INTECONT® PLUS Operating Instructions
DE GB FR IT ES NL SE RU CS HU CZ BG
BV-H2007AA
Bedienungshinweise Operating instructions Instructions de service Istruzioni per l’uso Instrucciones de uso Bedieningsinstructie Manöverhänvisningar Óêàçàíè ïî ïîë¾çâàíèþ Vaga za traku Kezelési útmutató Návod k obsluze Óêàçàíèÿ çà ðàáîòà
Bandwaage Belt Weigher Bascule Intégratice Bilancia per nastro Báscula de cinta Bandweger Bandvåg Kîíâåéåðíûå Âåñû Uputstva za upravljanje Szállítószalag-mérleg Pásová váha Ëåíòîâà âåçíà
Service
Service
Qualität und Zuverlässigkeit sind die Grundlagen der Schenck Process Unternehmensphilosophie, weltweit. Deshalb bieten wir Ihnen ein umfangreiches Service-Konzept, von der strengen Qualitätskontrolle über die Montage und Inbetriebnahme bis hin zur lückenlosen Betreuung an. Wir sind jederzeit für Sie da!
Quality and reliability form the basis for Schenck Process corporate philosophy all over the world. That’s why we offer you an extensive service strategy starting with our stringent quality control through assembly and commissioning right down to all-round support. We’re always there for you.
Helpdesk - kostenfrei
Free Helpdesk
(Mo. - Fr., mindestens 8.00 – 17.00 Uhr MEZ)
(Monday through Friday from at least 8 o’clock to 5 p.m. CET)
Während unserer normalen Bürozeiten stehen Ihnen in jedem Geschäftsbereich Service-Spezialisten zur Problemfall- / Störfallanalyse zur Verfügung.
Service specialists are available to you in every department during our normal office hours for analying problems and malfunctions.
Heavy Industry
Vibrating & Screening Technology
Building materials, mining, foundry, steel and cement T +49 61 51 - 32 31 38 F +49 61 51 - 32 32 70
[email protected]
T +49 61 51 - 1531 35 25 F +49 61 51 - 1531 30 96
[email protected]
Light Industry
Spare Parts & Components
Chemistry, plastics, foodstuffs and pharmaceuticals T +49 61 51 - 1531 25 72 F +49 61 51 - 1531-26 68
[email protected]
T +49 61 51 - 1531 17 58 F +49 61 51 - 1531 36 32
[email protected] [email protected]
Transport Automation All industries with logistics processes and trains T +49 61 51 - 1531 24 48 F +49 61 51 - 1531 13 69
[email protected]
Individuelles Telefon Consulting – kostenpflichtig
Individual phone consulting (fee required)
(Mo. - Fr., mindestens 8.00 – 17.00 Uhr MEZ)
(Monday through Friday from at least 8 o’clock to 5 p.m. CET)
Sie wünschen eine Inbetriebnahme mit telefonischer Unterstützung eines Service-Spezialisten oder eine Online-Diagnose / Optimierung Ihres Systems? Wir sind für Sie da. Planen Sie mit uns Ihren Wunschtermin.
Do you want one of our service specialists to give you phone support in commissioning your system or on-line diagnosis / system optimisation? We’re there for you. Schedule an appointment with us whenever you need it.
Kundenservice 24h Notfall-Hotline – kostenfrei
Free 24 h Customer Service Hotline
Sie haben einen Stör- / Problemfall außerhalb unserer normalen Arbeitszeiten. Kein Problem, Sie können auch außerhalb unserer Bürozeiten jederzeit einen Schenck-Servicemitarbeiter zur Problem- / Störfallannahme, Service-Disposition und ‚Ersten Hilfe’ erreichen.
You have a malfunction or problem outside of our normal business hours. No problem. You can reach a Schenck service technician at any time outside of our office hours for recording problems or malfunctions, service scheduling and ‘first aid’.
24h Notfall-Hotline:
24h Emergency-Hotline :
+49 172 – 650 17 00 Transport Automation und statische WägetechnikTransport +49 171 – 225 11 95 Heavy Industry, Light Industry ohne statische Wägetechnik
+49 172 – 650 17 00 Automation and Static Weighing Equipment +49 171 – 225 11 95 Heavy Industry, Light Industry excluding Static Weighing Equipment
Copyright 2007 Schenck Process GmbH Pallaswiesenstraße 100, 64293 Darmstadt, Germany www.schenckprocess.com Alle Rechte vorbehalten. Jegliche Vervielfältigung dieser Dokumentation, gleich nach welchem Verfahren, ist ohne vorherige schriftliche Genehmigung durch die Schenck Process GmbH, auch auszugsweise, untersagt.
All rights reserved. Any reproduction of this documentation, regardless of method, without prior permission by Schenck Process GmbH in writing, even by excerpt, is prohibited.
Änderungen ohne vorherige Ankündigung bleiben vorbehalten.
Subject to change without prior notice.
Hinweis: Originalbetriebsanleitung
Note: Translation of the original instructions
Contents
VBW
Contents DEUTSCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ENGLISH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 FRANÇAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ITALIANO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ESPAÑOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 NEDERLANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SVENSKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PÓÑÑÊÈÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 SRPSKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 MAGYAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ÈESKY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ÁÚËÃÀÐÑÊÈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
I
VBW
Contents
- Reserved for user’s notes -
II
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
DEUTSCH H2
LAUFMELDUNG, BETRIEBSSTATUS EREIGNISMELDUNGEN Z1 = FOERDERMENGE I = FOERDERSTAERKE
kg/m
L2
QUITTIEREN BETRIEBSBEREIT
ON { POWER CPU OK
m/s
H3 L3
FUNKTION ABBRECHEN
o Z1 = 1500 kg -- I = 100 kg/h
ALARM
C1 L4
kg/h
M
MIN MAX
EINGABE VORBEREITEN
AUS EIN
H1 L1
FUNKTION STARTEN
S2
ZAEHLER LOESCHEN
EREIGNISMELDUNGEN
UNTERE ANZEIGE VORWAEHLEN
FUNKTIONSVERTEILER
gB U T
START/STOP Ein- bzw. Ausschalten
wenn vorgewählt
SCROLL
Untere Anzeige und Funktionen vorwählen 1. Zähler Z2, Z3 4. Bandbeladung Q 2. Förderstärke I 5. Bandgeschwindigkeit v 3. Förderstärke Ir in %
i
RESET
Zähler löschen 1. Nr. des gewünschten Zählers eingeben (1 oder 2 ) 2. Mit Taste ENTER Eingabe bestätigen 3. oder mit Taste ESCAPE Eingabe abbrechen 4. oder mit Taste DELETE falsche Eingabe löschen
G
FUNCTION
Funktionsverteiler und Ereignismeldungen aufrufen 1. Mit Tasten SCROLL gewünschte Funktion wählen. Liegt ein Ereignis vor, ist schon die Funktion “Ereignisse zeigen” vorgewählt. 2. Mit ENTER Funktion aktivieren. 3. Mit den Tasten SCROLL können nacheinander alle vorliegenden Ereignismeldungen eingesehen werden. 4. Rücksprung zu den Normalanzeigen mit ESCAPE.
O N f
DELETE
Ereignismeldungen quittieren, Eingaben löschen.
ESCAPE
Funktion abbrechen und Rücksprung zu den Normalanzeigen.
ENTER
Eingabe bestätigen Funktionen starten, z.B. Ereignisse anzeigen (siehe bei FUNCTION)
P
DATA
Eingabe vorbereiten, z.B. Parameter
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
1
VBW
Reserved for user’s notes
2
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
ENGLISH RUNNING MESSSAGE, OPERATING STATUS
H2
EVENT MESSAGES Z1 = FEED AMOUNT I
kg/m
= FEED RATE
L2
ACKNOWLEDGE READY
ON { POWER CPU OK
m/s
H3 L3
ABORT FUNCTION
o Z1 = 1500 kg -- I = 100 kg/h
ALARM MIN STOP
PREPARE ENTRY
START
L1 kg/h
M
MAX
H1
C1 L4
START FUNCTION
S2
RESET COUNTER
PRESELECT LOWER DISPLAY
EVENT MESSAGES
FUNCTION DISTRIBUTOR
gB U T
START/STOP if preselected SCROLL
Select lower display line and functions (1) Counters Z2, Z3 (4) Belt load Q (2) Feed rate I (5) Belt speed v (3) Feed rate Ir in %
i
RESET
Reset counter(s) (1) Enter number of desired counter (1 or 2). (2) Use ENTER key to acknowledge (3) Use ESCAPE key to abort input (4) Use DELETE key to delete faulty digits
G
FUNCTION
Call function distributor and event messages (1) SCROLL keys let you select desired function If an event is available, “Display Event” function is preselected (2) ENTER key lets you activate function (3) SCROLL keys let you view available event messages one after the other (4) ESCAPE key lets you return to normal displays
O N f
DELETE
Acknowledge event messages, delete inputs
ESCAPE
Abort function and return to normal displays
ENTER
Acknowledge input start functions, e.g. Display Events (see “FUNCTION”)
P
DATA
Prepare input, e.g. parameters
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
3
VBW
Reserved for user’s notes
4
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
FRANÇAIS SIGNALISATION DE MARCHE, ETAT DE FONCTIONNEMENT
H2
SIGNALISATION D'EVENEMENT Z1 = QUANTITE TOLALISEE I = DEBIT
kg/m
L2
ACOUITTER PRET AU SERVICE
ON { POWER CPU OK
m/s o Z1 = 1500 kg -- I = 100 kg/h
H3 L3
ROMPRE FONCTION
ALARM MIN ARRET
MARCHE M.A.Z. COMPTEUR MENU DE FONCTION
PREPARER L'ENTREE
L1 kg/h
M
MAX
H1
C1 L4
LANCER FONCTION
S2 PRESELECTIONNER AFFICHAGE INFERIEUR
SIGNALISATION D' EVENEMENTS
gB U T
START/STOP Marche ou Arrêt
si prédéterminé
SCROLL
Sélectionner l’affichage inférieur et fonctions 1. Compteur Z2, Z3 4. Charge sur la bande Q 2. Débit I 5. Vitesse de la bande v 3. Débit Ir en %
i
RESET
Effacement compteur 1. Sélectionner compteur désiré N°. 1 ou 2 2. Avec la touche ENTER confirmer l’entrée 3. ou avec la touche ESCAPE interrompre l’entrée 4. ou avec la touche DELETE effacer les mauvaises entrées
G
FONCTION
Sélectionner le menu des fonctions et annonces événements 1. Avec les touches SCROLL choisir la fonction souhaitée Si un événement se présente, la fonction “indiquer évén.” est déjà sélectionnée 2. Valider la fonction avec ENTER 3. Avec les touches SCROLL on peut consulter les annonces d’événements existantes les unes après les autres 4. Retour aux affichages normaux avec ESCAPE
O N f
DELETE
Acquittement des annonces d’événements, effacement entrée
ESCAPE
Arrêter la fonction et retour aux affichages normaux
ENTER
Valider l’entrée Démarrer les fonctions, par ex. indiquer les événements (voir sous FONCTION)
P
DATA
Préparer une entrée, par ex. Paramètre
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
5
VBW
Reserved for user’s notes
6
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
ITALIANO H2
OPERAZ. IN CORSO. STATO FUNZ. MESS. DI EVENTO Z1 = QAT`TOTALIZZ.
kg/m
I = PORTATA
L2 CONFERMA
PRONTO AL. FUNZ.
ON { POWER CPU OK
m/s
H3 L3
INTERR. FUNZIONI
o Z1 = 1500 kg -- I = 100 kg/h
ALLARME MIN MAX
INTROD. VAL. IMP.
ON AZZER. TOTALIZZ.
L1 kg/h
M OFF
H1
C1 L4
AVVIO FUNZIONI
S2 PREFISS. INDICAZ. IMP.
MESSAGGI EVENTO
MENU INDIR. FUNZIONI
gB T
START/STOP Inserire o disinserire SCROLL
Selezionare display inferiore e funzioni 1. Totalizzatori Z2, Z3 4. Caricamento del nastro Q 2. Portata I 5. Velocità del nastro v 3. Portata Ir in %
i
RESET
Azzerare totalizzatore 1. Introdurre n° del totalizzatore desiderato (1 o 2 ) 2. Con il tasto ENTER confermare l’introduzione 3. oppure con il tasto ESCAPE interrompere l’introduzione 4. oppure con il tasto DELETE cancellare l’introduzione errata
G
FUNCTION
Richiamare il menu di indirizzamento funzioni e i messaggi di evento 1. Con i tasti SCROLL scegliere la funzione desiderata In presenza di un evento è già prefissata la funzione “Indicare eventi” 2. Con ENTER attivare la funzione 3. Con i tasto SCROLL è possibile fare visualizzare in successione tutti i messaggi di evento presenti 4. Ritorno alle indicazioni normali con ESCAPE
O N f
DELETE
Confermare i messaggi di evento, cancellare le introduzioni
ESCAPE
Interrompere la funzione e ritornare alle indicazioni normali
ENTER
Confermare l’introduzion Avviare le funzioni, ad es. visualizzare gli eventi (cf. sotto FUNCTION)
P
DATA
Preparare l’introduzione, ad es. parametri
se selezionata
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
7
VBW
Reserved for user’s notes
8
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
ESPAÑOL H2
MENSAJE DE FUNCIONAMIENTO, ESTADO DE FUNCIONAMIENTO, AVISOS DE ACONTECIMIENTOS Z1 = CANTIDAD TRASNPORTADA I = RENDIMIENTO
kg/m
L2
CONFIRMAR LISTO PARA OPERACIÓN
ON { POWER CPU OK
m/s
H3 L3
CANCELAR FUNCIÓN
o Z1 = 1500 kg -- I = 100 kg/h
ALARM MIN MAX
PREPARAR ENTRADA
ON
BORRAR CONTADOR
L1 kg/h
M OFF
H1
C1 L4
INICIAR FUNCIÓN
S2 PRESELECCIONAR INDICACIÓN ANTERIOR
AVISOS DE ACONTECIMIENTOS
DISTRIBUIDOR DE FUNCIONES
gB U T
START/STOP Conexión o desconexión
si se ha preseleccionado
SCROLL
Preseleccionar la indicación inferior y las funciones 1. Contadores Z2, Z3 4. Carga de la cinta Q 2. Rendimiento I 5. Velocidad de cinta v 3. Rendimiento Ir en %
i
RESET
Borrar contador 1. Introducir Nº del contador deseado (1 o 2 ) 2. Con la tecla ENTER confirmar la introducción 3. o con la tecla ESCAPE cancelar la introducción 4. o con la tecla DELETE borrar la introducción errónea
G
FUNCTION
Activar el distribuidor de funciones y los avisos de acontecimientos 1. Seleccionar la función deseada con las teclas SCROLL Si hay un acontecimiento, ya está preseleccionada la función “INDIC. ACONTECIM.” 2. Activar la función con ENTER 3. Con las teclas SCROLL pueden examinarse uno tras otro todos los avisos de acontecimientos existentes 4. Regreso a las indicaciones normales con ESCAPE
O N f
DELETE
Confirmar los avisos de acontecimientos, borrar las introducciones
ESCAPE
Cancelar la función y regresar a las indicaciones normales
ENTER
Confirmar la introducción Iniciar las funciones, p. ej. “INDIC. ACONTECIM.” (véase en FUNCTION)
P
DATA
Preparar la entrada, p. ej. parámetro
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
9
VBW
Reserved for user’s notes
10
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
NEDERLANDS Lopende melding, Bedrijfstoestand
H2
Melding van gebeurtenissen Z1 = transporthoeveelheid
kg/m
I = transportsterkte
L2
Kwiteren Bedrijfsklaar
ON { POWER CPU OK
m/s
H3 L3
Functie stoppen
o Z1 = 1500 kg -- I = 100 kg/h
ALARM MIN
C1 L4
kg/h
M
MAX
Ingave voorbereiden
Uit In
H1 L1
Functie starten
S2 Teller op nul
Onderste stand kiezen
Storingsmelder
Functieverdeler
0 1 U T
START/STOP In-uitschakelen
wanneer gekozen
SCROLL
Onderste stand en functies kiezen 1. teller Z2,Z3 4. bandbelading Q 2. transportsterkte I 5. bandsnelheid v 3. transportsterkte in %
i
RESET
Teller op nul (wissen) 1. nummer van de gewenste teller ingeven (1 of 2) 2. met toets ENTER ingave bevestigen 3. of met toets ESCAPE ingaves stoppen 4. of met toets DELET foutieve ingave wissen
G
FUNCTION
Functieverdeler en storingsmelder oproepen 1. met de toets SCROLL de gewenste functie kiezen. Bij bepaalde gebeurtenissen storingen), is de functie “gebeurtenis tonen” reeds gekozen 2. met ENTER functie activeren 3. met de SCROLL toets kunnen één na één alle meldingen van gebeurtenissen geraadpleegd worden 4. terug naar hoofdmenu met ESCAPE
O N f P
DELETE
gebeurtenissen kwiteren, input wissen
ESCAPE
Functie stoppen en terug naar hoofdmenu
ENTER
Inputbevestigen, functie starten, bvb storingen tonen
DATA
Data input voorbereiden, bvb parameter
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
11
VBW
Reserved for user’s notes
12
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
SVENSKA H2
DRIFTSMEDDELANDE, DRIFTSSTATUS HÄNDELSEMEDDELANDEN Z1 = MATNINGSMÄNGD I = MATNINGSTJOCKLEK
kg/m
L2
KVITTERA DRIFTSKLAR
ON { POWER CPU OK
m/s
H3 L3
AVBRYTA FUNKTION
o Z1 = 1500 kg -- I = 100 kg/h
LARM
FÖRBERED INMATNING
FRÅN TILL RÄKNARE RADERA
L1 kg/h
M
MIN MAX
H1
C1 L4
STARTA FUNKTION
S2 HÄNDELSEMEDDELANDEN
VÄLJ UNDRE INDIKERING
FUNKTIONSFÖRDELARE
gB U T
START/STOPP Till-resp. Frånkoppling
om förutvalt
SCROLL
Förval av undre indikering och funktioner 1. Räknare Z2, Z3 4. Bandlast Q 2. Matningstjocklek I 5. Bandhastighet v 3. Matningstjocklek Ir i %
i
RESET
Radera räknare 1. Mata in nr. för önskad räknare (1 eller 2 ) 2. Med tangent ENTER bekräfta inmatning 3. eller med tangent ESCAPE avbryt inmatning 4. eller med tangent DELETE radera felaktig inmatning
G
FUNCTION
Ropa upp funktionsfördelare och händelsemeddelanden 1. Välj önskad funktion med tangenterna SCROLL Föreligger en händelse, är redan funktionen “visa händelser” vald 2. Aktivera funktionen med ENTER 3. Med tangenterna SCROLL kan alla föreliggande händelsmeddelanden läsas efter varandra. 4. Återhopp till normalindikeringarna med ESCAPE
O N f
DELETE
Kvittera händelsemeddelanden. radera inmatningar
ESCAPE
Avbrott av funktionen och återhopp till normalindikeringarna
ENTER
Bekräfta inmatningen starta funktioner, t.ex. indikera händelser (se under FUNCTION)
P
DATA
Förbered inmatning, t.ex. parameter
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
13
VBW
Reserved for user’s notes
14
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
PÓÑÑÊÈÉ СООБЩЕНИЕ О ТЕ КУЩЕМ РОЦЕССЕ, СОСТОЯНИЕ ЭКСПЛУАТАЦИИ СООБЩЕНИЯ О СОБЫТИЯХ
H2
Z1 = КОЛИЧЕСТВО ПОДАВАЕМОГО МАТЕРИАЛА I = ПРОИЗВОДИТЕЛЬНОСТЬ
кг/м
L2
КВИТИРОВАТЬ ГОТОВНОСТЬ К ОПЕРАЦИИ
ON { POWER CPU OK
м/сек
H3 L3
ПРЕРВАТЬ ФУНКЦИЮ
o Z1 = 1500 kg -- I = 100 kg/h
ТРЕВОГА
H1
C1 L4
L1 кгч
M
МИН. МАКС.
ВЫКЛ.
ВКЛ
СБРОСИЬ СЧЕТЧИК
ПОДГОТОВИТЬ ВВОД
ПУСТИТЬ ФУНКЦИЮ
S2
ПРЕДВЫБРАТЬ НИЖНЮЮ ИНДИКАЦИЮ
СООБЩЕНИЯ О СОБЫТИЯХ
РАСПРЕДЕЛИТЕЛЬ ФУНКЦИЙ
gB U T
START/STOP Âêëþ÷åíèå èëè âûêëþ÷åíèå
ïî ïðåäâûáîðó
SCROLL
Ïðåäâûáðàòü íèæíþþ èíäèêàöèþ è ôóíêöèè 1. Ñ÷åò÷èê Z2, Z3 4. Çàãðóçêà ëåíòû Q 2. Ïðîèçâîäèòåëüíîñòü I 5. Ñêîðîñòü ëåíòû v 3. Ïðîèçâîäèòåëüíîñòü Ir â %
i
RESET
Ñáðîñ ñ÷åò÷èêà 1. Ââåñòè ¹ òðåáóåìîãî ñ÷åò÷èêà 1 èëè 2 2. Ïîäòâåðäèòü ââîä ñ ïîìîùüþ êëàâèøè ENTER 3. Èëè ïðåðâàòü ââîä ïîñðåäñòâîì êëàâèøè ESCAPE 4. Èëè ñòåðåòü íåïðàâèëüíî ââåäåííûå äàííûå ñ ïîìîùüþ êëàâèøè DELETE
G
FUNCTION
Âûçâàòü ðàñïðåäåëèòåëü ôóíêöèé è ñîîáùåíèÿ î ñîáûòèÿõ 1. Âûáðàòü òðåáóåìóþ ôóíêöèþ ñ ïîìîùüþ êëàâèøè SCROLL (ïðîêðóòêà). Ïðè íàëè÷èè ñîáûòèÿ, óæå ïðåäâûáðàíà ôóíêöèÿ “Ïîêàçàòü ñîáûòèÿ” . 2. Àêòèâèçèðîâàòü ôóíêöèþ ñ ïîìîùüþ êëàâèøè ENTER. 3. Êëàâèøè SCROLL ïîçâîëÿþò ïîñëåäîâàòåëüíûé ïðîñìîòð âñåõ èìåþùèõñÿ ñîîáùåíèé î ñîáûòèÿõ. 4. Âîçâðàò ê íîðìàëüíûì èíäèêàöèÿì ñ ïîìîùüþ êëàâèøè ESCAPE
O N f
DELETE
Êâèòèðîâàòü ñîîáùåíèÿ î ñîáûòèÿõ, ñòåðåòü ââåäåííûå äàííûå
ESCAPE
Ïðåðâàòü ôóíêöèþ è âîçâðàò ê íîðìàëüíûì èíäèêàöèÿì
ENTER
Ïîäòâåðäèòü ââåäåííûå äàííûå Ïóñòèòü ôóíêöèè, íàïðèìåð, ôóíêöèþ ïîêàçàíèÿ ñîáûòèé (ñì. òàêæå FUNCTION)
P
DATA
Ïîäãîòîâèòü ââîä, íàïðèìåð, ïàðàìåòðîâ
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
15
VBW
Reserved for user’s notes
16
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
SRPSKI H2
PRIJAVA KRETANJA, STATUS POGONA PRIJAVE DOGAÐAJA Z1 = KOLIČINA KOJA SE TRANSPORTUJE I = INTENZITET TRANSPORTA
SPREMAN ZA POGON
kg/m
L2
KVITIRAT I
ON { POWER CPU OK
m/s
H3 L3
FUNKCIJU PREKINUTI
o Z1 = 1500 kg -- I = 100 kg/h
ALARM
MAX ISKLJUČITI UKLJUČITI OBRISATI PODATKE BROJAČA RASPODELJIVAČ FUNKCIJA
gh U T
PRIPREMITI DAVANJE PODATAKA
L1 kg/h
M
MIN
H1
C1 L4
FUNKCIJU STARTOVATI
DONJI POKAZIVAČ PRETHODNO IZABRATI
S2 PRIJAVE DOGAÐAJA
START/STOP Ukljuèiti odn. iskljuèiti ako je prethodno izabrano SCROLL
Donji pokazivaè i funkcije prethodno izabrati Donji pokazivaè i funkcije prethodno izabrati 1. Brojaè Z2, Z3 4. Optereæenje trake Q 2. Intenzitet transporta I 5. Brzina trake v 3. Intenzitet transporta Ir u %
i
RESET
Obrisati podatke brojaèa 1. Dati podatke eljenog brojaèa (1 ili 2) 2. Dirkom ENTER potvrditi davanje podataka 3. ili dirkom ESCAPE prekinuti davanje podataka 4. ili dirkom DELETE obrisati pogrešno date podatake
G
FUNCTION
Raspodeljivaèe funkcija i prijave dogaðaja pozvati 1. Dirkom SCROLL izabrati eljenu funkciju. Ako postoji neki dogaðaj funkcija “Ereignisse zeigen” je veæ prethodno izabrana 2. ENTER-om aktivirati funkciju 3. Dirkama SCROLL mogu se pogledati uzastopce sve postojeæa prijave dogaðaja 4. Povratni skok ESCAPE-om ka normalnim pokazivaèima
O N f
DELETE
Prijave dogaðaja kvitirati, date podatke obrisati
ESCAPE
Funkciju prekinuti i povratni skok u normalne pokazivaèef
ENTER
Davanje podataka potvrditi Funkcije startovati, n.p. pokazati dogaðaje (vidi kod FUNCTION)
P
DATA
Davanje podataka pripremiti, n.p. parametre
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © SCHENCK PROCESS
17
VBW
- Reserved for user’s notes -
18
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
MAGYAR
H2
FUTÁSJEL, ÜZEMÁLLAPOT ESEMÉNYÜZENETEK Z1 = SZÁLLÍTOTT MENNYISÉG I = SZÁLLÍTÓTELJESÍTMÉNY
L2
NYUGTÁZÁS ÜZEMKÉSZ
ON { POWER CPU OK
H3 L3
FUNKCIÓ MEGSZAKÍTÁSA
o Z1 = 1500 kg -- I = 100 kg/h
RIASZTÁS MIN MAX
C1 L4
H1 L1
M KI
BEVITEL ELŐKÉSZÍTÉSE
BE
FUNKCIÓ INDÍTÁSA
S2
SZÁMLÁLÓ TÖRLÉS
ALSÓ KIJELZŐ KIVÁLASZTÁSA
ESEMÉNYÜZENETEK
FUNKCIÓINTÉZŐ
gB U T
START/STOP Be- ill. kikapcsolás
ha ki van választva
SCROLL
Alsó kijelzõ és funkciók kiválasztása 1. Számláló Z2, Z3 4. Szalagterhelés Q 2. Szállítóteljesítmény I 5. Szalagsebesség v 3. Szállítóteljesítmény Ir %-ban
i
RESET
Számláló törlés 1. A kívánt számláló számának beírása (1 vagy 2) 2. ENTER gombbal bevitel megerõsítése 3. vagy az ESCAPE gombbal bevitel megszakítása 4. vagy a DELETE gombbal hibás bevitel törlése
G
FUNCTION
Funkcióintézõ és eseményüzenetek felhívása 1. A SCROLL gombokkal kiválasztjuk a kívánt funkciót Ha van esemény, az “Eseményeket mutat” funkció már ki van választva 2. Az ENTER gombbal aktívra váltjuk a funkciót 3. A SCROLL gombokkal egymás után megtekinthetjük az összes aktuális eseményüzenetet 4. Visszatérés a normál kijelzésekre az ESCAPE billentyûvel
O N f
DELETE
Eseményüzenetek nyugtázása, bevitel törlése
ESCAPE
Funkció megszakítása és visszatérés a normál kijelzésekhez
ENTER
Bevitel megerõsítése Funkciók indítása, pl. Eseményeket mutat (lásd a FUNCTION gombnál)
P
DATA
Bevitel elõkészítése, pl. paraméter
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © SCHENCK PROCESS
19
VBW
- Reserved for user’s notes -
20
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
ÈESKY
gB U T i
START/STOP Zapnutí popø. Vypnutí (je-li pøedvoleno) SCROLL
Pøedvolba spodního displeje a funkcí 1. Poèítadlo Z2, Z3 4. Zatíení pásu Q 2. Dopravní síla I 5. Rychlost pásu v 3. Dopravní síla Ir v %
RESET
Vymazání poèítadla 1. Zadejte è. poadovaného poèítadla (1 nebo 2 ) 2. Vloený údaj potvrïte pomocí klávesy ENTER 3. nebo zrušte pomocí klávesy ESCAPE 4. nebo vymate pomocí klávesy DELETE
G
FUNCTION
Spuštìní funkèního pøepínaèe a hlášení událostí 1. Pomocí klávesy SCROLL zvolte poadovanou funkci V pøípadì existující události je funkce “Zobrazení události” pøedvolena 2. Pomocí ENTER aktivujte funkci 3. Pomocí klávesy SCROLL je moné prohlédnout si všechna hlášení po sobì 4. Zpìt k standardnímu zobrazení pomocí klávesy ESCAPE
O N f
DELETE
Potvzení hlášení událostí, vymazání dat
ESCAPE
Pøerušení funkce a návrat ke standardnímu zobrazení
ENTER
Potvrzení vloených dat Spuštìní funkcí, napø. zobrazení událostí (viz. FUNCTION)
P
DATA
Pøíprava vloení dat, napø. parametry
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
21
VBW
- Reserved for user’s notes -
22
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
ÁÚËÃÀÐÑÊÈ
gB U T
START/STOP Âêë. ðåñï. èçêë. SCROLL
Èçáèðàíå íà äîëíîòî ïîêàçàíèå è ôóíêöèè 1. Áðîÿ÷è Z2, Z3 4. Íàòîâàðâàíå íà ëåíòàòà Q 2. Ïðîèçâîäèòåëíîñò I 5. Ñêîðîñò íà ëåíòàòà v 3. Ïðîèçâîäèòåëíîñò Ir â %
i
RESET
Èçòðèâàíå íà áðîÿ÷è 1. Âúâåæäàíå Nr. íà æåëàíèÿ áðîÿ÷ (1 èëè 2 ) 2. Ïîòâúðæäàâàíå íà âúâåæäàíåòî ñ êëàâèøà ENTER 3. Èëè ïðåêúñâàíå íà âúâåæäàíåòî ñ êëàâèøà ESCAPE 4. Èëè èçòðèâàíå íà ïîãðåøíî âúâåäåíè äàííè ñ êëàâèøà DELETE
G
FUNCTION
Èçâèêâàò ñå ðàçïðåäåëèòåëÿ íà ôóíêöèèòå è ñúîáùåíèÿòà çà ñúáèòèÿ 1. Æåëàíàòà ôóíêöèÿ ñå èçáèðà ñ êëàâèøèòå SCROLL àêî èìà íàëèöå íÿêàêâî ñúáèòèå, ôóíêöèÿòà “Ereignisse zeigen” (Ïîêàçâàíå íà ñúáèòèÿ) âå÷å å ïðåäâàðèòåëíî èçáðàíà 2. Ôóíêöèÿòà ñå àêòèâèðà ñ ENTER 3. Ñ êëàâèøèòå SCROLL ìîãàò äà áúäàò âèäÿíè åäèí ñëåä äðóã âñè÷êè íàëè÷íè ñúîáùåíèÿ çà ñúáèòèÿ . 4. Âðúùàíå îáðàòíî êúì íîðìàëíèòå ïîêàçàíèÿ.ñ ESCAPE
O N f
DELETE
Êâèòèðàíå íà ñúîáùåíèÿ çà ñúáèòèÿ, èçòðèâàíå íà âúâåæäàíèÿ
ESCAPE
Ïðåêúñâàíå íà ôóíêöèÿ è âðúùàíå îáðàòíî êúì íîðìàëíèòå ïîêàçàíèÿ
ENTER
Ïîòâúðæäàâàíå íà âúâåæäàíåòî Ñòàðòèðàíå íà ôóíêöèÿòà, íàïð. ïîêàçâàíå íà ñúáèòèÿ (âèæ ïðè FUNCTION (ÔÓÍÊÖÈÈ)
DATA
Ïîòãîòâÿíå íà âúâåæäàíèÿ, íàïð. ïàðàìåòðè
P
àêî å èçáðàíî ïðåäâàðèòåëíî
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
23
VBW
- Reserved for user’s notes -
24
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
VBW
Index ÁÚËÃÀÐÑÊÈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DEUTSCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ÈESKY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ENGLISH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ESPAÑOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 FRANÇAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ITALIANO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 MAGYAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 NEDERLANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PÓÑÑÊÈÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 SRPSKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
INTECONT PLUS Operating Instructions BV-H2007AA / 0502 © Schenck Process
25
VBW
- Reserved for user’s notes -
26
BV-H2007AA / 0502
INTECONT PLUS Operating Instructions © Schenck Process
INTECONT® PLUS Belt Weigher Operating Manual
BV-H2214GB
PASS - Service you can rely on. Fast, comprehensive, anywhere in the world Quality and reliability are the cornerstones of our company’s philosophy. That is why we consider a comprehensive service concept simply par for the course, from strict quality control, installation and commissioning through to seamless support across the entire product life cycle. With over 30 service stations and over 180 service specialists, you can count on us to be there whenever – and wherever – you need us. It doesn’t matter where you are, our specialists are there to advise and assist with the best in worldwide, personal, comprehensive service. During office hours, service specialists from all divisions are on hand to analyse problems and failures. Look at www.schenckprocess.com for your nearest Schenck Process Location. Customised to meet your requirements, our comprehensive Process Advanced Service System provides you with the best service. Are you looking for individual, perfect-fit service solutions? Then our, the modular service system PASS, is the ticket. It covers the entire service spectrum, from simple inspections through to full service. Interested? Then find out more about the individual components at www.schenckprocess.com/en/service.
Free 24 h Emergency Service Hotline in Germany Are you experiencing a failure or problem outside normal office hours? Our service staff are on call around the clock to deal with failures, service planning and other emergencies.
J +49 171 2 251195
Heavy and Light excluding Static Weighing Equipment
J +49 172 6 501700
Transport Automation and Static Weighing Equipment
© by Schenck Process GmbH, 2008 Pallaswiesenstraße 100, 64293 Darmstadt, Germany J +49 61 51-15 31 0 www.schenckprocess.com All information is given without obligation. All specifications are subject to change. Note: Translation of the original instructions
INTECONT PLUS
VBW
Contents 1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Power ON · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 Signal Lamps· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 Normal Displays · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5 Control In Normal Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5 Event Messages · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 Function Distributor · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8 Display Test and Version Number · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8 Batching Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9 Visual Make-up · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 11 Keyboard Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 11 Activate/Deactivate EasyServe · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 Prefeeder· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 Printing · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 Zero Setting· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16 Read Parameters · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17 3 Control Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4
Operating Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5. Technical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7
Setting Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Function Distributor · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33 Calibrating Functions· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34 Belt Circuit LB · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34 Tare TW· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 35 Weight Check CW · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 36 Set Time · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 38 Simulation Mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 38
8 Service Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.
Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Preselect Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Enter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Parameters Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10 Event Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 System Messages S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Electrics E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Calibration C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Maximum H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Minimum L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Signal Lamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 0837
11 Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
CONTENTS BV-H2214 GB I - 1
VBW
INTECONT PLUS
How To Operate Your INTECONT· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 85 Mechanical Prerequisites · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 86 Electrical Prerequisites · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 86 Enter Parameters · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87 Functional Check · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 88 Calibration · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 89 Check Using Check Weight · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 89 Check Belt Speed · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 90 Check Using Material · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 90 Automatic Zero Setting · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 91 Belt Run Monitoring · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 91 Belt Influence Compensation BIC · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 92 Control for Point of Discharge CPD· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 92 Cosine Pendulum · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 93 Test Plug · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 93 12 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Start / Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Batching Without Clearance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Batching With Clearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Data Flow Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Base Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Option Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Weighing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 1. Effective Platform Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2. Check Weight QPRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3. Conveyor Belt Inclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Printer Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 13 Replacement Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Replacing INTECONT PLUS FIP —> INTECONT PLUS VEG. . . . . . . . . . . . . . . . . . . . . . 111
This manual applies to software version:
Edition
VBW 20600-08
: 0837
0837
CONTENTS BV-H2214 GB
I-2
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 1
VBW
Overview
What Is The INTECONT:
Display:
INTECONT PLUS is designed as measuring and evaluation system for
5 x 7 - dot matrix with 6 mm character height
Belt Weighers Solids Flow Meters Mass Flow Meters Mass Flow Feeders Weighfeeders Loss-in-weight Feeders
Upper display left : running message right : delivery rate in kg or t Lower display left : event messages right : selectable feed rate, belt speed etc.
Three system versions are available:
Display can be changed over to American units.
1. Without option card (standard)
LEDs:
2. With option card VFE 610V for additional input/outputs and printer
2 green and 3 red LEDs Green LEDs : Ready Red LEDs : Error or limit value messages
3. With option card for fieldbus VSS021V : Modbus/S5 VPB 020V: Profibus VCB020V: DeviceNet VET020V: MODBUS/TCP VET022V: ETHERNET/IP This manual applies to belt weighers using the fully equipped INTECONT variant.
For Further Reading: Fieldbus manual BVH2220 SS-RK512 (3964R) FH 458 Modbus (Comp) FH 525
O E1
Keyboard: Flexible membranes with tactile touch
gB TU i G FUNC O DEL
Start/stop measurement Preselect lower display Select functions Reset counter Call function distributor and event texts Acknowledge event messages Delete input
Z1 = 1 2 0 0 0 kg I = 1 0 0 0 kg/h
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Overview BV-H2214 GB 1
VBW
INTECONT PLUS The basic diagram shows all inputs and outputs.
N ESC f ENT P DAT B9 KL
Abort function Start function Acknowledge input Prepare input Enter parameters Enter sign and decimal point
Some Definitions: I
= Feed rate in kg/hr or t/hr Material amount discharged from belt per unit time
Z
= Delivery rate in kg or t Material amount fed out = feed rate x feed time
V
= Belt speed
O
Z1 = 1500 kg I= 100 kg/h
L/C
=
Load cell for acquisition of belt load Q
D
=
Speed transducer
S
=
Belt circuit sensor for automatic belt influence compensation BIC (non-standard)
24 V
=
Power supply
V
=
Speed transducer
Q
=
Load cell
in m/s
Q = Belt load in kg/m Material weight on one belt meter Measuring Principle: Belt load Q and speed V are continuously measured and multiplied. The result is feed rate I used to determine delivery rate. I Q V
in kg/hr in kg/m in m/s
Measurement techniques: n
Precision AC voltage amplifier with continuous correction of zero point and range
n
Highly resolving analog-to-digital converter The integrated method is designed to efficiently suppress line voltage interferences.
n
16-bit microcontroller
n
Unlimited storage of counter configuration and calibration data.
readings,
ANALOG=
Analog output selectable for feed rate, belt load, belt speed
SERIAL =
Serial interfaces for printer and host computer
MIN
Relay output for limit value monitoring Open = MIN value exceeded down
=
0837
Overview BV-H2214 GB
2
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS MAX
=
Relay output for limit value monitoring Open = MAX value exceeded up Feed rate, belt load, or belt speed, can be monitoring separately for excess of MIN and MAX values.
FAULT
=
Relay output for alarms Open = Alarm
FULL
=
Relay output for full feed in batching mode Closed = full feed
DRIBBLE =
Relay output for dribble feed Closed = dribble feed
MOTOR =
Control output for belt drive Closed = ON
PREF.
Control output for prefeeder Closed = On
=
RELEASE =
Release signal for totalization H = Release
ON/OFF =
Start scale and totalization. High = ON
OFF
Stop Low = STOP
=
VBW
COUNTER= Pulse output for connection of external totalizing counter
For simple measuring tasks, with constant belt speed, speed transducer D can be omitted.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Overview BV-H2214 GB 3
VBW 2
INTECONT PLUS
Control Power ON
Signal Lamps
During power failure Counter readings Counter pulses not yet output Preselected normal displays Service values, e.g. ON-time E1
remain stored for an endless period of time. The internal clock continues running for approx. 5 days. After power-on, display and lamps are automatically tested before version number of system is displayed for some seconds to be then replaced by the normal displays.
E1
Z1 = 2 5 0 0 kg I = 0 kg/h
a b
Z1 = 2 5 0 0 kg I = 0 kg/h
(green) POWER OK lights if all power supplies are OK. (green) CPU OK lights if microprocessor is ready to operate.
X
(red)
ALARM flashes if an Alarm event is available. In addition, an event code appears in lower display line.
MIN
(red)
MIN LIMIT VALUE lights if feed rate limit value is exceeded down.
MAX
(red)
MAX LIMIT VALUE lights if feed rate limit value is exceeded up.
Message E1 reports power failure and can be defined as ALARM or WARNING. ALARM:
X
and message E1 are Red lamp flashing. To start scale, first acknowledge message. WARNING: Signal lamp
X
remains dark,
message E1 does not flash. Start/stop scale automatically or in manual. No acknowledgement is required.
O
READY: The two green signal lamps must be lit, and no Alarm message available.
Lets you acknowledge event message. 0837
Control BV-H2214 GB
4
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Normal Displays
Control In Normal Mode
Upper Display Left
g
Start totalization Prerequisite : External release signal available (selectable) START source (B06) set to OP or Keyboard Mode active. Feature : Rotating point in left field of upper display
B
Stop totalization Feature : Point stands still Belt load and belt speed continue being measured.
i
Reset totalizing counters. This function has to be activated with parameters A10 or A11.
Rotating point as running message. Scale has started, totalized amount and feed rate are acquired. In stop state of scale (point stands still) only belt load and belt speed are measured. Totalizing counter Z1
Right Lower Display Left
Event message, alphanumerically coded, e.g. E1 for power failure. Selectable display
Right
TU
Select display
1 O
Z1 = 50 000 kg Z2 = 60 0 kg/h
Enter number of desired counter (1 or 2). Counter no. : _ Counter 3 cannot be reset. In case of overflow, counting resumes from 0.
Counter Z2 Counter Z3 Feed rate Feed rate Belt load Belt load Belt speed Batching displays
Z2 = 6000 Z3 = 1000 I = 1000 Ir = 50.00 Q = 10.000 Qr = 50.0% V = 0.0500 Zb, ZI, Zd, Nb
kg kg kg/hr % 1) kg/m 2) m/s 3)
f N TU O G N
Acknowledge input. Correct faulty input or accidental use of DELETE key. Select lower display (see “Normal Display”). Acknowledge event messages. Call further functions, e.g. display event messages, calibration. Exit function distributor.
1) related to nominal feed rate 2) related to nominal belt load 3) see “Batching Mode”.
Display formats and units of counters Z1, Z2, Z3 and I can be selected separately. 0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Control BV-H2214 GB 5
VBW
INTECONT PLUS Event Messages
n
WARNING 2
Display permanent, not underscored Acknowledgement: None
Definitions All important scale functions are internally monitored, and faults are reported by event message. For troubleshooting details, see “ Event Messages” item.
E1
n
IGNORE
No event monitoring, save MIN/MAX messages via contact outputs and signal lamps.
If several events occur at the same time, the most significant event is displayed first. Priority: Alarm, Warning 1, Warning 2
Z1 = 2500 kg I = 0 kg/h
Operation
O Message E1
Power Failure
Group code (e.g. E) and number (e.g. 1) appear in left field of lower display. In addition, an explanatory text can be called up. The events are organized into 4 classes. The assignment between event and class can be selected using relevant parameter. n
ALARM
Display is underscored and flashes. Red signal lamp
X flashes.
Acknowledge events of ALARM and WARNING 1 classes after elimination of fault. If several events are available, acknowledge one after the other.
Display event texts:
G TU f
Call function distributor. Scroll “Show Event” function into lower display field. Select function.
Totalization stops, scale is inoperable. Start: If cause of Alarm has been removed and error message acknowledged. Acknowledgement: If cause of Alarm has not been removed, flashing stops but message is still on display. n
WARNING 1
Control BV-H2214 GB
Display permanent and underscored Totalization goes on. Acknowledgement: If cause of fault is still present, underscores are faded out.
6
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW H3 v > MAX H4 L/C Input > MAX
1. Event S 2 = O 0 7 No Release
Display shows event name event code and a note
e.g. No Release e.g. S2 e.g. Parameter O07.
The note informs the operator of relevant parameter.
TU N
0837
Minimum L
L1 I < MIN L2 Load < MIN L3 v < MIN L4 L/C Input < MIN
I
=
Feed Rate
V
=
Belt Speed
L/C
=
Load Cell
* Fault on device or cabling
Let you view various events. Return to normal displays.
List of Events
Contact Outputs General Alarm
The events are listed in accordance with display priority.
MIN/MAX Outputs
System messages
S1 S2 S3 S4
Memory Error No Release* Scale Maintenance ON Maintenance Interval Electrics S7 Simulation active S9 Host Communication
Electrics
E1 E2 E3 E6
Material flow
B1 Out of Tolerance B4 BATCH Actual Value MAX
Calibration C
C1 C2 C3 C4 C5 C7 C8 C9
Maximum H
H1 I > MAX H2 Load > MAX
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
available until acknowledged independent of event class, active also in IGNORE class. Limit values are reported as long as event is available and only with active scale.
Power Failure Namur Error Tacho* Namur Error Sensor* Error Ext. Event
L/C Input * Tacho Input * Belt Skew Belt Drift Tare Correction > MAX ZERO Time Slip Error Tare Diff > MAX
Technische Redaktion PDE-RD
Control BV-H2214 GB 7
VBW
INTECONT PLUS Function Distributor
B
= If batching mode is selected, you can access additional functions in main distributor. Abort Batch Deselect Batch Batch Number Print Batch Make-up Next = Belt Empty
The function distributor lets you call further functions, or dialogs.
G
Call function distributor. If no event is available, display shows function selected last.
f N
Start function. Return to normal display and/or abort function.
Function Display Events
S
= Calibrating functions protected by password. Prompt is output after call of function.
E
= If an event is available
Z
= Iif activated via parameter
Moving through function distributor has no effect on weighing functions.
Display Test and Version Number
TU Scroll through function distributor Lets you check displays and signal lamps. Display Events E Test Display START/STOP Prefeeder Z Service Values Batch Number B Print Counter Readings >0< Zero Set START/STOP Keyboard Mode Activate/Deactivate EasyServe Programming Calibrating Functions S Read Parameters Enter Parameters S Load Default Parameters S Print Parameters Status Report Tare S START/STOP Simulation Check Weight S Imp/Belt Circuit S Set Time S
G TU f
Call display test. 1. Display elements flash rhythmically. 2. Version number is displayed for apr. 3 s. Test terminates automatically.
INTECONT PLUS VBW 20600-00 2482
Example: VBW 20600-00
: Belt Weigher : Version number
Programming and calibrating functions lead to further menus you can move through using cursor keys.
Control BV-H2214 GB
8
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Batching Mode
Select Batching Mode Selection of batching mode enables batching, however, no batch is started yet. Condition: scale OFF and function activated via parameter A07.
Additional Displays
O
VBW
Call function distributor.
G TU f
Z1 = 2500 kg ZI = 400 kg
Scroll “Select Batch” into display field. Select function.
Upper display :
If batching mode is selected, a totals sign is displayed left of running message.
System prompts for input of batch setpoint. If batch is selected from external PC, setpoint input is omitted.
Lower display :
Use cursor keys to scroll 4 additional values into display field.
Enter Setpoint
U
1. Zb = Batch setpoint 2. ZI = Batch actual value Amount already discharged 3. Zd = Batch residual value Amount not yet discharged Zd = Zb - ZI
Setpoint prompt is output automatically upon selection or can be started in manual when batch is complete (scale OFF). If batching mode is deselected or a batch is running, no input is possible. When presetting batch setpoint via fieldbus (Parameter I09 Batch Source = FB), no input is possible either. This also applies to the input of batch number and make-up setpoint. Prepare setpoint input.
P 19
Enter setpoint in kg or t Max. 9 digits including decimal point. The unit is that of counter 1.
4. Nb = Consecutive batch number Use “Batch Number” function to set initial value. .
Before a batch starts, ZI and Zd indicate the amounts fed out during previous batch. If you deselect batching mode (Deselect Batch function), displays are disabled but enabled again upon next selection. The display format corresponds to the format of counter 1.
f N O
Setpoint Batch Zb = . . . . . . kg
Acknowledge input. Abort input, old setpoint remains stored. Delete faulty digits.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Control BV-H2214 GB 9
VBW
INTECONT PLUS
Start and Abort
g
Make-up Start batch, process starts. Display ZI moves from 0 towards setpoint Display Zd moves from setpoint towards 0.
B
Lets you add a selected amount of material to a batch aborted or complete. Prerequisites : Running batch complete, scale OFF. No batch printout. Display ZI
:
Batch actual setpoint resumes from achieved value.
Abort batch.
Display Zd
:
Batching continues upon next start command.
Batch residual value remains unchanged.
Display Zbn
:
Make-up setpoint
Display Zdn
:
Batch residual value of make-up amount Zdn = Zbn - make-up amount already fed.
Deselect Batch Lets you deselect batching mode, i.e. mode is removed from active functions available. Totals sign disappears from upper display, batching values ZI, Zd, Zb and Nb are no longer available, but remain stored. Prerequisites :
Batch complete, or aborted using “Abort Batch” function; scale OFF.
GT f
Call function distributor, select “Deselect Batch” function, and acknowledge.
Use “Select Batch” function to reactivate batching mode. Old values ZI, Zd, Zb and Nb can be viewed again.
You can scroll all displays into lower display field using cursor keys. Zdn and Zbn are available only until start of next batch.
GT f
Call function distributor and select “Make-up” function.
P
Until start of make-up, setpoint Zbn can be changed.
gB
Start or abort make-up
Acknowledge. System prompts for input of make-up setpoint Zbn in kg or t. The units is that of Counter 1.
Abort Batch This function lets you abort a running batch, i.e. batching immediately stops. Batching mode remains selected. New batch starts upon next start command, old batch is not resumed. Use “Make-up” function to complete old batch.
GT f
Call function distributor and select “Abort Batch” function.
If make-up batch is complete, normal batch starts upon next start command. For new make-up, call function again. “Abort Batch” function also aborts make-up operations.
Acknowledge.
You can also abort batch using the P02 contact. 0837
Control BV-H2214 GB
10
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Batch Number Nb
Visual Make-up
Select a number incrementing by 1 after start of every new batch. The consecutive number is printed in batch report and indicated in lower display line. Belonging to previous batch, make-up operations are not counted.
GT f f N
Call function distributor and select “Batch Number” function. Acknowledge. Prompt Nb = —-
is output.
Acquire input. Abort input. Old number remains stored.
Current number can be changed also while a batch is running.
A batch report can be printed only if batch is complete (setpoint reached). If an unspecified amount is to be batched using the START/STOP keys, the results can be printed using a little trick: 1. Call “Select Batch” function. 2. Enter very high batch setpoint, e.g. 999999999 kg. 3. Scroll batch actual value ZI into lower display field. 4. Start scale. 5. If desired amount ZI is reached, stop scale. 6. Call “Abort Batch” function. 7. Start printing (see “Print Batch”). Make-up can be performed only before print command. To start next batch, resume from item 4.
Next = Belt Empty One-off changeover to clearance mode. Next batch is controlled via prefeeder. When batch is complete, conveyor belt still performs approx. 1/2 belt circuit. Prerequisites
: Scale OFF, batch complete, prefeeder control present and active. Batching mode without clearance.
GT
Call function distributor and select “Next - Belt Empty” function.
f g
Acknowledge.
Keyboard Mode This function lets you place the selected control source for Start/Stop, Batch setpoint on the INTECONT keyboard. If you deselect Keyboard Mode, the old source is active again. When changing over from external source (e.g. serial) to keyboard, the Start/Stop status remains stored; vice versa, the external signal is active.
GT
Call function distributor and select “Start Keyboard Mode” or “Stop Keyboard Mode” functions.
Start batch. Display feature: You will know Keyboard Mode by the rectangle in the upper left display field. Condition :
This function has to be activated with the parameter A06.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Control BV-H2214 GB 11
VBW
INTECONT PLUS
Activate/Deactivate EasyServe This function lets you control your INTECONT using the “EasyServe” PC service tool.
GT
Call function distributor and select “Activate EasyServe” function.
Enter communication parameters using Block R. Condition:
Note:
This function has to be activated with the parameter A09.
Upon power failure, the current status is stored, i.e. the “Activate EasyServe” function needs not be reselected.
Connection to PC can also be made using a 9-pole SUB-D connector on X4 (RS 232 only) or a Phoenix connector on X5 (RS232, RS422 or RS485). See also Wiring Diagram in chapter DETAILS.
Printing The printing functions are available only if the option card is present. Print Batch The batch report can be printed: 1. using “Print Batch” function 2. automatically after each complete batch (Parameter J02 = YES). Start of printing disables the “Make-up” function for the current batch. Prerequisites : Batch complete, scale OFF. Print format : Order of sequence, line and column divisions can be selected at will (Parameter Block J).
GT
Call function distributor and select “Print Batch” function. Start function.
N
Abort printing.
The “Start/Stop Prefeeder” function lets you activate or deactivate prefeeder. Select “Start”, and INTECONT will control your prefeeder. In Stop state, material flow is interrupted and scale can be tared.
Batch Nummer 40 20.11.02 Batch Setpoint Batch Actual Val. Totalizer 1 Totalizer 2 Zero Set beforer
Prerequisites :
External prefeeder present and controlled by INTECONT. Activate function using parameter N 01.
Events E1 Power Failure O01
GT
Call function distributor and select “Start Prefeeder” or “Stop Prefeeder” function.
f
Start control signal.
Prefeeder
16:49:41 0.150 t 0.150 t 0.806t 806.47 kg 19 min.
Batch Number: Consecutive number of batch 20.11.02: Date and time Batch Setpoint: Preset batch amount Batch Actual Val.: Amount batched (actual value) Totalizer 1: Totalizing counter 1 Totalizer 2: Totalizing counter 2 Zero Set before: Feeder run time after last taring or zeroing operation (see Service Values) Events : available during printing
Control BV-H2214 GB
12
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
0837
INTECONT PLUS
VBW
Print Counter Readings (FMZ), Quantity Report
Print Events
This report is identical with the batch report, however, the numerical values are identified as sub-totals by the # symbol.
Parameter J03 lets you select/deselect printout of event messages. There are 3 options:
If no batching mode is selected, batch number, batch setpoint and batch actual value are not printed. This type of report figures as “Quantity Report”.
1. No printout (NO) 2. Print events (error)
Batch actual value etc.
[kg]
# 998 # 3. Print events and counter readings (YES) (see “Printer Counter Readings”)
Call: 1) Use “Print Counter Readings” function. Unlike the “Print Batch” function, printing is possible during running batch.
20.11.02 11:45:21 L2 W1 20.11.02 11:59:01 L2 W1
Load > MAX Load < MIN
2) Printed automatically upon every event printout (Parameter J03 = YES) L2 W1
Print Parameters Print complete parameter list with current values. Inputs differing from default values are identified by *. The list is complete with all possible event messages and the current hardware assignment.
PARAMETER PRINTOUT INTECONT PLUS VBW 20600-01 2482 20.11.02
16:59:51
BLOCK A 01 Language 02 Units
Dialog Behaviour ENGLISH SI
: : : :
Event code Error class, e.g. WARNING 1 Event has occurred Cause removed, event acknowledged, if required. Load
Event is displayed on INTECONT as long as available. For more information, see “Event Messages” item.
BLOCK B Rated Data 01 Feed Rate Unit ——— kg/h 02 Nominal Feed Rate * 1,000 t/h etc.
0837
GT f N
Call function distributor and select “Print Parameters” function. Start function. Abort printing at any time.
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Control BV-H2214 GB 13
VBW
INTECONT PLUS
Print Zero Setting Results The result of the automatic zero setting function can be printed automatically after every belt circuit. Prerequisite:Parameter H 01 = YES (Auto Zero Active) Parameter H09 = YES Tare correction is the total of all zero point changes; total tare additionally includes the basic tare. Values correspond to same-name parameters D 03/05.
Print Zero Setting Results Total Tare [kg/m]
50,23
Tare Correction T [kg/m] 1,56
STATUS REPORT INTECONT PLUS 25.11.02 13:37:12 Software : VBW 20600-01 2482 Hardware version :1 Option card version :1 Station address :1 ------------------------------Latest Report of: 25.11.02 12:13:13 ------------ ------------------SPC values: Zero Set before Voltage ON-time Feeder ON-time Latest password entry of Latest matkor change
: 4086 min : 68 h : 68 h : 22.11.02 17:02:12 : 15.11.02 15:02:34
K05 SPC Time K06 SPC Filter Feed rate Mean value Imitt Variance Belt load Q MAX Time Q MIN Totalizer 3 Belt skew Belt Drift
:1h : 1.00 h
Latest taring results (max. 5) T 22.11.02 16:04:05 21.11.02 16:11:22 21.11.02 16:10:53 22.11.02 16:05:22 22.11.02 16:04:43
Status Report The status report can be printed at any time. Reported are previous events, calibration results, and SPC measurement values, e.g. feed rate variance. SPC = Statistic Process Control
: 0.15 % : 0.09 % :0% :0% : 510 t : 0.00 % : 0.00 cm in % of Qnenn : 12.99 % : 30.75 % : 33.40 % : 12.99 % : 12.99 %
Test weight check of 16.06.03 16:23:17 25.11.02 09:06:28 Set/Act 0.9643 N05 BIC Active NO Events since power on 1 * 1 * 1 *
H03 v> MAX C07 Set Time To Zero E01 Power Failure
For individual data, see “Service Values” item.
GT
Call function distributor and select “Status Report” function.
f N
Start function. Abort printing at any time.
Zero Set before: Zero point corrected by taring manual/automatic zero setting.
program
or
Voltage ON-time: Total voltage ON-time. Feeder ON-time: Total ON-time of conveyor belt and INTECONT. Last password entry on: Date of last password input for start of a service function or parameter change. Latest matkor change: The matkor parameter lets you change feed rate and totalization range. SPC time: Measuring time for SPC values “Qmax” and “TQ < MIN”.
Control BV-H2214 GB
14
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
0837
INTECONT PLUS
VBW
SPC filter: Filter time for SPC values “mean value” and “variance” Mean value Imitt: Feed rate mean value exponentially filtered using the SPC filter time related to nominal feed rate.
Feed Rate Diagram Printed automatically after status report, the feed rate diagram shows the current feed rate value in percent of nominal feed rate. The report period is determined by Parameter K 05 “SPC Time” .
Variance: Feed rate variance related to the square of nominal feed rate. Belt load QMAX: Maximum belt load during last few hours limited by SPC time related to nominal belt load. Time Q < MIN: Total time during which belt load was below Qmin (Parameter F 05), evaluated over the past few hours (SPC time). Last taring results (max. 5): Results (total tare) of last 5 zero point or tare corrections, related to nominal belt load. Test weight check on : Date and time of last check using check weight, performed using “Weight Check CW” setting program. BIC active: indicates whether automatic compensation is active, or not.
belt
Feed Rate in Percent Pnenn 0
- 6h - 5h - 4h
20
40
60
80
100 120
*
5,000 t/h 10,000 t/h 20,000 t/h
* *
- 3h - 2h - 1h - 0h
140 %
* * *
> 40,000 t/h 50,000 t/h 50,000 t/h
The actual diagram resolution is higher than shown in sample. Feed rate 50 dots for nominal feed rate Time : 32 dots for time K 05 Units : t/h, h Initialisation : upon power-up and change of Parameter K 05. Symbol “>” : Feed rate exceeds 140 %
influence
Events report: lists number and type of events occurred after last printout. If no report has been printed yet, counting starts from time of power-up. Counter 3: Totalizing counter 3 Belt skew: indicates change in belt length in % of total belt length (Parameter D06). Belt drift: indicates belt drift in cm.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Control BV-H2214 GB 15
VBW
INTECONT PLUS Zero Setting
The zero setting program is designed to acquire the belt weigher’s zero point error over one or multiple integer belt circuits. In normal mode, value is used to correct current measuring result. If no automatic mode is selected, use program in regular intervals. During zero setting, totalizing counters stop counting. Prerequisite:1. Conveyor belt totally unloaded. If necessary, abort program. User “Start Prefeeder” function, if available. 2. Belt running, indicated automatically. 3. No batch active; batching mode can remain active. 4. This function has to be activated with the parameter A08.
Program complete: 0.
Dev. Tarkor
Upper display:
Lower display:
70.2 % 1.12 %
Deviation of zero point from previous zero setting operation in % of nominal belt load. Dev = + : error increased Dev = - : error decreased. Deviation of zero point from basic tare in % of nominal belt load. Taring program corrects basic tare during calibration.
Acquire result, or view for information and reject.
f N
Acquire result. Scale zero point is corrected. Abort program. Result is rejected.
Call:
G TU f
Call Zero Setting function and start.
Restart prefeeder.
If belt is not running, program aborts and requests START.
Event messages: 1- C7
Deselect message, if not desired.
Program running:
0.
Zero setting time elapsed.
>0< Tarkor
Upper display: Lower display:
N Control BV-H2214 GB
2- Value
3.
70.2 % 1.12 %
Residual run time in % of total run time. Zero point error in %, related to nominal belt load.
Excessive Zeroing range exceeded; clean scale and retare, if necessary. Note: The function setting to zero can also be started via the digital input P05. The program is started by a positive flank of the contact. The result is automatically accepted if it is within the admissible zero setting limit (5% of the nominal belt load). An ackowledgement of the result is not necessary. The calibration program can only be aborted in its active phase.
Abort program at any time.
16
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Read Parameters Parameters are defined as variable characteristics or data used to match INTECONT to the particular application. Parameter input is protected by password (see “Enter Parameters”). The “Read Parameters” function lets you view all parameters without jeopardizing the operating reliability. The parameters are organized into function blocks A , B,... and consecutively numbered within a block.
GTf Tf
Scroll Programming function into display field and acknowledge. Select Read Parameters sub-function.
Display shows title of first parameter block.
Dialog Behaviour Block: A
TU fT
Scroll through parameter blocks A, B,... Scroll through parameters within a block.
Nominal Feed Rate B02 1000.0 kg/h
N N
Return to blocks. Return to normal displays.
For more information, see “Enter Parameters”. 0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Control BV-H2214 GB 17
VBW
INTECONT PLUS
This page left intentionally blank
0837
Control BV-H2214 GB
18
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 3
VBW
Control Overview
RUNNING MESSSAGE, OPERATING STATUS
H2
EVENT MESSAGES Z1 = FEED AMOUNT I
kg/m
= FEED RATE
L2
ACKNOWLEDGE READY
ON { POWER CPU OK
m/s
H3 L3
ABORT FUNCTION
o Z1 = 1500 kg -- I = 100 kg/h
ALARM MIN STOP
START FUNCTION
PREPARE ENTRY
START
L1 kg/h
M
MAX
H1
C1 L4
S2 RESET COUNTER
PRESELECT LOWER DISPLAY
EVENT MESSAGES
FUNCTION DISTRIBUTOR
gB U SCROLL T i RESET G
FUNCTION
Start/Stop
if preselected
Select lower display line and functions. (1) Counters Z2, Z3 (4) Belt load Q (2) Feed rate I (5) Belt speed v (3) Feed rate Ir in % Reset counter(s) (1) Enter number of desired counter (1 or 2). (2) Use ENT key to acknowledge. (3) Use ESCAPE key to abort input. (4) Use DELETE key to delete faulty digits. Call function distributor and event messages (1) SCROLL keys let you select desired function. If an event is available, “Display Event” function is preselected. (2) ENTER key lets you activate function. (3) SCROLL keys let you view available event messages one after the other. (4) ESCAPE key lets you return to normal displays.
O N f P
DELETE
Acknowledge event messages, delete inputs.
ESCAPE
Abort function and return to normal displays.
ENTER
Acknowledge input, e.g. setpoint, start functions, e.g. Display Events (see “FUNCTION”).
DATA
Prepare input, e.g. parameters.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Control Overview BV-H2214 GB 19
VBW
INTECONT PLUS This page left intentionally blank
0837
Control Overview BV-H2214 GB 20
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 4
VBW
Operating Principle
A belt weigher is designed to continuously weigh the material amount transported on a conveyor belt. Belt Load: The material is guided to a weighing platform arranged under the belt and limited by 2 carrying idlers. Via one or multiple weighed idlers, the platform load excerts a force on load cell (L/C). The deflection for measurement is 0.2 mm. The weighed idlers are connected with the frame structure, e.g. with the use of a leaf spring parallel system.
Belt Speed: A further measure for feed rate is belt speed v, acquired with the use of speed transducer D and translated into a corresponding pulse frequency. If belt load is constant and more approximate accuracy will suffice, speed measurement can be omitted.
Feed Rate: INTECONT normalizes physical units kg/m and m/s. Multiplication of the two values results in feed rate I. I v Q QB Leff
in kg/s in m/s in kg/m in kg in m
I in kg/h: I in kg/h As to the rest, see above.
Proportional to platform load, the load cell output voltage is amplified and transferred to the INTECONT microprocessor with the use of an analog-to-digital converter. The white triangle indicates the load distribution on a single-idler platform scale. Only half of the material’s weight force is applied to the weighed idler. The translation of load ratio into platform length has become accepted usage in weighing technology. Leff = effective platform length Lg = total platform length For weighing platforms equipped with multiple weighed idlers, factor 1/2 is different. Belt load in kg/m is thus: QB = total load on weighing platform. 0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Operating Principle BV-H2214 GB 21
VBW
INTECONT PLUS
Automatic Belt Influence Compensation (BIC):
Batching: In batching mode, a preselected material amount is fed. When batch setpoint is reached, batching stops. Batching can be controlled via conveyor belt drive or material prefeeder. Control via belt drive: In this mode, the conveyor belt is still fully loaded after complete batch.
Not even the best of conveyor belts is perfectly even; particulary in welding points, the belt will be heavier and stiffer. The figure above shows the relations over one belt circuit in exaggerated fashion. Therefore, a high accuracy can normally be ensured only over entire belt circuits, i.e. over the mean value. INTECONT is able to acquire and correct this influence with the use of a belt circuit sensor and a metal belt mark. This considerably increases the scale’s short-term accuracy. To enable variations to be considered during operation, the belt influence is continuously measured. The compensation adaptively follows up, also if material is fed. Measurement at the point of discharge (CPD):
0
Start batch and conveyor belt.
1
Abort batch or
2
resume at any time.
3
Reduce belt speed, change over to dribble feed.
4
Stop conveyor belt.
5
Drive stops, batch setpoint is reached.
For constructional reasons, the weighing platform is not directly located at the point of material discharge. Therefore, if belt load varies, the feed rate measuring result does not exactly correspond to the current feed rate at the point of discharge. A special speed-dependent delay elements shifts the measurement to the discharge point. To do so, no special load transducers are required; however, the additional use of the automatic belt influence compensation is reasonable.
Operating Principle BV-H2214 GB 22
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Control via prefeeder: Batch complete, conveyor belt is empty. 0
Start batch and conveyor belt. Open prefeeder.
1
Stop belt, if necessary; cut off belt and prefeeder drive.
2
Resume batching.
3
Changeover to dribble feed is possible, but not always reasonable.
4
Stop prefeeder if precalculated distance to setpoint is reached.
5
Batch complete. Conveyor belt continues running for approx. 1/2 belt circuit.
Dribble feed and cut-off point are self-optimizing, i.e. they are automatically corrected after every batch.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Operating Principle BV-H2214 GB 23
VBW
INTECONT PLUS
This page left intentionally blank
0837
Operating Principle BV-H2214 GB 24
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 5.
n
VBW
Technical Data
Panel-mounting unit VEG 20600/20610
n
Surface-mounting unit: with panel mounting unit VEG 20...
Front panel Panel cut-outs
n
Wall-mounting housing
: 96 x 288 mm : 88 x 282, wall thickness max. 10 mm Mounting depth : min. 225 mm (including 50 mm for connectors) Protected to : IP 20, front to IP 65 Material : plastic grey to RAL 7022 Display : fluorescent, 2 lines of 20 characters, 6 mm high Keyboard : flexible membranes with tactile touch Signal lamps : LEDs, 2 x green, 3 x red Power supply : 24 V(DC) 50 % -25%, max. 1 A, no fuse, pole-reversal protective circuit Ext. power supply : 90...264V/ 50HZ...60HZ
Measuring systems Feeding systems Protected to Material Voltage supply Extension n
: width x height x depth 410x330x236mm : width x height x depth 500x600x300mm : IP 65 : steel sheet, 1.5 mm, grey : 90...264V/50Hz...60Hz : Feed unit controller
Environment Temperature Humidity Interference immunity
: -25 °C ... +45 °C, tested to -40°C : Class F (DIN 40 040) * : to IEC 801
Interference suppression
Z1 = 2500 kg I = 0 kg/h
Housing safety EC recommendations
: to VDE 871, EN 55 011 : to IEC 348 : CE label
* Tropical version (class R) upon request n
Storage temperature -40 °C ... +60 °C
n
Connectors Plug/screw connectors (Phoenix Combicon), non-confusible
n
Control outputs Number Base board Option card Load
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
: : : :
8 N/O relay contacts 3 5 max. 230 V(AC) 8 A resistive load, 1 A inductive
Technical Data BV-H2214 GB 25
VBW
INTECONT PLUS
If error message “CPU Not OK” is output, all contacts open. n
: : : :
5 3 2 24 V(DC) +/-30 %, 5 mA, galvanically isolated
Control inputs (NAMUR) Number Type
n
External totalizing pulse counter Frequency Pulse length Output
Control Number Base card Option card Type
n
n
: 2 : NAMUR (DIN 19234), short-circuit and cable breakage monitoring n
Analog output Number Base card Option card Current Raise Load Reference
2 1 1 raise ...20 mA impressed 0... <20 mA max. 500 ohms 0 V by user, galvanically isolated : 12 bits +/- 1 d
Resolution
If error message “CPU Not OK” is output, output signal turn 0 mA.
Serial printer interface Number Type
: : : : : : :
Data format Isolation Connectors
Character map n
: max. 10 Hz : selectable 50...1000 ms : 24 V, max. 100 mA optionally active low or active high, galvanically isolated, short-circuit-proof, limited to apr. 350 mA, negative amounts are stored internally and must be compensated by positive amounts before new pulse is output. This ensures integral accuracy also with minimal belt load.
: 1 (option card) : RS 232 (V24), max. 38400 baud : 8 data bits, 1 stop bit, no parity : galvanically non-isolated : Phoenix MSTB, contat spacing 3.5 mm, max. 1.5 mm2 : ISO-Latin-1 (ISO-8859-1)
Load cell connection Voltage supply
n
Analog input Number Current Raise Load Reference
: : : : :
1 raise ...20 mA impressed 0... 20 mA 500 ohms 0 V internal, galvanically non isolated : 10 bits +/- 1/2 d : <0.4% over entire temperature range
Resolution Acuracy
: +/- 6 V AC (+/-3 %) (apr. 66 Hz short-circuit-proof Measuring cycle : 100ms Resolution : 24 Bit Load : R (load cell) = min. 80 ohms Cable length : max. 30 % voltage drop, max. 500 m Measuring range : -20mV....+50mV with VLW: -1.6mV...min. 32mV
0837
Technical Data BV-H2214 GB
26
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS n
VBW
Serial interface for service PC Number Type Data format
Isolation Connectors
: 1 : RS232; RS422 or RS 485 max. 19200 baud : 8 data bits, 1 stop bit, odd parity changeable to even or no : galvanically non-isolated : Phoenix MSTB, contact spacing 3.5 mm, max. 1.5 mm2 or 9-pole D-Sub HD20
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Technical Data BV-H2214 GB 27
VBW
INTECONT PLUS
This page left intentionally blank.
0837
Technical Data BV-H2214 GB
28
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 6.
n
VBW
Characteristics
Power failure
n
VOLTAGE OK (green) PROCESSOR OK (green) ALARM (red) MIN (red) MIN feed rate value MAX (red) MAX feed rate value
Scale data, calibration values, counter readings and pulses pending remain stored after power failure for an unlimited period of time. The internal clock continues running for approx. 5 days.
n
Dialog language for error messages, operation, and service programs. Select:
n
n
Events and faults are displayed in form of an alphanumeric code. Call clear text of consecutive events via keyboard. Events are organized into Alarms and Warnings, with and without acknowledgement. Alarms stop scale; warnings don’t. All alarms are additionally reported via relay output.
DEUTSCH ENGLISH FRANCAIS ESPANOL ITALIANO
:
NON-SI units:
kg , t , m ,
kg/h t/h cm
lb , t , f ,
lb/h t/h inch
n
Start/Stop totalizing counter Select using Parameter B06. Displays Upper display: Lower display:
0837
Totalizing counter 1 Totalizing counters 2 and 3 Feed rate absolute Feed rate relative Belt speed Belt load absolute Belt load relative Batch data
Operating philosophy Operator prompting through multi-level menus. Important configuration and calibration functions are protected by password.
n
(see Parameter List)
n
Event messages
Units (selectable) SI units
n
Signal lamps (top down)
Belt speed For simple applications, speed measurement can be omitted.
n
Zero setting Zero setting can be performed 1- manually via keyboard 2- automatically, if belt is empty.
The maximum admissible zero setting elevation is monitored.
Select for lower display using cursor keys.
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Characteristics BV-H2214 GB 29
VBW n
INTECONT PLUS
Taring
n
2 separately selectable limit values for monitoring of signal lamps and relay outputs. Any event can be reported by message.
Designed to zero the basic tare load, the taring program on principle has the same function as the zero setting program. However, tare elevation is not monitored, and the call is protected by password.
n
MIN/MAX for (1) Feed rate (2) Belt load (3) Belt speed
Automatic belt influence compensation (BIC) Using an additional belt circuit sensor and a metal belt mark, the dynamic zero point influence of the conveyor belt can be compensated during operation (with and without material).
Switching threshold, relay outputs and event class can be defined individually for all 6 possibilities. n
This considerably increases the belt weigher’s short-term accuracy. n
Define individually for feed rate, belt load and belt speed.
n
(1) Voltage ON-time (2) Scale ON-time
Belt drift display
(3) Zero setting required n
Batching mode
(2) With clearance of conveyor belt. Controlled is the material prefeeder. Cut-off point and start of dribble feed can be adapted automatically in either case.
Statistic Process Control (SPC) Mean values, variances, maximum value storage, zero settings tables, etc. are available in form of service values.
(1) Without clearance of conveyor belt. Controlled is the belt drive motor.
n
Maintenance hints Display event on screen.
For prerequisites, see “BIC”. n
Display filter
Measurement at the point of discharge (CPD) A special speed-dependent delay element shifts the point of measurement to the material discharge point where the material amount discharged is acquired.
n
MIN/MAX messages and outputs
n
Adaptions The electrical system needs not be redesigned, adapted, etc.
Zero drop out Used to suppress totalization upon measurements around zero, for counter to stop while belt is being unloaded. Deselect function, if not desired.
0837
Characteristics BV-H2214 GB
30
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS n
Calibration
VBW n
Calibration as such is not necessary. All you have to do is enter some constructional data on load cells, speed transducer, belt inclination, etc. INTECONT uses these data to compute all requisite display normalizations. Check, or recalibration, can be effected in two ways:
a) Using material Enter check result into INTECONT, and measuring result will be corrected. b) Using check weight A special check program lets you check normalization, or if certain technical data are not exactly known (lever ratio, belt inclination, etc.), correct them.
Digital Outputs
Number
Name
Default Value
Q04 Q05 Q01 Q02 Q03 Q11 Q12 N15 N16 N17 Q06 Q07 Q08 Q09 Q10 Q13 B11
DO I-MIN DO I-MAX DO ALARM DO START Feeder DO START Scale DO Full Feed DO Dribble Feed DO Belt Skew DO Belt Drift DO Belt Slip DO Q-MIN DO Q-MAX DO v-MIN DO v-MAX DO Batch Active DOKeyboard Mode DO Pulse Counter
DO4 DO2 DO3 — DO1 — — — — — — — — — — — —
In subsequent operation, this program can be used to detect mechanical changes, e.g. platform distorsion after settling of foundation. n
Digital inputs
Number
Name
Default Value
P03 P01 B06 P02 N04 B03 P04 P05 N18 P06
DI Ackn. Events Release START Source DI Abort Batch Sensor Source Tacho Source DI Start DI Zero Set Freeze BIC DI Ext. Event
DI1 DI3 — (OP) — DI6 DI7 — — — —
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Characteristics BV-H2214 GB 31
VBW
INTECONT PLUS
This page left intentionally blank
0837
Characteristics BV-H2214 GB
32
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 7
VBW
Setting Programs Function Distributor
The function distributor lets you access all setting programs.
G
Call function distributor. If no event is available, function selected last is displayed.
f N
Start function. Return to normal displays, or abort function.
F u n ctions Displa y Result s
Programming and Calibrating functions lead to further menus you can move through using cursor keys. B=
If batching mode is selected, additional functions can be accessed in main distributor. Abort Batch Deselect Batch Batch Number Print Batch Make-up Next = W/Belt Empty
S=
Calibrating functions protected by password. Prompt is output after call of function only
E=
An event is available.
Z=
Activated via parameter.
Moving through function distributor has no effect on weighing functions. Move through function distributor.
TU Display Results E Display Check START/STOP Feeder Z Service Values Batch Number B Print Counter Readings >0< Zero Set START/STOP Keyboard Mode START/STOP EasyServe Programming Calibration Functions S Read Parameters Enter Parameters Load Default Par. Print Parameters Print Status Report
0837
S S
START/STOP Simulation Tare S Weight Check S Imp/Belt Circuit S Set Time S
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Setting Programs BV-H2214 GB 33
VBW
INTECONT PLUS Calibrating Functions
There are 3 setting programs designed to ease initial calibration and recalibration. (1) Pulses/Belt Circuit LB (2) Taring TW (3) Weight Check CW Upon initial calibration, perform functions in the above order of sequence. All functions can be reached using the CALIBRATION function and are protected from unauthorized use by password. During program run until acknowledgement (1) no totalization takes place (2) analog outputs are set to offset values (3) no event messages are suppressed (4) all BIC functions are cut off. The operating sequence is the same with all programs.
G TUf
Call function distributor.
B7f
Enter password 07734.
Scroll CALIBRATION FUNCTIONS into lower display field and acknowledge.
Call setting program LB: IMP/BELT only (1) upon initial calibration (2) after mounting new belt or considerably varying belt tension (3) after having changed parameter B 04 “Charact.Val. vs” or B 05 “Nominal Speed” (in case of scales with and without speed measurement). Program acquires the number of speed transducer pulses for one belt circuit and uses the number of pulses as belt circuit code for the following programs: (a) Manual or automatic zero setting (b) Taring TW (c) Weight Check CW Upon initial calibration, first call setting program LB. This also applies to scales without speed measurement. Prerequisites : (1) Before calling program, measure time of one belt circuit with maximum possible accuracy and enter into Parameter C 02. (2) Deselect batching mode. (3) Ensure conveyor belt is running. Sequence:
Display shows a setting program, e.g. TW: Tare.
Calibrating Functions S5 TW. Tare
Start setting program.
N f
Belt Circuit LB
Return to normal displays. For approx. 2 min., Calibration menu can be recalled without password input.
Gf
Function distributor, calibrating functions, password (see “Calibrating Functions”)
TU f N
Scroll LB: Imp/Belt into lower display field. Start. Abort at any time.
Setting programs do not control belt drive and prefeeder. If any condition is not met, setting program aborts and a corresponding message is output.
0837
Setting Programs BV-H2214 GB 34
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Program running:
>.
LB :
5.6 s 1500 Imp
VBW Error message : If sensor is improperly recognized (sensor pulses measured do not correspond to parameter setting), message “Sensor Error” is output and setting program aborts. For troubleshooting, see “Commissioning/Belt Run Monitoring” item.
Upper display : residual run time in seconds Lower display : added speed transducer pulses
Program complete:
>.
LB: v
0.095 m/s 451251 I/B
Upper display : belt speed mean value over total run time Lower display : Pulses/belt circuit total
f N
Accept result and enter into Parameter D 06. Reject result.
The sequence is the same if no speed measurement is provided. Special Messages: (1) START if belt is not running (2) ABORTED
Tare TW The taring program acquires the belt weigher’s zero point error over one or multiple integer belt circuits and uses value to correct current measuring result in normal mode. On principle, taring program is identical with zero setting program. Tare : acquire basic tare (weight of mechanical system, conveyor belt, etc.) upon commissioning, service and maintenance. Set to zero
: acquire zero point deviation during operation, e.g. contamination.
Unlike the zero setting program, the correction amount of the taring program is unlimited. After taring, the admissible correction amount of the zeroing program relates to the new reference value. Prerequisites : (1) Conveyor belt totally unloaded. Control prefeeder using the START/STOP Feeder function. (2) Clean mechanical scale system in weighing area. Normal deposits immediately recurring during operation need not be removed. (3) Deselect batching mode. (4) Ensure conveyor belt is running. Corresponding hint is output automatically.
Attention!
0837
If a belt circuit sensor is present (N03 = YES), program sequence slightly differs. Running message : E-PROG active (lower display) Complete message : ... - I/B value flickers upon every belt circuit. Operation : as described above
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Sequence:
Gf
Function distributor, calibrating functions, password (see “Calibrating Functions”)
TU
Scroll TW: Tare function into lower display field.
Technische Redaktion PDE-RD
Setting Programs BV-H2214 GB 35
VBW
INTECONT PLUS Weight Check CW
Start function.
f N
Abort function at any time.
Program running:
TW: Tare
9 0. 2 % 5 2. 3 5
Upper display : residual run time in % of total run time Lower display : continuously meaned tare in % of nominal belt load
This program lets you check the INTECONT measuring range. Load weighing platform with a known check weight and acquire platform load mean value over one or multiple integer belt circuits. INTECONT compares the result with defined setpoint and displays value. Automatic correction does not take place. Prerequisites : (1) Tare or zero set (2) Enter check weight into Parameter C 08. Select check weight between 30...100 % of nominal platform load Q0.
Program complete: >. Dev. Tare
Q0 q0
2.45 % 53.20
Leff
Upper display : deviation of tare value from previous taring result in % of nominal belt load dev = + : tare has increased dev = - : tare has decreased Lower display : mean value of total tare in % of nominal belt load
f
Accept taring result and enter into Parameter D 04. Set tare correction (D05) to zero.
N
Reject result, i.e. scale is not tared.
Special Messages: (1) START if belt is not running (2) ABORTED Note: (1) Related to nominal belt load, tare value can exceed 100%. (2) If deviation (dev) exceeds 20%, check scale for mechanical faults, e.g. jammed material particles. (3)
= q0 * Leff = nominal belt load Parameter D 01 = eff. platform length Parameter C 05
(3) Apply check weight in proper location. (4) Select batching mode. (5) Start conveyor belt. Corresponding hint is output automatically. Sequence:
Gf
Function distributor, calibrating functions, password (see “Calibrating Functions”).
TU
Scroll CW: Weight Check function into lower display field.
f N
Start function. Abort function at any time.
If BIC is active (M05 = YES), BIC tare vectors are initialized along with taring program.
Setting Programs BV-H2214 GB 36
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
Evaluating Result: Error < 1 % : KOR = 0.99...1.01 Scale OK, no further action required.
Program running:
>.
CW: Set / Act
51,4 % 0,9842
Upper display : residual run time in % of total run time Lower display : continuously meaned SET/ACT measuring result
Program complete:
>.
VBW
CW: 1200,34 kg COR 0,99915
Error < 5 %
: KOR = 0.95...1.05 Enter KOR value into Parameter D 02. This make good sense only if parameter has not yet considered result of check using material.
Error > 5 %
: KOR < 0.95, or KOR > 1.05 Multi-percent deviations suggest faulty data input (e.g. belt incination, lever arms not exactly known), and/or mechanical faults (misalignment, distorsions).
Check does not consider Parameter D 02 “Range Correction”, so that check program will indicate same error quotient KOR after check.
Upper display : Fictitious material amount fed over run time *. Lower display : mean value KOR of SET/ACT over total run time
fN
Exit program. Since result is not AUTOMATICALLY ACQUIRED, both keys are equivalent.
Special Messages: (1) START if belt is not running (2) ABORTED (irrelevant)
*
Lets you check scale zero point without check weight. Display format: xxxxxxx,yy kg
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Setting Programs BV-H2214 GB 37
VBW
INTECONT PLUS Set Time
Unlike the other programs, date and time can be changed in START and STOP states of scale and read off under SERVICE VALUES.
Gf
Function distributor, Calibrating functions, password (see “Calibrating Functions”).
TU f N 033
Scroll Set Time function into lower display field.
f
Acknowledge every input. As soon as seconds are acknowledged, new date is stored, and complete date is briefly displayed.
O
Delete digit entered last
Call menu.
Simulation Mode The Simulation Mode lets you check all scale functions without material at the time of commissioning. During simulation, scale is cannot operate in normal mode.
Gf
Function distributor, Calibration functions, password (see “Calibration Functions”).
TU f
Scroll “START Simulation” into lower display field. Start program.
Abort at any time. Year, e.g. 03 Enter month, day, hour, minute, second.
After power failure, time remains stored for min. 5 days.
Display
:
Event message S7 In upper line, the “=” symbol flashes.
Function can be cut off in the same way (STOP Simulation).
Features: 1.
All operating functions can be performed.
2.
Feed rate actual value is set to nominal rate.
3.
Belt load and speed measurement are active.
4, All control inputs/outputs operate as usually.
0837
Setting Programs BV-H2214 GB 38
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 8
VBW
Service Values
The Service table includes detailed system information. Call does not affect weighing functions.
GT f
6)
Input switching condition I+ : DI = 1 1 1 1 1 + 0 “1" = contact closed ”0" = contact open
Call SERVICE VALUES function and activate.
Inputs 4 + 5 on option card “N” = no option card
TU N
Move through service values. Inputs 6 + 7 designed as Namur inputs (belt sensor, tacho)
Return to normal displays.
“+” short circuit; “-” cable breakage; “1" = sensor covered; ”0" = sensor free
Displays:
7)
1)
VBW 20600-01 2482
Version number
2)
HW = 1
Hardware version
3)
Option card:
0 1
(not available) (available)
EL = 22 h Voltage ON-time Monitored: Parameter K 01, Message S4
8)
ED : >0 = 95 min Scale ON-time after last taring, or last manual or automatic zero set.
O Z1 =
1500100 kg Opt..Card : 1
Prerequisite Monitored
4)
Date and time
5)
Relay outputs switching condition I + DO = 1 1 1 0 0 0 0 0 “1" = contact closed ”0" = contact open Outputs 4-8 on option card “N” = no option card
9)
: Totalization ON, conveyor belt may be stopped. : Parameter H 07, Message C7
ED = 19 h Scale and conveyor belt ON-times
Prerequisite Monitored
: Totalization ON : Parameter K 03, Message S3
10) Tacho = 96.6 Hz Speed transducer input frequency Select frequency between 0.4...3000 Hz.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Service Values BV-H2214 GB 39
VBW
INTECONT PLUS 17) Belt Drift tr = 0.12 cm
11) aw = 30.988 % Load on load cells related to total of load cells rated capacity. If value exceeds 100 %, load cells are overloaded. From 110 % onward, message H4 :
The arrows indicate the direction of drift.
L/C Input > MAX is output. 12) vap = 0.883168 mV/V Unnormalized load cell amplifier output value delayed for point of material discharge (CPD active). 13) bic = 2.34001 mV/V
Prerequisite: Monitored :
see “Slip” Parameters N09-N12, messages C3 and C4
18) Pulses of sensor area Imp.S. = 386
Unnormalized load cell amplifier output value with active BIC (Belt Influence Compensation)
Measured pulses of sensor area. If belt sensor is properly located, the following result is expected:
Imp.S. = 0.5 * sensor length * 0.01 * charact. value vs
14) L/C = 1.383257 mV/V Unnormalized load cell amplifier output value (Gross).
Prerequisite: see “Slip” 19) Mean value Imitt = 22.27 %
Acquired before belt influence compensation and delay for point of discharge.
Feed rate mean value related to nominal feed rate Filter Prerequisite Initialization
15) R_L/C = 300 ohms
: Exponential, Parameter K 06 : Totalization ON, V > Vmin : Zero at power ON
Load cell resistance value 20) Variance var = 0.02 % 16) Slip s = 0.25 % Variation in belt length in % of total belt length (Parameter D 06).
Prerequisite: Monitored
Belt sensor active (N03), sensor area on conveyor belt (N04). : Parameter N13, message C8
Feed rate variance related to nominal feed rate square. Filter Prerequisite Initialization
: Exponential, Parameter K 06 : Totalization ON, V > Vmin : Zero at power ON
The variance indicates belt load instability. Higher values suggest poor discharge behaviour of material. 0837
Service Values BV-H2214 GB
40
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 21) Max. belt load QMAX = 57 % Maximum belt load during preselected SPC time related to nominal belt load. Time Evaluation Prerequisite Initialization Max. display
: : : : :
SPC time, Parameter K 05 SPC time continuously floating Totalization ON, V > Vmin Zero at power ON 255 %
22) No load percentage TQ < MIN = 23 % Total time during which belt load is below Qmin (F 05), related to SPC time, Parameter K 05
VBW 26) ZE = 53 Pulses output across pulse output of external totalizing counter, counted from command “Reset Counter 1 ”
27) ZO = 1 Pulses pending. If value constantly exceeds zero, pulse frequency surpasses 10 Hz. Increase smallest display digit of Counter 1 (Parameter B 07). 28) AI = 12.54 mA
Evaluation Prerequisite Initialization
: SPC time continuously floating : Totalization ON, V > Vmin : with Q = Qmin at power ON
Analog input input current 29) CS = 10851 Check sum of scale software 30) CS_b = 10851 Check sum recomputed in cycles. If value “CS_b” differs from “CS”, a serious fault is present. Contact the Schenck Service. 31) BIC-N = 27 Counter reading indicating how often BIC sensor has been recognized
23) Last taring T (date) 23.51 % 32) BIC-E = 5 Date and total tare related to nominal belt load Prerequisites : Correct zero point using taring program or manual/automatic zero setting function. Manual changes of correction parameters are not recorded. Displayed are the 5 last taring or zeroing operations.
Counter reading indicating faulty BIC circuits not entered into tare vectors
33) ES-Version = 11 Current EasyServe Version
24) AO1 = 4.15 mA Analog output 1 output current 25) AO2 = 10.00 mA
0837
Analog output 2 output current (on option card)
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Service Values BV-H2214 GB 41
VBW
INTECONT PLUS
This page left intentionally blank
0837
Service Values BV-H2214 GB
42
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 9.
VBW
Parameterization
General Information Parameters are variable characteristics or data used to match the INTECONT to the application. Display units and format Limit values Nominal and calibration data, etc. Some parameters can be selected in accordance with the requirements (e.g. display formats), others have to be taken from Spec Sheets supplied. During parameter input, all functions are maintained. However, during operation, only parameters with no influence on measurement, e.g. display filter, should be changed. Default Parameters: All parameter are preset with default values. These are proven suggestions and can normally be used as defined.
There are two types of parameter: Selection parameters Let you select from various options, e.g. WARNING, ALARM. Numeric parameters
Enter numeric value, e.g. nominal feed rate.
Call Parameter Menu
G TUf
Call function distributor.
TUf Bf
Select ENTER PAR. function.
Scroll PROGRAMMING function into lower display field and acknowledge.
Enter password 07734.
The default values can be loaded using sub-function “Load Default Parameters”. Dialog Behaviour Block: A
Identification The parameters are organized into function blocks A, B, ... and, within a block, described by name number 1, 2, 3 .. and value. Values differing from default are identified by a * before the block letter.
Display shows title of first parameter block.
N
Return to normal displays. For approx. 2 minutes, parameter menu can be recalled without password input.
Nominal Feed Rate B02 1000.0 kg/h
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 43
VBW
INTECONT PLUS
Preselect Parameters
Enter Parameters
P TU
Prepare input.
46 B9
Go to the left (4) or to the right (6), see “Hardware Configuration”.
f O N
Acknowledge input. Next parameter is displayed.
Rated Data Block: B
1. Block letter
TU
Move through blocks A, B ..., up and down. Block letter flashes. Select block. Parameter selected last is displayed.
f
Selection parameters: Value flashes. Scroll desired value into lower display field.
Numeric parameters: Feature - - - - - - - - - - - - - - - Enter value using keypad.
Delete digits. Abort input.
OFF key 0 is active always; ON key I, only after completed parameter input. 2. Parameter number
Nominal Feed Rate B02 10000.0 kg/h
TU
Move through parameter numbers within a block. Parameter number flashes.
f
Move through parameter numbers independent of block (UP only).
NN
Return to block titles. Return to normal mode.
0837
Parameterization BV-H2214 GB 44
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Load Default Parameter
Hardware Configuration When parameterizing the hardware used, the source determines whether unit, channel and level must be indicated, or not. The table below will assist you in selecting the hardware configuration: Source
Unit
Channel
VBW
Level
Lets you load the default settings. Function is protected by password and YES/NO prompt. Attention! All variable parameters and calibration values are reset.
FB
G Call PROGRAMMING function and DEFAULT PARAMETERS. B1 YES =1 f Acknowledge NO =0 selection.
OP v DI
I+
DI1-DI7
HI, LO
DO
I+
DO1-DO8
HI, LO
AI
I+
Power Failure Parameters remain stored for an unlimited period of time.
As you can see, with “Fieldbus” [FB", “Control Unit” (OP), “Speed” (v) and “Not Assigned” (-)] no additional information is required. “Digital Inputs” (DI) and “Digital Outputs” (DO) require unit, channel and level to be indicated. With “Analog Input ” (AI), the unit is firmly set to I+. Sample: Parameter B06 “START Source” determines from where the scale is started. Description
Source
B06 START Source
OP
Alternatives
FB, DI, v
On standard, the scale is started from INTECONT keyboard (OP). Alternatively, fieldbus, digital input (DI) or speed (v) can be selected. If DI is the desired source, additionally indicate channel and level (see Hardware Configuration table); the unit is firmly set to I+.
0837
4 6
Keys 4 (go to the left) and 6 (go to the right), let you shift between source, channel and level.
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 45
VBW
INTECONT PLUS
Parameters Overview
D 05 Tare Correction T D 06 Belt Circuit Char
This list applies to software: VBW 20600-08
Block E
Block A
E 01 E 02 E 03 E 04 E 05 E 06
A 01 A 02 A 03 A 04 A 05 A 06 A 07 A 08 A 09 A 10 A 11
Language Units Password 2.Password Feeder ON/OFF Keyb. Mode ON/OFF Batch ON/OFF >0: Zero ON/OF EasyServe ON/OFF Totalizer1 ON/OFF Totalizer2 ON/OFF
Block B B 01 B 02 B 03 B 04 B 05 B 06 B 07 B 08 B 09 B 10 B11 B12
Feed Rate Unit Nominal Feed Rate Tacho Source vs Charact. Value Nominal Speed START Source FMZ1 Unit FMZ1 Pulse Dur. FMZ2 Unit FMZ3 Unit DO Pulse Counter Pulse Weighting
Block C C 01 C 02 C 03 C 04 C 05 C 06 C 07 C 08
Belt Circuit No. Belt Circuit Time L/C Charac. Value L/C Rated Cap. Eff. Platf. Length Lever Ratio Angle a Check Weight
Block D D 01 D 02 D 03 D 04
Nominal Belt Load Span Correction Total Tare Basic Tare N
Parameterization BV-H2214 GB 46
Dialog Behaviour ENGLISH SI 07734 or 7734) 2889 active active active active active active active
Rated Data —- t/h 400,0000 t/h DI I+, DI7 HI 50.26 I/m 1,0000 m/s OP —— t 0 ms —— t —— t — 0.0 kg
Calibrating Data 1.00 30.0 s 2,8500 mV/V 220,000 kg 1,000 m 1,0000 0.0 degrees 50,000 kg
Calibrat. Results 111,11 kg/m 1,0000 0,00 kg/m 0,00 kg/m
Technische Redaktion PDE-RD
Elevation AO1 Elevation AO1 Limit Value AO1 Source AO2 Elevation AO2 Limit Value AO2
Block F F 01 F 02 F 03 F 04 F 05 F 06 F 07 F 08 F 09 F 10 F 11 F 12
Value for I-MIN Event Class I-MIN Value for I-MAX Event Class I-MAX Value for Q-MIN Event Class Q-MIN Value for Q-MAX Event Class Q-MAX Value for V-MIN Event Class V-MIN Value for V-MAX Event Class V-MAX
0,00 kg/m 1000 000 I/B Analog Output I 4,00 mA 20,00 mA Q 4.00 mA 20.00 mA Limit Values 5,0 %I WARNING 2 120,0 %I WARNING 2 20,0 %Q WARNING 2 120,0 %Q WARNING 2 5,0 %V WARNING 2 120,0 %V WARNING 2
Block G
Filter Setting
G 01 G 02 G 03 G 04 G 05 G 06
3,0 s 3,0 s 3,0 s 3,0 s 1,0 s 3,0 s
I Display I Analog Output Q Display V Display L/C Filter Afterfl. Time
Block H H 01 H 02 H 03 H 04 H 05 H 06 H 07 H 08 H 09 H 10 H 11 H 12
AUTO Zero Active Limit Value Diff. Mean Limit Value Zero Set Limit Tare Corr. > MAX Zero Set Time Time Elapsed Print Result ZDO Active ZDO Limit Zero Set Diff. Tare Diff. >MAX
AUTO Zero Set NO 0,50 %Q 1,00 %Q 5,00 %Q WARNING 1 4h IGNORE NO NO 1,00 %Q 5,0 % WARNING 2 0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Block I
Batch Mode
I 01 I 02 I 03 I 04 I 05 I 06 I 07 I 08 I 09
100,000 kg 0,000 kg 1,0 1,0 % 1,0 % WARNING 1 NO IGNORE OP
Batch Dribble FD Batch End Adaption Fact. Batch Tolerance + Batch Tolerance Out of Tolerance Belt Empty Batch > Setp. Batch Source
Block J J 01 J 02 J 03 J 04 J 05 J 06 J 07 J 08 J 09 J 10 J 11 J 12 J 13 J 14 J 15 J 16 J 17 J 18 J 19 J 20 J 21 J 22
Baud Rate AUTO Print Print Subtotal Reset Print FMZ 1 Reset Print FMZ 2 Print Page Length Batch Setp.Line Batch Setp.Col. Batch Act.Line Batch Act.Col. FMZ 1 Line FMZ 1 Column FMZ 2 Line FMZ 2 Column Date/Time Line Date/Time Column Event Line Event Column Set Line to Zero Set Column to Zero Line Number Column Number
Block K K 01 Maintenance Elec. K 02 Event Maint. EL. K 03 Maint. STR-Meter K 04 Event Maint. Run. K 05 SPC Time K 06 SPC Filter BLOCK L
0837
L 01 L 02 L 03 L 04 L 05 L 06 L 07 L 08
Protocol Type Host timeout Comm.-Error Host Word sequence Byte sequence Configuration Address Resolution
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Printer Setting 9600 NO Error NO NO 72 lines 6 8 7 8 8 8 9 8 4 8 12 8 10 8 3 8 Maintenance Int. 3000 hours WARNING 1 3000 hours WARNING 1 8 hrs 1,00 hour Comm. Fieldbus NO 5s ALARM (S 09) I:std/L:std Low-High FIXED 1 4096
VBW L 09 L 10 L 11 L 12 L 13 L 14 L 15 L 17 L 22
Physics Baud Rate Format Data Adresse FLOAT-Format Address Baud Rate S5 Physics Hardware
Block M M 01 M 02 M 03 M 04 M 05
Feeder Active Setting Time Feed Distance Motor STOP aft. ST Change-over FF/DF
Block N N 01 CPD Active N 02 Platf.Dis.Length N 03 Belt Sensor Active N 04 Source Sensor N 05 BIC Active N 06 Sensor Length N 07 Sensor Width N 08 Sensor Offset N 09 Belt Drift N 10 Belt Drift Event N 11 Belt Skew N 12 Belt Skew Event N 13 Slip Limit N 14 Slip Event N 15 DO Belt Drift N 16 DO Belt Skew N 17 DO Slip N 18 Freeze BIC
Block O O 01 O 02 O 03 O 04 O 05 O 06 O 07 O 08 O 09
Power Failure Memory Error Tacho Input Namur Err. Tacho Namur Err Belt L/C Input No Release L/C Input > MAX L/C Input < MIN
Technische Redaktion PDE-RD
RS 485 9600 8-E-1 16 IEEE 63 125K RS422 VxB020
Feeder Control NO 0,0 s 0,00 m NO YES
Scale Monitoring NO 0,00 %LB NO DI6 NO 8.20cm 12.00 cm 0.00 cm 3.00 cm W1 (C04) 4.00cm A (C03) 2.00 %LB W1 (C08) — — — —
Events A (E01) A (S01) A (C02) A (E02) W1 (E03) A (C01) W1 (S02) A (H04) A (L04)
Parameterization BV-H2214 GB 47
VBW O10 Simualtion Active O11 Error Ext. Event
Block P P 01 P 02 P 03 P 04 P 05 P 06
Release Stop Batch Ackn. Events DI Start DI Setting to zero DI Ext. Event
Block Q Q 01 DO Alarm Q 02 DO Prefeeder ON Q 03 DO Feeder ON Q 04 DO I-MIN Q 05 DO I-MAX Q 06 DO Q-MIN Q 07 DO Q-MAX Q 08 DO v-MIN Q 09 v-MAX Q 10 DO Batch Active Q 11 DO Full Feed Q 12 DO Dribble Feed Q 13 DO Keyboard Mode
Block R R 01 R 02 R 03 R 04 R 05 R 06
Station Address Physics EasyServe Baudr. Format Data Connection MODBUS Idle Time
Block S: S01 S02 S02 S04
DLZ active Baud rate Data format Physics
INTECONT PLUS W2 (S07) A (E06)
Digital Inputs DI I+ DI 3 HI — DI I+DI1 HI — — — Digital Outputs DO I+ D03 LO — DO I+ D01 HI DO I+ DO4 LO DO I+ DO2 LO — — — — — — — —
Comm. EasyServe 1 RS 232 19200 8-0-1 serial 4ms
Block U: U 01 IP-Address 1 U 02 IP-Address 2 U 03 IP-Address 3 U 04 IP-Address 4 U 05 Net Mask 1 U 06 Net Mask 2 U 07 Net Mask 3 U 08 Net Mask 4 U 09 Gatway 1 U 10 Gatway 2 U 11 Gatway 3 U 12 Gatway 4
BLOCK V: V 01 ID Preset Value 1 V 02 ID Preset Value 2 V 03 ID Preset Value 3 V 04 ID Preset Value 4 V 05 ID Preset Value 5 V 06 ID Preset Value 6 V 07 ID Preset Value 7 V 08 ID Preset Value 8 V 09 ID Read Value 1 V 10 ID Read Value 2 V 11 ID Read Value 3 V 12 ID Read Value 4 V 13 ID Read Value 5 V 14 ID Read Value 6 V 15 ID Read Value 7 V 16 ID Read Value 8
Ethernet 192 168 240 1 255 255 255 0 192 168 240 0
Fixmode Parameter 320 352 384 596 594 598 0 0 752 784 1552 1872 1874 1880 1884 1876
Secondary display DLZ No 9600 8 bit NO RS232
0837
Parameterization BV-H2214 GB 48
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Block A :
A 01 Language DEUTSCH Default: DEUTSCH ENGLISH* AMERICAN ENG* FRANCAIS ESPANOL ITALIANO Selection applies to all displays, error messages and parameters. * identical
If you forget your password, you have to change your password with EasyServe or report the shown value of the parameter A03 to Schenck Service to find out the appropriate password
A 04 Second password Range: 1000 - 9999
A 02 Units SI NON-SI
Default: SI
Convert displays and parameter inputs from SI units into American units.
American Units
SI Units
Conversion
lb t f inch
kg t m cm
1 lb = 0.453593 kg 1 t = 0.907185 t = 2000 lb 1 f = 0.3048 m 1 inch = 2.54 cm
*
Dialog Behaviour
Note:
Range:
Range:
VBW
*
The password for using a specific system. This password allows you to protect the basic functions in the function distributor (see above). It does not allow access to parameters or adjustment functions. The changed password is also shown encoded. The default value 2889 generates the return display 14389. Note: If you forget the second password, you can enter a new password in the A04 parameter using the standard password
A 05 Feeder ON/OFF Range:
also applicable to compound units, e.g. kg/hr
active not active Password 2. Password Confirm
Default: 07734 o 7734
The password that secures the INTECONT keyboard access to parameters and adjustment functions can now be changed. The changed password is shown encoded in the parameter dialog and EasyServe. The default value 07734 (or 7734) generates the return display 26574 (this process is identical to DISOCONT).
active:
Access is always allowed.
not active:
Access is never allowed. This function is not visible in the distributor.
Password:
Access is available with the standard password (A03).
Second Password:
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Default: active
You can use this parameter to control access to the basic functions of ON/OFF prefeeder. You have the options below::
A 03 Password Range: 1000 - 9999
Default: 2889
Access is available with the new second password (A04)..
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 49
VBW Confirm:
INTECONT PLUS Access has to be confirmed again for security reasons.
Note: The prefeeder also has to be activated with parameter M01.
A 09 EasyServe ON/OFF Range:
A 06 Keyb. Mode ON/OFF Range:
active not active Password 2. Password Confirm
You can use this parameter to control access to the basic functions of EasyServe activate/deactivate. The range of values is identical to the A05 parameter.
A 10 Totalizer1 ON/OFF Range:
A 07 Batch ON/OFF active not active Password 2. Password Confirm
Default: active
You can use this parameter to control deleting counter 2. The range of values is identical to the A05 parameter.
A 08 >0: Zero ON/OF active not active Password 2. Password Confirm
active not active Password 2. Password Confirm
Default: active
You can use this parameter to control access to the basic functions of batch preselect/deselect. The range of values is identical to the A05 parameter.
Range:
Default: active
Default: active
You can use this parameter to control access to the basic functions of keyboard ON/OFF mode. The range of values is identical to the A05 parameter.
Range:
active not active Password 2. Password Confirm
Default: active
A 11 Totalizer2 ON/OFF Range:
active Default: active not active Password 2. Password Confirm You can use this parameter to control deleting counter 2. The range of values is identical to the A05 parameter.
You can use this parameter to control access to the basic function of >0: zero setting. The range of values is identical to the A05 parameter.
0837
Parameterization BV-H2214 GB 50
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Block B :
B 01 Feed Rate Unit
VBW Rated Data
B 05 Nominal Speed
Range:
- - - - - - t/h Default: - - - - - - t/h - - - - . - t/h - - - . - - t/h - - . - - - t/h - - - - - - kg/h - - - - . - kg/h - - -. - - kg/h - -.- - kg/h Determine feed rate display format.
Range:
0,0100...10,000 m/s Default: 1,0000 m/s
Limit value reference. If BIC or CPD (Parameter Block N) are used, value should be accurate to some percent. If scales operate without speed measurement, B 05 determines the accuracy.
B 06 START Source Range:
B 02 Nominal Feed Rate Range:
0,0020...99999,9 t/h Default: 400,0000 t/h
OP FB DI v
Default: OP
Reference for limit values and service displays
B 03 Tacho Source Range:
DI —
Default: DI I+ DI7 HI
Select - to stop belt speed measurement. Computation uses nominal speed B 05.
To start/stop totalization, there is no single solution: OP : from INTECONT keyboard FB : via fieldbus interface DI : using digital input. Default value is DI2. You can also use any other free digital input. Digital input operates edge-controlled, i.e. if scale fails after Alarm, remove START signal and re-apply. v : If you select belt speed “v”, totalization starts at v>v-min (Parameter F09) and stops at v
B 04 vs Charact. Val. Range:
10,00...100 000,0 I/m
Default: 50,26 I/m
Number of speed transducer pulses per belt meter. Product B 04 * B 05 must range between 0.5...2500 Hz of speed input. Special case:B 03 = NO Do not change characteristic value vs; this would change the run time of your setting programs.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 51
VBW
INTECONT PLUS
Note: If you select “v”, no batching is possible. Dialog function “Keyboard Mode” lets you change over from selected source to keyboard, and vice versa.
Note G06 defines the totalizing counters tracking time. If Parameter P01 “Release” is set to - -", no release is required.
0837
Parameterization BV-H2214 GB 52
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS B 07 FMZ 1 Unit Range:
------- t -----.- t ----.-- t ---.--- t - - - - - - t *10 ----t *100 - - - - - - - kg - - - - - . - kg - - - - . - - kg - - - . - - - kg
VBW B 09 FMZ 2 Unit
Default: - - - - - - - t
same as B08, however, for Counter 2
B 10 FMZ 3 Unit same as B08, however, for Counter 3
B11 Lets you determine the display format for Counter 1, all batch values and pulse weighting. If no external counter is present, set Parameter B08 to 0.
B 08 FMZ 1 Pulse Dur. Range:
0....1000 ms
Default: 0 ms
Lets you determine output pulse length of external totalizing counter. Pulse weighting corresponds to the smallest display digit of Counter 1 (Parameter B07). B08 < 10 ms : Pulse output is disabled. All pulses not yet output still are deleted. At nominal feed rate the output frequency is:
PNENN
= nominal feed rate in kg/h or t/h
Zmin
= smallest display digit of Counter 1 (B 07) in kg or t
DO Pulse Counter
Range:
— Default: — DO The impulse output of totalizing counter 1 can now also be output via a digital output. The impulse output of INTECONT on plug X6, pins 8-11 is still used with default value “—“ and the configured output is used instead with the alternative DO. The impulse duration is still determined with the B08 parameter. Readings less than 10 ms block the output total and readings up to 1 second are set to 1 second when a digital output is used.
B 12 Pulse Weighting Range:
0.00 – 100000.00 kg
Default: 0.00 kg
The weighting of an output impulse on the impulse output of totalizing counter 1 can now be set to be freely selected. The weighting of an impulse corresponds to the smallest possible digit of counter 1 with default value 0.00 (refer to parameter B07).
Select Zmin (B07) so that f does not exceed 10 Hz. In addition, pulse duration B08 must be smaller than 1/f.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 53
VBW
INTECONT PLUS Block C : Calibrating Data
C 01 Belt Circuit No. Range:
1...100
C 06 Lever Ratio Default: 1,00
lets you determine the run time of the Zero Setting, Taring and Weight Check setting programs.
Range:
0,0100...2,0000
Default: 1,0000
Lever ratio of force transducing weighed idler of platform and load cell.
Does not apply to AUTO Zero Set.
Q = platform load F = load on load cell
C 02 Belt Circuit Time Range:
1,0...9999,0 s
Default: 30,0 s
lets you determine the measuring time for the “Imp/Belt Circuit” calibration program. Normally, the time is selected for one belt circuit.
With weighing modules with leaf spring parallel guidance, lever ratio is always 1.
C 07 Angle a Range:
Angle of longitudinal scale axis if load cell is mounted vertical to belt.
C 03 L/C Charac. Value Range:
0,01...9,9999 mV/V Default: 2,8500 mV/V
indicates the load cell characteristic value (transmission factor).
C 08 Check Weight Range:
0,5000... 220 000.0 kg
0,001...22000,0 kg Default: 50,000 kg
Weight of material on load cell simulated by check weight
C 04 L/C Rated Cap. Range:
0,0...60,00 degrees Default: 0,00 degrees
Default: 220,000 kg
indicates the total of load cell rated capacities. Pivots are considered as load cells.
C 05 Eff. Platf. Length Range:
0,1000...50,000 m
Default: 1,000 m
indicates effective length of weighing platform. 0837
Parameterization BV-H2214 GB 54
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Block D :
D 01 Nominal Belt Load No input possible
Default: 111,11 kg/m
VBW Calibrat. Results
D 05 Tare Correction T No input required max. +- 1000 kg/m
Default: 0,00 kg/m
computed from nominal data B 02 and B 05 used as reference value for limit values and zero setting program.
Result of manual or automatic zero setting program After every taring operation, D 05 is set to 0.
D 02 Span Correction Range:
0,5000...2,0000
Default: 1,0000
proportionally influences measurement of belt load q. q(corrected) = q(measured) · D 02 used to correct measuring system through check with material.
D 06 Belt Circuit Char No input required max. 9E6
Default: 1000000 I/U
D 03 Total Tare No input possible
Default: 0,00 kg/m
Total tare = basic tare + tare correction
Result of basic calibration program “Imp/Belt Circuit”. Determines cycle of setting programs. Divided by Parameter B 04 (vs Charact.Val.), belt length in m results.
D 04 Basic Tare N No input required max. 10000 kg/m
Default: 0,00 kg/m
Result of taring program.
Attention! When entering Parameters D 02 ... D 05 in manual, start with D 02.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 55
VBW
INTECONT PLUS Block E :
E 01 Source AO 1 Range:
I (feed rate) Q (belt load) V (belt speed)
Analog Output
E 04 Source AO 2 Default: I
Range:
I (feed rate) Q (belt load) V (belt speed)
Default: Q
One of these values can be output in analog fashion.
One of these values can be output in analog fashion.
Filters: Parameters G 02, G 04, G 05
Filters: Parametesr G 02, G 04, G 05
E 02 Elevation AO 1 Range:
0,00...20,00 mA
E 05 Elevation AO 2 Default: 4,00 mA
Output current with E 01 set to 0. The smallest value is limited to E 02, also in stop state of scale.
E 03 Limit Value AO 1 Range:
Range:
0,00...20,00 mA
Default: 4,00 mA
Output current with E04 set to 0. The smallest value is limited to E 05, also in stop state of scale.
E 06 Limit Value AO 2
0,00...1000,00 mA Default: 20,00 mA
Range:
0,00...1000,00 mA Default: 20,00 mA
Output current with E 01 set to 100 % (nominal value).
Output current with E04 set to 100 % (nominal value).
Range of output current is limited to 0...20 mA.
Current output range is limited to 0...20 mA by the hardware.
0837
Parameterization BV-H2214 GB 56
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Block F : If measurement values exceed their MIN/MAX limits, a corresponding event message is output (L1... L3, H1... H3).
Limit Values F 06 Event Class Q-MIN Range:
Monitoring starts 10 s after start up.
WARNING 2 WARNING 1 IGNORE ALARM
L2
Default: WARNING 2
F 01 Value for I-MIN Range:
-10...200,0 % I
F 07 Value for Q-MAX
Default: 5,0 % I
Range:
-10...200,0 % Q
Default: 120,0 % Q
Reference: Nominal Feed Rate B 02. Reference: Nominal Belt Load D 01
F 02 Event Class I-MIN Range:
WARNING 2 WARNING 1 IGNORE ALARM
L1
Default: WARNING 2
Range:
F 03 Value for I-MAX Range:
-10...200,0 % I
Default: 120,0 % I
F 04 Event Class I-MAX WARNING 2 WARNING 1 IGNORE ALARM
WARNING 2 WARNING 1 IGNORE ALARM
H2
Default: WARNING 2
F 09 Value for V-MIN
Reference: Nominal Feed Rate B 02.
Range:
F 08 Event Class Q-MAX
Range:
-10...200,0 % V
Default: 5.0 % V
Reference: Nominal Speed B 05
H1
Default: WARNING 2
F 10 Event Class V-MIN Range:
WARNING 2 WARNING 1 IGNORE ALARM
L3
Default: WARNING 2
F 05 Value for Q-MIN Range:
-10...200.0 % Q
Default: 20,0 % Q
Reference: Nominal Belt Load D 01
F 11 Value for V-MAX Range:
-10...200,0 % V
Default: 120,0 % V
Reference: Nominal Speed B 05
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 57
VBW
INTECONT PLUS
F 12 Event Class V-MAX Range:
WARNING 2 WARNING 1 IGNORE ALARM
H3
Default: WARNING 2
Block G : I = feed rate
Q = belt load
V = belt speed
G 01 I Display Range:
0.0...600.0 s
G 04 V Display Default: 3.0 s
Feed rate display
0.0...600.0 s
Default: 3.0 s
Default: 3.0 s
Range:
1.0...600.0s
Default: 1.0 s
Holds for all functions and displays depending on belt load.
G 03 Q Display 0.0...600.0 s
0.0...600.0 s
G 05 L/C Filter
Feed rate analog output
Range:
Range:
Belt speed display
G 02 I Analog output Range:
Filters
G 06 Afterfl. Time Default: 3.0 s
Belt load display
Range:
0.0...2000.0 s
Default: 3.0 s
Determines the time totalization goes on after turn-off of feeder.
All filters are of the 1st order type (exponential), i.e. after abrupt change of signal, approx. 2/3 of the limit value are reached after the set time. Longer times stabilize display but reduce update rate.
Parameterization BV-H2214 GB 58
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Block H : H 01 AUTO Zero Active Range:
NO YES
Default: NO For more information, see Calibration item.
Reference: Nominal Belt Load D 01 Lets you select the automatic zero setting function used to correct zero point on empty conveyor belt after every belt circuit. Prerequisites:
v > vmin No setting program No parameter input
0.00...10.00 %Q
AUTO Zero Set H 04 Zero Set Limit Range:
Reference: Nominal Belt Load D 01 Maximum admissible totals value of all manual and automatic zero setting operations. Correction is not acquired.
H 05 Tare Corr. > MAX Range:
WARNING 1 ALARM
C5
Default: WARNING 1
H 06 Zero Set Time Range:
H 03 Mean Limit Value 0.00...10.00 %Q
Default: 5.00 %Q
Default: 0.50 %Q
First prerequisite for automatic zero setting. Defines the uniformity of mean belt load between two consecutive belt circuits.
Range:
0.00...100.00 %Q
Automatic zero setting has exceeded Zero Set Limit H04. Value is not acquired.
H 02 Limit Value Diff. Range:
VBW
1...999 h
Default: 4 h
Lets you know that no manual or automatic zero setting nor taring has been performed during the set time.
Default: 1.00 %Q Message C 7: Set Time To Zero
Reference: Nominal Belt Load D 01 Second prerequisite for automatic zero setting. Defines the maximum admissible belt load mean value over 2 consecutive belt circuits.
H 07 Time Elapsed Range:
IGNORE WARNING 1 WARNING 2
C7 Default: IGNORE Zeit : H 06
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 59
VBW
INTECONT PLUS
H 08 Print Result Range:
NO YES
H 11 Zero Set Diff. Range:
0.00...100.00 %F
Default: 5.0 %F
Default: NO
Print zero setting result after every belt circuit.
Reference: Nominal Belt Load D 01 Indicates the difference between two consecutive manual or automatic zero setting operations. Excess is reported by message C9.
Result autom. zero setting Total Tare [kg/m]
50,23
(D 03)
Tare [kg/m] 1,56 (D 05)
H 12 Tare Diff. > MAX Range:
H 09 ZDO Active Range:
NO YES
WARNING 2 WARNING1 IGNORE ALARM
C9
Default: WARNING 2
Default: NO
Activates Zero Drop Out function (see H 10). Manual or automatic zero setting has exceeded difference H 11. Correction is acquired save in case of ALARM messages.
H 10 ZDO Limit Range:
0.0...10.00 %Q
Default: 1.00 %Q
Reference: Nominal Belt Load D 01 If ZDO function is active and belt load exceeds the defined limit, feed rate measurement and totalization are suppressed. No symbol appears on display.
0837
Parameterization BV-H2214 GB 60
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Block I : The sequence of the available batch modes is detailed in Chapter “Details”. Make sure start source B 06 is not set to “v”.
I 01 Range:
Batch Dribble FD 0.00...220 000 kg
Default: 100 000 kg
If batch setpoint is reached “Batch Setpoint I 01-I 02", full feed output Q11 is reset; dribble feed output Q12 activated. These signals can be used, e.g. to reduce belt speed or prefeeder output.
I 02 Range:
Batch Mode I 03 Range:
Adaption Fact. 0.0...1.0
Default: 1.0
Pre-cut-off amount I 02 is adapted automatically, so that the system better suits the situation upon next batch. Value is corrected by the batch error * I 03. I 03 I 03
= 0: = 1:
no adaption full adaption
Intermediate values cause a filtered adaption, preferred in the case of plants with non-exact repeatability.
Batch End 0.00...220 000 kg
Default: 0.000 kg
If batch setpoint minus pre-cut-off amount I 02 is reached, batch is complete. Drive, or prefeeder, stops.
I 04 Range:
Batch Tolerance + 0.0...100.0 %
Default: 1.0 %
Reference: Batch Setpoint Defines the value admissible for excess of batch setpoint.
I 05 Range:
Batch Tolerance 0.0...100.0 %
Default: 1.0 %
Reference: Batch Setpoint Defines the value for shortfall of batch setpoint. I 02 makes allowance for possible afterflow.
I 06 Range:
Out of Tolerance WARNING 1 WARNING2 ALARM IGNORE
B1
Default: WARNING 1
Event message B1 reports excess of limit values I 04 or I 05. 0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 61
VBW I 07 Range:
INTECONT PLUS
Belt Empty NO YES
Default: NO
NO
: Batching without belt clearance. Stop of conveyor belt aborts batch.
YES
: Batching with belt clearance. Stop of prefeeder aborts batch. (Prefeeder Active M 01 = YES)
I 08 Range:
Batch > Setp. IGNORE WARNING1 WARNING 2 ALARM
B4 Default: IGNORE
Batch actual value exceeds setpoint by tolerance I 04. Message B4 is output. After acknowledgement (also ALARM messages), monitoring of current batch cuts off.
I 09 Range:
Batch Source OP FB
Default: OP
OP
: Batch setpoint, batch number and make-up setpoint are preset from the INTECONT keyboard.
FB
: Above values are set via fieldbus interface.
0837
Parameterization BV-H2214 GB 62
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Block J :
Printer Setting
J 01 Baud rate Range:
2400 4800 9600 19200 38400
Default: 9600 30.09.97 11:45:21L2 W1 0.09.97 11:59:01L2 W1
Load < MIN Load < MIN
Event report
Baud rate for transmission to printer.
J 03 Print Subtotal Print Batch Range: Batch number 30.06.03 Batch Setpoint Batch Actual Val. Totalizer 1 Totalizer 2 Zero Set before
12 11:45:10 1000 kg 998 kg 1200 kg 90000 kg 75 min
Error YES NO
Default: Error
Error
: Each event is printed automatically as soon as available.
YES
: See above, however, including totalizing counter (FMZ) sub-totals.
NO
: No printout
Events
Printing is effected in batching and normal modes. Save parameter J 03, all parameters are valid for batch and counter reports.
J 02 Auto Print Range:
NO YES
Default: NO
NO
: Batch report can be printed only using the control menu.
YES
: Batch report is printed automatically when batch is complete.
Special case: If a value is set to line 0 and column 0, it does not appear in report.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 63
VBW
INTECONT PLUS
J 04 Reset Print FMZ 1 Range: YES
NO
J 09 Batch Act. Line
NO Default: NO YES : Reset counter 1 upon start of next batch provided that batch report has been printed. 1)
Range:
: Counter 1 can be reset only using the control function.
Range:
0...117
Default: 7
J 10 Batch Act. Col. 0...127
Default: 8
1) also possible without printer (J 02, J 04= YES).
J 11 FMZ 1 Line
J 05 Reset Print FMZ 2 Range:
NO YES
Default: NO
See J 04, however, for counter 2.
Range:
Default: 72 lines
The page must be minimum 4 times longer than the number of data to be printed. The line spacing is always 1/6 inch. Change of parameter automatically initializes printer.
0...117
Default: 6
0...127
Range:
0...117
Default: 9
J 14 FMZ 2 Column Range:
0...127
Default: 8
Range:
0...117
Default: 4
J 16 Date/Time Col.
J 08 Batch Setp. Col. Range:
Default: 8
J 15 Date/Time Line
J 07 Batch Setp. Line Range:
0...127
J 13 FMZ 2 Line
J 06 Print Page Length 9...127 lines
Default: : 8
J 12 FMZ 1 Column Range:
Range:
0...117
Default: 8
Range:
0...127
Default: 8
J 17 Event Line Range:
0...17
Default: 12 0837
Parameterization BV-H2214 GB 64
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS J 18 Event Column Range:
0...127
VBW J 21 Line Number
Default: 8
Range:
0...117
Nb Default: 3
J 22 Column Number J 19 Set Line to Zero Range:
0...117
ED:>0
0...127
Default: 8
K 01 Maintenance Elec. 0...10000 h
Default: 8
ED:>0
Block K :
Range:
0...127
Default: 10
J 20 Set Column to Zero Range:
Range:
Nb
Maintenance Int. K 04 Event Maint. Run.
Default: 3000 h Message: S4 (K 02)
Range:
WARNING 1 WARNING 2 IGNORE
S3
Default: WARNING 1
Alerts you on maintenance work to be effected after a certain voltage ON-time.
K 02 Event Maint. EL Range:
WARNING 1 WARNING 2 IGNORE
S4
The total of conveyor belt run times exceeds the time defined by K 03. When the set interval has elapsed, message S3 is output.
Default: WARNING 1
K 05 SPC Time The total of voltage ON-times exceeds the time defined by K 01. When the set interval has elapsed, message S4 is output.
Range:
1...24 h
Default: 8 h
Acquisition interval for service values, e.g. empty belt. SPC = Statistical Process Control
K 03 Maint. STR-Meter Range:
0837
0...10000 h
Default: 3000 h Message: S3 (K 04)
Alerts you of maintenance work to be effected after a certain conveyor belt run time.
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 65
VBW
INTECONT PLUS
K 06 SPC Filter Range:
0.00...24.00 h
Default: 1.00 h
Exponential first-order filter for service values, e.g. mean value and feed rate variance.
0837
Parameterization BV-H2214 GB 66
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Block L :
Communication Fieldbus
L 01 Protocol Type Range:
NO Default: NO MODBUS COMP. S5-BCC COMP. MODBUS PROFIBUS DP DEVICENET MODBUS/TCP Every protocol requires an optional interface card to be present. “COMP” identifies the compatible protocols. Protocol Type
MODBUS/ S5-BCC Comp. MB-COMP .
MODBUS
PROFIBUS DP
DeviceNet
MODBUS TCP
ETHERNET IP
VEG
VSS
VSS
VSS
VPB 020/8020
VCB 020/8020
VET 020
VET 022
BLOCK L
Default
MODBUS/ MB-COMP.
L 01 Protocol Type L 02 TIMEOUT Host L 03 Comm. Error Host L 04 Word sequence L 05 Byte sequence L 06 Configuration L 07 Address L 08 Resolution L 09 Physical attributes L 10 Baud Rate L 11 Data format L 12 Adresse L 13 FLOAT-FORMAT L 14 Address L 15 Baud Rate L 16 S5-Physical attributes L 22 Hardware
NO 5s IG (S 09) I:std/L:std High - Low FIXED 1 4096 RS 485 9600 8-E-1 16 IEEE 63 125K RS422 VxB020
x x x x
PROFIBUS DP x x x
x
DEVICENET x x x x x x
MODBUS/ TCP x x x x
ETHERNET/ IP x x x x x x
x x x x x
S5-BCC Comp. x x x
x x x x
x x x x
x
x
Tabelle der aktiven Parameter abhängig vom Protokolltyp.
L 03 Comm. Error Host
L 02 TIMEOUT Host Range: 1...600s
Default: 10s
If timeout value exceeds zero, a message from host system is expected to arrive during set time. 0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
S9
Range:
IGNORE Default: ALARM W1 (Warnung 1) W2 (Warnung 2) A (Alarm) If no message is received during the time set by Parameter L02, event message S9 “Data Link Host” is output.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 67
VBW
INTECONT PLUS
L 04 Word sequence
L 09 Physical attributes
Range:
I: std/L:std Default: I: std/L: std I: swp/L: std I: std/L: swp I: swp/L: swp The parameter determines the word sequence within a double word. “I” stands for IEEE-754 values (floating point values) “L” stands for 4-Byte integer values “std” does not reverse the word order, “swp” swaps them.
Range:
RS485 RS422 RS232 Default: RS 485
Modbus baud rate.
L 10 Baud Rate Range:
L 05 Byte sequence Range:
LOW-High Default: LOW-High High-LOW Determines the byte sequence in a data word.
L 06 Configuration
2400 4800 9600 19200 38400 Modbus-Baudrate.
Default: 9600
L 11 Data format
Range:
FIXED Default: FIXED NO-PARA-ID PARA-ID PARA-6ID* Determines the structure and the size of the process image.
Range:
8-E-1 Default: 8-E-1 8-0-1 8-N-2 8-N-1 Modbus data format (data bits-parity-stop bits).
Only with fieldbus card VxB8020.
L 12 Address
L 07 Address Range:
1...254
Default: 1
Slave address for Modbus protocol.
Range:
0...126
Default: 16
Profibus DP Slaveadresse
L 08 Resolution Range:
1...32767
Default: 4096
Resolving the data in the Modbus protocol nominal value (integer format).
L 13 FLOAT-FORMAT Range:
SIEMENS-KG Default: IEEE IEEE Determines the display of the floating point value for the Profibus DP protocol.
0837
Parameterization BV-H2214 GB 68
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
L 14 Address Range:
0...63
Default: 16
DeviceNet slave address.
L 15 Baud rate Range:
125k 250k 500k DeviceNet baud rates.
Default: 125k
L 17 S5 Physical attributes Range:
RS422 Default RS 422 RS232 Setting the physical interface attributes for the S5 BCC protocol.
L 22 Hardware Range:
VxB020 Default: VxB020 VxB8020 Select fieldbus hardware for Profibus DP and DeviceNet.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 69
VBW
INTECONT PLUS Block M :
M 01 Feeder Active Range:
YES NO
Feeder Control M 04 Motor STOP aft. ST Range:
NO YES
Default: NO
YES
: The START/STOP Prefeeder dialog function is active. In turned-on state, the prefeeder is controlled through the scale-specific sequence.
NO
: Dialog function is faded out. Control output is always set to STOP Prefeeder.
Default: NO
NO
: After cut-off or batch complete command, belt continues running for the time specified by Parameter M02.
YES
: Conveyor belt immediately stops.
Parameter is active only if Batch Mode has been preselected. Normally, belt immediately stops.
M 02 Setting Time Range:
0.0...1000.0 s
Default: 0.0 s
M 05 Change-over FF/DF Range:
Setting time of material prefeeder
M 03 Feed Distance Range:
0.00...10000.00 m
Default: 0.00 m
Material path from prefeeder to end of weighbridge. Input is required only if Full Feed / Dribble Feed control via prefeeder is desired.
YES NO
Default: YES
I 07 = YES
Belt clearance. M 05 ineffective.
I 07 = NO
No belt clearance. Parameter M 05 lets you select Full Feed / Dribble Feed control via conveyor belt (NO), or prefeeder (YES).
0837
Parameterization BV-H2214 GB 70
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Block N :
Scale Monitoring
N 01 CPD Active Range:
NO YES
N 04 Source Sensor Range: Default: NO
Starts speed-controlled delay element used to shift belt load measurement to the point of material discharge. Prerequisites:
— DI
Default: DI (DI6)
Digital input for belt sensor. Can be checked using the relevant service value. Only DI6 can be used. If you select alternative “-”, BIC and belt monitoring functions cannot be used.
Speed meter must be present and active. No belt circuit sensor is required.
N 05 BIC Active N 02 Platf.Dis.Length Range:
0.00...50.00 %LB
Range: Default: 0.00 %LB
NO YES
Default: NO
Input required only with CPD active Length from mid platform to material discharge point in % of total belt length LB. The resolution is approx. 200.
Lets you start adaptive belt influence compensation BIC. To initialize BIC: The dynamical tare portion is cleared upon power-up or after changes to a parameter of the following list:
N 03 Belt Sensor Active Range:
NO YES
Default: NO
·
Parameter N 05 “BIC Active”
·
Parameter B 04 “vs Charact. Val.”
·
Parameter D 06 “Belt Circuit Char”
Brief instructions: Belt sensor and sensor area on conveyor belt are designed to acquire belt slip and belt drift, and synchronize the adaptive belt influence compensation BIC.
1. N03 = YES, enter N 06... N 08. 2. Start setting program “LB: IMP/Belt”. 3. Activate BIC (N05 = YES). 4. Tare.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 71
VBW
INTECONT PLUS Action:
N 06 Sensor Length Range:
0.01....400.00 cm
Default: 8.20 cm
Length of sensor area in direction of belt travel. See also Service value “Imp.S.”.
Clean head and tail pulleys.
2.
Align belt.
Monitoring system can fail, too. So watch service values of belt circuit sensor and remove fault, if any.
N 11 Belt Skew
N 07 Sensor Width Range: 0.01...400.00 cm
1.
Default: 12.00 cm
Range: 0.01...400.00 cm
Default: 4.00 cm
Limit value for admissible belt skew. If exceeded, event message C3 “Belt Skew” is output and digital output N16 “DO Belt Skew” is set.
Width of sensor area
N 08 Sensor Offset Range:
-400.00....400.00 cmDefault: 0.00 cm
The offset lets you correct the zero point of the belt run monitoring result. However, the maximum display range is limited. Therefore bigger corrections should be effected by sensor shifting (see Commissioning chapter).
N 12 Belt Skew Event Range:
WARNING 1 WARNING 2 Ignore Alarm
C3 Default: Alarm (C03)
Conveyor belt is too far off-centre. Feeder is no longer operable.
New display = old display - offset
Action:
See Belt Drift event.
N 09 Belt Drift Range:
0.01...400.00 cm
Default: 3.00 cm
Limit value for admissible belt drift. If exceeded, event message C4 “Belt Drift” is output and digital output N15 “DO Slip Event” is set.
N 10 Belt Drift Event Range:
WARNING 1 WARNING 2 Ignore Alarm
N 13 Slip Limit Range:
0.00...10.00 %LB
Default: 2.00 %LB
Admissible variance of belt length in % of total belt length.
C4 Default: WARNING 1 (C04)
Limit value exceeded, event message C8 “Slip Error” is output and digital output N17 “DO Slip” is set.
Cause of event: Belt leaves specified tolerance range. 0837
Parameterization BV-H2214 GB 72
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS N 14 Slip Event Range:
WARNING 1 WARNING 2 IGNORE ALARM
VBW C8
Default: WARNING 1 (C08)
Admissible limit value (N13) is exceeded.
N 15 Do Belt Drift Range:
DO __
Default: __
Digital output used to report belt drift.
N 16 DO Belt Skew Range:
DO __
Default: __
Digital output used to indicate belt skew event.
N17 DO Slip Range:
DO __
Default: __
Digital output used to indicate belt slip event.
M 18 Freeze BIC Range:
DI __
Default: —
If digital input is set, current BIC values are frozen. This helps to protect acquired values from falsification upon heavily varying belt loads. 0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 73
VBW
INTECONT PLUS Block O:
O 01 Power Failure Range:
ALARM WARNING 1 WARNING 2 IGNORE
E1 Default: ALARM
O 02 Memory Error ALARM (S01)
Events O 05 Namur Err Belt Range:
S1
WARNING 1 ALARM IGNORE
E3 Default: WARNING 1
Short-circuit or breakage of belt circuit sensor cable (BIC). Prerequisite: N 03 = YES
No changes possible.
Feeder is no longer operable.
O 06 L/C Input O 03 Tacho Input Range:
ALARM WARNING 1 WARNING 2
C2
Range:
Default: ALARM
ALARM WARNING 1 WARNING 2
C1 Default: ALARM
1.
Load cell cable not (or improperly) connected.
Input frequency exceeds 2700 Hz. Monitoring starts 10 s after power-up.
2.
Analog-to-digital converter of measuring amplifier is in saturation (see Service Value wz_roh).
Prerequisite: B 03 = YES
3.
Supply voltage has fallen below 19V.
Fault must be available for min. 3 s.
O 04 Namur Err. Tacho Range:
ALARM WARNING 1 WARNING 2 IGNORE
E2
Default: ALARM
O 07 No Release Range:
WARNING 1 WARNING 2 IGNORE
S2 Default: WARNING 1
RELEASE input signal pending. Cable breakage or short-circuit.
Special case: IGNORE always releases feeder.
Prerequisite: B 03 = YES Namur errors reset internal speed value to 0. Frequency display (service value) is still active.
0837
Parameterization BV-H2214 GB 74
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS O 08 L/C Input > MAX Range:
ALARM WARNING 1 WARNING 2
VBW H4
Default: ALARM
Load on load cell exceeds 110 % of the total of load cell rated capacities (C 04). Full scale: approx. 115 % with CSD load cells.
O 09 L/C Input < MIN Range:
ALARM WARNING 1 WARNING 2
L4 Default: ALARM
Load on load cells is smaller than 3 % of the total of load cell rated capacities.
O 10 Simulation Active Range:
WARNING 1 WARNING 2 ALARM IGNORE
S7
Default: WARNING 2
Simulation mode started
O 11 Error Ext. Event
E6
Range:
ALARM Default: ALARM WARNING 1 WARNING 2 IGNORE The event E6 is set when the external digital input (parameter P06) is set.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 75
VBW
INTECONT PLUS Block P:
P 01 Release Range:
DI —
Digital Inputs P 05 DI Setting to zero
Default: DI (DI1)
Determine digital input for feeder release. Setting “-” means that no release is required. Default is DI1, however, any other free digital input can be used as well.
Range:
DI __
Default: —
The function setting to zero can also be started via the digital input. The program is started by a positive flank of the contact. The result is automatically accepted if it is within the admissible zero setting limit (5% of the nominal belt load). An ackowledgement of the result is not necessary. The calibration program can only be aborted in its active phase.
P 02 DI Stop Batch Range:
DI —
Default: DI (DI3)
P06 Range:
Digital input signal used to abort a running batch.
DI Ext. Event — DI
Default: —
Digital input for external fault signals
P 03 Ackn. Events Range:
DI —
Default: DI (DI1)
Digital input used to acknowledge event messages. Level acts statically and should not be permanently available (permanent acknowledgement).
P 04 DI Start Range:
DI __
Default: —
If OP has been selected for start source, digital input “DI Start” can be configured and used to start feeder using a start pulse (key). Feeder is stopped by a pulse output across digital input “Release”. This configuration is possible parallel to the START/STOP keys on INTECONT keyboard.
Parameterization BV-H2214 GB 76
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Block Q: Q 01 DO Alarm Range:
DO —
VBW Digital Outputs Q 05 DO I-MAX
Default: DO I+DO3 LO
Digital output used to report general alarm.
Range:
DO —
Default: DO (DO2)
Digital output signal used to indicate that maximum feed rate (F03) is exceeded up. Contact output is independent of event class (F04).
Q 02 DO Prefeeder ON Range:
DO —
Default: DO (DO4)
Q 06 DO Q-MIN Range:
Digital output used to START/STOP prefeeder.
DO —
Default: —
Digital output signal used to indicate that minimum belt load (F05) is exceeded down. Contact output is independent of event class (F06).
Q 03 DO Feeder ON Range:
DO —
Default: DO (DO5)
Q 07 DO Q-MAX Digital output signal used to indicate START/STOP state of scale.
Range:
DO —
Default: —
This very output can also be used to START/STOP drive. Digital output signal used to indicate that maximum belt load (F07) is exceeded up. Contact output is independent of event class (F08).
Q 04 DO I-MIN Range:
DO —
Default: Do (DO1)
Digital output signal used to indicate that minimum feed rate (F01) is exceeded down. Contact output is independent of event class (F02).
Q 08 DO v-MIN Range:
DO —
Default: —
Digital output signal used to indicate that minimum belt speed (F09) is exceeded down. Contact output is independent of set event class (F10).
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 77
VBW
INTECONT PLUS
Q 09 DO v-MAX Range:
DO —
Q13 DO Keyboard Mode Default: —
Bereich: — Ur-Wert: — DO Digital output signal to report activated keyboard mode.
Digital output signal used to indicate that maximum belt speed (F11) is exceeded up. Contact output is independent of set event class (F12).
Q 10 DO Batch Active Range:
DO —
Default: —
Digital output signal reporting that a batch is active. Signal becomes active upon start of batch and is deactivated when batch is complete. Signal remains available after abort of batch.
Q 11 DO Full Feed Range:
DO —
Default: DO (DO6)
Full feed signal is available from start of batch until batch amount “Value for I-MIN (F01)- Batch Dribble FD (I02)” is reached. Batching continues in dribble feed.
Q 12 DO Dribble Feed Range:
DO —
Default: DO (DO7)
Dribble feed signal is output after the full feed phase (see Q11).
0837
Parameterization BV-H2214 GB 78
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Block R:
R 01 Station Address Range:
1...254
VBW Comm. EasyServe
R 04 Format Data Default: 1
Station address and baud rate of feeder and EasyServe must be identical. The relevant setting (including communication interface) can be searched using EasyServe (menu: Tools/Options/Communication). The station address is specially designed for plants using a service bus. If the latter is not available, select 1. Connection to PC can also be made using a 9-pole SUB-D connector on X4 (RS 232 only) or a Phoenix connector on X5 (RS232, RS422 or RS485). See also Wiring Diagram in chapter DETAILS.
Range:
8-0-1 8-E-1 8-N-1
Default: 8-0-1
EasyServe always uses an 11-bit character frame. For example: 8-0-1 means: 1 start bit, 8 data bits, odd parity, 1 stop bit (N = No parity, E = Even Parity)
R 05 Connection Range:
R 02 Physics Range:
RS 232 RS 422 RS 485
Serial SERIAL+TCP
Default: Serial
Default: RS 232
Determines the physics of the data transmission protocol.
If MODBUS/TCP (Ethernet) has been selected for fieldbus, communication between feeder and EasyServe can also take place via Ethernet. To do so, set Connection parameter to SERIAL-TCP.
R 06 MODBUS Idle Time R 03 EasyServe Baudr. Range:
9600 19200 38400
Range: 2...20ms
Default: 4 ms
Default: 19200 For Modbus driver, single character timeout (idle time) for end recognition can be adjusted using this parameter (see BVH2220).
Baud rate
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 79
VBW
INTECONT PLUS Block S:
S01
DLZ active
Secondary display DLZ
Note: the BVH2015 Manual on Secondary/Large-Scale Displays
Range:
YES Default: NO NO A large-scale display such as DLZ055 or DLZ110 can be connected at the serial interface on the VEA600V option card (plug X10). Procedure DDP8861 is used. Selecting DLZ active suppresses all printing outputs and the secondary display is triggered instead. The value shown on the lowest line of INTECONT Plus is always outputted.
INTECONT Plus
Character on the secondary display
I
I
feed rate [kg/h] or [ t\h]
Ir
i
relative feed rate [%] rated feed rate
Q
Q
belt load [kg\m]
Qr
q
relative belt load [%] rated belt load
v
v
belt speed [m/s]
Z1
1
counter 1 [kg] or [t]
Z2
2
counter 2 [kg] or [t]
Z3
3
counter 3 [kg] or [t]
ZB
B
batching setpoint [kg] or [t]
Zd
R
batching residual value [kg] or [t]
Nb
N
consecutive batching number
ZI
F
actual batching value [kg] or [t]
Zbn
b
reloading setpoint [kg] or [t]
r
residual batching value of the quantity reloaded [kg] or [t]
Display on
Zdn
S02 Range:
Baud rate 1200 2400 4800 9600 19200 38400
Default: 9600
meaning
S03 Range:
Data format 7 Bit, Even Parity 8 Bit, No Parity
S04
Physics
Range:
RS232 RS485 RS422
Default: 8Bit NO
Default:: RS232
The DLZ055/110 secondary display can only show the dimensions kg and t. If the letter field of the secondary display is illuminated as a full-surface block, this indicates that the value shown is invalid. Either it is not possible to show the desired format or INTECONT is in service operation. The VLZ20100/VLZ20045 secondary displays can also be connected, although they do not have any display for identification and the validity of the outputted measurement. The usage of other secondary displays that understand the DDP8861 protocol has to be examined in specific cases. 0837
Parameterization BV-H2214 GB 80
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Block U:
U 01 IP Address1 Range: 0-255
Default: 192
U 02 IP Address 2 Default: 168
Default: 240
Manual IP address assignment
Default: 1
Manual IP address assignment
Range: 0-255
Default: 0
Delegating the subnetwork masks
Range: 0-255
Default: 192
Festlegung der Standard-Gateway-Adresse.
Range: 0-255
Default: 168
Delegating the standard gateway address
U 11 Gatway 3
U 05 Net mask1 Default: 255
Delegating the subnetwork masks
Range: 0-255
Default: 240
Delegating the standard gateway address
U 12 Gatway 4
U 06 Net mask2 Range: 0-255
Delegating the subnetwork masks
U 10 Gatway 2
U 04 IP Address 4
Range: 0-255
Default: 255
U 09 Gatway 1
U 03 IP Address 3
Range: 0-255
Range: 0-255
U 08 Net mask 4
Manual IP address assignment
Range: 0-255
Ethernet
U 07 Net mask 3
Manual IP address assignment
Range: 0-255
VBW
Default: 255
Delegating the subnetwork masks
Range: 0-255
Default: 0
Delegating the standard gateway address
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 81
VBW
INTECONT PLUS Block V:
As of version VBW20600-08, the options FIXED-1 and FIXED-2 in parameter L06, “Configuration”, are no longer available and have been replaced by FIXED.The values carried over with the setting FIXED are determined by the following parameters. The settings of the original values correspond to the previous FIXED mode 1.A list of all available identifiers and FIXED mode examples can be found in the manual BV-H2220.
Fixmode Parameters V 07 ID preset value 7 Range:
0...4086
Default: 0
V 08 ID preset value 8 Range:
0...4086
Default: 0
V 01 ID preset value 1 Range:
Fest eingestellt
Default: 320
Command 4+5
Range:
0...4086
Default: 352
Command 6+7
0...4086
Default: 384
Default: 596
Default: 1872
Default: 594
V 13 ID read value 5 Range:
0...4086
Default: 1874
Totalizing counter 1 [kg]
V 06 ID preset value 6 0...4086
0...4086
Actual flow rate [kg/hr]
Batch setpoint [kg]
Range:
Default: 1552
V 12 ID read value 4 Range:
V 05 ID preset value 5 0...4086
0...4086
Highest priority event
Rreload setpoint [kg]
Range:
Default: 784
V 11 ID read value 3 Range:
V 04 ID preset value 4 0...4086
0...4086
Status 4+5
Command 8+9
Range:
Default: 752
V 10 ID read value 2 Range:
V 03 ID preset value 3 Range:
0...4086
Status 2+3
V 02 ID preset value 2 Range:
V 09 ID read value 1
Default: 598 0837
Batch number
Parameterization BV-H2214 GB 82
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
V 14 ID read value 6 Range:
0...4086
Default: 1880
Belt load
V 15 ID read value 7 Range:
0...4086
Default: 1884
Belt speed
V 16 ID read value 8 Range:
0...4086
Default: 1876
Totalizing counter 2 [kg]
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Parameterization BV-H2214 GB 83
VBW
INTECONT PLUS
This page left intentionally blank.
0837
Parameterization BV-H2214 GB 84
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 10
Event Messages
System Messages S S1 :
S2 :
VBW
S9 :
Memory Error
Program and parameter memories are checked in cycles. If an error is found, cal is inoperable in most cases. Action : Contact the SCHENCK Service. Parameter: O02
Electrics E
No Release
E1 :
External RELEASE signal pending. Scale cannot start. Parameter : O 07
S3 :
Power failed or cut off. Feed rate possibly not recorded during this time. Action : Acknowledge message. Parameter : O 01
E2 :
Namur Err Tacho Short circuit or breakage in speed transducer cable. Scale no longer operable. Action : Check speed transducer cable. Deselect speed measurement for a short time using Parameter B 03 . Parameter : O 04
Maintenance Int. Elec The INTECONT power supply has been switched on for a preset period of time. Perform requisite service work, if necessary. Acknowledgement of message does not influence time intervals. Parameters : K 01, K 02
S7 :
Power Failure
Maint. STR Meter Total ON-time of conveyor belt and measurement is exceeded. Perform requisite service work, if necessary. Acknowledgement of message does not influence time intervals. Parameters : K 03, K 04
S4 :
Data Link Host Serial communication interrupted for longer than timeout. Action : Check cable connections. Parameter : L 03
E3 :
Namur Err Belt Short circuit or breakage in belt circuit sensor cable. Action : Check sensor cable. Parameter : O 05
Simulation Active Operating in Simulation mode, scale is not prepared for normal operation. The Simulation mode lets you test all scale functions without material at the time of commissioning. Action : Deselect “Simulation” function. Parameter : N1
E6 :
Error Ext. Event There is an external fault signal. Actions: Rectify fault. Parameter: P06 ând O11
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Event Messages BV-H2214 GB 85
VBW
INTECONT PLUS C7 :
Calibration C C1 :
During preset time, no taring nor manual or automatic zero setting has taken place. Action : Tare or set to zero, acknowledge message. Parameters : H 06, H 07
L/C Input Load cell cable broken, not or improperly connected. Supply voltage too low. Action : Check cabling. If OK, check load cell amplifier. Parameter : O 06 C8 :
C2 :
Conveyor belt length inadmissibly changed. Error is acquired only using additional belt circuit sensor. Action : Check belt tension; if necessary, correct. Check sensor for proper measuring distance. Parameters : N13, N14
C9 :
Tare Diff > MAX
Belt Skew Conveyor belt runs too far off centre. Scale is no longer operable. Action: See C4 Parameters: N11, N12
C4 :
Slip Error
Tacho Input Speed transducer output frequency exceeds 3000 Hz, most probably due to subsequent change of belt speed (e.g. gearbox). Action : Check speed transducer for proper dimensioning. If necessary, measure pulse frequency using oscillograph. Parameter : O 03
C3 :
Set Time To Zero
Automatic or manual zero setting has detected excessive zero point deviation. Correction takes place only if no Alarm is available. Action : Acknowledge message, clean scale; if need be, retare. Parameters : H 01, H 11, H 12
Belt Drift Belt has left defined tolerance zone. Action: 1) Clean head and tail pulleys. 2) Align belt. Parameters: N09, N10
C5 :
Tare Corr. > MAX Automatic zero setting has exceeded specified limit. No correction takes place. Action : Clean scale; if need be, retare. Parameter : H 01, H 04, H 05
0837
Event Messages BV-H2214 GB 86
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Maximum H
Minimum L
H1 :
L1 :
I > MAX Current feed rate exceeds set limit value. Action : Normally none, unless message H4 is available or system-specific limits have to be observed. Parameters : F 03, F 04
H2 :
Load > MAX
Current feed rate has fallen below set limit value. Error in measurement possibly out of tolerance. Action : System specific unless L4 is additionally available Parameters : F 01, F 02
L2 :
Current belt load exceeds set limit value. Action : Normally none, unless message H4 is available or system-specific limits have to be observed. Parameters : F 07, F 08
L4 : L/C Input > MAX Weighing system overloaded. Errors in measurement possible. Action : Check material infeed; belt load is too big. Parameter : O 08
V < MIN Current belt speed has fallen below set limit value. Action : Check to see if belt is running. Parameters : F 09, F 10
v > MAX Current belt load exceeds set limit value. Action : System specific unless C2 is additionally available. Parameters : F 11, F 12
H4 :
Load < MIN Current belt load has fallen below set limit value. Action : See L1 Parameters : F 05, F 06
L3 : H3 :
I < MIN
L/C Input < MIN Weighing system underloaded. Errors in measurement possible. Action : Check mechanical weighing system, weighed idler alignment and load cell cable. Parameter : O 09
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Event Messages BV-H2214 GB 87
VBW
INTECONT PLUS
Batching B1 :
Signal Lamps
Out of Tolerance Batch not completed with specified accuracy. Tolerance : Parameters I 04, 05 Event : Parameter I 06 Cause : Automatic adaption started (Parameter I 03) ? Material infeed or belt drive faulty ?
B4:
MAX Batch Act. Value
a
(green) POWER OK LED not lit: 1. No power supply 2. Device defective 3. All other functions OK, LED probably defective. Call display test.
b
(green) CPU OK Display pending or flashing, processor system is faulty. Scale is inoperable.
X
(red)
Current batch actual value exceeds preset tolerance. Limit value : Parameters I 04, I 08
ALARM flashes if an Alarm message is available. Display additionally shows event code. Action
MIN
(red)
(red)
event
MIN LIMIT VALUE lit if feed rate limit value is exceeded down. Action
MAX
: See relevant code.
: See L1: I
MAX LIMIT VALUE lit if feed rate limit value is exceeded up. Action
: See H1: I>MAX.
No power supply: Upon short circuit on the secondary side of the power supply, internal overload protection responds. Disconnect power supply for approx. 1 minute, and its is ready to operate again.
0837
Event Messages BV-H2214 GB 88
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 11
VBW
Commissioning How To Operate Your INTECONT 1. Event E2 = O04 Namur Err. Tacho
There is no way out. Who wants to put the INTECONT into service has to work himself through the Operation and Service Manuals. To make learning easier, the INTECONT can be operated without mechanical equipment, load cells and speed transducer. Although no feed rate is displayed, all operating functions can be performed. 1. 2.
Connect power supply and turn on (Chapter DETAILS).
Operate cursors to view available events.
T U
1. Namur Err. Tacho E2 Speed transducer not connected, or cabling faulty. 2. L/C Input C1 Load cell not connected, or cabling error.
The upper two green LEDs report “Ready to Operate”, the red LED in the middle flashes and reports Alarm E1.
3. L/C Input >MIN
L4
4. No release S2 No external RELEASE signal. E1
Z= I=
0t 0 kg/h
4.
Upper display : Totalizing Counter Z1 Lower Display : Event Message E1 “Power Failure” Feed Rate I
O
3.
G f
Acknowledge Message E1 with key ACK. Display shows Event Message E2 which reports that no speed transducer is connected. Except “Scale ON” and “Set to Zero”, all functions described in the Operating Manual can be performed, e.g. display of event messages. Call function distributor.
If you wish to turn off the flashing signal lamp or try the setting programs, change some parameters as shown in Parameterization chapter. (a) Parameter O04 to WARNING 1 E2 (b) Parameter O06 to WARNING 1 C1 (c) Parameter O09 to WARNING1 L4 (d) Parameter O07 to IGNORE S2 (e) Parameter B 03 to -Deselect belt speed measurement with Parameter B 03. Weigher can then operate without tacho generator. Use residual parameters to change the event class of the 4 message types. 5.
Set “Release” contact (Parameter P01).
6.
Start INTECONT, all setting programs are available. First call LB program as described in Chapter 6
Start function “Display Events”.
and acquire result using the 7.
f key.
To simulate belt load, see Test Plug item.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Commissioning BV-H2214 GB 85
VBW
INTECONT PLUS Out-of-round
Mechanical Prerequisites Mount mechanical equipment in accordance with the instructions given in separate manual. Check weighed and carrying idlers in the weigher influential zone for correct alignment and out-of-round.
The out-of-round error of idlers in the weigher influential zone must not exceed 0.2 mm.
Securement After alignment, secure idler sets against displacement. Mark idlers and sets to avoid mistakes during maintenance.
Influences
All weighed idlers and three carrying idlers upstream and downstream of weighing station.
Incorrect alignment entails a zero point error which is normally compensated during calibration. However, changes in belt tension increase the error size. For this reason, ensure correct alignment and constant belt tension for accurate weighing.
Alignment
Maintenance
Raise idlers in the influential zone to approx. 3...5 mm above remaining idlers. Align then against one another to a height difference below 0.2 mm.
If idlers are dismounted for maintenance work to be effected, make sure that they are remounted in their former locations.
Influential zone
Electrical Prerequisites Run and connect cables as described in Chapter DETAILS.
Depending on idler set equipment, idlers have to be aligned in various points.
0837
Commissioning BV-H2214 GB
86
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Enter Parameters All important rated and calibration data are shown in the supplied Spec Sheet. In addition, see hints given below. We recommend to read through all parameters and to select the best possible setting. Parameter Block A Dialog language and display unit. Parameter values are automatically converted if the unit is changed. Parameter Block B Characteristic value vs B 04 is important for calibration. Adjust units to nominal feed rate. To ensure stable display, resolution of feed rate display (B 01) should not exceed 4...5 decimals. Display format of totalizing counters should not exceed 6...7 digits. The decimal point is one digit.
Determine belt inclination by using spirit level and measuring element. Repeat measurement with spirit level turned and calculate mean value of height h.
Example:
Angle C 07:
a = tan (h/l)
Nominal feed rate 10 t/h Unit B 07 —-.—- t Max. Wert 999.999 t
Angles < 20 degr.:
a = 55 h/l
Max. counter run time =
Parameter Block D Calibration results need not be entered. During initial calibration, range correction D 02 should be set to 1. Check to see if, with rated data entered, load cell rated capacity is not exceeded.
F = q * L * H * cos(a)
Then counter is reset. If an external totalizing counter is connected, output frequency must not exceed 10 Hz (see Parameters B 07, 08 and Service Displays Z0 and ZE). Parameter Block C Ensure correct input of calibration and evaluation data as shown in relevant Spec Sheet. Measure effective belt length and inclination at site. For definition of belt length, see Chapter DETAILS.
0837
q L H a F
= = = = =
nominal belt load eff. platform length lever ration angle force on load cell
D 01 C 05 C 06 C 07 in kg
in kg/m in m in degr.
F should be the total of load cell rated capacities C 04. If not, load cells are too small for the requested nominal feed rate.
Enter belt inclination only if load cells are arranged right-angled to belt. If load cells are mounted vertically, the effective angle is 0. For definition of check weight, see Data Flow Diagrams in Chapter DETAILS.
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Commissioning BV-H2214 GB 87
VBW
INTECONT PLUS
Parameter Block F
Functional Check
Select limit values and their event classes in accordance with application requirements.
1.
Start weigher and conveyor belt. Starting depends on selected start source B 06 . Acknowledge Message E1.
2.
As running display, a rotating point appears in top left display field. If not, Parameter Vmin (F 09) is set too high or START key has not been operated.
Parameter Block G Adjust display filters, if required. Normally, the default values can be used.
Parameter Block H See “Automatic Zero Setting”. Maintain default values for the time being. Do not start automatic zero setting before calibration is effected.
3. Interpret event messages, if any, as shown in Chapter 10 and remedy fault.
4.
Parameter Block K For calibration, the maintenance parameters are irrelevant. The default values are useful suggestions. Parameter Block N Measuring at discharge point (CPD) should normally be activated (N 01, N 02). For automatic belt influence compensation (BIC) and belt drift display, a special belt circuit sensor and a metal sensor area on belt are required. If these are not available, set Parameter N 03 to NO. Disconnect BIC during initial commissioning. Parameter Block O The event classes are selected for a standard scale. If messages O 04, O 06 and O 07 have been modified for training, reset to default.
Call Service messages. (a) Tachometer If measurement is ON (B 03 = DI7), speed transducer output frequency must be below 3000 Hz. Compare value with Spec Sheet. If frequency heavily varies at constant belt speed, there is too much space between speed transducer NAMUR sensor and gearing. See also “Check of Belt Speed”.
(b) wz The unnormalized output value of load cell amplifier must not exceed 2.85mV/V, not even with nominal platform load. Value changes with varying load on platform (e.g. check weight). Value excessive: – –
Load cell overloaded Tare balance weight, if any, improperly set
Value negative: – –
Load cell improperly connected Tare balance weight, if any, improperly set
(c) aw Load on load cell in percent related to the total of load cell rated capacities. Interpret as under Item b). At nominal belt load, aw should not exceed 100%. 5. If all else fails, see “Test Plug” item.
Commissioning BV-H2214 GB
88
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
0837
INTECONT PLUS
VBW
Calibration Calibration as such is not required. After input of rated and calibration data, scale is calibrated.
Check Using Check Weight Check with check weight is useful because 1.
Mechanical or electrical faults may be given
2.
Calibration data may be uncertain, e.g. lever ratio not exactly known, inclination hard to measure
3.
Incorrect data may have been entered.
Simply call: 1.
Setting program “Belt Circuit LB” determining the basis of one belt circuit for zeroing and taring programs
2.
Taring program TW
The check weight should range between 30 %...100 % of nominal platform load and be exactly known.
3.
Zero setting program for training. Zero point error should be small after taring.
1. Enter effective check weight as Parameter C 08. If weighing modules with leaf spring parallel guidance are used, the check weight corresponds to the actual value. In other cases, see Spec Sheet or calculate check weight in accordance with Chapter DETAILS / Data Flow Diagrams. For effective check weight, belt inclination is irrelevant.
Always observe the above order of sequence. For first program, measure exact time of one belt circuit and enter value into Parameter C 02. For operation and message interpretation, see Chapter 3. Two further checks should be effected: 1.
Check using check weight
2.
Check of belt speed
2.
Call program “Weight Check CW”, as shown in Chapter “Setting Programs”.
For evaluation of results, see operating sequence description.
Possible causes of faults: Distorsion of platform, insufficient alignment, interferences on load cell cable. In case of suspicion, repeat check with another weight. If something goes wrong: our service department is always prepared to help. Maybe only some small error or maloperation is the cause of trouble. Check individual operations one by one. Normally, the issue can be eliminated.
Unlinearity is mostly due to above faults; linear errors, to incorrect data.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Commissioning BV-H2214 GB 89
VBW
INTECONT PLUS Check Belt Speed
The speed transducer frequency generator can be driven by 1. Friction wheel in the lower belt run 2. Drive motor shaft. In the first case, the entered characteristic value vs (Parameter B 04) depends on the exact friction wheel diameter; in the second, on the belt wrap factor. Hence, check speed measurement for accuracy. 1. Acquire belt speed with stop watch and tape measure. To be on the safe side, conduct various measurements and calculate mean value.
2. Read INTECONT speed display over the same period of time. 3. Compare both values with one another and, if necessary, correct characteristic value vs B 04.
old new Vg Va
= = = =
old parameter value new parameter value measured speed read off speed
This method is also applicable with unknown characteristic values. If characteristic value vs is known and deviations are excessive, the space between sensor (Namur transducer) and gearing is too big. Check by switching ammeter into sensor circuit.
Tooth over sensor: else:
i= 0.1...1.65 mA i = 1.65...8 mA
Check Using Material Checks or calibrations with check weights cannot reproduce the actual circumstances to perfection. Highly accurate weighing results can be achieved only by various measurements with material and subsequent correction. For correction, use Parameter D 02. Observe the following items: 1. Make sure the route from platform to material collecting point is clean. 2.
Ensure that material diverters, if any, do not divert any material.
3.
If feed screws or air slides are used between platform and collecting point, feeding starts approx. 30 min. before check measurement so that normal build-ups are given.
4.
Set dedustings to a minimum.
5.
Ensure that hoppers or vehicles used for transport of material to a legal-for-trade weigher are cleaned and weighed before every filling operation (tare).
Example: Old value of Parameter D 02 = 1 Within 15 min. a material amount of MW = 4.9 t is fed. Difference in counter reading MA read on INTECONT is 5.0 t.
= 1 x 4.9 = 0.98 —— 5.0 Enter computed value into Parameter D 02 .
Neither level should exceed limit value 1.65 mA.
0837
Commissioning BV-H2214 GB
90
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Automatic Zero Setting Activate the automatic zero setting function only in clearly defined cases, e.g. if some belt circuits are run with no load. Parameter H 01 = =
JA NO
Automatic active Automatic not active
Automatic system is active both in turned-on and turned-off state of scale, if belt speed exceeds Vmin.
VBW Belt Run Monitoring INTECONT comes with belt a belt run monitoring function designed to detect belt drift and belt slip. Activate monitoring using Parameter N03 “Belt Sensor Active”. The belt run monitoring functions can be used only if a belt circuit sensor (Namur transducer) and a triangle metal sensor area on belt area available (see Fig. Below). If not, Parameters N03 “Belt Sensor Active” and N05 “BIC Active” must be set to “NO.
Z1 = 2500 kg I = 0 kg/h
Measuring result of one belt circuit is continuously compared to previous result. If “Belt Empty” is identified, zero point is automatically corrected. Set continuous plausibility check with Parameters H 02 and H 03. For normal conveyor belts, default values can be used, however, a check is recommended. 1. 2. 3. 4.
5.
6.
Deactivate automatic H 01 = NO. Call zero setting program via function distributor various times and acquire result. Note final results Dev. (upper display) as of second run. The . highest value of Item 3 is the smallest value for Parameter H 02. Enter double to triple value, but min. 0.1 %. Parameter H04 monitors the total of all zeroing operations. Enter value, e.g. 2...4 times higher than H 02. Activate Automatic using Parameter H 01.
Fig.: Belt Run Monitoring To activate belt run monitoring: 1. Set Parameter N03 “Belt Sensor Active” to “YES”. 2. Enter sensor length L into Parameter N06 “Sensor Length” (s. Belt Run Monitoring figure). 3. Enter sensor width B into Parameter N07 “Sensor Width” (s. Belt Run Monitoring figure). 4. Set Parameter N08 “Sensor Offset” to 0. 5. Call calibrating function “LB: IMP/Belt”. 6. Acquire result after min. 2 belt circuits. 7. Adjust sensor. Note: Service value ”Imp.S” indicates the number of pulses measured for the covered sensor. If the belt sensor is located exactly in mid sensor area, the following value results: Imp.S. = 0.5 * L (N06) * 0.01 * vs_Charact. Val. (B04) Example: N06 = 8.40 cm and B04 = 1000 I/m result in Imp.S. = 42
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Commissioning BV-H2214 GB 91
VBW
INTECONT PLUS
Note: Monitor service value “Belt Drift Tr” indicating the deviation of mid sensor and thus of belt from sensor position in cm. Example: Belt drift = 0.20 cm: Parameter N08 “Sensor Offset” = - 0.20 cm indicates belt slip 0.00 cm. 8.
If necessary, determine event classes of belt slip and drift messages (Parameters N09...N17). Note: Normally, the default values can be used in actual practice.
9.
Control for Point of Discharge CPD Upon measurement at the point of discharge, the measuring point of the weighing platform is shifted to the point of material discharge using a delay element. The amount discharged is measured direct. Note: If CPD is active, Automatic Belt Influence Compensation BIC should be started as well. Prerequisites: ·
Length ratio from mid platform to material discharge point and total conveyor belt length is known.
·
Length ratio in percent is entered into Parameter N02 “Platf.Dis.Length”.
Check messages. Note: To check, adapt Parameter N08 “SensorOffset” accordingly and remember to reset value to default.
To start CPD, set Parameter N01 “CPD Active” to “YES” .
Belt Influence Compensation BIC The automatic Belt Influence Compensation BIC is designed to monitor and correct the belt influence. As is with belt run monitoring, a sensor and a sensor area are required. To commission BIC, first start belt run monitoring. Note: Perform initial commissioning without active BIC. Features After start of the belt influence compensation, the influence of the conveyor belt on measurement will be compensated after approx. 10 belt circuits. Prerequisites: ·
Belt run monitoring commissioned
·
Belt run monitoring started.
To start BIC, set Parameter N05 “BIC Active” to “YES” .
0837
Commissioning BV-H2214 GB
92
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW reached. If items 4 and 5 cannot be performed, use pendulum position and Rv in turn.
Cosine Pendulum Belt weighers with variable belt inclination are equipped with a so-called cosine pendulum which compensates the impact of inclination on measuring result.
7.
Tare scale, best in horizontal position.
8.
Calibrate range using check weight and Parameter D 02. Use setting program CW.
The pendulum is switched into the load cell (L/C) supply voltage. L/C
RD
Rp
Rw
Angle
C 06
1 x CSD 2 x CSD 1 x HBM
4000 2000 350
3000 1500 300
727 363 123
+/- 30°
0.73 0.73 0.64
Test Plug
Almost any possible error in operation is reported by event message. For interpretation, see Chapter 10. RD = load cell input resistance in ohms Rp = pendulum potentiometer resistance in ohms Rw = calibrated resistance of Rv in ohms 1. Position pendulum near weighbridge and align using spirit level. 2. Param.:
Angle a Lever Basic Tare N Tare Correction T Do not tare scale.
3.
(C 07) (C 06) (D 04) (D 05)
= = = =
0 table value 0 0
Use Rv to preset RW with highest possible accuracy.
4. Bring weigher into two opposite positions, e.g. degr. Apply check weight, if necessary. 5. Set belt load displays to same value by correcting the pendulum case zero point position. 0837
Check INTECONT for proper operation by using a simple test plug. This helps to see whether the fault is with load cel, or cabling and electrical equipment. 1.
Switch plug as shown in drawing.
2.
Withdraw load cell connector X7 and replace by test plug.
At the indicated resistance values, the following service values result: 1. wz
apr.1.1mV/V
2. Load cell utilization aw
apr. 55 % (C 03 =2mV/V) apr. 39% (C03 =2.85mV/V)
If wz is in specified range, measuring amplifier properly operates. Note: The test plug ordering number is V037426.B01.
6. Use potentiometer rv to vary range until until minimum dependence of belt inclination is
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Commissioning BV-H2214 GB 93
VBW
INTECONT PLUS
This page left intentionally blank.
0837
Commissioning BV-H2214 GB
94
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS 12
VBW
Details
Start / Stop Start / stop states exclusively refer to belt drive, prefeeder and feed rate measurement. Belt load and belt speed are acquired in either case. Display with START Rotating point in upper display : field. Rotation speed is approximately proportional to feed rate, but never zero. Display with STOP
3. START/STOP with belt speed higher, or smaller, than set limit value Vmin (v). System prompts for input of unmeaned value measured for speed V.
Point stands still after completion : of measurement.
After effective stop command, totalization is cut off as soon as set afterflow time Tnach has elapsed. STOP commands have highest priority. Four different control modes can be configured (see also Parameter B06). 1. START/STOP using digital input. The default value is DI2. However, you can use any other free digital input as well. The digital input operates edge-controlled, i.e. If scale cuts off after Alarm, START signal must be removed and applied again.
4. START/STOP via fieldbus interface (FB). Serial START/STOP commands acts in the same ways as the corresponding keys. The “Select Keyboard Mode” function lets you shift the Start/Stop commands onto keyboard. Return to “Deselect Keyboard Mode” function using Parameter B06.
2. START/STOP using keyboard (OP)
0837
Start :
START key if no Alarm is available and release signal has been output.
Stop:
Stop key, Alarm, or No Release.
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Details BV-H2214 GB 93
VBW
INTECONT PLUS
Note 1) Selection “v” does not allow for batching. 2) Digital input “Release” P01 can be cut off (setting “- -”), and scale is released always.
0837
Details BV-H2214 GB
94
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Batching Without Clearance If batch is complete, belt drive is cut-off. Feeding by full feed/dribble feed can be controlled via belt speed or prefeeder (dashed line). It is recommended to activate delay for material discharge (O 01 = YES). Select keyboard as START source (B 06 = DE + T). For details, see OPERATION chapter. Parameter Schedule: B 06
START source
OP
G 06
Belt tracking time Tn
apr. 3 s
Feed rate determination tracking time after belt cut-off. Enables afterflowing material to be acquired. N 01
CPD Active
YES
Delay for point of discharge I 01
Batch Dribble Feed
kg
Change-over point from full feed to dribble feed, e.g. by belt speed reduction. Enter deviation from cut-off point I 02 (see Figure). I 02
Batch Cut-Off Point
I 03 = 0 : No adaptation I 03 = 1 : Full adaption
kg
Intermediate values lead to filtered adaptation.
Belt drive cut-off point. To be set to slightly below setpoint to enable afterflowing material to be acquired.
Suggestion: I 03 = 0.6
I 03
Suggestion: Mean dribble feed feed rate in kg/h divided by 3600.
I 04...
For monitoring, see Parameter List.
Correction Factor
I 07
Empty Belt
0.6
Dribble feed changeover and cut-off points are automatically adapted upon completion of batch for system to be better matched to actual conditions until the time of next batching operation.
Prerequisite for batching mode. M 01
Feeder Active NO
YES 0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
NO
: Feeder control output is always LOW. Full feed/dribble feed changeover must be controlled via belt drive. Function “Next W/Belt Empty” is not possible. : Prerequisite for feeder control via batch mode and for function “START/STOP Feeder”.
Technische Redaktion PDE-RD
Details BV-H2214 GB 95
VBW
M 02
INTECONT PLUS
Setting Time
From 0 to nominal feed rate (see Sequence and Parameter M 04). M 03
Feed Distance
m
Material path from feeder to end of weighing platform. If CPD is active (N 01 = YES) the length from platform center to point of discharge (N 02) has to be added.
Details BV-H2214 GB
96
M 05 = NO No entry required.
sec
Technische Redaktion PDE-RD
M 04
Motor STOP Aft. ST
YES/NO
Use M 04 to determine whether belt tracking is desired after completion of batch or after cut-off. With slow feeders, tracking helps to avoid excess feed. Prerequisite: M 01 = YES 0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS M 05
Change-over FF/DF
Adaption:
NO YES
After every completed batch, system uses the missing amount to compute a correction value for cut-off point A (I 02). Dribble feed changeover point is automatically corrected.
Change-over via belt drive : Change-over via feeder (signals dashed in diagram)
Sequence: 0
1
Start batch through START command. Belt drive, prefeeder, totalization (counters) start operating.
Restart batch through START command.
3
Change-over point from full feed to dribble feed FM = SET - A - F is reached. Signals “Full Feed” and “Dribble Feed” change levels. A and F are the pre-act cut-off points (Parameters I 01 und I 02).
6.
The new cut-off point for the next batch is computed from the error and an evaluation factor.
F(new) = F(0ld) + FAK * Error F
=Batch cut-off point
I 02
FAK
=Adaption factor
I 03 (see Parameter)
Cut-off point HM = SET - A is reached and batch is complete. Belt drive cuts off.
Release Signal:
So as to avoid excess feed, prefeeder shuts down as soon as differential amount M (TZ) is reached (M 04 = NO).
Alarm:
Pending release signal acts as STOP command.
M(TZ) = I * TZ/3600
Batch is interrupted (motor and prefeeder cut off immediately). Remedy fault, acknowledge error message and restart..
I
Power DOWN:
TZ 5
Error = SETPOINT - amount fed
Abort batch through STOP command. To avoid excess feed, belt drive continues running for time TZ after feeder cut-off (Parameters M 01, M 02, M 04).
2
4
VBW
= Current feed rate filtered through display filter G 01 = Parameter M 02
Belt tracking and end of material flow. If Parameters H and V are correctly set, setpoint has now been reached. If not, see Item “Adaptation”. Change-over point from full feed to dribble feed, if prefeeder is used for feed control (Parameter N 05 = YES).
Batch mode is cut off. Counter readings and values of amounts fed remain stored for an unlimited period of time. Resume batching with “Preselect Batch” function. “Abort Batch” function: Abort batch. Control signal behaviour is the same as after STOP command.
Pre-act cut-off point FMS is estimated on the basis of the mean belt load. FMS = VM - L * Q - M(TZ) Q L 0837
= Belt load displayed (Filter G 04) = Material path (M 03) M(TZ)= See Item 4
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Details BV-H2214 GB 97
VBW
INTECONT PLUS
Batching With Clearance
When batch is complete, prefeeder cuts off; belt drive, after approx. another half belt circuit. Conveyor belt is empty. Delay for point of discharge should be activated (N 01 = YES). Select keyboard for START source (B 06 = DE + T). Function “Next W/Belt Empty” automatically activates clearance mode. For details, see OPERATION chapter. The smallest possible actual batch amount corresponds to the load on belt from weighing platform to point of feed.
Parameter Schedule: B 06
START source
OP
G 06
Belt tracking time Tn
ca. 3 s
Tracking time of feed rate acquisition after belt cut-off. N 01
CPD Active
YES
Delay for point of discharge
0837
Details BV-H2214 GB
98
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS I 01
Batch Dribble Feed
VBW Sequence:
kg
0
Start batch through START command. Belt drive, feeder and totalizing counters start operating.
1
Abort batch through STOP command. To avoid excess feed, belt drive continues running for time TZ after prefeeder cut-off (Parameters M 02, M 04).
Feeder cut-off point.
2
Restart batch through START command.
Suggestion: Initial value 0
3
Changeover point to dribble feed is reached. Full feed and dribble feed signals change level.
Change-over point from full feed to dribble feed, e.g. through reduction of feed rate. Enter deviation from cut-off point I 02 (see Diagram). Normally not used in clearance mode. I 02
Batch Cut-Off Point
I 03...
See “Without Clearance”
I 07
Belt Empty
kg
YES
FM = AM - F
Prerequisite for clearance mode M 01
Feeder Active
AM F
YES
Prerequisite for clearance mode
M 02
Setting Time
4
Cut-off point AM is reached, feeder cuts off. Belt drive continues running for time Tab to enable belt to be unloaded.
sec
AM = SOLL - A - Mg
From 0 to nominal feed rate (see Sequence and Parameter M 04). M 03
Feed Distance
A Mg
m
Material path from feeder to end of weighing platform. If CPD is active (N 01 = YES) the length from platform center to point of discharge (N 02) has to be added. M 04
Motor STOP Aft. ST
M 05
Change-Over FF/DF Parameter has no effect.
YES/NO
= Parameter I 02, Cut-Off Point = Estimated load on belt between weighing platform and prefeeder.
Mg = L * Q + I * TZ/3600 I TZ Q
YES/NO
Use M 04 to determine whether belt tracking is desired after completion of batch or after cut-off. With slow feeders, tracking helps to avoid excess feed (see Sequence and Diagram).
= Cut-off point, see Item 4 = Parameter I 01, Dribble Feed
= Current feed rate filtered through display filter G 01. = Parameter M 02. = Current belt load filtered through display filter G 04
Tab = TZ + time for another half belt circuit With N 04 = NO, TZ is doubled. 5.
Batching amount reached.
Cut-off command routed between Item 4 and 5 totally aborts batch. For Adaption, Release, etc.: See “Batching Without Clearance”.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Details BV-H2214 GB 99
VBW
INTECONT PLUS
Data Flow Diagram
Fig.: Measurement Parameters: Note:
Io
In normal INTECONT operation, data flow diagrams need not be known. In special cases, they can be used to trace internal normalizations, particulary important for (theoretical) precalibration.
Nominal Feed Rate
B 02
in t/h
Io is reference value for limit values and service display. Io has no effects on calibration. Qo = in kg/m Vo = in m/s Io = in t/h 0837
Details BV-H2214 GB
100
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW L
Effective Platform Length
C 06
in m
Acquire accurate length and enter. VS
Speed Transducer Characteristic Value B 04
in I/m
VS determines speed measurement normalization, thus being relevant for weighing accuracy. Fo
Load Cell Rated Capacity
C 04
in kg
Total of load cell rated capacities. Pivots are considered as load cells. Fo = (N +M) * NNENN NENN = load cell rated capacity N = number of load cells M = number of pivots Fo determines weigher accuracy. E
Load Cell Characteristic Value in mV
C 04
The transmission coefficient is an important value for calibration.
Ua Ue F
Fig.: Displays, limit values, analog input Qo
Nominal Belt Load
D 01
in kg/m
= Load cell output voltage in mV = Load cell input voltage in V = 5 V (10 V) = Load on load cell
CSD load cells HBM load cells
Computed by INTECONT, Qo is reference value for limit values and displays.
E = 2.85 mV/V E = 2.00 mV/V
With some types, E is not calibrated. For value, see type plate.
Nominal platform load QB = Qo · L L = effective platform length Vo
Nominal Speed
B 05 in m/s
Reference value for limit values, only relevant for calibration of weighers 1. 2. 0837
H
Lever Ratio
C 06
The lever ratio is decisive for calibration accuracy. However, it must not enter into check weight computation.
operating without speed measurement or using adaptive belt influence compensation BIC is used.
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
BV-H2214 GB
Details 101
VBW
INTECONT PLUS
elt load results from platform data and belt inclination.
F QB LWB
= Force applied to load cell = Platform load = See Figure.
in kg in kg
With platforms with leaf spring parallel guidance H = 1.
a
Belt Inclination
C08 in degr
Enter belt inclination if load cells are mounted right-angled to belt. With vertically mounted load cells, degree is always 0 QPRF Effective Check Weight
Fo=
Total of load cell rated capacities
in kg
E=
Load cell characteristic value in m/mV
GK=
Device constant
C 08 in kg
This weight serves for check of theoretical calibration.
KOR
As effective check weight, enter platform load simulated by check weight. For check weight factor f, see Spec Sheet.
Ue
QPRF = f * Check Weight
a=
D 02
Range Correction
D 02 is primarily used to calibrate results of a material check. This parameter exclusively acts on belt load measuring branch. Analog Output:
= Load cell input voltage Angle
in V in degr
Belt speed is computed from speed transducer output frequency.
The product from Q and V is feed rate I. I = Q * V * 3600s/f in kg/h For tare parameters to be accurately calibrated, range correction takes place before taring. If range normalization QN is modified (Parameters KOR, Fo, etc.), tare parameters are automatically converted so that zero point is maintained.
ANH << = 1 >> = 20mA X = I, V or Q (see Fig. Analog Output) Operating Principle - Summary
Weighers without Speed Measurement:
Load cell output voltage Va is amplified and converted into digital value d. As transmission factor A0 of AD converter and load cell data are known to INTECONT, load on load cell can be computed from the output voltage.
For setting program LB, a frequency of V0 * VS is internally generated. If one of the two parameters is changed, call LB program again. Only then all other setting programs will run over integer belt circuits.
Details BV-H2214 GB
102
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Connection Diagram Base Card
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
BV-H2214 GB
Details 103
VBW
INTECONT PLUS
0837
Details BV-H2214 GB
104
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Option Card
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
BV-H2214 GB
Details 105
VBW
INTECONT PLUS
Namur Inputs 8 mA = 1.65...8 mA = 0.1...1.65 mA= 0,1 mA =
n
Cable Fastening
Short circuit Level 0 Level 1 (sensor covered) Cable breakage
Option Card: The option card is attached to the INTECONT cover. Signal exchange with base card is via a pluggable flat cable connector. If pulled off, system behaves as if no option card was present and only the operating functions and parameters of the base card can be used. In the rear wall of the INTECONT, under each connector, several slots are provided. The upper slot pair is reserved for the cable clamp which presses the shielded cable against the rear wall. The shield needs not be separately connected. The lower cut-out serves for accommodation of a pull relief, e.g. by cable binders.
Cabling Hints n
All cables are led to the device from the rear (front-of-panel mounting housing) or from below (flush mounting housing) and connected with special connectors. Connectors cannot be confused.
n
The INTECONT is isolated from the mounting surface by its plastic housing. The rear earthing connector is internally connected with the electronics zero potential. The protective ground used requires to be hum- and transient-free. The power supply zero potential (0V ext.) is not connected to the earthing connector. In general, no earthing is required.
n
Ensure that no leakage currents are conducted over cable shields. Therefore shields are applied to one side of INTECONT. The load cell housing is not connected with shields. Shields of data cables to host computer are connected to ground on either side.
n
The consumers connected to the relay and pulse outputs require to be radioshielded, e.g. by suppressor diodes or RC elements.
n
Analog outputs Long cables, particularly to frequency transducers, can interact on analog outputs. We suggest to use an isolating amplifier.
n
Make sure the space between power and measuring cables, if run in parallel, is 0.30 m. If this is not possible lay measuring cable in steel conduit. The same holds if the measuring cable is laid over free stretches or close to powerful transmitters (e.g. broadcasting stations).
Details BV-H2214 GB
106
Technische Redaktion PDE-RD
Attention! Connectors to base card require to be plugged-in with screwed connections up; connectors to option card, with screwed connections down. n
Intecont rear view: Connectors
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Weighing Platforms 1. Effective Platform Length
Multi-Idler Platform
The effective platform length is an important value for calibration. Determined by platform design, it can normally be taken from Spec Sheet. However, we recommend to remeasure length and to enter the exact value into parameter. The hatched areas shows the distribution of load on platform. n
Single-Idler Platform
n
Buckled Platform e.g. BMK type The platform consists of two sections. In its center, force is applied to load cell. Instead of weighed idlers, a two-sectional weighing table can also be used.
e.g. BEZ, BED types Platform load is applied to load cell via a weighed idler. This can be done by using a lever system or, with no levers, by leaf spring parallel guidance.
Buckled Platform
Single-Idler Platform n
Multi-Idler Platform e.g. BMP, BMC types Various weighed idler are connected to form a mechanical unit.
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
BV-H2214 GB
Details 107
VBW n
INTECONT PLUS
One-sided mounting of total belt
2. Check Weight QPRF Simulating a certain belt load, the check weight is used for control of weighing system. It can act on weighing platform direct or via lever system. The weight to be entered into INTECONT is not the actual weight, but the weight acting on platform. Effective check weight QPRF is the platform load in kg simulated by the check weight Single-Idler Platform a) Parallel Leaf Spring Mounting Theoretically, the check weight can be applied to any point of the mechanical platform equipment. Applied weight QP is active always.
One-sided mounting
QPRF = OP b)
Joint Mounting (e.g. Universal Spring Joint):
Lg = Length up to mid hillside
tan(a)
Angle a= 0 Angle a = neg
: K :K
= =
0,018 · a
0 neg 0837
Details BV-H2214 GB
108
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS Multi-Idler Platform
n
VBW 3. Conveyor Belt Inclination
a) Total platform mounted on load cells: In certain cases, the inclination of conveyor belt has to be entered into parameter. Decisive is the load cell mounting position.
QPRF = QP b)
Joint Mounting
a) Right-angled to conveyor belt
See Single-Idler Platform
Enter angle a into parameter. Load cell is loaded with N = Q * cos a.
Buckled Platform
n
QPRF = QP
n
Normally, check weight acts on center.
n
One-sided mounting of total belt
QPRF = QP
LPG LWZ
b) Vertical to conveyor belt
With inclined belts, consider extension, or shortening, of calibration lever, if any, in accordance with single-idler platform.
Enter 0 as angle a. Load cells are loaded with full force Q.
Chain Calibration Weight: If a chain curtain is placed over the platform area, the total weight of chains in weighing area is the effective check weight. QPRF = n * Lg * s N=
Number of chains
Lg=
Overall belt length
in m
s=
Chain weight per m
in kg/m
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
BV-H2214 GB
Details 109
VBW
INTECONT PLUS
Printer Connectivity Interface Character map: Cable
: Serial (see Chapter “Technical Data”). ISO-Latin-1 (ISO-8859-1) : The connection diagram holds for EPSON and CITIZEN printers.
Switch 1-1 1-2 1-3 1-4 1-5...8 2-1...6
: : : : : :
OFF 8-bit message OFF No parity bit ON, OFF Even/odd OFF Positive edge OFF, ON, OFF, OFF 9600 baud ON, ON, OFF, OFF, OFF, OFF (default)
Use Parameter J 01 to set baud rate to 9600. On the right side of printer, there are two additional DIP switches. Diagram view corresponds to top of printer.
Fig. EPSON Printer Switch 1-1 1-2 1-3 1-4 1-5 1-6...8 2-1 2-2 2-3 2-4
Fig.: Printer Cable
EPSON Printer: LX 850
: : : : : : : : : :
OFF Character spacing 10 CPI OFF Zero with no backslash ON Graphics character set OFF Auto hyphenation activated ON Normal print speed ON, ON, ON USA ON Page length 12 inch OFF No cut sheet OFF Jump over perforation OFF No auto line feed
Information on switch position can be printed by using the printer self-test function. (Press line feed key while starting printer). CITIZEN Printer: 120D
Fig. EPSON Interface
Fig. Serial Interface
The interface board is equipped with 2 DIP switches used for selection of serial message base data.
Details BV-H2214 GB
110
Technische Redaktion PDE-RD
0837
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
13 Replacement Instructions Replacing INTECONT PLUS FIP —> INTECONT PLUS VEG INTECONT PLUS, type “VEG”, is equipped with added functions for INTECONT PLUS, type “FIP”. Logical inputs/outputs can now be assigned to hardware at will. Please also check all connectors with relevant parameter assignment. When using our convenient replacement set (ordering no. V036910.B01), hardware is adapted by plugging. The EasyServe setting program supplied enables easy assignment and transfer of all software parameters.
FIP base card connection diagram
FIP option card connection diagram 0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Replacement Instructions BV-H2214 GB 111
VBW
INTECONT PLUS
The FIP base and option cards connection diagrams indicate for every digital input and output the relevant INTECONT VEG parameter numbers used for distribution on physical signals. The tables below compares the connector assignments of FIP and VEG for all physical signals.
Digital Outputs FIP X1 X1 X1 X6 X6 X6 X6 X6
1,2 3,4 5,6 1,2 3,4 5,6 7,8 9,10
Physical Signal
VEG
DA1 DA2 DA3 DA4 DA5 DA6 DA7 DA8
X1 X1 X1 X8 X8 X8 X8 X8
1,2 3,4 5,6 1,2 3,4 5,6 7,8 9,10
X3 X9 X9 ——X3 X5 X3
1,2 1,2 3,4
5,6 1,2 3,4
FIP X5 X5 X5 X5 X5 X5
Physical Signal
VEG
DE1 DE2 DE3 DE4 DE5 Sensor = (DE6) V1 (Tacho 1) = DE7 V2 (Tacho2)
X3 X3 X6 X9 X9 X3 X7 —-
1,2 3,4 6,7 1,2 3,4 5,6 1,2
3 4 5 6 7 8
Physical Signal
VEG
OUT1 REF1 IN2 IN1 REF2 OUT2
X7 X7 X7 X7 X7 X7
3 4 6 5 7 8
Attention: Signals IN1 and IN2 are swapped between FIP and VEG. (VEG is compatible to DISOCONT).
Power Supply FIP X2 X2 X2 X2
Digital Inputs FIP
Load Cell
1 2 3 4
Physical Signal
VEG
0V ext 24V ext ext. 0V supply ext. 24V supply
X2 X2 X2 X2
Physical Signal
VEG
Screen TX RX
X10 X10 X10
Physical Signal
VEG
24V Open collector Open emitter 0V
X6 X6 X6 X6
1 2 3 4
Printer FIP X8 X8 X8
1 2 3
1 2 3
Pulse Output Analog Inputs/Outputs FIP FIP X9 ——-
9,10
Physical Signal
VEG
A01 A02
X6 X9
4,5 5,6
AI
X6
1,2,3
X9 X9 X9 X9
5 6 7 8
8 9 10 11
With VEG, fieldbus is connected via separate fieldbus cards (FIP: Connector X7). See Fieldbus Manual BVH2220.
0837
Replacement Instructions BV-H2214 GB 112
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT PLUS
VBW
Connector Size FIP X1 X2 X3 X5 X6 X7 X8 X9
Phoenix contact spacing 5mm : 6 pins Phoenix contact spacing 5mm : 4 pins Phoenix contact spacing 5mm : 7 pins Phoenix contact spacing 5mm : 8 pins Phoenix contact spacing 5mm : 8 or 10 pins SUB-D: 9 pins SUB-D: 9 pins Phoenix contact spacing 5mm : 12 pins
VEG X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
Phoenix contact spacing 5mm : 6 pins Phoenix contact spacing 5mm : 4 pins Phoenix contact spacing 3.5mm : 6 pins SUB-D: 9 pins Phoenix contact spacing 3.5mm : 7 pins Phoenix contact spacing 3.5mm : 11 pins Phoenix contact spacing 3.5mm : 8 pins Phoenix contact spacing 5mm : 10 pins Phoenix contact spacing 3.5mm : 9 pins Phoenix contact spacing 3.5mm : 7 pins
0837
Transmission to third parties and reproduction of t h i s d o c u m e n ta t i o n a r e n o t p e r m i t t e d . SchenckProcess GmbH reserves all rights of ownership and copyrights.
Technische Redaktion PDE-RD
Replacement Instructions BV-H2214 GB 113
VBW
INTECONT PLUS
This page left intentionally blank.
0837
Replacement Instructions BV-H2214 GB 114
Technische Redaktion PDE-RD
Transmission to third parties and reproduction of this documentation are not permitted. Schenck Process GmbH reserves all rights of ownership and copyrights.
INTECONT® PLUS INTECONT® Opus INTECONT® Satus Fieldbus Description
BV-H2220GB
PASS - Service you can rely on. Fast, comprehensive, anywhere in the world Quality and reliability are the cornerstones of our company’s philosophy. That is why we consider a comprehensive service concept simply par for the course, from strict quality control, installation and commissioning through to seamless support across the entire product life cycle. With over 30 service stations and over 180 service specialists, you can count on us to be there whenever – and wherever – you need us. It doesn’t matter where you are, our specialists are there to advise and assist with the best in worldwide, personal, comprehensive service. During office hours, service specialists from all divisions are on hand to analyse problems and failures. Look at www.schenckprocess.com for your nearest Schenck Process Location. Customised to meet your requirements, our comprehensive Process Advanced Service System provides you with the best service. Are you looking for individual, perfect-fit service solutions? Then our, the modular service system PASS, is the ticket. It covers the entire service spectrum, from simple inspections through to full service. Interested? Then find out more about the individual components at www.schenckprocess.com/en/service .
Free 24 h Emergency Service Hotline in Germany Are you experiencing a failure or problem outside normal office hours? Our service staff are on call around the clock to deal with failures, service planning and other emergencies.
+49 172 6 501700
Heavy and Light excluding Static Weighing Equipment
+49 171 2 251195
Transport Automation and Static Weighing Equipment
© by Schenck Process GmbH, 2008 Pallaswiesenstraße 100, 64293 Darmstadt, Germany +49 61 51-15 31 0 www.schenckprocess.com All information is given without obligation. All specifications are subject to change. Note: Translation of the original instructions
Table of Contents
1 OVERVIEW ........................................................................................ 1 1.1 Validity Range ........................................................................................................ 1
2 FIELDBUS DATA............................................................................... 2 2.1 Data Segments ....................................................................................................... 2 2.2 Units ........................................................................................................................ 2 2.3 Numeric Representation ....................................................................................... 2 2.4 User Data Construction......................................................................................... 4 2.4.1 FIXED Mode...................................................................................................... 4 2.4.1.1 FIXED Mode – Detailed Message Sample................................................. 7 2.4.2 General User Data Construction ....................................................................... 8 2.4.2.1 Message Construction................................................................................ 9 2.4.2.2 Parameter Transfer .................................................................................. 11 2.4.2.3 General User Data Construction – Detailed Samples.............................. 13 2.5 User Data Diagnosis ............................................................................................ 15 2.5.1 Serial connection............................................................................................. 15 2.5.2 Connection via Ethernet.................................................................................. 17 2.6 Lists of Cyclic Data.............................................................................................. 19 2.6.1 Explanations on Data Lists.............................................................................. 19 2.6.2 Commands ...................................................................................................... 20 2.6.3 Preset Values in Floating Point Format .......................................................... 22 2.6.4 Preset Values in Integer Format (Modbus) ..................................................... 23 2.6.5 Status Information ........................................................................................... 24 2.6.6 Measurement Values in Floating Point Format............................................... 32 2.6.7 Measurement Values in Integer Format (Modbus) ......................................... 35 2.6.8 Values in Long Integer Format....................................................................... 36 2.6.9 Events ............................................................................................................. 37
3 PROFIBUS DP ................................................................................. 38 3.1 Commissioning Guideline .................................................................................. 38 3.2 Profibus Module Functionality ........................................................................... 38 3.3 User Data Construction....................................................................................... 39 3.4 Settings on DP-Slave (INTECONT)..................................................................... 39 3.5 Settings on Profibus DP Master ......................................................................... 40 3.6 Diagnosis and Troubleshooting......................................................................... 41 3.7 Profibus Module (VPB020V) ............................................................................... 42 3.8 Profibus module (VPB8020)................................................................................ 43 3.9 For Further Reading ............................................................................................ 44
INTECONT PLUS, Fieldbus Description ©Schenck Process
BV-H2220 GB , 0831
I
Table of Contents
4 DEVICENET ..................................................................................... 45 4.1 Commissioning Guideline ...................................................................................45 4.2 DeviceNet Module Functionality .........................................................................45 4.3 User Data Construction .......................................................................................45 4.4 Settings on DeviceNet Slave (INTECONT) .........................................................46 4.5 Settings on DeviceNet Master.............................................................................46 4.6 Diagnosis and Troubleshooting .........................................................................47 4.7 DeviceNet Module (VCB020V) .............................................................................48 4.8 DeviceNet Modul (VCB8020V) .............................................................................49 4.9 For Further Reading .............................................................................................50
5 MODBUS.......................................................................................... 51 5.1 Commissioning Guideline ...................................................................................51 5.2 Modbus Module Functionality.............................................................................51 5.3 Data Format...........................................................................................................51 5.4 Function Codes (FC) ............................................................................................52 5.5 Transmission Protection .....................................................................................52 5.6 Error Codes...........................................................................................................52 5.7 Station Addresses ................................................................................................52 5.8 User Data ...............................................................................................................53 5.8.1 Process Values ................................................................................................53 5.8.2 Parameters ......................................................................................................53 5.9 Cyclic Data Exchange Via Modbus.....................................................................53 5.10 Sample Messages...............................................................................................53 5.11 Settings on Modbus Slave (INTECONT)...........................................................54 5.12 Settings on Modbus Master ..............................................................................55 5.13 Diagnosis and Troubleshooting .......................................................................55 5.14 Serial Bus Module (VSS021V - applies to VEG) .............................................56 5.15 Connection for serial interface S3 (RS485- VKG) ...........................................58 5.16 tie-in diagram S3 as RS485-2-wire....................................................................58 5.17 For Further Reading ...........................................................................................58
II
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description ©Schenck Process
Table of Contents
6 ETHERNET ...................................................................................... 59 6.1 Ethernet Settings ................................................................................................. 59 6.2 Checking Station Addresses .............................................................................. 60 6.3 Modbus-TCP/IP .................................................................................................... 61 6.3.1 Commissioning Guideline ............................................................................... 61 6.3.2 Ethernet Module Functions ............................................................................. 61 6.3.3 Fieldbus Mode................................................................................................. 61 6.3.4 Station Addresses ........................................................................................... 62 6.3.5 Function Codes (FC)....................................................................................... 62 6.3.6 Transmission Protection.................................................................................. 62 6.3.7 Error Codes ..................................................................................................... 62 6.3.8 Data Formats................................................................................................... 63 6.3.9 Process Values ............................................................................................... 63 6.3.10 Parameters.................................................................................................... 63 6.3.11 Data Exchange Overview.............................................................................. 63 6.3.12 Message Samples......................................................................................... 64 6.3.13 Settings on Modbus/TCP Slave (INTECONT) .............................................. 64 6.3.14 Settings on Modbus/TCP Master .................................................................. 65 6.3.15 Diagnosis and Troubleshooting .................................................................... 65 6.3.16 Ethernet Bus Module (VET020V – VEG) ...................................................... 66 6.3.17 Ethernet connection VKG.............................................................................. 67 6.3.18 For Further Reading...................................................................................... 67 6.4 Ethernet/IP ............................................................................................................ 68 6.4.1 Commissioning Guidelines.............................................................................. 68 6.4.2 Ethernet Module Functions ............................................................................. 68 6.4.3 Fieldbus Mode................................................................................................. 68 6.4.4 User Data Construction................................................................................... 68 6.4.5 Settings on Ethernet/IP-Slave (INTECONT) ................................................... 68 6.4.6 Configuration of the network in “RSLogix 5000" ............................................. 70 6.4.7 Diagnosis and Troubleshooting....................................................................... 71 6.4.8 Ethernet Bus Module (VET022V) for VEG...................................................... 72 6.5 Ethernet connection VKG ................................................................................... 73 6.5.1 For Further Reading........................................................................................ 73
7 APPLICATION EXAMPLES............................................................. 74 7.1 Zeroing and Taring Weighfeeders / Belt Weighers .......................................... 74 7.2 Batching via fieldbus........................................................................................... 75
INTECONT PLUS, Fieldbus Description ©Schenck Process
BV-H2220 GB , 0831
III
Table of Contents
IV
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description ©Schenck Process
Overview
1 Overview Before putting into operation one of the protocols described below, always read Item “Fieldbus Data“ and the protocol-specific items. Decisive for the further procedure is the “User Data Construction” item. You can select: ! FIXED mode or ! General user data construction If you arrive at the conclusion that the FIXED mode is the right mode for your application, you can skip all the other information on IDs and parameters. The FIXED mode means you need less time for orientation and it makes it much easier to use the fieldbus connection. You only have to read the FIXED mode Chapter in Sections 1.1-1.4 as well as the sections on diagnosis and troubleshooting wherever necessary. You can find information on the web server in document BVI2060AA.
1.1 Validity Range This item describes all data that can be transferred using the various fieldbus protocols. The data basis is the same for all fieldbuses. Special features are detailed at the protocolspecific items. The “Fieldbus Data” item holds for the following protocols: Protocol Profibus DP DeviceNet Modbus Modbus-TCP/IP and Ethernet/IP
See: Chapter 3 Chapter 4 Chapter 5 Chapter 6
For description of protocol S5-RK512 (3964R), see manual FH458.
INTECONT PLUS, Fieldbus Description ©Schenck Process
BV-H2220 GB , 0831
1
Fieldbus Data
2 Fieldbus Data 2.1 Data Segments The INTECONT system distinguishes the following cyclic data: ! Commands (bit or byte information) ! Setpoints (floating point values) ! Status information (bit or byte information) ! Measurement values (floating point values) ! Long (INT32) values (integer values)
2.2 Units INTECONT uses two different unit systems: ! SI units ! NON-SI units Changeover takes place using the “Units” parameter. For the fieldbuses, this means: ! Selection SI lets you transfer all unit values in "m, kg and sec" ! Selection NON-SI transfers your values in "ft, lb and sec".
2.3 Numeric Representation Floating Point Values INTECONT readies measurement values, setpoints and some parameters in the form of floating point numbers in the IEEE-754 4-byte format. Depending on protocol and parameter, these can be converted into another floating point format. For details, see individual protocol descriptions. Transmission always starts with MSB. Example for transmission of value 150.5 in IEEE format (indicating the line sequence): Byte 1: Sign/Exponent
Byte 2: Mantissa 1
Byte 3: Mantissa 2
Byte 4: Mantissa 3
0x43
0x16
0x80
0x00
Sample floating point numbers Number IEEE format (HEX) 1.0 3F800000 10.0 41200000 100.0 42C80000 1000.0 447A0000
2
BV-H2220 GB , 0831
Siemens-KG format (HEX) 01400000 04500000 07640000 0A7D0000
INTECONT PLUS, Fieldbus Description ©Schenck Process
Fieldbus Data
Data (double) words Data words are standard transmitted using the Motorola format (high byte followed by low byte). Depending on protocol and parameter, another byte sequence can be set. For details, see individual protocol descriptions. Word oder / Byte order
Data type
MSB MSB
LSB LSB
Int 32 / LONG 0
0
MSB
LSB
Int 16
Bit information Bits are comprised to form words (Modbus, Modbus/TCP) or double words (Profibus, DeviceNet). The line sequence is as follows: Ex.: Command ID 0x0140 Ex.: Status ID 0x02F0
Comm4_HI Status2_HI
INTECONT PLUS, Fieldbus Description ©Schenck Process
Comm4_LO Comm5_HI Status2_LO Status3_HI
BV-H2220 GB , 0831
Comm5_LO Status3_LO
3
Fieldbus Data
2.4 User Data Construction As mentioned above, INTECONT readies two process images: ! FIXED mode or ! General user data construction. The data of the Fixed Mode Parameter parameter blocks are transferred to set positions between the host system and INTECONT in the FIXED mode. Parameters cannot be transferred. However, you also do not have to study the principle of data exchange via "general user data structure". This is where you can transfer any data you want in any order you want including the equipment parameters. You pay for this flexibility at the price of devoting more time and effort to orientation in terms of the data scope and type of processing. The user data structures of this section also apply to the PROFIBUS, DeviceNet and EtherNet/IP protocols. The Modbus, or Modbus/TCP, protocol is used to transfer continuous data ranges from Master to scale and vice versa (see protocol-specific items).
2.4.1 FIXED Mode The data of the FIXED mode are also adapted to each scale type. In any event, the structure of the data packages as shown in the figure below is identical. Each value is always the size of one data double word (4 bytes). Values not used are filled with zero. For detailed description of commands and status values, refer to the lists of cyclic data given at the end of the Fieldbus Data item.
NOTE In preset value 1 (commands 4 + 5) the release bit (in terms of a fieldbus release) serving for interface monitoring must always be set statically. If this bit is not set, the subsequent preset values are not evaluated and HOST communication fault is set.
4
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description ©Schenck Process
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
VBW20600 ID (hex) Wert 2F0 Status 2+3 310 Status 4+5 610 Highest priority event 750 Feed rate [kg/h] 752 Totalizer 1 [kg] 754 Totalizer 2 [kg] 768 Batch Feed Rate [kg] 76A Batch Res. Amount [kg]
Read values Fixed Mode 2 VLW20600 Byte-Nr. ID (hex) Wert 1-4 2F0 Status 2+3 5-8 310 Status 4+5 9-12 610 Highest priority event 13-16 750 Feed rate [kg/h] 17-20 754 Totalizer 2 [kg] 21-24 760 Fill [kg] 25-28 768 Batch Feed Rate [kg] 29-32 76A Batch Res. Amount [kg]
Wert Commands 4+5 Commands 6+7 Commands 8+9 Make-Up setpoint [kg] Batch setpoint [kg] Batch No. 0 0
VBW20600 ID (hex) Wert 2F0 Status 2+3 310 Status 4+5 610 Highest priority event 750 Feed rate [kg/h] 752 Totalizer 1 [kg] 758 Belt load [kg/m] 75C Belt speed [m/s] 754 Totalizer 2 [kg]
ID (hex) 140 160 180 254 252 256 — —
VBW20600
Byte-No. ID (hex) Wert 1-4 140 Commands 4+5 5-8 160 Commands 6+7 9-12 180 Commands 8+9 13-16 250 Absolute setpoint [kg/h] 17-20 252 Batch setpoint [kg] 21-24 — 0 25-28 — 0 29-32 — 0 Read values Fixed Mode 1 VLW20600 Byte-Nr. ID (hex) Wert 1-4 2F0 Status 2+3 5-8 310 Status 4+5 9-12 610 Highest priority event 13-16 750 Feed rate [kg/h] 17-20 752 Totalizer 1 [kg] 21-24 760 Fill weight [kg] 25-28 754 Totalizer 2 [kg] 29-32 766 Actual Setpoint [kg]
VLW20600
Preset values Fixed Mode 1 and 2 Wert Commands 4+5 Commands 6+7 Kommando 8+9 Absolute setpoint [kg/h] Batch setpoint [kg] 0 0 0
VDB20600 ID (hex) Wert 2F0 Status 2+3 310 Status 4+5 610 Highest priority event 750 Feed rate [kg/h] 752 Totalizer 1 [kg] 754 Totalizer 2 [kg] 768 Batch Feed Rate [kg] 76A Batch Res. Amount [kg]
VDB20600 ID (hex) Wert 2F0 Status 2+3 310 Status 4+5 610 Highest priority event 750 Feed rate [kg/h] 752 Totalizer 1 [kg] 758 Belt load [kg/m] 75C Belt speed [m/s] 766 Actual Setpoint [kg/h]
ID (hex) 140 160 180 250 252 — — —
VDB20600
The table below includes all values transferred with the particular scale type:
VMD20600 ID (hex) 2F0 310 610 750 752 754 768 76A
VMD20600 ID (hex) 2F0 310 610 750 752 75A 75E 766
ID (hex) 140 160 180 250 252 256 254 —
VMD20600
Wert Status 2+3 Status 4+5 Highest priority event Feed rate [kg/h] Totalizer 1 [kg] Totalizer 2 [kg] Batch Feed Rate [kg] Batch Res. Amount [kg]
Wert Status 2+3 Status 4+5 Highest priority event Feed rate [kg/h] Totalizer 1 [kg] Measured load [kg] Speed [1/min] Actual Setpoint [kg/h]
Wert Commands 4+5 Commands 6+7 Commands 8+9 Absolute setpoint [kg/h] Batch setpoint [kg] Batch No. Make-up Setpoint [kg] 0
Wert Commands 4+5 Commands 6+7 Commands 8+9 Make-Up setpoint [kg] Batch setpoint [kg] Batch No. 0 0
5
VMD20600 ID (hex) Wert 2F0 Status 2+3 310 Status 4+5 610 Highest priority event 750 Feed rate [kg/h] 752 Totalizer 1 [kg] 754 Totalizer 2 [kg] 768 Batch Feed Rate [kg] 76A Batch Res. Amount [kg]
VDM20600 ID (hex) Wert 2F0 Status 2+3 310 Status 4+5 610 Highest priority event 750 Feed rate [kg/h] 752 Totalizer 1 [kg] 75A Measured load [kg] 754 Totalizer 2 [kg]] 768 Actual Setpoint [kg/h]
ID (hex) 140 160 180 254 252 256 — —
VDM20600
Fieldbus Data
6
Fieldbus Data
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
From the programme statuses VBW20600-08 VDB20600-08 VDM20600-05 VLW20600-07 VMD20600-08 there is only one FIXED mode. The values that are then transferred in FIXED mode should be set in the parameter block “Fixed Mode Parameter”. The default values correspond to the values in the table for fixed mode 1.
2.4.1.1 FIXED Mode – Detailed Message Sample INTECONT parameters (scale type: VLW) Configuration Floating point format
FIXED-1 IEEE format
Master->Slave Bytes 1-4 Bytes 5-8 Bytes 9-12 Bytes 13-16 Bytes 17-20 Bytes 21-32
Bytes (hex) 00 0C 00 00 00 00 00 00 00 00 00 01 43 16 80 00 42 C8 00 00 ZERO
Meaning (ID value, hex) Commands 4+5 Commands 6+7 Commands 8+9 Setpoint Batch setpoint
(0140) (0160) (0180) (0250) (0252)
Slave->Master Bytes 1-4 Bytes 5-8 Bytes 9-12 Bytes 13-16 Bytes 17-20 Bytes 21-24 Bytes 25-28 Bytes 29-32
Bytes (hex) 01 02 00 00 00 02 00 04 13 18 00 00 42 C8 00 00 44 9A 40 00 43 AC 80 00 45 F6 90 00 42 C8 00 00
Meaning (ID value, hex) Status 2+3 Status 4+5 Most significant error Feed rate actual value Totalizing counter 1 Bin level F Totalizing counter 2 Effective setpoint
(02F0) (0310) (0610) (0750) (0752) (0760) (0754) (0766)
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
Current value Event acknowledged, release set No command active START keyboard mode set 150.5 kg/hr 100 kg Standby Current value Normal mode, no release Filling system, fill level < Min Event S9 ackn., Warning2 100 kg/hr 1234 kg 345 kg 7890 kg 100 kg/hr
7
Fieldbus Data
2.4.2 General User Data Construction Since there is no specific Weighing profile, data construction uses the existing Variable Speed Drives profile. In this profile, user data construction for the cyclic channel is called Parameter Process Data Object (PPO). The guideline determines the user data construction for drives a Master can use to access the drive slaves by means of cyclic data exchange. User data construction in cyclic data exchange comprises two ranges which can be transmitted in every message: !
Process Data Range (PZD), i.e. control words and setpoints, or status information and actual values
!
Parameter Range (PKW) for read/write of parameter values, e.g. read-out of information on parameter characteristics (MIN/MAX values, etc.).
The PPO type used to address the scale from Master can be configured at the time of bus system commissioning. The PPO type is selected as a function of the scale task in the automation environment and used to control the scale in the automation environment, e.g. Start/Stop, Enter Setpoints. The parameter range enables the user to freely access all scale parameters with the use of the bus system. Thus, further information for scale visualization can be called up from a host system, e.g. a PC, with no adverse effects on the efficiency of process data transmission. All messages used in cyclic data transmission have the following basic construction: Protocol frame (header)
Parameters (PKW) optional
User data Process data (PDR)
Protocol frame (trailer)
General message construction PPO types You can select the following PPO types: ! NO_PARA_ID: User data without a parameter range and three defined preset values and as many as 6 additional reading values selectable by ID ! PARA_ID: User data with a parameter range, two preset values and four reading values. ! PARA_6ID: User data with a parameter range with three defined preset values and as many as 6 additional reading values selectable by ID This process image is only available in connection with Hardware VxB8020. Parameter range (PKW) The PKW message part (Parameter Code Value) can be used to monitor and/or change any scale parameter. The requisite mechanisms of order/reponse IDs are described at the Parameter Transfer item.
Process data range (PDR) Using the process data, commands and preset values (Master to scale) or status words and actual values ( scale to Master response) can be transmitted. Transmitted process data are immediately effective. .
8
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
2.4.2.1 Message Construction The figure below shows the basic construction of user data in the INTECONT system. The first line shows the message from bus master to scale; the second, the scale reponse.
The user data structure is fixed and the data content (IDs and values) is variable. The size of the user data part of a package is 32 bytes in the process images NO_PARA_ID + PARA_ID. If the DeviceNet or Ethernet/IP protocol is used, 32 should be entered as the number of bytes (as the produced and consumed connection size). The configuration telegram guarantees the correct length information in Profibus . Unused bytes are filled with the value zero. Starting with the program versions 1 VBW20600-08 2 VDB20600-08 3 VDM20600-05 4 VLW20600-07 5 VMD20600-08 the process image PARA_6ID is also supported. The structure corresponds to NO_PARA_ID + up-stream parameter block. Another condition is that a communication module is used with a firmware version. This process image is only available in connection with Hardware VxB8020. You can see the version under service values – SW_FB. The process image of the control system to INTECONT is 38 bytes long in this case and 40 bytes are transmitted in the opposite direction.
Sample Data transmission without parameters with 3 preset values, 6 variable user-defined identifications (IDs) – representation HEX
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
9
Fieldbus Data
Note ! The preset IDs from Master to scale must originate from the Command or Preset value ranges. It is possible to preset multiple setpoints (feed rate and batch setpoint) or multiple commands with different IDs in one and the same cycle. ! If one ID is zero, respective value is not evaluated.. ! If all bytes are set to zero in the presetting message (bus Master to INTECONT), fieldbus communication fault is set on INTECONT. INTECONT interprets this state as failure of the bus Master's host CPU whilst the communication processor in Master is active. The INTECONT timeout monitoring cannot compensate this state since formally valid data packages are transferred still. At least one preset ID must have a valid value unequal to zero. ! Control and status information is comprised in 4-byte packages. The IDs assigned to blocks are highlighted in data description. Only these IDs may be used here. If a different ID is used, data are rejected and an error message is output. ! In the response message, status and actual value are identified by their positions in message. The fixed status has ID 0x2F0; the actual value, ID 0x750. ! Through addition of (read) IDs in Master --> scale message, you can cause the scale to enter the desired values into the response message. Value sequence corresponds to the ID sequence. If IDs of the Preset value or Command ranges are entered, the value preset last is reread. ! If an ID is identified as wrong, corresponding value in the response is set to zero. Sample
Data transmission with additional parameter block
The (grey) parameter block always precedes the residual data.
Master --> scale message PKE
IND
PWE1
PWE2
ID Preset value 1
ID Preset value 1 Preset value 2
Preset value 2
Ordering list (read IDs)
Scale response PKE
IND
PWE1
PWE2
Status infos (2+3) Actual value (4 bytes) (4 bytes)
Values as per ordering list
Note Parameter evaluation requires considerable expenditure. We suggest to limit data exchange to parameters of the FLOAT type.
For detailed message samples, see end of item 1.5.
10
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
2.4.2.2 Parameter Transfer Parameter block (PKW) Parameter block (PKW), 4 words IND (2nd word) High Low
PKE (1st word)
PWE (3rd and 4th words) PWE1 PWE2
Basic construction of parameter block Parameter ID (PKE), 1st word
The parameter ID (PKE) is always a 16-bit value. Bits 0 to 12 (PNU) include the number of the desired parameter. Bits 13 to 15 (AK) include the order or response ID. For the order message (Master; scale), the meaning of the order ID is shown in table. For the response message (scale ; Master), the meaning of the response ID is shown in table. Depending on order ID, only certain response IDs can be used.
Bit no.
AK 15
14
PNU Bit 0-12
13
Details of parameter ID (PKE) Order ID 0 1
3 4
Meaning No order Request current parameter value (double word) Write (change) parameter value (double word) Order description element (double word)
Pos. response 0 2
Neg. response 7
2
7
2
7
Order IDs (AK) Master station —> INTECONT Response ID 0 2 7 Response IDs (AK)
Meaning No order Transfer current parameter value / event group (double word) Order cannot be executed (error number in PWE2) INTECONT —> Master station
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
11
Fieldbus Data
Parameter index (IND) 2nd word The array sub-index (in PROFIBUS profile simply called “sub-index) is an 8-bit value and transferred upon cyclic data exchange using PPOs in the most significant byte (bits 8 to 15) of parameter index (IND). The less significant byte (bits 0 to 7) always has zero value. IND function If an order transfers a sub-index with values between 1 and 254, the desired index of the selected parameter is transferred. For meanings of single parameter indices, please see the table below. When a description element is processed, the number of the desired element is transferred. Index 0 4 8 12
Meaning Default value Min. value Max. value Unit index (1st word), after-comma places (2nd word)
Index in parameter description (IND) – most significant byte of parameter index Parameter value (PWE) 3rd and 4th words The parameter values (PWE) are always transferred in form of a double word (32 bits). A PPO message can transfer only one parameter value at a time. A 32-bit parameter value consists of PWE1 (most significant word, 3rd word) and PWE2 (less significant word, 4th word). A 16-bit parameter value is transferred in PWE2 (less significant word, 4th word). Set PWE1 (most significant word, 3rd word) to 0 value on Master. Bits 0 ... 15:
Parameter value with 16-bit parameter, or Low portion with 32-bit parameter
Bits 16 ... 31:
Value = 0 with 16-bit parameters, or High portion with 32-bit parameter
Error number 1 2 3 4 5 Error numbers
Meaning Inadmissible parameter number (parameter not available or preset value wrong, e.g. MIN/MAX exceeded up/down) MIN/MAX value exceeded up/down No access right Order not possible in current operating state of scale Order not implemented
Error number (PWE2) If the response ID has value 7 (order cannot be executed), parameter value 2 (PWE2) includes an error number specified in table.
12
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
Order/response processing rules An order and/or response can refer to a single parameter only. The Master must repeat the order until receipt of relevant response. The Master recognises the response on the given order through: ! evaluation of response ID ! evaluation of parameter number PNU ! if necessary, evaluation of parameter index IND ! if necessary, evaluation of parameter value PWE. The complete order must be sent in one message; splitted order messages are not admitted. The same applies to the response. If the response message is repeated, the scale responds with the current values. If no information from PWK interface are needed in cyclic operation (only PZD data matter), set the order ID to “No Order”. For samples, see item below.
2.4.2.3 General User Data Construction – Detailed Samples Sample 1 GSD module: INTECONT parameters Process image length Floating point format
"NO_PARA_ID" Configuration: “NO_PARA_ID” Master -> Slave : 30 bytes, Slave Siemens-KG-Format
-> Master: 32 bytes
Sample Master->Slave process image: Bytes 1+2 Bytes 3-6 Bytes 7+8 Bytes 9-1 Bytes 13+14 Bytes 15-18 Bytes 19+20 Bytes 21+22 Bytes 23+24 Bytes 25+26 Bytes 27+28 Bytes 29+30
0250 0A 7D 00 00 0140 00 41 00 00 0000 00 41 00 00 0752 075C 0754 0758 0000 0000
ID for "Write feed rate setpoint” Setpoint 1000.0 kg/hr ID for "Commands 4+5" Reset control value for scale start and counter 1 Standby Reset control value for scale start and counter 1 (ID=0: not active) ID to request counter 1 reading ID to request belt speed in m/s ID to request counter 2 reading ID to request belt load in kg/m Standby Standby
Sample Slave->Master process image: Bytes 1-4 Bytes 5-8 Bytes 9-12
01 02 00 00 00 00 00 00 00 00 00 00
Always status messages to ID 02F0 Always feed rate actual value kg/hr, ID=0750 Value for ID in bytes 19+20, i.e. counter 1 reading
Bytes 13-16 Bytes 17-20 Bytes 21-24 Bytes 25-28 Bytes 29-32
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Value for ID in bytes 21+22, i.e. belt speed Value for ID in bytes 23+24, i.e. counter 2 reading Value for ID in bytes 25+26, i.e. belt load Standby Standby
Bytes 1-4 status messages: set are "Normal mode” and “No release” bits -----------------------------------------------------------------------------------------------------------------------------------------------
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
13
Fieldbus Data Sample 2 (preset parameter) GSD module: INTECONT parameters Process image lenght Floating point format
“PARA_ID” Configuration: “PARA_ID” Master -> Slave : 28 bytes, Slave IEEE
-> Master: 32 bytes
Sample Master->Slave process image: Bytes 1-8 Bytes 9+10 Bytes 11-14 Bytes 15+16 Bytes 17-20 Bytes 21+22 Bytes 23+24 Bytes 25+26 Bytes 27+28
7205 0000 4170 0000 0250 44 7A 00 00 0140 00 44 00 00 0752 075C 0754 0758
Preset parameter "F_Control Min. – Feed Index 1" (value =15 %) ID for "Write feed rate setpoint " Setpoints 1000.0 kg/hr ID for "Control" Acknowledge control value for events and reset counter 1 ID to request counter 1 reading ID to request belt speed in m/s ID to request counter 2 reading ID to request belt load in kg/m
Sample Slave->Master process image: Bytes 1-8 Bytes 9-12 Bytes 13-16 Bytes 17-20 Bytes 21-24 Bytes 25-28 Bytes 29-32
5205 0000 4170 0000 01 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Preset parameter value accepted Always status messages to ID 02F0 Always feed rate actual value in kg/h, ID=0750 Value for ID in bytes 19+20, i.e. counter 1 reading Value for ID in bytes 21+22, i.e. belt speed Value for ID in bytes 23+24, i.e. counter 2 reading Value for ID in bytes 25+26, i.e. belt load
----------------------------------------------------------------------------------------------------------------------------------------------Sample 3 (preset parameter with error response) GSD module INTECONT parameters Process image lengths Floating point format
“PARA_ID” Configuration: “PARA_ID” Master -> Slave : 28 bytes, Slave IEEE
-> Master: 32 bytes
Sample Master->Slave process image: Bytes 1-8 ...
7205 0000 447a 0000 ...
Preset parameter "F_Control Min." (value =1000 %) ...
Sample Slave->Master process image: Bytes 1-8 ...
F205 0000 4170 1000 ...
Preset parameter value not accepted (value > MAX) ...
----------------------------------------------------------------------------------------------------------------------------------------------Sample 4 (read parameter) GSD module “PARA_ID” INTECONT parameters Configuration: “PARA_ID” Process image lengths Master -> Slave : 28 bytes, Slave Floating point format IEEE
-> Master: 32 bytes
Sample Master->Slave process image: Bytes 1-8 ...
3205 0000 xxxx xxxx ...
Read parameter "F_Control Min" (xxxx = optional value) ...
Sample Slave->Master process image: Bytes 1-8 ...
14
5205 0000 4170 0000 ...
Parameter value = 15% ...
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
2.5 User Data Diagnosis 2.5.1 Serial connection You can always carry out the utilisation diagnosis with a serial EasyServe connection. In addition, you can always use diagnosis with VEG via Ethernet if the optional VET020V fieldbus card is mounted. The VKG scenario always offers all options. EasyServe readies a very simple form of bus monitor. Menu “Fieldbus View” lets you go to the dialog window. The following diagnoses are possible: Display of first 50 characters of last 100 messages in hex format. Display only shows the mere user data. The following errors can be recognised: ! Parameter with wrong data format. All floating point numbers are improperly indicated. ! Faulty IDs preset from Master (see Lists of Cyclic Data) ! Faulty data contents Not recognised: ! Initialisation error upon connection set-up ! Layer 2 issues upon data exchange
Display of EasyServe monitor (Profibus or DeviceNet)
Representation of Modbus messages (incl Modbus frame)
The figure shows the Modbus telegram depiction (including Modbus frame) INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
15
Fieldbus Data
Explanations on EasyServe monitor (Profibus sample) Master transfers command (ID=0x0140) “Acknowledge event” bit and command (ID=0x0160). Scale is requested to respond to IDs 0x0758, 0x075E, 0x0310 and 0x0610. Display meanings Display shows current fieldbus protocol (see title) and data selected using checkbox. “==> “ means that Master sends data to scale ( Receive INTECONT). “<== “ identifies data sent from INTECONT to Master Selection buttons Record: Starts recording on scale Display: Data are transferred from scale to PC and then displayed. This process may take some seconds depending on how many data have been stored yet. Maximum the last (most recent) 50 messages can be recorded. Copy: Lets you mark all (no selection), single or a group of messages by mouse click and copy them into clipboard. If requested, data can be copied into an editor. Checkbox: Lets you select the direction of data and activate a time stamp. Note With the Modbus/TCP protocol, the EasyServe monitor displays the data of the internal interface (scale-EtherNet module). The representation corresponds to the Modbus sample.
16
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
2.5.2 Connection via Ethernet The fieldbus view (as shown below) was extended for Modbus/TCP (VEG) and the VKG scenario. All data streams are transmitted to EasyServe using the UDP protocol. Both internal and external data are shown with VEG. This figure shows the difference between internal and external communication. The standard EasyServe fieldbus view always shows the internal data (refer to the chapter on Fieldbus Data).
HOST External Communication (TCP) Communication subassembly VET2xV Internal communication (serial) Unit The next figure shows the data of a VEG. The upper row is identical to the standard diagnose view. The selection fields in the second row allow the selection (filtering) of particular data after recording has been stopped. The filters are described in detail below. Selecting direction
Channel selection
Diagnosing a VEG unit INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
17
Fieldbus Data
Diagnosing the VKG These 4 bytes represent the time right down to the millisecond. The time stamp in front of it is generated by the PC. It is used by all units that cannot give the exact time. Note: 17 bytes of internal header data that are not user data follow the time stamp with the VvB8020 fieldbus cards.
The direction filter enables selection
All Reception Transmission The channel filters show all channels which appear in the record. The following mean:
All C(ontroller) 1( ... 3) TCP channel number host Combining the two channel filters can either filter out the data of two host channels or the data of a host channel can be combined with the internal data. The host data contain the 6 Modbus/TCP header bytes. The copy function transfers the currently selected data into an editor window.
18
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
2.6 Lists of Cyclic Data 2.6.1 Explanations on Data Lists There are separate lists for the various data types. Each list contains the following information: ID Used with protocols: Modbus Modbus/TCP Profibus DP DeviceNet EtherNet/IP
for data address for data address for ID indicating the value to be transferred s. Profibus s. Profibus
The “ID” value addresses the complete data word. If a bit is to be addressed (as is possible with MODBUS), add the number before value meaning to the word address. e.g.: General alarm (data segment "Status") Word address 0x02F0 + 5 --> bit address 0x02F5 The bold-printed IDs shall be used for: ! Profibus DP ! DeviceNet They determine the base address of a double word. Value The "Value" column states the meaning of the value in the INTECONT system. Scale types The “Type” column indicates whether or not the respective value is available with the selected scale type. If not available, ZERO value is returned. Preset values relating to non-existing IDs are not evaluated. Note: Non-existing values are possibly available in a later software version (new extension stage). Mode (commands only) Commands can be triggered by level or edge. Letter “D(ynamic)“ indicates that a change from “0” to “1” triggers the desired action. Letter “S(tatic)“ indicates that the level determines the function.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
19
Fieldbus Data
2.6.2 Commands Attention: Special condition or source parameter for marked values "!". See manual. (x) Not available with measusing systems o Reserved for use with EasyServe Byte- Word- ID ID Rem. Value Offset Offset (HEX) (DEC)
Mode VBW VDB VLW VMD VDM
For Protocol 3964(R), data block 96 HEX starts here! 0
0
100
256
!
Command 0 (coded as number) Feed index (Range 1...4)
1 2
Century 1
2
120
288
3
4
140
320
x
Year
x
x
x
x
x
Month
x
x
x
x
x
Day
x
x
x
x
x
Hour
x
x
x
x
x
Minute
x
x
x
x
x
Second
x
x
x
x
x
Command 4 LO (bit-coded) !
0 – Start Scale
(D)
x
x
x
x
x
!
1 – Stop Scale
(D)
x
x
x
x
x
2 – Clear Events
(D)
x
x
x
x
x
3 – Fieldbus-Release
(S)
x
x
x
x
x
4 – Select Volumetric Mode
(D)
x
x
x
5 – Select Gravimetric Mode
(D)
x
x
x
6 – Reset Totalizer 1
(D)
x
x
x
x
x
7 – Reset Totalizer 2
(D)
x
x
x
x
x
x
x
!
9
Command 4 HI (bit-coded) !
!
10
x
Command 3 (coded as number)
7 8
x
Command 2 (coded as number)
5 6
x
Command 1 (coded as number)
3 4
x
5
20
8 – Volum. Synchronous
(D)
9 – Moisture Corr. ON
(D)
A – Moisture Corr. OFF
(D)
B – Meas. Drive OFF
(D)
C – Gate Feedback
(S)
D – Open Gate Manual
(D)
E – Stop Gate Manual
(D)
F – Close Gate Manual
(D)
x
Command 5 LO (bit-coded) 0 – Select Batch
(D)
x
x
x
x
x
1 – Deselect Batch
(D)
x
x
x
x
x
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data Attention: Special condition or source parameter for marked values "!". See manual. (x) Not available with measusing systems o Reserved for use with EasyServe Byte- Word- ID ID Rem. Value Offset Offset (HEX) (DEC)
11
12
6
160
352
(D)
x
3 - Next Batch +Clearance
(D)
x
4 - Make-Up
(D)
x
5 - Emergency Setpoint ON
(D)
6 - Emergency Setpoint OFF
(D)
7 - Meas. Drive ON
(D)
x
x
x
x
x
x
8 - Filling Start
(D)
x
9 - Filling Stop
(D)
x
A - Emptying Start
(D)
x
B - Emptying Stop
(D)
x
C - Init. Hopper Controller
(D)
D - Activate Fill Unit
(D)
E - Activate Prefeeder
(D)
x
x
x
x
F - Stop Prefeeder
(D)
x
x
x
x
Command 6 LO (bit-coded) Command 6 HI (bit-coded)
7
Command 7 LO (bit-coded) !
0 - Tare
(D)
x
x
!
1 - Zero Set
(D)
x
x
!
2 - Weight Check
(D)
x
x
!
3 - Pulses/Revolution
(D)
x
x
!
4 - DAE Adjustment
(D)
x
!
5 - Linearization P1
(D)
x
!
6 - Linearization P2
(D)
x
!
7 - Linearization P3
(D)
x
15
16
2 - Abort Batch
Command 5 HI (bit-coded)
13 14
Mode VBW VDB VLW VMD VDM
x
x
x
x
x
x
x
Command 7 HI (bit-coded)
8
180
!
8 - Linearization P4
(D)
x
!
9 - Volumetric
(D)
x
!
A - Optimize controller
(D)
x
B - Calibration Acquire
(D)
x
x
x
x
x
C - Calibration Abort
(D)
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
D - Time Acquire
(D)
!
E - Bin: Tare
(D)
!
F - Bin: Weight Check
(D)
384
Command 8 LO (bit-coded)
17
Command 8 HI (bit-coded) !
8 - Print Batch Report
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
(D)
21
Fieldbus Data Attention: Special condition or source parameter for marked values "!". See manual. (x) Not available with measusing systems o Reserved for use with EasyServe Byte- Word- ID ID Rem. Value Offset Offset (HEX) (DEC)
18
9
Mode VBW VDB VLW VMD VDM
9 – Print Status Report
(D)
x
x
x
x
x
A – Print Intermediate Totalizer
(D)
x
x
x
x
x
B – Cancel Printout
(D)
x
x
x
x
x
C – Print Parameters
(D)
x
x
x
x
x
D – Print Parameter Shortlist
(D)
E – Reserved (Register EasyServe)
(D)
o
o
o
o
o
F – Reserved (Deregister EasyServe)
(D)
o
o
o
o
o
Command 9 LO (bit-coded)
19
0 – Start Keyb. Mode
(D)
x
x
x
x
x
1 – Stop Keyb. Mode
(D)
x
x
x
x
x
2 – Start Simulation
(D)
x
x
x
x
3 – Stop Simulation
(D)
x
x
x
x
4 – Load Default Parameter
(D)
x
x
x
x
5 – Check Meas. Start
(D)
6 – Manual Prefeeder (ES only)
(D)
7 – Automatic Prefeeder (ES only)
(D)
x
x
Command 9 HI (bit-coded) reserved
2.6.3 Preset Values in Floating Point Format
Attention: Special condition or source parameter for marked values "!". See manual.
Byte- Word- ID ID Bem. Value Offset Offset (HEX) (DEC)
VLW VBW VDB VMD VDM
For Protocol 3964(R), data block AO HEX starts here! 0
0
250
592
!
Absolute Setpoint [kg/h]
x
4
2
252
594
!
Absolute Batch Setpoint [kg]
x
8
4
254
596
Make-Up Setpoint [kg]
12
6
256
598
Batch No.
16
8
258
600
PLC-Analog-OUT 1
20
10
25A
602
PLC-Analog-OUT 2
24
12
25C
604
Span Correction Value
28
14
25E
606
Tare Correction Value
22
BV-H2220 GB , 0831
x
x
x
x
X
x
x
X
x
x
x
x
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data 32
16
260
608
36
18
262
610
40
20
264
612
44
22
266
614
48
24
268
616
52
26
26A
618
56
28
26C
620
60
30
26E
622
!
Difference Feed Rate [kg/h] Hopper Level [kg]
!
Setpoint Feeder 2 [kg/h] Setpoint Hopper Level [kg]
2.6.4 Preset Values in Integer Format (Modbus) Attention: Special condition or source parameter for marked values "!". See manual. Value
Byte- Word- ID ID Offset Offset (HEX) (DEC)
VLW VBW VDB VMD VDM
0
0
20
32
!
Serial Setpoint [kg/h] 0 to MAXINCR. = 0 to 300% P
2
1
21
33
!
Serial Batch Setpoint [kg/h] 0 to MAXINCR. = 0 to 100% P * 8 HRS.
x
4
2
22
34
Make-Up Setpoint [kg/h] 0 to MAXINCR. = 0 to 100% P
x
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
x
x
x
x
x
x
x
23
Fieldbus Data
2.6.5 Status Information Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
For Protocol 3964(R), data block 64 HEX starts here! 0
0
02D0
1 2
1
2
Scale Type (Low Byte)
x
x
x
x
Software Revision (High Byte)
x
x
x
x
Software-Version (Low-Byte)
x
x
x
x
Software-Version (High-Byte)
x
x
x
x
x x
x
x
x
x
x x x
02F0
752 Status 2 LO (bit-coded) 0 – Scale On (measurement active; no motor control in local mode) 1 - No Release
x
x
x
x
2 – Counter Active
x
x
x
x
x
x
x
3 – Volumetric
5
x x
Status 1 (coded as number)
3 4
720 Status 0 (coded as number)
4 – Select. Language OK
x
x
x
x
5 – Alarm
x
x
x
x
x x x x
6 – Warning
x
x
x
x
7 – Calibration Active
x
x
x
x
8 – Normal Mode
x
x
x
x
9 – Keyboard Mode
x
x
x
x
x x
B – Simulation Mode
x
x
x
x
C – Volum. Start-Up
x
x
x
Status 2 HI (bit-coded)
A – Local Mode
D – Meas. Drive ON
x
E – Wheel Meas. Drive Delay
x
F – Setpoint Limited 6
3
x
x
Status 3 LO (bit-coded) 0 – Batch Selected
x
x
x
x
1 – Batch Active
x
x
x
x
2 – Batch Dribble Feed (pre-act cont.)
x
x
x
x
x x x
3 – Batch + Clearance
x
4 – NON-SI active
x
x
x
x
x
8 – Tare
x
x
x
x
9 – Zero Set
x
x
A – Weight Check
x
x
x x x
B – Pulses/Revolution
x
x
5 – Dead Time active 6 – Dead Time Setpoint active 7 – Dead Time ON/OFF active 7
24
Status 3 HI (bit-coded)
BV-H2220 GB , 0831
x x
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
C – DAE Adjustment D – Auto Zero active
8
4
0310
x x
E – Volumetric Adaption
x
F – Gravimetric Optimization
x
x
x
x
x
x x
784 Status 4 LO (bit-coded) 0 – Meas. System
x
1 – Gain-In-Weight
x
2 – Filling Active
x
3 – Discharge Active
x
x
x
4 – Gate Open
x
5 – Gate Closed
x
! 6 – 2nd Batch Unit active (VLW20151 only) 7 – Surge Hopper present 9
Status 4 HI (bit-coded) 8 – Feed rate > MAX
x
x
x
x
9 – Feed rate < MIN
x
x
x
x
A – Belt load > MAX
x
x
B – Belt load < MIN
x
x
C – Speed > MAX
x
x
D – Speed < MIN
x
x
E – Bin > MAX F – Bin < MIN 10
5
Status 5 LO (bit-coded) 0 – Bin Level Control existent 1 – Hopper level > MAX
x
2 – Hopper level < MIN
x
3 – Measured load > MAX
x
4 – Measured load < MIN 5 – n > MAX
x
6 – n < MIN
x
x
7 – Check system waits for acknowledgement 11
Status 5 HI (bit-coded) 8 – Check system available 9 – Rel. tare exceeded A – Abs. tare exceeded B – Rel. range exceeded C – Abs. range exceeded D – Check meas. announced E – Prepare check F – Check active
12
6
0330
816 Status 6 LO (bit-coded) 0 – NON-SI active
x
x
x
x
1 – Waiting for Confirm.
x
x
x
x
2 – Waiting for checkweight
x
x
x
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
x x x 25
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
3 – Param. active to VLB
13
x
x
x
4 – Linearization P1
x
5 – Linearization P2
x
6 – Linearization P3
x
7 – Linearization P4
x
x
x
Status 6 HI (bit-coded) 8 – Open Gate
x
9 – Blow-out ON
x
A – Manual Prefeeder B - Bin: Tare C - Bin: Weight Check D – Optimization Bin Controller E - 2nd Bridge > MAX F - 2nd Bridge < MIN 14
7
Status 7 LO (bit-coded) 0 – Emergency Setpoint active 1 – Trend active 234567-
15
Status 7 HI (bit-coded) 8 – Moisture Corr. Active 9 – Moisture > MAX A – Moisture Meas. Faulty B – PreFeed Control Active C – EasyServe active
x
x
x
x
D – EasyServe announced
x
x
x
x
x x
x
x
x
x
! E – Feeder 1 Active (VLW20152 only) ! F – Feeder 2 Active (VLW20152 only 16
8
0350
848 Status 8 0 – Calibr. Set Nominal Feed Rate 1 - Dig. Output Pre-cut-off Amount 2 – MAX Limit Value 3 - MIN Limit Value 4 – VSM 20110 (DISOCONT L) 5 – Refilling Active 6 – VSM 20107 (Pulverized Coal) 7 – Fill Bin Weigher
17
Reserved 89A-
26
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
BCDEF9
Status 9
18
Reserved
19
Reserved The events defined in a type of scale react on the event-bits. Bits not used are send with the value Null.
20
10
0370
21
880 Event S1-S8 0 – Event Warning 2 S1
x
x
x
x
1 – Event Warning 2 S2
x
x
x
x
2 – Event Warning 2 S3
x
x
x
x
3 – Event Warning 2 S4
x
x
x
x
4 – Event Warning 2 S5
x
x
x
x
5 – Event Warning 2 S6
x
x
x
x
6 – Event Warning 2 S7
x
x
x
x
7 – Event Warning 2 S8
x
x
x
x
x x x x x x x x
x
x
x
x
x
912 Event Warning 2 E1-E8
x
x
x
x
Event Warning 2 E9
x
x
x
x
x x
944 Event Warning 2 B1-B8
x
x
x
x
Event Warning 2 B9
x
x
x
x
Event S9 8 – Event Warning 2 S9 9ABCDEF-
22
11
--
23 24
-12
0390
25 26
13
--
27 28
-14
03B0
29 30
15
--
31 32 33
x x
-16
03D0
976 ---
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
27
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
34
17
--
35 36
-18
03F0
37 38
19
20
0410
41 42
21
43 44
22
0430
45 46
23
24
0450
49 50
25
26
0470
53 54
27
x
Event Warning 2 H1-H8
x
x
x
x
Event Warning 2 H9
x
x
x
x
x
x
x
x
Event Warning 2 L9
x
x
x
x
Event Warning 1 S1-S8
x
x
x
x
Event Warning 1 S9
x
x
x
x
Event Warning 1 E1-E8
x
x
x
x
Event Warning 1 E9
x
x
x
x
Event Warning 1 B1-B8
x
x
x
x
Event Warning 1 B9
x
x
x
x
1040 Event Warning 2 L1-L8
x x x x x x x x
1072 --
x x
1104 --
x x
1136 --
-28
0490
1168 ---
29
59 60
x
x
--
57 58
x
x
--
55 56
x
x
--
51 52
x
--
47 48
1008 Event Warning 2 C1-C8 Event Warning 2 C9
39 40
VBW VDB VLW VMD VDM
30
04B0
61
Event Warning 1 C1-C8
x
x
x
x
Event Warning 1 C9
x
x
x
x
x
x
x
x
x
x
x
x
1200 Event Warning 1 H1-H8 Event Warning 1 H9
31 62
Event Warning 1 L1-L8
x
x
x
x
Event Warning 1 L9
x
x
x
x
1232 Event Alarm S1-S8
x
x
x
x
x
x
x
x
x x x x x x
63 64
32
65 66
28
04D0
Event Alarm S9 33
--
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
x x
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
67 68
-34
04F0
1264 Event Alarm E1-E8
69 70
35
36
0510
37
38
0530
x
x
x
x
x
x
x
x
x
Event Alarm C9
x
x
x
x
Event Alarm H1-H8
x
x
x
x
Event Alarm H9
x
x
x
x
x
x
x
x
x
x
x
x
0 – DI1
x
x
x
x
1 – DI2
x
x
x
x x
x x
1328 ---
39
---
40
0550
1360 Event Alarm C1-C8
41
42
0570
1392 Event Alarm L1-L8
85 86
x
x
--
83 84
x
x x
--
81 82
x
Event Alarm B9
79 80
x
x
1296 Event Alarm B1-B8
77 78
x
x
--
75 76
x
x
--
73 74
x
Event Alarm E9
71 72
VBW VDB VLW VMD VDM
Event Alarm L9 43
x x x x x x
Digital Inputs
2 – DI3
x
x
x
3 – DI4
x
x
x
x
4 – DI5
x
x
x
x
5 – DI6
x
x
x
x
6 – DI7
x
x
x
x
D – DI6 Error
x
x
x
x
E – DI7 Error
x
x
x
x
x x x x x x x
787
Digital Inputs: Error Bits 8 – DI1 Error 9 – DI2 Error A –DI3 Error B – DI4 Error C – DI5 Error
x x
F88
44
0590
1424
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
29
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
89 90
45
Digital Outputs 0 - DO1
x
x
x
x
1 - DO2
x
x
x
x
2 - DO3
x
x
x
x
3 - DO4
x
x
x
x
4 - DO5
x
x
x
x
5 - DO6
x
x
x
x
6 - DO7
x
x
x
x
7 - DO8
x
x
x
x
x x x x x x x x
x
x
x
x
x
x
x
x
x
x
91 92
46
05B0
1456
05D0
1488
05F0
1520
0610
1552 Highest-Priority Event (LO)
93 94
47
95 96
48
97 98
49
99 100
50
101 102
51
103 104
52
Bit 0 – 3 Event number Range 0 – 8 corresponds to displays 1 - 9 Bit 4 – 7 Event group Range 1 – 12 S = 1, E = 3, B=5, C=9, H=10, L=11
105
Highest-Priority Event (HI) Bit 8 – 11 Event class Range 1 – 4 A=1, W1=2, W2=3, (IG=4) Bit 12 - 15 Acknowledge event Range 0 – 1 Acknowledged = 1, Not acknowledged = 0
106 107
30
53
Parameter block of the event class Parameter block number
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
108
54
0630
109 110
55
111 112
56
0650
113 114
57
115 116
VBW VDB VLW VMD VDM
1584 Century
x
x
x
x
Year
x
x
x
x
Month
x
x
x
x
Day
x
x
x
x
x
x
x
x
1616 Hour
x x x x
Minute
x
x
x
x
Second
x
x
x
x
x x x
x
x
x
x
x
x
x
x
x
x
Time stamp event logger
x
x
Time stamp event logger
x
x
x x
Feed index 58
0670
1648 Next Event from error logger (LO) (Zero if list is empty) Bit 0 - 3 Event number Range 0 - 8 corresponds to displays 1 - 9 Bit 4 - 7 Event group Range 1 - 12 S = 1, E = 3, B=5, C=9, H=10, L=11
117
Next Event from error logger (HI) Bit 8 - 11 Event class Range 1 - 4 A=1, W1=2, W2=3, (IG=4) Bit 12 Acknowledge event Range 0 - 1 Acknowledged = 1, Not acknowledged = 0 Bit 13 New Event Range 0 - 1 New = 1 Bit 14 Reset Event Range 0 - 1 (Reset = 1) Bit 15 Time: am /pm Range 0 - 1 (am = 0, pm = 1)
118 119
59
Bit 0- 5: Seconds (0-59) Bit 6-11: Minutes (0-59) Bit 12-15: Hours (0-11)
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
31
Fieldbus Data
2.6.6 Measurement Values in Floating Point Format
Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
For Protocol 3964(R), data block 6E HEX starts here! 0
0
0750
1872 Feed Rate [kg/h]
4
2
0752
1874 Totalizer 1 [kg]
8
4
0754
1876 Totalizer 2 [kg]
12
6
0756
1878 Totalizer 3 [kg]
16
8
0758
1880 Belt Load [kg/m]
20
10
075A
1882 Measured load [kg]
24
12
075C
1884 Belt Speed [m/s]
28
14
075E
1886 Speed [1/min]
32
16
0760
1888 Fill Weight [kg]
36
18
0762
1890 Surge Hopper [kg]
40
20
0764
1892 2nd Platform [kg/m]
x x x x x
x x x x x
x
x
x
x
x x x x
x
x
x
x x x
x x x
x x x
x
x
x
x x x x
x x x x
x
x
0766
1894 Actual Setpoint [kg/h]
0768
1896 Batch Feed Rate [kg]
52
26
076A
1898 Batch Res. Amount [kg]
56
28
076C
1900 Relative Setpoint [%]
60
30
076E
1902 Prefeeder Position [%]
64
32
0770
1904 Deviation [%]
68
34
0772
1906 Moisture [%]
72
36
0774
1908 Feed Rate Moisture Corr. [kg/h]
76
38
0776
1910 Totalizer 1 Corr. [kg]
80
40
0778
1912 Totalizer 2 Corr. [kg]
84
42
077A
1914 Totalizer 3 Corr. [kg]
88
44
077C
1916 Rel. Bin Weight
92
46
077E
1918 Setpoint Bin Level
96
48
0780
1920 VSE1: Analog Output [mA]
100
50
0782
1922 VEA1: Analog Input [mA]
x x
x x
104
52
0784
1924 VEA1: Analog Output [mA]
x
x
108
54
0786
1926 VSE2: Analog Output [mA]
112
56
0788
1928 VEA2: Analog Input [mA]
116
58
078A
1930 VEA2: Analog Output [mA]
120
60
078C
1932 VSE3: Analog Output [mA]
124
62
078E
1934 VEA3: Analog Input [mA]
128
64
0790
1936 VEA3: Analog Output [mA]
132
66
0792
1938 Belt Slip [%]
136
68
0794
1940 Belt Drift [cm]
140
70
0796
1942 Relative Feed Rate [%]
144
72
0798
1944 Relative Belt Load [%]
x x x x
148
74
079A
1946 External Setpoint [kg/h]
152
76
079C
1948 Batch Setpoint [kg]
156
78
079E
1950 Tacho [Hz]
160
80
07A0
1952 Utilize L/C [%]
164
82
07A2
1954 Load Cell Raw VAP [mV/V]
168
84
07A4
1956 Load Cell Raw BIC [mV/V]
172
86
07A6
1958 Load Cell Raw [mV/V]
x x x x x x x x x x x
BV-H2220 GB , 0831
x
x x x x
22 24
32
x x x x
x
48
x
x x x x x x
x x x x
x x
44
x x
x x x x
x x
x x
x x
x
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
176
88
07A8
1960 Controller Magnitude [mA]
180
90
07AA
1962 Rel. Fill Weight [%]
184
92
07AC
1964 Calibration Result 1 -Current Upper Value
188
94
07AE
1966 Calibration Result 2 - Current Lower Value
192
96
07B0
1968 Y_unlin
196
98
07B2
1970 Y_lin
200
100
07B4
1972 DAE Utilization [%]
204
102
07B6
1974 Differential of F [kg/h]
208
104
07B8
1976 Adaption Factor Index 1
212
106
07BA
1978 Adaption Factor Index 2
216
108
07BC
1980 Adaption Factor Index 3
220
110
07BE
1982 Adaption Factor Index 4
224
112
07C0
1984 CM Meas. Time [s]
228
114
07C2
1986 Number of all CM
232
116
07C4
1988 Curr. No.
236
118
07C6
1990 CM: Mean Delta-F [kg]
240
120
07C8
1992 CM Mean Feed Rate [kg/h]
244
122
07CA
1994 Feed Constancy [%]
248
124
07CC
1996 Nominal Belt Load [kg/m]
252
126
07CE
1998 Feed Constancy [g]
256
128
07D0
2000 Control Magnitude Yz [mA]
260
130
07D2
2002 Control Magnitude Yzi [%]
264
132
07D4
2004 Nominal Measured Load [kg]
268
134
07D6
2006 Actual Value, not linearized [kg/h]
272
136
07D8
2008 Actual Tare [kg]
276
138
07DA
2010 Bin: Utilize L/C [%]
280
140
07DC
2012 Bin: Load Cell Raw [mV/V]
284
142
07DE
2014 Control Magnitude Yb [mA]
288
144
07E0
2016 Control Magnitude Ybi [mA]
292
146
07E2
2018 Analog Input DI4 [mA]
296
148
07E4
2020 Check: Relative Tare [%]
300
150
07E6
2022 Check: Relative Span [%]
304
152
07E8
2024 Check: Continuous Totalizer Z [kg]
308
154
07EA
2026 Check: Result F/Z
312
156
07EC
2028 Check: Measurement Time [h]
316
158
07EE
2030 Check: Belt Length [m]
320
160
07F0
2032 2nd Bridge: Relative Belt Load [%]
324
162
07F2
2034 2nd Bridge: Load Cell Raw [mV/V]
328
164
07F4
2036 2nd Bridge: Utilize L/C [%]
332
166
07F6
2038 Control Magnitude Y2 [%]
336
168
07F8
2040 Difference Feed Rate [kg/h]
340
170
07FA
2042 Rel. Actual Setpoint [%]
344
172
07FC
2044 Rel. Measured Load [%]
348
174
07FE
2046 Bin Feed Rate [kg/h]
352
176
0800
2048 Check Meas. Monitoring [%]
356
178
0802
2050 Component Control Magnitude [mA]
360
180
0804
2052 Current Batch-No.
364
182
0806
2054 Totalizer Component 1 [kg]
368
184
0808
2056 Totalizer Component 2 [kg]
372
186
080A
2058 Totalizer Component 3 [kg]
INTECONT PLUS, Fieldbus Description © Schenck Process
x
x x
x x
x x x x x x x x x
x x x
x x
x x x
x x x
x x
x
x
x
x x x x x x x
x x
x
x
x
BV-H2220 GB , 0831
x
x
33
Fieldbus Data Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
376
188
080C
2060 Totalizer Component 4 [kg]
380
190
080E
2062 Totalizer Component 5 [kg]
384
192
0810
2064 Totalizer Component 6 [kg]
388
194
0812
2066 Totalizer Component 7 [kg]
392
196
0814
2068 Totalizer Component 8 [kg]
396
198
0816
2070 Totalizer Component 9 [kg]
400
200
0818
2072 Totalizer Component 10 [kg]
404
202
081A
2074 Totalizer Sum of all Batches [kg]
408
204
081C
2076 Tacho Input VSE 2 [Hz]
412
206
081E
2078 Corr. Feed Rate rel. [%]
416
208
0820
2080 Belt Load [kg/m] non-linearized
420
210
0822
2082 2-Sensor Slip [%]
424
212
0824
2084 Setpoint last / act. Batch [kg]
428
214
0826
2086 Current No. of last / act. Batch
432
216
0828
2088 Component No. of last / act. Batch
436
218
082A
2090 EIO: Analog Output 1 [mA]
440
220
082C
2092 EIO: Analog Output 2 [mA]
444
222
082E
2094 EIO: Analog Output 3 [mA]
448
224
0830
2096 EIO: Analog Output 4 [mA]
452
226
0832
2098 EIO: Analog Input 1 [mA]
456
228
0834
2100 EIO: Analog Input 2 [mA]
460
230
0836
2102 EIO: Analog Input 3 [mA]
464
232
0838
2104 EIO: Analog Input 4 [mA]
468
234
083A
2106 Setpoint Feeder 1 [kg/h]
472
236
083C
2108 Setpoint Feeder 2 [kg/h]
476
238
083E
2110 Nominal Feed Rate Total [kg/h]
480
240
0840
2112 Contr. Magnit. 2nd Feeder [mA]
484
242
0842
2114 Speed 2nd Feeder [1/min]
488
244
0844
2116 Feed Rate 2nd Feeder [kg/h]
492
246
0846
2118 Fill-Weight 2nd Feeder [kg]
496
248
0848
2120 Counter 2nd Feeder
500
250
084A
2122 Check Weigher Print Value 1
504
252
084C
2124 Check Weigher Print Value 2
508
254
084E
2126 Check Weigher Print Value 3
512
256
0850
2128 Check Weigher Actual Value [%]
516
258
0852
2130 Check Weigher Variance
520
260
0854
2132 L/C Resistance [ohms]
524
262
0856
2134 Make-up Setpoint [kg]
528
264
0858
2136 Make-up Residual Amount [kg]
532
266
085A
2138 Mean Value I [%]
536
268
085C
2140 Variance I [%]
540
270
085E
2142 Belt Load QMAX [%]
544
272
0860
2144 Time QMIN [%]
548
274
0862
2146 Taring Result 1 [%]
552
276
0864
2148 Taring Result 2 [%]
556
278
0866
2150 Taring Result 3 [%]
560
280
0868
2152 Taring Result 4 [%]
564
282
086A
2154 Taring Result 5 [%]
568
284
086C
2156 Check Weigher Print Value 4
572
286
086E
2158 Pulse Sensor
34
BV-H2220 GB , 0831
x
x x x x x x x x x x x x x x x x
x
x
x
x
x x x
x x x
x
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
2.6.7 Measurement Values in Integer Format (Modbus) Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
0
0
30
48
Actual value [kg/h] 0 to MAXINCREMENTS = 0 to 300% P
x
x
x
x
x
2
1
31
49
Totalizer 1 [kg] 0 to MAXINCREMENTS = 0 to P * 8 Hours
x
x
x
x
x
4
2
32
50
Totalizer 2 [kg] 0 to MAXINCREMENTS = 0 to P * 24 Hours
x
x
x
x
x
6
3
33
51
Totalizer 3 [kg] 0 to MAXINCREMENTS = 0 to P * 720 Hours
x
x
x
x
x
8
4
34
52
Belt Load [kg/m] 0 to MAXINCREMENTS = 0 to 200% Q
x
x
10
5
35
53
Measured Load [kg] 0 to MAXINCREMENTS = 0 to 200% Q
x
x
12
6
36
54
Speed [m/s] 0 to MAXINCREMENTS = 0 to 100%V [cm/s]
14
7
37
55
RPM [1/min] 0 to MAXINCREMENTS = 0 to 100% N
x
16
8
38
56
Hopper [kg] 0 to MAXINCREMENTS = 0 to 100% F
x
18
9
39
57
Surge Hopper [kg] 0 to MAXINCREMENTS = 0 to 100% B
20
10
3A
58
Surge Hopper [kg] 0 to MAXINCREMENTS = 0 to 200 % Q
22
11
3B
59
Effective Setpoint [kg/h] 0 to MAXINCREMENTS = 0 to 300% P
24
12
3C
60
Batch Actual Value [kg] 0 to MAXINCREMENTS = 0 to P * 8 Hours
26
13
3D
61
Batch Residual Amount [kg] 0 to MAXINCREMENTS = 0 to P * 8 Hours
28
14
3E
62
Procental Setpoint Evaluation [%] 0 to MAXINCREMENTS = 0 to 100 %
30
15
3F
63
Prefeeder Position [%] 0 to MAXINCREMENTS = 0 to 100 %
32
16
40
64
Deviation [%] 0 to MAXINCREMENTS = 0 to 100 %
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
x
x x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
35
Fieldbus Data
2.6.8 Values in Long Integer Format Byte- Word- ID ID Value Offset Offset (HEX) (DEC)
VBW VDB VLW VMD VDM
For Protocol 3964(R), data block C8 HEX starts here! 0
0
0980
2432 Pulses still output
4
2
0982
2434 Pulses output
8
4
0984
2436 Time Voltage ON [h]
12
6
0986
2438 Time Scale ON [h]
16
8
0988
2440 Reserved
20
10
098A
2442 Selected Options
24
12
098C
2444 Status Bit Field 1 for Commands 4 and 5
28
14
098E
2446 Status Bit Field 2 for Commands 6 and 7
32
16
0990
2448 Status Bit Field 3 for Commands 8 and 9
36
18
0992
2450 Status Bit Field 4 for Commands 10 and 11
40
20
0994
2452 Calibration Result 1 – Text ID
44
22
0996
2454 Calibration Result 1 –Unit ID
48
24
0998
2456 Calibration Result 2 – Text ID
52
26
099A
2458 Calibration Result 2 – Unit ID
56
28
099C
60
30
099E
2460 Calibration Result 1 – After -comma-places ID 2462 Calibration Result 2 – After-comma-places ID
64
32
09A0
2464 Calibration Error Text ID
68
34
09A2
2466 Para-Checksum
72
36
09A4
2468 Software Date
76
38
09A6
2470 Flash-Checksum
80
40
09A8
2472 Flash-Checksum calculated
84
42
09AA
2474 Hardware-Version
88
44
09AC
2476 Option Card Version
92
46
09AE
2478 Pulses Output
36
BV-H2220 GB , 0831
x x x x x x x x x x x x x x
x x x
x x x
x x x
x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
INTECONT PLUS, Fieldbus Description © Schenck Process
Fieldbus Data
2.6.9 Events The input in table references the parameter used to change the event class. System Message (S-1) S1 Memory Error S2 No Release S3 Maintenance STR-Meter S4 Maintenance Interval Electric S5 RESERVE S6 RESERVE S7 Simulation active S8 Setpoint limited S9 Communication Error Host
VBW O 02 O 07 K 04 K 02
VLW Q 02 Q 07 K 04 K 02
VDB N 02 N 07 K 04 K 02
VMD M 02 M 06 K 04 K 02
VDM M 02 M 04 K 04 K 02
N 10 N 11 L 03
M 08 M 09 L 03
M 07
L 03
Q 10 Q 11 L 03
Electrical System (E-3) E1 Power Failure E2 Namur Error Tacho E3 Namur Error Belt E4 RESERVE E5 Stand-By E6 External Input E7 RESERVE E8 RESERVE E9 RESERVE
VBW O 01 O 04 O 05
VLW Q 01 Q 04 Q 05
VDB N 01 N 04 N 05
VMD M 01 M 04
F 14 F 15
F 14
F 10 M 10
Material Flow (B-5) B1 Out of Tolerance B2 Control Deviation B3 Controller Ltd. B4 Max BATCH Act. Value B5 DAE active B6 DAE Time B7 T_Gate B8 T_Volumetric B9 Linearization
VBW I 06
VLW I 05 R 24 R 25
VDB I 05 O 08 O 09
VMD I 05 N 06 N 07
VDM I 05
O 08 O 09 H 16 H 17 S 10
P 10
O 10
N 10
VDB N 06 N 03 M 12 M 10
VMD M 05 M 03
VDM M 03
H 04
H 04
VMD F 04
VDM F 04
M 07
M 05
L 03 VDM M 01
M 08
I 08
Calibration (C-9) C1 L/C Input C2 Tacho Input C3 Belt Skew C4 Belt Drift C5 Tare Correction > MAX C6 RESERVE C7 Set Time To Zero C8 Slip Error C9 Tare Diff. > MAX
VBW O 06 O 03 N 12 N 10 H 05
Maximum (H-10) H1 I > MAX H2 Load > MAX H3 v > MAX H4 L/C Input > MAX H5 F > MAX H6 Wheel Overload H7 n > MAX H8 F > Fo H9 RESERVE
VBW F 04 F 08 F 12 O 08
Minimum (L-11) L1 I < MIN L2 Load < MIN L3 v < MIN L4 L/C Input < MIN L5 F < MIN L6 RESERVE L7 n < MIN L8 F < Buffer MIN L9 RESERVE
VBW F 02 F 06 F 10 O 09
VLW Q 06 Q 03
H 07 N 14 H 12
M 14
VLW F 04
Q 08 F 08
VDB F 04 F 08 F 12 N 08
F 06 F 12 H 09
INTECONT PLUS, Fieldbus Description © Schenck Process
VLW F 02
Q 09 F 06
VDB F 02 F 06 F 10 N 09
F 10 H 07
BV-H2220 GB , 0831
VMD F 02
VDM F 02
M 06
F 08
37
PROFIBUS DP
3 PROFIBUS DP This chapter describes the interfacing of the INTECONT Profibus slave to a Profibus Master assembly. Described is the functionality of the Profibus module, the data exchange between Profibus Master and INTECONT, fault diagnosis and troubleshooting. The Profibus hardware is described at the “Profibus Module VPB020V/VPB8020“ item. Designed to assist the S7 programmer in commissioning, Manual BVH2204 describes the use of the general user data construction at the DISOCONT example. However, data construction is identical for INTECONT.
3.1 Commissioning Guideline 1. Prepare the hardware as per the chapter on Profibus Module VPB020V / VPB8020 VPB020 can always be used in the VEG units. Starting with the program versions. VBW20600-08 VDB20600-08 VDM20600-05 VLW20600-07 VMD20600-08 standard procedure will be changing over to the VCB8020 model. The communication subassemblies used are selected with the Hardware parameter in the fieldbus block. 2. Determine data to be transferred. Check to see if the data of FIXED mode 1/2 suffice to meet your requirements. If YES, select desired process image at “Fieldbus Communication Configuration”. If NO, configure your process image by input of requisite IDs (see “Fieldbus Data” item). 3. Generating the master parameter sets using the GSD file. Please select the correct GSD file depending on the hardware used. 4. Start communication through Master.
3.2 Profibus Module Functionality ! ! ! ! ! ! ! ! ! !
38
Module certified to EN 50170 Cyclic user data exchange with Master (DP-V0) Automatic baud rate recognition Bus interface monitoring Easy parameterisation of VPB 020V / VPB8020 using base unit control station or EasyServe diagnostic tool Support of PROFIBUS control command SYNC for synchronised data transfer from Master to various slaves Support of PROFIBUS control command FREEZE for synchronised data transfer from various slaves to Master No user-specific diagnostic functions Fail Safe: clear state supported No change of station address via bus
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
PROFIBUS DP
3.3 User Data Construction For details and examples on user data construction, see “Fieldbus Data” item.
3.4 Settings on DP-Slave (INTECONT) For parameterisation, you can use the Operator Panel or the EasyServe tool. The parameter description holds for either unit. Parameter
Value range
Default
Explanation
Protocol type
all fieldbus protocols
NO
Timeout Host
0 ... 300 s
10 s
Communication Host
W2 (Warning 2), W1 (Warning 1), A(LARM), IG(nore) 0 ... 126
IG
Select protocol: here Profibus-DP Designed for interface monitoring. ZERO value means that interface is not activated. Class of communication error
126
Slave address on Profibus
FIXED, NO_PARA_ID, PARA_ID Siemens-KG, IEEE
FIXED
Lets you set construction and meaning of user data.
IEEE
VxB020 VxB8020
VxB020
Format for all setpoints, measurement values and floating point parameters. Selecting the communication subassembly
Address Configuration
Float format
Hardware
Note Any change to a grey-marked parameter resets the field connection, i.e. the slave is excluded from user data exchange for approx. 4 sec.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
39
PROFIBUS DP
3.5 Settings on Profibus DP Master Unit-master-data files (GSD) INTECONT PLUS is a modular slave whose properties are described by 3 modules. Note: ! You will find the INTECONT PLUS configuration in the S7 hardware configurator at “Profibus-DP/Further Fieldbuses/Controller/INTECONT”. ! The current GSD files ICV10524.GSD (VEG + VPB020) ICV20524.GSD (VEG + VPB8020) can be loaded from the service page of Schenck-Process GmbH (http://support.schenckprocess.com/ , path: Bus Systeme-Profibus). ! Reading/writing of double words in S7 systems: please note that the INTECONT PLUS double words can neither be read nor written using function modules SFC14 and SFC15 of S7 systems. Access the peripherals direct.
40
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
PROFIBUS DP
3.6 Diagnosis and Troubleshooting If you have selected one of the fieldbuses, any malfunction is reported by event message "Communication Error Host” (S9) provided that this message is assigned to an event class other than IG(NORE). The message is output both on display and on EasyServe. If only the display is available, read the next two items. The EasyServe, if present, provides further information on fault diagnosis. Event Message “Communication Error Host” The event message is designed to report any error concerning the fieldbus module: ! Different station address on Master and scale ! Cable connection between fieldbus module and base board faulty. Watch LEDs on module. In case of doubt, restart system, and module is initialised provided that parameters are properly set (red LED flashes). ! Fieldbus cable defective or improperly connected. For proper connection, see “Fieldbus Hardware” item. ! Fieldbus hardware bus termination is not (or various times) available. ! Check resistors on module (supplied state: "Not activated") and on bus connectors. For details, see “Fieldbus Hardware” item. ! Selected protocol type does not correspond to the extension board. Change parameterisation or replace module. ! Timeout parameter value too small. Change scale parameterisation. ! Scale configuration differs from Master configuration. Change GSD module or scale parameterisation. ! Inadmissible ID detected in Master --> scale message (only use bold-printed IDs). ! All preset IDs in message from host system have zero value (communication between Master-CPU and communication processor (CP) failed). Minimum one preset ID must be unequal to zero, or – in FIXED mode – the release bit must be set. ! The communication module does not fit the settings of the Hardware fieldbus parameter. EasyServe Fieldbus view The chapter on Fieldbus Data shows and explains how cyclical user data is displayed for all protocols
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
41
PROFIBUS DP
3.7 Profibus Module (VPB020V) Meaning of the LEDs on the Profibus connection On the Profibus connection (VPB020V), the LED is lit H1 (red) Blinking mode: when the Fieldbus connection has been reinitialised. This happens after applying voltage and after changing certain fieldbus parameters (in grey, see below) OFF: when initialising is complete and the user data exchange is OK H2 ON: when user data is being transmitted (green) OFF: Connection not yet initialised or fieldbus malfunctioning If no LED is lit, please check the parameterisation and the cable connection to the main board. To provide an interface to the Profibus, the module can be attached to the INTECONT PLUS cover. The module is certified to EN 50170, the protocol used is DP-V0. Bus termination: Activate the bus terminals resistors on first and the last stations on bus. To do so, set plug-in jumpers (W150, W151;W152) on board to position 1-2. On standard, the resistors are not activated (position 2-3). Bus address: ! Set address via parameter. LED ! Status LED for communication OK (green) ! Bus error or configuration display (red)
The W100 jumper, for determining the power supply, must be plugged in position 2-3. 42
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
PROFIBUS DP
3.8 Profibus module (VPB8020) An option is to mount the module in the cover (VEG) or on the base card (VKG) of INTECONT to create an interface to the Profibus. The module is certified in conformity with EN 50170, the protocol is DP-V0.
The W100 jumper, for determining the power supply, must be plugged in position 2-3. Bus termination The bus termination resistances must be activated at the first and last station of the bus. This is done by setting alljumper plugs into position 1-2 on the card. As a rule the resistances are not activated (position 2-3). Bus addresses: ! The addresses are set using parameters. Meaning of the LEDs on the Profibus connection
If no LED is lit, please check the parameterization and the cable connection to the main board.
Opertion Mode (LED) State Off Green Green Red Red
Indication Not online/No power On-line, Date exchange
blinking on-line, clear mode blinking (1 Hz) parameter error blinking (2 Hz) configuration error
State LED INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
43
PROFIBUS DP
Status Off Green Green Red
Indication Not power or not initialised Initialised
blinking initialised, diagnostic event is pending Exceeption error
Connector assignment (applies to all Profibus cards) Pin
Signal (X20, 9-pin Sub-D-female)
1 2
-
3 4 5 6 7 8 9 Housing
B-Line, Positive RS485 RxD/TxD * RTS, Request To Send GND BUS +5V BUS A-Line, Negative RS485 RxD/TxD ** Bus Cable Shield
* **
Signal (XP3, 5-pin Phoenix MSTB 3.5 max. 1.5mm²) Not used in INTECONT PLUS B-Line, positive RS485 RxD/TxD * A-Line, negative RS485 RxD/TxD ** GND BUS +5V BUS Screening -
This cable has the conductor color red. This cable has the conductor color green.
Characteristics (applies to all Profibus cards)
Isolation Voltage supply Current supply Connectors
optocouplers 5V DC internal max. 310mA 5-pin Phoenix MSTB 3.5 max. 1.5mm² 9-pin Sub-D-female
3.9 For Further Reading Profibus standard Profibus user organisation PROFIBUS-DP/DPV1, Grundlagen, Tipps und Tricks für Anwender HMS documentation on Anybus-IC BVH2204 BVH2098AA
44
EN 50170 www.profibus.com Manfred Popp, Hüthig Verlag , 2000 www.hms-networks.com Commissioning aid for S7 programmers EASYSERVE
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
DeviceNet
4 DeviceNet The present chapter describes the interfacing of the INTECONT DeviceNet slave to a DeviceNet Master assembly. Described is the functionality of the DeviceNet module, the data exchange between DeviceNet Master and INTECONT, diagnosis and troubleshooting. For DeviceNet hardware, see “DeviceNet Module VCB020V / VCB8020V “ item.
4.1 Commissioning Guideline The VCB020 can always be used in the VEG units. Starting with the program versions ! VBW20600-08 ! VDB20600-08 ! VDM20600-05 ! VLW20600-07 ! VMD20600-08 standard procedure will be changing over to the VCB8020 model. The communication subassemblies used are selected with the Hardware parameter in the fieldbus block. ! Determining the data to be transmitted - the ID of the data is required (see 'Fieldbus Data' chapter). ! Creating master parameter sets using the EDS file. Please select the correct EDS file depending upon the hardware used. ! Set the Slave Address INTECONT parameter ! Start communication by the master
4.2 DeviceNet Module Functionality ! Module certified to DeviceNet specification 2.0 ! Cyclic exchange of user data with Master. As a rule, the POLL mode is used for transfer of I/O data. ! Bus interface monitoring ! Easy parameterisation of VCB020V / VCB8020V via base unit control station or EasyServe diagnostic tool.
4.3 User Data Construction For details and samples on general user data construction, see “Fieldbus Data” item.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
45
DeviceNet
4.4 Settings on DeviceNet Slave (INTECONT) For parameterisation, use Operator Panel or EasyServe tool. The parameter description holds for both units. Parameter
Value range
Default
Explanation
Protocol type
all fieldbus protocols 0 ... 300 s
NO
IG
Address
W2 (Warning 2), W1 (Warning 1), A(LARM), IG(nore) 1 ... 63
Select protocol: here DeviceNet Designed for interface monitoring. ZERO value means that interfance is not activated. Class of communication error
63
Slave address on DeviceNet
Baud rate
125k, 250k, 500k
125k
DeviceNet baud rate
Configuration
FIXED, NO_PARA_ID, PARA_ID High-Low Low-High I:std / L:std I:swp / L:std I:std / L:swp I:swp / L:swp
FIXED
Lets you set construction and meaning of user data
Low-High
Byte sequence within a data word Word sequence within a data double word, separately settable for floating point values I(EEE) and integer values L(ONG) Selecting the communication subassembly
Timeout Host
Communication Host
DVN byte sequence DVN word sequence
Hardware
VxB020 VxB8020
10 s
I:std / L:std
VxB020
Note ! Any change to a grey-marked parameter resets the field connection, i.e. the slave is excluded from user data exchange for approx. 4 sec.
4.5 Settings on DeviceNet Master Electronic Data Sheet (EDS) The description file files can be found at the Schenck Process GmbH service side (http://support.schenckprocess.com, path: Service-Download-Bus systemsDeviceNet). The download file includes a Readme with detailed information.
46
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
DeviceNet
4.6 Diagnosis and Troubleshooting If you have selected one of the fieldbuses, any malfunction is reported by event message "Communication Error Host (S9) provided that this message is assigned to an event class other than IG(NORE). The message is output both on display and on EasyServe. If only the display is available, read the next two items. The EasyServe, if present, provides further information on fault diagnosis. Event Message“Communication Error Host” The event message is designed to report any error concerning the fieldbus module: ! Different station address on Master and scale ! Different baud rate on Master and scale ! Cable connection between fieldbus module and base board faulty. ! Fieldbus cable defective or improperly connected. For proper connection, see “Fieldbus Hardware”. ! Fieldbus hardware bus termination is not (or various times) available. Check resistors on module (supplied state: "Not activated") and on bus connectors. For details, see “Fieldbus Hardware”. ! Selected protocol type does not correspond to the extension board. Change parameterisation or replace module. ! Timeout parameter value too small. Change scale parameterisation. ! Inadmissible ID detected in Master --> scale message (only use bold-printed IDs). ! All preset IDs in message from host system have zero value (communication between Master-CPU and communication processor (CP) failed). Minimum one preset ID must be unequal to zero, or – in FIXED mode – the release bit must be set. ! The communication module does not fit the settings of the Hardware fieldbus parameter. EasyServe Fieldbus View The representation of cyclic user data is the same for all protocols. For details, see “Fieldbus Data” item.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
47
DeviceNet
4.7 DeviceNet Module (VCB020V) To provide an interface to CAN bus using the DeviceNet protocol, you can attach the module to the INTECONT cover. Bus termination ! Activate the bus terminals resistors on first and the last stations on bus. To do so, set the plug-in jumper W160 on board to position 1-2. On standard, the resistors are not activated (position 2-3). Baud rate and bus address are set via parameter.
X20 "
Set jumper W100 (Power supply source) to position 2-3.
48
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
DeviceNet
4.8 DeviceNet Modul (VCB8020V) An option is to mount the module in the cover (VEG) or on the base board (VKG) of INTECONT to create an interface to the CAN bus with the DeviceNet procedure.
The W100 jumper, for determining the power supply, must be plugged in position 2-3. Bus termination ! The bus termination resistances must be activated at the first and last station of the bus. This is done by applying the W160 jumper to the position 1-2. By default, the resistances are not activated (position 2-3). Baud rate and bus addresses: ! Both values are set using parameters. Meaning of the LEDs on the Profibus connection
Network Status (LED) Status OFF Greev Green Red Red Alternating Red/Green
Indication Not online/ No power On-line, one or more connections are established
blinking on-line, no connection Critical link failure
blinking (1 Hz) One or several connections are in time-out Self test
Moduel Status LED INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
49
DeviceNet
Status Off Green Green Red Red Alternating Red/Greed
Indication No power Operating in normal condition
blinking Faulty Configuration Unreccoverable Faultst(s)
blinking Rectifiable Defect Self test
Connector assignment (applies to all Devicenet cards) Pin 1 2 3 4 5
Signal X20 VCAN_L screening CAN_H V+
Characteristics (applies to all Devicenet cards) Isolation Voltage supply Current supply Connectors
optocouplers 5V DC internal max. 250mA Phoenix MSTB 5 max. 2.5mm² Phoenix MSTB 5 max. 1.5mm²
4.9 For Further Reading DeviceNet specification Bosch CAN specification DeviceNet user organisation HMS documentation on Anybus-IC BVH2098AA
50
Version 2.0 (ODVA) Version 2.0, Sept. 1991 www.odva.com www.hms-networks.com EASYSERVE
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Modbus
5 Modbus The present chapter describes the interfacing of the INTECONT Modbus slave with a Modbus Master assembly and describes the Modbus in the form activated by the MODBUS selection. The previous version of the INTECONT-compatible Modbus (MODCOMP) is described in Manual FH525 (only VEG). Described is the functionality of the Modbus module, the data exchange between Modbus Master and INTECONT, diagnosis and troubleshooting. The hardware of the Modbus module is described at the end of this chapter.
5.1 Commissioning Guideline Prepare the hardware as described in the “Fieldbus Hardware” item. ! Determine data to be transferred using the data IDs (see “Fieldbus Data”). ! Set INTECONT PLUS parameters “Slave Address” and “Data Format”. ! Start communication through Master.
5.2 Modbus Module Functionality In general: ! Cyclical user data exchange with the master ! Monitoring the bus interface ! Easy to parameterise using the basic model's operating station or the EasyServe diagnostic tool ! Modbus mode: RTU VEG: ! Connection with RS422 (4-wire bus) or RS485 (2-wire bus, also called J-bus). The physical characteristics can be selected by parameters. It can als be connected via RS232. VKG : ! Connection with RS422 (4-wire bus) or RS485 (2-wire bus, also called J-bus). The physics are selected with wire jumper. It is connected directly to the base board.
5.3 Data Format Transmission starts with MSB. Setpoints and measurement values can be transmitted both in the IEEE float format (IEEE754, 32 bits) and in the integer format. The integer format readies a 16-bit word whose resolution can be set in the range of 0 .... MAXINCREMENTS. The maximum resolution is 215 increments. Integer and IEEE format are addressed using different data addresses. For every parameter, the IEEE format can be swapped wordwise. All control information and statusses are represented in the form of a binary signal using the 8 data bits of each character. In addition, all control and status information can be treated as single bit information.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
51
Modbus
5.4 Function Codes (FC) The table below lists the codes used and explains their meanings. FC [dec] 1 2 3 4 5 6 8 15 16 23
Meaning Bitwise re-reading of control information (one/multiple bits) Bitwise reading of status information (one/multiple bits) Wordwise (re)reading of setpoints, measurement values, LONG values and parameters (one/multiple words) Wordwise reading of status information (one/multiple words) Bitwise (re)setting of control information (always 1 bit) Wordwise writing of control bits or setpoints (always 1 data word) Diagnosis (only sub-codes 0 and 1) Bitwise writing of control information (one/multiple bits) Wordwise writing of commands (one/multiple data words) Reading and writing of multiple data words in one cycle. This function code may be used in all cases where FC3 or FC16 can be used.
5.5 Transmission Protection The characters are protected by a parity bit (see MODBUS specification). The messages are protected by check sum (CRC16) (see MODBUS specification). The MODBUS specification determines the reaction on transmission errors (see 2-1 EXCEPTION RESPONSE).
5.6 Error Codes Used are only error codes 01 to 03. Upon CRC error no response is sent. All errors described below are comprised in device in the form of general error message ‘Communication Host’. The message includes the timeout. Error code 1 2
3
Meaning Station does not support requested function (FC). Faulty data address ! ID or SC out of range ! Data offset + length excessive Wrong data type ! Wrong data with FC 5 (admissible: 0xff00 and 0x0000) ! Data length < 0 ! Requested length excessive ! Data address with IEEE or INT32 values odd
5.7 Station Addresses Each scale receives a slave address starting from 1 in rising sequence. In the following text, the highest settable address is called MAXSLAVE. The address is set on scale or EasyServe in the dialog mode. MAXSLAVE has value 254. Address 0 is the boradcast address. In this case, the slaves do not return any response.
52
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Modbus
5.8 User Data 5.8.1 Process Values Every cyclic data segment includes values of the same type. The addresses of the data within a segment are added in continuous succession. The data of a segment can be read or written using a message.
5.8.2 Parameters All parameters can be read and written. In contrast to cyclic values, only one parameter per message can be processed. Transmission requires the parameter ID unique throughout the system. For some important parameters of wagon type VLW, these IDs can be found in the list of fieldbus data. For the residual parameters, EasyServe can create a list including the IDs. Note: Menu item “EXTRAS-OPTIONS-PARAMETER-Print SysID” lets you activate printout of the IDs to be used for data address of the Modbus protocol. Please note that the modification of the selection parameters requires special knowledge. Floating point and/or integer values can be read and written without any problems. The data formats correspond to those of the cyclic values.
5.9 Cyclic Data Exchange Via Modbus In many cases, the host system must add a so-called segment address (depending on function code) to the described data address. Furthermore, the data address must be incremented by 1 since the Modbus protocol’s register addresses start from 1. So the data address is configured like this: Data Address = Segment Address + INTECONT PLUS Address + 1.
5.10 Sample Messages The following lines show the construction of the Modbus messages. The first column represents the message from bus Master to scale; the second, the scale response. Floating point values are represented in the form of an (unswapped) IEEE number. Data to scale
Scale response
Meaning
01 05 0140 ff00 8C12 01 05 0141 ff00 DDD2
01 05 0140 ff00 8C12 01 05 0141 ff00 DDD2
Start scale (single-bit command) Stop scale (single-bit command)
01 06 0140 0040 8812 01 03 02F0 0004 4582
01 06 0140 0040 8812 01 03 08 xx xx xx xx xx xx xx xx cc cc 01 03 04 42C8 0000 6FB5
Reset counter 1 (preset word) Read 4 words of status information xx = data, cc = CRC16 Read parameter (nominal feed rate, ID=1082 (hex), value = 100)) Write parameter (value =163.34)
01 03 1082 0002 60E3 01 10 1082 0002 04 4323 5678 6C1A
01 10 1082 0002 E520
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
53
Modbus
5.11 Settings on Modbus Slave (INTECONT) For parameterisation, you can use the Operator Panel or the EasyServe tool. The parameter description holds for either unit. Parameter
Value range
Default
Explanation
Protocol type
all fieldbus protocols
NO
Timeout Host
0 ... 300 s
10 s
Communication Host
W2 (Warning 2), W1 (Warning 1), A(LARM), IG(nore) 1 ... 254 1 ... 32767
IG
Select protocol: here Modbus Designed for interface monitoring. ZERO value means that interface is not activated. Class of communication error
I:std / L:std I:swp / L:std I:std / L:swp I:swp / L:swp 9.6 19.2 38.4 kBaud
I:std / L:std
8-O-1 8-E-1 8-N-2 8-N-1 (10-bit frame)
8-O-1
VEG:
Physics RS485-2wire
Modbus address Modbus resolution Modbus IEEE format
Modbus baud rate Modbus data format
Physics
RS232 RS422 RS485
1 4096
9.6 kBaud
Slave address on Modbus Indicates maximum number of increments of value in analog, or integer, format. Determines the word sequence for transmission of measurement values in the I(EEE)/L(ONG) format. Baud rate Modbus normally uses an 11-bit character frame, e.g. 8-O-1 1 start bit, 8 data bits, odd parity, 1 stop bit Selecting the interface physics
VKG: RS485-2-wire RS485-4-wire
RS485-4wire
Note Used for message end identification, the Modbus idle time is defined with 3.5 characters as a function of selected baud rate, and corresponds to approx. 4 milliseconds at 9600 baud. For adaptation to specific device configurations, this time can be set in the EasyServe block. The setting acts both on EasyServe and fieldbus interfaces. Selected baud rate 9600 19200 38400
Modbus idle time in milliseconds 4 2 1
When operating the EasyServe interface using a radio converter, the times stated in table may be longer.
54
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Modbus
5.12 Settings on Modbus Master ! If data from various segments (see Fieldbus Data) are used, every segment needs at least one message. ! Set correct byte sequence with values in the IEEE and LONG formats. ! Maximum admissible message length is 256 bytes including header and trailer bytes.
5.13 Diagnosis and Troubleshooting If you have activated (selected) one of the eligible fieldbus modules, any malfunction is reported by event message "Communication Error Host” (S9) provided that message is assigned an event class other than IG(NORE). Message is output on display and EasyServe. If only the display is available, continue reading from next item. The EasyServe tool provides further information on error diagnosis. Meaning of the ‘Communication Host’ S9 event message ! Designed as general message for any fieldbus connection faults, this message reports the following errors: ! Different station address on Master and scale ! Different baud rates on Master and scale ! Cable connection between fieldbus module and base board faulty ! Fieldbus cable defective or improperly connected; for proper connection, see “Fieldbus Hardware“ item. ! Bus termination absent or present multiple times. Check the jumpers in the fieldbus connectors on the module. For details, see “Fieldbus Hardware“ item. ! Selected protocol type does not correspond to add-on card. Change parameterization or exchange module. ! Timeout parameter value too small. Change scale parameterization. ! Inadmissible ID detected in Master -> scale message. See also “Error Codes“ item. EasyServe Fieldbus View The representation of cyclic user data for all protocols is explained at the „Fieldbus Data“ item.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
55
Modbus
5.14 Serial Bus Module (VSS021V - applies to VEG) To provide a serial interface to the fieldbus Master, you can attach the module to the INTECONT cover. Bus termination ! The bus termination is realized using jumpers in the fieldbus connectors. This ensures that the termination is preserved upon replacement of card. ! Am Busmaster sollten Sie einen 220 Ohm-Widerstand zur Terminierung verwenden. Baud rate, bus address, interface physics, data format ! All values are set via parameters. Depending on selected physics, different connections must be realized on fieldbus connector (see below).
X20 "
Connector assignment X20 Pin No. 1 2 3 4 5 6 7
56
RS 232 GND TX RX -
RS 422 GND TXRXRX+ TX+ Bus termination Bus termination
BV-H2220 GB , 0831
RS 485 GND RX-/TXRX+/TX+ Bus termination Bus termination
INTECONT PLUS, Fieldbus Description © Schenck Process
Modbus
Jumpers for interface physics and bus termination with RS485 (2-wire)
Bus terminal jumpers with RS422 (4-wire)
Characteristics Isolation Voltage supply Current supply Connectors
INTECONT PLUS, Fieldbus Description © Schenck Process
Optocouplers 5V DC internal max. 100mA Phoenix MSTB 5 max. 1.5mm²
BV-H2220 GB , 0831
57
Modbus
5.15 Connection for serial interface S3 (RS485- VKG) Contacts 6-7 and 8-9 are jumped for operating as an RS485-2-wire interface. An additional 120 Ohm bus termination resistance should be installed for the last bus subscribers.
5.16 tie-in diagram S3 as RS485-2-wire If this interface is operated in the 4-wire mode, the termination resistor goes on the reception side (PINS 6-9).
5.17 For Further Reading Modicon Modbus Protocol Reference Guide BVH2098AA
58
BV-H2220 GB , 0831
PI-MBUS-300 Rev. J/1996 EASYSERVE
INTECONT PLUS, Fieldbus Description © Schenck Process
Ethernet
6 Ethernet This chapter describes all protocols and tools basing on Ethernet. At present, these are the Modbus/TCP and Ethernet/IP application protocols. Modbus/TCP This uses the TCP/IP standard for data transmission and the application data appear as a Modbus-RTU frame. VEG: Here, the Modbus/TCP interface is created via optional fieldbus card (VET020V). VKG: The Modbus/TCP and Ethernet/IP use the same Ethernet connection on the base card. This makes it possible to connect the EasyServe via Modbus/TCP in parallel to the Ethernet/IP fieldbus. Ethernet/IP EtherNet/IP adds the Common Industrial Protocol (CIP™) to standard Ethernet. This is the same application protocol and object model used with DeviceNet. CIP facilitates interoperability between devices from different manufacturers and sub-networks. VEG: Implemented with the optional fieldbus card (VET022V) VKG:S. Note Modbus/TCP.
6.1 Ethernet Settings Your INTECONT can be parameterized using the INTECONT control unit or the EasyServe tool. The settings apply to Modbus/TCP and Ethernet/IP. The parameter description holds for either system. Parameter
value range
IP address 1 IP address 2 IP address 3 IP address 4 Network mask 1 Network mask 2 Network mask 3 Network mask 4 Gateway 1
0 – 255 0 – 255 0 – 255 0 – 255 0 – 255 0 – 255 0 – 255 0 – 255 0 – 255
Default value 192 168 240 1 255 255 255 0 0
Gateway 2 Gateway 3 Gateway 4
0 – 255 0 – 255 0 – 255
0 0 0
INTECONT PLUS, Fieldbus Description © Schenck Process
Explanation Manual IP address assignment (see above) (see above) (see above) Delegating the Subnetz mask (see above) (see above) (see above) Delegating the standard gateway address (see above) (see above) (see above)
BV-H2220 GB , 0831
59
Ethernet
Note If you operate your INTECONT units on a local sub-network with specific network card, we suggest to set the PC network adapter to the following values: ! IP address: 192.168.240.254 ! Net mask: 255.255.255.0 ! Gateway: 0.0.0.0 ! INTECONT 1-n: 192.168.240.x wo x=1-n ! Always use unique IP addresses. Ask your system administrator for available addresses.
6.2 Checking Station Addresses You can check network parameters using the PING command available on any PC, e.g. “ping 192.168.240.1” If check is successful, reponse time of the final unit is displayed.
60
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Ethernet
6.3 Modbus-TCP/IP This item describes the functionality of INTECONT used as server on Ethernet. In detail: ! Ethernet module (“Ethernet Bus Module “VET020V” - VEG) item ! Ethernet module configuration (determine characteristics and assign station addresses) ! FIELDBUS mode: Data exchange between Ethernet client and INTECONT via Modbus/TCP ! WEB SERVER mode: Preparation and call of a WEB page ! Diagnosis and troubleshooting.
6.3.1 Commissioning Guideline ! Prepare hardware as described at “Ethernet Bus Module VET020V (only VEG) “ item. ! Activate protocol type Modbus-TCP on INTECONT. ! Parameterize Ethernet address on module. ! In FIELDBUS mode: Determine data to be transferred – data IDs required (s. “Fieldbus Data“ item). ! Start communication through Master (FIELDBUS mode). ! Call WEB page in WEB SERVER mode.
6.3.2 Ethernet Module Functions ! Connect module using RJ45 connector. ! The server can exchange data with as many as 3 clients simultaneously in fieldbus mode. If the EasyServe tool is used, it can occupy one of the three channels if the coupling is performed over the network. The data are either sent as Modbus (RTU)/TCP packets or are expected as such from external. The functional range is described in more detail below. ! Monitoring the bus interface ! Easy to parameterise the interface using the basic model's operating station or the EasyServe diagnostic tool.
6.3.3 Fieldbus Mode In FIELDBUS mode, INTECONT behaves like a Modbus/TCP server in accordance with standard “OPEN MODBUS/TCP SPECIFICATION, Release 1.0, 29 March 1999“ and masters all function codes of Classes 1 and 2 (save FC7) as well as the most significant codes of Class 2 (FC15 and 23). Data representation is totally oriented to the Modbus standard. The TCP safety layer performs the function of the check sum (CRC16) of the Modbus message. Of the 6byte message header defined in the OPEN MODBUS standard, INTECONT only uses the 6th byte to transfer the data length. The residual bytes are returned in the response in ratio 1:1. To enable later extensions, these header bytes (1-5) should not be used; set them to ZERO.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
61
Ethernet
6.3.4 Station Addresses In the Ethernet network, all stations are clearly identified by their IP addresses. Therefore the Modbus slave address can always be set to value 1.
6.3.5 Function Codes (FC) The list below explains the codes used: FC [dec] 1 2 3 4 5 6 8 15 16 23
Meaning Bitwise re-reading of control information (one/multiple bits) Bitwise re-reading of status information (one/multiple bits) Wordwise (re)reading of setpoints, measurement, LONG and parameter values (one/multiple words) Wordwise reading of status information (one/multiple words) Bitwise (re)setting of control information (always 1 bit) Wordwise writing of control bits or setpoints (always 1 data word) Diagnosis (sub-codes 0 and 1 only) Bitwise writing of control information (one/(multiple bits) Wordwise writing of commands (one/multiple data words) Wordwise writing and simultaneous reading of data (one/multiple data words)
6.3.6 Transmission Protection With Modbus/TCP, the transmission is protected by the safety measures of the TCP layer.
6.3.7 Error Codes Only error codes 01 to 03 are used. Upon CRC error, no reponse is sent. All errors described below are comprised in system in the form of general error message “Communication Error Host“. This message includes the timeout. Error Code Meaning 1 Station does not support requested function (FC). 2 Wrong data address ! ID or SC out of range ! Data offset + length excessive 3 Wrong data type ! Wrong data with FC 5 (admissible: 0xff00 and 0x0000) ! Data length < 0 ! Requested length exceeded ! Data address with IEEE or INT32 values odd
62
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Ethernet
6.3.8 Data Formats Transmission starts with MSB. Setpoints and measurement values are transferred in the IEEE float format (IEEE754, 32 bits). All control information and statusses are represented in form of a binary signal using the 8 data bits of each character. In addition, all control and status information can be treated as single bit information.
6.3.9 Process Values Every cyclic data segment includes values of the same type. The addresses of the data within a segment are consecutively added. The data of a segment can be read or written using a single message.
6.3.10 Parameters All parameters can be read and written. In contrast to cyclic values, however, only one parameter per message can be processed. Transmission requires the parameter ID unique throughout the system. For some significant parameters of scale type VLW, these IDs can be found in the list of fieldbus data. For residual parameters, EasyServe can prepare a list complete with IDs. Note: Menu item “EXTRAS-OPTIONS-PARAMETERS-Print SysID” lets you activate printout of IDs to be used for data address of the Modbus protocol. Please note that special knowledge is required to edit the selection parameters. Floating point and/or integer values can be read and written without any problems. The data formats correspond to those of the cyclic values. Note: Parameters preset via fieldbus are accepted only if parameter mode is not active at the same time.
6.3.11 Data Exchange Overview In many cases, the host system must add a so-called segment address (depending on function code) to the described data address. Furthermore, the data address must be incremented by 1 since the Modbus protocol’s register addresses start from 1. So the data address is configured like this: Data Address = Segment Address + INTECONT Address + 1.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
63
Ethernet
6.3.12 Message Samples The following lines show the construction of the Modbus/TCP messages. The first column represents the message from bus Master to scale; the second, the scale response. Data to scale
Scale response
00 00 00 00 00 06 01 05 0140 ff00 00 00 00 00 00 06 01 05 0141 ff00 00 00 00 00 00 06 01 06 0140 0040 00 00 00 00 00 06 01 03 02F0 0004 00 00 00 00 00 06 01 03 1082 0002 00 00 00 00 00 0B 01 10 1082 0002 04 4323 5678
00 00 00 00 00 06 01 05 0140 ff00 00 00 00 00 00 06 01 05 0141 ff00 00 00 00 00 00 06 01 06 0140 0040 00 00 00 00 00 0B 01 03 08 xx xx xx xx xx xx xx xx 00 00 00 00 00 07 01 03 04 42C8 0000 00 00 00 00 00 06 01 10 1082 0002
Meaning Start scale (single-bit command) Stop scale (single-bit command) Reset counter 1 (preset word) Read 4 words of status information xx = data, cc = CRC16 Read parameter (nominal feed rate, ID=1082 (hex), value = 100)) Write parameter (value =163.34)
6.3.13 Settings on Modbus/TCP Slave (INTECONT) Parameter
Value Range
Default
Explanation
Protocol Type
Any fieldbus protocol 5 ... 300 s
NO
Select protocol: here Modbus/TCP
10 s
Serves for interface monitoring. Values less than 5 are limited to the minimum value. Class of communication error
Host Timeout
Communication Error Host
WEB Coding (only VEG)
DHCP (only VEG)
64
W2 (Warning 2), W1 (Warning 1), A(LARM), IG(nore) HTML, XML
IG
NO
NO
XML
BV-H2220 GB , 0831
Determines type of WEB page coding. If XML is selected, data in browser are represented by the style sheet. The IP address is assigned on device or configuration tool (EasyServe).
INTECONT PLUS, Fieldbus Description © Schenck Process
Ethernet
6.3.14 Settings on Modbus/TCP Master ! If data from various segments are used (s. Fieldbus Data), every segment needs at least one message. ! Set correct byte sequence for values in the IEEE and LONG formats. ! Maximum admissible message length is 256 bytes including header and trailor bytes.
6.3.15 Diagnosis and Troubleshooting If you have activated (selected) one of the eligible fieldbus modules, any malfunction is reported by event message "Communication Error Host” (S9) provided that message is assigned an event class other than IG(NORE). Message is output on display and EasyServe. If only the display is available, continue reading from next item. The EasyServe tool provides further information on error diagnosis. Note An internal communication fault (fieldbus card – INTECONT main board) produces a timeout on fieldbus Master. To remove, restart your INTECONT. Event message Communication Host S9 Designed as general message for any fieldbus connection faults, this message reports the following errors: ! Different station address on Master and scale ! Cable connection between fieldbus module and base board faulty ! Fieldbus cable defective or improperly connected; for proper connection, see “Fieldbus Hardware“ item. ! Selected protocol type does not correspond to add-on card. Change parameterization or exchange module. ! Timeout parameter value too small. Change scale parameterization. ! Inadmissible ID (data address) detected in Master -> scale message. See also “Error Codes“ and "Interface Configuration“ items. Monitoring the Fieldbus channels (VEG) Only the channel with writing authorisation is monitored when fieldbus channels are monitored for error indication and safety turn-off for the scale. Communication faults are only shown for this channel. Setting the event class for the Host Communication Fault to ALARM switches off the scale and all static command bits are put in the safe state. One exception: It also shows the Host Communication Fault if there is no fieldbus channel that has acquired the specification right and if the fieldbus has already been activated. In this case, the fault message can only be suppressed by changing the event class to IGNORE. In terms of this monitoring strategy, EasyServe is not considered to be a Fieldbus client. The special settings in the relevant parameter block apply to EasyServe and also the same rules with regard to logging on and off apply as with a serial coupling.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
65
Ethernet
6.3.16 Ethernet Bus Module (VET020V – VEG) You can also attach the module to the INTECONT PLUS cover in order to provide an Ethernet interface (10BaseT) to the TCP client. Plug jumper W100 (determining voltage supply) in position 2-3.
X20 "
Pin Assignment X20 (RJ45) Meaning TX+ TXRX+ --RX-
Pin 1 2 3 4 5 6 LEDs on the communication module Green on / red off Green on / red on All off
Communication is taking place via one of the field bus channels. The telegrams are free of error. Communication running, but an error exists (wrong ID, wrong function code, wrong length) No field bus client active or the mod bus/TCP protocol has not been preselected.
Features Separation Voltage supply Current supply Ethernet topology Connector 66
Yes 5V DC internal Max 500mA 10BaseT RJ45
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Ethernet
6.3.17 Ethernet connection VKG The VKG scenario uses the standard Ethernet connection on the base board.
Netblock LED: 1 Link (green): 2 FDX (yellow): 3 100 (red):
Ethernet has the connection full duplex 100 Mbaud (otherwise 10 Mbaud)
6.3.18 For Further Reading OPEN MODBUS/TCP SPECIFICATION Modicon Modbus Protocol Reference Guide
Schneider Electric, Release 1.0, 29 March 1999 PI-MBUS-300 Rev. J/1996
Note All external documents, updates and examples listed here can be loaded from the service page of Schenck Process GmbH (http://support.schenckprocess.com, path: Bus Systeme-TCP).
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
67
Ethernet
6.4 Ethernet/IP 6.4.1 Commissioning Guidelines ! ! ! ! ! !
Prepare hardware as described at item “Ethernet Bus Module VET022V“(VEG). Activate protocol type "Ethernet/IP" on INTECONT. Parameterize Ethernet address on module. Select process image and determine data to be transmitted. Start communication through Master (FIELDBUS mode). Call WEB page in WEB SERVER mode.
6.4.2 Ethernet Module Functions ! Connect module using RJ45 connector. ! In FIELDBUS mode, server can exchange data of multiple clients at the same time. Ethernet/IP and Modbus/TCP are available as protocols. The process image of the two protocols is the same. The communication module is not designed to block any attempt to write, i.e. the last client having sent preset values is the winner. ! The module can be used as Group 2 and 3 server on the Ethernet/IP network. For more information, see ODVA WEB page. ! When using the Modbus/TCP protocol, the rules of Modbus/TCP specification V1.0 apply. For details, see MODBUS.ORG or SCHENCK PROCESS Service WEB pages. ! Bus interface is monitored. ! Easy parameterization of VET022V using base unit control station or EasyServe diagnostic tool.
6.4.3 Fieldbus Mode In FIELDBUS mode, INTECONT behaves like an Ethernet/IP or Modbus/TCP server. The comments below dedicate to Ethernet/IP. For Modbus/TCP, a different communication module is available, better suited to use the device features. For protocol itself, see separate item.
6.4.4 User Data Construction For details and examples on user data construction, see “Fieldbus Data” item.
6.4.5 Settings on Ethernet/IP-Slave (INTECONT) Parameter
Value Range
Default
Explanation
Protocol Type
Any fieldbus protocol 5 ... 300 s
NO
Select protocol: here Ethernet/IP
10 s
Serves for interface monitoring. Values less than 5 are limited to the minimum value. Class of communication error
Host Timeout
Communication Error Host
68
W2 (Warning 2), W1 (Warning 1), A(LARM), IG(nore)
IG
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Ethernet
Parameter
Value Range
Default
Explanation
Byte sequence
High-Low Low-High I:std / L:std I:swp / L:std I:std / L:swp I:swp / L:swp
HighLow I:std / L:std
FIXED, NO_PARA_ID, PARA_ID, PARA_6ID
FIXED
Swaps byte sequence in every user data word Determines the word sequence during transmission of measurement values in the I(EEE)-/L(ONG) format. Also swaps analog preset values. The parameter specifies the process image
Word sequence
Configuration
Any change to a grey-marked parameter resets the field connection, i.e. the slave is excluded from user data exchange for approx. 4 sec.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
69
Ethernet
6.4.6 Configuration of the network in “RSLogix 5000"
70
! ! ! ! ! ! !
Create a new project in RSLogix Configure the controller Select the EtherNet/IP bridge Configure the EtherNet/IP Bridge Add the INTECONT Satus station to the I/O configuration Add a generic Ethernet module Configure the new Ethernet/IP module
!
Set connection options for INTECONT
!
Download the configuration BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Ethernet
6.4.7 Diagnosis and Troubleshooting If you have activated (selected) one of the eligible fieldbus modules, any malfunction is reported by event message "Communication Error Host” (S9) provided that message is assigned an event class other than IG(NORE). Message is output on display and EasyServe. If only the display is available, continue reading from next items. The EasyServe tool, if present, provides further information on error diagnosis. Event message Communication Host S9 Designed as general message for any fieldbus connection faults, this message reports the following errors: ! Different station addresses on Master and scale ! Cable connection between fieldbus module and base board faulty ! Fieldbus cable defective or improperly connected; for proper connection, see “Fieldbus Hardware“ item. ! Selected protocol type does not correspond to add-on card. Change parameterization or exchange module. ! Timeout parameter value too small. Change scale parameterization. ! Inadmissible ID detected in Master -> scale message (exclusively use bold IDs). ! All preset IDs in host system message are set to zero (communication between Master-CPU and communication processor (CP) failed). At least one preset ID must be set to a correct value (unequal to zero); or Release bit set in FIXED mode. ! If, despite established data communication, the data of the INTECONT (VKG) is not updated, it is probably because the Ethernet/IP option is not activated (see BVH2346, chapter “Set options”). EasyServe Fieldbus View The representation of cyclic user data for all protocols is explained at the “Fieldbus Data“ item.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
71
Ethernet
6.4.8 Ethernet Bus Module (VET022V) for VEG To provide an Ethernet interface (10/100 BaseT) to the TCP client, you can also attach the module to the INTECONT cover. To do so, plug jumper W100 (determine power supply) in position 2-3.
X20 "
Pin assignment X20 (RJ45) Pin 1 2 3 4 5 6
Meaning TX+ TXRX+ --RX-
Characteristics Separation Voltage supply Current supply Ethernet topology Connector
72
Yes 5V DC internal Max 500mA 10/100 BaseT RJ45
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Ethernet
6.5 Ethernet connection VKG
Netblock LED: 1 Link (green): 2 FDX (yellow): 3 100 (red):
Ethernet has the connection full duplex 100 Mbaud (otherwise 10 Mbaud)
6.5.1 For Further Reading Ethernet/IP Specification ANYBUS-IC Design Guide ANYBUS-IC Fieldbus Appendix Network Analyzer (Packetyzer)
INTECONT PLUS, Fieldbus Description © Schenck Process
www.odva.org www.hms-networks.com www.hms-networks.com www.packetyzer.com
BV-H2220 GB , 0831
73
Application Examples
7 Application Examples 7.1 Zeroing and Taring Weighfeeders / Belt Weighers Step
ID dec.
ID hex.
Comment
Leave normal mode and prepare Zeroing and Taring Turn OFF 1 321 0x141 for batch to be deselected Abort batch 2 338 0x152 for batch to be deselected Deselect batch 3 337 0x151 Select volumetric mode 4 324 0x144 Speed proportional to setpoint Close prefeeder 5 351 0x15F Prefeeder and feed gate remain closed also if setpoint is not zero. Turn ON
320
6 Setpoint needs not be 0.
0x140
Belt is running proportionally to setpoint. If P=Po then v=vo; if P=Pn then v=vn. Continue belt run until belt load is almost 0. Read belt load 1880 0x758 7 Select zeroing or taring and continue accordingly. ! Zeroing: Item 8 and 9 ! Taring: Item 10 and 11 Zeroing 8 Start Zeroing 367 0x171 Check statuses 776 0x308 9 Taring 10 Start Taring Check statuses 11 Wait for status change. 12 Nullstellen (Step 13) Calibration results included 13
368 777 817
0x170 Ensure that statuses are 0x309 available during zeroing, or taring. 0x331 Wait for acknowledgement.
1964
0x7A C
Deviation from last zero set or taring
1966
0x7A E
New value for tare (P09.04) or tare correction (P09.05)
379
0x17B Acceptance command
1880
0x758 belt
in measurement values
Tarieren (Step 14) 14 Acquire calibration result (Step 15)
15 Check belt load
If you select acquisition, make sure load measurement value is zero (= oscillates around zero point).
Reject calibration result and abort (Step 16) 16 380 0x17C Return to Normal Mode Turn OFF 321 0x141 17 Activate batch (if desired). 336 0x150 18 Involve prefeeder 350 0x15E 19 20 Gravimetrisch aktivieren 325 0x145 Enter desired setpoint; if need be, also batch setpoint. 21 Continue in normal mode. 22 74
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
Application Examples
7.2 Batching via fieldbus Please remember that not all actions are available for all scale types. You can ascertain availability in the list of cyclical data. You can also use the FIXED mode with the exception of the data specified under item 7.
Step
Control system action
Data Type
ID hex. ID dec. Remarks
Preparations: Set the turn-on source parameter (control sources block) and batch setpoint source (batching operation block) on DISOCONT and INTECONT PLUS to FB 1
Activate batching mode
Command
150
336
2
Specify the batch setpoint [kg]
Setpoint (IEEE float)
252
594
3
Specify the batch number
256
598
4
Start the batch
Setpoint (IEEE float) Command
140
320
Positive flank
5
Make an active test of the batch Test the batch pre-act contact
Status information
301
769
Status information
302
770
Log. 1 during full feed/dribble feed and afterflow time Dribble feed reached
Status information
590
1424
Not in the FIXED mode
8
Query the digital outputs on the scale (such as scale on/off and prefeeder on/off) Interrupt the batch
Command
141
321
9
Let batch continue
Command
140
320
Positive flank You can continue the batch in progress with the start command Positive flank
10
End batch
Command
152
160
11
1898
768
1896
The quantity already discharged
13
Deselect batch
Readings (IEEE float) Readings (IEEE float) Command
76A
12
Query the remaining batch quantity [kg] Actual batch value [kg]
Positive flank Any subsequent start command starts a new batch while the last batch is not continued. The quantity still to be discharged
151
15F
Positive flank This deactivates batching mode
6 7
Positive flank This is still maintained if there is a power failure in the scale. Batch setpoints sent when the batch is in progress only go to effect when the next batch is started.
NO_PARA_ID – no parameters, 3 predetermination values, 6 reading values
VID1
Commands 4+5
Status 2+3 (ID 02F0)
VID2
Current feed rate (ID 0750)
Commands 6+7
VID3
Status 4+5
Status 6+7 Digital outputs (ID 0330) (ID 0590)
(ID 0310)
Batch setpoint
LID1
LID2
LID3
Actual batch value
LID4
LID5
Counter 1 (ID 0752)
LID6
0
Highestpriority event (ID 0610)
((ID 0768)
V-ID1 0140
commands 4+5 start, stop and reset counter, etc.
INTECONT PLUS, Fieldbus Description © Schenck Process
BV-H2220 GB , 0831
75
Application Examples
V-ID2 0160 calibration V-ID3 0252
commands 6+7 wg. Start zero setting+ accept calibration result/abort
L-ID1 L-ID2 L-ID3 L-ID4 L-ID5 L-ID6
Status 4+5 Status 6+7 digital outputs actual batch value counter 1 highest-priority event
76
0310 0330 0590 0768 0752 0610
batch setpoint wg. Query whether the batch is active at clear wg. Calibration + wait for acknowledgement wg. Scale on/off + prefeeder on/off
BV-H2220 GB , 0831
INTECONT PLUS, Fieldbus Description © Schenck Process
DISOMAT Satus® System Manual
BV-H2331GB
PASS - Service you can rely on. Fast, comprehensive, anywhere in the world Quality and reliability are the cornerstones of our company’s philosophy. That is why we consider a comprehensive service concept simply par for the course, from strict quality control, installation and commissioning through to seamless support across the entire product life cycle. With over 30 service stations and over 180 service specialists, you can count on us to be there whenever – and wherever – you need us. It doesn’t matter where you are, our specialists are there to advise and assist with the best in worldwide, personal, comprehensive service. During office hours, service specialists from all divisions are on hand to analyse problems and failures. Look at www.schenckprocess.com for your nearest Schenck Process Location. Customised to meet your requirements, our comprehensive Process Advanced Service System provides you with the best service. Are you looking for individual, perfect-fit service solutions? Then our, the modular service system PASS, is the ticket. It covers the entire service spectrum, from simple inspections through to full service. Interested? Then find out more about the individual components at www.schenckprocess.com/en/service.
Free 24 h Emergency Service Hotline in Germany Are you experiencing a failure or problem outside normal office hours? Our service staff are on call around the clock to deal with failures, service planning and other emergencies. J +49 171 2 251195
Heavy and Light excluding Static Weighing Equipment
J +49 172 6 501700
Transport Automation and Static Weighing Equipment
© by Schenck Process GmbH, 2008 Pallaswiesenstraße 100, 64293 Darmstadt, Germany J +49 61 51-15 31 0 www.schenckprocess.com All information is given without obligation. All specifications are subject to change. Note: Translation of the original instructions
Contents 1 2
Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 System characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 2.2
General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 For systems in zone 1 explosive areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Start-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1
Control displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 4.2 4.3 4.4
Instructions for specific applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Some examples of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Assembly in the 19” rack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Field case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5
Connecting the Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10
Connection assignment: non-explosive zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Load cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Digital inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Instruction for connecting the serial S3 interface (RS485) . . . . . . . . . . . . . . . . . . . . . . . . . 19 Connecting DISOMAT® Satus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 with the VNT power supply unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Connection for the power supply for the VFG 20910 field device (115/230 VAC) . . . . . . 20 Protection against EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Connecting the VXB 209xx safety barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Connections into the explosive zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6
Bus coupling modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 6.2 6.3 6.4 6.5 6.6
Profibus VPB 020 coupler module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Profibus module (VPB8020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 The content of the Profibus-DP coupling data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Fieldbus monitoring (Profibus-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 VCB 020 Device Net Coupling Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DeviceNet module (VCB8020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7
Analog display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9
Instructions for operating the DISOPLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Serial connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 DISOMAT Opus / Satus / Tersus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Parametrization and calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Function Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Loading language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Backup and Restore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Loading flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Product Service Internet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9 10
Using DISOMAT as a weighing transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Batching with DISOMAT® Satus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.1 10.2 10.3
Filling Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Dispatch Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Materiald data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
11 11.1
Data processing interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DISOMAT Satus System Manual © Schenck Process
BV-H2331GB / 0836
I1
11.2 11.3 11.3.1.1 11.3.1.1 11.3.1.2 11.3.1.2 11.3.2.1 11.3.2.1 11.3.3.1 11.3.3.1 11.3.3.2 11.3.3.2 11.3.3.3 11.3.3.3 11.3.4.1 11.3.4.1 11.4 11.5 12
List of procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Schenck Process poll procedure (DDP 8785) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Procedure agreements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Schenck Process poll procedure (DDP 8785) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Siemens procedure 3964R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Procedure agreements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 SIMATIC S5 control system (RK512). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Procedure agreements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 SIMATIC S5 control system (RK512). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 SIMATIC S5 control system (RK512). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Examples for SIMATIC S5 messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Teleperm M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Procedure agreements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 The structure of the utility data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Data processing commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
13
Event Message Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13
Technical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
15
Equipment supplied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
16
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
16.1
Fieldbus accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
I2
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
The Manual This manual describes the DISOMAT Satus control electronics, called DISOMAT or the system below It explains: – How it works – Connection diagrams – Accessories – for the VSE 20900, VFG 20900 and VFG 20910 system versions This manual is valid starting from the VWW 20900-004 firmware version You can find additional information (such as other details on the fieldbus couplings) in the following manuals for the DISOMAT system. n
DISOMAT® Data Communication, Bplus, DISOMAT® Opus, DISOMAT® Satus, DISOBOX Data Communication BV-H 2359
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
i
- Reserved for user’s notes -
ii
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Safety Instructions
1
Safety Instructions Using for the Intended Purpose The measuring system with the mechanical components connected to it is only intended for weighing and control applications directly associated with that. Any use beyond that is considered not intended.
Sources of danger The measuring system does not generate any hazards during weighing operation if the system is properly installed and put into service. Using the measuring system might be dangerous if the system takes on contral applications or when the material weighed is transported. Potential sources of danger would then be add-on equipment that the material weighed is transported or metered in. In these cases, the measuring system may cause residual hazards if untrained staff uses or operates it incorrectly.. This measuring system may be a component of a more complex system. The user is fully responsible for overall plant safety.
Labeling residual hazards The presence of this symbol indicates that the machine or component used has the potential to cause severe injury or death. This symbol labels signs on hazard that could cause property damage to the measuring system or other system components.
Personnel Only skilled persons may prepare, install, start-up, operate, maintain and service these systems. Everyone doing work on the measuring system should read the safety instructions and be aware of and follow the parts of the service manual applicable to them. The operator should use the service manual to instruct the operating personnel to comply with all regulations and instructions.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
1
Safety Instructions
Changing parameters The parameters dictate how the measuring system functions. Only persons familiar with how the system functions should be allowed to change these parameters (such as with Schenck Process training). Incorrectly set parameters may cause injuries to persons or damage to the machine whenever user control systems are connected. They can also adversely affect weighing operation.
Password Parameters are protected by password from unauthorised changes. The measuring system operator should act responsibly with the password.
Acknowledging fault messages Fault messages may only be acknowledged after the cause of the fault has been rectified. Before acknowledging a fault, please ensure that connected peripheral units are functioning properly. Check to see that any connected control systems are in safe state.
Service and maintenance Please follow all warning signs on the scale. Please shut off the measuring system before working on the mechanical equipment or peripheral units (particularly control systems). Take appropriate action to ensure that the measuring system cannot be inadvertently restarted. Before performing work on the electrical equipment, disconnect the power supply (pull the plug).
Moisture and humidity All of the parts of the scale (particularly electrical components) have to be protected from moisture and humidity when the housing is open such as during service work. Beyond this, the protection classes of the housing should be observed.
Design modifications Modifications to the measuring system and/or use of replacement parts not supplied by Schenck Process renders Schenck’s liability null and void for resulting damage. This particularly applies to modifications, which have the potential to affect the operating safety of the measuring system.
Replacing parts Only use original Schenck Process replacement parts for repair. Using other spare parts renders the warranty invalid.
2
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
System characteristics
2.1 General Information
2
System characteristics
2.1
General Information DISOMAT® Satus is a measuring amplifier for forming and monitoring weight readings. Its standard equipment is: n
n n
n n n
A load cell connection for measurement transducers (such as Schenck Process-RT load cells or Schenck Process measuring eyes) a serial service interface for configuring with a PC or VT terminal two serial data processing interfaces for transmitting data to a higher-level data processing system one analog output 4 output contacts (relays) 3 input contacts (optocouplers)
DISOMAT® Satus is particularly suited to systems that measure and/or monitor the weights of a number of individual scales. It can be connected to a process control system – via analog output or – to a data processing system via serial interface or – fieldbus. A typical area of application is fill level monitoring in multiple-hopper systems. DISOMAT® Satus can also be used as a filling or dispatch scale using the serial interface to control the batching process (for instance, presetting the setpoint or feed ON/OFF). Control LEDs display the most important operating states of DISOMAT® Satus while the DISOPLAN® PC software package is for easy and convenient start-up. DISOMAT® Satus is installed in a field case or a 19“ module assembly frame. The voltage is supplied by a local 24 V = supply, the power supply unit in the 19“ module assembly frame or a transformer in the field case. Several DISOMAT® Satus units can be integrated in Profibus and DeviceNet networks with optional fieldbus upgrades. The standard interface for integrating in Ethernet networks via MODBUS-TCP and Ethernet-IP protocols are available in the unit.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
3
2.2 For systems in
2.2
System characteristics
For systems in zone 1 explosive areas
Fig. 1:
The VXB 209... protective circuits are part of the equipment that disconnects intrinsically safe circuits from those that are not intrinsically safe. They have to be built in an safe area. The components installed for limiting current and voltage provide the explosion protection while retaining the galvanic connection to the circuits.
Intended Use The protective circuit is made of a Z barrier for: n n n n
the load cell(s) 2 binary inputs the serial secondary display the analog output (4-20 mA)
You can find details on using the VXB 209... protective circuit in the BV-H2330 Safety Instructions.
4
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Start-Up
3.1 Control displays
3
Start-Up
3.1
Control displays An der Frontplatte des DISOMAT® Satus befinden sich 8 Leutdioden, die Betriebszustände des DISOMAT® Satus signalisieren.
Fig. 2:
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
5
3.1 Control displays
Start-Up
The version with a display (VSE 20910) also has a 3 1/2 digit red LED display and 3 operating buttons (figure). Chapter 7. describes how the display is connected and adjusted while the function of the keys depends on the chosen configuration.
Fig. 3:
6
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Planning
4
Planning The VFE 900 main card has all of the components for normal operation: the measuring circuit, CPU, power supply unit, serial interface for connecting up to a data processing system, 4 safely disconnected relay outputs, 4 optocoupler inputs and one analog output.
The Components and How They Function Designation
Function
DISOMAT® Satus = VSE 20900 Main Card
Measuring and Monitoring Weights and Data Transmission to Higher-Level Data Processing Systems
DISOMAT® Satus = Main card with the display and operating buttons: VSE 20910
Measuring and monitoring weights and showing them on a 3½-digit LED display. The operating button for Set tare / Clear tare / Zero setting.
19“ VNG 900 module assembly frame (without racks and with blank panels)
Space for as much as 10 DISOMAT® Satus or 5 DISOMAT® Satus and 5 VXB oer 5 DISOMAT® Satus VSE20910 or 9 DISOMAT® Satus + 1 VNT 3xx power supply unit
VNT20900 power supply unit VNT20910 VNT20930
Power supply for as much as 6 DISOMAT® Satus in the 19“ module assembly frame for as many as 9 DISOMAT® Use Satus VNT 20930
VFG20900 field case
Space for one DISOMAT® Satus
VFG20910 field case
Space for one DISOMAT® Satus including the transformer (230/115 V) for its power supply
VPB 020 Profibus card VCB 020 DeviceNet card
Integrating into the Profibus or DeviceNet systems
VXB 209 ex interface module...
intrinsically safe connection for components used in explosive zones such as Schenck-RT load cells (DISOMAT® Satus outside of the explosive zone!)
DISOPLAN
for convenient start-up under MS-Windows XP/2000
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
7
4.1 Instructions for specific applications
4.1
Planning
Instructions for specific applications Connecting several load cells/measuring eyes To connect several load cells or measuring eyes to DISOMAT® Satus, you need a DKK 69/70 interconnecting box (for as many as 4 load cells) or a DKK6 (for 6 load cells) or a VKK 28008 (for 8 load cells) with overload protection wherever required.
The Control System of DISOMAT® Satus (such as with a data processing system, process control system or PLC) You can trigger one single DISOMAT® Satus via serial or analog interface, although several DISOMAT® Satus have to be controlled. There are the following options for solving this problem: n
n
n n
The control system has enough analog interfaces (such as the process control system or PLS) They control the DISOMAT® Satus units via the compatible-for-bus RS 485 interface with a MODBUS/J-Bus protocol and a data processing system. You couple the DISOMAT® Satus units via fieldbus upgrade. You couple via built-in Ethernet interface (MODBUS-TCP or Ethernet-IP protocol).
Maximum distances The acceptable distances between DISOMAT® Satus and peripheral units connected to it depend on what interface the peripheral units are operated on. Serial computer interface Interface
Maximum cable length
RS 232
15 m
RS 485, 2-wire
800 m at the maximum baudrate of 9,600 baud (compatible for bus with a maximum of 16 bus subscribers)
Analog interface n 300 m Connecting the load cells n
8
1,000 m with Schenck Process load cells and Schenck Process measuring eyes (8 x 0.5 mm measuring cable)
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Planning
4.2
4.2 Some examples of applications
Some examples of applications The graph below shows all options for connecting up and upgrading a DISOMAT® Satus. The connecting options are shown in broken lines.
Fig. 5:
First example: DISOMAT® Satus in a non-explosive zone via analog interface on a process control system
Fig. 4:
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
9
4.2 Some examples of applications Second example:
Planning
DISOMAT® Satus in the Profibus with a VPB fieldbus card
Fig. 7:
Third example:DISOMAT® Satus with a scale, display and control system in an explosive zone
Fig. 6:
10
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Planning
4.3
4.3 Assembly in the 19” rack
Assembly in the 19” rack 19” subassemblies of DISOMAT® Satus have the dimensions below: Height – 129 mm (3HE) The width of the standard subassemblies VSE 20900 VXB 209xx VNT – 41 mm (8TE) The version with the display (VSE 20910) is twice as wide (82 mm) – –
The depth of the boards is 270 mm Installation depth including the plug and cable outlet: 330 mm
It is best to use the DNG 900 rack for assembling the components. This is either is supplied complete with DISOMAT® Satus subassemblies when ordered or empty with the equipped blank panels. You can also use any 19” systems for installation, although the cable have to be carefully supported (mechanically with strain relief and electrically with cable shields). The rack takes a maximum of 10 subassemblies where units with a display require 2 slots. An example of maximum fitting: – 10x VSE 20900 24 VDC feed – 9x VSE 20900 network feed – 5x VSE 20900 with VXB safety barrier, 24 VDC – 4x VSE 20900 with VXB safety barrier, network feed – 5x VSE 20910 24 VDC A power supply unit is always mounted on the far right side of the rack. Bus cards, Profibus and DeviceNet are mounted directly on DISOMAT. You do not need any additional space in the rack.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
11
4.4 Field case
4.4
Planning
Field case
Fig. 8:
12
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Connecting the Unit
5
4.4 Field case
Connecting the Unit Figure 9 shows the location of the terminals
Fig. 9
1:
2:
3: 4: 5:
power supply digital outputs digital inputs analog output serial interface S2 (RS 232) serial interface S3 (RS 485) load cell connection serial interface S1 (RS 232) network connection (Ethernet) Adapter plug for the fieldbus modules
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
13
5.1 Connection assignment: non-explosive zone
5.1
Connecting the Unit
Connection assignment: non-explosive zone
Fig. 10:
*
14
You can use a fourth input contact after removing the encoder pin from X1.1B Pin4.
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
DISOMAT Satus System Manual BV-H2331GB / 0822 © Schenck Process
Memory for calibration data
Circuit board
82.1 81.1 82 81
27 28 NV
WH Screen
Load Cell Signal -27
Screen plate 50
Jumper for write-protection of calibration data (jumper open = parameters can be written)
Screen plate
+ Supply Sense - Supply Sense + Supply Voltage - Supply Voltage
- Load Cell Signal + Load Cell Signal
RD
Load Cell Signal +28
GR GN RD WH
YE GN RD
GR
Totally Screened
Junction Box (DKK 6,69,70)
BL
BU
NF
BK (BN)
The power cable for the DVC platform scale
BK
On Screen Plate
Totally Screened screened in pairs
GN
YE
BU/WH
BL
Supply Sense -81.1
Supply Sense+82.1
Supply Voltage -81
BK/WH
BK
2 4x2x0,5 mm2 7x0,5 mm
YE/BK
50
81
82
27 28 82.1 81.1
50
81
27 81.1
82.1
82
28
50
81
81.1
27
82.1
82
28
50
81
81.1
27
82.1
82
28
50
81.1 81
27
82.1
82
28
27 WH 81.1
82.1
28 RD 82 BK
YE/BK
BU
WH
BK
RD
YE/BK
BU
WH
BK
RD
YE/BK
BU
WH
BK
81 BU BU 50 YE/BK Junction Box (if required) RD
WH
BK
RD
Potential equalization rail
81 -
+ 82 28 +
81 -
+ 82
28 +
81 -
+ 82
28 +
81 -
82
28 +
vh231001.cdr
Load Cells
- 27
To Potential Equalization Line On Junction Box
- 27
To Potential Equalization Line On Junction Box
- 27
To Potential Equalization Line On Junction Box
YE/BK
- 27
Potential Equalization Line
5.2
Supply Voltage +82
Signal
Connecting the Unit 5.2 Load cells
Load cells
Fig. 11: Schenck RT-weighing cell connection
15
5.2 Load cells
Connecting the Unit If the scale design provides the ground connection from a load cell body, it is not necessary to connect it via PAS. The cable screen does not need to be connected to terminal 50 of the interconnecting box for load cells whose connecting cable shield is connected to the load cell body (e.g. Schenck VBB). In this case, the shield is connected via the load cell body and PAS or ground. Please refer to the manufacturer’s instructions for details on connecting more load cells.
5.2.1 Preparing the load cell plug The memory chip for setting and adjustment data has to be mounted before connecting the load cell cable. – – – –
The chip is attached to the unit. Remove connection 1 of the chip (refer to the figure; the flat side is upwards) It is connected on pins 2 and 3 of the plug as shown (refer to the figure; the flat side is upwards) The parameters are write-protected with a jumper between pins 1 and 3.
Fig. 12
Fig. 13
16
BV-H2331GB / 0822
System Manual DISOMAT Satus © Schenck Process
Connecting the Unit Signal
4 x 2 x 0.5 mm2
5.2 Load cells 4 x 2 x 0.5 mm2 4 x 2 x 0.23 mm2
7 x 0.5 mm2
ULC+/82
BKs4 + BK/WHs1
GNs4 + YEs1
gn
(BK)
ULC-/81
BUs4 + BU/WHs1
BNs4 + WHs1
BN/BU
(BU)
Usense+/82.1
GYs2
GNs2
GN/BU
(YE)
Usense-/81.1
GNs2
WHs2
WH/BU
(GN)
UMeas+/28
RDs3
BNs3
bn
(RD)
UMeas-/27
WHs3
WHs3
wh
(GR)
Shield/50
Shield
Shield
NC *
(NC)*
s1, s2, s3, s4 = screened in pairs Schenck Process material no.
3849.807 / 3849.808
3849.809 / 3849.810 / 3849.009
3849.717 / 3849.718 (3849.701 / 3849.711)
*Neutral colour Strands colour-coded as per DIN IEC
German BK
black
BN
brown
RD
red
OG
orange
YE
yellow
GN
green
BU
blue
VT
violet
GY
grey
WH
white
PK
pink
GD
gold
TQ
turquoise
SR
silver
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
17
5.4 Relay outputs
5.3
Connecting the Unit
Digital inputs
Fig. 15: Inputs connection diagram
5.4
Relay outputs
Fig. 14: Relay outputs connection diagram
18
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Connecting the Unit
5.5
5.5 Instruction for connecting the serial
Instruction for connecting the serial S3 interface (RS485) Contacts 6-7 and 8-9 are jumped to operate it as a RS485 2-wire interface and an 120-Ohm bus termination resistor should be mounted for the last bus subscriber.
Fig. 16: Connection diagram S3 as RS485-2
If this interface is operated in the 4-wire mode, the termination resistor goes on the reception side (PINS 6-9).
5.5.1 Connnecting a PC or VT terminal to the S1 service interface Pin assignment:
Use a null modem cable for connections (length < 3m)
Pin 2: RxD
Pin 3: TxD
Pin 5: 0 V
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
19
5.7 Connection for the power supply for the
5.6
Connecting the Unit
Connecting DISOMAT® Satus with the VNT power supply unit
Fig. 17:
5.7
Connection for the power supply for the VFG 20910 field device (115/230 VAC) There is a mains transformer in the VFG20910 field device. The terminals of the transformer are labelled. They are connected to the terminals depending on the mains voltage. Terminals 0 and 230 V or 0 and 115 V 0
20
115V
230V
BV-H2331GB / 0836
X
System Manual DISOMAT Satus © Schenck Process
Connecting the Unit
5.8
5.9 Connecting the VXB 209xx safety barrier
Protection against EMC Please do the following to guarantee optimum EMC resistance for DISOMAT® Satus: n Do not conduct the measuring cable shield on the X1.0A plug, but lay it on the shield rail or housing. n Do not lay the shield of serial lines on the X1.0B plug, but directly on the housing/mounting plate (fast-on). n Connect the fast-on on the back side of the unit by a short path with the housing (19“ rack and mounting plate). Ground the housing well (we recommend a minimum line cross-section of 4 mm)2 and contact via screwed cable lug (not fast-on).
5.9
Connecting the VXB 209xx safety barrier The VXB safety barrier and main VFE subassembly are connected electrically via multi-strand flat cable with preconnected plugs. It is virtually impossible to plug the wrong pin in the wrong socket due to the different pole numbers on the plug. The assignment is: – –
–
– –
inputs, 4-pole —-> X1.1. B 5-8 analog output, 2-pole —-> X1.1. A 1-2 The attached analog doubler from DISOMAT (X1.1 A1-2) has to be attached if you want the analog output to be used for triggering an analog display in the explosive zone and for issuing signals in the safe zone (PLC, analog display). It may never be doubled on the explosive side of the barrier (X41), feed 3-pole —-> X1.1. B 1-3, double underclamp or use the free connection on the VNT power supply unit. serial interface 5-pole, small grid load cell 10-pole
—-> X0B 6-10 —-> X0A
The dongle with the memory chip is already mounted with the VXB. IMPORTANT: It makes sense to use the old memory chip again when replacing the VXB to keep the scale parameters.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
21
5.9 Connecting the VXB 209xx safety barrier
Connecting the Unit
Fig. 18:
A cover (6) is bolted onto the VXB 209... protective circuits to comply with the air and conducting paths as per Table 4 of EN 50020. This provides a thread measure of more than 50 mm between connecting components that are intrinsically safe and those that are not intrinsically safe.
22
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Connecting the Unit
5.10 Connections into the explosive zone
5.10 Connections into the explosive zone
Fig. 19:
You can find the safety instructions and data with an impact on safety on the VXB209x barriers in the BV-H2330 manual.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
23
5.10 Connections into the explosive zone
Connecting the Unit
- Reserved for user’s notes -
24
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Bus coupling modules
6
6.1 Profibus VPB 020 coupler module
Bus coupling modules The VPB 020, VPB 8020, VCB 020 and VCB8020 bus coupling modules are fastened to the CPU board with 3 screws each (component side upwards). It is electrically connected up via the ribbon cable. All of the parts needed for subsequent mounting are attached to the coupling module.
6.1
Profibus VPB 020 coupler module The module can be attached to the main DISOMAT board to create an interface to the PROFIBUS-DP. This module is designed and certified as per DIN 19245 or Part 2 of EN 50170and has an automatic baud rate identification of up to 12 Mbit/s (12 MBaud). The circuit board has two connections for connecting the bus. You can use both the XP3 plug (terminals) and the XP1 (HD-9 pole) in the DISOMAT. Please remember that the first and last unit on the PROFIBUS-DP system has to have a bus termination . To solve this problem, jump W150, W151 and W152 to 1-2. Caution: All bridges have to be in the same position. Pin assignment XP1
XP3
Pin no.
Pin No.
3 8 5 6 1
1 2 3 4 5
RxD/TxD-P* RxD/TxD-N** DGND VP shield***
* : = -P = B ** : N = A *** : Please do not put the shield on the plug, but on the cable clamp The HI20 LED’s indicate proper bus operation (transmitting and receiving)
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
25
6.1 Profibus VPB 020 coupler module
Bus coupling modules
Fig. 20: Position of connections and jumpers VPB 020
Important! W100 has to be on position 2-3 to operate with DISOMAT. Note: If the last actively terminated slave is removed from the bus, this may cause the entire bus to malfunction. This fault occurs particularly frequently when using alternating scales. This problem can be avoided by using a separate active bus termination as offered by Siemens under order number 6ES7 972-0DA00-0AA0 . You can also purchase the bus termination from Schenck Process under material no. V014298.B01. External wiring You can find instructions for installing external wiring and protecting against malfunctions in the Profibus Guideline from the Profibus User Organisation (PNO), order number 2.111. You can find other details on the Profibus, in particular on building up the transmitted data in the DISOMAT® Bplus Manual, Opus, Satus, DISOBOX BVH2316. Projecting aids (drawings, rules) The Profibus standard DIN 19245 (part 3) defines a unit master data file and you can download the suitable Profibus projecting file (.gsd) by Internet from the Schenck Process product page under www.schenckprocess.com under products/services and downloads.
26
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Bus coupling modules
6.2
6.2 Profibus module (VPB8020)
Profibus module (VPB8020) As an option, the module can be fastened on the unit’s base card to provide an interface to the Profibus.
Bus termination The bus termination resistances must be activated at the first and last station of the bus. This is done by setting alljumper plugs into position 1-2 on the card. As a rule the resistances are not activated (position 2-3). Bus addresses: n The addresses are set using parameters.
1
4
3
2
5
Operation Mode Status-LED
6
7
8
9
Front View
Meaning of the LEDs on the Profibus connection On the Profibus connection (VPB8020), the LED is lit Opertion Mode State
Indication
Off
Not online/No power
Green
On-line, Date exchange
Flashing Green
On-line, clear
Flashing Red (1 Hz)
Parametrization error
Flashing Red (2 Hz)
PROFIBUS Configuration error
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
27
6.2 Profibus module (VPB8020)
Bus coupling modules
Status State
Indication
Off
Not power or not initialised
Green
Initialised
Flashing Green
Initialised, diagnostic event(s) present
Red
Exceeption error
Pin assignment Pin
Signal (XP1 9-pin Sub-D-female)
Signal (XP3, 5-pin Phoenix MSTB 3.5 max. 1.5mm²)
1
-
B-Line, Positive RS485 RxD/TxD *
2
-
A-Line, Negative RS485 RxD/TxD **
3
B-Line, Positive RS485 RxD/TxD *
GND BUS
4
RTS, Request To Send
+5V BUS
5
GND BUS
Shielding
6
+5V BUS
-
7
-
-
8
A-Line, Negative RS485 RxD/TxD **
-
9
-
-
Housing
Bus Cable Shield
-
* **
This cable has the conductor color red. This cable has the conductor color green.
Characteristics
28
Disconnection
Optocoupler
Power supply
5V DC internal
Power supply
Max 310mA
Plug connector
5-Pin Phoenix MSTB 3.5 max. 1.5mm² 9-pin Sub-D-femal
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Bus coupling modules
6.3
6.3 The content of the Profibus-DP coupling data
The content of the Profibus-DP coupling data Profibus configurations Various configurations are available in DISOMAT® Satus: n DISOMAT® Satus – Standard 32 / 22 bytes per direction n DISOMAT® Satus - Short 10/2 bytes per direction n DISOMAT Satus Extended 56/60 bytes per direction Flexible ID mechanism n Select the coupling card used (VPB020/VPB8020) when configuring the Profibus. n Select compartibility (DISOMAT T/DISOMAT Satus) n Select the configuration (see below) n
The following figure shows the valid constellations together with the gsd files to be used and wherever necessary the CFC modules.
n
Device type
DISOMAT T
Software version
All
DISOMAT Satus <4
4 and larger
Profibus-subassembly
VPB 20100
VPB 020
VPB 020
Short Standard 4 ID, no text
VPB 8020 DISOMAT T
DISOMAT Satus
4 ID, no text
Short Standard Extended
0 – 8 ID, no text
Compatibility Possible configurations
Short Standard Extended
GSD file
DSV4 6712
DSA1 0A97
DSA1 0A97
DSV4 6712
DSA1 0A97
CFC module
DISOMAT T, Tplus
—-
—-
DISOMAT T, Tplus
DISCO_P7
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
29
6.3 The content of the Profibus-DP coupling data
Bus coupling modules
6.3.1 DISOMAT® Satus standard configuration (“Standard Process Image” VPB020 and VPB8020, Mode DISOMAT T) DP read register (32 bytes) Object Index
Byte
Contents
0
0-3
Pending faults
1
4-5
Input contacts 1-4
2
6-9
Output contacts 1-4
3
10-11
Undefined
4
12-15
Net (INT32)
[g]
5
16-19
Tare (INT32)
[g]
6
20-21
Scale status
7
22-25
Feed rate dg/dt (Float) [kg/s]
8
26-29
Batch actual value (Float) [kg]
9
30-31
Undefined
Pending faults The number assigned to the fault message of a pending fault. Refer to the table in the chapter on ‘Event Messages’ Input contacts The date indicates the positions of the bit-coded input contacts. bit 0 corresponds to contact 1, bit 3 corresponds to contact 4 bit n = 0 : contact low bit n = 1 : contact high Output contacts The outputs are also compiled bit coded in a datum as per the inputs. bit 0 corresponds to contact 1, bit 3 corresponds to contact 4 bit n = 0 : contact low bit n = 1 : contact high Scale status, bit-coded (low byte) UNDERFLOW bit 0, scale is in the underflow OVERFLOW bit 1, scale is in the overflow Tare_CALCULATED bit 2, tare was calculated PRECISELY_ZERO bit 3, scale is precisely zero RESOLUTION bit 4, ten times resolution of weight is switched on INVALID bit 5, weight is invalid Tare_SET bit 6, scale is tared NO_MOTION_STATE bit 7, scale is in no-motion state ADJUSTMENT JUMPER bit 10, jumper in the adjustment position
30
BV-H2331GB / 0731
System Manual DISOMAT Satus © Schenck Process
Bus coupling modules
6.3 The content of the Profibus-DP coupling data
DP write register (22 bytes) Object index
Byte
Contents
0
0-1
Unused
1
2-3
Scale commands
2
4-5
Undefined
3
6-7
Set data processing contacts
4
8-9
Data processing contacts
5
10 - 11
Unused
6
12 - 13
Unused
7
14 - 17
Unused
8
18 - 21
Unused
Scale commands bit 1 : Clear tare bit 0 : Tare bit 2 : Zero setting This action is triggered when the bit affected was 0 at least 200 msec and then changed to 1. “set data processing contacts“ and ”data processing contacts“ There are 4 data processing contacts Bit 0 corresponds to contact 1 and bit 3 corresponds to contact 4 If a bit is 1 in the Set Data Processing Contacts space, the contact is set as per the value in the Data Processing Contacts space. Example: Data processing contacts:
0x0a = 00001010
Set data processing contacts:
0x09 = 00001001
Contact 1 is set to LOW and contact 4 is set to HIGH. 1 in bit 1 of the Data Processing Contacts space does not have any meaning. In DISOMAT® Satus, the physical output contacts are set if they were configured to From Data Processing in the configuration.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
31
6.3 The content of the Profibus-DP coupling data
Bus coupling modules
6.3.2 Configuration DISOMAT® Satus-Short (“Configuration Short Process Image”,VPB020 and VPB8020, Mode DISOMAT T) DP read register (10 bytes) Object index
byte
Content
0
0-3
Gross weight in kg (IEEE float)
1
4-7
Tare in kg (IEEE float)
2
8-9
Scale status
Scale status, bit-coded (low byte) UNDERFLOW bit 0, the scale is in the underflow OVERFLOW bit 1, the scale is in the overflow Tare_CALCULATED bit 2, tare was calculated PRECISELY_ZERO bit 3, the scale is precisely zero RESOLUTION bit 4, ten times the resolution if the weight is switched on INVALID bit 5, the weight is invalid Tare_SET bit 6, the scale is tared NO-MOTION STATE bit 7, the scale is in no-motion state DP write register (2 bytes) Object index
Byte
Content
1
0-1
Scale commands
Scale commands Bit 1 : Clear tare Bit 0 : Tare Bit 2 : zero setting This action is triggered when the bit affected was 0 at least 200 msec and then changed to 1.
32
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Bus coupling modules
6.3 The content of the Profibus-DP coupling data
6.3.3 Konfiguration Satus-Extended (only VPB8020, Mode DISOMAT T) DP read register (32 bytes)
Object index
byte
Contents
0
0-3
Pending faults
Alternative reading data
1
4-5
Entry contacts 1 - 4
2
6-9
Output contacts 1 - 4
3
10 - 11
Batch number
4
12 - 15
Net (INT32)
[g]
5
16 - 19
Tare (INT32)
[g]
6
20 - 21
Scale status
7
22 - 25
Feed rate dg/dt (float)
[kg/s]
8
26 - 29
Actual batch value (float)
[kg]
9
30 - 33
Residual Amount of batch (float)
[kg]
Adaptation Factor (float)
10
34 - 37
Current setpoint/last batch (float)
[kg]
Controller magnitude full-feed (float)
11
38 - 41
Setpoint for next batch (float)
[kg]
Control magnitude for dribble feed (float)
12
42 - 45
Level gross (float)
[kg]
Time for dribble speed of ramp (float)
13
46 - 49
Batch sum (balance sheet) (float)
14
50 - 53
Correction Amount (main contact) (float)
[kg]
Neg. tolerance (float)
15
54 - 55
Batching status
Pre-contact (float)
Alternative reading data The alternative content of bytes 26-53 can be adjusted via bit 15 of the accept command and it is the readback tool for the component parameters set. Batching status Bit 0 : feed unit ON Bit 1 : batch active Bit 2 : full feed Bit 3 : dribble feed Bit 4 : filling active Bit 5 : discharging active Bit 6 : open flap (for discharging or filling; identical with digital output for flap OPEN) Bit 7 : LOW / GIW type Bit 8 : material quantity (Note: initiate discharging or filling) Bit 9 : batching time > Max. Bit 10 : time the flap is open> Max. Bit 11 : except pos. tolerance Bit 12 : except neg. tolerance Bit 13 : spare Bit 14 : spare
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
33
6.3 The content of the Profibus-DP coupling data
Bus coupling modules
DP writing index (60 bytes) Object index
byte
Contents
0
0-1
Unused
1
2-3
Scale commands
2
4-5
Accept commands
3
6-7
Set data processing contacts
4
8-9
Data processing contacts
5
10 - 11
Command
6
12 - 13
Value 1 (INT16)
7
14 - 17
Value 2 (INT 32)
8
18 - 21
Value 3 (INT 32)
9
22 - 25
Batch setpoint (float)
10
26 - 29
Pre-contact (float)
[kg]
11
30 - 33
Correction Amount (float)
[kg]
12
34 - 37
Adaptation factor (float)
[kg]
13
38 - 41
Controller Magnitude for full feed (float)
[mA]
14
42 - 45
Controller Magnitude for dribble feed (float)
[mA]
15
46 - 49
Time of dribble feed ramp (float)
[s]
16
50 - 53
Pos. tolerance (float)
[kg]
17
54 - 57
Neg. tolerance (float)
[kg]
18
58 - 59
Batching commands
[kg]
The dosage can be guided via charging commands in addition to the scale commands of bytes 2/3 already described. This action is triggered when the bit affected was 0 at least 200 msec and then changed to 1. Charging commands Bit 0: start Bit 1: stop Bit 2: cancel Bit 3: clear batching total Bit 4: start filling Bit 5: stop filling Bit 6: start discharging Bit 7: stop discharging Accept commands (bits 0-8 only go into effect when changing from 0 to 1) Bit 0: accept pre-contact Bit 1: accept correction amount Bit 2: accept adaptation value Bit 3: accept controller magnitude for full feed Bit 4: accept controller magnitude for dribble feed Bit 5: accept time for dribble feed ramp Bit 6: pos. Accept tolerance value bit 7: neg. Accept tolerance value Bit 8: accept setpoint Bit 9 - 14: spare Bit 15: request component parameters (refer to read-only data) statically Note: Values marked (float) are floating point numbers in the IEEE 7544 byte format
34
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Bus coupling modules
6.3 The content of the Profibus-DP coupling data
MSB
LSB
Vorz/Exponent
Mantissa 1
Mantissa 2
Mantissa 3
The transmission begins at the same time as the MSB. For example: Specifications for the master —-> slave byte 0– 1 00 00 byte 2– 3 00 00 byte 4– 5 01 00 accept setpoint byte 6 —- 21 00 —- 00 byte 22 – 25 41 20 00 00 setpoint: byte 26 – 29 3e 4c cc cd pre-contact: byte 30 - 33 3d 4c cc cd correction amount byte 34 - 37 3f 00 00 00 adaptation value byte 38 —- 59 00 —- 00
10 kg 0,2 kg 0,05 kg 0,5
Note: Changing byte 4-5 of 00 00 —> 01 00: DISOMAT only accepts the batch setpoint. Changing byte 4-5 of 00 00 —> 01 07: DISOMAT accepts the setpoint and also the pre-contact, correction amount and adaptation value. Process image slave —-> master byte 0–3 00 00 00 00 byte 4–5 00 00 byte 6–9 00 00 00 00 byte 10 – 11 00 27 byte 12 – 15 00 00 1f 66 byte 16 – 19 00 00 00 00 byte 20 – 21 00 80 byte byte byte byte byte byte byte byte byte
22 – 25 26 – 29 30 – 33 34 – 37 38 – 41 42 – 45 46 – 49 50 – 53 54 – 55
b9 ca d6 19 40 9f 8e 25 3c 63 b4 00 40 9f ff ff 41 20 00 00 41 00 b5 17 43 6e c9 78 3d 30 56 4d 00 00 00 00
batch number 39 net (int) tare (int) wagon status: scale is in the no-motion state dG/ dt: ca. 0.000 actual batch value: 4,986 kg residual batch quantity: 0,014 kg current setpoint/last batch: 5 kg setpoint for next batch: 10 kg level: 8,044 kg batching total: 238,787 kg correction amount: 0,043 kg batching status
6.3.4 Flexible ID Mechanism (VPB020 and VPB8020 + DISOMAT Satus) Refer to the BV-H2359 Manual for details
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
35
6.5 VCB 020 Device Net Coupling Module
6.4
Bus coupling modules
Fieldbus monitoring (Profibus-DP) Since output contacts can be set via fieldbus interface and drives of feed units can be triggered , a communication failure has to be identified and the corresponding outputs have to be changed into the safe state. Monitoring is active when the set timeout > 0 and a fieldbus card is connected. If the connection to a fieldbus master fails, current batching is stopped after timeout and a fault message is issued. The fault message is automatically cleared after resuming the connection.
6.5
VCB 020 Device Net Coupling Module This module can be attached to DISOMATs to interface it to the DeviceNet. The VCB 020 card has two bus connecting plugs. Both XC1 and XC3 plugs can be used in DISOMAT®. Pin no.. 1 2 3 4 5
0V CANShield (please lay on the cable inlet and not on the XC plug) CAN+ +24V
The bus address is set via software. Put jumper W160 onto 1-2. W100 has to be on position 2-3 to operate with DISOMAT. You can find more details on the Devicenet, in particular on the structure of transmitted data, in the Data Communication BV-H2359 manual.
36
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Bus coupling modules
6.5 VCB 020 Device Net Coupling Module
Fig. 21: Position of connectors and jumpers VCB 020
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
37
6.6 DeviceNet module (VCB8020)
6.6
Bus coupling modules
DeviceNet module (VCB8020) As an option, the module can be fastened on the unit’s mainboard to provide an interface to the CAN-Bus with DeviceNet procedure.
XP3 XP1
1
VCB8020
W160 H120
5 4 3 2 1
1 2
FeldbuskartenVerbinder
3 4 5
H110
W100 DC/DC
1
vh233407.cdr
Bus termination n
The bus termination resistances must be activated at the first and last station of the bus. This is done by applying the W160 jumper to the position 1-2. By default, the resistances arenot activated (position 2-3).
Baud rate and bus addresses: n
Both values are set using parameters.
The W100 jumper, for determining the power supply, must be plugged in position 2-3.
XP1 1
2
3
4
5
Network Status LED Module Status LED
Front View
38
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Bus coupling modules
6.6 DeviceNet module (VCB8020)
Network Status (LED) Status
Indication
Off
Not online/ No power
Green
On-line, one or more connections are established
Flashing Green (1Hz)
Onl-ine, no connaections established
red
Critical link failure
Flashing Red (1 Hz)
One of more connection timed-out
Alternating Red/Green
Self test
Moduel Status LED Status
Indication
OFF
No power
Green
Operating in normal condition
Flashing Green (1Hz)
Missing or incomplete configutation, device needs commissioning
Red
Unreccoverable Faultst(s)
Flashing Red (1 Hz)
Recoverable (Fault(s)
Alternating Red/Greed
Self test
Plug assignment X20/XC3 Pin
Signal X20
3
Screening
4
CAN_H
2
CAN_L
1
V-
5
V+
Characteristics Disconnection
Optocoupler
Power supply
5V DC internal
Power supply
Max 250mA
Plug connector
Phoenix MSTB 5 max. 2.5mm² Phoenix MSTB 5 max. 1.5mm²
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
39
6.6 DeviceNet module (VCB8020)
Bus coupling modules
- Reserved for user’s notes -
40
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Analog display
7
Analog display An optional simple display can be connected to DISOMAT® Satus that is triggered by the analog interface (4 – 20 mA). Although the display is entirely fed from the interface’s current, its load is so low that an analog PLC input can be fed without any problems (maximum external load: 250 Ω). The display has 3 1/2 digits n n n
The digits are 10 mm high It can be set with the DIP switch and potentiometer It can be combined with the 19" rack.
Connection and Configuration
Fig. 22:
The standard preset display shows triggering 0-1,000 at 4–20 mA. The display is completely readjusted in the order described below. 1. Turn the zero point R3 potentiometer and the R7 zone potentiometer to the right all the way to the catch. Set the SW4 –SW6 switches to OFF 2. The SW1 switch to ON (the end of the zone can be set between 650-1,350) 3. Trigger with 4 mA and set the display to 000 with the R3 potentiometer. 4. Trigger with 20 mA and set the display to 1000 with the R7 potentiometer. 5. Repeat steps 3 and 4 as a check. 6. Set the desired decimal point with the SW4 – SW6 switches. SW6 ON 1 place behind the decimal point SW5 ON 2 places behind the decimal point SW4 ON 3 places behind the decimal point You can preset the display ranges with the SW1-SW3 switches.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
41
Analog display SW1
SW2
SW3
4mA
20mA
OFF
OFF
OFF
000
to
1050 - 1999
ON
OFF
OFF
000
to
650 - 1350
OFF
ON
OFF
000
to
450 - 800
OFF
OFF
ON
000
to
300 - 500
ON
ON
ON
000
to
200 - 300
Note: You can easily specify 4 mA or 20 mA by issuing the setpoint via analog output. Set P12 of the scale control parameters to 4 (refer to Chapter 6.5.7) and use Disoplan or the TCLI command ES to select the setpoint.
42
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8
Instructions for operating the DISOPLAN The DISOPLAN PC program is available for conveniently configuring and parametering the DISOMAT family scales The instruments that can be interfaced now are: – DISOMAT Opus – DISOMAT Satus – DISOBOX – DISOMAT Tersus Acceptable operating systems are: n WINDOWS XP n WINDOWS 2000 n WINDOWS Vista You can do the following with DISOPLAN: n Assign subscriber addresses to the serial bus n Configure interfaced instruments n Displaying the scale weights and operating the scale n Display group and channel weights and their status (only with DISOBOX ) n Edit the language files and load into DISOMAT n Read out the entire system configuration (back-up) and store in the PC n Load stored data into a DISOMAT (restore) for fast substitute system set-up. NOTE: Access to the DISOPLAN functions is administered via license levels. They range from the standard operator to the instrument developer. This is the reason why some of the functions shown in this manual may not be visible or accessible in other installations. DISOPLAN installation is self-explanatory.
DISOMAT Satus System Manual BV-H2331GB / 0731 © Schenck Process
43
Instructions for operating the DISOPLAN IMPORTANT NOTE: – –
– – – –
There are some unit parameters that cannot be set via DISOPLAN menu item in the DISOMAT-Satus firmware version combination: VWW20900-04 with DISOPLAN version 5. Please use the Control Terminal function to configure these items. Follow these steps: Start the control terminal main menu/display/control terminal) Navigate with the arrow keys to menu item 41 (down/right/right/down). Start password input (ENTER) Password 618349 (ENTER) Navigate with the arrow keys to the menu items.
This affects the items: – – –
“Calibration analog output” menu item 435 Fieldbus 4334 Option management/release Ethernet-IP) 5d
Data acquisition (OK) is located in the control terminal on the END button.t. Please leave the menu tree by repeatedly pressing the Arrow Up button before you close the control terminal.
44
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.1
8.1 Serial connection
Serial connection You can connect these system with the following interfaces
DISOMAT® Tersus
S3
DISOMAT® Satus
S1
DISOMAT® Opus
S1
DISOBOX
S1
9-pole HD-plug (use a null modem cable)
Use the V052410.B01 cable or make cables according to the connection diagram in the system manual.
Matching cables are included in DISOPLAN-CD. You can connect DISOPLAN at any time if the interface is not occupied by other systems. You have to turn the system on and off if the interface is otherwise occupied (for instance, with a secondary display) and you can start set-up operation with DISOPLAN within the first minute after turning it on. Turn DISOPLAN on and off after ending it and its resumes normal operation after one minute. You can activate set-up operation in menu item 5C Start DISOPLAN at any time if the system has a display and keyboard. All systems can also be configured via Ethernet (the VET 020 option card has to be installed on DISOBOX). This allows access to the system at any time, but the configuration of the PC used has to allow access to the system’s network address. The following figure shows the start screen of DISOPLAN:
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
45
8.1 Serial connection
Instructions for operating the DISOPLAN
Connected systems are identified by the Search for New Systems function and the following series of figures shows how to communicate via Ethernet (there is a different process with serial communication).
The figure below shows an example of how DISOMAT Opus is found.
Other detected device types are displayed in the window with different symbols. To configure a system, either click the symbol twice or branch off to the specific system via Display Selection.
46
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.2
8.2 DISOMAT Opus / Satus / Tersus
DISOMAT Opus / Satus / Tersus If you start configuring DISOMAT from the DISOPLAN start screen, you come to the following overview field where you can call up the most important functions directly:
Before starting configuration, you have to use the Enter Password function to set the correct operating privilege. You can find details on the structure of privileges in each operating manual. IMPORTANT: The current passwords in the system are used (they may differ from the factory values given in the manual). –
This does not apply to DISOMAT Satus.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
47
8.3 Parametrization and calibration
8.3
Instructions for operating the DISOPLAN
Parametrization and calibration You can use the settings symbol to get to instrument configuration. You can set some important system parameters directly in the window shown in the following figure. They are: Function variant - see below Link function blocks (only DISOMAT Tersus) - refer to the BVH2317 Manual Fieldbus communication IP configuration Create a printing pattern Specific national settings - see below Edit language - see below
–
You can use the Parameter function to arrive at setting all system parameters.
When you load the data, it shows the internal menu tree of DISOMAT as shown. It offers all instrument parameters and functions in a transparent fashion for editing and executing. Since all of the functions have been explained in the BV-H2313 Operating Manual, we shall not go into them in detail here.
48
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.4 Scale
Fig. 24:
8.4
Scale Scales parameters. The best place to set the calibration and scales parameters is in the menu “Scales display / Parameters”. The scales can also be set in this menu under the “Set” sub-menu.
Fig. 23:
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
49
8.4 Scale
Instructions for operating the DISOPLAN Setting the Calibration Parameters
The scales can be configured in the “Parameters / Calibration Parameters” menu. Details on the parameters can be found in the BVH2313 instruction manual.
50
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.4 Scale
8.4.1 The Unit parameter Display:
Unit kg
Selection:
t - tonnes kg - kilogram (= preset) g - gram lb - Pound N - Newton kN - Kilo-Newton
Function:
This parameter sets the unit of weight in your DISOMAT. This holds true for inputting all parameters (such as pre-contact or main contact) and for the weight display (base position).
8.4.2 Final Value parameter Display:
Final Value [current dim.]
600,000
Input:
Any values in the range of 0.1 to 9000000 preset = 600,000
Function:
This parameter defines final value of the scale. This is the final value of the largest range with the multiple-division or multiple-range scale. Important: The Scale Interval parameter is linked directly to the Final Value parameter and both values have to fit together.
8.4.3 The Scale Interval parameter Display:
Scale interval [current dim.] 0.200
Input:
Values in the range from 0.001 to 1000 preset = 0,200
Function:
This parameter defines the scale interval and therefore the part number of the scale.
Remarks:
The scale interval defines the part number of the scale along with the final value parameter. part number = final value/scale interval Scale intervals are only possible in modules of 1, 2 and 5. If the scale interval entered is not realistic, you receive a event message ‘W1211:scale interval wrong’.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
51
8.4 Scale
Instructions for operating the DISOPLAN
8.4.4 No motion difference parameter Display:
No motion difference 1d
Selection:
0d; 1d; 2d; 4d; preset = 1d selection in scale intervals
Function:
This parameter defines when the scale identifies the no-motion state along with the no motion time parameter . The scale identifies the no-motion state when the readings measured in the no motion time do not differ from the last reading measured any more than the no motion difference.
Remarks:
You can key in the no motion time under the Scale Parameter menu item.
8.4.5 Zero setting range parameter Display:
Zero setting range 4%
Selection:
0%; 2%; 4%; 10%; 20%; preset = 4%
Function:
Along with the final value parameter, this parameter defines the range within the scale can be set to zero. It is entered in % of the final value’.
Remarks:
The weighing range is not narrowed down by zero setting. The zero setting range is asymmetrical to the zero point: 2% = -0.5 .... +1.5 4% = -1.0 .... +3.0 10% = -2.5 .... +7.5 20% = -10.0 .... +10.0
52
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.4 Scale
8.4.6 Overrange parameter Display:
Overrange 9d
Selection:
100%; 101%; 102%; 110%; 9d preset = 9d selected in % or in d (digit). 9d has to be selected with legal-for-trade scales. The digital parts or the smallest possible resolution of the weighing range is called digit (d). This value corresponds to the scale interval of the scale.
Function:
This parameter defines what weight is shown above the final value in relation to the final value. If the weight on the scale is greater than the overrange, the symbol “oooooo” is shown instead of a weight provided that the parameter ‘legal-for-trade’=yes. If ‘legal-for-trade=no’, the overrange is shown by the symbol T symbol; the weightis still displayed.
8.4.7 F-mechanical parameter Display:
F-mechanical
Input:
any values in the range of 0.1 to 99999 preset = 1,00 input without dimensions
Function:
This ‘mechanical factor’ includes the mechanical design of the scale (i.e., transmission, lifting and load sharing ratios). F-mechanical = load on the scale / load on the load cell
Remarks:
With scales without load transmission, the factor 1.00. value < 1,0000: load reduction value > 1,0000: load transmission
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
1.00
53
8.4 Scale
Instructions for operating the DISOPLAN Examples for ‘F-mechanical’: A bin weigher is placed on 1 load cell and 2 fixed bearings. If the load cell and the two fixed bearings are arranged to be symmetric to rotation around a circular bin with its centre of gravity in the middle (load support to 3 x 120 degrees), the load is distributed at 1/3: 33,33 % Festlager Pivot Palier Supporto fisso Fmech =
33,33 % Wägezelle Load cell Capteur Cella pesatrice
100 % 33,33 %
=3
33,33 % Festlager Pivot Palier Supporto fisso
Fig. 25:
You get different results with a rectangular bin or a circular bin in a symmetrical weighing frame (even if it is square and completely symmetrical):
50 % Wägezelle Load cell Capteur Cella pesatrice
25 % Festlager Pivot Palier Supporto fisso Behälter Hopper Récipient Recipiente
Fmech =
100 % 50 %
=2
25 % Festlager Pivot Palier Supporto fisso
Fig. 26:
The reason for this load distribution is the fact that the distance of
• the load cell (1/2 side length) and • the fixed bearings (1/2 of a diagonal) to the bin’s centre of gravity differ; that means that the three bearing points do not form a triangle with sides of equal length. This gives a value of 2 for theoretical calibration. The load of the load cells has to be correctly applied for their design. In contrast to the two simple borderline cases shown here (rectangular bin with non-symmetrical load distribution), it either has to be derived from a precise geometric analysis or by weighing the medium (liquid) put into the bin in advance (which is preferable). IMPORTANT: Every calibration done with weights has to ensure that a centre of gravity exactly in the middle.
54
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.4 Scale
8.4.8 F-adjustment parameter Display:
F-adjustment 1.00
Input:
any values in the range of 0.9 to 1.1 preset = 1 input without dimensions This ‘adjustment factor’ takes in scattering in the indicators of the load cells or the overal indicator of the scale mechanism. The system ascertains the parameter value during the zone adjustment (Refer to menu item ‘4453:range’). ‘F-adjustment’ = test weight / weight shown
8.4.9 Load cell nominal load parameter Display:
Load cell nominal load 1000kg
Input always in [kg]:
1 - 999999 preset = 1000
Function:
This parameter gives the nominal load of the load cells used. If a eine load cell is loaded with the nominal load, it gives voltage as a measuring signal at a feed voltage of 1V that corresponds to its load cell factor (parameter ‘WZ_K [mV/V]’ ).
Remarks:
Always enter in kg. Load cells with nominal load information in other units has to be converted to kg.
8.4.10 Load cell number parameter Display:
Load cell number 1
Input:
any values in the range of 1 to 20 preset = 1 input without dimensions
Function:
This parameter gives the number of load cells of the scale. This does not count any fixed bearings.
8.4.11 Load cell indicator parameter DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
55
8.4 Scale
Instructions for operating the DISOPLAN Display:
WZ-K [mV/V] 2.85
Input:
any values in the range of 0.1 to 10 preset = 2,85
Function:
The load cell indicator (nominal indicator) states what output voltage (measuring signal) a load cell supplies depending upon the feed voltage if it is at its nominal load.
8.4.12 Dead weight parameter Display:
Dead weight +
0.00kg
Input:
any values in the range of 0 to ± 999999 preset = 0,00
Function:
Dead weight is the weight of the scale mechanism (the weight of the empty scale) that loads the load cells in addition to the useful load, i.e., the material to be weighed. The dead weight is calculated at dead weight adjustment and keyed in as the Dead Weight calibration parameter. It is one of the two parameters that does not have to be keyed in along with the ‘adjustment factor’. The correct value only has to be keyed manually for the dead weight with mathematical adjustment.
The “legal for trade” parameter has not significance for DISOMAT® Satus.
56
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.4 Scale
After completing the first parameter block, a second block opens automatically
Fig. 27:
8.4.13 Scale code parameter Display:
Scale code Scale 1(for example)
Input:
Any text, max. 7 digits
Function:
The operator uses this parameter to define the name of the scale.
8.4.14 Class parameter Display:
Class Handelswg. Kl. III
Selection:
Handelswg. Kl.III; rough scale Kl.IIII; SWA; user-defined minimum load
Function:
This parameter defines the accuracy class of the scale. This changes the minimum load depending upon the application.
8.4.15 User-defined minimum load parameter Display:
User-defined minimum load [current dim]
0.00
Input:
The minimum load of the scale in the current dimension preset = 0
Function:
This parameter defines the ‘min= ‘ value of the electronic descriptive plate if user-defined minimum load is selected in the Class parameter]___ ‘ getroffen wurde.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
57
8.4 Scale
Instructions for operating the DISOPLAN Other data are set under parameter/scale parameters, in particular the filter times.
8.4.16 Switch filter parameter Display:
Switch filter 0.20s
Selection:
0.02 s; 0.04 s; 0.10 s; 0.20 s; 0.40 s; 1.00 s preset = 0.20 s
Function:
Limit monitoring. This parameter defines the filter time in seconds for the weights used by the Fast Comparators and for batching. The longer the filter time, the more sluggish is scale monitoring. The value to be set is dictated by the external vibratory influences where the scale is installed (such as mechanical vibrations).
8.4.17 Display filter parameter
58
Display:
Display filter 0.47s
Selection:
0.06 s; 0.10 s; 0.15 s; 0.22 s; 0.33 s; 0.47 s; 0.68 s; 1.00 s; 1.50 s; 2.00 s; 3.30 s; 4.70 s preset = 0.47 s
Function:
This parameter defines the filter time for weights shown in the display. Function blocks, data processing transmission and no-motion state monitoring also use the filtered weight. The longer the filter time, the more sluggish is the scale display. The value to be set is dictated by the external vibratory influences where the scale is installed (such as mechanical vibrations)..
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.4 Scale
8.4.18 No motion time parameter Display:
No motion time 1.0s
Input:
any values in the range of 0.0 to 10.0 preset = 1.0
Function:
This parameter defines the no motion difference along with the calibration parameter when the scale identifies the no-motion state. rule of thumb: no motion time ≥ 0.8 * display filter The system identifies no-motion state when the readings measured in no motion time do not differ from the last reading measured any more than the no motion difference .The no-motion state is shown in the weight display with the >< symbol.
8.4.19 Zero tracking parameter Display:
Zero tracking No
Selection:
No = off (preset) yes = on Auto = zero setting *)
Function:
This parameter defines whether the scale is automatically reset to zero within the zero setting range. The following conditions apply to zero tracking: 1.
The scale has to be in no motion for at least 1 second. (refer to the conditions under the No Motion Time parameter)
2.
The weight may not differ from the current zero point by any more than ± ½ d.
3.
The weight may not have changed in the last second by any more than 0.5 d/s.
4.
The new zero point has to be within the zero setting range (refer to Zero Setting Range parameter). Any zero point shifts beyond this will be shown as weight.
*) If you select Auto, conditions 2 and 3 do not apply to negative weights.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
59
8.4 Scale
Instructions for operating the DISOPLAN
8.4.20 Switch-over delay parameter Display:
Switch-over delay 1.0s
Input:
any values in the range of 0.0 to10.0 preset = 1,0
Function:
This parameter defines the switch-over delay between the two ranges with the multiple-range scale/multiple-division cale. This keeps the scale from switching to another range from a brief impact of weight such as putting on the weighing material. It is switched over when no-motion state or time has expired.
Remarks:
Switch-over delay is only important for the multiple-division or multiple-range scale.
8.4.21 Filter time dG/dt parameter Display:
Filter time dG/dt [s]
2.00
Input:
Any values in the range of 0 to 30,000 preset = 2,00
Function:
This parameter defines filter time for the weight change display
8.4.22 Dead weight adjustment (adjustment / dead weight) The dead weight is the constant weight of a scale design (such as the empty bin and weighbridge) that loads the load cells (refer to the Dead Weight calibration parameter).
The term dead weight does not have anything to do with the Tare function.
Make sure that the scale does not have a load. The systenm uses this menu item to calculate the Dead Weight parameter and keys in the value. This weight will be subtracted from the reading in future so that the actual weight is shown on the scale.
8.4.23 Range adjustment (adjustment/range The system uses the weight keyed in and the weight measured to calculate the adjustment factor and keys it into the parameter list (refer to the F-adjustment calibration parameter).
60
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.4 Scale
8.4.24 Linearisation (adjustment/linearisation correct (25%, 50%, 75% of the final value of the range) to ± 9.9 scale intervals. The dead weight and range of the scale have to be adjusted before linearisation
Calculating the characteristic curve Determine characteristic deviation in each support point and enter value.
• Apply 25% of range as calibration weight. • Read the actual weight and make a note of it. • Calculate the correction in scale intervals (scale interval e is on the upper left-hand side of the display) according to the formula: Correction = (set weight - actual weight) / scale interval (the scale interval of the large range with MT/MB scales)
• Key in the correction in scale intervals under the ‘4452:linearisation’ menu item.
• Check deviation. Repeat if necessary. Resume from next support point (50%, 75%). Example calculation You have a scale with a 600 kg weighing range and a verification scale interval of 0.2 kg (i.e., with 3,000 parts). The scale shows a value of 300.28 with linearisation at 50% (equalling 300 kg) with the support point. To linearise the scale, you have to calculate the correction in scale intervals (not in kg) according to the formula above and key it in: correction = (300.00 kg - 300.28 kg) / 0.2 kg = -0.28 / 0.2 = -1.4 The correction value to be entered is -1.4.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
61
8.6 Loading language
8.5
Instructions for operating the DISOPLAN
Function Variants You can use this menu item to activate and parameter predefined configurations for the DISOMAT. You can find details in Chapters 9 and 10.
8.6
Loading language
Abb. 28:
A pre-prepared language file can be loaded into the DISOMAT in the “Maintenance / Language” menu.. Select “Standard“ and the desired language (Spanish in the example). Confirming with “OK” will load the new language.Then activate this language under National Settings / Language Loaded.
62
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Instructions for operating the DISOPLAN
8.7
8.9 Product Service Internet
Backup and Restore The items concerning saving data can be found in the ”Maintenance“ menu: – –
8.8
Data security: reading out the program and data from DISOBOX into a back-up file. This can also be called up directly from the main menu. Data restoration: restoring data from the back-up file into the instrument
Loading flash Loading a new software version. Loading is registered in the instrument (logfile)
8.9
Product Service Internet The code issued under Information / Product Service Internet enables you to download current information on DISOBOX such as software updates or the latest manuals.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
63
8.9 Product Service Internet
Instructions for operating the DISOPLAN
- Reserved for user’s notes -
64
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Using DISOMAT as a weighing transmitter
9
Using DISOMAT as a weighing transmitter DISOMAT ® Satus provides a signal exchange via analog output and binary inputs/outputs in the weighing transmitter mode along with data transmission via serial interface or fieldbus . Do the following to configure this mode: Start die Function Variants function from the main screen of the DISOPLAN configuration program and select the variant of weighing transmitter. The following configuration screen opens
Fig. 29: Analog output block Analog output
OFF
4-20 mA
Analog source block Source
Gross
MIN reference value
0
This block selects what size is issued on the analog output and how it is scaled. The following are optional sizes and reference values: source Dimension for Min/Max gross: Dimension of the scale net: Dimension of the scale dG/dt: Dimension of the scale / h fieldbus: none (the IEEE value of the PLS-AIn is issued) controller magnitude: not available in Opus; 0 is always issued setpoint: Dimension of the scale actual value %: Percent of setpoint actual value dim: Dimension of the scale residual value %: Percent of setpoint residual value dim: Dimension of the scale next setpoint: Dimension of the scale
MAX reference value 0 Output blocks ... output 4 If an analog signal is used (such as gross), a comparator is created with hysteresis on this signal via the two ON and OFF parameters. PLS-AOut block Reference value
20
= reference value Scaling parallel output of the analog output on the PLS analog output 1. MAX
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
65
Using DISOMAT as a weighing transmitter The IN1, IN2 and IN3 inputs are permanently occupied with the Set Tare, Clear Tare and Zero Setting functions in the Weighing Transmitter operating type.
66
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Batching with DISOMAT® Satus
10 Batching with DISOMAT® Satus When batching, a certain quantity of material is conveyed into a bin or discharged from a bin. A batch can be started, interrupted and continued or cancelled and the setpoint specified dictates the feed amount. Both full feed and dribble feed contacts and an analog controller magnitude signal of 0(4) - 20 mA are provided to trigger the feed unit. All commands, status information and readings for controlling a batch are available via serial interface. The start, stop, cancel and acknowledge fault commands can also be specified via digital inputs. If the commands for control come via fieldbus, it makes sense to set the Timeout parameter in the bus coupling unequal to zero so that DISOMAT® Satus monitors the coupling to the master. If data transmission is malfunctioning, feeding is put into the correct state. NOTE: You cannot use the fieldbus to control batching via VPB020 and VCB020 fieldbus cards. Instead, use a DSIOMAT T control electronics unit.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
67
Batching with DISOMAT® Satus
10.1 Filling Scale
10.1 Filling Scale The filling scale conveys a specified set quantity from a storage bin into a weighing bin. Discharge weighing
Surge hopper
DISOMAT T
DO DO
Batch active
MAX control level
MIN control level Fieldbus
M
0-20mA Full feed
Fill unit
Dribble feed
WZ
PMS
AO DO DO
vh2331_27.cdr
Fig. 30:
You can define different batching functions depending on how the scale control parameters are set (refer to Chapter 6.5.7 ): n Simple feeding while checking whether the desired batching quantity fits into the weighing bin. n Automatically emptying the weighing bin at the beginning or end of a batch. n Multiple-feeding with manual or automatic emptying of the weighing bin when it reaches the maximum filling quantity (MAX control level). n It empties to the minimum filling quantity (MIN control level) and the duration of the emptying process is monitored.
68
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Batching with DISOMAT® Satus
10.1 Filling Scale
Do the following to configure the filling scale: n
Start the Function Variants function from the start screen of the DISOPLAN configuration program and select the Filling Scale variant.
Fig. 31:
The parameters have the following meaning: Analog output block Analog output
OFF
4-20 mA
Analog source block Actual value of dim: Source
Full
You can use this block to select what quantity should be issued on the analog output and how it is scaled. The potential quantities and reference values are: Source Dimension for Min/Max Gross: Dimension of the scale Net: Dimension of the scale dG/dt: Dimension of the scale/ h Fieldbus: none; the IEEE value of the PLS-AIn is issued Controller magnitude: not available in Opus; output is always 0 Setpoint: Dimension of the scale Actual value %: Percent of the setpoint Actual dim.: Dimension of the scale Residual value %: Percent of the setpoint Residual value dim: Dimension of the scale Next setpoint: Dimension of the scale
Output 4 block This is where you can define the function of binary output 4 not used by batching. If an analog signal is used (such as gross), a comparator is created with hysteresis on this signal via the two ON and OFF parameters..
Discharge Weighing block
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
69
Batching with DISOMAT® Satus
10.1 Filling Scale Single feeding:[BR] Setpoint > MaxFillWgt.
The maximimum weight in the weighing bin
Max.Fill Weight
0.0
Fill weight
0.0
Optimization
No
Start/stop optimization (Yes/No)
No-Motion Time
20.0
The maximum time it waits for no-motion state after feeding.
Timeout
0.0
0 sec:
Tare memory is not cleared after feeding > 0 sec Tare memory is cleared after a time entered and it can start again after this time.
Settling time:
0.0
Time that can be set between the main contact dropping (dribble feed) and tolerance check
Automatic filling/discharging
OFF
This parameter defines DISOMAT’s behaviour when emptying the filling scale off: It is not automatically emptied. before start + manual release: The scale is emptied if it is higher than Maximum Filling (material data) before starting and it does not start automatically. before start + auto release: As above, but it is automatically started after emptying after ending: It is emptied after feeding if the weight > Maximum Filling multiple + manual release: This is used when the setpoint is greater than the scale capacity. The system stops at Maximum Filling, empties and waits for manual release again. multiple + auto release: As above, but with automatic restart
block ‘PLS-AOut’ Reference value
70
20
= MAX reference value
BV-H2331GB / 0836
Scaling parallel output of the analog output on the PLS analog output 1.
System Manual DISOMAT Satus © Schenck Process
Batching with DISOMAT® Satus
10.2 Dispatch Scale
10.2 Dispatch Scale The dispatch scale dispatches a specified set quantity from the weighing bin. Discharge weighing
Surge hopper
DISOMAT T
DO DO
Batch active
MAX control level
MIN control level Fieldbus
M
0-20mA Full feed
Fill unit
Dribble feed
WZ
PMS
AO DO DO
vh2331_27.cdr
Fig. 32:
You can define different batching functions depending on how the scale control parameters are set (refer to Chapter 6.5.7 ): : n Simple feeding while checking whether there is sufficient material in the weighing bin for the desired batching quantity. n Automatically filling the weighing bin at the beginning or end of a batch n Multiple-feeding with manual or automatic filling of the weighing bin when it reaches the minimum filling quantity (MIN control level). n It is filled to the maximum filling quantity (MAX control level) where the duration of the filling process is monitored.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
71
Batching with DISOMAT® Satus
10.2 Dispatch Scale
Fig. 33:
If the weight signal is invalid (during the intake phase after voltage ON, with cable break and if there are readings outside of the valid measuring range), an on command is rejected or current feeding is stopped.
72
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Batching with DISOMAT® Satus
10.2 Dispatch Scale
Fig. 34:
Discharge Weighing block Fill weight
0.0
Optimization
No
Start/stop optimization (Yes/No)
No-Motion Time
20.0
The maximum time it waits for no-motion state after feeding.
Timeout
0.0
0 sec: Tare memory is not cleared after feeding > 0 sec Tare memory is cleared after a time entered. Restart only possible after this time..
Settling time:
0.0
The time that can be set between the main contact dropping (dribble feed) and tolerance check
Automatic filling/discharging
OFF
This parameter defines DISOMAT’s behaviour when emptying the filling scale off: It is not automatically emptied. before start + manual release: The scale is emptied if it is higher than Maximum Filling (material data) before starting and it does not start automatically. before start + auto release: As above, but it is automatically started after emptying after ending: It is emptied after feeding if the weight > Maximum Filling multiple + manual release: This is used when the setpoint is greater than the scale capacity. The system stops at Maximum Filling, empties and waits for manual release again. multiple + auto release: As above, but with automatic restart wie oben, aber mit automatischem Wiederanlauf
PLS-AOut block Reference value
20
= MAX reference value
Scaling parallel output of the analog output on the PLS analog output 1.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
73
Batching with DISOMAT® Satus
10.3 Materiald data
10.3 Materiald data DISOMAT® Satus administers two sets of sorting data that apply the material parameters of the feeder. The sorting data are divided up into two blocks and set under Setting/Sorting/Sorting Data 1 or Sorting Data 2.
Fig. 35:
Max fill level: Min fill level: Prefill value: Pre-contact Main contact:
It is emptied when it is above this value or it is refilled to this value. It is refilled when it is below this value or it is emptied to this value. It is filled to this value in dribble feed (splashing liquid)
Switching from full to dribble feed or turning off dribble feed (depending on the setpoint) Plus tolerance: There is a fault message if the fed value is more than PLUS above the setpoint. MINUS tolerance: It is refilled if the value is more than MINUS below the setpoint. Optimization factor: Discrepancies from the setpoint are weighed with this factor to calculate the new main contact. Optimization = 0 the main contact is not refilled. Refeeding pulse length: This is the length of the refeeding pulse Maximum feeding time Max. discharge/filling times: Monitoring time behaviour.
74
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Batching with DISOMAT® Satus
10.3 Materiald data
Fig. 36:
Full: Dmax ramp: dribble: Refeeeding:
Analog controller magnitude in full feed The time for switching from full/dribble Analog controller magnitude in dribble feed Analog controller magnitude in when refeeding
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
75
Batching with DISOMAT® Satus
10.3 Materiald data
- Reserved for user’s notes -
76
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.1 Preface
11 Data processing interface 11.1 Preface If you want DISOMAT® Satus to be connected to and remote-controlled by a higher-order data processing system (such as a process computer, PC or PLC), agreements have to be made on electrical connections (the physical level) and data exchange. You can integrate DISOMAT® Satus into local networks via serial interface. Data is exchanged based on the same protocols as in PLC that we will call procedures in this framework. Procedures 1) are rules agreed for establishing communication, formating and coding data including guaranteeing no-fault transmission. All procedures used for DISOMAT® Satus use messages to transmit or receive data blocks (messages) and acknowledging connections. All procedures have in common the immediate response behaviour: DISOMAT® Satus responds immediately to each message and transmits another message after execution with commands that might need a certain amount of time for execution (such as taring has to wait for the no-motion state). The data to be transmitted, known as utility data, are packed into data messages that also contain control and test characters. The control characters define the beginning and end of the data message. To do this, the utility data of the beginning and end character are limited or a message header states the entire length of the data message. The block check character (BCC) is used for data security because they enable the recipient to identify faults in data transmission. Data and utility data can be transmitted character-coded (such as 7-bit ASCII, 8-bit ASCII) or as binary sequences of bits.
Message:
Synchronisation
Data message
Opening
Head
Data security User data
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
Ending
77
11.3 Procedures
Data processing interface
11.2 List of procedures The list below shows the procedures in DISOMAT® Satus for communicating via serial interfaces. Procedure refer to Chapter SCHENCK poll procedure (DDP 8785) 11.4.1 Siemens procedure 3964R 11.4.2 SIMATIC S5 control system 11.4.3 Teleperm M 11.4.4 J-Bus (Modbus) 11.4.5
11.3 Procedures 11.3.1 Schenck Process poll procedure (DDP 8785) This procedure was developed from Schenck’s standard procedure and is used for special applications such as for regular weight display in the higher-level PC. The data processing partner begins communicating directly with the request message and DISOMAT responds with the appropriate data record. Neither side acknowledges or repeats if there is a fault. The block check mechanism ensures the transmission of the content of the data (identifying falsifiED messages). Note: Important response messages could be lost with this procedure, particularly the delayed response messages because it is not possible to say precisely when they will occur. e.g. The delayED message of the taring command (AT) only directly follows the first reaction with the no-motion state.
11.3.1.1 Procedure agreements
Message:
Synchronisation
Data message
Opening
Head
Data security User data
Ending
78
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.3 Procedures
Opening N/a Data message Die data messages (Sende-, Anforderungs- und response messages) sind folgendermaßen aufgebaut: Utility data Acknowledge N/a Fault identification One of the two partners does not give feedback within a specified period. What to do with faults in data transmission If there are faults in data transmission, the sender tries to repeat the message several times. Synchronisation, monitoring periods and repetition: No Acknowledge response monitoring time ta : 5 seconds No opening No data repeats There are not any data processing faults on DISOMAT Satus® Data security and generating the block check character The block check character (BCC) is only formed as a longitudinal parity over all characters transmitted. The bits of the BCC supplements the number of bits of a bit number line (see below) to straight. The parity bit of the BCC is not formed according to this rule. It is generated out of the 7 bits of the BCC itself and the recipient generates the BCC code and compares it with the block check character received. For example: forming the block check character for data AB34.
S T X
A
B
3
4
E T X
B C C
7 6 5 4 3 2 1
0 0 0 0 0 1 0
1 0 0 0 0 0 1
1 0 0 0 0 1 0
0 1 1 0 0 1 1
0 1 1 0 1 0 0
0 0 0 0 0 1 1
0 0 0 1 1 1
Parity bit uneven
0
1
1
1
0
1
0
Bit number
(Longitudinal parity: even and BCC parity like character parity)
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
79
11.3 Procedures
Data processing interface Transmitting priority DISOMAT Satus always has a low priority. If both communication partnerss want to open data traffic, DISOMAT Satus interrupts and goes into the receiving state.
11.3.1.2 Routine
Fig. 37:
For example: The data processing system transmits the command for ascertaining and transmitting weight data to DISOMAT with scale number 02. 02#TG#
DISOMAT responds directly with the data message. 02#TG#netto#tara#dg/dt#status#
80
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.3 Procedures
11.3.2 Siemens procedure 3964R 11.3.2.1 Procedure agreements
Message:
Synchronisation
Data message
Opening
Head
User data
Data security Ending
The following characterises the individual components of data transmission, although the order of the components named is not meant as a temporal sequence. Opening The sender opens data transmission with the control characters Data message The data messages (transmission, request and response messages) are structured as following: utility data Acknowledge If data transmission is successful, the recipient acknowledges with and, with faulty data transmission, with . Fault identification The recipient acknowledges with or one of the two partners does not give feedback within a specified period. What to do with faults in data transmission If there are faults in data transmission, the sender tries to repeat the message several times. Repeat always begins when opened. Synchronisation, monitoring periods and repetition: n n n n n
Acknowledge monitoring time tq 2 seconds Response monitoring time ta 5 seconds Opening monitoring time te 2 seconds Max. number of repeating opening is 5 Max. number of repeating data is 5
Data security and generating the block check character refer to Chapter 11.4.1.1. Transmitting priority refer to Chapter 11.4.1.1.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
81
11.3 Procedures
Data processing interface Value range The value range of the characters of the data part transmitted extends over the entire 8 bits (i.e., from 00 to FF in hexadecimals). It is necessary to have special treatment for the final code of the utility data to reach this range of values if the sequence of bits of the character occurs accidentally in the utility data. A duplication is used here. Duplication The sender duplicates a in the utility data so that the recipient receives all of the utility data. When receiving two the recipient undoes duplication and treats it as a data byte. The routine with Request Data (Siemens procedure 3964R)
Fig. 38:
For example: The data processing system transmits the command for ascertaining and transmitting weight data to the DISOMAT® T with scale number 02...
82
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface 1)
11.3 Procedures
Master (data processing)
Slave (DISOMAT)
Opening
02#TS#
2)
Master (data processing)
Acknowledge Request message
Acknowledge
Slave (DISOMAT)
Component of the procedure
Opening
Acknockledge 02#TS#s#
3)
Component of the procedure
Response message Acknowledge
Master (data processing)
Slave (DISOMAT)
Component of the procedure
Opening
Acknockledge 02#TS#netto#tara#status#
Response message Acknowledge
The data processing system transmits the command for transmitting the weights at the no-motion state (1). It immediately receives the response that the command was understood (2) (immediate response). Then, DISOMAT sends a delay ED message. If the command can be executed within a specified period (20 seconds), DISOMAT transmits the data requested in the delay ED message, in this case the weights (3). Otherwise, it sends the fault message after the specified period. (The value s in the response message is for the status of the data processing command) Note: The Immediate Response response is transmitted with Transmit Data and the second response message is not needed.
11.3.3 SIMATIC S5 control system (RK512) Procedure RK512 differs from the SIEMENS 3964R procedure due to a message header 10 bytes long in front of the utility data where the target, command and length information are leyed in. To address a scale, n n
the data module (DB) has to be used for a scale number (0-255) and the message code has to be in the data word (DW).
The values are in the table of Chapter 7.6. The messages to DISOMATs go to directly neighbouring addresses.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
83
11.3 Procedures
Data processing interface For example:
“Query of weight at the no-motion state” to DW=6, “Periodic Request” to DW=7.
The address of the AD messages from DISOMAT is composed of a data module that can be entered and the data word (permanently assigned) for the message code. All data are transmitted ASCII-coded in SIMATIC S5 mode. The data module or data word is shown hexadecimal 0-FF.
11.3.3.1 Procedure agreements The procedure is 3964R. Refer to Chapter 11.4.2.1
11.3.3.2 Routine The description of the AD and ED message: An AD message (TRANSMIT message “Transmit Data”) consists of the message header (10 bytes) with the attached data. The response message has 4 bytes. An ED message (FETCH message “Request Data”) consists of the message header (10 bytes). The response message then consists of the message header abbreviated to 4 bytes and the requested data attached to it. The message header of the request message with SIMATIC S5 In SIMATIC S5 mode, all data in the message header are shown hexadecimal and all messages start with 2 zero bytes (Ø). Then the message type (ED or AD), data module address, data word address, data length and two coordination flags follow.
Byte number Meaning 1
0000
2 3
message type (ED or AD)
4 5
Data module address = scale number
6
Data word address = command code
7
Data length (1)
8 9
The coordination flag. The value FF is expected per byte in the interest of cutting down on configuration work while maintaining maximum data security (only with the ED messagesn).
10 11 ...
Data whose length is given in the 7th and 8th byte (at least 1 data word has to be transmitted).
The structure of the AD message The AD message using the example of clear tare (AC)
84
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.3 Procedures
Request message (SIMATIC S5 DISOMAT)
Byte number
Meaning
1
0000
2 3
message type (ED or AD)
4 5
Data module address = scale number
6
Data word address = command code
7
Data length ( 1)
8 9
The coordination flag. The value FF is expected per byte in the interest of cutting down on configuration work while maintaining maximum data security (only with the ED messages).
10 11 ...
Data whose length is given in the 7th and 8th byte (at least 1 data word has to be transmitted).
The structure of the AD message The AD message using the example of clear tare (AC) request message (SIMATIC S5 DISOMAT)
Byte number
hex.
ASCII
Meaning
1
00
2
00
3
41
A
Command:
issue
4
44
D
Type:
data
5
01
Target:
DB = scale number, such as 1
6
02
Target:
DW = command code “AC”
7
00
Number:
8
01
Number: 1 DW
9
ff
Coordination flags (byte)
10
ff
Coordination flags (bit)
11
20
First data byte - blank
12
20
Second data byte - Blank
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
85
11.3 Procedures
Data processing interface Response message (DISOMAT SIMATIC S5)
Byte num- hex. ber
Meaning
1
00
Fixed length 4 byte
2
00
3
00
4
xx
xx = fault code (00 = order ok; not equal to 00 = faults)
The structure of the ED message ED message using the example of Query Weight (TG) This command transmits the weights back to S5 without the no-motion state query. S5 can read the scale state from the scale status. For example: net = 123.5 kg, tare 100.0 kg and material flow 12.3 kg/second Request message (SIMATIC S5 —> DISOMAT)
86
Byte number
hex.
ASCII
Meaning
1
00
Order type
2
00
Order type
3
45
E
Command: input
4
44
D
Type: data
5
01
Source: DB = scale number, such as 1
6
05
Source: DW = command code “TG”
7
00
Number:
8
0e
Number: 14 DW
9
ff
Coordination flags (byte)
10
ff
Coordination flags (bit)
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.3 Procedures
Reaction message (DISOMAT —> SIMATIC S5)
Byte num ber
hex.
ASCII
Meaning
1
00
2
00
3
00
4
00
5
20
6
2d
-
7
31
1
Third data byte
8
32
2
Fourth data byte
Fault number (00 = no faults) First data byte
+
Second data byte
net
9
33
3
Fifth data byte
10
2c
,
Sixth data byte
11
35
5
Seventh data byte
+
12
23
#
Eighth data byte
-
13
20
Ninth data byte
+
14
20
15
31
1
Eleventh data byte
16
30
0
Twelfth data byte
17
30
0
Thirteenth data byte
18
2c
,
Fourteenth data byte
19
30
0
Fifteenth data byte
+
20
23
#
Sixteenth data byte
-
21
20
Seventeenth data byte +
22
20
Eighteenth data byte
23
20
Nineteenth data byte
24
31
1
25
32
2
Twenty-first data byte
26
2c
,
Twenty-second data byte
27
33
3
Twenty-third data byte +
28
23
#
Twenty-fourth data byte
29
63
c
Twenty-fifth data byte
-
scale status n1
30
30
0
Twenty-sixth data byte
-
scale status n0
31
23
#
Twenty-seventh data byte - separator
32
00
separator
Tenth data byte
tare
separator
Twentieth data byte
flow velocity kg/sec.
- separator
Twenty-eighth dummy byte
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
87
11.3 Procedures
Data processing interface or if there is a fault: Byte number
hex.
Meaning
1
00
Fixed length 4 byte
2
00
3
00
4
xx
xx = fault code
11.3.3.3 Examples for SIMATIC S5 messages Set tare memory (AT) Send message AT Byte number
hex.
ASCII
Meaning
1
00
02
00
3
41
A
Command:
issue
4
44
D
Type:
data
5
01
Target:?DB = scale number z.B. 1
6
01
Target: “AT”
7
00
Number:
8
01
Number:
9
ff
Coordination flags (byte)
10
ff
Coordination flags (bit)
11
20
First data byte - blank
12
20
Second data byte - blank
DW = command code
1 DW
Reaction message direct
88
Byte number
hex.
Meaning
1
00
Fixed length 4 bytes
2
00
3
00
4
00
Fault code (00 = no faults)
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.3 Procedures
Response message delayed After the weighing equipment has identified the no-motion state or the no-motion waiting period of 20 seconds is over, DISOMAT® Satus transmits the following message
Byte number
hex.
1
00
2
00
3 4 5
32
Target: DB can be adjusted in the menu tree, such as 50
6
54
Target: DW permanently assigned
7
00
Number:
8
01
Number:
9
ff
Coordination flags (byte)
10
ff
Coordination flags (bit)
11
30
0
First data byte – status
12
23
#
Second data byte - separator 1=
ASCII
Meaning
41
A
Command:
issue
44
D
Type:
data
1 DW
0= No OK
11.3.4 Teleperm M Siemens 3964R in Teleperm M-mode Teleperm M uses the procedure (and data head) such as the SIMATIC S5 RK512 (refer to Chapter 7.4.3). No character-orientated protocols are agreed to under Teleperm M. This is the reason why special messages are defined: n Data messages for transmitting floating point numbers in the Teleperm M format. n Bit-orientat ED messages that transmit the information to and from DISOMAT as bit spaces.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
89
11.3 Procedures
Data processing interface
11.3.4.1 Procedure agreements Message:
Synchronisation
Data message
Opening
Head
User data
Ending
Data security
10 bytes
(8 bits)
All numbers are shown as floating point numbers in the Teleperm M format. n n n n n
4 message types were defined for communication: Status message Actual value message Order message Setpoint message
All other messages that do not contain utility data also apply here.
Command
Type
Data word DW
Data length
dec.
hex.
dec.
Available in DISOMAT
hex
Status message
ES
93
5D
T
Actual value message
ED
94
5E
T
Command
Code
Request message
Response message
Status message
5D
(10 byte data head)
(4 bytes of data head) a a = 3 bytes of status information
Actual value message 5E
(10 byte data head)
(4 byte data head) z1z2z3z4 z1z2z3z4 = 4 floating point numbers
direct
90
BV-H2331GB / 0836
delayed
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.3 Procedures
11.3.5 J-Bus (Modbus) The J-Bus or the Modbus originally rolled out by Gould Modicon is a bus system particularly wide-spread in France that is especially customary when triggering peripheral systems with the PLC. These two bus systems differ with their physical connection. While the Modbus only allows RS485 4-wire interfaces, the J Bus is specified as RS485 2-wire and also allows power interfaces and RS232 as a point-to-point connection. DISOMAT® Satus uses RTU framing. J-Bus and Modbus are genuine bus systems. That means that all units are connected in parallel on the bus and a bus master settles the access authorisation to the bus (the master-slave principle). Three of the numerous functions provided by the J-Bus procedure are sufficient to produce the desired functionality: First type 3: Reading several words For data queries; identical to the ED messages of SIMATIC S5. For example: weight query Second type 6:
Writing a word For commands without data; identical to the AD messages of SIMATIC S5. Examples: Taring or start feeding.
Thitd type 16:
Writing several words For commands with data; Also identical to AD messages of SIMATIC S5; Examples: Specifying a setpoint and keying in manual tare.
A detailed description of the function code Function code 3, Reading several words The data structure of the request message Address Function code = 3 high byte start address (ignored in DISOMATs) low byte start address ( = message code in DISOMATs) number of words to be read high byte (ignored) number of words to be read low byte (ignored) CRC16 Response message if successful Address 3 (echo of the function code) length of the issue data in bytes data CRC16
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
91
11.3 Procedures
Data processing interface Response message if there is a fault Address 83 (hex) = echo of the function code (3) + 8. bit set fault code CRC16 IMPORTANT: Partial data records cannot be read by giving an address longer than the message code. Here’s an example: It is not possible to read the gross, net and status of address 50 and only reading the status of address 64. Function code 6, writing a word The data structure of the request message Address function code = 6 high byte address (ignored in DISOMATs) low byte address ( = message code in DISOMATs ) high byte value to be written low byte value to be written CRC16 Response message if successful Address 6 (echo of the function code) high byte address (ignored in DISOMATs) as an echo low byte address (= message code in DISOMATs) as an echo high byte value to be written as an echo low byte value to be written as an echo CRC16 Response message if there is a fault Address 86 (hex) = echo of the function code (6) + 8. bit set fault code CRC16 Function code 16, writing several words The data structure of the request message address function code = 16 high byte start address (ignored in DISOMATs) low byte start address ( = message code in DISOMATs) number of words to be written high byte (ignored) number of words to be written low byte (ignored) number of bytes to be written values to be written CRC16
92
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.3 Procedures
Response message if successful Address 16 (echo of the function code) high byte start address as an echo low byte start address (= message code in DISOMATs) as an echo number of words to be written high byte as an echo number of words to be written low byte as an echo CRC16 Response message if there is a fault Address 90 (hex) = echo of the function code (16) + 8. bit set fault code CRC16 Fault codes may be: 1: An invalid function code ( not 3, 6 or 16) 2: An invalid address = DISOMAT does not know the message code 3: Invalid data 4: System failure = local communication software (data processing task) does not respond or faults when processing the reading command Peculiarities of the J-Bus/Modbus The J-Bus procedure is only a master-slave procedure. In other words, there is only a data query of the master from the slave. No slave can transmit without being commanded to. The consequence is the fact that delayed response messages do not arrive. All data processing functions that require a delayed response messages can only be used to a limited extent or not at all (there is no delayed response on success/failure).
Non-applicable data processing functions with the J-Bus/Modbus n
Set tare
n Zero setting
Remedies/way out
Look for the tared bit in the scale status. Look in the area of zero for weight.
n
Query weight in the no-motion state
Obtain the weight without the no-motion state and look for the no-motion state bit.
n
Periodic weight query
Read weight periodically.
The data are transmitted in ASCII code. This means that ASCII messages are used, although without the #XX#-command code. This makes it generally valid considering the many different data formats depending on the machine with J-Bus transmission (Modbus transmission). Note: This offers transmitting 4-byte integer values as a special application.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
93
11.4 The structure of the utility data
Data processing interface
11.4 The structure of the utility data WN#XX#...utility data...# WN#XX#: Message header WN: Scale number or target address (two-digit decimal number (ASCII-coded 00-99) ) XX: message code (2 letters (A..Z, ASCII-coded) # Separators within utility data Utility data: Data as per the message code All data are transmitted (such as Teleperm M) in ASCII coding if not otherwise stated. Examples for utility data Specifying data to DISOMAT® Satus with scale number 02: Giving the weight on the scale in the current unit with range adjustment (AR): 02#AR#200,0# In this case:Adjust the range to 200 kg if the unit is preset to kg . DISOMAT result data: The response message with net weight, tare weight and status (TS, 7 total digits for the numerical values). 02#TS# 120,0# 40,0#c0# The response message with the scale parameters of DISOMAT in units of 0.1 seconds WR. 02#WR#20#15#0# Filter time: No motion time: Zero point tracking:
94
2.0 seconds 1.5 seconds off
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.5 Data processing commands
11.5 Data processing commands 11.5.1 Table of the data processing commands This table applies to DISOMAT® T from version 2.0. Data processing commands added afterwards are marked in the last column.
The table of the data processing commands in DISOMAT® Satus Command
Code (AS-CII message)
Type with SIMATIC S5
Data word DW with SIMATIC S5
Type with J-Bus
Address with J-Bus dec.
from version
Data length
DW dec.
hex.
dec.
hex.
dec.
Group of scale commands Tare Clear tare Key in tare Zero setting Query weight and dg/dt Weight with no-motion state Periodic weight request Request gross weight Request weight (16-bit Integer format)
AT AC ET AZ TG TS SZ TB IG
AD AD AD AD ED AD AD ED ED
1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9
ES AS GB BL GO HA AB DG
AD ED ED AD AD AD AD ED
32 33 34 35 36 37 38 39
RK PK
ED AD
64 68
PA AF
AD ED
85 66
14
E
6
6
20 21 22 23 24 25 26 27
5 9
5 9
9
9
40 44 55 42
4
4
13
D
6 6 16 6 3 * * 3 3
1 2 3 4 5 * * 8 9
16 3 3 6 6 6 6 3
32 33 34 35 36 37 38 39
3 16 16 3
64 68 85 66
Group of feeding Specify setpoint Query setpoint Read balance Clear balance Start feeding Stop feeding Cancel feeding Query feeding status
3 3 3 3 3 3 3 3
Group of general control Read all contacts Set contacts Set analog output Query faults
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
95
11.5 Data processing commands
Data processing interface
The table of the data processing commands in DISOMAT® Satus Command
Code (AS-CII message)
Type with SIMATIC S5
Data word DW with SIMATIC S5
DW
dec.
Type with J-Bus
Address with J-Bus dec.
from version
Data length hex.
dec.
hex.
dec.
Along with the messages described above, all of which were initiated by the data processing partners, there are a series of messages that are sent at the initiative of DISOMAT. Note: This does not apply to J-Bus operation. These messages are only sent in SIMATIC S5 operation if the target data module that can be keyed into DISOMAT’s dialog is not equal to zero. The messages are then sent to data words in this target DB with fixed offset.
Weight with no-motion state Periodic weight transmission Taring is done Zero setting is done Dead weight adjustment ended Range adjustment ended
96
TS TG AT AZ TO AR
AD AD AD AD AD AD
16 32 84 88 92 96
10 20 54 58 5C 60
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.5 Data processing commands
11.5.2 The table of command formats You can find a table of the command formats of the utility on the following pages, ordered according to: n Group of scale commands n Group of diagnosis n Group of feeding n Group of adjustment n Group of general control n Group of parametrisation
The table of the command formats of the data processing commands in DISOMAT® Satus Command
Send or request message
Response message direct
Response message delayed
AT
WN#AT#
WN#AT#s# The message is processed
WN#AT#s# The command is executed
Code
Group of scale command Taring
Clear tare
AC
WN#AC#
WN#AC#s#
Key in tare
ET
WN#ET#tara#
Tare the tare weight
WN#ET#s#
Zero setting
AZ
WN#AZ#
WN#AZ#s#
WN#AZ#s#
The message is processed
The command is executed
Query Weight
TG
WN#TG#
WN#TG#netto#tara#dg/dt#status# Net: net (7-digit) such as . - 123,5 Tare: tare (7-digit) such as - 50,0 dg/dt: DG/dt (7-digit) status: scale status
Weight in the no-motion state
TS
WN#TS#
WN#TS#s#
Request periodic weight transmission
SZ
WN#SZ#w# w: Period in multiples of 0.1 seconds acceptable values: 0 or 5-99 (w=0 switches dispatch off)
WN#SZ#s# The message is processed
Request gross weight
TB
WN#TB#
WN#TB#brutto# Gross: gross
Request weight (16-bit Integer format)
IG
WN#IG#
WN#IG# LowByteHighByte(Net)LowByte HighByte(Tare)LowByteHighByte(dg/dt) Net, Tare, dG/dt as a 16-bit Integer, standardised to 10,000 (scale final value), status
The message is processed
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
WN#TS#netto#tara#status# This message is transmitted after the weighing equipment identifies the no-motion state or the waiting time of 20 seconds is over. periodical: WN#TG#netto#tara#dg/dt#status#
(7-digit)
97
11.5 Data processing commands
Data processing interface
The table of the command formats of the data processing commands in DISOMAT® B, C and T command
Code
Transmission or request message
Response message direct
Response message delayed
Group of feeding Specify setpoint
ES
WN#ES#g# g: setpoint (7digit)
WN#ES#s#
Query setpoint
AS
WN#AS#
WN#AS#g# g setpoint (9-digit)
Query balance
GB
WN#GB#
WN#GB#g#w# g: balance total (11-digit, right-justified, with 2 places right of the decimal point) w: number of dumps (4-digit)
Clear balance
BL
WN#BL#
WN#BL#s#
Start feeding
GO
WN#GO#
WN#GO#s#
Stop Dosieren
HA
WN#HA#
WN#HA#s# The message is processed
Cancel feeding
AB
WN#AB#
WN#AB#s#
Query feeding status
DG
WN#DG#
WN#DG#stat#ist#soll# stat: feeding status 0: batch ended, feeding OFF 1: feeding ON 2: feeding stopped 3: after voltage ON, no batch run (0-3) + 10: past max. batching time (0-3) + 20: past max. filling or emptying time actual: actual value set: setpoint
98
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.5 Data processing commands
The table of the command formats of the data processing commands in DISOMAT® Satus Command
Code
Transmission or request message
Response message direct
Response messagedelayed
Group of general control Read all contacts
RK
Set contacts
pk
WN#RK#
WN#RK#K1#K2#K3#K4# Kx: position of contact x (x = 1,2,3 or 4) Kx = ‘1’: HIGH, Kx = ‚0’: LOW
WN#PK#K1#K2#K3#K4#
WN#PK#s# Kx: the value to set on contact x is Kx = ‘1’: HIGH, Kx = ‘0’: LOW,
Everything else: the contact is unchanged. Contacts can only be set by data processing if the source of the contact is set to Data Processing in configuration. Set analog output
PA
WN#PA#aaaa# aaaa: value of the analog output, 0 - 10,000
WN#PA#
0 <—> minimum power (0 or 4 mA) 10000 <—->maximum power (20 mA)
Query faults
AF
WN#AF#
WN#AF#F-Text#
F-Text:
fault number and text
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
99
11.5 Data processing commands
Data processing interface
11.5.3 Explanation on the commands WN S
The scale number is double-digit (such as 01) The code number of the status of the data processing command. If the code number is not equal to 0, it was not possiuble to execute the command without fault.
Code number
Status/faults
0
ok
1
No no-motion state
2
Outside of the zero setting range
3
Parameter faulty
4
Command faulty
5
Tare too small
6
Range too small
7
Cable break
8
Mechanical fault
9
Parameterisation fault
10
Fault in original adjustment
11
Values invalid
12
Fault in test number
13
Calibration switch, adjustment contact or adjustment jumper in the wrong position
14
Fault in scale interval
15
Data cannot be changed
-1
Miscellaneous faults
Status
100
scale status in hexadecimal view
Bit number
Meaning
0
Underrange
1
Overrange (weight > weighing range final value)
2
Tare calculated
3
Exactly zero
4
Operated with ten times the resolution of the weight
5
Weight invalid
6
Tare set
7
No-motion state identified
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Data processing interface
11.5 Data processing commands
For example:
status “c0" is interpreted as a hexadecimal number 0xc0 and converted to binary 11000000;
Value:
11000000
bits 6 and 7 are set. That means that tare is set and no-motion state is identified.
Bit:
76543210
Remarks:
The hexadecimal numbers a-f are always issued as lower-case letters.
Remarks:
The hexadecimal numbers a-f are always issued as lower-case letters.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
101
11.5 Data processing commands
Data processing interface
- Reserved for user’s notes -
102
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Calibration
12 Calibration The calibration parameters and the results of adjustment are stored in the scale connector called a dongle. The benefit is the fact that it does not have to be adjusted again after exchanging or changing the DISOMAT. Manipulating the dongle causes a loss of adjustment.
Fig. 39
Please do the following for parameterising and adjustment: 1. 2. 3. 4. 5. 6.
Turn off the power. Open the unit and the housing of the dongle by raising it on the side with a screwdriver. Remove the jumper between terminals 1 and 3 of the connecting plug (refer to the photograph) Carry out parameterisation and adjustment as described in the Operating Manual. Placing a jumper between terminals 1 and 3 makes the relevant data write-protected. Clip the together plastic housing components of the dongle.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
103
Calibration
- Reserved for user’s notes -
104
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Event Message Construction
13 Event Message Construction Event messages are constructed as follows:
KNNTT[-ID]:Text where: K = Class (1 digit) NN = Event number (2 digits) TT = Task number (2 digits) -ID = Optional ID number :Text = Event text The first letter (K) is the code letter of the event class currently assigned to the event. The next 2-digit number (NN) is the unique code of the reported event (=consecutive numbering of all event texts). Next, the 2-digit number of the task (TT) that started the event is read out. Optionally, an ID number (ID) designed to specify the cause of the reported event can follow. After the double point, the event is read out in text form.
Defined Event Classes Event Class
Code
Meaning
Message
M
Please note An event is information intended for the operator. A message will disappear automatically after 30 seconds. Messages can be acknowledged without passwords being required, if you wish to clear one before it disappears automatically. The DISOMAT will continue operating regularly.
Warning
W
The event informs the operator of an uncritical situation. The warning must be noted and acknowledged (no password required). The DISOMAT will continue operating regularly.
Alarm
A
Simple malfunction Informs the operator of a critical situation. The DISOMAT input and output contacts stop being processed and the outputs are set on safety standby. *) An alarm must be taken note of and the cause of this simple malfunction may need to be rectified; then the message must be acknowledged (no password required). Inputs/outputs will then continue being processed. *) As long as an alarm is activated, all malfunction-relevant binary function block outputs (primarily function blocks of the function block groups CONTROL and COMPARATORS) are set to ‘logical zero’.
Malfunction
S
Serious malfunction Informs the operator of very critical situations, e.g. device hardware faults. As with Alarm messages, inputs/outputs will not be processed and outputs are set to safety standby.*) The cause of the malfunction must be rectified to ensure that the system will continue operating regularly. The malfunction message must then be acknowledged. An arbitrary password is required (parameter or configuration password). *) As long as a malfunction is present, all malfunction-relevant binary function block outputs (primarily function blocks of the function block groups CONTROL and COMPARATORS) are set to ‘logical zero’.
With the event number, the optional ID and the event text, you can use the list in the following section to assist in troubleshooting.
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
105
Event Message Construction
List of Relevant Event Messages for the DISOMAT Satus Display Text
Cause
Repair
Scales 1 dongle missing
Re-plug dongle.
A0209: Mains failure A0309-nnn: Restart **) A04xx-nnn: Parameter error **) M06xx: No idle **) M07xx: Out of zeroing range **) M08xx: Tare too small **) S0909-x: Hardware error **) A1111-1:Cable breakage
Replace hardware
A13xx-nn:Check number **) M1520-1: Communication error
Repeat function (when scales idle!) Fieldbus: Unknown Write ID
M1520-2: Communication error
Fieldbus: Unknown Read ID
A1911: Measuring voltage too high
Measuring channel 1 input signal too high
Calibrate dead load.
W2105: Tare > Gross W4004: Feeding stopped W4104: Feeding aborted W4204-1: Setpoint
too low
Acquire setpoint.
W4204-2: Setpoint
too large
Acquire setpoint
W4304: Fill value too low W4404: Excess feeding
Setpoint will cause overfill
W4404-1: Excess feeding
Setpoint greater than maximum fill value
W4504: Out of tolerance
Out of POSITIVE tolerance
A4804: Analog interface cable breakage W5404: Check for empty
Bin tare weight out of configured limits
W6020: PLS no longer transmitting
External fieldbus master no longer polling controller
W700x-nnn: DP error
Empty bin
**)
Various identification numbers (IDs) not listed in this documentation can be read out for this event. They are designed to assist the suppliers’ service personnel in troubleshooting
106
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Event Message Construction
Parameter Error Itemization A0402-1:Parameter error
DP configuration
A0404-2: Parameter error
Analog output calibration
A0404-3: Parameter error
Material data
A0404-4: Parameter error
Maximum dW/dt
A0404-5: Parameter error
Load collective memory
A0405-1: Parameter error
Event classes
A0409: Parameter error
Country-specific settings
A0409-1: Parameter error
DISOPLAN
A0410: Parameter error
DT control
A0411-1: Parameter error
Scales 1 calibration parameters
A0411-2: Parameter error
Scales 1 weigh parameters
A0411-4: Parameter error
Calibration parameters part 2
A0411-5: Parameter error
Balances
A0411-6: Parameter error
Fixed tare
A0411-7: Parameter error
Scales 1 operation mode
A0411-8: Parameter error
Scales 1 calibration times
A0411-9: Parameter error
Scales 1 linearization
A0411-10: Parameter Error
Scales 1 times
A0411-11: Parameter Error
Scales 1 assignment dongle/measuring module
A0420-1: Parameter error
Modbus
A0420-2: Parameter error
Profibus-DP
A0420-4: Parameter error
DeviceNet
A0420-5: Parameter error
Modbus/TCP
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
Re-calibrate analog output.
107
Event Message Construction
- Reserved for user’s notes -
108
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Technical Data
13 Technical Data Supply voltage of the 19“ VSE 20900 unit
18 – 36 VDC/VAC
Supply voltage of the VFG 20900 / 20910 field unit
18 – 36 VDC / 115/230VAC
Power consumption
10 VA max.
Temperature range
Performance temperature: -30 to +60°C Storage temperature: -40 to +80 °C
Measuring channels
1
Load cell supply:
5V alternating current supply
Input signal
0 to 15 mV
Sensitivity
0.7 µV/d
Unit
kg, g, t, lb; N; kN
Scale value
1, 2 and 5 etc. adjustable from 0.01-5,000
Linearity
< 0,5%o
Zero point stability
< 1,0µV/10K = 0,07%o with reference to the maximum input voltage
Range stability
< 0,1%o/10K
Accuracy
< 0,2%o/10K
Taring
To 100% of the weighing range
Load cell impedance:
Min. 47 Ω ( entspricht 8 x 350 Ω - Load cell or > 20 RT load cells @ 4000 Ω )
Date/Time
Real-time clock (RTC), Minimum buffer time 7 days
Housing (VFE Type)
19“ cassette, 3HE, 8TE
Housing (VFE Type)
Plastic IP 65 protection class, suited for wall-mounting
Binary inputs *
3 x optocoupler, 18-36 VDC, type. 5 mA Fourth input also used as an option
Binary outputs *
4 x relay, 230 VAC, 60 W max. 1 x optocoupler, 18 - 36 VDC, max. 50 mA
Analog output
1 x 0(4) – 20 mA, 12 bits, max. load 500Ω
Serial interfaces:
2 interfaces for data processing or secondary display interface S1: RS 232 interface S2: 485, 2/4-wire; * Max. baud rate: 38400
Service interface
S1: for configuration ( DISOPLAN )
Data processing procedures
Siemens 3964R S5 (RK512) Schenck’s standard procedure DDP8672 Schenck’s poll procedure DDP8785 MODBUS MODBUS-TCP
Secondary display procedures:
DTA DDP 8861 DDP 8850 VLZ20200-D
Ethernet interface *
10/100MBaud, on board
Fieldbus (optional)
Profibus DP-V0 DeviceNet Ethernet-IP
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
109
Technical Data
- Reserved for user’s notes -
110
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Equipment supplied
15 Equipment supplied Designation
Material number
DISOMAT® SATUS VSE 20900 circuit board incl. front plate
V052188.B01
DISOMAT® SATUS VSE 20901 circuit board incl. front plate; with mounted PROFIBUS option
V052188.B02
DISOMAT® SATUS VSE 20910 circuit board incl. front plate, with integrated LED weight display
V053903.B01
DISOMAT® SATUS in the VFG 20900 field casing for 24 VDC supply
V053921.B01
DISOMAT® SATUS in VFG 20901 field casing for 24 VDC supply; with mounted PROFIBUS option
V053921.B02
DISOMAT® SATUS in VFG 20910 field casing with transformer for 115/230 VAC supply
V053922.B01
justrightDISOMAT® SATUS in VFG 20911 field casing with transformer for 115/230 VAC supply; with mounted PROFIBUS option
V053922.B02
VNG 0900 19" rack
V055346.B01
Power supply unit for 85-250 V AC, for up to 9 VSE 209xx with fieldbus cards
V053978.B01
VXB 20901 safety barriers for RTN/RTB/VBB/PWS load cells in potentially hazardous area of ATEX category 2G
V068489.B01
VXB 20911 safety barrier for RTK/DMA weigh cells
V068493.B01
Profibus installation set for DISOMAT® SATUS
V053917.B02
DeviceNet Satus installation set
V053918.B02
DISOPLAN VPL 20430 configuration software
V029764.B01
DISOMAT Satus System Manual BV-H2331GB / 0648 © Schenck Process GmbH
111
Equipment supplied - Reserved for user’s notes -
112
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
Appendix
16.1 Fieldbus accessories
16 Appendix 16.1 Fieldbus accessories For connecting and cabling the fieldbus modules of DISOMAT® We recommend Satus for the following components: Bus distributor star distributor IP20
D-SUB System
Star distributor for TS 35 assembly, 1 bus-in (pin), 5 bus-out (bushing), Phoenix PSM-PTK4
Schenck material no. E013613.01
Bus distributor T-piece IP20 T-piece for TS 35 assembly, 1 bus-in (pin), 2 bus-out (bushing), Phoenix PSM-PTK
D-SUB System
9-pin Steckverbinder IP20 for 1 cable Interbus S (pin), Phoenix-Subcon-9/M-SH (bushing), Phoenix-Subcon-9/F-SH
D-SUB System
Schenck material no. E144562.01
Schenck material no. E030909.01 Schenck material no. E012924.02
9-pin plug-in connector IP20 for 2 cable: Profibus (pin), Phoenix-Subcon-Plus M1
D-SUB System
9-pin plug-in connector IP20 for 2 Profibus cables (pin), with screw terminals and connectable terminal resistor SIEMENS, 35 degree outgoing cable
D-SUB System
Schenck material no. E144563.01
Schenck material no. V022274.B01 9-pin plug-in connector IP20 for 2 Profibus cabless (pin), with screw terminals and connectable terminal resistor SIEMENS, 90 degree outgoing cable 9-pin plug-in connector IP20 for 2 Profibus cables (pin), with screw terminals and connectable terminal resistor SIEMENS, 180 degree outgoing cable Fieldbus cable for Profibus DP,
D-SUB System
Schenck material no. E094704.06 D-SUB System
Schenck material no. E909543.01 Schenck material no. E054627.01
Interbus, Modbus can be universally used to 500 kbit/s, d=7,1 mm 6-strand to 12 MB/s violet special cable, d=7.7 mm 2-strand
DISOMAT Satus System Manual BV-H2331GB / 0836 © Schenck Process
Schenck material no. 3849219
113
16.1 Fieldbus accessories
Appendix
- Reserved for user’s notes -
114
BV-H2331GB / 0836
System Manual DISOMAT Satus © Schenck Process
DISOMAT®Satus , DISOMAT®Opus, DISOMAT® Tersus Data Communication
BV-H2359GB
PASS - Service you can rely on. Fast, comprehensive, anywhere in the world Quality and reliability are the cornerstones of our company’s philosophy. That is why we consider a comprehensive service concept simply par for the course, from strict quality control, installation and commissioning through to seamless support across the entire product life cycle. With over 30 service stations and over 180 service specialists, you can count on us to be there whenever – and wherever – you need us. It doesn’t matter where you are, our specialists are there to advise and assist with the best in worldwide, personal, comprehensive service. During office hours, service specialists from all divisions are on hand to analyse problems and failures. Look at www.schenckprocess.com for your nearest Schenck Process Location. Customised to meet your requirements, our comprehensive Process Advanced Service System provides you with the best service. Are you looking for individual, perfect-fit service solutions? Then our, the modular service system PASS, is the ticket. It covers the entire service spectrum, from simple inspections through to full service. Interested? Then find out more about the individual components at www.schenckprocess.com/en/service.
Free 24 h Emergency Service Hotline in Germany Are you experiencing a failure or problem outside normal office hours? Our service staff are on call around the clock to deal with failures, service planning and other emergencies. J +49 171 2 251195
Heavy and Light excluding Static Weighing Equipment
J +49 172 6 501700
Transport Automation and Static Weighing Equipment
© by Schenck Process GmbH, 2009 Pallaswiesenstraße 100, 64293 Darmstadt, Germany J +49 61 51-15 31 0 www.schenckprocess.com All information is given without obligation. All specifications are subject to change. Note: Translation of the original instructions
Contents 1
Something about this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1
Information for operators of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1
List of procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2
The interface parameter of DISOMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
Computer, PC Coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1
Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2
Schenck Process Standard Protocol (DDP 8672). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Schenck Process Poll Protocol (DDP 8785) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Schenck Minproz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Siemens Protocol 3964R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ASCII-S5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ASCII - Modbus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Message Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 User Data Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 EDP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3
Commands Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5
Coupling for SPS and PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1
Modbus-RTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3 5.3.1 5.3.2 5.3.3
The structure of the data telegrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 The structure of the fault telegrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 The address ranges of the coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Data from the process control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Data on the process control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Modbus interface parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Modbus/TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Example telegrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Diagnosis and Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Parameterising the controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Ethernet/IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Start Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 The Functionality of Ethernet Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 User Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Configuring the Network in RSLogix 5000" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Profibus DP protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Data segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Structure of user data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Data from the process control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
I
5.3.4 5.3.5 5.3.6 5.4 5.4.1 5.4.2 5.6 5.6.1 5.6.2 5.7
II
Data on the process control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Profibus-DP interface parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Planning aids (drawings, rules) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DeviceNet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Structure of user data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Parameterising DeviceNet interface parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Available data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Setpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Controller data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Date/time format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Something about this manual
1
Something about this manual Who is it written for? This manual is for technicians and programmers who want to control the equipment described (called DISOMAT or equipment below) with a data processing unit or create their own function block linkages. The assumption is made that DISOMAT functions are known and the user has a basic knowledge of data exchange in local computer networks (point-to-point connections and bus systems).
Software versions DISOMAT OPUS DISOMAT Satus DISOMAT Tersus
starting from version 20700-003 starting from version 20900-001 starting from version 20450-002
What does this describe? It describes: n n n n
Procedures Data processing commands Bus interfaces The entire function block strategy
A table of supplementary manuals
Internal numbers DISOMAT® Opus System Manual
BV-H2310GB
DISOMAT® Opus Operating Manual
BV-H2313GB
DISOMAT® Satus System Manual
BV-H2331GB
DISOMAT® Tersus System Manual
BV-H2334GB
DISOMAT® Tersus Operating Manual
BV-H2335GB
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
1
Something about this manual
- Reserved for Notes -
2
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Safety Instructions
2
Safety Instructions Intended use When controlling DISOMAT, please make sure that it is used for the intended purpose as described in the manual. Any use beyond that is considered not for the intended purpose.
General hazards if safety instructions are not obeyed DISOMAT is reliable state-of-the-art equipment when connected. However, there might be residual hazards if untrained personnel use it incorrectly.
Safety-conscious work Anyone entrusted with the DISOMAT data processing should have read and understood the manual and in particular the safety instructions. n Only trained and authorised personnel may connect DISOMAT to a computer and control it via data lines. The assumption is made that the personnel is familiar with weighing equipment functions. n Fault messages may only be acknowledged after the reason for the fault has been rectified and there is no longer a hazard. n Fault messages may only be acknowledged with a password after the reason for the fault has been rectified. Beyond this, if control systems are connected to a lower order DISOMAT, they have to ensure that the control systems stay in a safe state after acknowledging default. n
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
3
2.1 Information for operators of
Safety Instructions
Labelling residual hazards Some commands may only be used interactively. This generally applies to all commands critical to safety such as acknowledging a fault message and starting feeding. These commands are marked with the symbol below in this manual. There might be danger to persons or property if these commands are carried out without the approval of an operator. When computer controlling DISOMAT, please make sure that commands critical to safety are only carried out if they are approved by an operator. Before giving approval, this operator has to satisfy him or herself that there is no danger. If this is not possible, you should avoid using commands critical to safety in computer control.
Safety notes for the user company The user company shall bear the responsibility for proper data processing for the connected DISOMAT. n Personnel supervisors should be familiar with the chapter on safety instructions and the operation and start-up items with an impact on safety. n Before start-up, supervisors should check whether computer controlled DISOMAT operation might cause additional hazards in connection with other machines or plant components . If necessary, supervisors should supplement safety instructions. n
2.1
Information for operators of calibrated scales Requirements made of add-on non-verifiable equipment/data processing systems for recording readings for commercial applications. Legal provisions Readings for commercial applications have to be obtained with calibrated measuring instruments. The readings may be forwarded to add-on non-verifiable equipment (computer systems) for creating commercial vouchers assuming that the scale or the configurable (i.e., approved) add-on equipment records or stores readings in a non-deletable fashion and without making any changes · and that the readings are accessible to both parties affected by the measurement. *)
*) The weights and measures regulations state that add-on equipment is equivalent to the measuring instruments. The weights and measures act and weights and measures regulations take these circumstances into consideration by making specific requirements of the data processing equipment and programs used in commercial applications.
Requirements made of data processing connections/query for recording readings and creating vouchers: 1. Legal-for-trade reading query (guaranteeing legal-for-trade data storage):
4
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Safety Instructions
2.1 Information for operators of · · ·
The legal-for-trade reading has to be queried as per the instructions in Schenck manuals. When changing the prompting mode from DP to scale, always check to see if data is correctly saved. Readings for a commercial voucher may not be further processed without prior legal-for-trade data storage (for instance, with a fault message). If this is not respected, this would be a violation of calibration regulations which would be tantamount to a regulatory offense.
2. Labeling readings: · Identification features (strings) such as
° Date/Time ° Cons. No. ° Vehicle No. are or should be assigned to legal-for-trade readings for tracing them from the legal-for-trade data memory to the commercial voucher. ·
The commercial voucher has to have the following note: “Readings from freely programmable add-on equipment. These legal-for-trade readings may be inspected.”
3. The duration of legal-for-trade data storage. The minimum storage period for legal-for-trade readings is 3 months. The oldest reading is overwritten when storing new readings. Storage periods > 3 months can be set. The operator of the scale equipment is responsible for complying with the statutory requirements.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
5
2.1 Information for operators of
Safety Instructions
- Reserved for Notes -
6
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Introduction
3
Introduction Agreements on electrical connections (on the physical level) and data exchange are necessary if DISOMAT is supposed to be connected to and remote-controlled by a higher-level data processing system (a process computer, PC or stored program control). DISOMAT can be connected into local networks via serial interface and data exchange is geared towards the normal protocols in the stored program controls (SPC). They are called procedures in this framework. Procedures are rules agreed for establishing communication as well as formatting and coding data including ensuring correct transmission. All procedures applied to DISOMAT use messages for transmitting or receiving data blocks (telegrams) and confirming the connection (acknowledging). What all procedures have in common is the “immediate response” property: DISOMAT responds immediately to each telegram and transmits another telegram after execution (such as “taring has been completed”) with commands that require a certain time for execution. The data to be transmitted, known as user data, are packed into data telegrams that also contain control and test characters. Control characters define the beginning and end of the data telegram. To do this, either the user data from the beginning and end characters are limited or the entire length of the data telegram is given by the telegram head. Block check characters (BCC) are used for data storage because they enable the recipient to identify faults in data transmission. The data and user data can be character-coded (such a 7-bit ASCII. 8-bit ASCII) or transmitted as binary sequences of bits.
Message:
Synchronisation
Data telegram
Opening
Head
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
User data
BV-H2359GB/0902
Data storage Ending
7
3.1 List of procedures
3.1
Introduction
List of procedures The list below shows the procedures presently used in DISOMAT for communication via serial interfaces. Couplings for computers, PCs q SCHENCK Standard Procedure; refer to Chapter 4.1.1 q SCHENCK Poll Procedure; refer to Chapter 4.1.2 q SIEMENS 3964R; refer to Chapter 4.1.3 q ASCII-S5; refer to Chapter 4.1.4 q ASCII-Modbus; refer to Chapter 4.1.5 Other procedures may be visible in the selection depending upon the equipment configuration such as DDP 8672-MS. These procedures are only of importance in specific applications and they are documented in each plant description. q q q q
3.2
Coupling for SPS and PLC Modbus Protocol; refer to Chapter 5.1 Profibus-DP Protocol; refer to Chapter 5.2 Interbus-S Protocol; refer to Chapter 5.3
The interface parameter of DISOMAT Several parameters have to be set before the interface can be operated. The parameters can be keyed in or selected with DISOMAT in the menu tree under the following menu items: n n n
PERIPHERY /interfaces PERIPHERY /COMMUNICATION/ data processing PERIPHERY /COMMUNICATION/fieldbus
You can find an exact description of the settings in each operating manual.
8
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.1 Protocols
4
Computer, PC Coupling
4.1
Protocols
4.1.1
Schenck Process Standard Protocol (DDP 8672) Protocol Agreements Nachricht:
Synchronisation Eröffnung
Daten-Telegramm Kopf Nutzdaten
Nachspann
...
Datensicherung
In the following, the individual data transmission elements are characterized. The sequence of elements is not to be understood as time sequence. Enquiry The sender starts data transmission with control character . Acknowledgement The receiver acknowledges the enquiry with (ready to receive) or (not ready). Data Message The data messages (send, request and response messages) are constructed as follows: User Data Acknowledgement Receiver acknowledges successful data transmission with ; faulty data transmission, with . Error Recognition Receiver acknowledges with or one of the two stations fails to send feedback within preset period of time.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
9
4.1 Protocols
Computer, PC Coupling
Behaviour Upon Errors In Data Transmission Upon errors in data transmission, sender repeats sending various times. With errors in connection set-up, repeats start from enquiry. With faulty transmission of user data, repeats start with data message.
Synchronization Monitoring Times, Repeats: Acknowledgement monitoring time
tq 2 seconds
Response monitoring time
ta 5 seconds
Enquiry monitoring time
te 2 seconds
Max. number of enquiry repeats:
3
Max. number of data repeats:
3
Data Protection, Block Check Character Generation BCC is formed as longitudinal parity over all character sent exclusive of . BBC bits complete number of bits 1 of a bit number line to even (s. Example) parity bit is not formed in accordance with this rule. It is generated from the 7 bits of the BBC itself. Receiver for his part generates the BCC code and compares it with block check characters received.. Block check character formation for AB34 data.
Example: Bit No.
7 6 5 4 3 2 1 Parity bit Here: Odd
S T X 0 0 0 0 0 1 0 0
A
B
3
4
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1
0 1 1 0 0 1 1 1
0 1 1 0 1 0 0 0
E T X 0 0 0 0 0 1 1 1
B C C 0 0 0 0 1 1 1 0
(Longitudinal: Always even and BCC parity same as character parity)
10
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.1 Protocols
Sending Priority The DISOMAT units always have low priority. If both stations attempt to start data communication, DISOMAT aborts sending and goes to receiving state.
Sequence 1. Sample Sequence: DISOMAT with address 01 is to transmit current weight values to EDP. 1) EDP sends command for weigh data transmission to DISOMAT (01#TG#).
Master (EDP)
Slave (DISOMAT )
Protocol Element Enquiry
01#TG#
Acknowledgement Request message
Acknowledgement
2) DISOMAT responds with response message comprising net and tare weights, weight change per time unit (dW/dt) and scale status information.
Master (EDP)
Slave (DISOMAT )
Protocol Element
Enquiry
STX>01#TG#netto#Tare#dg/dt#status#
Response message
Acknowledgement
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Acknowledgement
BV-H2359GB/0902
11
4.1 Protocols
Computer, PC Coupling 2. Example:
Command with delayed response
DISOMAT with address 01 is to be tared remote-controlled via EDP. 1) EDP sends taring command (01#AT#) to DISOMAT. Master (EDP)
Slave (DISOMAT )
Protocol Element Enquiry
01#TG#
Acknowledgement Request message
Acknowledgement
2) Taring is possible only under certain conditions, e.g. DISOMAT must have recognized no-motion. This may take some seconds. Therefore, DISOMAT sends an immediate response message informing EDP that the command is being processed.
Master (EDP)
Slave (DISOMAT )
Protocol Element
Enquiry
Acknowledgement 01#TG#
Response message direct Acknowledgement
S=0: Command execution OK S¹ 0: Command execution faulty 3) DISOMAT tries to tare scale and, once command is successfully executed, sends a response message including the information 01#AT#0# (user data). If the command could not be performed (DISOMAT has not recognized no-motion after a certain timeout), the response includes a number unequal to 0, e.g. 01#AT#1#. Master (EDP)
Slave (DISOMAT )
Protocol Element
Enquiry
Acknowledgement 01#TG#
12
Response message delayed Acknowledgement
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.1.2
4.1 Protocols
Schenck Process Poll Protocol (DDP 8785) This protocol has been developed from the SCHENCK Standard Protocol (see Item 4.1.1, or Spec Sheet DDP8 672) and is used for special applications, for instance, running weight display in superordinate PC. EDP starts communication direct with request message and DISOMAT responds with corresponding data record. This is done without acknowledgement and without repeat in case of error. Transmission of data contents is secured through block check mechanism (recognition of faulty messages). Note: With this protocol, important response messages can get lost, particularly the delayed response messages whose output time is not exactly predictable. Examples: n The feed result message (DO) may be output several hours after start of feeding. n The delayed message of the taring command (AT) follows only in no-motion.
Protocol Agreements Message
Synchronization Enquiry
Data Message Header User data STX>
Data Protection Ending
IIn the following, the individual data transmission elements are characterized. The sequence of elements is not to be understood as timely sequence. Enquiry Omitted! Data Message The data messages (send, request and response messages) are constructed as follows: User Data Acknowledgement Omitted! Error Recognition One of the two stations does not send feedback within preset period of time.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
13
4.1 Protocols
Computer, PC Coupling
Behaviour Upon Errors in Data Transmission Upon errors in data transmission (timeout), sender retries data request.
Synchronization, Monitoring Times, Repeats: n n n n n
No acknowledgement Response monitoring time ta : 5 sec. No enquiry No data repeats No EDP error on DISOMAT
Data Protection, Block Check Character Generation See Item 4.1.1, page 7. Sending Priority The DISOMAT units always have low priority. If both stations try to start data communication, DISOMAT aborts sending and goes to receiving state.
Sequence
Example: EDP sends command for weigh data acquisition and transmission to DISOMAT .
01#TG#
>
DISOMAT reponds directly with data message.
<
14
01#TG#netto#Tare#dg/dt#status#
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.1.3
4.1 Protocols
Schenck Minproz Minproz was consciously developed as a very simple procedure. Its set-up without character check or block check characters makes it possible to trigger telegrams from a terminal program for testing purposes (such as Windows Hyperterminal). The fact that there is no block check means that data can be falsified without decection. This is the reason why it is not advisable to apply this procedure when operating the scale. Master starts communication with the request message direct and DISOMAT responds with the corresponding data record. On either side, this takes place without acknowledgement, block check and repeat in case of error.
Protocol Agreements Synchronisation Message:
Enquiry
Data Message Header
User data
—-
Data Saving Ending
Enquiry, acknowledgement, error recognition omitted! Data message Data messages (send, request and reponse messages) are constructed as follows:
User data EDP sends command for acquisition and transfer of weigh data to DISOMAT.
>
01#TG#
DISOMAT responds with data message direct.
<
01#TG#net#tare#dW/dt#status#
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
15
4.1 Protocols
4.1.4
Computer, PC Coupling
Siemens Protocol 3964R Protocol Agreements Synchronization Message:
Enquiry
Data Message Header
Data Protection
User data
Ending
...
In the following, the individual data transmission elements are characterized. The sequence of elements is not to be understood as timely sequence. Enquiry Sender starts data transmission with control character . Acknowledgement The receiver acknowledges the enquiry with (ready to receive) or (not ready). Data Message Data messages (send, request and response messages) are construction as follows:
User data Acknowledgement Receiver acknowledges successful data transmission with ; faulty transmission, with . Error Recognition Receiver acknowledges with or one of the two stations fails to send feedback within preset period of time.
Behaviour Upon Errors in Data Transmission Upon errors in data transmission, sender repeats sending various times. In principle, repeats start from enquiry.
Synchronization, Monitoring Times, Repeats: n n n n n
16
Acknowledgement monitoring time Response monitoring time Enquiry monitoring time Max. number of enquiry repeats Max. number of data repeats
BV-H2359GB/0902
tg 2 sec. ta 5 sec. te 2 sec. 5 5
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.1 Protocols
Data Protection, Block Check Character Generation See Item 4.1.1, page 7. Sending Priority DISOMAT aways has low priority. If both stations try to start data communication, DISOMAT aborts sending and returns to receiving state. Value Range The value range of transmitted characters of a data section covers 8 bits, i.e. in hexadecimal representation 00 to FF. This value range requires a special treatment of user datas’ end code (), if the bit string of the character is included in user data. This is done by doubling the Doubling character. Doubling occurring in user data is doubled by transmitter, for receiver to completely receive user data. If two codes are received, receiver resets doubling and treats as data byte.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
17
4.1 Protocols
Computer, PC Coupling
Data Request Sequence Example:
1)1) EDP sends command for weigh data transmission upon no-motion.
Master (EDP)
Slave (DISOMAT )
Protocol Element
Acknowledgement
Acknowledgement
Enquiry Response message
01#TS#
2) EDP receives immediate response that command has understood. The code in response message stands for the status of the EDP command. 0=OK, 1=Error
18
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
Master (EDP)
4.1 Protocols
Slave (DISOMAT )
Protocol Element Enquiry
Acknowledgement 01#TS#s#
Response message Acknowledgement
s = 0: Command execution OK s¹ 0: Command execution faulty 3) Then, DISOMAT sends delayed message. If command can be executed within preset period of time (20 seconds), delayed message includes requested data, here: weight values and status. If not, corresponding error message is output after elapse of preset period of time. Master (EDP)
Slave (DISOMAT )
Protocol Element
Enquiry
Acknowledgement 01#TS#netto#Tare#status
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Response message Acknowledgement
BV-H2359GB/0902
19
4.1 Protocols
4.1.5
Computer, PC Coupling
ASCII-S5 The protocol used with SIMATIC S5/S7 differs from the SIEMENS 3964R protocol by the 10-byte message header ahead of user data which comprises address, command and length information. In DISOMAT this protocol is called “S5”. In SIMATIC S5 Mode, all data are transmitted in ASCII code. Data block or word are represented hexadecimally (0..FF) To address a scale, n the data block (DB) for scale number (0...255) must be used and n the message code must be included in data word (DW). For corresponding values, see Table “EDP Commands” at Item 4.2.2. Example:
“Request weight in no-motion" to DW=6, “Periodic request” to DW=7.
The address of the AD messages sent from DISOMAT consists of data block and data word (firmly preset) for the message code. See Item 4.2.2.
Protocol Agreements Synchronization Message:
Data Message
Enquiry
Header
User data
Ending
10 Bytes
...
Data Protection
IIn the following, the individual data transmission elements are characterized. The sequence of elements is not to be understood as timely sequence. Enquiry Sender starts data transmission with control character . Data Message Data messages (send, request and response messages) are constructed as follows: Message header User Data . Acknowledgement Receiver acknowledges successful data transmission with ; faulty data transmission, with . Error Recognition Receiver acknowledges with or one of the two stations fails to send feedback within preset period of time.
20
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.1 Protocols
Behaviour Upon Errors in Data Transmission Upon errors in data transmission, transmitter repeats sending various times. Repeats always start from enquiry.
Synchronization, Monitoring Times, Repeats n n n n n
Acknowledgement monitoring time Response monitoring time Enquiry monitoring time Max. number of enquiry repeats: Max. number of data repeats
tq = 2 sec. ta = 5 sec. te = 2 sec. 5 5
Sending Priority DISOMAT always has low priority. If both stations try to start data communication, DISOMAT aborts sending and goes to receiving state. Value Range The value range of transmitted characters of a data section covers 8 bits, i.e. in hexadecimal representation 00 to FF. This value range requires a special treatment of user datas’ end code (), if the bit string of the character is included in user data. This is done by doubling the character. Doubling occurring in user data is doubled by transmitter, for receiver to completely receive user data. If two codes are received, receiver resets doubling and treats as data byte.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
21
4.1 Protocols
Computer, PC Coupling Request Message Header With ”S5” Protocol In ”S5” mode, all data in the message header are represented in hexadecimal fashion. All messages start with two zero bytes ( ) followed by message type (ED or AD), data block address, data word address and two coordination flags. Byte No.
Meaning
1
00
2
00
3 4
Message type (ED or AD)
5
Data block address = Scale number
6
Data word address = Command code
7 8
Data length (> 1) in words
9
Coordination flag
10 11 ...
To keep configuration work down and ensure maximum data safety, value FF is expected for every byte. Data; length indicated in 7th and 8th byte. (At least one data word must be sent.)
AD and ED Message Descriptions: AD messages (SEND messages) consist of message header (10 bytes) followed by data. Response message contains a 4-byte status information. ED messages (FETCH messages) consist of message header (10 bytes). Response message comprises 4-byte status information and requested data.
22
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.1 Protocols
AD Message Construction AD message in the Clear Tare example (AC) Request message (SIMATIC DISOMAT ) Byte No.
hex.
ASCII
1 2 3
00 00 41
Meaning
A
Vommand: Output
4 5 6 7 8 9 10
44 21 02 00
D
Type: Data Destination: DB = Scale no., e.g. 33 Destination: DW = Clear Tare command code Number
01 FF FF
Number : 1 DW Coordination flag (byte) Coordination flag (bit)
11 12
20 20
1st data byte — (blank) 2nd data byte – (blank)
>
Response message (DISOMAT —> SIMATIC).
<
Byte No.
hex.
Meaning
1 2 3 4
00 00 00 xx
4-byte fixed length
xx= Error code (00 = Job OK; unequal to 00 = Error)
ED Message Construction ED message in the ”Request Weight” example (TG) This command returns the weight values to SIMATIC without no-motion inquiry. SIMATIC can read out scale status (see Item 4.3). In our example, net = -123.5kg, tare=100.0kg and material flow=12.3kg/sec.
Request message (SIMATIC —> DISOMAT ) Byte No. 1 2 3 4 5 6 7 8 9 10
00 00 45 44 21 02 00 0e FF FF
hex.
ASCII
E D
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Meaning
Command: Input Type: Data Source: DB = Scale number, e.g. 33 Source: DW = Request weight command code Number Number : 14 DW Coordination flag (byte) Coordination flag (bit)
BV-H2359GB/0902
>
23
4.1 Protocols
Computer, PC Coupling
Response message (DISOMAT
<
Byte No. Meaning 1 2 3 4
hex.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
20 2d 31 32 3
33 2c 35 23 20 20 31 30 30 2c 30 23 20 20 20 31 32 2c 33 23 63 30 23 00
SIMATIC)
ASCII
00 00 00 00
Error number (00 = No error)
1 2
5 #
1 0 0 , 0 #
1 2 , 3 # c 0 #
1st data byte 2nd data byte 3rd data byte 4th data byte Net 5th data byte 6th data byte 7th data byte 8th data byte - Separator 9th data byte 10th data byte 11th data byte 12th data byte Tare 13th data byte 14th data byte 15th data byte 16th data byte - Separator 17th data byte 18th data byte 19th data byte Material flow kg/s 20th data byte 21st data byte 22nd data byte 23rd data byte 24th data byte - Separator 25th data byte - Scale status n1 26th data byte - Scale status n0 27th data byte - Separator 28th dummy byte
or, if an error has occurred:
<
24
Byte No. 1 00 2 00 3 00 4 00
hex.
ASCII
BV-H2359GB/0902
Meaning 4-byte fixed length
xx = error number (00 = OK; not 00 = error)
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.1 Protocols
Further Examples Acquire Tare Send message AT: Byte No. 1
Hex. 00
2
00
3 4 5 6 7 8 9 10
41 44 21 01 00 01 FF FF
11 12
20 20
ASCII
Meaning
A D
Command: Output Type: Data Destination: DB = Scale number, e.g. 33 Destination: DW = Tare command code Number Number : 1 DW Coordination flag (byte) Coordination flag (bit) 1st data byte - blank 2nd data byte - blank
>
Direct response message
<
Byte No. 1 2 3 4
Hex. 00 00 00 00
Meaning 4-byte fixed length
Error code (00 = No error)
Delayed response message Once weighing system has recognized no-motion or the 20-second no-motion timeout has elapsed, DISOMAT sends the following message:
<
Byte No. 1 2 3 4 5 6 7 8 9 10
Hex. 00 00 41 44 32 54 00 01 FF FF
ASCII
Meaning1
A D
Command: Output Type: Data Destination: DB settable in menu tree, e.g. 50 Destination: DW permanently assigned with AT = 84 Number: Number: 1 DW Coordination flag (byte) Coordination flag (bit)
11 12
30 23
0 #
1st data byte - Status 0 = OK 1 = Not effected 2nd data byte - Separator
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
25
4.1 Protocols
Computer, PC Coupling
Feeding Stopped Send message BR: Byte No. Hex. 1 00 2 00 3 41 4 44 5 32 6 50 7 00 8 01 9 FF 10 FF 11 12
31 23
ASCII
Meaning
A D
Command: Output Type: Data Destination: DB settable in menu tree, e.g. 50 Destination: DW = perm. assigned with BR = 80 Number: Number : 1 DW Coordination flag (byte) Coordination flag (bit)
1 #
Feeding Stopped code Separato
>
Response message:
<
Byte No. 1 2 3 4
Hex. 00 00 00 00
Meaning 4-byte fixed length
Error code
DISOMAT automatically sends this message to SIMATIC provided that feeding has been started by SIMATIC and the data block address has been entered at DISOMAT menu item EDP Configuration in decimal fashion (e.g. 50, hex 32). This message is output if: n n n n
First HA command (Stop Feeding) from SIMATIC AB command (Abort Feeding) from SIMATIC First stop via keyboard or input contact Error in feeding operation.
Restart stopped feeding operation with ‘Start Feeding’ (”GO”, hex 24).
4.1.6
ASCII - Modbus The ASCII-Modbus protocol corresponds to the message construction described at Item 5.2. The user data, however, are in the ASCII format. For type and address values, see “ZDV Commands” table at Item 4.2.2.
26
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.2 Message Descriptions
4.2
Message Descriptions
4.2.1
User Data Construction Data construction in protocol frame is organized as follows:
Address # EDP Command# Specific Data#
Address Meaning Used to distinguish multiple scales or DISOMAT units operating in group mode, the scale address must have two digits, e.g. 04 and an ASCII code. DISOMAT units equipped with two channels reserve 4 addresses/channel. Enter scale address in menu tree at Item ‘4431:EDP’. 1st address identifies the displayed scale. 2nd address …Scale 1 3rd address …Scale 2 4th address …Twin-unit scale
EDP Commands The ”EDP Command” field consists of a 2-digit ASCII code used as abbreviation of the command to be executed on DISOMAT , see Table at Item 4.2.2. Example: AT Aquire Tare ES Enter Setpoint For ASCII-S5, the ‘Address #EDP Command#‘ sequence is replaced by the message header of SEND/FETCH (AD/ED) messages. The ”EDP Command” field is converted into data words within the addressed data block. The ‘Specific Data‘ are transmitted as user data in the ASCII code.
Specific Data This part of the user data is variable and corresponds to the parameters sent to DISOMAT using the relevant EDP command. The Address and EDP Command fields are separated by #. Example: Scale adress 1 means: Adress 1 = displayed scale Adress 2 = Scale 1 Adress 3 = Scale 2 Adress 4 = Twin unit scale If multiple devices are present on a bus, next DISOMAT receives scale address 5.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
27
4.2 Message Descriptions
4.2.2
Computer, PC Coupling
EDP Commands
Table of DISOMAT EDP Commands Command
Identifier (ASCII telegram)
Type with
Data word DW with
Type
SIMATIC S5
SIMATIC S5/S7
with J-Bus
* = not implemented
DW
addre ss with J-Bus
Data length
dec.
hex.
1 2 3 4 10
1 2 3 4 0a
dec.
hex.
dec.
dec.
6 6 16 6
1 2 3 4
5 6 7
5 * *
16 3 16 3
32 33 41 42
16
43
3 3 6
34 40 35
6 16 6 6
36 45 37 38
Group of ‘Scale Commands’: AT AC ET AZ WN
AD
TG TS SZ
ED AD AD
5 6 7
5 6 7
Specify setpoint Query setpoint Specify material number and setpoint Query current material number and setpoint Specify data for specific sorts Query data for specific sorts
ES AS SE SR
AD ED AD ED
32 33 41 42
20 21 29 2a
SD SA
AD *
43
2b
Query balance Read sort balances Delete balances
GB SB BL
ED ED AD
34 40 35
22 28 23
Start feeding with current data Start feeding data for specific sorts Stop feeding Cancel feeding
GO SG HA AB
AD AD AD AD
36 45 37 38
24 2d 25 26
Query feeding status Query extended feeding status
DG DA
ED *
39
27
9
9
3
39
AF QU
ED AD
6 67
42 43
21
15
3 6
66 67
AP EP
* AD
* 71
47
* 16
* 71
Disomat Read function block parameters Set function block parameters Start ‘Processing Function Block’
PL PS FS
* AD AD
* 87 74
57 4a
* 16 6
* 87 74
PLC order telegram (bits) PLC read telegram (bits)
SS SL
AD ED
77 78
4d 4e
16 3
77 78
Set fast comparator Read fast comparator
SK GK
AD *
79 *
4f
16 *
79 *
lock keyboard Release keyboard
LK UK
AD AD
81 82
51 52
6 6
81 82
Weight telegram for legal-for-trade PC
PC
*
*
*
*
*
ID
ED
128
80
3
128
Taring Clear tare Key in tare Zero setting Connect scale
Query weight and dG/dt Query weight in the no-motion state Start cyclical output
AD AD AD AD
14
0e
5 7
5 7
‘Feeding’ group:
9 50
9 32
‘General Control’ group:
Query faults Acknowledge fault Disomat B compatible Read function block parameters Set function block parameters
0e 14
‘General Control’ group:
‘Paramerterising’ group: Query equipment ID
28
BV-H2359GB/0902
43
2b
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
4.2 Message Descriptions
Read form format Set form format
DL DS
* AD
* 130
82
* 16
* 130
Set time Read maximum values Set maximum values
EU LM SM
AD ED AD
131 138 139
83 8a 8b
16 3 16
131 138 139
Read fixed tare values Set fixed tare values
LF SF
ED AD
144 145
90 91
3 16
144 145
Specify string 1 Specify one of five strings
EB EI
AD AD
96 98
60 62
16 16
96 98
printing telegram
DR
AD
97
61
16
97
15
0f
50
32
‘Printing’ group:
There are a series of telegrams sent on the initiative of DISOMAT along with the previously described telegrams, all of which were initiated by the data processing partners. Note: This does not apply to Modbus operatioon (DISOMAT is always slave here). These telegrams are only sent in SIMATIC S5 operation if the target data module that can be entered in the DISOMAT dialog is not equal to zero. Then the telegrams are sent to the data word in this target data module with a fixed offset. Feeding ended Weight in the no-motion state Periodical weight transmission Feeding interrupted Taring carried out Zero setting carried out
DO1 TS TG BR AT AZ
AD AD AD AD AD AD
0 16 32 80 84 88
0 10 20 50 54 58
Print-out ended
DR
AD
100
64
12 10 14 1 1 1
0c 0a 0e 1 1 1
^^ 1 wird nur gesendet, wenn über Telegramm gestartet wurde (GO bzw. SG).
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
29
4.2 Message Descriptions
Computer, PC Coupling
- Reserved for Notes -
30
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
WN#AZ#
WN#WN# *
ET
AZ
WN
TG $)
TS
Key in tare
Zero setting
Connect scaleNot available for Opus
Query weight
Query weight in the no-motion state
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
WN#TS#
WN#TG#
Tare = tare weight
WN#ET#tara#
WN#AC#
AC
Clear tare
WN#AT#
Send or request telegram
AT
Identifier
Taring
Group of scale commands:
Command
The table of command formats for the data processing commands in DISOMAT
Computer, PC Coupling
w: currently connected scale
The telegram is being processed
S 0 with the MT scale when the tare value is greater than the small range.
The telegram is being processed
tare:
(7-digit) (7-digit)
(7-digit)
BV-H2359GB/0902
WN#TS#s# ? The telegram is being processed
such as # -123,5# 50,0# 0,0#c0# kg/t/g depending on the scale adjustment
status: Scale status (refer to Chapter 4.3)
dG/dt: dG/dt
Net tare
net:
WN#TG#netto#tara#dG/dt#status#
WN#WN#w#
WN#AZ#s#
WN#ET#s#
WN#AC#s#
WN#AT#s#
Reply telegram direct
Command executed
Command executed
This telegram is sent after the weighing facility has identified the no-motion state or the waiting time of 10 seconds is over.
WN#TS#netto#tara#status#
WN#AZ#s#
WN#AT#s#
delayed
31
SZ
Start cyclical output
WN = 01, 02, 03 connects the addressed scale.
WN = 00 leaves the connected scale
WN#TG#netto#tara#dG/dt#status#
The telegram is being processed
*
cyclical:
WN#SZ#s#
Period in multiples of 0.1 seconds acceptable values: 0 or 5-99 (w=0 turns off output)
delayed
Reply telegram direct
w:
WN#SZ#w#
Send or request telegram
32
^^
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
$) Note: The TG and TS commands do not trigger weight registration in DISOMAT (printout and legal-for-trade memory). This is why they never may be used for triggering legal-for-trade weighing. Please only use the DR command for this.
Identifier
Command
The table of command formats for the data processing commands in DISOMAT
Computer, PC Coupling
SR
Query current material number and setpoint
Setpoint for sort 1 (max. 7 digits)
Material number 1-10
WN#SR#
Setpoint
kg/t/g/ depending upon scale
(8-digit, right-justified 3 positions after the decimal point)
n: Material numbers 1-10 /Opus 1-2 target: setpoint such as # 1# 100,0# kg/t/g depending upon scale adjustment
WN#SR#n#soll#
WN#SE#s#
such as # 100.000# adjustment
g:
WN#AS#g#
WN#ES#s#
Reply telegram direct
BV-H2359GB/0902
such as #1#100#xy# kg/t/g depending on scale adjustment
target: Setpoint (max. 7 digits) ak: optional order identifier, maximal 25 characters of text = string 5
n:
WN#SE#n#soll#ak#
WN#AS#
such as #100# kg/t/g/ depending upon scale adjustment
g:
WN#ES#g#
Send or request telegram
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
SE
AS
ES
Identifier
Specify material number and setpoint
Not available for Opus
Query setpoint
Not available for Opus
Specify setpoint
Feeding group:
Command
Table of the command formats of data processing commands in DISOMAT
Computer, PC Coupling
delayed
33
GB
SB-0016
BL
GO
Query balance
Read the sort balances
Clear balance
Start feeding with current
34
Pre-fill switching threshold Pre-contact switching threshold
vf: vk:
Optimisation factor target: * such as #1#10#20#10#5#0,1#
opt:
WN#GO#
WN#BL#
WN#SB#
Number of bulk solids dumps (max. 5-digit)
w:
WN#GO#s#
WN#BL#s#
delayed
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
such as # 123,4#...kg/t/g depending upon scale adjustment
Sort balance (9-digit right-justified, positions after the decimal point and shown as in the display format)
sb1-sb10 :
WN#SB#sb1#sb2#...#sb10#
Balance total (11-digit, right-justified, with 2 positions after the decimal point)
g:
WN#GB#g#w#
Refer to command SA for parameters
WN#GB#
WN#SA#vf#vk#hk#tol#opt#soll#
n: Material numbers 1-10/Opus 1-2
WN#SD#s#
Reply telegram direct
WN#SA#n#
kg/t/g depending upon scale adjustment
Tolerance range
tol:
hk: Main contact switching theshold
Material number 1-10
n:
WN#SD#n#vf#vk#hk#tol#opt#soll#
Send or request telegram
BV-H2359GB/0902
SA
Query data for sort
data
SD
Identifier
Specify data for sort
Feeding group:
Command
Table of the command formats of data processing commands in DISOMAT
Computer, PC Coupling
HA
AB
DG
DA
Stop feeding
Cancel feeding
Query feeding status
Query extended feeding status
: Material numbers 1-10/Opus 1-2
WN#DA#
WN#DG#
WN#AB#
WN#HA#
target : Setpoint ak: optional order identifier maximal 25 characters text = string 5
n
WN#SG#n#soll#ak#
Send or request telegram
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
^
SG
Identifier
Trigger feeding start for specific sorts
Feeding group:
Command
Table of the command formats of data processing commands in DISOMAT
Computer, PC Coupling
feeding status 0/1/2 “ none / active / stopped
BV-H2359GB/0902
feeding status 0/1/2 “ none / active / stopped total actual value total setpoint material number actual value of current bulk solids dump setpoint of current bulk solids dump release status 1= feeding can be started order identifier max. 25 characters text = string 5 fk: function block identifier (configuration identifier) max. 10 characters text such as ‘acceptance scale’
stat: istg: sollg: sn: actual: target: fg: ak:
WN#DA#stat#istg#sollg#sn#ist#soll#fg#ak#fk#
actual: actual value target: setpoint
stat:
WN#DG#stat#ist#soll#
WN#AB#s#
WN#HA#s#
WN#SG#s#
Reply telegram direct
Reply: WN#BR#Feeding interrupted and WN#DO# feeding ended
Reply: WN#BR#feeding is stopped
delayed
35
36
Read all contacts
General control group:
Command
TK
Identifier
BV-H2359GB/0902
WN#TK#
Send or request telegram
Table of the command formats of the data processing commands in DISOMAT
X1..x4: x5..x10: x11..x14: a1,a2:
delayed
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
position of input contacts 1-4 position of output contacts 1-6 position of virtual data processing contacts 1-4 analog data processing outputs (10-digit, right-justified, 3 positions after the decimal point) (contact set = 1, contact not set = 0)
WN#TK#x1#x2#x3#x4#x5#x6#x7#x8#x9#x10#x11#x12#x 13#x14#a1#a2#
Reply telegram direct
Computer, PC Coupling
TA
Identifier
WN#TA#
Send or request telegram
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Contact status
General control group:
Command
Table of the command formats of the data processing commands in DISOMAT
Computer, PC Coupling
BV-H2359GB/0902
ICP-In-W#ICP-In-Ä# Int-Out-W#Int-Out-Ä# ICP-Out-W#ICP-Out-Ä# PLS-In-W#PLS-In-Ä# PLS-Out-W#PLS-Out-Ä# data processing contacts# net: display format, 7-digit tare: display format, 7-digit status: 4-digit, hex, bit-coded WK:scale identifier 1 (scale 1), 2 (scale 2), 3 (twin-unit) Int-In-X: internal input contacts, 2-digit, hex, bit-coded X == W: current values X == Ä: change since last telegram ICP-In-X: OK extension to input contacts, 4-digit, hex, bit-coded X == W: current values X == Ä: change since last telegram Int-Out-X: internal output contacts, 2-digit, hex, bit-coded X == W: current values X == Ä: change since last telegram ICP-Out-X: OK extension to output contacts, 4-digit, hex, bit-coded X == W: current values X == Ä: change since last telegram PLS-In-X: PLS inputs, 4-digit, hex, bit-coded X == W: current values X == Ä: change since last telegram PLS-Out-X: PLS outputs, 4-digit, hex, bit-coded X == W: current values X == Ä: change since last telegram data processing contacts: as with TK telegram
WN#TA#Netto#Tara#Status#WK# Int-In-W#Int-In-Ä#
Reply telegram direct
delayed
37
b: Function block identifier p1...pn: Parameter values of the function block Refer to the function block description for the number
WN#PL#b#
b: Refer to the function block description for the function block identifier
PL
Read DISOMAT function block parameters
38
*:Setpoint only SWA VKD204000
Not available for Opus
Read DISOMAT function block parameters
WN#PL#b#p1#...#pu#
WN#QU#
QU
BV-H2359GB/0902
delayed
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
You can only acknowledge faults of the message, warning and alarm classes. You have to acknowledge malfunction class faults in the menu tree of DISOMAT (after keying in your password) .
WN#QU#s#
E-Text: Result number and text as display (max. 40 characters)
WN#AF#E-Text#
Acknowledge fault
WN#AF#
DISOMAT automatically resets any data processing contact set after reading.
Do not set contact=0 abcd: PLS input function blocks, hex, bit-coded, such as 000f#
Set contact = 1,
gaps S
WN#EK#s#
Reply telegram direct
Query fault
WN#EK#x1#x2#x3#x4# oder WN#EK#x1#x2#x3#x4#abcd# X1-x4: contacts 1-4
Send or request telegram
EK
Identifier
Set data processing contacts
General control group:
Command
Table of the command formats of the data processing commands in DISOMAT
Computer, PC Coupling
turn-on value
turn-off value
on:
activate: 0/1 no/yes
e:
on:
Comparator number 1-6
n:
WN#SK#n#e#ein#aus#
WN#SL#
for an explanation)
XX=2 Order bytes (refer to Chapter 4.3, page 47
WN#SS#XX#
s ¹ 0:
b: Function block identifier p1...pn: Parameter values
Byte 2 = data processing and input contacts Byte 3 = output contacts
B2: B3: Net (7-digit)
BV-H2359GB/0902
WN#SK#s#
dG/dt: dG/dt (7-digit)
Gross: gross (7-digit)
Net:
(refer to Chapter , page for the meaning)
Byte 1 = scale status
B1:
WN#SL#B1B2B3#netto#brutto#dg/dt#
WN#SS#s#
Feed operation active, no parameter change available now
WN#PS#s#
Reply telegram direct
WN#PS#b#p1#...#pn#
Send or request telegram
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Not available for Opus
Set fast comparator
SK
SL
PLC read telegram (bits)
Not available for Opus
SS316
PS
Identifier
PLC order telegram (bits) Not available for Opus
Not available for Opus
Set DISOMAT function block parameters
General control group:
Command
Table of the command formats of the data processing commands in DISOMAT
Computer, PC Coupling
Other reply telegrams depending upon requirements: WN#AT#s#, WN#AZ#s#, WN#BR#s#, etc.
delayed
39
UK
Release keyboard
40
LK
GK
Identifier
Block the keyboard for 1 minute
Not available for Opus
Read fast comparator
General control group:
Command
Comparator number
BV-H2359GB/0902
^
WN#UK#
WN#LK#
n:
WN#GK#n#
Send or request telegram
Table of the command formats of the data processing commands in DISOMAT
WN#UK#s
WN#LK#s
WN#GK#n#e#ein#aus# Refer to command SK for parameters
Reply telegram direct
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
delayed
Computer, PC Coupling
Identifier
WN#LM#
EU
LM
Set time
Read maximum values
Refer to under DL for parameters
WN#DS#nr#muster#
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Not available for Opus
WN#EU#TT.MM.JJ#hh:mm:ss# Tag.Monat.Jahr#Stunde:Minute:Sekunde
DS
Set form format
BV-H2359GB/0902
Dg: Max. dG/dt (10-digit, right-justified, 3 positions after the decimal point) bl: Max. balance (12-digit, right-justified, 2 positions after the decimal point) sch: Max. bulk solids dumps (5-digit)
WN#LM#dg#bl#sch#
WN#EU#s#
WN#DS#s#
Numbers 1-3 = printing format 1-3 Number 4 = data processing format (variable part) Number 5 = side head format Number 6 = legal-for-trade memory format (variable part) Numbers 7-9 = format of printing 4-6 Pattern: format string of the printing pattern
nr:
Number of form format 1/2/3/4
nr:
Text DISOMAT Schenck Process GmbH software identifier date written equipment serial number
WN#DL#nr#muster#
DL
Read form format
sk: sd: sn:
T:
WN#ID#t sk sd sn#
Reply telegram direct
WN#DL#nr#
ID
WN#ID#
Send or request telegram
Query equipment ID
Paramerterising group:
Command
The table of command formats for data processing commands in DISOMAT
Computer, PC Coupling
delayed
41
Identifier
SF
Set fixed tare values
EI
Specify one of five strings
42
EB
Specify string 1
‘Printing’ group:
LF
SM
Read fixed tare
Not available for Opus
Set maximum values
Paramerterising group:
Command
BV-H2359GB/0902
WN#EI#n#text n: string numbers 1-5 text: max 25 characters
WN#EB#text# text: max. 30 character of text
WN#SF#w1#...#w9# w1-w9: fixed tare values
WN#LF#
WN#SM#dg#bl#sch# Refer to command LM for parameters
Send or request telegram
The table of command formats for data processing commands in DISOMAT
WN#EI#s
WN#EB#s#
WN#SF#s#
WN#LF#w1#...#w9# w1-w9: fixed tare values
WN#SM#s#
Reply telegram direct
delayed
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
Identifier
DR
Registering in the legal-for-trade memory printing pattern
n = 0:
The texts are printed if the BZ1-BZ5 string identifier is also entered in the corresponding printing pattern.
n = 1...6:
max. 25 characters per string text
text1-text5:
or with several strings WN#DR#n#text1#text2#...#text5#
string texts (max. 25 characters)
1-scale system, legal-for-trade brackets, Dimension “t” # <0,00t> B # -> length 17 1-scale system, no legal-for-trade brackets, Dimension “kg” # 150.0kg B # -> length 15 2-scale system, legal-for-trade bracket, Dimension “t” # <17.34t> B 1# -> length 17
The weight description is generally constant in its length, but it is dependent on the system configuration, such as:
Refer to Chapter 5.2.1.5 in the Operating Manual for an example,
Refer to Chapter , page for the scale status. formated string.
String=
Faults occurred when printing Faults with data in the legal-for-trade memory
X=1 X=2 Status=
Number of the printing pattern No fault when printing
X=0
WN#DR#n#x#status#string# n=
After printing:
Number of the printing pattern
If s ¹ 0, it is still moving (send it again later).
*
WN#DR#s#
delayed
n: 0-6 text:
Reply telegram direct
WN#DR#n#text#
Send or request telegram
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
The DR command triggers weight registration in DISOMAT (printer and legal-for-trade memory). This is why it can be used to trigger legal-for-trade weighing. Please read the notes in Chapter 2.1 if weight is further processed in non-legal-for-trade plant components.
Printing telegram
Paramerterising group:
Command
The table of command formats for data processing commands in DISOMAT
Computer, PC Coupling
43
Identifier
Send or request telegram
BR
Interrupt feeding
44
DO
Feeding ended actual value actual value - setpoint optimised main contact
BV-H2359GB/0902
^^
WN#BR#
This telegram is only sent if feeding was started per telegram (GO or SG).
g1: g2: g3:
WN#DO#g1#g2#g3#
DISOMAT message group: DISOMAT sends a telegram.
Command
Table of the command formats of the data processing commands in DISOMAT Reply telegram direct
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
delayed
Computer, PC Coupling
Computer, PC Coupling
4.3 Commands Explanations
4.3
Commands Explanations
WN s
Scale number always in 2-digit form, e.g. 01 Codes number of EDP command status If the code number unequals 0, command was not properly executed. S = 0: Command execution OK s>< 0: Command execution faulty
status
Scale status in hexadecimal format Bit No.
Meaning
0
Underrange
1
Overrange (weight > full scale value)
2
Tare computed
3
Exact zero
4
—- Not used —-
5
Weight invalid
6
Tare acquired
7
No-motion recognized
With 16-bit status: Bit No.
Meaning
8
Initialisation
9
—- Not used —-
10,11
Range (1,2,3)
12
In zeroing range
13
Twin-unit scale
14
Multi-divisional scale
15
Multi-range scale
Example:
Status ”c0” is interpreted as hexadecimal number 0xc0 and converted into binary 1100 0000.
Bit:
76543210
Bits 6 and 7 are set, i.e. tare is acquired;
Value:
11000000
no-motion, recognized.
Note:Hexadecimal numbers a...f are always transmitted as lower-case letters.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
45
4.3 Commands Explanations
SS
Computer, PC Coupling
vUsed in PLC order message Message type: Data block: Data word:
Bit output Scale number 4d (hex)
Message construction:
16 bits, each bit coding an order to connected scale. Bit setting starts order. Meaning of individual bits:
Bit No.
Meaning
0
Acquire tare
1
Clear tare
2
Set to zero
3
Start feeding
4
Stop feeding
5
Abort feeding
6
Clear balance
7
Acknowledge error
8-15
Standby
Selected command is executed only upon first sending of message (”rising edge”). To have command executed, reset relevant signal..
46
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Computer, PC Coupling
SL
4.3 Commands Explanations
Used in PCL read message Byte
1
2
Explanation
Bit No.
Meaning
0
Underrange
1
Overrange
2
Tare computed
3
Exact zero
4
Resolved mode
5
Weight invalid
6
Tare acquired
Scale status
7
No-motion
8
Contact 1
9
Contact 2
10
Contact 3
11
Contact 4
12
EDP 1
13
EDP 2
14
EDP 3
Output of DISOMAT physical input
Output of DISOMAT virtual (EDP) outputs statusses:
3
15
EDP 4
16
Contact 1
17
Contact 2
18
Contact 3
19
Contact 4
20
Contact 5
21
Contact 6
22
Standby
23
Standby
Output of DISOMAT physical output contact statusses
Sequence in message:
Bytes:
1
2
3
Bits:
76543210
15...8
23...16
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
47
4.3 Commands Explanations
Computer, PC Coupling
- Reserved for user’s notes -
48
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Coupling for SPS and PLC
5
5.1 Modbus-RTU
Coupling for SPS and PLC This chapter describes coupling between an SPS/PLC and the equipment. · DISOMAT Satus (only for the process image “No text/4ID” with Profibus and DeviceNet) · DISOMAT Opus · DISOMAT Tersus The equipment is called the controller below. The text will explicitly point out whether parts of this description are only for one specific piece of equipment. Note: · The BV-H2331 System Manual describes the standard and short process images of DISOMAT Satus that are compatible with DISOMAT T. · The description of the Profibus is based upon the VPB8020 hardware. · The description of DeviceNet is based upon the VCB8020 hardware. · You can find the common database for all controllers and protocols in the chapter on “Available Data” at the end of this document.
5.1
Modbus-RTU The general specification of the Modbus protocol describes two ways to code data: n n
7-bit ASCII framing RTU framing
The controllers only work with RTU framing. The specification below describes the special properties for coupling a process control system (PLS) and the controller.
Terminology The following chapters describe: HEXADECIMAL values in the form of 0x1234 and DECIMAL values in the form of 1234.
Logical hierarchy The process control system is bus master and the controllers are treated as individual slaves. One telegram cycle always consists of a query from the master (PLS) and a reply from the slave. The reply is either the acknowledgment to an order from the master or a data record that the master requested in its query.
Physical arrangement The best way to couple the bus is via RS485 (2- or 4-wire) interface. This is interface S3 with DISOMAT Satus and Opus while interfaces S1 or S2 are available for DISOMAT Tersus. You can find the connection diagram in the system manual.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
49
5.1 Modbus-RTU
Coupling for SPS and PLC
Data format and data signaling rate This uses the RTU format with an 11-Bit character frame. The data format, baud rate and interface physics are set in the interfaces menu item.
Data position The transmission begins at the same time as the MSB. The setpoints and readings are transmitted both in the IEEE float format (IEEE 754, 32 bits) and in the integer format. You have a 16-Bit word available with the integer format and you can adjust its resolution over a range of 0-MAXTEILE while maximum resolution is 215-1 parts. Here is an example of transmitting the value 150.5 in the IEEE format (this gives the sequence in the circuit): Byte 1: sign / exponent
Byte 2: Mantissa 1
Byte 3 Mantissa 2
Byte 4: Mantissa 3
0x43
0x16
0x80
0x00
All control information and statuses are represented as a binary signal with the 8 data bits of each character. Additionally, all control and status information can be treated as single-bit information.
Guaranteeing Transmission The characters are secured by a parity bit (see MODBUS specifications). The telegrams are secured by a checksum (CRC16; see Modbus specifications). The Modbus specification defines the reaction to transmission errors. You can guarantee the transmission between the controller and the control system in the controller via TIMEOUT. Then, the controller expects a telegram from the control system at specific intervals. The type of telegram is not important here. You can set both the interval and the type of reaction from the controller to no telegram on the controller via parameters and you can find the events notes in each operating manual of the controller. The TIMEOUT = 0 setting means that the data flow between the controller and master is not monitored by the controller.
Routines Any routines important for specifying data are described in each section.
Subscriber addresses Every controller is given a slave address beginning with 1 in ascending order. The highest address it is possible to set is labeled MAXSLAVE in the following text. You can set the address by dialog on the controller. MAXSLAVE has a value of 254. Address 0 is the broadcast address..
50
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Coupling for SPS and PLC
5.1.1
5.1 Modbus-RTU
The structure of the data telegrams The data are transmitted in separate telegrams arranged according to data types (binary or analog) to make it easier to process the data in PLS. All programs have the following structure: T1 T2 T3
Slave Address
Function Code
Data
Check CRC16
T1 T2 T3
Break
8 bits
8 bits
n * 16 bits
16 bits
Break
Several readings can be transmitted simultaneously. The start address of the data registers and then the data are arranged in the ‘Data’ field. The number of data is defined by the LENGTH field (word count or byte count). This information depends upon the function code and direction of transmission at various points (explicit or implicit length information). No length information is given if a single reading is transmitted (function codes 5 or 6). Function codes: Function code
Description
1
Bitwise reverse reading of control information (one or several bits)
2
Bitwise reading of status information (one or several bits)
3
Wordwise (reverse) reading of setpoints and readings (one or several words)
4
Wordwise reading of status information (one or several words)
5
Bitwise (re)setting of control information (always one bit)
6
Wordwise writing of control bits or setpoint values (always one data word)
15
Bitwise writing of control information (one or several bits)
16
Wordwise writing of setpoints in the IEEE format (one or several data words)
Note: Often, the control system should add what is known as a “segment address” (depending upon the function code) to the data address to be described. Furthermore, the data address should be set up one because the register addresses start at 1 with the Modbus protocol. In other words, the rule for configuring the data address is: The data address = segment address + controller address + 1.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
51
5.1 Modbus-RTU
Coupling for SPS and PLC The structure of the data field: The data telegram from PLS ADDRESS HI ADDRESS LO VALUE HI VALUE LO
start address of the data registers start address of the data registers content of the data registers content of the data registers
The request telegram from PLS ADDRESS HI ADDRESS LO LENGTH HI LENGTH LO
start address of the data registers start address of the data registers number of the data fields in words number of the data fields in words
The readings telegram from the controller LENGTH VALUE 1 HI VALUE 1 LO ... VALUE n HI VALUE n LO
number of the data fields in bytes content of the data registers
All fields are 8 bits long.
52
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Coupling for SPS and PLC
5.1.2
5.1 Modbus-RTU
The structure of the fault telegrams The fault telegrams have the following structure T1 T2 T3
Slave Address
Function Code
Error Code
CRC16
T1 T2 T3
Break
8 bits
8 bits
8-bits
16-bits
Break
The value 0x80 is added to the ‘Function Code’ value from the request in the fault telegram. You can see the meaning of the fault codes in the table below.
Error Code
This means
1 The subscriber does not support the function requested (FC) 2 Faulty data address such as - data address out of range - data address with IEEE or odd - data offset + length too long 3 The wrong data type such as - The wrong data with FC 5 (0xFF00 and 0x0000 are acceptable) - The data length is smaller than 0 - The length requested is too long
5.1.3
The address ranges of the coupling The following data ranges are defined for Modbus coupling. The writing range with - controll information and - setpoints (in IEEE or integer format) - predetermination values in the LONG integer format) - text (not with DISOMAT Satus) and the reading range with - status information and - readings (in IEEE or integer format) - readings in the LONG integer format - text (not with DISOMAT Satus)
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
53
5.1 Modbus-RTU
5.1.4
Coupling for SPS and PLC
Data from the process control system The data from the control system can always be assigned to one of the groups specified: · Control bits -The information transmitted is assigned to one of the 16 bits of the PLS-DIn1-16 function blocks. What effect the control information has depends upon how the function block is wired. Please ensure that the desired function block is also loaded (with the Load Fixed Linkage function). The positive flank had this effect on all control bits and the status has to be pending for at least 100 ms to be identified unambiguously. The bit should be taken back after carrying out the control function. A bit number (which of the possible 16 bits should be changed) may be calculated from the four lowest-value bits in the data address LO. If, for instance, the database address is 0x1010, this references bit 0 while bit 7 is addressed in Highbyte with the address 0x101F. The value 0xFF in Highbyte of the control word sets the flag while the value 0x00 deletes the flag (function code 5). ·
Commands- A 16-bit data word is always transmitted as a command. There has to be a change for a command to be effective. If you would like to execute the same command several times, you have to transmit the ZERO command between commands.
·
Analog predetermination values - These values can be transmitted as an IEEE floating point value (4-byte) or an integer (2-byte).
·
(String) texts (not with DISOMAT Satus)
Control information (PLS-DIn 1-16 and commands) The telegram to the controller (function codes 5, 15, 6,16) has binary information that you can read back with function codes 1 and 3.
54
Bus address
1... MAXSLAVE
Function codes
1, 5, 15 bit operations
Function codes
3, 6, 16 word operations
basic data address
0x0010 commands 0x0020 PLS-DIn 1-16
The number of data words / bits
0x0002 / 0x0020
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Coupling for SPS and PLC
5.1 Modbus-RTU
General control telegram: (commands) Slave address (1 byte)
FC (1 byte)
Data address (2 bytes)
Data (2 bytes)
CRC (2 bytes)
Wordwise presetting of commands: Slave address 0x01-0xfe
FC 0x06
Data address 0x0010
Data (1 Wort)
CRC
For example, wordwise presetting (commands): Slave address 0x01 0x01 0x01 0x01 0x01
FC
Data address
Data
0x06 0x06 0x06 0x06 0x06
0x0010 0x0010 0x0010 0x0010 0x0010
0x0001 0x0002 0x0003 0x0080 0x0000
CRC
Meaning Taring Clear tare Zero setting Acknowledge error Reset
Note: You can only specify commands with FC 6 or 16 because this is a number, not bit-coded data. This means that only one command can be executed per transmission. For example, for bitwise presetting via function block (PLS-DIn 1-16): CRC
Meaning
Slave address
FC
Data address
Data
0x01 0x01
0x05 0x05
0x0020 0x0020
0xFF00 0x0000
Set PLS-DIn 1 Reset PLS-DIn 1
0x01
0x06
0x0020
0x0010
Set PLS-DIn 5
Data addresses
Meaning
0x0010
Low Byte
Command number (refer to the chapter on Available Data Specifications)
0x0020
Low Byte function blocks
PLS -DIn-1 PLS -DIn-2 PLS -DIn-3 PLS -DIn-4 PLS -DIn-5 PLS -DIn-5 PLS -DIn-6 PLS -DIn-7 PLS -DIn-8
bit address
0x0020 0x0021 0x0022 0x0023 0x0024 0x0024 0x0025 0x0026 0x0027
0x0020
High Byte function blocks
PLS -DIn-9 PLS -DIn-10 PLS -DIn-11 PLS -DIn-12 PLS -DIn-13 PLS -DIn-14 PLS -DIn-15 PLS -DIn-16
bit address
0x0028 0x0029 0x002A 0x002B 0x002C 0x002D 0x002E 0x002F
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
55
5.1 Modbus-RTU
Coupling for SPS and PLC
Predetermination values in the IEEE format A telegram to the controller (function code 16) has predetermination values in the IEEE format. You can read back this information with function code 3. Bus address
1... MAXSLAVE
Function codes
16, 3
basic data address
0x0x100
Number of data words
0x0012
The general telegram in the IEEE format: Slave address
FC
Data address
Length in words
Byte count
Data/ Value
CRC
(1 byte)
(1 byte)
(2 bytes)
(2 bytes)
(1 byte)
(4 bytes)
(1 byte)
Data
CRC
CRC
The setpoint value in the IEEE format: Slave address
FC
Data address
Number in words
Byte count
0x01-0xfe
0x10
0x0100
0x0012
0x0024
An example of a setpoint telegram (manual tare 1 = 100 kg for slave1): Slave address
FC
Data address
Length in words
Byte count
Data
0x01
0x10
0x0100
0x0002
0x04
0x42c80000
Refer to the chapter on Available Data Settings
56
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Coupling for SPS and PLC
5.1 Modbus-RTU
The predetermination values in the integer format You can also transmit the IEEE setpoints with the 6/16 function codes in the integer format always using the final value set in the parameters as the reference value For example: 0 ... MAXTEILE correspond to 0 ... scale final values in kg. You can read back this information with function code 3. Bus address
1... MAXSLAVE
Function codes
6, 16, 3
basic data address
0x0200
Number of data words
0x0009
Refer to the chapter on Available Data Settings for the table of valid addresses
Note: Integer format values are always positive while negative values are set to zero.
Setpoints in the LONG integer format Bus address
1... MAXSLAVE
Function codes
16, 3
basic data address
0x0800
Number of data words
0x0006
Refer to the chapter on Available Data Settings for the table of valid addresses
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
57
5.1 Modbus-RTU
Coupling for SPS and PLC
Transmitting texts to the controller For instance, this telegram can be used to transmit formatted texts (such as printing strings) to the controller with a maximum text length of 32 characters per string. The print form further processes 25 of these 32 characters. The rest is not used and is replaced by the zero value when reading back. You can also combine all strings into one setpoint telegram by filling up each partial string to 32 bytes. Bus address
1... MAXSLAVE
Function codes
16, 3
basic data address
0x0600
Number of data words
0x0010 (words per string)
The following text specifications are implemented: Meaning
Text ID
String text 1
1 (basic data address 0x0600)
String text 2
2 (basic data address 0x0610)
String text 3
3 (basic data address 0x0620)
String text 4
4 (basic data address 0x0630)
String text 5
5 (basic data address 0x0640)
The general telegram format: Slave address (1 byte)
FC
Data address
Length in words
Data/text
CRC
(1 byte)
Byte count
(2 Byte)
(2 bytes)
(1 byte)
( as much as 160 bytes)
(2 bytes)
Some examples of text setpoint telegrams for slave 1. n n n
String text 1 String text 3 All string texts (1-5)
Slave address
FC
Data address
Length in words
Byte count
Data
0x01 0x01 0x01
0x10 0x10 0x10
0x0600 0x0620 0x0600
0x0010 0x0010 0x0050
0x20 0x20 0xA0
0x41424344... 0x41424344... 0x41424344..
CRC
If the number of text bytes is odd, fill up the text with a space at the end.
58
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Coupling for SPS and PLC
5.1.5
5.1 Modbus-RTU
Data on the process control system Status information The following telegram is used for requesting status information. Status information may be requested wordwise (function code 4) or bitwise (function code 2). FC3 can also be used instead of FC4. Bus address
1... MAXSLAVE
Function codes
2, 4, (3)
basic data address
0x1300
The number of data words / bits
0x0018/0x0180
The general request telegram Slave address (1 byte)
FC (1 byte)
Data address (2 bytes)
Length (2 bytes)
CRC (2 bytes)
Data address 0x1300
Length in words 0x0018
CRC
Data address 0x1300
Number of bits 0x0180
CRC
Length 0x0001 0x0010
CRC
Wordwise request of status information Slave address 0x01-0xfe
FC 0x04
Bitwise request of status information Slave address 0x01-0xfe
FC 0x02
An example of a request (status word): Slave address 0x01 0x01
FC 0x04 0x02
Data address 0x1300 0x1300
Refer to the chapter on Available Data for the Controller Data for the list of valid addresses
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
59
5.1 Modbus-RTU
Coupling for SPS and PLC
Readings in the IEEE format The control system can request readings with the following telegram in the IEEE format. The dimensions of these readings are always kg or kg/second.
Bus address
1... MAXSLAVE
Function codes
4, (3)
basic data address
0x0700
Number of data words
0x00D0
The general request telegram: Slave address (1 byte)
FC (1 byte)
Data address (2 bytes)
Length (2 bytes)
CRC (2 bytes)
Length in words 0x007C
CRC
Readings request in the IEEE format Slave address 0x01-0xfe
FC 0x03
Data address 0x0700
An example for requesting the gross weight on scale 1: Slave address 0x01
FC 0x03
Data address 0x0700
Length 0x0002
CRC
Refer to the chapter on Available Data for the Controller Data for the list of valid addresses
60
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Coupling for SPS and PLC
5.1 Modbus-RTU
Readings in the integer format The host system can request the IEEE readings in the integer format with the following telegram using the final value set in the parameters as the reference value. The dimensions of these readings are always kg or kg/second. Bus address
1..MAXSLAVE
Function codes
4, (3)
basic data address
0x0400
Number of data words
0x0010
The base data address can be calculated from the IEEE address according to the formula (refer to the section on available data for the controller data). For example: rated weight, unrounded, kg
400HEX + (736HEX - 700HEX) /2 = 400HEX + 36HEX / 2 = 400HEX + 1BHEX = 41BHEX Note: Integer format values are always positive while negative values are set to zero.
Readings in the LONG integer format Bus address
1..MAXSLAVE
Function codes
4, (3)
basic data address
0x0900
Number of data words
0x000E
Refer to the chapter on Available Data for the Controller Data for the list of valid addresses
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
61
5.1 Modbus-RTU
Coupling for SPS and PLC
Read the texts of the controller For instance, this telegram can be used to read formatted texts (such as printing strings) with a maximum text length of 32 characters per string. Bus address
1..MAXSLAVE
Function codes
4, (3)
basic data address
0x0500
Number of data words
0x0010, data words per string
The general request telegram:: Slave address (1 byte)
FC (1 byte)
Data address (2 bytes)
Length (2 bytes)
CRC (2 bytes)
Data address 0x0500
Length 0x0010
CRC
An example of request for text Slave address 0x01
62
FC 0x03
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Coupling for SPS and PLC
5.1.6
5.1 Modbus-RTU
Modbus interface parameters
What the parameters mean: q
q
q
q q
q
Internal address
defining the bus address (0-254)
Reference value for converting a physical quantity into parts that are transmitted (1-32767) such as 10,000,000 kg <> 32 767 parts. Final value the maximum value to be transmitted when the quantity to be transmitted reaches a reference value. Interface selecting the fieldbus interface Timeout for monitoring the interface in seconds; 0 s = no monitoring 1-300s = value range Swapping order of bytes for floating point numbers and words on the bus (BIG Endian, BYTE Swap, WORD Swap, LITTLE Endian)
Note: If monitoring is activated -address errors -function code errors, and - incorrect length information are also shown as communication errors in the controller’s display.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
63
5.2 Modbus/TCP
5.2
Modbus/TCP The chapter below describes the functionality of the controllers as servers on Ethernet. The following are described in detail:: n Server configuration n Data exchange between an Ethernet client and the controller per Modbus/TCP, n Notes for troubleshooting and diagnosis n It is connected via RJ45 plug on the VFE xx. n The server can exchange data with as many as 3 clients simultaneously. If the DISOPLAN start-up tool is used, it can occupy one of the three available channels if coupling is performed via network. The data are either sent as Modbus/TCP packets or are expected as such from outside. The function scope is identical with that of Modbus-RTU excepting the Modbus/TCP header (refer to Chapter 5.1.1–5.1.5). n The controller functions like a Modbus/TCP server as per the standard OPEN MODBUS/TCP SPECIFICATION, Release 1.0,’ 29th March, 1999. It can handle all class 1 and 2 function codes (except for FC7) and the most important class 2 codes (FC15 and FC23).
This data representation is based entirely on the Modbus standard. The TCP safety layer takes on the role of the Modbus telegram check sum (CRC 16). The controllers evaluate the length field and protocol identifier and all other bytes are sent back in the reply unchanged. n Customer applications should always set the protocol identifier to zero. n
64
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.2 Modbus/TCP
Subscriber addresses All stations in the Ethernet network are unambiguously identified via IP address. This is the reason why the Modbus slave address can always be set to 1.
5.2.1
Example telegrams The lines below show the structure of the Modbus/TCP telegrams. The first column is the telegram of the bus master to the scale and the second column is the scale’s reply.
5.2.2
Data to Scales
Scale’s Reply
Meaning
00 00 00 00 00 06
00 00 00 00 00 06
Taring
01 06 0010 0001
01 06 0010 0001
00 00 00 00 00 06
00 00 00 00 00 05
01 03 0300 0001
01 03 02 xx xx
00 00 00 00 00 06
00 00 00 00 00 23
01 03 0748 0010
01 03 20 xx ..... xx
00 00 00 00 00 0B
00 00 00 00 00 06
01 10 0110 0002 04 4323 5678
01 10 0110 0002
Read group status Read gross weights on channels 1-8 Write setpoint (value = 163.34)
Diagnosis and Troubleshooting The event message is a group message for all faults concerning the fieldbus connection. These are: n Different station addresses sent to the master and scales. n There is a problem with the cabling between the fieldbus connection and main board. n The fieldbus cable is defective or incorrectly connected. n The timeout parameter has been set at too small a value. Change the parameterisation of the scales. n An unacceptable ID (data address) was identified in the telegram of the master to the scale. Also refer to the section on fault codes (also refer to Modbus-RTU).
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
65
5.2 Modbus/TCP
5.2.3
Parameterising the controller Parameterising should be carried out with controllers both with the operator panel and DISOPLAN. The parameter description applies to both pieces of equipment.
66
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.2 Modbus/TCP Parameters
Value range
Default value
Explanation
Protocol type
All fieldbus protocols
OFF
Protocol selection: in this case, Modbus/TCP
Timeout Host
0-300 s
0s
The parameter is used for interface monitoring. ZERO meansthatthe interface is not monitored.
IP address
192.168.240.1
Manual IP address assignment
Network mask
255.255.255.0
Delegating the subnetwork masks
Gateway
0.0.0.0
Delegating the standard gateway address
Notes If you operate the controller on a local subnetwork with an internal network card for this network, it would make sense to set the PC network adapter as follows: 192.168.240.254 255.255.255.0 0.0.0.0 192.168.240.n where n=1-253 n IP addresses have to be unambiguous. This is why you should ask your system administrator for valid addresses that are not in use.
n n n n
IP address: Network mask: Gateway: Controller 1-n:
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
67
5.3 Ethernet/IP
5.3
Ethernet/IP The DISOMAT uses the Ethernet/IP protocol to exchange data through an Ethernet network with a suitable control system.
5.3.1
Start Up n n n n n
5.3.2
The Functionality of Ethernet Connections n
5.3.3
Releasing the Ethernet/IP option on the unit (separate ordered item) Activating the Ethernet/IP protocol type in the Fieldbus item on the menu Configuring communication – You can find details in the operating manuals Defining the data to be transmitted. Start communication by the master
The module can be employed as a group 2 and group 3 server in the Ethernet/IP network. Further information can be found on the ODVA website.
User Data Structure You can find details on and examples of the user data structure in the chapter on the Profibus User Data Structure.
68
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Ethernet/IP
5.3.4
Configuring the Network in RSLogix 5000" · · · · · · ·
Setting up a new project in RSLogix Configuring the controller Selecting the EtherNet/IP Bridge Configuring the EtherNet/IP Bridge Adding DISOMAT to the I/O configuration Adding a generic Ethernet module Configuring a new Ethernet/IP module
·
This example applies to the parameter definition No Text / 1 ID
·
Setting the linking options for DISOMAT
·
Downloading the configuration
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0835
69
5.3 Ethernet/IP
- Reserved for user’s notes -
70
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Profibus DP protocol
5.3
Profibus DP protocol The general specification of the Profibus-DP protocol is in EN50170. The specification below describes the special properties for coupling a process control system and the controller. IMPORTANT: Please remember that the last physical subscriber has to terminate the Profibus with a terminating resistor. There may be communication malfunctions if this subscriber is taken by the bus.
Terminology The following chapters describe: HEXADECIMAL values in the form of 0x1234 and DECIMAL values in the form of 1234.
Logical hierarchy The process control system is bus master and the controllers are treated as individual slaves. One telegram cycle always consists of a query from the master (PLS) and a reply from the slave (controller). The bus master cyclically acquires a process image of the controller of no more than 70 bytes and cyclically transmits a command telegram to the controller of no more than 56 bytes. The master is notified of the current size of the process image by the selection of the correct modules from the equipment master data file (refer to the table on ‘Assigning the Parameter Setting of the Profibus Interface to Modules in the GSD File’ at the end of the chapter). Important: The controller is modeled as a modular slave. If a new module is activated on the master, the same set of parameters has been activated on the controller. The reverse is also true. For example: Set of parameters number ID Text block 4-byte text Module (refer to GSD) “Short Text - 4ID”
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
4
71
5.3 Profibus DP protocol
Data format The setpoints and readings are transmitted in the IEEE float format (IEEE 754, 32 bits) or the Siemens float format. The transmission always begins at the same time as the MSB..
Guaranteeing Transmission The transmission between the controller and the control system can be secured in the controller by TIMEOUT. The controller expects a telegram from the control system at certain intervals. Both the interval and the type of controller’s reaction to no telegrams (refer to the chapter on Event Messages in the operating manual) can be set on the controller via parameters. The setting TIMEOUT = 0 means that the data flow between the controller and control system is not monitored by the controller.
Routines Any routines important for specifying data are described in each section.
Subscriber addresses Every controller is given a slave address beginning with 0 in ascending order. The highest address it is possible to set is labeled MAXSLAVE in the following text. You can set the address by dialog on the controller and MAXSLAVE has the value 126.
5.3.1
Data segments We distinguish: The writing range with n control information, n predetermination values in the IEEE format, n Setpoints in the LONG integer format n Texts from the master to the controller (not with DISOMAT Satus) and the reading range with n status information n Readings in the IEEE format n Readings in the LONG integer format n The controller’s texts (not with DISOMAT Satus) Blocks of four bytes each can be unambiguously addressed with a two-byte identifier (ID; refer to the tables on “Available Data”).
72
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Profibus DP protocol
5.3.2
Structure of user data This means that the telegrams of cyclical data transmission have the basic structure below: Protocol frame (Header)
Texts (TXT) Optional
User data Process data
Protocol frame (Trailer)
Figure 1 The basic structure of the Profibus telegrams The types below have been defined: n User data without a text range and with defined setpoint and process data (white) and as many as 8 additional values that can be selected via ID (grey). Also refer to Figure 2 n User data with a text range and with the selection of process data described above. Text range (TXT) You can read or write texts with as many as 128 bytes with the TXT telegram part. The section on “Text Transmission via Profibus DP” describes the necessary mechanisms of order/reply identifiers. We distinguish 4-and 20-byte text blocks where the longer variant should only be used with greater quantities of text to keep the transmission period low.
Process data range You can use the process data to transmit control words and setpoints (orders: master —> 6 controller) or state words and actual values (replies: controller —> master). The process data transmitted go into effect immediately.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
73
74
C o m m S t a t
ID 1
PID 1
Gross unroun ded
Preset value 1
ID 1
Value1
Preset value 2
Gross in display format
PID 2
BV-H2359GB/0902
F C B
Text block
C o m m S t a t Gross unroun ded
Preset value 1
Text 4 Byte
ID 1
PID 1
Text Header 4 Byte
ID 3
ID 5
F C B
Text block
Text 20 Byte
F C B
Value1
ID 1
Value3
ID 4
Preset value 2
Gross in display format
PID 2
Value2
ID 2
Text block
Data packets with 20-Byte text block
Text Header 4 Byte
F C B
Text block
Data packets with 4-Byte text block
F C B
F C B
Data packets without text block
ID 7
ID 3
C o m m S t a t ID 1
PID 1
Value2
ID 2
Value4
ID 6
ID 5
Gross unroun ded
Preset value 1
32 Bytes
Value3
ID 4
32 Bytes
Value5
ID 8
32 Bytes
ID 7
Value1
ID 1
Value5
ID 8
Value7
Preset value 2
Gross in display format
PID 2
Value4
ID 6
Value6
ID 3
Value2
ID 2
Value6
Value8
ID 5
Value3
ID 4
Value7
ID 7
Value4
ID 6
Value8
Value5
ID 8
Value6
Value7
Value8
38 - 70 Bytes
40 - 56 Bytes
22 - 54 Bytes
24 - 40 Bytes
14 - 46 Bytes
16 - 32 Bytes
max. Paketlängen
5.3 Profibus DP protocol
Figure 2 The user data structure of Profibus telegrams
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Profibus DP protocol The bright areas are the minimum parts of the telegram and they cannot be changed. You can add as many IDs piecewise to the telegrams (depending upon the set parameters) as needed in the current application. Note: Reading-writing in double words in S7 systems: please remember that the double words cannot be read or written with the SFC14 and SFC15 function modules of the S7 systems. Instead, use direct peripheral access.
Examples of telegrams The following figure shows the basic structure of Profibus telegrams. The first line is the telegram from the bus master to the controller and the second line is the controller’s reply. Example 1: Data transmission without a text block and without variable user-defined identifiers (ID) Parameter settings: Text block number ID
no 0
Telegram master to the controllers. FKB bin. out (2 bytes)
Commands
ID
Manual tare or FKB analog
ID
Manual tare or FKB analog
(2 bytes)
(2 bytes)
(4 bytes)
(2 bytes)
(4 bytes)
Reply of the controller FKB bin in
Status Scale displayed
Mirror-ID in this case: zero
Scale showed gross
(2 bytes)
Gross Scale displayed rounded off in the display format
(2 bytes)
(2 bytes)
(4 bytes)
(4 bytes)
(2 bytes)
The commando telegram that changes manual tare for scale/group 1 and specifies the first analog value of the analog function block: FKB binary xx xx xx xx
command value xx xx
ID manual tare1 value of manual tare 1
ID FKB1/1
2000
42 C8 00 00
42 10 00 00
200C
The values for (control) commands 00 01 Taring on the scale displayed 00 02 Clear tare on the scale displayed 00 03 Zero setting on the scale displayed
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
75
5.3 Profibus DP protocol
Remarks The identifier and corresponding values in the telegram from the master to the controller are always expected in precisely this order and position. If an ID is zero,the corresponding value will not be evaluated. The control and status information is always combined into packets of four bytes. If the wrong identifier is used, the datawill be rejected. These specification data have to be pending at least 100 ms to ensure that the controller can identify them without any problems. The values in the reply telegram are identified using the position in the telegram. This is the reason why identifiers are not needed. Example 2: Data transmission without a text block and with 2 variable user-defined identifiers (ID) Parameter settings Text block number ID
no 2
Telegram of master to the controller FKB PLS-DIn 1-16
Comma nds
ID
(2 bytes)
(2 bytes)
(2 bytes)
Manual tare or FKB analog
ID
Manual tare or FKB analog
ID1
ID 2
(4 bytes)
(2 bytes)
(4 bytes)
(2 bytes)
(2 bytes)
Reply of the controller FKB PLSDOut 1-16
The status on the scale displayed
(2 Byte)
(2 bytes)
Mirror-ID = ID 1
(2 bytes)
Gross on the scale displayed
Gross The scale displayed rounded in the display format
Value ID 1
Value ID 2
(4 bytes)
(4 bytes)
(2 bytes)
(2 bytes)
Remarks: You can make the controller enter the desired values into the reply telegram by adding identifiers in the telegram of the master to the controller. The order of values corresponds to the order of the identifiers. The identifiers may come from all data segments, which enables you to read back the predetermination values. If an identifier is identified as incorrect, its value in the reply will be set to zero. The identifiers should not be changed in regular user data operation because this would make it impossible to unambiguously assign the ID to the value at the switch-over point. Example 3: Data transmission with text blocks and without variable user-defined identifiers (ID). Parameter settings:
76
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Profibus DP protocol Text block number ID
4-byte text block (not with DISOMAT Satus) 0
The text block is always set in front of the other data. Telegram of master to the controller Text header
Text-user data
FKB PLS-DIn
Commands
ID
4 bytes
4 bytes
(2 bytes)
(2 bytes)
(2 bytes)
Manual tare or FKB analog
ID
Manual tare or FKB analog
(4 bytes)
(2 bytes)
(4 bytes)
Reply of the controller Text header
Text-user data
FKB PLSDout
The status on the scale displayed
Mirror-ID in this case: ZERO
Gross on the scale displayed
4 bytes
(2 bytes)
(2 bytes)
(2 bytes)
(4 bytes)
4 Byte
Gross The scale displayed in the display format rounded 4 bytes)
Text transmission via Profibus DP All explanations in this chapter relate to the 4-byte text block and the same applies correspondingly to the 20-byte text block. It only differs in the number of text-user data that can be transmitted per cycle.
Text header AK
Text-user data Text-ID
AKT
MAX
As much as 4- or 20-byte text-user data (unused bytes should filled with zero)
Figure 3 The basic structure of the text block The meaning of the byte in the text header AK
The first byte contains the order or reply identifier Refer to the table further below for details.
Text-ID
The second byte contains the text identifier (1-5) that specifies the text to be transmitted in greater detail. Refer to the Text-ID table for details.
AKT
AKT specifies the current index value in texts that cannot be transmitted in one cycle. If you select short (4-byte) text, this gives you the sequence 0,4,8,... for the index value. If you select long (20-byte) text, this gives you the sequence 0,20,40,... for the Index Value. Important: AKT has to accept the value of MAX at the end of the text transmission for least one telegram cycle. This indicates to the controller that all text segments were transmitted and that the text should now be accepted in the controller.
MAX
The byte always contains the total length of the text user data in bytes.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
77
5.3 Profibus DP protocol The following text types are implemented: Meaning
Text-ID
String text 1
1
String text 2
2
String text 3
3
String text 4
4
String text 5
5
You can find the meaning of the order identifier in Table 1 for the order telegram (master —> controller). Order identifier
Meaning
0
No order
1
Read the text from the scale
2
Write the text for the scale
Tab. 1 Order identifiers (AK) master station -> DISOMAT You can find the meaning of the reply identifier in Table 2 for the reply telegram (controller —> master). Reply identifier
Meaning
0
No order
2
Text fragment successfully transmitted
7
Order cannot be executed
Tab. 2 Reply identifiers (AK) DISOMAT -> master station The master has to repeat an order until he has received the appropriate reply. The master recognises the reply to an order placed by evaluating the reply identifier If text information is not needed in cyclical operation, the order identifier has to be set to “no order”.
78
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Profibus DP protocol
Read text (controller text transmitted to the master) If there is a new text, the text is requested piecewise, but no more than 4 or 20 bytes per cycle. While the maximum index always gives the length of the text, n the current index has the sequence 0, 4, 8 with the 4-byte text block to the maximum index. n and the current index has the sequence 0, 20, 40 in the 20-byte text block to the maximum index. Example: Reading a text 21 bytes long with the 4-byte text block (“This is an example”)
xx any characters 01 01 00 12 xx xx xx xx 02 01 00 12 54 68 69 73 01 01 04 12 xx xx xx xx 02 01 04 12 20 69 73 20 01 01 08 12 xx xx xx xx 02 01 08 12 61 6E 20 65 01 01 0C 12 xx xx xx xx 02 01 0C 12 78 61 6D 70 01 01 10 12 xx xx xx xx 02 01 10 12 6C 65 00 00 01 01 12 12 xx xx xx xx
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
1. request 1. reply (This) 2. request 2. reply ( is ) 3. request 3. reply (an e) 4. request 4. reply (xamp) 5. request 5. reply (le) end telegram (The master has read the entire text)
BV-H2359GB/0902
79
5.3 Profibus DP protocol
Write a text (transmit the text of the master to the controller) The text is transmitted piecewise, no more than 4 or 20 bytes per cycle. While the maximum index always give the length of the text, n the current index has the sequence 0, 4, 8 in the 4-byte text block to the maximum index. n and the current index has the sequence 0, 20, 40 in the 20-byte text block to the maximum index. Example: Specifying a text 21 bytes long with the 4-byte text block (“This is an example”) (The replies of the controller are not described) 02 01 00 12 54 68 69 73 (This) 02 01 04 12 20 69 73 20 ( is ) 02 01 08 12 61 6E 20 65 (an e) 02 01 0C 12 78 61 6D 70 (xamp) 02 01 10 12 6C 65 00 00 (le) 01 01 12 12 xx xx xx xx end telegram (The application accepts the text) The end telegram where the current index is set equal to the maximum index always has to transmit regardless of the length of the text. It is only transmitted to the scale after transmitting this packet..
80
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Profibus DP protocol
5.3.3
Data from the process control system DP write register (control information and analog predetermination values) Description without a text block
byte
Code
Contents
0-1
0x1002
Function block PLS-DIn 1-16 PLS-DIn 9-16 is transmitted first followed by PLS-DIn 1-8
2-3
0x1000
1 byte unused Command number in LOW-byte (1 byte) Refer to the list of available data
4-5
ID1 analog specification (refer to the list)
6-9
Value for the ID1 analog specification
10 - 11
ID2 analog specification (refer to the list)
12 - 15
Value for the ID2 analog specification
16 - 17
ID1
18 - 19
ID2
20 - 21
ID3
22 - 23
ID4
24 - 25
ID5
26 - 27
ID6
28 - 29
ID7
30 - 31
ID8
The commands on the scale displayed Please key in the coding of the command into the command byte. This action is immediately triggered after correct reception. When giving be ‘Clear Tare’ command, please remember that the manual tare value is set to ZERO at the same time as the command. The identifiers for PLS-DIn 1-16 and the commands are not transmitted. They are only used to refer to the list of the “Available Data”. Refer to the chapter on Available Data Settings for valid setpoints The procedure for specifying the values via fieldbus The values addressed above can be specified by one of the following sources: n Data processing procedure n Local operating panel (menu tree or function key(s)) n Fieldbus
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
81
5.3 Profibus DP protocol 1. Setpoint and material number: The fieldbus is always the sole determinant source when the ID in the telegram assigned to the value is transmitted from the master to the controller. Any values from other sources are then overwritten in the next fieldbus cycle. If you want to use the fieldbus to change the value, set the desired value in the fieldbus protocol and then transmit it to the controller together with its ID. To allow other sources to specify, the IDs for setpoint or material number have to be set to zero or the ID on of a different value in the fieldbus telegram. That means that the specification IDs determine which source has priority. 2. Other values: The controller accepts the manual tare of the scale displayed and the data PLS-AIN-1 - PLS-AIN-4 after changing the corresponding values. The controller requires at least 100 ms to accept. It can be accepted by waiting this period or also by reading back current values. Reading back is done by setting the corresponding read-ID.
82
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Profibus DP protocol
5.3.4
Data on the process control system DP read register (status information and readings) Description without a text block byte
Identifier
Contents
0-1
0x300C
Function block PLS-Dout 1-16
2-3
0x3000
The scale status on the scale displayed
4-5
0x3002
Request (ID1 mirrored)
6-9
0x4000
Gross weight on the scale displayed unrounded in kg
10 - 13
0x4010
Gross weight on the scale displayed rounded off in the display format
14 - 17
See list for ID
Value 1
18-21
See list for ID
Value 2
22-25
See list for ID
Value 3
26-29
See list for ID
Value 4
30-33
See list for ID
Value 5
34-37
See list for ID
Value 6
38-41
See list for ID
Value 7
42-45
See list for ID
Value 8
Word = 16-bit data word Long = data double word Note: When range 1 and range 2 are set, the scale is in range 3. The bold print identifiers are not transmitted and they are only used to refer to the list of the “Available Data”. Refer to the chapter on Available Data for the Controller Data for the reading ID list
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
83
5.3 Profibus DP protocol
5.3.5
Profibus-DP interface parameters
What the parameters mean: q
Internal address ? station address for the Profibus (0-126)
q
Number of IDs
identifiers of all values that should be requested for specific customers (0-8).
q
Text block
This parameter defines whether a fixed text block is put ahead of the normal user data and, if this is the case, its size (off, 4 bytes, 20 bytes).
q
Data format
The format for all floating point numbers (IEEE, SIEMENS-KG)
q
Timeout for monitoring the interface in seconds; 0s = no monitoring 1-300 s = value range
The number of IDs, text block and internal address parameters are only used after reset and the old (i.e., effective) values are showed until then. Note: If monitoring is activated, the controller shows both timeouts and faulty identifiers (ID) as communication malfunctions.
84
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.3 Profibus DP protocol
5.3.6
Planning aids (drawings, rules) You can load the appropriate Profibus planning file (.gsd) from the address below: http://support.schenckprocess.com- Steuerungen\Profibus. You can find the controller in the hardware configurator of an S7 under: Profibus-DP/weitere Feldgeräte/Regler/DISOMAT xxxx The names of the GSD modules are structured according to the following scheme: Text block, number IDs For example: · · · ·
No Text, 0 ID No Text, 4 ID Short Text, 2 ID Long Text, 4 ID etc.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
85
5.3 Profibus DP protocol
- Reserved for user’s notes -
86
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.4 DeviceNet Protocol
5.4
DeviceNet Protocol Terminology The following chapters describe: HEXADECIMAL values in the form of 0x1234 and DECIMAL values in the form of 1234.
Logical hierarchy The process control system is the bus master and the controllers are treated as individual slaves. One telegram cycle always consists of a query from the master (PLS) and a reply from the slave. The bus master cyclically acquires a process image of the controller and cyclically transmits a command telegram to the controller
Data Format The setpoints and readings are transmitted in the IEEE float format (IEEE 754, 32 bits) or the Siemens float format. They are transmitted according to standard procedure starting with the MSB. You can use the swapping parameter to change the order all bytes.
Guaranteeing Transmission Timeout can guarantee transmission between the controller and control system in the controller so that the controller expects a telegram from the control system at particular intervals. You can use parameters to set both the interval and the type of reaction from the controller to no telegram on the controller. The setting TIMEOUT = 0 means that the data flow between the controller and control system is not monitored by the controller.
Routines Any routines important for specifying data are described in the specific section.
Subscriber addresses Every controller is given a slave address beginning with 0 in ascending order. The highest address that can be set is marked in the following text as MAXSLAVE. You can set the address by dialog on the controller. MAXSLAVE is 63.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
87
5.4 DeviceNet Protocol
5.4.1
Structure of user data The data content is identical to the Profibus-DP coupling (refer to the chapter on Data Segments and User Data).
5.4.2
Parameterising DeviceNet interface parameters
What the parameters mean: q Internal address station address for DeviceNet (0-63) q Timeout for monitoring the interface in seconds; 0s = no monitoring 1-300 s = value range q q
Baud rate on the DeviceNet (125 kB, 250 kB and 500 kB) User data “no text/4 ID”, “text/2 ID”, establishing the composition of the data to be requested via DeviceNet. 4 customised data can be requested WITHOUT text and 2 customised data can be requested WITH text.
q
Data format
q
Swapping
Format for all floating point numbers (IEEE, SIEMENS-KG) order of bytes for the floating point numbers and words on the bus (BIG Endian, BYTE Swap, WORT Swap, LITTLE Endian) The setting LITTLE Endian make sense in connection with ROCKWELL control systems.
Note: When monitoring is activated, both timeouts and faulty identifiers (ID) are shown as communication malfunctions.
88
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Diagnosis and Troubleshooting
5.5
5.5 DeviceNet Protocol
Diagnosis and Troubleshooting Faulty functions from event messages are shown if you activated (selected) one of the fieldbuses: The A6020:PLS No Longer Transmitting event message The event is set when the host no longer operates the controller within the configured timeout. Some other possible causes for this message are: · · ·
Different station addresses sent to the master and scales. There is a problem with the cabling between the fieldbus connection and main board. The fieldbus cable is defective or incorrectly connected. See the chapter ‘Fieldbus Hardware’ for the correct connection.
The timeout parameter has been set at too small a value. Change the parameterisation of the scales. M1520-X: Communication Faults event message X == 1 : A specification ID in the telegram is not known to the controller. X == 2 : A reading ID in the telegram is not known to the controller. X == 3: There is no connection to the host in the case of Ethernet/IP.
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
BV-H2359GB/0902
89
5.5 DeviceNet Protocol
Diagnosis and Troubleshooting
- Reserved for user’s notes -
90
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Setpoint
5.6.1
4096
10
16
Num.
1 2 3 4 5 6 7 8 9 10 11
DW DW DW DW DW DW DW DW DW DW
Command number
(dec)
Meaning
DW
DW
Data Type
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
The meaning of the command numbers
1000
Commands
(hex)
(hex)
(dec)
Modbus Modbus/TCP
(dec)
Identifiers
Identifiers
Profibus DeviceNet
WRITE fieldbus
Available data
5.6
BV-H2359GB/0902
Clear tare
Taring
Zero setting
Clear tare
Taring
Zero setting
Clear tare
Taring
Zero setting
Clear tare
Taring
Added Information
Scale 1
Scale 1
Scale 1
Scale displayed
Scale displayed
Scale displayed
X
DISOMAT Satus
Scale 1
Scale 1
Scale 1
Scale displayed
Scale displayed
Scale displayed
X
DISOMAT Opus
Twin-unit
Twin-unit
Scale 2
Scale 2
Scale 2
Scale 1
Scale 1
Scale 1
Scale displayed
Scale displayed
Scale displayed
X
DISOMAT Tersus
91
92
(hex)
(hex) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 71 72 73 74 75
DW DW DW DW DW DW DW DW DW DW DW DW DW DW DW DW DW DW DW DW
(dec)
Meaning
DW
Data Type
BV-H2359GB/0902
(dec)
Modbus Modbus/TCP
Profibus DeviceNet
(dec)
Identifiers
Identifiers
Connect scale
Connect scale
Connect scale
Connect scale
Connect scale
Zero setting
Clear tare
Taring
Zero setting
Clear tare
Taring
Zero setting
Clear tare
Taring
Zero setting
Clear tare
Taring
Zero setting
Clear tare
Taring
Zero setting
Added Information
DISOMAT Satus
Twin-unit
Scale 2
Scale 1
Twin-unit
DISOMAT Tersus
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
DISOMAT Opus
4098
(hex)
1002
32
78 80 81 82 83 84 85 86 87 88 128
DW DW DW DW DW DW DW
DW DW DW DW
8200
8204
8208
2008
200C
2010
100
108
106
104
102
256
264
262
260
258
DDW
DDW
DDW
DDW
DDW
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
8192
8196
2000
2004
PLS -AIn-2
PLS -AIn-1
unused
unused
Manual tare
Function blocks (16 bits) PLS-DIn-xx
77
DW
76
DW
(dec)
Meaning
DW
Data Type
Predetermination values (floating point values, IEEE)
20
(hex)
(dec)
Profibus DeviceNet
(dec)
Identifiers
Modbus Modbus/TCP
Identifiers
BV-H2359GB/0902
Refer to the loaded function block linkage for the meaning of the bits
Acknowledging the highest pending fault
Register
Register
Register
Register
Register
Register
Register
Register
Register
Connect scale
Connect scale
Connect scale
Added Information
X
X
Scale displayed
X
Scale displayed
DISOMAT Satus
X
X
Scale displayed
X
X
Scale displayed
DISOMAT Opus
X
X
Scale displayed
X
X
Twin-unit
Scale 2
Scale 1
Scale displayed
DISOMAT Tersus
93
8220
8224
8228
8232
200C
2020
2024
2028
10A
266
1536
1552
1568
1584
1600
610
620
630
640
276
274
272
270
268
600
114
112
110
10E
10C
32772
32776
8004
8008
94
32768
8000
804
802
800
2052
2050
2048
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
Data Type
BV-H2359GB/0902
Predetermination values (integers, ULONG)
Texts/string (ASCI
8212
8216
2014
(hex)
(dec)
(hex)
2018
Modbus Modbus/TCP
Profibus DeviceNet
(dec)
Identifiers
Identifiers
Added Information
Material number 1
Time and coding as per Profibus specifications
Date and coding as per Profibus specifications
String 5
String 4
String 3
String 2
String 1
Setpoint 2 in kg
Material number 2
Setpoint 1 in kg
Material number 1
PLS -AIn-4
PLS -AIn-3
(dec)
Meaning
X
X
X
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
X
X
X
X
DISOMAT Satus
X
X
X
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
X
X
X
X
X
X
DISOMAT Tersus
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
X
X
X
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
X
X
X
X
DISOMAT Opus
(hex)
12288
4864
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
1300
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
130A
130B
130C
130D
130E
130F
DW
Data Type
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
3000
Status information
Modbus/TCP
(hex)
DeviceNet
(dec)
Modbus
Profibus
(dec)
Identifiers
READ fieldbus
Controller data
Identifiers
5.6.2 Added Information
BV-H2359GB/0902
This is a multi-range scale
This is a multi-interval scale
The scale is in the zero setting range
The scale is in range 2
The scale is in range 1
Measuring is being initialised: No weights are being established
Scale in no-motion
Scale tared
The weight is not valid
Scale is exactly zero
Manual or fixed tare is set
The scale is in the overrange
The scale is in the underrange
Status (as data word, 16 its)
Meaning
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Scale displayed
DISOMAT Satus
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Scale displayed
DISOMAT Opus
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Scale displayed
DISOMAT Tersus
95
Modbus/TCP
(hex)
(dec)
12292
12296
12300
12304
12308
DeviceNet
(hex)
3004
3008
300C
3010
3014
96
Modbus
Profibus
5024
5024
5025
5026
5027
5028
5029
5030
13A0
13A0
13A1
13A2
13A3
13A4
13A5
13A6
4992
5008
1380
1390
4976
4960
1360
1370
4944
4928
1350
4912
1340
4896
1320
1330
4880
1310
(dec)
Identifiers
Identifiers
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
BV-H2359GB/0902
Num.
Num.
Num.
Num.
Num.
Data Type
Added Information
The load cell cable is broken to channel 1
Measuring signal to large channel 1
Initialising channel 1
Status (as a double word, 16 bits)
Status (refer to status ID 1300 for details)
Status (refer to status ID 1300 for details)
Status (refer to status ID 1300 for details)
Binary function blocks (16 bits) PLS-DOut-xx Refer to the loaded function block linkage for the meaning of the bits
Fault ident
The LE group of the highest pending fault
The fault number of the highest pending fault
The fault class of the highest pending fault 0:no result 1:message 2:warning 3:alarm 4:fault
Mirror-ID (first requested ID)
Meaning
Scale 1
X
X
X
X
X
X
X
X
X
X
Disobox 1 channels 1-2
Twin-unit
Scale 2
Scale 1
X
X
X
X
X
X
DISOMAT Tersus
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Scale 1
X
X
X
X
X
X
X
X
DISOMAT Opus
X
DISOMAT Satus
12316
12320
12324
301C
3020
3024
5152
1420
DW
DW
DW
DW
DW
DW
DW
DW
Data Type
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5136
5120
1400
1410
5104
5088
13E0
13F0
5072
5056
13C0
13D0
5040
13B0
13AF
12312
5038
5039
13AE
3018
5037
13AA
13AD
13A9
5035
5034
13A8
(hex)
5036
5033
13A7
DeviceNet
13AC
5032
(hex)
(dec)
Profibus
13AB
5031
Modbus
Modbus/TCP
(dec)
Identifiers
Identifiers
Added Information
BV-H2359GB/0902
Dimension (0:kg 1:g 2:t 3:lb) High-Word/Low-Byte
Status (refer to status ID 13A0 for details)
Status (refer to status ID 13A0 for details)
Status (refer to status ID 13A0 for details)
Status (refer to status ID 13A0 for details)
Status (refer to status ID 13A0 for details)
Status (refer to status ID 13A0 for details)
Status (refer to status ID 13A0 for details)
The load cell cable is broken to channel 2
Measuring signal to large channel 2
Initialising channel 2
Meaning
X
DISOMAT Satus
X
DISOMAT Opus
X
Disobox 2 channels 7-8
Disobox 2 channels 5-6
Disobox 2 channels 3-4
Disobox 2 channels 1-2
Disobox 1 channels 7-8
Disobox 1 channels 5-6
Disobox 1 channels 3-4
X
X
X
X
X
X
X
X
X
DISOMAT Tersus
97
12332
12336
12340
302C
3030
3034
1280
1296
1312
1328
1344
510
520
530
540
5296
14B0
500
5280
14A0
5264
1490
5232
5248
1470
1480
5216
1460
5184
5200
1440
1450
5168
1430
98
4000
16384
700
1792
Readings (floating point values, IEEE)
Texts/string (ASCII)
12328
3028
(dec)
Modbus/TCP
(hex)
(dec)
(hex)
Modbus
Profibus
DeviceNet
Identifiers
Identifiers
BV-H2359GB/0902
DDW
DW
DW
DW
DW
DW
DW
DW
DW
DW
Data Type
Added Information
GROSS weight
String 5
String 4
String 3
String 2
String 1
unrounded in kg
Feed status of feed operation 2 feeding status 0/1/2 “ none / active /stopped
Feed status of feed operation 1 feeding status 0/1/2 “ none / active /stopped
Physical digital outputs
Physical digital inputs
Status (refer to status ID 1300 for details)
Status (refer to status ID 1300 for details)
Status (refer to status ID 1300 for details)
Status (refer to status ID 1300 for details)
Status (refer to status ID 1300 for details)
Meaning
Scale displayed
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
X
X
X
DISOMAT Satus
Scale displayed
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
X
X
X
X
DISOMAT Tersus
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Scale displayed
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
A maximum of 25 characters
X
X
X
DISOMAT Opus
16448
16452
16456
16460
4040
4044
4048
404C
704
726
724
722
720
71E
71C
71A
718
716
714
712
710
70E
70C
70A
708
706
1830
1828
1826
1824
1822
1820
1818
1816
1814
1812
1810
1808
1806
1804
1802
1800
1798
1796
1794
(dec)
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
Data Type
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
16440
16436
4034
16444
16432
4030
403C
16428
402C
4038
16424
401C
4028
16412
4018
16416
16408
4014
16420
16404
4010
4024
16400
400C
4020
16392
16396
4008
702
(hex)
(dec)
16388
Modbus/TCP
DeviceNet
4004
Modbus
Profibus
(hex)
Identifiers
Identifiers
Balance (current sort) 100000 multiple (kg)
Balance (current sort) 100000 rest (kg)
X
X
X
X
X
BV-H2359GB/0902
Registered consecutive number (float data format)
X
Registered consecutive number (integer data format) X
Registered net rounded in the display format
Registered tare rounded in the display format
PLS -AOut-4
PLS -AOut-3
PLS -AOut-2
X
X
X
X
X
Rounded in the display Scale displayed format
Rounded in the display Scale displayed format
Rounded in the display Scale displayed format
Balance (total) 100000 multiple (kg)
PLS -AOut-1
Scale displayed
Scale displayed
Scale displayed
DISOMAT Satus
Rounded in the display Scale displayed format
unrounded in kg
unrounded in kg
unrounded in kg
Added Information
Balance (total) 100000 rest (kg)
NET weight
dW/dt
TARE weight
GROSS weight
NET weight
dW/dt
TARE weight
Meaning
X
X
X
X
X
X
X
X
X
X
X
X
Scale displayed
Scale displayed
Scale displayed
Scale displayed
Scale displayed
Scale displayed
Scale displayed
DISOMAT Opus
X
X
X
X
X
X
X
X
X
X
X
X
Scale displayed
Scale displayed
Scale displayed
Scale displayed
Scale displayed
Scale displayed
Scale displayed
DISOMAT Tersus
99
100
16548
40A4
16536
4098
16540
16532
4094
16544
16528
4090
409C
16524
408C
40A0
16516
16520
4084
4088
16512
4080
73C
16504
16508
4078
407C
73A
752
750
74E
74C
74A
748
746
744
742
740
73E
738
736
734
16500
4068
732
730
4074
16488
4064
16492
16484
4060
72E
16496
16480
405C
72A
72C
4070
16476
4058
406C
16468
16472
4054
728
1874
1872
1870
1868
1866
1864
1862
1860
1858
1856
1854
1852
1850
1848
1846
1844
1842
1840
1838
1836
1834
1832
(dec)
(hex)
(dec)
16464
Modbus/TCP
DeviceNet
4050
Modbus
Profibus
(hex)
Identifiers
Identifiers
BV-H2359GB/0902
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
Data Type
GROSS weight
GROSS weight
GROSS weight
GROSS weight
GROSS weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
Setpoint in kg
Material number
Setpoint in t
Material number
Meaning
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
Feed operation 2
Feed operation 2
Feed operation 1
Feed operation 1
Added Information
Scale 1
Scale 1
Scale 1
Scale 1
X
X
DISOMAT Satus
Disobox1-Channel 6
Disobox1-Channel 5
Disobox1-Channel 4
Disobox1-Channel 3
Disobox1-Channel 2
Disobox1-Channel 1
Twin-unit
Twin-unit
Twin-unit
Twin-unit
Scale 2
Scale 2
Scale 2
Scale 2
Scale 1
Scale 1
Scale 1
Scale 1
X
X
X
X
DISOMAT Tersus
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
Scale 1
Scale 1
Scale 1
Scale 1
X
X
DISOMAT Opus
16564
16568
16572
16576
16580
16584
16588
16592
16596
16600
16604
40B4
40B8
40BC
40C0
40C4
40C8
40CC
40D0
40D4
40D8
40DC
756
76E
76C
76A
768
766
764
762
760
75E
75C
75A
758
1902
1900
1898
1896
1894
1892
1890
1888
1886
1884
1882
1880
1878
1876
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
Data Type
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
16556
16560
16552
40A8
40AC
(hex)
(dec)
(hex)
40B0
Modbus/TCP
DeviceNet
(dec)
Modbus
Profibus
754
Identifiers
Identifiers
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
GROSS weight
GROSS weight
Meaning
DISOMAT Satus
BV-H2359GB/0902
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display Scale 1 format
Rounded in the display Scale 1 format
Rounded in the display Scale 1 format
Rounded in the display Scale 1 format
unrounded in kg
unrounded in kg
Added Information
Scale 1
Scale 1
Scale 1
Scale 1
DISOMAT Opus
Twin-unit
Twin-unit
Twin-unit
Twin-unit
Scale 2
Scale 2
Scale 2
Scale 2
Scale 1
Scale 1
Scale 1
Scale 1
Disobox1-Channel 8
Disobox1-Channel 7
DISOMAT Tersus
101
(hex)
(dec)
16608
16612
16616
16620
16624
16628
16632
16636
16640
16644
16648
16652
16656
16660
16664
16668
16672
16676
16680
16684
16688
(hex)
40E0
40E4
40E8
40EC
40F0
40F4
40F8
40FC
4100
4104
4108
410C
4110
4114
4118
411C
4120
4124
4128
412C
4130
102
Modbus/TCP
DeviceNet
798
796
794
792
790
78E
78C
78A
788
786
784
782
780
77E
77C
77A
778
776
774
772
1944
1942
1940
1938
1936
1934
1932
1930
1928
1926
1924
1922
1920
1918
1916
1914
1912
1910
1908
1906
1904
(dec)
Modbus
Profibus
770
Identifiers
Identifiers
BV-H2359GB/0902
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
Data Type
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
GROSS weight
GROSS weight
GROSS weight
GROSS weight
GROSS weight
GROSS weight
GROSS weight
GROSS weight
Meaning
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
Added Information
DISOMAT Satus
Disobox 2 channel 8
Disobox 2 channel 7
Disobox 2 channel 6
Disobox 2 channel 5
Disobox 2 channel 4
Disobox 2 channel 3
Disobox 2 channel 2
Disobox 2 channel 1
DISOMAT Tersus
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
DISOMAT Opus
16700
16704
16708
16712
16716
16720
16724
16728
16732
16736
16740
16744
16748
16752
413C
4140
4144
4148
414C
4150
4154
4158
415C
4160
4164
4168
416C
4170
7B8
7B6
7B4
7B2
7B0
7AE
7AC
7AA
7A8
7A6
7A4
7A2
7A0
79E
79C
1976
1974
1972
1970
1968
1966
1964
1962
1960
1958
1956
1954
1952
1950
1948
1946
(dec)
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
Data Type
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
16696
4138
79A
(hex)
(dec)
16692
Modbus/TCP
DeviceNet
4134
Modbus
Profibus
(hex)
Identifiers
Identifiers
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
Meaning
BV-H2359GB/0902
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
unrounded in kg
Added Information
DISOMAT Satus
DISOMAT Opus
DISOMAT Tersus
103
16764
16768
16772
16776
16780
16784
16788
16792
16796
16800
16804
16808
417C
4180
4184
4188
418C
4190
4194
4198
419C
41A0
41A4
41A8
104
16760
4178
7D4
7D2
7D0
7CE
7CC
7CA
7C8
7C6
7C4
7C2
7C0
7BE
7BC
7BA
2004
2002
2000
1998
1996
1994
1992
1990
1988
1986
1984
1982
1980
1978
(dec)
(hex)
(dec)
16756
Modbus/TCP
DeviceNet
4174
Modbus
Profibus
(hex)
Identifiers
Identifiers
BV-H2359GB/0902
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
Data Type
dG/dt
dW/dt
dW/dt
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
GROSS weight
NET weight
dG/dt
TARE weight
Meaning
kg / 100 ms
kg / 100 ms
kg / 100 ms
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Rounded in the display format
Added Information
DISOMAT Satus
DISOMAT Tersus
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
DISOMAT Opus
16828
16832
16836
16840
16844
16848
41BC
41C0
41C4
41C8
41CC
41D0
7EE
7EC
7EA
7E8
7E6
7E4
7E2
7E0
7DE
7DC
7DA
7D8
28676
28680
28684
7004
7008
700C
906
904
902
900
2310
2308
2306
2304
2030
2028
2026
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
DDW
Data Type
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
28672
7000
Readings (integers, ULONG)
16860
16824
41B8
41DC
16820
41B4
16852
16816
41B0
16856
16812
41AC
41D4
(hex)
(dec)
(hex)
41D8
Modbus/TCP
DeviceNet
(dec)
Modbus
Profibus
7D6
Identifiers
Identifiers
Feed operation 2
Feed operation 2
Feed operation 1
Feed operation 1
kg / 100 ms
kg / 100 ms
kg / 100 ms
kg / 100 ms
kg / 100 ms
Added Information
Registration time
Registration date
BV-H2359GB/0902
The current time Coding according to the Profibus specifications
The current date Coding according to the Profibus specifications
unused
unused
Current residual value
Current actual value
unused
unused
Current residual value
Current actual value
dW/dt
dW/dt
dW/dt
dW/dt
dW/dt
Meaning
X
X
X
X
X
X
DISOMAT Satus
X
X
X
X
X
X
DISOMAT Opus
X
X
X
X
X
X
X
X
DISOMAT Tersus
105
106
BV-H2359GB/0902
- Reserved for Notes -
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
5.7
Date/time format
DISOMAT ® B plus, Opus, DISOBOX, Datenkommunikation Schenck Process
BV -H2316DE/0715
107
5.7 Date/time format
- Reserved for user’s notes -
108
BV-H2359GB/0902
DISOMAT Opus, Satus, Tersus, Data Communication © Schenck Process
DISOCONT® Weighfeeder Operating Instructions
DE
Bedienhinweise
Dosierbandwaage
GB
Operating Instructions
Weighfeeder
FR
Instructions de service
Doseur pondéral à bande
IT
Istruzioni per l´uso
Bilancia pesatrice con nastro
ES
Instrucciones de uso
Báscula dosificadora
NL
Bedieninstructies
Banddoseertoestel
PT
Manual de instruções
Balança dosadora de correia
Service
BV-H2061AA
Service
Service après-vente
Qualität und Zuverlässigkeit sind die Grundlagen der Schenck Unternehmensphilosophie, weltweit. Deshalb bieten wir Ihnen ein umfangreiches Service-Konzept, von der strengen Qualitätskontrolle über die Montage und Inbetriebnahme bis hin zur lückenlosen Betreuung an. Wir sind jederzeit für Sie da!
Quality and reliability form the basis for Schenck's corporate philosophy all over the world. That's why we offer you an extensive service strategy starting with our stringent quality control through assembly and commissioning right down to all-round support. We're always there for you.
La qualité et la fiabilité - sur cette base repose la philosophie d'entreprise de Schenck, dans le monde entier. C'est pourquoi, nous vous offrons un large concept de service, depuis le contrôle qualité sévère, en passant par le montage et la mise en service, jusqu'à l'assistance sans lacune. Nous sommes toujours à votre service !
Helpdesk - kostenfrei (Mo. - Fr., mindestens 8.00 – 17.00 Uhr MEZ)
Free Helpdesk (Monday through Friday from at least 8 o'clock to 5 p.m. CET)
Support Clients - appel gratuit (LU-VE, au moins 8H–17H, heure de l'Europe centrale)
Während unserer normalen Bürozeiten stehen Ihnen in jedem Geschäftsbereich Service-Spezialisten zur Problemfall- / Störfallanalyse zur Verfügung.
Service specialists are available to you in every department during our normal office hours for analying problems and malfunctions.
Pendant nos heures de bureau normales, dans chacune de nos divisions vous trouverez nos spécialistes en matière d'analyses de problèmes / défaillances à votre disposition.
Heavy Building materials, mining, foundry, steel and cement Phone: +49 6151 1531-3138 Fax: +49 6151 1531-3270 [email protected]
Vibrating & Screening Technology Phone: +49 6151 1531-3525 Fax: +49 6151 1531-3096 [email protected]
Light
Spare Parts & Components
Chemistry, plastics, foodstuffs and pharmaceuticals Phone: +49 6151 1531-2971 Fax: +49 6151 1531-2668 [email protected]
Phone: +49 6151 1531-1758 Fax: +49 6151 1531-3632 [email protected] [email protected]
Transport Automation All industries with logistics processes and trains Phone: +49 6151 1531-2448 Fax: +49 6151 1531-1369 [email protected]
Individuelles Telefon Consulting – kostenpflichtig
Individual phone consulting (fee required)
Consultation individuelle téléphonique – appel à titre onéreux
(Mo. - Fr., mindestens 8.00 – 17.00 Uhr MEZ)
(Monday through Friday from at least 8 o'clock to 5 p.m. CET)
(LU-VE, au moins 8H–17H, heure de l'Europe centrale)
Sie wünschen eine Inbetriebnahme mit telefonischer Unterstützung eines Service-Spezialisten oder eine Online-Diagnose / Optimierung Ihres Systems? Wir sind für Sie da. Planen Sie mit uns Ihren Wunschtermin.
Do you want one of our service specialists to give you phone support in commissioning your system or on-line diagnosis / system optimisation? We're there for you. Schedule an appointment with us whenever you need it.
Vous souhaitez une mise en service avec l'assistance téléphonique d'un spécialiste de service, ou un diagnostic / l'optimisation en ligne de votre système ? Nous sommes à votre disposition. Projetez avec nous votre date de rendez-vous.
Kundenservice 24h Notfall-Hotline – kostenfrei
Free 24 h Customer Service Hotline
Service après-vente - Ligne d'urgence 24h/24 – appel gratuit
Sie haben einen Stör- / Problemfall außerhalb unserer normalen Arbeitszeiten. Kein Problem, Sie können auch außerhalb unserer Bürozeiten jederzeit einen Schenck-Servicemitarbeiter zur Problem- / Störfallannahme, Service-Disposition und ‚Ersten Hilfe’ erreichen.
You have a malfunction or problem outside of our normal business hours. No problem. You can reach a Schenck service technician at any time outside of our office hours for recording problems or malfunctions, service scheduling and 'first aid'.
Vous avez une panne / un problème en dehors de nos heures de travail normales. Pas de problème ; vous pouvez toujours joindre quelqu'un du personnel de service de Schenck qui prendra note de votre problème / panne, qui se chargera de le / la transmettre et qui vous portera 'Premiers secours' - même en dehors de nos heures de bureau.
24h Notfall-Hotline: +49 172 6 501700 Transport Automation und statische WägetechnikTransport +49 171 2 251195 Heavy Industry, Light Industry ohne statische Wägetechnik
24h Emergency-Hotline : +49 172 6 501700 Automation and Static Weighing Equipment +49 171 2 251195 Heavy Industry, Light Industry excluding Static Weighing Equipment
Ligne d'urgence 24h/24 : +49 172 6 501700 Transport Automation (automatisation du transport) et technique du pesage statique +49 171 2 251195 Heavy Industry, Light Industry sans technique du pesage statique
Copyright 2006 Schenck Process GmbH Pallaswiesenstraße 100, 64293 Darmstadt, Germany www.schenckprocess.com Alle Rechte vorbehalten. Jegliche Vervielfältigung dieser Dokumentation, gleich nach welchem Verfahren, ist ohne vorherige schriftliche Genehmigung durch die Schenck Process GmbH, auch auszugsweise, untersagt.
All rights reserved. Any reproduction of this documentation, regardless of method, without prior permission by Schenck Process GmbH in writing, even by excerpt, is prohibited.
Tous droits réservés. Toute reproduction de cette documentation, même partielle, et par quelque procédé que ce soit, sans l’autorisation préalable écrite de Schenck Process GmbH, est strictement interdite.
Änderungen ohne vorherige Ankündigung bleiben vorbehalten.
Subject to change without prior notice.
Sous réserve de modification sans avis préalable.
Note: Translation of the original instructions
Nota : Traduction des instructions originales de service
Hinweis: Originalbetriebsanleitung
Contents
1 DEUTSCH .......................................................................................... 1 1.1 Allgemeines............................................................................................................ 1 1.2 Sicherheitshinweise .............................................................................................. 1 1.3 Anzeige- und Bedienelemente.............................................................................. 3 1.3.1 Das Disocont Bediengerät ................................................................................ 3 1.3.2 Meldelampe....................................................................................................... 4 1.3.3 Statusfeld .......................................................................................................... 4 1.3.4 Anzeigefeld........................................................................................................ 5 1.3.5 Meldungsfeld ..................................................................................................... 6 1.3.6 Wichtige Tasten................................................................................................. 6 1.3.7 Funktionstasten................................................................................................. 6 1.3.8 Funktionsverteiler.............................................................................................. 7
2 ENGLISH ........................................................................................... 8 2.1 General.................................................................................................................... 8 2.2 Safety Instructions ................................................................................................ 8 2.3 Display and Control Elements............................................................................ 10 2.3.1 Disocont Control Unit ...................................................................................... 10 2.3.2 LED ................................................................................................................. 11 2.3.3 Status Field ..................................................................................................... 11 2.3.4 Display Field.................................................................................................... 12 2.3.5 Message Field ................................................................................................. 13 2.3.6 Important Keys ................................................................................................ 14 2.3.7 Function Keys ................................................................................................. 14 2.3.8 Function Distributor ......................................................................................... 15
3 FRANÇAIS ....................................................................................... 16 3.1 Généralités ........................................................................................................... 16 3.2 Instructions de sécurité ...................................................................................... 16 3.3 Eléments d'affichage et de service .................................................................... 18 3.3.1 L'unité de service Disocont ............................................................................. 18 3.3.2 Lampe témoin.................................................................................................. 19 3.3.3 Champ d'état ................................................................................................... 19 3.3.4 Champs de textes affichés.............................................................................. 20 3.3.5 Ligne de signalisations.................................................................................... 21 3.3.6 Touches importantes....................................................................................... 22 3.3.7 Touches de fonction........................................................................................ 22 3.3.8 Menu des fonctions ......................................................................................... 23
4 ITALIANO ........................................................................................ 24 4.1 Generalità ............................................................................................................. 24 4.2 Istruzioni di sicurezza ......................................................................................... 24 4.3 Elementi di indicazione e di comando............................................................... 26 4.3.1 L'unità di comando Disocont ........................................................................... 26 DISOCONT Weighfeeder Operating Instructions BV-H2061AA, 0532
Schenck Process
I
Contents 4.3.2 Spia di segnalazione........................................................................................27 4.3.3 Righe di testo ...................................................................................................27 4.3.4 Campo di indicazione ......................................................................................28 4.3.5 Riga di messaggio ...........................................................................................29 4.3.6 Tasti importanti ................................................................................................30 4.3.7 Tasti di funzione...............................................................................................30 4.3.8 Distributore di funzioni .....................................................................................31
5 ESPAÑOL ........................................................................................ 32 5.1 Generalidades.......................................................................................................32 5.2 Instrucciones de seguridad.................................................................................32 5.3 Elementos de indicación y de mando ................................................................34 5.3.1 La unidad de mando Disocont .........................................................................34 5.3.2 Lámpara de señalización.................................................................................35 5.3.3 Zona de estado ................................................................................................35 5.3.4 Zona de indicación...........................................................................................36 5.3.5 Línea de señalización ......................................................................................37 5.3.6 Teclas importantes...........................................................................................38 5.3.7 Teclas de función.............................................................................................38 5.3.8 Menú de funciones...........................................................................................38
6 NEDERLANDS................................................................................. 40 6.1 Algemeen ..............................................................................................................40 6.2 Veiligheidsinstructies ..........................................................................................40 6.3 Display- en bedieningselementen ......................................................................42 6.3.1 Het Disocont bedieningstoestel .......................................................................42 6.3.2 Signaallampjes.................................................................................................42 6.3.3 Statusveld ........................................................................................................43 6.3.4 Displayveld.......................................................................................................44 6.3.5 Meldingsveld ....................................................................................................45 6.3.6 Belangrijke toetsen ..........................................................................................46 6.3.7 Functietoetsen .................................................................................................46 6.3.8 Functiemenu ....................................................................................................47
7 PORTUGUÊS................................................................................... 48 7.1 Generalidades.......................................................................................................48 7.2 Instruções de segurança .....................................................................................48 7.3 Elementos de visualização e comando..............................................................50 7.3.1 A unidade de comando Disocont.....................................................................50 7.3.2 Lâmpada de sinalização ..................................................................................51 7.3.3 Campo de estado.............................................................................................51 7.3.4 Campo de visualização....................................................................................52 7.3.5 Campo de mensagem .....................................................................................53 7.3.6 Teclas importantes...........................................................................................54 7.3.7 Teclas de comando..........................................................................................54 7.3.8 Menu de funções .............................................................................................55
II
BV-H2061AA , 0532“ DISOCONT Weighfeeder Operating Instructions © Schenck Process
Deutsch
Allgemeines
1 Deutsch 1.1 Allgemeines Diese Kurzhinweise beschreiben die Funktionen des DISOCONT VLB-Bediengerätes zur regelmäßigen Bedienung des DISOCONT Systems. Für ausführlichere Informationen verweisen wir auf: - das Systemhandbuch BV-H2085DE und - das Betriebshandbuch DISOCONT Dosierbandwaage BV-H 2062DE.
1.2 Sicherheitshinweise Zur Vermeidung von Personen- und Sachschäden sind die im folgenden genannten Bedingungen und Vorschriften einzuhalten. Beachten Sie darüber hinaus: !
Sicherheitshinweise in der Auftragsdokumentation.
!
Sicherheitshinweise, die Mechanikkomponenten betreffen.
!
Vorschriften für Lieferanteile, die nicht von Schenck Process hergestellt wurden oder nicht zum Lieferumfang von Schenck Process gehören.
Bei Montage-, Inbetriebnahme- und Servicearbeiten sind die im Bestimmungsland gültigen Regeln der Technik zu beachten. Bestimmungsgemäße Verwendung Das Mess-System mit den angeschlossenen Mechanikkomponenten ist ausschließlich für Wägeaufgaben und direkt damit verbundene Steuerungsaufgaben zu verwenden. Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß. Gefahrenquellen Vom Mess-System geht während des Wägebetriebs keine Gefahr aus, wenn das System ordnungsgemäß installiert und in Betrieb genommen wurde. Gefahren beim Einsatz des Mess-Systems können entstehen, wenn das System Steuerungsaufgaben übernimmt oder beim Transport des Wägeguts. Mögliche Gefahrenquellen sind dann z.B. Zusatzvorrichtungen, durch die das Wägegut befördert oder dosiert wird. In diesen Fällen können Restgefahren vom Mess-System ausgehen, wenn es von ungeschultem Personal unsachgemäß eingesetzt oder bedient wird. Das Mess-System kann Bestandteil einer komplexeren Anlage sein. Der Betreiber der Anlage trägt die Gesamtverantwortung für die Betriebssicherheit der Anlage. Kennzeichnung von Restgefahren Dieses Symbol kennzeichnet Hinweise auf Gefahren, die zu Sachschäden am Mess-System oder anderen Anlagenteilen führen können. Dieses Symbol kennzeichnet Hinweise auf Gefahren, die zur Verletzung von Personen oder im Extremfall sogar zum Tod führen können.
Personal DISOCONT Weighfeeder Operating Instructions ©Schenck Process
BV-H2061AA , 0532
1
Deutsch
Sicherheitshinweise
Vorbereitung, Montage, Inbetriebnahme, Bedienung, Wartung, Instandhaltung und Servicearbeiten dürfen nur von fachlich geeignetem Personal durchgeführt werden. Alle Personen, die mit dem Mess-System zu tun haben, müssen die Sicherheitshinweise und die für sie wichtigen Teile des Betriebshandbuchs kennen und beachten. Der Betreiber muss das Bedienpersonal anhand des Betriebshandbuchs unterweisen, mit der Verpflichtung, sämtliche Vorschriften und Anweisungen einzuhalten. Parameteränderung Die Funktionsweise des Mess-Systems wird durch Parameter festgelegt. Die Parameter dürfen nur von Personen geändert werden, die mit der Arbeitsweise des Gerätes vertraut sind (z.B. durch Schulung bei Schenck Process). Falsch eingestellte Parameter können bei angeschlossenen Steuerungen zu Gefährdungen von Personen oder zu Sachschäden führen. Darüber hinaus können sie den Wägebetrieb erheblich stören. Passwort Die Parameter werden per Passwort vor unbefugter Änderung geschützt. Der Betreiber des Mess-Systems muss auf einen verantwortungsbewussten Umgang mit dem Passwort achten. Quittieren von Ereignismeldungen Ereignismeldungen dürfen nur quittiert werden, wenn die Ursache des Ereignisses beseitigt ist. Achten Sie vor der Quittierung eines Ereignisses darauf, daß angeschlossene Peripheriegeräte ordnungsgemäß arbeiten. Insbesondere angeschlossene Steuerungen müssen in einem definierten, sicheren Zustand sein. Wartung und Instandhaltung !
Es sind alle an der Waage angebrachten Warn- und Hinweisschilder zu beachten.
!
Vor Arbeiten an der mechanischen Ausrüstung oder Peripheriegeräten (insbesondere Steuerungen) muss das Mess-System abgeschaltet werden. Es sind Messnahmen zu treffen, die ein unbeabsichtigtes Einschalten des Mess-Systems ausschließen.
!
Arbeiten an elektrischen Ausrüstungen dürfen nur im spannungsfreien Zustand durchgeführt werden (Netzstecker ziehen!).
!
Die Geräte dürfen nur in den vorgesehenen Gehäusen betrieben werden, da sonst die Gefahr der Berührung spannungsführender Teile besteht.
Nässe und Feuchtigkeit Alle Teile der Waage, insbesondere die elektrischen Teile, müssen vor Nässe und Feuchtigkeit geschützt werden, wenn die Gehäuse geöffnet werden, z.B. bei Wartungs- und Servicearbeiten. Ansonsten müssen die Schutzarten der Gehäuse beachtet werden. Konstruktive Änderungen Wenn Sie das Mess-System konstruktiv verändern oder durch Komponenten ergänzen, die nicht von Schenck Process geliefert werden, übernimmt Schenck Process keine Haftung und keine Garantie. Dies gilt insbesondere für Änderungen, die die Betriebssicherheit des Mess-Systems beeinflussen können. Austausch von Teilen
2
BV-H2061AA, 0532
DISOCONT Weighfeeder Operating Instructions © Schenck Process
Deutsch
Anzeige- und Bedienelemente
Müssen bei einer Reparatur Teile ausgetauscht werden, so dürfen nur OriginalErsatzteile von Schenck Process verwendet werden. Werden andere Ersatzteile verwendet, erlischt die Garantie.
1.3 Anzeige- und Bedienelemente 1.3.1 Das Disocont Bediengerät In der folgenden Abbildung ist die Frontansicht des DISOCONT Bediengeräts mit Kennzeichnung der Anzeigefelder dargestellt:
In diesem Betriebshandbuch wird bei der Beschreibung von Tasten die Abkürzung "Taste " verwendet, z.B. Taste . Bedient wird der DISOCONT mit Funktionstasten bis (gelb), Cursortasten , , , (grün), einem Nummerntastenblock (weiß) und der Taste (rot). Die jeweilige Belegung der Funktionstasten ist von der Bediensituation abhängig. Die Funktion wird über oder neben der Taste angezeigt. Der Kontrast der Anzeige wird um eine Stufe erhöht, indem Taste <.> und Cursortaste gleichzeitig gedrückt werden. Der Kontrast wird um eine Stufe verringert, indem Taste <.> und Cursortaste gleichzeitig gedrückt werden. Standardmäßig wird nach 15 Minuten die Hintergrundbeleuchtung ausgeschaltet. Ein beliebiger Tastendruck schaltet die Beleuchtung wieder ein. Mit der Tastenkombination <.> und Cursortaste wird die Beleuchtung auf Dauerlicht geschaltet. Die Kombination <.> und Cursortaste schaltet wieder in den Grundzustand. Der zuletzt gewählte Zustand bleibt auch nach Spannungsausfall erhalten. Die in der Abbildung "Frontansicht des DISOCONT Bediengerätes" dargestellten Elemente haben folgende Bedeutung.
DISOCONT Weighfeeder Operating Instructions ©Schenck Process
BV-H2061AA , 0532
3
Deutsch
Anzeige- und Bedienelemente
1.3.2 Meldelampe Wenn die grüne Meldelampe leuchtet, ist der DISOCONT betriebsbereit.
1.3.3 Statusfeld In der 1. oder 2. Textzeile kann folgender Text angezeigt werden: Anzeige
Bedeutung
OFF
Waage ist ausgeschaltet. Nur Bandbeladung und Bandgeschwindigkeit werden weiterhin gemessen und angezeigt.
ON
Waage ist eingeschaltet. Förderorgan läuft, Fördermenge und Förderstärke werden erfaßt.
VOL
Volumetrischer Betrieb.
VOL-->
Anfahr- oder Leerfahrbetrieb
VOL-S
Volumetrisch synchron
OP
Tastatur-Betrieb.
SIM
Simulationsbetrieb ist eingeschaltet.
BATCH
Vorgewählter Batchbetrieb.
ES 11
Ein PC mit der EasyServe-Software Version 11 ist passiv beobachtend angeschlossen
ES-ACT 11
Ein PC mit der EasyServe-Software Version 11 ist aktiv angeschlossen und kann Werte verstellen
ES-DIS
Ein PC mit der EasyServe-Software hatte eine Unterbrechnung ohne sich ordnungsgemäß abgemeldet zu haben.
PA
Waage im Parametriermode
CA
Einstellprogramm aktiv
LOCAL
Lokal-Betrieb ist vorgewählt
CHECK
Eine Kontrollmesseinrichtung ist aktiv
MAN +
Manuelles Füllen des Behälters gestartet
MAN -
Manuelles Füllen des Behälters gestopt
4
BV-H2061AA, 0532
DISOCONT Weighfeeder Operating Instructions © Schenck Process
Deutsch
Anzeige- und Bedienelemente
1.3.4 Anzeigefeld Im Anzeigefeld kann in zwei Zeilen jeweils eine der folgenden Prozessgrößen dargestellt werden. Die Zeilenanzeige kann auch ganz ausgeblendet werden. Die Auswahl der Größen wird mit den Cursortasten vorgenommen: Die Cursortasten und beziehen sich auf das erste Textfeld und die Cursortasten und auf das zweite Textfeld. Die angegebene Reihenfolge der Größen entspricht dem Durchrollen mit der Cursortaste bzw. : Angezeigte Größe
Dimension
Bezugsgröße
Aktueller Sollwert
kg/h oder t/h
-
Förderstärke I
kg/h oder t/h
-
Relat. Förderstärke
%
Nenn-Förderstärke
Bandbeladung
kg/m
-
Rel. Bandbeladung
%
Nennbandbeladung
Bandgeschwindigkeit
m/s
-
Zähler 1
kg oder t
-
Zähler 2
kg oder t
-
Zähler 3
kg oder t
-
Regelabweichung
%
(Sollwert-Istwert)/NennFörderstärke *100
Externer Sollwert (1)
kg/h oder t/h
-
Relativer Sollwert
%
externer Sollwert
Batch-Sollwert (2)
kg oder t
-
Batch-Restmenge (2)
kg oder t
-
Batch-Istwert (2)
kg oder t
-
Feuchte (3)
%
-
Korrigierter Istwert (3)
kg/h oder t/h
-
Korr. Rel. Istwert (3)
%
Nenn-Förderstärke
Zähler 1 Korr. (3)
kg oder t
-
Zähler 2 Korr. (3)
kg oder t
-
Zähler 3 Korr. (3)
kg oder t
-
B: Füllgewicht (4)
kg oder t
-
B: Rel. Füllgewicht (4)
%
Nennfüllstand
B: Sollwert (5)
kg
-
Position Zuteiler (6)
%
100%
Differenz Istwert (7)
kg/h
-
Korrektur Tara rel. (8)
%
Nenn-Bandbeladung
Korrektur Ber. rel. (8)
%
Bereichskorrektur
Kontroll-Länge (8)
m
-
Kontin. Ergebnis Z (8)
kg
-
Kontroll-Erg. F/Z (8)
-
-
Bandbelad. 2. Brücke (9)
kg/m
-
rel. Beladung 2.Br. (9)
%
Nenn-Bandbeladung
DISOCONT Weighfeeder Operating Instructions ©Schenck Process
BV-H2061AA , 0532
5
Deutsch
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Anzeige- und Bedienelemente
nur, wenn Parameter P 03.03 "Sollwertquelle" auf ein externes Gerät (Feldbus oder analoger Eingang) eingestellt ist. nur, wenn Parameter "Chargierbetrieb" auf "YES" steht und die Funktion "Batch Vorwahl" aktiv ist. Nur, wenn Feuchte Messung aktiv (Block 28) Nur, wenn Behälterwaage aktiv (Block 24) Nur, wenn Behälter-Regelung EIN (Block 25) Nur, wenn P31.01 AI Zuteiler Position ungleich "--" Nur, wenn P03.09 Differenz Istwert ungleich "--" Nur, wenn Kontroll-Messeinrichtung aktiv (Block 27) Nur, wenn P26.01 2. Wägebrücke aktiv auf "YES"
1.3.5 Meldungsfeld Im unteren Bereich des Anzeigefeldes gibt es das Meldungsfeld. Dort wird eine eventuell anstehende Ereignismeldung mit dem Kurzkode und einem Erläuterungstext angezeigt. Beispiel für eine Ereignismeldung ist: "WE-01 Netzausfall".
1.3.6 Wichtige Tasten 1.3.7 Funktionstasten Über oder neben den Funktionstasten bis wird die für den Bedienkontext maßgebende Tasten-Bedeutung auf der Anzeige dargestellt. Die folgenden Tasten sind wichtig zur Bedienung des DISOCONT: Taste
Belegung
Funktion
F5
ON
Einschalten
F6
OFF
Ausschalten
F4
DEL
Löschen der zuletzt eingegebenen Zahl oder des zuletzt eingegebenen Zeichens.
F1
EDIT
Vorbereiten der Eingabe.
F3
ESC
Abbrechen von Eingaben, Programmen und allen anderen Funktionen nach Aufruf.
F2
MENU
Aufrufen des Funktionsverteilers.
F7
ResTot
Löschen eines Fördermengenzählers.
F7
Events
Ereignisse zeigen
F7
Print T
FMZ drucken
F7
Volum
Volumetrisch
F7
Grav
Gravimetrisch
F7
VolSyn
Volumetrisch synchron
F7
EndBat
Batch beenden
F7
Print B
Batch drucken
Return
Abschließen einer Eingabe. Aufrufen eines Programms, einer Funktion.
F8
ClrEvt
Quittieren von Ereignismeldungen
F9
Ba Set
Batch Sollwert eingeben
Die Funktionstaste F7 dient als Hot-Key mit dem spezielle Funktionen direkt ausgeführt werden können. Die Belegung der Taste erfolgt mit dem Parameter P 02.11 "Hot-Key F7". 6
BV-H2061AA, 0532
DISOCONT Weighfeeder Operating Instructions © Schenck Process
Deutsch
Anzeige- und Bedienelemente
1.3.8 Funktionsverteiler Der Funktionsverteiler ist das Element zur Bedienung spezieller Funktionen des DISOCONT. Vom Funktionsverteiler wird auf Funktionsgruppen zugegriffen, die zum Konfigurieren und Steuern der Anlage benötigt werden. Die Funktionsgruppen sind Betriebsfunktionen, Justagefunktionen und Programmierfunktionen. Zu ihnen gehören beispielsweise Einstellprogramme und Parametereingabe. Um die Gefahr von Fehlbedienungen gering zu halten, sind einige Funktionen im Funktionsverteiler mit Passwort gesichert. In der folgenden Abbildung ist der Funktionsverteiler mit allen untergeordneten Menüs dargestellt.
Abb.: Funktionsverteiler mit Menüs Vorgehen zum Aufruf des Funktionsverteilers 1. Einstellen der Normal-Anzeige durch ein- oder mehrmaliges Betätigen derTaste 2. Betätigen der Taste