COLUMN BASE PLATE DESIGN (BS5950-1:2000)
Base plate reference;
Compresso! " mome!# : Bo$#s ! #e!so!; #e!so! ;
Des%! &or'es ! mome!#s Axial force;
F c = ;*+,5 ;*+,5;; kN (Compression)
Bending moment;
M = +,2 kNm; +,2 kNm;
Shear force;
Fv = 51,. kN 51,. kN
Co$/m! e#$s Colmn section;
UC .05.059 .05.059 (Gre S25)
!epth;
! = .0,9 mm .0,9 mm
Breadth;
B = .05,. mm .05,. mm
Flange thickness;
" = 15, mm 15, mm
#e$ thickness;
t = 9,9 mm 9,9 mm
!esign strength;
p%c = 25 N&mm 25 N&mm'
Colmn flange to $ase plate eld;
+ mm 3; 3;
Colmn e$ to $ase plate eld;
+ mm 3; 3;
Bsep$#e e#$s Steel grade;
S25
!epth;
!p = 550 mm 550 mm
Breadth;
Bp = 550 mm 550 mm
"hickness;
t p = .5 mm .5 mm
!esign strength;
p%p = 2*5 N&mm 2*5 N&mm'
S#&&e!er e#$s Steel grade;
S25
"hickness;
t s = 22 mm
!esign strength;
p%s = 2*5 N&mm'
!epth at edge of $aseplate;
ds = 5 mm
!epth at colmn flange;
ds' = 150 mm
Stiffener to $ase plate eld;
+ mm 3
Stiffener to colmn flange eld;
+ mm 3 ( !o, 4er#'$ e$s per s#&&e!er)
6o$!% o! 7o$# ! !'8or p$#e e#$s "otal nm$er of $olts;
+ No, M2 Gre +,+
*nner $olt spacing;
s$olt = 150 mm
Spacing $eteen inner and oter $olt;
s$olt' = 150 mm
+dge distance;
e = 50 mm
Anchor plate steel grade;
S25
Anchor plate dimension (s,are);
$ap = 150 mm
Anchor plate thickness;
t ap = 20 mm
!esign strength;
p%ap = 2*5 N&mm'
+m$eddment to top of anchor plate;
+ = 550 mm
Characteristic strength of concrete;
f c = 50 N&mm'
Co!'re#e 'ompresso! &or'e ! 7o$# #e!so! &or'e "o determine approximate effective idth of $aseplate- assme $ase plate $eteen stiffeners acts as a fixed ended $eam./ Moment at stiffener;
Ms = ls'&' ' c
here ls is span $eteen stiffeners
Moment de to cantilever otside stiffeners;
Mc = l &'
here lc is cantilever span $e%ond stiffeners
+,ating the to moments;
lc = ls&√0
!istance $eteen stiffener centrelines;
ls = B 1 t s = ;.2,.; mm
Cantilever span;
lc = ls&√(0) = 1..,* mm
+ffective idth of plate;
B pc = min(Bp- ls 1 '×lc) = 550,0 mm
!istance from $olts to compression edge;
h = ! p / e = 500 mm
Assming a rectanglar compression $lock of idth $ pc- length x and intensit% 230f c then./ From static e,ili$rim;
M = 230f c Bpcx(h/x&') / Fc(h/!p&')
4earranging the ,adratic e,ation;
235fc Bpcx' / 230f cBpchx 1 Fc(h/!p&') 1 M = 2
Factor a;
a = 235 × f c × Bpc = +250,0 N&mm
Factor $;
$ = /230 × f c × Bpc × h = -+250000,0 N
Constant c;
c = F c × (h/!p&') 1 M = 102*12500,0 Nmm
!epth of compression $lock;
x = 6/32 ×$ / √($' / 7×a×c)8&('×a) = 12,* mm
Compression force in concrete;
Cf = 230 × f c × Bpc × x = 20,+ kN
"ension force in $olts;
"f = Cf / Fc = 1.9,. kN Therefore the bolts are in tension
Compresso! se 7e!!% #8 s#&&e!er Center of force for trianglar plate = 235 x 9 = 52mm
125m
L
125m
Cantilever moment in plate along diagonal plane
mcc = 230 × f c × (':)'&' × 52 = 0.1250 Nmmmm
!esign moment;
mc = 0.1250 Nmm&mm
late thickness re,ired;
tpc = √(0 × mc&p%p$p) = .2,* mm
Te!so! se 7e!!% #8 s#&&e!er !istance from inner $olt to face of stiffener;
l $ = B&' / s$olt&' = ;,; mm
!istance from oter $olt to face of stiffener;
l $' = s$olt&' 1 s$olt' / (B&' 1 t s) = ;50,.; mm
*nner $olt lever arm;
m = l$ / 23<×ssp = 1,. mm
ter $olt lever arm;
m' = l$' / 23<×ssp = .,9 mm
Moment in plate (inner $olt);
mt = ('×"f × m) & N$olt = 2+209 Nmm
Moment in plate (oter $olt);
mt' = ('×"f × m') & N$olt = 15.10.2 Nmm
+ffective idth resisting moment (inner $olt);
Bpt = min(e- m&tan(52)) 1 min((!p/!)&'/e-m&tan(52)) = ;
121,1; mm +ffective idth resisting moment (oter $olt);
B pt' = min(e- m'&tan(52)) 1 m'&tan(52) = 12*,1 mm
late thickness re,ired;
tpt = max( √(7 × mt&(p%p×Bpt))- √(7 × mt'&(p%p×Bpt'))) = 1,* mm
P$#e #8'!ess late thickness re,ired;
tp>re, = max(tpc- tpt) = ;.2,* mm;
late thickness provided;
t p = .5 mm PASS - Plate thickness provided is adequate (0.931
S#&&e!er se'#o! '$ss&'#o! &or 7e!!% arameter ε;
ε = ('?: N&mm' & p%s)23: = 1,019
4atio for section classification;
4 = d s'&ts = *,+
Section classification ("a$le );
P$s#'; (@sing stem of "/section)
S8er 'p'#; # 'o$/m! &'e (pos#o! o& mm/m mome!#) v = 230 × p%s × 23 × ts × ds' = 2,2 kN
Shear capacit%; S#&&e!er s8er o! 'ompresso! se Shear force;
c = Cf &' = ;10.,9 N
!epth of stiffener at critical location;
d vc = ds 1 (ds' / ds) × '×x&(!p/!) = ;+2,+ mm
Shear capacit%;
vc = 230 × p%s × 23 × ts × dvc = 2*0, kN PASS - Shear capacit! on co"pression side is adequate (0.399 The stiffener is in #$% shear at the colu"n face on the co"pression side (0.&&0
S#&&e!er 7e!!% o! 'ompresso! se 9ever arm;
lac = (!p/!)&' / x&' = ;11,+; mm
Moment in stiffener;
msc = Cf &' × lac = ;11,9.; kNm
For effective length of cantilever ("a$le 7)./ At spport;
Co!#!/o/s #8 $#er$ ! #orso!$ res#r!# (')
At tip;
L#er$ res#r!# #o #e!so! &$!%e (2)
9oading condition;
Norm$
+ffective length;
9 + = 23 × (!p/!)&' = ;10+,9; mm
β = select(Class-lastic-32-Compact-32-Semi/compact-2300?-2) = 1,000 β = 1,00 4atio β (cl3 735303); +,ivalent slenderness (B3'3?);
λ9" = '3< × (β×9+×ds'&ts')23: = 1*,.
Bending strength ("a$le 0);
p$ = 2*5,0 N&mm'
Bending capacit% (cl3 73'3:);
mcsc = min(3'×p%s×ts×ds''&0- p$×ts×ds''&7)
mcsc = 2*,2 kNm PASS - Stiffener bendin' capacit! on co"pression side is adequate (0.)) S#&&e!er s8er o! #e!so! se Shear force;
t = "f &' = *9, kN
!epth of stiffener at critical location;
d vt = ds 1 (ds' / ds) × '×e&(!p/!) = ;10*,0; mm
Shear capacit%;
vt = 230 × p%s × 23 × ts × dvt = ...,* kN PASS - Shear capacit! on tension is adequate (0.&09 The stiffener is in #$% shear at the colu"n face on the tension side (0.1*
S#&&e!er 7e!!% o! #e!so! se 9ever arm;
lat = (!p/!)&' / e = ;1,1; mm
Moment in stiffener;
mst = "f &' × lat = ,95 kNm
Bending capacit%;
mcst = min(3'×p%s×ts×ds''&0- p%s×ts×ds''&7) mcst = 2*,2 kNm PASS - Stiffener bendin' capacit! on tension side is adequate (0.1*9
S#&&e!er #o 7se p$#e e$ #eld force per mm de to colmn shear force;
f sl = Fv&6' × ('×(!p/!) 1 !)8 = ;0,0.2; kN&mm
9ongitdinal capacit% of < mm fillet eld;
p sl = 1,2.2 kN&mm; (Cl3 03<3?35))
PASS - #on'itudinal capacit! of stiffener to base plate +eld is adequate (0.0&, Assme the force of a single $olt is resisted $% the eld on one side of the stiffener3 +ffective eld length;
l s = min(Bpt- Bpt') = ;121,1; mm
#eld force per mm;
fst = '×"f &(N$olt × ls) = 0,2++ kN&mm
"ransverse capacit% of < mm fillet eld;
p st = 1,50 kN&mm; (Cl3 03<3?35)
PASS - Transverse capacit! of stiffener to base plate +eld is adequate (0.1* ratio s = (f sl&psl)' 1 (f st&pst)' = 0,0.*
4esltant effect (cl3 03<3?35);
PASS - Stiffener to base plate +eld is adequate (0.03, S#&&e!er #o 'o$/m! e$s #eld force per mm de to colmn shear force;
f sct = Fv&(<×ds') = ;0,0.; kN&mm
"ransverse capacit% of < mm fillet eld;
p sct = 1,50 kN&mm; (Cl3 03<3?35)
PASS - Transverse capacit! of colu"n to stiffener +eld is adequate (0.0&* Considering one stiffener and taking moments a$ot the centreline of the colmn flange on the compression side./ ft = 6Cf &' × (!p/!/x1")&' 1 "f &' × ((!p1!/")&'/e)8&(' × (!/")
#eld force on tension side;
× ds') f t = 0,0 kN&mm #eld force on compression side;
fc = (Cf &' 1 '×f t× ds' / "f &')&('×ds') = ;0,55; kN&mm
Maximm eld force per mm;
fscl = max(f t- f c) = 0,55 kN&mm
9ongitdinal capacit% of < mm fillet eld;
p scl = 1,2.2 kN&mm; (Cl3 03<3?35)
PASS - #on'itudinal capacit! of colu"n to stiffener +eld is adequate (0.)0 4esltant effect (cl3 03<3?35);
ratio sc = (f scl&pscl)' 1 (f sct&psct)' = 0,20. PASS - olu"n to stiffener +eld is adequate (0.&03
6o$!% o! 7o$#s Force per $olt;
F$olt = ('×"f )& N$olt = .,+ kN
"ensile area per $olt;
At>$ = .5.,0 mm'
"ensile strength;
pt>$ = 5*0 N&mm'
"ension capacit% (cl3 030);
t>$ = 23< × pt>$ × At>$ = ;15+,1; kN; PASS - /olt capacit! is adequate (0.&&0
A!'8or p$#es Force per anchor plate;
Fap = F$olt = .,+ kN
Bolt hole diameter in anchor plate;
dh = 2 mm
Anchor plate $earing area; Bearing capacit%;
Aap = $ap' / π×dh'&7 = 2192 mm' ap = 230 × f c × Aap = *5,+ kN PASS - Anchor plate bearin' capacit! is adequate (0.0)3
Bearing pressre on anchor plate;
fap = Fap & Aap = 1,* N&mm'
#idth of $olt head (across flats);
d$h = .*,0 mm
Maximm cantilever length;
lap = $ap&' × √(') / d$h&' = ++,1 mm
Bending moment in plate;
map = f ap × lap'&' = *,2 Nm&mm
Bending capacit%;
mcap = p%ap × tap'&7 = 2*,5 Nm&mm PASS - Anchor plate bendin' capacit! is adequate (0.&3&
6o$!% o! 7o$# !'8or%e Note / the folloing calclation to check the holding don $olt anchorage into the fondation assmes that the distance from the edge of an anchor plate to the nearest edge of the fondation is at least e,al to the depth of em$edment of the anchor plate3 "ension force to $e resisted;
Ft = "f = 1.9,. kN
"he clear distance $eteen anchor plates is less than the em$edment (+)3 +ffective concrete plan area;
Aplan>eff = 6s$olt1'×s$olt'1$ap8×($ap1'×+)1π×+'1'×$ap×+/
(N$olt&')×$ap' Aplan>eff = 15..2 mm' For tension failre pll/ot- effective tensile area;
At>eff = Aplan>eff = 15..2 mm'
"ensile strength of concrete;
pt = 1,*2 N&mm'
ll/ot capacit% of tension $olts;
t = pt × At>eff = 2+*,0 kN PASS - oldin' do+n bolt anchora'e is adequate (0.0*
S8er #r!s&er #o 'o!'re#e Assmed coefficient of friction;
µ = 2352
Availa$le shear resistance;
v = Cf × µ = ;*2; kN PASS - rictional shear capacit! is adequate (0.*&3