Qwertyuiopasdfghjklzxcvbnmqwertyu iopasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvmqwertyuiopasdfghjklzxcvbn SEKOLAH MENENGAH TEKNIK IPOH mqwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiop...
grandient of tangent to a graph, equation of tangents and normal, maximum and minimum valus ...Full description
CXC CSEC Add Maths June 2017 P2Full description
math cxc
Csec Additional MathematicsFull description
addmaths pyear
Addmaths
Full description
project 2Full description
Full description
khas untuk form 5 jer....Full description
Full description
Required for 10th std icse projectFull description
Part 1.1 Famous Statisticians Stati sticians : Pafutny Chebyshev. Chebyshev. Pafnuty Chebyshev (1821-1894) (1821-1894) is a Russian mathemacian who is well known fo Chebyshev!s "heoem# "heoem# which e$ten%s the &o&ees of nomal %istibuons to othe# non-nomal %istibuons with %istibuons with
the fomula
( ( )) 1−
1
2
k
# as lon' as the %istibuon!s %istibuon!s scoes scoes absolute value is less than o e*ual to
k and the stan%a% the stan%a% %eviaon is moe than 1+ "he ine*uality was oi'inally known as the ,ienaym-Chebyshev ,ienaym-Chebyshev ine*uality a.e lin'uist /ene-0ules ,ienaym# the autho of the oi'inal theoem+
Career Pafutny Chebyshev was bon on 1 ay 1821 in 3katovo# alu'a Re'ion# Russia an% 5ie% on 8 5ecembe 1894 in 6t Petesbu'# Russia+ 3ve the couse of his caee he &o%uce% many notable &a&es# inclu%in' &a&es on stascs# calculus# mechanics an% al'eba+ /n 1847# he was a&&ointe% to the nivesity of 6t Petesbu' a.e submin' a thesis tle% On integraon by means of logarithms + /n 18:;# he was &omote% to e$tao%inay &ofesso at 6t Petesbu'+ Pafutny Chebyshev is &eha&s the most famous Russian mathemacian an% is consi%ee% the fathe of mo%en Russian mathemacs+ mathemacs+
Contributions to Mathematics Pafutny Chebyshev is &obably most famous fo the theoem that!s name% a.e him+
"he Chebyshev ine*uality (not to be confuse% with his "heoem) which states that if > is a an%om vaiable with stan%a% %eviaon ?# then the &obability that the outcome of > is no less
than a@? away fom its mean is no moe than
Chebyshev &olynomials+
Chebyshev ,ias
1 2
a
+
de!iaon measures how concentrated the data are around the mean and the more concentrated" the smaller the standard de!iaon.
c.
#he two students with the grade $ will made a huge impact on the performance of the sub%ects in SMK &. #he standard de!iaon from '. become '. and the percentage from *+.,, drop to *+.-.
Part 2 a+
P ( SMKP )=
¿
15
2
1Z
6 \
;
Z
9
6 R
1
:
6 6
1
2
C: ¿ 80730 4 C2 × 2ZCZ ¿ 10626 Z CZ × 24C2 ¿ 276
i+ ii+ iii+
27
i+ ii+
:
¿ 120
2
×
P1
¿ 12
2
Z
2
1
1
A+
A
A
A
A+
Z
2
2
1
1
A
A+
A
A+
A
Z
PZ
1
×
iii+
¿ 3 ×2 ×2 ×1× 1 ¿ 12
Part 3 n= 27, p = i+ ii+
18 27
9 27
1
2
3
3 2
= , q=
× 100 =66
3
Standard Deviation =√ npq
¿
27 ×
1 3
×
2 3
¿ 2.449
b+
n= 9, p = 0.3 , q =0.7 P ( X = 3 )=¿ i+ ii+
A
6 P
c+
a+
A+
17 5
b+
P: P1
School
CZ (;+Z)Z (;+7) ¿ 0.2668 P ( X ≤ 2 )= P ( X =0 ) + P ( X =1 )+ P ( X = 2)
P ( X =0 )=¿
9
9
C; (;+Z); (;+7)9
¿ 0.0404
P ( X = 1)=¿ P ( X =2)=¿
9
C1 (;+Z)1 (;+7)8 9 C2 (;+Z)2 (;+7)7
¿ 0.1556 ¿ 0.2668
P ( X ≤ 2 )= P ( X =0 ) + P ( X =1 )+ P ( X = 2)
¿ 0.0404 + 0.1556 +0.2668 ¿ 0.4628
Part 4 a+
b+
X N ( 46,225 ) mean = 46 , standard devition =√ 225 z=
¿ 15
X − μ σ
z =
52−46 15
=0.4
f (/)
c+ i+
(
P ( X ≥ 52 )= P z ≥
)
52 −46 15
¿ P ( z ≥ 0.4 ) ¿ 0.3446
/
f (/)
ii+
(
P ( X < 30 )= P z <
30 −46 15
)
¿ P ( z ← 1.067) ¿ 0.1430 /
%+
P (30 ≤ X ≤ 52 )= P
(
30− 46 15
≤ z≤
52 −46 15
)
f (/)
¿ P (−1.067 ≤ z ≤ 0.4 ) ¿ 1− P ( z > 0.4 ) − P ( z > 1.067 ) ¿ 1−0.1430 −0.3446 ¿ 0.5124 /
f (/)
e+ ]et minimum scoe is m "otal stu%ents [ 49 Pobability of to& ten stu%ents [
10 469
P ( X > m )=0.0213 m− 46 =0.0213 P z >
(
15
m −46 15
00213
=0.0213
/
)
= 2.028
m=76.42
f+
(
P ( X ≥ 40 )= P z ≥
40 − 46 15
)
¿ P ( z ≥ −0.4 ) ¿ 1− P ( z ≥ 0.4 ) ¿ 1−0.3446 ¿ 0.6554 Numer of students = Proai!it" ×#ota! numer students f (/)