND BENDING CHECK, AND CONNECTION DESIGN. 1.
2.
3.
USING (Ω0 /1.4) E TO CHECK SOIL CAPACITY AND OVERTURNING IS ADEQUATE. WHEN LATERAL FRAME LOADS ARE NOT BIG, USING SQUIRE PADS WITH GRADE BEAM TIED THEM TOGETHER WILL COST LESS THAN COMBINED FOOTING.THE SQUIRE PADS TAKE VERTICAL LOAD TO CENTRIC SOIL PRESSURE, WHILE THE BEAM BALANCED MOMENTS AND NEGLECTING SOIL PRESSURE ON THE BEAM. SEE THIS SHEET BELOW. WHEN LATERAL FRAME LOADS ARE BIG, USING COMBINED FOOTING IS EFFICIENT. SEE SHEETS OF COMBINED FOOTING & COMBINED FOOTING OPTION FOR MORE INFORMATION.
INPUT DATA & DESIGN SUMMARY
CONCRETE STRENGTH
fc' =
3
ksi
REBAR YIELD STRESS SQUIRE PAD SIZE
COLUMN DISTANCE
fy = B = T = W = D = L =
60 7 12 36 36 22
ksi ft in in in ft
GRADE BEAM EXTENSION
Le =
8
ft
GRADE BEAM SIZE
PD,1 =
25
kips
PD,2 =
25
kips
(Dead Load)
PL,1 =
15
kips
PL,2 =
15
kips
(Live Load)
SEISMIC AXIAL LOADS, SD
PE,1 =
-15
kips
PE,2 =
30
kips
(Seismic Load)
SEISMIC SHEAR LOADS, SD
VE,1 =
35
kips
VE,2 =
35
kips
(Seismic Load)
SEISMIC MOMENTS, SD
ME,1 =
50
ft-kips
ME,2 =
50
ft-kips
(Seismic Load)
FRAME AXIAL LOADS, ASD
SEISMIC AMPLIFICATION
Ω0 =
2.2
, (CBC 1633A.2.12)
ALLOW SOIL PRESSURE PAD REINFORCING
Qa = 10
2.5 #
ksf
GRADE BEAM LONGITUDINAL REINFORCING TOP 7 # 8 ( d = 31.88 in ) ( 1 Layer) BOTTOM 7 # 7 ( d = 31.94 in ) ( 1 Layer) GRADE BEAM HOOPS (ACI 21.3.3) LOCATION AT END LENGTH 72 in
8
@ 8 o.c., Each Way, Bottom.
AT SPLICE 55 in 0.5
( 2h ) MAX{0.075fyαβγ db /[(fc') (c+Ktr)/db], 12} 4 Legs # 5 4 Legs # 5 (Legs to alternate long bars supported, ACI 7.10.5.3) @ 7 in o.c. @ 4 in o.c.
BAR SPACING
MIN(d/4, 8db, 24dt, 12)
MIN(d/4, 4)
THE GRADE BEAM DESIGN IS ADEQUATE. ANALYSIS CHECK OVERTURNING AT CENTER BOTTOM OF PAD 2
MO =
(Ω0 /1.4)[ME,1 + ME,2 + (VE,1+VE,2)(D+T) - PE,1L] 2
(PD,1 + γ conc B T) L + 0.5γ conc(L + 2Le) L D W =
MR =
=
1115.7
1276.0
>
ft-kips MO / 0.9 =
1240
ft-kips
[Satisfactory]
<
4/3 Qa
[Satisfactory]
CHECK SOIL BEARING CAPACITY Q MAX =
M O 2
B L
where
+
2 P D ,2 + P L ,2 + ( γ CO NC − γ SOI L ) B T + WD ( 0.5 L + L e )
B
γ conc =
0.15 kcf
γ soil =
0.11 kcf
2
=
2.03
ksf, (net pressure)
(cont'd) CHECK PAD FLEXURAL REINFORCING '
0.85 f c 1
ρ
=
1
−
−
M u 0.383 B d
' f c
2
where
<
0.0048
=
f y
ρprovd =
d=
8.00
0.0118
in
Qu,max = 1.5 Qmax =
3.05
ksf, (SD, CBC 1915A. 2.1)
2
Mu = 0.125 (B-W) B Qu,max =
109
ρmax =
0.0160
(ACI 10.2.7.3 & 10.3.3)
ρmin =
0.0018
(ACI 7.12.2.1)
ft-kips [Satisfactory]
CHECK PAD ONE WAY SHEAR CAPACITY
<
Vu where
φVn
[Satisfactory]
Vu = 0.5 (B - W) B Qu,max - d B Q u,max = 0.5
φVn = φ 2 d B (fc') = φ= 0.85
62.6
28.4
kips
kips
CHECK GB SECTION REQUIREMENTS (ACI 21.3.1) Pu = Ω0(VE,1 - VE,2) = Ln=L - B =
15.00
W/D= W =
1.00 36
0
<
0.1Agfc' =
4d=
10.65
kips
>
ft
>
0.3
> <
in
388.8 ft
[Satisfactory] 10 in B+1.5D = 138
kips
[Satisfactory]
[Satisfactory]
[Satisfactory] in [Satisfactory]
CHECK GB FLEXURAL REQUIREMENTS
ρtop =
(ACI 21.3.2.1)
0.005
ρbot =
0.004
>
ρmin=MIN[3(f c')0.5 /fy, 200/fy ]=
<
ρmax =
0.025
[Satisfactory]
>
ρmin = ρmax =
0.003
[Satisfactory]
0.025
[Satisfactory]
< (ACI 21.3.2.2)
>
Mn,top
(1/2)Mn,bot
[Satisfactory] 642
ft-kips
>
Mu,bot / φ [Satisfactory]
2
831
ft-kips
>
Mu,top / φ [Satisfactory]
Mn,top = ρtop bd fy (1 - 0.588 ρtop fy /fc') = φ = 0.9
M u ,top = 1.5 M GB ,wt + P D ,1 + PL ,1 +
Ω0 1.4
M u ,bot = 1.5 − M GB,wt − P D ,2 + P L ,2 +
where
2 P E,1 + Wt PAD ,1 − Q MIN B L − 0.5
Ω0
1.4
Ω0 1.4
2 P E,2 + Wt PAD,1 − Q MAX B L − 0.5
Q MAX =
QMIN =
M O 2
B L
+
V E ,1D −
Ω0
1.4
Ω0 1.4
V E ,2D −
Ω0
1.4
M E ,1 − Q MIN
Ω0 1.4
M E ,2− Q MAX
B
(V E ,1 + V E ,2) / ( Q MAX + Q MIN ) ( 0.5 D + T ) =
Ω0
1.4
2 P D,2 + P L ,2 + γ CONC B T + WD ( 0.5L + L e )
0.94
[Satisfactory]
2
Mn,bot = ρbot bd fy (1 - 0.588 ρbot fy /fc') =
where
0.003
2
-171
ft-kips
-489
ft-kips
(V E ,1+ V E ,2) / ( Q MAX + QMIN ) (0.5 D + T ) =
=
2.52
ksf, (full ASD pressure)
377.1
kips
[Satisfactory]
348.9
kips
ksf, (full ASD pressure)
Factor 1.5 is for SD CHECK GB SHEAR STRENGTH (ACI 21.3.4) Ve = (Mpr, top + Mpr,bot) / Ln =
121.1
kips
< <
where
0.5
8φ(fc') bd = 0.5
φ[2(fc') bd + Avfyd/s ] =
2
1024
ft-kips
2
793
ft-kips
Mpr,top = ρtop bd fy (1.25 - 0.919ρtop fy /fc') = Mpr,bot = ρbot bd fy (1.25 - 0.919ρbot fy /fc') = φ = 0.75 (ACI 9.3.2.3) 2 in Av = 1.24
[Satisfactory]
Daniel Tian Li
PROJECT : CLIENT : JOB NO. :
PAGE : DESIGN BY : REVIEW BY :
DATE :
Combined Footing Design Based on CBC 2001 Chapter A DESIGN CRITERIA THE CBC 1633A.2.12, FACTOR Ω 0, IS ONLY FOR FOOTING SHEAR AND BENDING CHECK, A ND CONNECTION DESIGN. 1. USING (Ω 0 /1.4) E TO CHECK SOIL CAPACITY AND OVERTURNING IS ADEQUATE. 2.
BASED ON CBC 1915A.2.1, USING ASD SOIL PRESSURE, SECTION FORCES AT (Ω 0 /1.4) E ABOVE, MULTPLY BY 1.5 TO DESIGN
3.
REINFORCEING CONCRETE. IF THE FOOTING TO HAVE TO COMPLY WITH SEISMIC REQUIREMENTS OF CONCRETE FRAME BEAM, ACI 318 SECTION 21, SEE SHEETS OF COMBINED FOOTING OPTION FOR MORE INFORMATION.
INPUT DATA
COL#1
COL#2
=
14
14
in
PDL
= =
14 50.05
14 50.91
in k k
c1 c2
COLUMN WIDTH COLUMN DEPTH AXIAL DEAD LOAD
PLL
=
19.21
21.92
SEISMIC AXIAL LOAD, SD
PLAT
=
-170
170
k
SEISMIC SHEAR LOAD, SD
VLAT
=
117.6
117.6
k
SEISMIC MOMENT, SD
MLAT
=
3.27
3.27
k-ft
Ω0
=
2.2
CONCRETE STRENGTH
fc '
=
3
REBAR YIELD STRESS
fy
=
60
ksi
Qa
=
2
ksf
AXIAL LIVE LOAD
SEISMIC AMPLIFICATION FACTOR
ALLOWABLE SOIL PRESSURE
,(Tab. 16A-N) ksi
DISTANCE TO LEFT EDGE
L1
=
11.75
ft
DISTANCE BETWEEN COLUMNS DISTANCE TO RIGHT EDGE
S L2
= =
18 29
ft ft
FOOTING WIDTH FTG EMBEDMENT DEPTH
B
=
10.17
ft
Df
=
4.5
ft
FOOTING THICKNESS
T
=
42
in
SURCHARGE
qs
=
0
ksf
SOIL WEIGHT
ws
=
0.11
kcf
# #
10 5
LONGITUDINAL REINFORCING BAR SIZE TRANSVERSE REINFORCING BAR SIZE
BAND WIDTH
be =
LONG. REINF AT TOP LONG. REINF AT BOTTOM
8 # 10 @ 16 in o.c., cont. 21 # 10 @ 5 in o.c., cont.
TRANS. REINF. AT BAND WIDTH
30 # 5 @ 4 in o.c., bottom
10.17
ft
DESIGN SUMMARY FOOTING LENGTH
L
=
58.75
ft
FOOTING WIDTH FOOTING THICKNESS
B T
= =
10.17 42
ft in
P
=
THE FOOTING DESIGN IS ADEQUATE.
ANALYSIS DESIGN LOADS (CBC SEC.1612A.3.2 & ACI 318 SEC.9.2.1) SERVICE LOADS CASE 1 : DL + LL CASE 2 : DL + LL + ( Ω0 / 1.4) E
CASE 3 : 0.9 DL + ( Ω0 / 1.4) E
COL # 1 69
P
=
-198
M
=
5.1
V P
= =
185 -222
M
=
5.1
COL # 2 k
73
TOTAL k
k
340
k
ft-k
5.1
ft-k
k k
185 313
k k
ft-k
5.1
ft-k
142
k
(e
=
-8.40 142
ft, fr CL ftg ) k
10.3
f t-k
(e
=
25.52
ft, fr CL ftg )
(e V
=
185
k
185
k
6482
k-ft
=
370 91
k k
10.3
f t-k
44.49
ft, fr CL ftg )
370
CHECK OVERTURNING FACTOR MR / MO =
>
2.31003
F = 1 / (0.9x1.4)
[Satisfactory] Where F = 1 / (0.9x1.4) for seismic, IBC 1605.3.2 Pftg = (0.15 kcf) T B L = 313.68 k, footing weight Psoil = ws (Df - T) B L = 6 5.7 2 k, so il we ight MR = PDL 1(L - L1) + PDL 2L2 + 0.5 (P ftg + Psoil) L = 14974 k-ft MO = (Ω0 /1.4)[MLAT 1 + MLAT 2 + (VLAT 1 + VLAT 2) Df - PLAT 1(L - L1) - PLAT 2L2] = CHECK SOIL BEARING CAPACITY (ACI 318 SEC.15.2.2) Service Loads
CASE 1
CASE 2
142.1
142.1
90.9
k
e qs B L (0.15-ws)T B L
-8.4 0.0 83.6
25.5 0.0 83.6
44.5 0.0 75.3
ft k, (surcharge load) k, (footing increased)
Σ P e qmax
225.7 -5.3 0.2
qallow
2.0
P
< L/6
225.7 16.1 1.1 2.7
CASE 3
> L/6
166.1 24.3 2.2
> L/6
2.7 [Satisfactory]
k ft ksf ksf
k